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A B S T R A C T   

One-way carsharing is an alternative shared-use transportation mode that provides flexible travel 
accommodations for urban mobility. However, vehicle distributions can be mismatched with 
demand distributions because users are not required to return to their departure locations. 
Conventional operator-based vehicle relocation is limited by labor resources, but user-based and 
demand-controlled approaches can open new avenues for mitigating vehicle imbalance. This 
paper proposes a method for controlling demand patterns by applying measures of combinatorial 
monetary incentives and surcharges. A two-level nested logit model is adopted to analyze user 
decisions regarding the travel process in response to differentiated pricing combinations. A user 
choice model is aggregated and loaded into a time-space network that reveals the dynamics of the 
carsharing system. An optimization framework is proposed to determine the incentives and 
surcharges at different stations and times of day. This paper presents an algorithm for solving the 
proposed optimization model, as well as an example of parameter calibration and the solving 
process. Case analysis suggests that the proposed method can increase revenues by 22.5% 
compared to a scenario without demand control and vehicle relocation policies. Comparisons 
suggest that the proposed demand-based control policy can achieve higher revenues than 
operator-based relocation, whereas operator-based relocation could satisfy greater demand.   

1. Introduction 

Rapid modern urbanization has generated growing transportation demand and challenges for future urban transportation and 
humanized mobility. Carsharing has been considered as an alternative shared-use urban transportation mode since the introduction of 
mobile internet and the shared economy has accelerated the emergence of a new market for urban mobility (Shaheen et al., 2015a). 
Carsharing is promising for mitigating transportation problems by providing better mobility, increasing vehicle usage, saving expenses 
relating to car ownership, reducing energy consumption, and economizing parking spaces (Barth and Shaheen, 2002). 

There are various carsharing service models, including one-way and round-trip models. A one-way model allows users to pick up 
vehicles from one station and drop them off at a different station, providing more convenient travel experiences for users (Jorge et al., 
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2015a; Shaheen et al., 2015b). However, vehicles floating through networks can lead to imbalances between fleet allocation and 
demand. A lack of available vehicles in high-demand areas negatively impacts user experiences and decreases customer satisfaction. 
Additionally, idle vehicles in the low-demand areas lose the opportunity to make profits for the service provider, which can lead to a 
negative feedback loop. 

The fleet balancing problem can be considered during the planning stage. For example, Correia and Antunes (2012) proposed a 
depot location method and Huang et al. (2018) designed a network planning method considering the relocation problem. In the 
operation stage, approaches for coping with imbalance problems fall into two main categories: 1) operator-based vehicle relocation 
and 2) user-based vehicle relocation. Operator-based vehicle relocation approaches change the vehicle distribution on the supply side, 
whereas user-based approaches influence user behaviors on the demand side (Cepolina and Farina, 2012). 

The operator-based vehicle relocation problem has been studied for more than a decade. Some representative studies can be 
categorized as follows. When demand is known, deterministic mathematical programming methods such as mixed-integer linear 
programming have been successfully applied to solve the relocation problem (Alfian et al., 2014; Boyacı et al., 2015; Nourinejad and 
Roorda, 2014). For unknown demand, various approaches have been proposed, including inventory control methods based on 
threshold triggering (Kek et al., 2009), mathematical programming with predictive demand (Bruglieri et al., 2014), and stochastic 
programming (Fan et al., 2008). However, it has been shown that the number of relocation workers limits relocation capabilities (Kim 
et al., 2014), which could be a bottleneck for carsharing network expansion. Another side-effect is the relocation and scheduling of 
workers because their positions will also become imbalanced, which makes operator-based vehicle relocation even more complicated 
(Bruglieri et al., 2018). 

To overcome the limitations of operator-based vehicle relocation, some researchers have considered new approaches from the 
perspective of demand. Some studies refer to this type of problem as user-based relocation, as opposed to operator-based relocation. 
Barth et al. (2004) originally proposed the concept of user-based relocation, which attempts to motivate users to merge trips or split 
trips. Representative studies on user-based relocation and demand control approaches are summarized in Table 1. 

Incentives are effective tools for motivating users and controlling demand in a system. Herrmann et al. (2014) conducted a survey 
of user intentions to accept incentives and summarized four major policies: 1) destination changes, 2) origin location changes, 3) both 
origin and destination changes, and 4) pooling. Angelopoulos et al. (2016) proposed a trip suggestion policy that suggests not only 
destinations, but also departure locations. Di Febbraro et al. (2012), Di Febbraro et al. (2018), and Wagner et al. (2015) proposed 
methods based on incentive policies to motivate users to change their destinations, which will increase operator profits. Incentive- 
based approaches have also been studied from a practical perspective (Clemente et al., 2018; Lippoldt et al., 2018). We conducted 
an experimental study combining field operations for a one-way station-based electric vehicle sharing enterprise in Shanghai and 
discovered that incentives are practical and applicable for changing demand patterns (Wang et al., 2019a). 

In addition to incentives, surcharges are also useful tools for reducing demand by charging extra fees. Incentives and surcharges can 
be used for variable pricing schemes. One important task is to reveal the relationship between price and demand. Jorge et al. (2015b) 
applied a pricing model for each origin–destination (O-D) pair based on a linear elastic demand assumption with a unified elasticity 
factor E. However, linear elasticity may not fit user choice behaviors accurately because demand would asymptotically approach a 
maximum value, regardless of how much an operator subsidizes users with incentives, and change relationships are not linear. 
Waserhole and Jost (2014) proposed a continuous elastic demand curve (presented as an S-shaped curve) that is more appropriate for 
depicting the price-demand relationship for each O-D pair. However, it is almost impossible to calibrate all curves for every O-D pair 
individually using limited samples. Jorge et al. (2015b) assumed a homogenous elastic coefficient E for every O-D pair, but this is a 
strict assumption that ignores the possible variation of different O-D pairs with different demand intensities. Waserhole and Jost 
(2014) did not discuss the variability of price-demand curves for each O-D pair either. Another important problem is that O–D matrices 
are typically sparse. There can be zero demand between some O-D pairs, which represents the background demand. The quantity of 
demand influenced by price cannot be calculated using a linear elastic function if the background demand is zero. Additionally, the S- 
curve is difficult to calibrate and it is difficult to determine if the background demand is zero. 

One feasible method for avoiding the sparse O-D matrix problem is to introduce a disaggregated model. User behavior properties 
can be used to bridge the gap between price factors and demand patterns. Previous studies have considered user choice mechanisms 

Table 1 
Literature on user-based relocation for one-way carsharing.  

Studies Policies Methodology 

Barth et al. (2004) Trip merging and splitting Logics and simulation 
Di Febbraro et al. (2012) Destination change Discrete event system and optimization on rolling horizon 
Waserhole and Jost (2014) Price leverage Queuing system and convex integer programming solved by greedy algorithm 
Herrmann et al. (2014) Multiple Survey and discrete event simulation 
Jorge et al. (2015b) Price leverage Mixed integer non-linear programming 
Wagner et al. (2015) Destination change Logic, system design, and simulation 
Angelopoulos et al. (2016) Suggesting trips for users Graph and simulation 
Di Febbraro et al. (2018) Incentive for destination suggestion Two-stage optimization 
Huang et al. (2018) Overall price Mixed integer non-linear programming 
Clemente et al. (2018) Economic incentives Discrete event system and closed-loop control strategy 
Lippoldt et al. (2018) Bonus minute incentive Two-stage logic 
Wang et al. (2019a) Incentive Field test and practice approach  
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using logit models (Efthymiou and Antoniou, 2016; Zoepf and Keith, 2016). Discrete choice models and agent-based simulations 
(Horni et al., 2016; Mallig et al., 2013) have also been introduced to study the cost-benefit tradeoff of one-way carsharing with 
relocation strategies (Wang et al., 2018). A discrete choice model can typically be calibrated using stated preference (SP) survey 
techniques (Remane et al., 2016). Huang et al. (2018) used a binary logit (BL) model to account for travel mode splitting between 
carsharing and private cars based on the influence of overall price. However, their model does not consider the price as a variable over 
different O-D pairs, so pricing cannot influence the spatial distribution of demand to match the vehicle distribution accurately. One 
potential method for resolving this issue is to let the price be variable over different O-D pairs, but this makes the nonlinear pro-
gramming problem more complex. 

We also discovered another problem with variable pricing schemes. Existing studies assume that the demand patterns across 
different O-D pairs are independent and ignore the correlations among O-D pairs. A user may be forced to travel to a nearby origin 
station if the price of their originally intended departure station increases. A user can also be attracted to a nearby station if the price is 
cheaper. The pricing behavior at a station will influence demand not only at that station, but also at nearby stations. This phenomenon 
implies that demand at nearby stations is correlated. However, the O-D pair pricing mechanisms proposed by Jorge et al. (2015b), 
Waserhole and Jost (2014) and Huang et al. (2018) assume that demand at stations is independent and that the demand for an O-D pair 
is binary, which ignores the fact that some demand may shift to (or shift from) nearby O-D pairs, rather than simply disappearing (or 
emerging). In our model, in addition to a user’s O-D pair, we introduce departure and arrival stations, resulting in a path of origin- 
departure station-arrival station-destination. Users can choose from different paths and the proposed model can reflect the demand 
shifts among departure and arrival stations. User choice chains can be modeled by generalized nested logit (GNL) models (Wen and 
Koppelman, 2001). According to the specific characteristics of carsharing, this study adopted a two-level nested GNL model that 
captures both the elastic and shifting properties of demand. 

