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Abstract. The LAgrangian Kite SimulAtor (LAKSA) is a freely available software for the
dynamic analysis of tethered flying vehicles, such as kites and fixed-wing drones, applied
to airborne wind energy generation. This software comprises four simulators. The one,
two and four-line simulators, which consider flexible but inelastic tethers, are based on
minimal coordinate Lagragian formulations and can be used for the analysis of fly and ground
generation systems, kite-based traction systems, and kitesurfing applications, respectively. The
configuration of the mechanical system in the fourth simulator can be defined by the user, who
can select the number of flying vehicles and the properties of the elastic and flexible tethers
linking them. In all the software tools, the kites or tethered fixed-wing drones are represented
as rigid bodies and the dynamic equations of the tether-bridle-vehicle systems, together with
the user-defined and time-dependent control variables, are solved self-consistently. Academic
and research analysis can take advantage of the modularity of the simulators and their inputs
and outputs interfaces, which follow a common and user-friendly architecture.

1. Introduction
Airborne wind energy (AWE) researchers have developed during the last decade several
numerical tools for the simulation of AWE systems. Some of them have been shared with
the research community [1, 2, 3, 4] and constitute valuable open-access resources in the field.
Among them, the numerical tools aimed at the dynamics and control of airborne systems are of
particular importance because of their use during the preliminary and detailed design phases.
Moreover, the analysis of optimal control laws and the implementation of real-time closed-loop
controls depend heavily on dynamic analysis. A particular challenge for a flight simulator of
tethered flying vehicles is the modeling of the tether. Although a straight-line tether model is
accurate enough when the tension is large if compared to the aerodynamic and gravitational
loading of the tether, tether sagging cannot be neglected during launching and landing, or during
the retraction of the kite within a pumping cycle [5, 6]. Multi-particle simulators, which are
based on lumped-masses connected by springs and dampers, can be easily implemented but they
typically yield to a stiff set of ordinary differential equations due to the high value of the tether
Young’s modulus. For these reasons, multi-particle models are convenient for the simulation of

http://creativecommons.org/licenses/by/3.0
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complex system involving several kites and tethers. On the other hand, by modeling the tether
as a set of inelastic and jointed rods, the fast longitudinal oscillations are removed, although this
introduces geometrical constraints. A classical mechanics formulation yields to a mixed system
of ordinary differential equations and nonlinear algebraic constraints. For these reasons, many
AWE flight simulators have used minimal coordinate Lagrangian formulation [7, 8, 9, 10, 11, 12].

Following previous considerations, we developed a software tool named LAgrangian Kite
SimulAtors (LAKSA) with several simulation modules. Besides using a minimal coordinate
approach, the kite or fixed-wing drone are modeled as rigid bodies, instead of single point mass
as frequently found in AWE simulators. This work presents for the first time the architecture of
LAKSA (Sec. 2) and a new module named KiteSurf that mimics the dynamics of a four-line kite
(Sec 3). Some capabilities of KiteSurf are shown in Sec. 4, where simulation results of pull-up
and steering maneuvers are discussed. Section 5 summarizes the conclusions of the work.

2. General description of LAKSA
LAKSA is a set of Matlab® functions aimed at academic and research activities on AWE systems.
The code, which is freely available from a public repository [13], includes four modules:

(i) KiteFlex is a simulator of fly- and ground-generation AWE systems. The mechanical system
comprises a tethered vehicle with or without rotors, equipped with a time-varying bridle
made of three lines, and attached to the ground by an inelastic and flexible tether. A detailed
description can be found in Refs. [14] and [15]. In addition to LAKSA, a parallelized Fortran
version of this code has been developed by the authors.

(ii) KiteAcrobat considers a two-line kite and aims at kite traction applications such as cargo
ships pulling [12].

(iii) KiteSurf simulates the dynamics of four-line kites. Besides kite surf applications, the
simulator mimics the experimental setup developed at UC3M [16]. Therefore, the simulator
is also connected with AWE applications because it is an important element in the
aerodynamic parameter identification algorithm for kites and drones. A sketch of the
mechanical system is shown in the left panel of Fig. 1.

(iv) KiteElastic is a flight simulator of several tethered vehicles linked by elastic and flexible
tethers. It can be used to study the dynamics of AWE systems based on a train of kites or
multi-drone configurations.