However, adopting a logit model significantly increases the complexity of the proposed model compared to simple networks. This 
problem cannot be simplified as a strict optimization problem, such as mixed-integer linear programming, because the characteristics 
of user behaviors over networks will be lost. A simpler example of optimization using a logit model is the assortment optimization 
problem (Jiang et al., 2017). Jiang et al. (2017) found that the objective of revenue is not quasi-concave for price variables and 
indicated that logit optimization is NP-complete. Our problem is much more complex than modeling over networks. Additionally, the 
uniqueness of a solution cannot be guaranteed based on the characteristics of non-convexity and NP-completeness. One feasible so-
lution is to transform the proposed complex model into a more practical model based on the specific characteristics of operators and to 
employ a heuristic algorithm for deriving a solution. Traditional simulated annealing is feasible for complex problems and is capable of 
jumping out of local optima. 

In this study, we attempted to establish a demand control model for carsharing system operation. Monetary measures can be 
adopted to adjust demand patterns to match the supply of vehicles. Both incentives (providing rewards to attract users) and surcharges 
(setting extra fees to reduce demand) are introduced as economic tools for controlling demand patterns. 

The main contributions of this paper can be summarized as follows. 

• We adopted a two-level nested logit (NL) model to capture user choice probabilities under the influence of the incentives, sur-
charges, and price variations, which can not only reflect overall demand characteristics, but also demand distribution patterns over 
a network.  

• The proposed model can fix the inappropriate fitting of linear elastic price demand, address the sparse O-D matrix problem, and 
capture the demand interactions among nearby O-D pairs.  

• We adopted a time-space network for user choice probability aggregation and modeling system dynamics.  
• We also present an algorithm based on practical conditions to determine the optimal combination of incentives and surcharges 

dynamically by maximizing the revenue of the system.  
• We propose a method for incorporating a logit model into the target problem based on an optimization model for the demand 

control problem in a carsharing system. 

The remainder of this paper is organized as follows: Section 2 presents the proposed model for capturing the user trip and path 
choice behaviors, time–space networks, and an optimization framework for determining incentives and surcharges. Section 3 presents 
a solution algorithm for the proposed optimization model. Section 4 presents a case study on user choice model calibration and the 
optimization process. Finally, Section 5 concludes this paper. 

2. Methods 

2.1. Problem setting and assumptions 

The problem considered in this paper is how to design a scheme for incentive and surcharge combinations for carsharing networks 
to control the distribution of demand to maximize the value of a system in operation. Incentives and the surcharges can change user 
choices regarding pick-up stations and drop-off stations, which will influence the demand volume and distribution at each station in a 
system and affect profits. Differentiated pricing policies among stations and O-D pairs are considered in this study instead of 
attempting to optimize a comprehensive pricing strategy. Operator-based vehicle relocation will not be discussed in this paper. 

In this study, we developed three basic policies: a 1) pick-up policy, 2) drop-off policy, and 3) O-D policy. The pick-up policy 
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(denoted as pt
Di) is that users who pick up vehicles from a station under this policy will receive additional rewards (incentives) or will be 

charged additional fees (surcharges). The drop-off policy (denoted as pt
Rj) is that users will receive extra rewards or incur additional 

charges when dropping vehicles off at stations. The O-D policy (denoted as pt
ij) is valid for a specific O-D pair, meaning users will be 

rewarded or charged if they travel through an O-D pair under this policy. All three policies have two sides, where a negative value 
indicates that a policy uses incentives and a positive value indicates that a policy uses surcharges. 

The methodology for this study combines two major types of models: the logit-based user choice model and time–space network 
model. The user choice model establishes a relationship between pricing policies and demand patterns, and the time–space network 
loads the demand model into a network to capture the volume patterns of the system. 

The basic assumptions adopted in this study are defined are as follows.  

• User travel requests are known in advance or can be accurately predicted. Specifically, users provide their origin location, the 
destination location, and departure time to the system to book a trip at least one hour before departure or user-level travel requests 
can be predicted.  

• Vehicles in the carsharing system are regular internal combustion automobiles, meaning they can be instantly refueled and 
immediately accessed by the next set of users. Therefore, refueling times and driving range limitations can be ignored. Additionally, 
the maintenance of vehicles is not considered.  

• Incentives and surcharge policies at specific stations and time periods are available to all users and users can fully understand the 
impact of the policies and make their choices based on rational judgments.  

• Incentives and surcharge policies are only valid during the time period t for a user when that user picks up a vehicle at station i with 
a nonzero policy pt

Di, travels through a path from i to j with a nonzero policy pt
Di, or drops a vehicle off at station j with a nonzero 

policy pt
ij. 

2.2. Notations 

The notations that appear in this paper are defined below. 
(1) Sets:  

S : {s} Set of all stations 
N : {n} Set of all users 
T : {t} Set of all time instances (the time horizon is discretized into time instances and the elements of this set are ordered) 
In⊂S  Sets of departure stations for user n, ∀n ∈ N  
Jn⊂S  Sets of arrival stations for user n, ∀n ∈ N   

(2) Parameters: 
1) Parameters for the optimization model:  

l  Length of time between t − 1 and t, minutes  
p  Hourly rental price that does not contain incentives and surcharges for calculating basic expenses for users, ¥ per hour 
dDni  Walking duration of user n from the origin to the departure station i, minutes, ∀n ∈ N,∀i ∈ S  
dRnj  Walking duration of user n from the arrival station j to the destination, minutes, ∀n ∈ N,∀i ∈ S  
tij  Driving time from station i to station j, minutes, ∀i ∈ S,∀j ∈ S  
x0

s  Initial number of vehicles at station i,∀s ∈ S  
Cs  Number of parking spaces at station i, ∀s ∈ S   

2) Parameters for profiling users:  

XIg  0–1 variables to group users according to monthly income, where g denotes the income groups (denoted by the set GI :
{

XIg
}

) (e.g., group user monthly 
income as ¥0~¥5000, ¥5001~¥10000, ¥10001~¥15000, and >¥15000 by XI1, XI2, XI3, and XI4, respectively) ∀n ∈ N given XIgn (e.g., if the income of user n 
falls into ¥10001~¥15000, then XI1n = 0, XI2n = 0, XI3n = 1, and XI4n = 0)  

XGg  0–1 variables to denote the genders of users; let XG1 and XG2 denote male and female, respectively, where g denotes the groups (denoted by the set 
GG :

{
XGg

}
) and for ∀n ∈ N we have XGgn; if user n is male, let XG1n = 1; if user n is female, let XG2n = 0  

XAg  0–1 variables to group users by age, where g denotes the groups (denoted by the set GA :
{
XAg

}
) (e.g., group users as < 21, 21 ~ 30, 31 ~ 40, 41 ~ 50, and >

50 by XA1, XA2, XA3, XA4, and XA5, respectively) ∀n ∈ N given XAgn; a user n should fall into one group  
XFg  0–1 variables to denote the activeness (usage frequency) of a user, where g denotes the groups (denoted by the set GF :

{
XFg

}
) (e.g., group users as “less than 

once a week,” “2 ~ 3 times a week,” and “more than once a day,” by XF1, XF2, and XF3, respectively) ∀n ∈ N given XFgn; user n should fall into one group  
XB  0–1 variables to denote whether a user is a bikesharing user; if user n is a bikesharing user, they are assigned a value of one; otherwise, they are assigned a 

value of zero   

(3) Variables: 

L. Wang et al.                                                                                                                                                                                                          
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1) Decision and auxiliary variables:  
pt

Di  The pick-up incentive and surcharge policy at station i at time t, ¥, ∀i ∈ S, ∀t ∈ T; pt
Di < 0 represents incentives, pt

Di > 0 represents surcharges, and pt
Di = 0 

represents no policy  
pt

Rj  The drop-off incentive and surcharge policy at station j at time t, ¥, ∀j ∈ S,∀ ∈ T; pt
Ri < 0 represents incentives, pt

Ri > 0 represents surcharges, and pt
Ri = 0 

represents no policy  
pt

ij  The O-D incentive and surcharge policy for vehicles picked up from station i at time t and dropped off at station j at any time, ¥, ∀i ∈ S,∀j ∈ S,∀t ∈ T; pt
ij < 0 

represents incentives, pt
ij > 0 represents surcharges, and pt

ij = 0 represents no policy  
kt

i  Ratio of satisfied demands at station i based on the limitation of available vehicles   

2) Dependent variables:  

P t
nij  The probability that user n chooses to start at station i and drop off at station j,∀n ∈ N,∀t ∈ T,∀i ∈ In,∀j ∈ Jn  

Pt0 t1
nij  The probability that user n chooses to pick up from station i at time t0 and drop off at station j at time t1, ∀n ∈ N, ∀i ∈ S, ∀j ∈ S, ∀t0 ∈ T,∀t1 ∈ T  

qt0 t1
ij  Number of requests from station i at time t0 to station j at time t1,∀i ∈ S, ∀j ∈ S, ∀t0 ∈ T,∀t1 ∈ T  

Dt
i  Demand of station i at time t, ∀i ∈ S,∀t ∈ T  

D̂
t
i  

Satisfied demand of station i at time t, ∀i ∈ S,∀t ∈ T  

Rt
j  Number of returned vehicles at station j at time t, ∀i ∈ S,∀t ∈ T  

xt
s  Number of vehicles at station i at time t, ∀i ∈ S,∀t ∈ T   

2.3. User choice model 

Factors such as incentives and surcharges can influence user choices during trips. A user must make decisions at different stages 
during a trip. The decision process can be generalized as shown in Fig. 1. In the first stage, the user has the option to start a trip or stay 
home (in other words, to give up the trip). Then, there are transportation modes to be selected, including carsharing, if the user chooses 
to start a trip. After choosing the carsharing mode, the user selects a departure station to pick up a car and an arrival station to drop it 
off. The possible departure stations should be near the origin position of the user and the arrival stations should be near the destination 
position. 

Incentives and surcharges differentiated over networks can affect not only user intentions regarding carsharing trips, but also the 
exact departure and arrival stations that users will choose. Existing studies have adopted discrete choice models to reveal mode choice 
mechanisms. For example, Huang et al. (2018) adopted a BL model to reflect user choices between carsharing and private cars. 
Catalano et al. (2008) adopted a multinomial logit (MNL) model that represents the competition between carsharing, private cars, 
carpooling, and public transit. These models successfully revealed macroscopic mode splitting. However, they are not adequate for 
explaining the routing of users or demand patterns distributed over networks. Di Febbraro et al. (2012) developed a BL model for users 
to choose to accept changing destinations if incentives are offered at some alternative destinations. This model captures drop-off 
demand, but loses expansibility for pick-up demands influenced by incentives or even surcharges. It also ignores that incentives 
may increase the attractiveness of carsharing and change total demand as well. Therefore, a general user choice model should be 
derived to cover the full process of user decision making to reflect overall demand and demand distributions. The GNL model (Wen and 
Koppelman, 2001) has attractive properties for hierarchical decision processes. 

However, the user choice model should not be overly complicated so that it can be aggregated into a network model and included in 

Fig. 1. User decision process during a trip.  
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optimization problems. As shown in Fig. 1, the trip intention stage merges with the mode choice stage in a single trip choice stage, 
which is simplified into a BL model to reflect whether a user chooses a carsharing mode without considering whether the user chooses 
another mode or gives up on a trip. For the departure and arrival choice stages, a pair of departure and arrival stations dictates a path, 
meaning departure and arrival station choices can be merged into one path choice model and implemented as an MNL model. This 
model is a two-level NL model that is a specific instance of GNL. 

The trip choice model and path choice model are linked together and formulated as a two-level NL model, which is suitable for 
solving hierarchical multi-stage decision problems (Kockelman and Lemp, 2011; Koppelman and Wen, 1998; Wen and Koppelman, 
2001). The incentives and surcharges affecting path choices are also fed back to the trip choice level. It should be noted that varying 
user socio-economic properties result in different choice probabilities for different users. Therefore, we consider user profiling in-
formation such monthly income, gender, age, carsharing usage frequency, and whether the user participates in bikesharing as variables 
in our model. 

We assume that user profiles will influence both the trip choice level and path choice level. The corresponding utility functions are 
defined as follows. 

1) Utility on the trip choice level: 

V1 = θ0 + θ1p+U1 (1)  

U1 =
∑

g∈GI

θIgXIg +
∑

g∈GG

θGgXGg +
∑

g∈AG

θAgXAg +
∑

g∈AG

θFgXFg + θBXB (2) 

2) Utility on the path choice level: 

Vt
n(ij|1) = φ0 +φ1pt

Di +φ2pt
Rj +φ3pt

ij +φ4dDni +φ5dRnj +φ6tij +U2,∀t ∈ T,∀i ∈ In, ∀j ∈ Jn,∀n ∈ N (3)  

U2 =
∑

g∈GI

φIgXIg +
∑

g∈GG

φGgXGg +
∑

g∈AG

φAgXAg +
∑

g∈AG

φFgXFg +φBXB (4)  

Γt
1n =

1
μ1

ln
∑

i∈In ,j∈Jn

exp
(
Vt

n(ij|1)
)
, ∀t ∈ T,∀n ∈ N (5)  

where V1 denotes the utility of choosing carsharing at the trip choice level and U1 denotes the utility of user profiling that influences 
the trip choice level. Vt

n(ij|1) denotes usern’s utility for choosing a path from departure station i to arrival station j at time instance t at 
the path choice level. U2 denotes the utility of user profiling that influences the path choice level. Γt

1n denotes the inclusive value 
(logsum of utility at the path choice level) of usern at t that is fed back to the trip choice level. The inclusive value contains the utility 
from the lower level that can be reflected in the upper level. Additional explanation of the logsum can be found in previous papers 
(Kockelman and Lemp, 2011; Koppelman and Wen, 1998; Wen and Koppelman, 2001). p is the basic general price that users should pay 
(charging by the hour, ¥ per hour). ,pt

Di, pt
Rj, and pt

ij denote the pick-up incentive or surcharge policy at station i, drop-off policy at 
station j, and O-D policy from i to j at time instance t, respectively, which are negative if incentives apply and positive if surcharges 
apply. dDni and dRnj are the walking times for user n from the origin to the departure station i and from the arrival station j to the 
destination, respectively. tij is the driving duration from station i to station j. Notations containing θ, φ, and μ are the parameters that 
must be calibrated, where θ denotes parameters on the trip choice level, φ denotes parameters on the path choice level, and μ denotes 
scalar factors interacting between the two levels. 

Fig. 2. An example of a user’s choices.  
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Additionally, In consists of stations near the origin position of the user and Jn consists of stations near the destination. In⊆S and 
Jn⊆S. Let dε be the maximum acceptable walking duration. Then, we have 

In = {i|i ∈ S ∧ dDni ≤ dε}, ∀n ∈ N (6)  

Jn =
{

j|j ∈ S ∧ dRnj ≤ dε
}
,∀n ∈ N (7) 

Therefore, the probability P t
nij that a user n ∈ N who picks up a vehicle from station i drops it off at station j and the probability P t

n0 

that the user does not use carsharing at time instance t should be calculated as 

P
t
nij =

exp
(
μ1Vt

n(ij|1)
)

∑
i∈In ,j∈Jn

exp
(
μ1Vt

n(ij|1)
)∙

exp
(
μ2
(
V1 + Γt

1n

) )

1 + exp(μ2(V1 + Γt
1n) )

, and ∀t ∈ T,∀i ∈ In,∀j ∈ Jn,∀n ∈ N (8)  

P
t
n0 =

1
1 + exp(μ2(V1 + Γt

1n) )
, ∀t ∈ T,∀n ∈ N, respectively. (9) 

An example of a user n’s choices is illustrated in Fig. 2. Stations 1, 2, and 3 comprise In and stations 8 and 9 comprise Jn. Stations 4, 
5, 6, and 7 are outside the walking range. Node 0 is a dummy node that represents the chance that the user will not use carsharing. Each 
pair of i and j indicates a path with a chosen probability P t

nij, which is computable based on dDni, dRnj, and tij. 

2.4. Time-space network 

The time–space network captures carsharing system dynamics on both the spatial and temporal horizons. Fan et al. (2008) initially 
described a carsharing system based on a station network with a time horizon extension and established demand flow transitions 
between adjacent time periods t − 1 and t. (Kek et al., 2009) introduced a time–space network with arcs across both the space and time 
dimensions. Subsequent studies on carsharing networks with dynamics on time horizons have essentially considered systems on 
time–space networks, but with disparate perspectives and notations (Boyacı et al., 2017; Jorge et al., 2014; Jorge et al., 2015b). The 
length of each time period is typically set to 15 min in such studies to provide adequate precision. For consistency, we also set the time 
period length l to 15 min. 

The basic structure of the time–space network for a carsharing system is defined as X{(i, j) } = S× T. As shown in Fig. 3, the 
columns represent all stations in the same time instance and the rows represent one station in all time instances. 

Suppose that a user n departs from i at time instance t0
nij and should arrive at j at t1nij, where t1

nij = t0
nij +

⌈
tij/l

⌉
,∀i ∈ In,∀j ∈ Jn, and 

∀n ∈ N. Here, the arrival time can vary. The probabilities on arcs should cross the time horizon and should be sparse over the di-
mensions of n ∈ N, i ∈ S, j ∈ S, and t ∈ T. To limit the number of choice branches in the path choice level model and project the choice 
probabilities onto the time–space horizon, we transform the choice probabilities as 

Fig. 3. User choices loaded onto a time–space network.  
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Pt0 t1
nij =

⎧
⎨

⎩

P
t0
nij, i ∈ In ∧ j ∈ Jn ∧ t0 = t0

nij ∧ t1 = t1
nij

0, i ∕∈ In ∨ j ∕∈ Jn ∨ t0 ∕= t0
nij ∨ t1 ∕= t1

nij  

∀n ∈ N, ∀i ∈ S, ∀j ∈ S, ∀t0 ∈ T,∀t1 ∈ T (10)  

which represents the probability that user n departs from station i at time instance t0 and arrives at station j at instance t1. Fig. 3 
presents an example of a user n whose choices are loaded onto a network. Only a subset of the nodes and arcs in the network are 
necessary for this user’s choices. 

Generally, a time–space network for carsharing can be summarized as shown in Fig. 4. The following formulae are defined for such 
a network: 

qt0 t1
ij =

∑

n∈N
Pt0 t1

nij , ∀i ∈ S, ∀j ∈ S, ∀t0 ∈ T, ∀t1 ∈ T, (11)  

D̂
t0

i = kt0
i

∑

j∈S

∑

t1≥t0

qt0 t1
ij , ∀i ∈ S, ∀t0 ∈ T (12)  

Rt1
j =

∑

i∈S

∑

t0<t1

kt0
i qt0 t1

ij ,∀j ∈ S, ∀t1 ∈ T, (13)  

xt
s = xt− 1

s +Rt
s − D̂

t
s,∀s ∈ S, ∀t ∈ T (14)  

xt
s ≤ Cs,∀s ∈ S, ∀t ∈ T. (15) 

Eq. (11) aggregates user choice probabilities into demand from i to j and from t0 to t1. However, not all demand can be satisfied 
based on the limitation of vehicle supplies. Eq. (12) introduces a ratio kt0

i to represent the proportion of satisfied demand. A method for 
determining the ratio of demand that can be satisfied by available vehicles is discussed in Section 3.2.2. The number of returned 
vehicles at j and t1 is the aggregation of all satisfied demand from all stations and all departure times, as shown in Eq. (13). Eq. (14) 
represents a conservation in which the number of vehicles at a station s at the end of time instance t is equal the number of vehicles at 

Fig. 4. Time-space network variables.  
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the end of the previous time instance plus the number of dropped-off vehicles minus the satisfied demand during time instance t. 
It should be noted that the users and demand loaded onto the network are depicted in a probabilistic manner, rather than using 

deterministic integers. Demand can emerge on multiple locations or paths according to these probabilities. Therefore, demand is 
represented in a decimal format in the time–space network. The aggregation of user choice probabilities can be regarded as the 
expectation of demand across different O-D pairs according to the law of large numbers. Consequently, the vehicles that satisfy demand 
are also described in decimal format based on aggregated probabilities or expectations. 