The first three modules are based on a minimal coordinate Lagrangian formulation because
they involve inelastic tethers. The equations of motion of KiteElastic were derived by using a
classical mechanics formulation. For all of them, the equations of motion are ordinary differential
equations without any algebraic constraints. This work is mainly focussed on KiteSurf because
the equation of motion of this module has not been presented before. Moreover, since it combines
inelastic and elastic tethers, it illustrates the most important feature of LAKSA’s methodology.

The right panel of Fig. 1 displays the flow chart of LAKSA and highlights its modular
architecture. For either of the four simulators the user inputs and outputs are the same. The
inputs include the initial conditions of the system, its physical parameters, and the control laws.
After integrating the equations of motion numerically, the simulation outputs can be obtained in
a two-step procedure. Firstly, the time history of the state vector is post-processed to get all the
relevant quantities such as the position and velocity of the vehicle and the tethers, Euler angles,
tether tensions, and aerodynamic forces and torques. Secondly, a call to a function allows to
create plots with the results of the simulations.

This architecture eases the interpretation of the results and avoids the interaction of the user
with certain complex features of the codes. The use of dimensionless parameters and a minimal
coordinate approach are very convenient from a numerical point of view [7, 8, 9, 10, 11, 12],
but they make harder the physical understanding of the results. Such a drawback is solved by
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Figure 1: KiteSurf configuration (left) and flow chart of LAKSA (right).

the proposed flow chart, because the user only interacts with physical parameters and standard
state variables.

All LAKSA simulators share the same independent module for the computation of the
aerodynamic forces and torques. Such a modular architecture is compatible with future updates
and alternative aerodynamic models. In LAKSA, the extended state vector, y, of the simulators
is governed by a set of ordinary differential equations

dy

dτ
= g (y,uc) (1)

where τ is a dimensionless time whose definition depends on the specific LAKSA′s module.
Equation (1) is not coupled with algebraic constraints imposed by the tethers because a
Lagrangian formulation with minimal coordinate approach is used. The control vector uc
depends on the particular simulator and it can include the lengths of the tether and the bridle
lines, the torque of the motor controllers of the rotors, and the position of the control bar. It
is remarkable that LAKSA computes self-consistently the dynamics of the system, i.e. without
empirical or heuristic laws linking variables. This allows to simulate rigorously reel-in, reel-out,
take-off, and landing manoeuvres. The next section presents the explicit derivation of Eq. (1)
for a four-line kite system.
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3. KiteSurf: a Lagrangian Four-Line Kite simulator
KiteSurf comprises a power kite of mass mk, chord c, span b, and surface S, four lines, and
a control bar (see Fig. 1). The two lines that connect points A± of the leading edge of the
kite with the mobile point OE are massless, inelastic, straight, and have constant lengths Ll.
Another tether with the same properties but length Ls joins OE with OEF , which is the origin
of an inertial frame SEF linked to the ground, axes yEF and xEF spanning the flat ground
and zEF pointing downwards. The other two lines of the kite have tips at points B± of the
trailing edge and at the ends of the control bar, C±. These two lines are modeled as massless,
straight, elastic, and with unstretched length Lt. These tethers need to be elastic because four
inelastic tethers would yield an over-constrained system (similar to a chair with four legs). An
alternative approach would be a flexible kite with four rigid tethers, but the computational cost
and complexity of the simulator would increase notably.

An important geometric element of the model is the plane named Π, and defined by the three
points A± and OE . Obviously, the two inelastic tethers and the segment A+ − A− form an
isosceles triangle that belongs to Π. For convenience, we will use a dot to denote derivatives
with respect to the dimensionless time τ = t

√
g/Ll, and sine and cosine of an angle α will be

written as sα and cα, respectively. Upper and lower case letters refer to variables with and
without dimensions. For instance, the wind velocity is written as Vw = −

√
gLlvwiE with vw

being a dimensionless function.
Figure 1 also shows some auxiliary frames of reference. SE is a non-inertial frame with origin

at OE and axes parallel to SEF . S1 has its origin at OE and axis y1 and z1 spanning the Π-plane.
The orientation with respect to SE of the normal direction to Π, i.e. x1, is given by angles ϕ and
γ, as shown in the left panel of Fig. 1. We also use a frame S2 with origin at the middle point
of segment A+ − A−, axes x2 and z2 spanning the plane of symmetry of the kite, z2 pointing
to OE , and x2 parallel to x1. The angle η between axes y1 and y2 orients S2 with respect to
S1. The last auxiliary system is the body frame SB that, for clarity, is not shown in Fig. 1. It
has its origin at the center of mass G. Axes xB and zB span the plane of symmetry of the kite,
and zB pointing downwards. The relative orientation of SB with respect to S2 is defined by the
angle θ between x2 and xB. The SB-coordinates of the attachment points are