Additionally, this time–space network model can also be extended to operator-based vehicle relocation by adding virtual demand 
links. A virtual link is denoted as rt0t1

js and represented as a dashed line in Fig. 4, which indicates the number of relocated vehicles from 
station j to station s. In this study, we focus on the demand control problem and do not consider this variable, but it is a worthwhile 
topic for future study. 

2.5. Optimization 

Based on the user choice model loaded onto the time-space network, the optimization framework for designing incentive and 
surcharge combinatorial schemes can be summarized as follows: 

P1: 

max
pt0

Di ,p
t0
Rj ,p

t0
ij ,

∀i∈S,∀j∈S,∀t0∈T

F = F1 +F2, (16)  

F1 =
∑

i∈S

∑

j∈S

∑

t0∈T

∑

t1∈T

kt0
i q

t0 t1

ij tijp/60, (17)  

F2 =
∑

i∈S

∑

j∈S

∑

t0∈T

∑

t1∈T

kt0
i q

t0 t1

ij

(
pt0

Di + pt0
Rj + pt0

ij

)
, (18)  

subject to 

Vt
n(ij|1) = φ0 +φ1pt

Di +φ2pt
Rj +φ3pt

ij +φ4dDni +φ5dRnj +φ6tij,

∀t ∈ T, ∀i ∈ In,∀j ∈ Jn,∀n ∈ N, (19)  

Γt
1n =

1
μ1

ln
∑

i∈In ,j∈Jn

exp
(
Vt

n(ij|1)
)
, ∀t ∈ T,∀n ∈ N, (20)  

In = {i|i ∈ S ∧ dDni ≤ dε}, ∀n ∈ N, (21)  

Jn =
{

j|j ∈ S ∧ dRnj ≤ dε
}
,∀n ∈ N, (22)  

P
t
nij =

exp
(
μ1Vt

n(ij|1)
)

∑
i∈In ,j∈Jn

exp
(
μ1Vt

n(ij|1)
)∙

exp
(
μ2
(
V1 + Γt

1n

) )

1 + exp(μ2(V1 + Γt
1n) )

,

∀t ∈ T, ∀i ∈ In,∀j ∈ Jn,∀n ∈ N, (23)  

Pt0 t1
nij =

⎧
⎨

⎩

P
t0
nij, i ∈ In ∧ j ∈ Jn ∧ t0 = t0

nij ∧ t1 = t1
nij

0, i ∕∈ In ∨ j ∕∈ Jn ∨ t0 ∕= t0
nij ∨ t1 ∕= t1

nij

,

∀n ∈ N, ∀i ∈ S, ∀j ∈ S, ∀t0 ∈ T,∀t1 ∈ T (24)  

t1
nij = t0

nij +
⌈
tij/l

⌉
,∀i ∈ In,∀j ∈ Jn,∀n ∈ N, (25)  

qt0 t1
ij =

∑

n∈N
Pt0 t1

nij , ∀i ∈ S, ∀j ∈ S, ∀t0 ∈ T, ∀t1 ∈ T, (26)  

D̂
t0

i = kt0
i

∑

j∈S

∑

t1≥t0

qt0 t1
ij , ∀i ∈ S, ∀t0 ∈ T (27)  

Rt1
j =

∑

i∈S

∑

t0<t1

kt0
i qt0 t1

ij ,∀j ∈ S, ∀t1 ∈ T, (28) 
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xt
s = xt− 1

s +Rt
s − D̂

t
s,∀s ∈ S, ∀t ∈ T (29)  

0 ≤ xt
s ≤ Cs, ∀s ∈ S, ∀t ∈ T, (30)  

where the goal is to derive the combination of pt0

Di, pt0

Rj, and pt0

ij that generates the maximum revenue. The objective function in Eq. (16) 
consists of two parts: F1 is the common revenue calculated using the basic price, which is the sum of satisfied demand charging by time 
of use, and F2 is the additional revenue generated by losing incentives or gaining surcharges. 

The constraints in Eqs. (19)–(25) capture the user choice probabilities. The constraints in Eqs. (26)–(30) represent the demand 
pattern and system dynamics in the time-space network. 

This model is extensible for carsharing network analysis because the incentive and surcharge policy is not limited to pick-up, drop- 
off, and O-D policies. Other innovative incentive and pricing strategies can also be included in this model. However, the model faces 
two problems. One is that the two-level NL model introduces complex nonlinear properties through two-level interactions. The other is 
that time-space network dynamics increase the dimensionality and complexity of sets and variables. Overall, this model can be 
regarded as a complex nonlinear programming problem. To solve this problem efficiently, some conditions based on practical oper-
ations are adopted in the specific solution algorithm discussed in the following section. 

3. Calibration and solution algorithms 

3.1. Calibration of the two-level NL model 

The proposed logit model can be calibrated using SP survey data. Given a set N’ that includes all respondents with known personal 
socioeconomic profiles, we let δ1(ij)n = 0,1, ∀n ∈ N’ denote the choices of user n on path i-j, ∀i ∈ In,∀j ∈ Jn, δ0n = 0,1, and ∀n ∈ N’ 
denote the choice of user n regarding the use of carsharing. Let δ1(ij)n = 1 if n chooses the path from i to j; = 0 if n does not choose the 
path from i to j. Let δ0n = 0 if n uses carsharing and let δ0n = 1 if n it does not travel via carsharing. An example SP survey for calibrating 
the logit model can be found in Section 4.1. δ1(ij)n and δ0n should satisfy the following condition: 

∑

i∈In

∑

j∈Jn

δ1(ij)n + δ0n = 1, ∀n ∈ N’. (31) 

The calibration of the parameters θ, φ, and μ can be performed using a statistical software package such as nlogit in the R language. 
Here, we adopted a stepwise parameter estimation approach based on a maximum likelihood estimator (Amemiya, 1978) (detailed in 
Appendix C), which has been proven to be a consistent and asymptotically low-efficiency estimator. However, this problem can also be 
easily solved using other commercial software such as SPSS. 

3.2. Solution approach to the optimization model 

To solve the optimization model for carsharing operation implementation, this section proposes some approximate transformation 
methods for conditions based on real operational properties. 

3.2.1. Dynamically solving processes 
The optimization model P1 provides an overall optimization scope for the entire network, including the time and space dimensions. 

The scale of a two-dimensional network makes this problem very complex and leads to higher computational costs. One factor is that 
the dimension of time takes on the complexity of the solution space. Therefore, reducing the number of time instances in T would 
reduce the calculation time. Dividing T into discrete periods and dynamically solving the model in period-by-period fashion would 
relieve the complexity introduced by the time dimension. Another advantage of solving periodically is that some variables are 
observable and can be directly read from the operation data system instead of being calculated using formulae, which reduces 
calculation costs and introduces reliable data that can replace estimated variables. Additionally, from the perspective of real-world 
operations, operators may prefer dynamically releasing and adjusting incentive and surcharge policies periodically, rather than 
calculating a full-day plan at once. 

First, we divide T into U periods. Specifically, we let the subset Tu⊆T, where u = 1,⋯,U and Tu1 ∩ Tu2 = ∅, ∀u1, u2 = 1, ⋯,

U and u1 ∕= u2. For example, we can divide a day into 24 h as T1,T2,⋯,T24, where every four time instances ts (if the length of a time 
instance is 15 min) belong to a time period. Therefore, the problem can be solved within a smaller time dimension. Operators can also 
divide a day into peak hours and non-peak hours according to real operation requirements. 

We localize the time–space network model P1 to the time period Tu, ∀Tu⊆T as follows: 
P2: 

max
pt

Di ,p
t
Rj ,p

t
ij ,

∀t∈Tu ,i∈S,j∈S

FTu =
∑

i∈S

∑

j∈S

∑

t∈T

∑

t1∈T

kt
iq

tt1
ij tijp/60+

∑

i∈S

∑

j∈S

∑

t∈T

∑

t1∈T

kt
iq

tt1
ij

(
pt

Di + pt
Rj + pt

ij

)
,∀Tu⊆T (32) 

Solving the problem for Tu is much faster than solving for T. Note that Eq. (19) to Eq. (25) are used for a complete user set, but users 
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with reservation requests also vary over time and can be divided into subsets NTu , ∀Tu⊆T. The equations hold for ∀n ∈ NTu when 
considering one time period Tu. In practice, the variables xt

s (number of vehicles at station s) and Rt
s (number of vehicles returning to 

station s) can be captured directly from real-time operation monitoring systems at the first time instance in the time period Tu. These 
values can replace the derived variables in Eqs. (28) and (29). 

3.2.2. Calculation of satisfied demand 
The variable kt

s is calculable using a logic-based approach. To calculate kt
s, we propose the following equations for ∀s ∈ S,∀t ∈ T: 

xEt
s = xt− 1

s +Rt
s − Dt

s, (33)  

D− t
s = max

(
0, − xEt

s

)
, (34)  

D̂
t
S = Dt

s − D− t
s = Dt

s − max
(

0, − xEt
s

)
(35)  

kt
s =

D̂
t
S

Dt
s
= 1 − max

(
0, − xEt

s

)
/

Dt
s (36)  

where xEt
s is the expected number of vehicles at station s at the end of t. The unsatisfied demand is D− t

s if the number of vehicles is not 

sufficient. Therefore, the satisfied demand should be D̂
t
S and the satisfied demand ratio is denoted as kt

s. 

3.2.3. Setting incentives and surcharges as integers 
Intuitively, incentives and surcharges are offered to users as currency and are not continuous variables. For convenience, a real 

operation may choose integer values (e.g., ¥1, ¥5, or ¥10). Although the optimal values may be close to integer values, a simple nearest- 
integer solution may not be suitable. 