GA±
Ll

= xAiB ± yAjB + zAkB,
GB±
Ll

= xBiB ± yBjB + zBkB (2)

and the components of the tensor of inertia about the center of mass G reads

I = mkL
2
l ιG, ι ≡

 ιx 0 ιxz
0 ιy 0
ιxz 0 ιz

 (3)

with ιx, ιy, ιz, and ιxz some dimensionless constants. More detailed information about these
auxiliary frames of references, such as dedicated figures, rotation matrices to relate vector
components, and the normalized angular velocities ω1E = ϕ̇kE+γ̇j1, ω21 = η̇i2, and ωB2 = θ̇jB,
are available in Ref. [12].

The massless and straight tether linking OEF and OE is in the Π-plane because its tension
should compensate exactly the resultant of the forces in the inelastic tethers. However, it does
not bisect, in general, the angle made by the two inelastic tethers at OE . Such a situation,
i.e. points OEF , OE and O2 belonging to the same line, only occurs when the tensions in the
inelastic tethers are equal. For this reason, we introduce a frame S3 with origin at O3 = O2, axis
x3 = x2, and axis z3 always aligned with the tether of length Ls. We will denote χ the angle
between y3 and y2 (see inset in Fig. 1). The rotation matrix that relates vector components in
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the S2 and S3 frame is

R32 =

 1 0 0
0 cχ sχ
0 −sχ cχ

 (4)

and the angular velocity of S3 with respect to S2 is Ω32 =
√
g/Llω32 =

√
g/Llχ̇i2.

The mechanical system has five degrees of freedom that we gather in the state vector

xs = [ϕ γ η θ χ]T . (5)

Besides anchoring the kite to the ground, the tether of length Ls also serves as a guideway,
because it passes through a hole drilled at the middle point C0 of the control bar (see inset
of Fig. 1). The pilot can move the control bar between the depower and power stopper balls,
which are located at distances Lds and Lps from points OE and OEF , respectively. Instead of
the distance Dcb between point C0 and the power stopper ball, our model uses the dimensionless
power ratio [3]

up = 1− Dcb

Ls − Lds − Lps
(6)

This variable is convenient because it varies from zero to one when the control bar is moved from
the depower to the power stopper balls. The second control variable of the model is the angle ν
between the bar and axis y3, which is used for steering the kite. For simplicity, we will restrict
the analysis to the case in which the control bar is contained in the Π-plane. This hypothesis
can be removed easily by adding the angle of the bar out of the Π plane to the control vector.
Therefore, our control vector is given by xc = [up ν].

The position of the center of mass of the kite as a function of the state vector reads

RG ≡ OEFG = OEFOE +OEO2 +O2G = −Ll [`sk3 + `k2 + xAiB + zAkB] (7)

with ` =
√

1− y2A and `s ≡ Ls/Ll. Writing RG ≡ LlrG, the normalized absolute velocity reads

vG =
drG
dτ
|SEF

= −`sω3EF × k3 − `ω2EF × k2 − ωBEF × (xAiB + zAkB) , (8)

where we used Coriolis theorem. Since ωEFE = 0, because the axes of SE and SEF are
parallel, one has ω3EF = (χ̇+ η̇) i2 + ϕ̇kE + γ̇j1, ω2EF = η̇i2 + ϕ̇kE + γ̇j1 and ωBEF =
θ̇jB + η̇i2 + ϕ̇kE + γ̇j1. Substituting these angular velocities in Eq. (8), yields the following
formula for the SB-components of vG

vG = Υẋs = (Υ0 − `sΥ1) ẋs (9)

with

Υ0 =

 −cγsη (zA + `cθ) −cη (zA + `cθ) 0 -zA 0
sγ (xAsθ − zAcθ − `)− cγcη (xAcθ + zAsθ) sη(xAcθ + zAsθ) `− xAsθ + zAcθ 0 0

cγsη (xA − `sθ) cη (xA − `sθ) 0 xA 0

 ,

(10)

and

Υ1 =

 cθcγs (η + χ)− sθsγsχ cθc (η + χ) sθsχ 0 sθsχ
sγcχ 0 −cχ 0 −cχ

sθcγs (η + χ) + cθsγsχ sθc (η + χ) −cθsχ 0 −cθsχ

 , (11)