To search for a solution in a finite region we use the following steps: 
1) Define the basic pricing steps pDi, pRj, and, pij, and scale factors λt

Di, λ
t
Rj, and, λt

ij, where the scale factors should be integers. 
Therefore, the scale factors will be decision variables. In this study, we set pDi = pRj = pij = ¥1. 

2) Define a bound for the maximum acceptable incentives or surcharges for an operation. In this study. we set λt
Di,λ

t
Rj,λ

t
ij ∈ [ − 50,50]. 

3.2.4. Triggering by thresholds 
The network scale for carsharing is huge and complex. If the numbers of vehicles at stations are balanced, then stations do not 

require incentive and surcharge policies. Additionally, in real operations, users must receive stable incentive offers and surcharge 
information, rather than receiving unstable and changeable information. Therefore, there should be a mechanism for filtering suitable 
stations for deploying incentives and surcharges at specific times. Our previous study (Ma et al., 2018) introduced a triggering 
mechanism and proposed a method for determining triggering thresholds. In this study, we directly used triggering thresholds to filter 
imbalanced stations. Triggering is applied using the following equation for ∀s ∈ S,∀t ∈ T: 

xE0 t
s = xt− 1

s +Rt
s − D0 t

s, (37)  

where xE0t
s is the expected number of vehicles of station s at the end of t if no incentives or surcharges apply and D0t

s can be calculated 
using Eqs. (19)–(27) if pt

Di = pt
Rj = pt

ij = 0. We set the indicators λut
s and λl t

s as follows: 

λut
s =

{
1, xE0 t

s − Supper,s ≥ 0
0, xE0 t

s − Supper,s < 0
,∀s ∈ S, ∀t ∈ T, (38)  

λlt
s =

{
1, Slower,s − xE0 t

s ≥ 0
0, Slower,s − xE0 t

s < 0
,∀s ∈ S, ∀t ∈ T. (39) 

If the indicators are both zero, then the expected number of vehicles should be within a reasonable range, meaning it is unnecessary 
for stations to apply incentives and surcharges. Therefore, the values of the policy variables should be 

pt
Ds =

(
λut

s + λlt
s − λut

sλ
lt
s

)
pt

Ds,∀s ∈ S, ∀t ∈ Tm (40)  

pt
Rs =

(
λut

s + λlt
s − λut

sλ
lt
s

)
pt

Rs, ∀s ∈ S, ∀t ∈ T, (41)  

pt
ij =

(
λut

iλ
lt
j + λlt

iλ
ut

j

)
pt

ij, ∀i ∈ S, ∀j ∈ S, ∀t ∈ T. (42) 
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To determine the proper search direction, we consider the following factors. If the expected number of vehicles at station s exceeds 
the upper threshold, then incentives are required to increase pick-up demand (negative pt

Ds) and surcharges are required to reduce 
drop-off demand (positive pt

Rs). If the expected number of vehicles is below the lower threshold, then surcharges are required to reduce 
pick-up demand (positive pt

Ds) and incentives are required to attract drop-off demand (negative pt
Rs). This logic can be implemented as 

pt
Ds =

(
λlt

s − λut
s

)
λt

DspDs, ∀s ∈ S, ∀t ∈ T, (43)  

pt
Rs =

(
λut

s − λlt
s

)
λt

RspRs,∀s ∈ S, ∀t ∈ T. (44) 

For pt
ij, the logic is defined as follows. If the expected number of vehicles at station i exceeds the upper threshold and the expected 

number of vehicles at station j is below the lower threshold, then incentives on i-j (negative pt
ij) should be offered. If the expected 

number of vehicles at station i is below the lower threshold and the expected number of vehicles at station j exceeds the upper 
threshold, then surcharges on i-j (positive pt

ij) should be applied. Otherwise, the O-D policy is not appropriate for application. This logic 
can be implemented as 

pt
ij =

(
λut

iλ
lt
j − λlt

iλ
ut

j

)
λt

ijpij, ∀i ∈ S, ∀j ∈ S, ∀t ∈ T. (45)  

3.2.5. Solution algorithm 
Based on the transformations described above, the solution algorithm is derived from a simulated annealing method as follows. At 

t = 0, we obtain the initial number of vehicles x0
s ,∀s ∈ S and separate the model ∀Tu⊆T into sub-models as follows: 

P3: 

minFTu
(

λt
Di, λt

Rj, λ
t
ij

)
= − (F1 +F2) = −

∑

i∈S

∑

j∈S

∑

t∈T

∑

t1∈T

kt
iq

tt1
ij tijp/60 −

∑

i∈S

∑

j∈S

∑

t∈T

∑

t1∈T

kt
iq

tt1
ij

(
λt

DipDi + λt
RjpRi + λt

ijpij

)
(46) 

Pseudo-code is provided in Algorithm 1. The solution procedure is described below. 
Step 1: Set the basic configuration parameters, where τmax is the initial temperature for simulated annealing, τmin is the final 

temperature, c is the cooling rate, and K is the maximum number of iterations. 
Step 2: Set the initial conditions, including λt0

Ds, λ
t0
Rs, ∀s ∈ S, λt0

ij , ∀i ∈ S, and ∀j ∈ S. Set the initial pt*
Ds, pt*

Rs, and pt*
ij , and then calculate 

FTu0. 
Step 3: Calculate xE0 t

s fromxt− 1
s and determine λut

s and λl t
s. Note that xt− 1

s can input the observed number of vehicles at the end of time 
instance t − 1 in a real operation. 

Step 4: Based on the previously generated solution, generate a new random solution for λtk
Ds, λ

tk
Rs, and λtk

ij , and then calculate the 
objective FTuk. 

Step 5: Judge whether the new objective FTuk is lower than the current best solution. If it is, then set the new solution as the best 
solution. Otherwise, accept the new solution according to the acceptance probability, which decreases with τ. 

Step 6: If the number of iterations is less than K, then return to Step 4. Otherwise, continue to the next step. 
Step 7: If the temperature is above τmin, then return to Step 2. Otherwise, end the algorithm and export the current best solution and 

FTu* as the best solution that has ever been found. 

Table 2 
Data collected from one example respondent.  

User ID 13 
Monthly income 0~¥5000 ¥5001~¥10000 ¥10001~¥15000 >¥15000 

XI1 = 0  XI2 = 0  XI3 = 1  XI4 = 0  
Gender Male Female 

XG1 = 1  XG2 = 0  
Age < 21 21 ~ 30 31 ~ 40 41 ~ 50 >50 

XA1 = 0  XA1 = 1  XA1 = 0  XA1 = 0  XA1 = 0  
EVCARD usage frequency less than once a week 2 ~ 3 times a week more than once a day 

XF1 = 1  XF1 = 1  XF1 = 1  
Is Bikesharing user Yes,XB = 1  
Scenarios 1: 3 departure stations and 3 arrival stations (Instance in Table 3) 

2: 2 departure stations and 2 arrival stations 
3: 2 departure stations and 4 arrival stations 
4: 3 departure stations and 2 arrival stations 
5: 4 departure stations and 3 arrival stations  
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Algorithm 1..  
τ := τmax  

While τ > τmin  

k := 0  
λtk

Ds := 0,λtk
Rs := 0,pt*

Ds := 0,pt*
Rs := 0,∀s ∈ S  

λtk
ij := 0,pt*

ij := 0,∀i ∈ S,∀j ∈ S  

FTuk : = FTu

(
λtk

Di , λ
tk
Rj, λ

tk
ij

)
,FTu* : = FTuk   

λut
s := 1, ifxE0 t

s − Supper,s ≥ 0, else0,∀s ∈ S   

λl t
s := 0, ifSlower,s − xE0 t

s ≥ 0 ≥ 0,else0,∀s ∈ S   
k := 1   
Whilek ≤ K   

ptk
Ds := pt(k− 1)

Ds − λut
sλ

tk
DspDs ⋅ rand ⋅ γ + λl t

sλ
tk
DspDs ⋅ rand ⋅ γ,∀s ∈ S   

ptk
Rs := pt(k− 1)

Rs − λl t
sλ

tk
RspRs ⋅ rand ⋅ γ + λut

sλ
tk
RspRs ⋅ rand ⋅ γ,∀s ∈ S   

ptk
ij := pt(k− 1)

ij − λut
i λ

l t
jλ

tk
ij pij ⋅ rand ⋅ γ + λl t

i λ
ut

jλ
tk
ij pij ⋅ rand ⋅ γ,∀i ∈ S,∀j ∈ S   

FTuk := FTu

(
λtk

Di, λ
tk
Rj, λ

tk
ij

)

If FTuk < FTu*   

FTu* := FTuk,pt*
Ds := ptk

Ds,pt*
Rs := ptk

Rs,pt∗
ij := ptk

ij   

Else if exp
(
−
(
FTuk − FTu*)/τ

)
> (rand + 1)/2   

FTu* := FTuk,pt*
Ds := ptk

Ds,pt*
Rs := ptk

Rs,pt∗
ij := ptk

ij   

k := k + 1   
End  
τ := τ ⋅ c  

End 
Note: 
a. in this paper, set K = 100 iterations, τmin = 80, τmax = 90, and c = 0.99;  
b. rand is the function to randomly generate 0 and 1 at 50% probability;  
c. γ denotes the randomness scale that decides the unit length of change to the previous decision variables.    

4. Case study 

4.1. Parameter calibration for the user choice model 

4.1.1. Data and input descriptions 
To calibrate the two-level NL model, we conducted an SP survey of registered users of EVCARD (an electric car sharing system 

Fig. 5. An example scenario for one respondent.  
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operating in Shanghai, China) during March of 2020. An SP survey is a typical method for calibrating user choice models if real actions 
have not yet been implemented (Remane et al., 2016). In our study, respondents were required to submit their personal information, 
including monthly income, gender, age, EVCARD usage frequency, and whether or not they are bikesharing users. They were also 
required to provide answers for five scenarios. One scenario contained several paths that the user might choose. One path had 
randomly (following a uniform distribution) generated incentives and surcharges that could influence the user’s choice. A user could 
only choose one path in each scenario or choose not to travel via carsharing. A total of 96 respondents were randomly selected from the 
user database and surveyed through offline interviews. They participated in the survey and returned 404 valid scenarios with 4,233 
valid choice samples, including path selection and whether or not to travel via carsharing. 

An example response is presented in Table 2. An example of one scenario for this user with nine paths is presented in Fig. 5. Details 
regarding this scenario are provided in Table 3. For each path, the respondent would receive descriptions of incentives and surcharges 
at pick-up stations and drop-off stations, as well as information regarding walking and driving durations. 

4.1.2. Calibration results 
Calibration was conducted using the IBM SPSS software with the two-step estimation approach. The calibration results for the path 

choice level and trip choice level are presented in Table 4 and Table 5 respectively. The significance levels of the parameters are also 
shown in these tables. These values indicate which of the calibrated parameters are significant for explaining the model. In the 

Table 4 
Parameter estimation for the path choice level.  

Variables Parameters Estimation S. E. Wals df Sig. Exp (B) 

Constant μ1φ0  1.871 0.970 3.721 1 0.054 6.495 
pDi  μ1φ1  − 0.043 0.008 29.295 1 0.000 0.958 
pRj  μ1φ2  − 0.037 0.010 13.469 1 0.000 0.964 
pij  μ1φ3  − 0.032 0.010 9.923 1 0.002 0.969 
dDi  μ1φ4  − 0.109 0.041 7.068 1 0.008 0.897 
dRj  μ1φ5  − 0.132 0.041 10.365 1 0.001 0.876 
tij  μ1φ6  − 0.107 0.032 11.181 1 0.001 0.899 
XI1  μ1φI1  − 0.053 0.031 2.970 1 0.085 0.948 
XI2  μ1φI2  − 0.067 0.019 12.435 1 0.000 0.935 
XI3  μ1φI3  0.011 0.028 0.154 1 0.694 1.011 
XI4  μ1φI4  0.023 0.031 0.550 1 0.458 1.023 
XG1  μ1φG1  − 0.051 0.009 32.543 1 0.000 0.950 
XG2  μ1φG2  − 0.054 0.022 6.084 1 0.014 0.947 
XA1  μ1φA1  − 0.065 0.009 52.160 1 0.000 0.937 
XA2  μ1φA2  − 0.034 0.009 14.272 1 0.000 0.967 
XA3  μ1φA3  − 0.040 0.011 13.223 1 0.000 0.961 
XA4  μ1φA4  − 0.013 0.044 0.087 1 0.768 0.987 
XA5  μ1φA5  − 0.060 0.090 0.444 1 0.505 0.942 
XF1  μ1φF1  − 0.038 0.032 1.378 1 0.240 0.963 
XF2  μ1φF2  − 0.048 0.010 23.264 1 0.000 0.953 
XF3  μ1φF3  − 0.045 0.010 20.037 1 0.000 0.956 
XB  μ1φB  − 0.143 0.025 32.718 1 0.000 0.867  

Table 3 
Detailed data for one example scenario for one respondent.  

No. Subscript Respondent answer Path choice variables Trip choice variables 

ij  i  j  δ1(ij)n  δ0n  pDi  pRj  pij  dDi  dRj  tij  p  Γ1  

1 1 1 1 1  − 10 0 – 10 5 30   
2 2 1 2 0  − 10 10 – 10 2 30   
3 3 1 3 0  − 10 − 20 – 10 10 38   
4 4 2 1 0  20 0 – 2 5 32   
5 5 2 2 0  20 10 – 2 2 26   
6 6 2 3 0  20 − 20 – 2 10 30   
7 7 3 1 0  0 0 – 5 5 38   
8 8 3 2 0  0 10 – 5 2 34   
9 9 3 3 0  0 − 20 – 5 10 30   
10 – – –  0       30 -.767a 

Note: We adopt a stepwise estimator to calibrate parameters (i.e., the path choice level is calibrated first, followed by the trip choice level). Therefore, 
Γ1 can be calculated once the path-level parameters are calibrated. 
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following section, these estimated parameters are applied as known parameters for the optimization model. 

4.1.3. User behavior analysis 
(1) User profile influence 
Tables 4 and 5 present the estimated parameters for the path choice level and trip choice level, respectively. For the path choice 

level, the variables XI3 and XI4, which represent monthly incomes over ¥10000, are not significant, indicating that users with high 
incomes are not sensitive to incentives and surcharges. XI1 is less significant than XI2 and the absolute value of the parameter XI2 is 
greater than that of XI1, indicating that users whose incomes are in the range of ¥5001–¥10000 are the most sensitive incentive and 
surcharge policies. However, the parameter XI1 in the trip choice level is the most significant and the absolute value of the parameter 
XI1 is the greatest among the four variables, indicating that users whose incomes are below ¥5000 are more sensitive to prices for 
making trip choices. The results also suggest that males influenced more heavily by incentives and surcharges, while females are more 
influenced by trip choice. For age groups, significant values indicate that people below 40 y old are likely to be influenced by incentives 
and surcharges. Users younger than 21 y are more sensitive when choosing different departure and arrival stations. Users older than 40 
y are not significantly influenced. The frequency of using the proposed carsharing system also influences results, where people who 
travel using the system more frequently are more sensitive to pricing policies. Additionally, XB contributes significantly, which implies 
that people who are also bikesharing users are more sensitive to incentives and surcharges. 

(2) Discussion of variables related to incentives and surcharges 
The results discussed above verify that the parameters of incentives and surcharges are significant. By applying calibrated pa-

rameters to the NL model, a user choice probability change figure can be drawn. Considering the scenario with three departure and 
three arrival stations as an example, we changed the pick-up price pD1 at station 1. The resulting changes in user choice probabilities 
regarding departures from stations 1, 2, and 3 are plotted plotted in Fig. 6a, which indicates that when increasing surcharges at station 

Table 5 
Parameter estimation for the trip choice level.  

Variables Parameters Estimation S. E. Wals df Sig. Exp (B) 

Constant μ2θ0  − 5.110 1.900 7.233 1 0.007 0.006 
p  μ2θ1  0.189 0.051 13.734 1 0.000 1.208 
XI1  μ2θI1  − 0.715 0.120 35.457 1 0.000 0.489 
XI2  μ2θI2  − 0.475 0.140 11.502 1 0.001 0.622 
XI3  μ2θI3  − 0.211 0.099 4.542 1 0.033 0.810 
XI4  μ2θI4  0.082 0.157 0.273 1 0.601 1.085 
XG1  μ2θG1  − 0.504 0.233 4.683 1 0.030 0.604 
XG2  μ2θG2  − 0.560 0.163 11.792 1 0.001 0.571 
XA1  μ2θA1  − 0.357 0.209 2.918 1 0.088 0.700 
XA2  μ2θA2  − 0.435 0.168 6.707 1 0.010 0.647 
XA3  μ2θA3  − 0.537 0.075 51.359 1 0.000 0.584 
XA4  μ2θA4  − 0.199 0.122 2.661 1 0.103 0.820 
XA5  μ2θA5  − 0.020 0.071 0.079 1 0.778 0.980 
XF1  μ2θF1  − 0.533 0.173 9.499 1 0.002 0.587 
XF2  μ2θF2  − 0.427 0.165 6.709 1 0.010 0.652 
XF3  μ2θF3  − 0.531 0.143 13.792 1 0.000 0.588 
XB  μ2θB  − 1.477 0.653 5.116 1 0.024 0.228  

Fig. 6. User choice probability changes for different incentives and surcharges at station 1.  
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1, users are more likely to depart from stations 2 and 3, and the overall probability of choosing carsharing for a trip also decreases. 
When changing toward more incentives, users are more likely to choose station 1 compared to other stations. Fig. 6b presents the 
probabilities of choosing different drop-off stations. The differences can be attributed to the parameters of walking distance and travel 
time. This pattern captures both the path choice behavior and carsharing mode adoption probability, which are influenced by local 
pricing changes. 

For multiple users traveling between a pair of departure and arrival stations, the calibrated choice probabilities can be aggregated 
(Fig. 7). User paths are distributed over the network, where incentives and surcharges influence the demand-flow distribution. For 
example, Fig. 7 presents different pick-up incentives and surcharges for departure station 1 and the results of aggregating each user’s 
choice probabilities into a volume at each station and path. When incentives are provided, users are attracted to station 1. If surcharges 
are applied, users tend to prefer stations 2 and 3, and some decide not to use carsharing. This phenomenon closely matches real 
demand pattern features and resolves the assumption that price-demand curves only change independently at isolated stations. The 
probability aggregations represent expectations of demand, which are decimal values. In the real world, demand should be discrete 
and distributed according to the probabilities. 

4.2. Solving the optimization model 

4.2.1. Data description 
The data and parameters for used the optimization model are summarized in Table 6. The data are operating data and user log data 

from the EVCARD carsharing system. For consistency, we adopted the same 56 stations as our previous study on triggering thresholds 
(Ma et al., 2018). For detailed information regarding the stations and demand, please refer to Appendix A, which provides an online 

Fig. 7. User choice aggregation for observing demand patterns.  

Table 6 
Data summary.  

Data Description 

Stations S = {1,⋯, 56}, there are 56 stations involved in the network.  
Period dividing T = {T1,⋯,T24}, a day is divided into 24 h.  
Time splitting T1 = {1, 2,3, 4}, T2 = {5, 6,7, 8}, …, T24 = {93,94,95, 96}, where each time period is divided into four instances of 15 min.  
User set Involving all the users who provided requests on Dec. 29, 2017 collected by the user log data and their profiles are randomly generated 

according to SP profiles. 
Initial vehicles Adopting the number of vehicles in each hour on Dec. 29, 2017. 
Acceptable walking 

duration 
Adopting the maximum acceptable walking duration of EVCARD which is 27.8 min. Therefore, the nearby departure stations In and 
arrival stations Jn for user n can be confined.  