Matrix Υ0 recovers the result of Ref. [12] when the inelastic tethers have equal length, while
Υ1 represents the contribution due to the tether of length Ls. The absolute angular velocity



6

1234567890 ‘’“”

The Science of Making Torque from Wind (TORQUE 2018) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1037 (2018) 062018  doi :10.1088/1742-6596/1037/6/062018

of the kite ΩBEF = ΩBE coincides with the one found in Ref. [12]. Its SB-components are
ΩBE = P iB +QjB +RkB ≡

√
g/L0ωBE with

ωBE =

 −cγcηsθ − sγcθ sηsθ cθ 0
cγsη cη 0 1

cγcηcθ − sγsθ −sηcθ sθ 0

 ẋs ≡ Φẋs. (12)

The normalized Lagrangian of the system L = Ek − Up, involves the normalized kinetic and
potential energies of the kite. The former is Ek = (v2G + 1

2ω
T
BE · ιG ·ωBE)/2. From Eqs. (9) and

(12), one finds

Ek(xs, ẋs) =
1

2
ẋTs ·M · ẋs (13)

with M ≡ ΥT ·Υ + ΦT · ιG ·Φ. The potential energy, Up(xs,xc) = −RG/Ll · kEF is

Up(xs) = cγ [`cη + `sc (η + χ)]− xA [sγcθ + cγsθcη]− zA [sγsθ − cγcθcη] . (14)

The aerodynamic force FA and moment MA about the center of mass and the tension F±
and the torque M± of the elastic tethers attached to B± appear in the generalized forces

Qi = f · ∂vG
∂ẋsi

+m · ∂ω
∂ẋsi

, i = 1, . . . , 5. (15)

with f = fA + f+ + f− = (FA + F+ + F−) /mkg and m = mA + m+ + m− =
(MA +M+ +M−) /mkgLl. The explicit forms of tensions f± and torques m± of the elastic
tethers are given in Appendix A. Regarding the aerodynamic force and torque, we used the
following model

fA =µv2A [(Cx0 + Cxαα) iB + CyββjB + (Cz0 + Czαα)kB] , (16)

mA =µv2A [εb (Clββ + Clpp) iB + εc (Cm0 + Cmαα+ Cmqq) jB + εb (Cnββ + Cnrr + Cnδtδt)kB] ,
(17)

where vA = vG − vw is the normalized aerodynamic velocity, µ ≡ ρSLl/2mk, εb = b/Ll,
εc = c/Ll, p = Pb/2VT , q = Qc/VT , r = Rb/2VT , ρ the air density, VT a reference velocity, and b
and c the kite span and chord, respectively. The angle-of-attack and sideslip angle in Eqs. (16)
and (17) are given by

α = arctan

(
vA · kB
vA · iB

)
, β = arcsin

(
vA · jB
|vA|

)
. (18)

All the coefficients in Eqs. (16) and (17), such as Cx0, Czα, Clβ, etc, are the stability derivatives
[17] of the kite, and they were obtained by using basic preliminary engineering methods. Due
to the actual lack of knowledge on kite’s aerodynamics, we assumed that they are constant,
thus yielding a first aerodynamic model suitable for qualitative analysis. The term Cnδtδt, with
δt = f+−f−, appearing in Eq. (17), represents the aerodynamic yaw moment that is generated
by the deformation of the kite when the tensions at points B+ and B− are different. For instance,
when pulling from the elastic tether attached to B+, the trailing edge is deformed and a higher
drag occur at the left side of the kite from the pilot’s point of view. Such a drag difference
induces a yaw torque that turns the kite.