Basic price Set as known parameter; p = ¥36 per hour.  
Driving timetij  Fetched by BaiduMap API which returns driving directions and driving duration between two locations on a map, where the driving 

time involves the impact of real-time traffic congestion. 
Walking duration Fetched by BaiduMap API which returns walking duration between two locations on a map. 
Triggering threshold Using the same stations and thresholds as the previous study (Ma et al., 2018)  
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repository storing the O-D-level and user-log-level data. User-log data tracks finger clicks on a smartphone reservation app, which can 
be adopted to estimate the true demand that may not be satisfied (Wang et al., 2020). There are 1750 trip requests in the user dataset 
according to our previously proposed method (Wang et al., 2020). Some of these requests were satisfied, while others were not. User 
profiles are not collected in the system and can be randomly generated according to the user profiles in the SP survey (depicted in 
Appendix B). 

The time instances are divided by hour because pricing policies are assumed to be stable for at least one hour so that users can 
acquire and react to the policies. Therefore, one hour is adopted as the length of a time period. Each time period is divided into four 
instances of 15 min. The rental time used for calculating revenue is exact rental time, rather than a summation of time slices (see Eqs. 
(14) and (40), as well as parameter tij), which ensures that the objective measure is accurate. 

4.2.2. Solving process 
(1) Solving process for a full-day scenario 
Here, we present the solving process for a full day T. The day is divided into 24 h (T = {T1,⋯,T24}) and 96 time instances with 

Fig. 8. Searching process with iterations at each time instance.  
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lengths of 15 min. The operation monitoring and log system deliver real-time vehicle counts at stations to our model at the beginning of 
each hour. In this study, we predefined the hourly data as real-time data for calculation. The solving process starts at time instance t =

1 and the algorithm executes four times each hour. ∀Tu⊆T and the minimum of FTu

(
λt

Di, λt
Rj, λ

t
ij

)
were approximated using the solution 

algorithm. The process for each time instance and iteration is presented in Fig. 8. Each subgraph displays the searching process for the 
time period Tu, which contains four time instances, where the horizontal axis represents the number of iterations and the vertical axis 
represents the value of FTu . The blue lines represent the objective FTu values of newly generated solutions and the orange lines represent 
the current best FTu* values of the current best solution. In this scenario, the total calculation time is 654.1 s for all 96 time instances 
over 24 h for the 56 target stations. The proposed solutions requires an average of 27.2 s for hourly computations. 

For all of the time instances, there are no new solutions generated (no blue lines) at T1 or T6, indicating that during these two time 
periods, the numbers of vehicles at each station remained within reasonable ranges and no control policies were triggered. For T7, T13, 
and T19, although new solutions are generated, FTuk increases with the number of iterations, indicating that the incentive and surcharge 
policies applied during these time instances lead to a loss of revenue. These results suggest that incentives and surcharges may not 
always benefit operators. 

During other time instances, better solutions can be found. The total revenue for the 56 stations over 24 h is ¥16,053, whereas the 
total revenues would only be ¥13,109 if no incentives or surcharges were applied, demonstrating that incentives and surcharges were 
able to increase revenue by 22.5% in this case. 

(2) Performance evaluation 
To evaluate the proposed process further, we analyzed the status of the stations by determining whether the numbers of vehicles at 

each station exceeded the upper threshold or were below the lower threshold. The ratios of unsatisfied demand and numbers of ve-
hicles at stations were also analyzed for each station and each hour in a day. Fig. 9a presents the stations whose numbers of waiting 
vehicles exceeded the upper threshold during the 24 h period. Fig. 9b presents the stations whose numbers of vehicles were below the 
lower threshold. These plots suggest that out-of-balance scenarios still exist after deploying a control policy using incentives and 
surcharges. Fig. 9c presents the expected numbers of vehicles stopping at stations during different hours after applying incentives and 
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Fig. 9. Status indices of stations and unsatisfied demand over 24 h.  
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surcharges. At the beginning of the day, vehicles are concentrated at certain stations. Throughout the day, vehicles are redistributed in 
the network with a relatively balanced pattern. Fig. 9d presents the amount of unsatisfied demand at each station throughout a day. 
One can see that some of the stations are out of supply cannot satisfy demand in certain periods. This scenario may suggest that the 
situation was beyond the capabilities of the demand control method, meaning demand control at an unsatisfied station could not 
reduce the background demand, even under the maximum surcharge, and was unable to attract more drop-off vehicles from nearby 
stations. This situation indicates the boundaries of the demand control approach. 

(3) Algorithm analysis 
The algorithm for solving each time instance introduces randomness and is sensitive to the parameter of the randomness scale (refer 

to note c in the algorithm). To test the stability of the proposed algorithm and examine whether it can produce feasible solutions for 
operation support, we tested the algorithm on scenarios with randomness scales of γ = 1, 2, 5, and 10. Because there are many variables 
and stations that complicate the presentation of these scenarios, we selected four representative stations, namely 36, 34, 29, and 44, 
which are the same as those considered in our previous paper (Ma et al., 2018). pt

Di and pt
Ri are presented for i = 36, 34, 29, and 44. 

Specifically, the time period at t = 8:00 was selected as the target case instead of a full day because the observed demand pattern is 
typical. We executed the proposed algorithm 50 times for each γ and calculated the mean values and variances of the final approxi-
mated solutions of pt

Di and pt
Ri (denoted as *), as well as the objective Ft , where mean(.) and δ2(.) denote the mean value and variance, 

respectively (see Table 7). 

Fig. 10. Pick-up and drop-off policies of station 29.  

Table 7 
Sensitivity to the parameter of the randomness scale.  

i  randomness scale mean(pt*
Di) δ2(pt*

Di) mean(pt*
Ri) δ2(pt*

Ri) mean(Ft*) δ2(Ft*)

36 1 4.53 0.83 − 4.58 0.95 − 947.02 90.93 
2 5.03 1.20 − 4.68 0.88 − 967.05 86.65 
5 8.34 3.18 − 4.57 4.23 − 976.06 96.10 
10 10.81 11.80 − 4.46 13.11 − 954.11 111.57 

34 1 − 5.89 1.27 5.85 0.40 − 947.02 90.93 
2 − 4.49 1.81 6.88 1.37 − 967.05 86.65 
5 − 3.08 4.16 8.18 6.86 − 976.06 96.10 
10 − 2.12 9.80 12.30 10.43 − 954.11 111.57 

29 1 4.70 0.94 − 4.56 0.81 − 947.02 90.93 
2 4.57 1.24 − 4.81 2.34 − 967.05 86.65 
5 4.70 6.41 − 4.96 6.88 − 976.06 96.10 
10 5.33 17.96 − 5.12 9.80 − 954.11 111.57 

44 1 4.62 0.85 − 4.56 0.16 − 947.02 90.93 
2 5.31 1.17 − 3.66 1.03 − 967.05 86.65 
5 8.17 4.25 − 3.14 3.48 − 976.06 96.10 
10 10.59 9.23 − 2.07 7.16 − 954.11 111.57  

L. Wang et al.                                                                                                                                                                                                          



Transportation Research Part C 125 (2021) 102999

20

For a small randomness scale (γ = 1), the variances of the decision variables are relatively small and indicate that the proposed 
algorithm produces relatively stable outputs. The variances become larger with the randomness scale, indicating that the algorithm has 
a wide range for generating random seeds and is able to search for more combinations of pricing policies. However, the proposed 
algorithm can output different results in each run, meaning it is unstable if the randomness scale is large (γ = 10). These results also 
suggest that there will be very different solutions, but similar objective values can be achieved. This implies the non-uniqueness of 
solutions when feasible solutions are variable. 

4.3. Result presentation for stations 

For each station s, the pick-up incentive and surcharge policies pt
Ds, drop-off incentive and surcharges policies pt

Rs, and O-D incentive 
and surcharges policies pt

ij can be outputted by the proposed model. For example, Fig. 10 presents the outputs of the pick-up and drop- 
off policies at station 29. Fig. 10a plots the changes in the number of vehicles with the upper and lower thresholds for triggering 
policies and Fig. 10b presents the solutions for the pick-up policies (pt

D29) and drop-off policies (pt
R29) from T1 to T24. 

The changes in the number of vehicles suggest that the number falls below the lower threshold during T8 and T9, so drop-off in-
centives are applied to attract vehicles and pick-up surcharges are applied to reduce demand. During T19 and T21, the number of 
vehicles climbs above the upper threshold, so pick-up incentives are adopted to attract users and drop-off surcharges are adopted to 
reduce the number of vehicles coming in. 

The proposed model also exports incentive and surcharge policies for a specific O-D pair (pt
ij). Consider station 29 as an example. 

The O-D policies of station 29 are presented in Fig. 11, where the horizontal axis represents the time periods from 1 to 24 and the 
vertical axis represents stations. Fig. 11a presents the O-D policies between station 29 and any station j (pt

29j), and Fig. 11b presents the 

Fig. 11. O-D policies of station 29.  
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Fig. 12. Revenues and satisfied demand under different combinations of policies.  

Fig. 13. Mechanisms of pricing, demand patterns, and revenue at station 29.  

Table 8 
Comparisons among different combinations of policies.  