The equations of motion of the simulator in terms of generalized coordinates are

d

dτ

(
∂L
∂ẋsi

)
− ∂L
∂xsi

= Qi, i = 1, . . . , 5. (19)



7

1234567890 ‘’“”

The Science of Making Torque from Wind (TORQUE 2018) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1037 (2018) 062018  doi :10.1088/1742-6596/1037/6/062018

0

5

10

10

20

15

z 
(m

)

5

20

15

25

y (m) x (m)

0 10-5 5-10 0

0

5

10

10

20

15

 t  = 0 s

z 
(m

)

5

20

15

25

x (m)y (m)

0 10-5 5-10 0

Figure 2: KiteSurf visualization tool

Parameter Value

c 1.4 m
b 4.3 m
mk 3.4 kg
S 10 m2

Ix 8.68 kgm2

Iy 2.43 kgm2

Iz 8.40 kgm2

Ixz 0.33 kgm2

Table 1: Kite properties

or, using the previous results,

Mij ẍsj +
∂Mij

∂xsk
ẋskẋsj −

1

2

∂Mjk

∂xsi
ẋsj ẋsk +

∂Up
∂xsi

= fkΥki +mkΦki, i = 1 . . . 5 (20)

where fk and mk are the SB-components of the forces and moments. After introducing the
extended state vector y = [xs ẋs], Eq. (20) can be written as a first order system like Eq. (1).
Similar procedures have been used in Refs. [12] and [14, 15] for finding the equations of motions
of KiteAcrobat and KiteFlex, respectively.

4. Simulation Results
Interested readers can find a plethora of simulation results by running the example files that are
available from the open access repository [13]. They include reel-in maneuvers, periodic figure-
of-eight trajectories, stability analyses of equilibrium states, and steering maneuvers, among
others. After running these examples, LAKSA generates a movies and several plots with relevant
information such as the evolution of the kite position and velocity, control laws, tether tensions,
angle of attack and sideslip angles, and aerodynamic forces. We now explain the most important
features of this software by discussing two examples of KiteSurf.

As shown in the right panel of Fig. 1, the user inputs include the physical parameters, the
control laws and the initial conditions. The physical parameters in our KiteSurf’s simulations
are given in Tables 1 and 2, and they were used to simulate symmetric pull-up and steering
maneuvers. These parameters and maneuvers correspond with the experimental setup and
results presented in Ref. [16]. We considered a four-line Cabrinha Swithblade inflatable kite
with five inflatable struts. Although a quantitative agreement is not possible due to the lack of
an accurate aerodynamic model, the simulation results are in a very good qualitative agreement
with the experimental data.

For the pull-up maneuver, we took a symmetric equilibrium state of the kite as initial
condition and increased the power ratio from 0.5 to 0.75 with zero deflection of the control
bar [see Panel (a) in Fig. 3]. The trajectory of point G and the evolutions of the pitch angle
and pitch angular velocity component of the kite, displayed in panels (b) and (c), reveals that
the center of mass of the kite does not move significantly and the kite rotates while increasing
its pitch angle. As a consequence, the angle of attack of the kite increases (not shown) and the
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Name Value Name Value Name Value Name Value Name Value

Cx0 −0.065 Cxα 0.18 Cyβ −1.57 Cz0 0.12 Czα −2.97
Clβ 1.24 Clp −0.15 Cnβ 0.78 Cnr −0.002 Cm0 0.13
Cmα −0.76 Cmq −0.17 Cnδt 0.04 VT 7 m/s Vw 7 m/s
ft 0.1 Ll 23.85 m Lt 23.19 m E 10 GPa dt 1.5mm
XA 0.42 m YA 1.05 m ZA −0.20 m XB −0.97m YB 2.15 m
ZB 1.38 m LCB 0.56 m Ls 1.51m Lds 0.52 m Lps 0.54 m

Table 2: Simulation parameters. Environmental variables are g = 9.8 m/s2 and ρ = 1.15kg/m3
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Figure 3: Panels (a)-(d) and (e)-(h) correspond to simulations results for pull-up and steering
maneuvers, respectively.

tensions at point B+ and B−, which are equal since the maneuver is symmetric, are enhanced
[see panel (d)]. This dynamic response of the kite, and the linear variation of the tether tension
with the power ration, agrees qualitatively with the behavior showed in Ref. [16].

For the steering maneuver we also used as initial condition a symmetric equilibrium state
of the kite, but now the power ratio was kept constant and the deflection angle of the kite
was varied periodically [see panel (e)-(h)]. The control law for ν(τ) showed in panel (e) was
generated with a PID controller, which makes the kite to follow a target trajectory with a
sinusoidal variation of its lateral displacement. The long term behavior of the kite, i.e. the
one obtained after letting the kite evolves from the equilibrium state towards a final periodic
motion, is close to the one found in the experiments of Ref. [16]: the altitude of the periodic
motion varies slightly [panel (f)] and the dominant components of the angular velocity are P
and R (yaw and roll). Interestingly, in the simulations and the experiments, there is a time shift
between the maximum of R and the minimum of P and the former appears latter in the cycle.
As expected, panel (h) shows that the tether tension at point B+ is greater (smaller) than the
one at B− for positive (negative) values of ν.

5. Conclusions
This work presented a general description of LAKSA, a freely available software for the
simulation of tethered vehicles such as kites and fixed-wing drones with application to airborne
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wind energy systems. The architecture of the software, including inputs, modules, and outputs,
was explained. For one of the four modules, KiteSurf, the explicit form of the equations of
motion were presented. Such a four-line kite simulator was selected because it is the most
pedagogical. KiteSurf involves elastic and inelastic tethers and the most important features
of the methodology of the simulators, including the Lagrangian formulation with a minimum
coordinate approach, are naturally highlighted. Simulations results of pull-up and steering
maneuvers with KiteSurf qualitatively agree with previous experimental results.
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Appendix A. Modeling of elastic tethers in KiteSurf
Each elastic tether of diameter dt, cross section At = πd2t /4, Young’s modulus Et, natural length
Lt, and friction coefficient Ft is substituted by a massless spring and a damper. The tension
force upon the kite the reads

F± = −K
(
L±(t)− Lt + Ft

dL±
dt

)
C±B±

| C±B± |
(A.1)

with K = EtAt/Lt the equivalent stiffness of the spring, and L±(t) ≡| C±B± | the distance
between points C± of the control bar and the kite’s attachment points B±. After introducing
the dimensionless parameters ζ = Ll/Lt, ft ≡ Ft

√
g/Ll, κ = EtAt/mkg, and the elongation

ε± = ζL±/Ll − 1, the normalized tether tension and moments due to the elastic tethers are

f± = −κ [ε± + ftε̇±]
C±B±

| C±B± |
, m± =

GB±

Ll
× f± (A.2)

In order to find the dependence of these forces with the extended state vector, we first write
vector C±B± as a function of the state vector variables as follows

C±B±

Ll
=
C±C0 + C0OE +OEG+GB±

Ll
=∓ εCB

2
(cνj3 + sνk3)− dk3 − `k2

− (xAiB + zAkB) + (xBiB ± yBjB + zBkB)
(A.3)

where `CB = LCB/Ll is the normalized length of the control bar, and d ≡ Lds/Ll+up(Ls−Lds−
Lps)/Ll the normalized distance between OE and C0. Such a distance depends on the control
vector through the power ratio up. For convenience we introduce the parameters xBA ≡ xB−xA
and zBA ≡ zB − zA, and write Eq. (A.3) as

C±B±

L0
= (xBAcθ + zBAsθ) i2 +

(
±yB ∓

`CB
2
c (χ+ ν) + dsχ

)
j2−(

dcχ+ `± `CB
2

sin (χ+ ν) + xBAsθ − zBAcθ
)
k2 (A.4)
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The square of the ratio L±(t)/Ll appearing in the elongation ε± = ζL±/Ll − 1 reads(
L±
Ll

)2

=x2BA + z2BA + y2B + l2 +

(
`CB

2

)2

+ d2 ± `CB`s (ν + χ)− yB (`CBc (ν + χ)∓ 2dsχ)

2d

[
`cχ± `CB

2
sν

]
+ 2

[
dcχ+ `± `CB

2
s (ν + χ)

]
(xBAsθ − zBAcθ) (A.5)

and the time derivative of the elongation is

ε̇± =
ζ

L/Ll

{
dḋ± `CB

2
` (ν̇ + χ̇) c (ν + χ) + yB

(
`CB

2
(ν̇ + χ̇) s (ν + χ)± dχ̇cχ± ḋsχ

)
+ d

[
±`CB

2
ν̇cν − `χ̇sχ

]
+

[
ḋcχ− dχ̇sχ± `CB

2
(ν̇ + χ̇) c (ν + χ)

]
(xBAsθ − zBAcθ)

+θ̇

[
dcχ+ `± `CB

2
s (ν + χ)

]
(xBAcθ + zBAsθ) + ḋ

(
`cχ± `CB

2
sν

)}
(A.6)

with ḋ = u̇p(Ls − Lds − Lps)/Ll.
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