Combination Description Revenues Served demand 

pick-up, drop-off, and O-D Set pt
Di, pt

Rj, pt
ij as decision variables.  ¥16,053 1046 

pick-up, drop-off Set pt
Di, pt

Rj as decision variables, and letpt
ij = 0,∀t ∈ T,∀i ∈ S,∀j ∈ S  ¥15,411 1044 

O-D Set pt
ij as decision variables, and letpt

Di = pt
Rj = 0,∀t ∈ T,∀i ∈ S,∀j ∈ S  ¥14,443 1073 

No incentives and surcharges Let all the policies be 0, pt
Di = pt

Rj = pt
ij = 0,∀t ∈ T,∀i ∈ S,∀j ∈ S  ¥13,109 1072 

Operator-based vehicle relocation A threshold-based vehicle relocation method (Wang et al., 2019a,b) ¥14,278 1112  
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O-D policies between any station i and station 29 (pt
i29). The blue cells in the figure represent incentives and the red cells represent 

surcharges. 
The results suggest that the O-D policies are mainly incentives for attracting demand to drive vehicles to other stations when the 

number of vehicles exceeds the upper threshold during T19 and T20 (represented by blue cells in Fig. 11a). The O-D policies are mainly 
surcharges at some other stations to avoid vehicles being driven from those stations to station 29 (represented by red cells in Fig. 11b). 

4.4. Comparison of different combinations of policies 

The pick-up, drop-off, and O-D incentive and surcharge policies (pt
Di, pt

Rj, pt
ij) are controllable policies in the proposed model. To 

analyze the effectiveness of these three policies, we conducted comparisons among different combinations of policies. The combi-
nations are listed in Table 8. 

For different time instances, the revenue and satisfied demand are plotted in Fig. 12. A combination of pick-up, drop-off, and O-D 
policies yields the highest revenue. In other words, station policies or O-D policies alone cannot achieve the highest level of revenue. 
The pick-up and drop-off combination yields higher revenue than O-D policies alone. However, O-D policies alone satisfy more de-
mands, whereas the pick-up and drop-off policies satisfy less demand when they reached high revenue. This can be attributed to 
possible surcharges that bring higher revenue, but discourage users. 

To compare the demand control approach to the operator-based vehicle relocation method, we added the revenue and satisfied 
demand for a threshold-based relocation method to Table 8 This method was established by (Wang et al., 2019b) under the same 56 
station scenario with the same input data. The revenue of the operator-based method is the total income minus the relocation labor 
cost. The results suggest that operator-based relocation can serve more users than any combination of demand control policies or the 
no-relocation condition. The operator-based relocation method generates more revenue than the no-relocation condition and OD 
demand control policy alone, but does not exceed the revenue generated by the pick-up and drop-off demand control policy. 

Fig. 14. Scenarios in which incentives and surcharges may lose efficacy.  
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4.5. Discussion 

4.5.1. Value of the incentive and surcharge approach 
The comparisons above implied that the incentive and surcharge approach can collect more revenue than the operator-based 

vehicle relocation approach, but cannot satisfy more users. This is because operator-based relocation forces workers to move vehi-
cles to satisfy more trip requests. This newly served demand is able to create revenue that exceeds the cost of labor. However, the 
demand control policy collects more revenue from demand concentration stations, resulting in higher total revenue while pushing 
some users to quit using carsharing. 

These findings are evident at representative stations such as station 29. Fig. 13 presents the mechanism of the price-demand 
relationship. By changing the incentives and surcharges for pick-up demand at station 29, one can observe the influence of pricing 
on demand at this station, as well as the total revenue. Increasing surcharges loses some demand, but yields more revenue. Increasing 
incentives attracts more users, but demand may not be satisfied based on the limitation of the vehicle supply, which results in a loss of 
revenue. 

If one raised the surcharge to ¥100, no demand would remain at this station, meaning it would generate no revenue. One can see 
that profit trends toward zero when offering incentives above approximately ¥30 because the cost of incentives cancels out the revenue 
collected from the corresponding satisfied demands. Hence, the optimal strategy for collecting more revenue is to set surcharge value 
to ¥40. The corresponding satisfied demand is lower than that when applying no incentives or surcharges at this station. 

Another factor influencing these results is that station 29 is an oversaturated station whose demand exceeds the available vehicle 
supply. The proposed system cannot satisfy more demand if it offers incentives, but it can gain more revenue if surcharges are applied. 
We analyzed all 56 stations and discovered that 40 stations are oversaturated stations with surcharges, while the remaining 16 stations 
have incentive policies. Stations with incentives are able to gain revenue by satisfying more demand, but the total satisfied demand 
decreases. 

4.5.2. Capabilities of the incentives and surcharges approach 
The results in Fig. 9 regarding the numbers of vehicles at stations and unserved demand demonstrate that vehicles tend to 

concentrate at some stations and demand is rarely satisfied at some stations, even if incentives and surcharges are applied. This 
phenomenon implies that the incentives and surcharges approach loses efficacy under some extreme circumstances. 

We identify two interesting scenarios in Fig. 14. One is a station overflow condition (Fig. 14a), where many vehicles arrive at 
station 41 at 8:00 AM and are not utilized until 3:00 PM. Investigation of the nearby stations 31 and 18 suggests that no potential 
demand could be motivated by incentives. Even if drop-off surcharges are applied at station 41, the number of drop-off vehicles 
continues to increase. The other scenario is the unsatisfied demand at station 29, where reserved vehicles are instantly occupied to 
serve the morning peak demand. The nearby stations 28 and 36 are also out of vehicle supply, meaning no more emerging demand can 
be satisfied. 

These two scenarios suggest that the demand control policy has limitations based on background demand patterns that could be 
influenced by pricing policies. They also suggest that the incentives and surcharges approach is limited to acceptable walking dis-
tances. Introducing bikesharing cooperation with carsharing may help extend the range of possible stations. 

Additionally, operator-based relocation is still necessary to mobilize the vehicle fleet and increase capacity, which forces workers to 
move vacant vehicles from overflowing stations. Additional demand cannot be satisfied based on the limitations of vehicle availability 
and system capacity. These results also suggest that combining operator-based and user-based relocation is desirable for achieving 
better efficiency based on their different advantages. 

4.5.3. Limitations and potential improvements 
Accuracy by involving probability. In this study, the price-demand model was based on the discrete choice model, which is a 

probabilistic model. The demand loaded onto the time–space network was represented by indeterminate values, rather than deter-
ministic integers. This resulted in a phenomenon in which one user could appear on multiple positions or paths according to prob-
ability values. Correspondingly, the utilization of vehicles would also be fractional. Although including probabilities can be helpful for 
finding idealistic solutions for incentives and surcharges, realistic cases may not always correspond to the optimal solutions. This 
feature reduces the accuracy of the proposed method when processing specific deterministic operation scenarios. A possible 
improvement is to involve a simulation method that can capture deterministic user choice results and system dynamics. 

Diversity of user profiles. Users are assumed to be homogeneous in a uniform discrete choice model. This may ignore the diversity of 
different reactions from users with different characteristics. Although a probabilistic approach can explain some randomness and 
possible variations in the proposed model, the varying sensitivity of users is a potential topic for future study. Fig. 6 reveals the 
sensitivity characteristics of homogeneous users, but it is more realistic for different users to have different attitudes toward pricing 
offers. To consider the varied properties of users, we adopted profiling variables in our logit models. The user clustering approach is 
also a potential method for considering the variability of users by grouping similar users. To customize various schemes of surcharges 
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and rewards for different user groups, we can let the decision variables be different for each group of users, which can improve the 
diversity of the proposed method for differentiated users. 

Weakness of the solution algorithm. The target problem is very complex. The complexity of the proposed model stems from two main 
aspects: (1) the strong nonlinear properties of the logit model and (2) a network model with a massive number of nodes and huge 
solution space. This study used a model that mimics the features of the natural problem because nonlinear properties are difficult to 
represent using known convex or linear models without losing properties. A meta-heuristic solution algorithm was proposed to provide 
feasible solutions for implementation, but a traditional heuristic method could export feasible solutions approximating the optimal 
solution. We suggest that the nonlinearity of this problem is worthy of further study for guaranteeing optimality, which would improve 
the performance of the solution algorithm. 

5. Conclusions 

This paper proposed a method to determine incentive and surcharge combinations dynamically to control demand patterns in one- 
way carsharing systems to mitigate the demand and supply imbalance problem and increase profits. 

In this study, a two-level NL model was adopted to capture user choice behavior mechanisms and reveal user reactions to various 
combinations of incentives and surcharges. User reaction mechanisms are reflected in the probabilities of each choice branch for 
departure stations, arrival stations, and whether to travel via carsharing. The proposed model provides a deeper understanding of the 
disaggregated characteristics of users, which can describe user behaviors more accurately than the traditional price leverage function 
and can overcome the weakness of the linear elasticity model in terms of both the fitness of change curves and difficulties arising from 
sparse O-D matrices. 

This paper also presented a time–space network structure and equations for aggregating user choice probabilities into the demand 
dynamics of the network. The proposed optimization model operates based on the time–space network with the user choice model 
loaded onto it. To maximize the total revenue of the system, the model can determine the proper combination of pick-up, drop-off, and 
O-D policies, and the amounts of incentives and surcharges for specific stations and O-D pairs. To solve the optimization model, we 
investigated some conditions of real operations and presented an approximate algorithm to search for optimal solutions. 

Analysis results for an example study demonstrated that based on an approximate optimization solution for a combination of 
incentives and surcharges policies, the proposed system can improve revenue by 22.5%. The solving process of the proposed model 
also revealed that implementing policies is not necessary for all time periods and that incentives and surcharges may not yield greater 
profits under some circumstances. This result also implies that improper settings for incentives and surcharges can also lose profits. A 
comparative study demonstrated that all of the combinational policies for pick-up, drop-off, and O-D pairs can achieve better revenue 
than using only a portion of these policies. 

However, some insufficiency still exists in this study. First, the two-level NL model loaded onto a time–space network is a complex 
and difficult problem to solve, meaning it requires additional theoretical study. Driving range and refueling properties were not 
considered in this study, so the proposed model should be further supplemented under certain conditions and constraints for 
considering electric vehicles. The results of pricing policies computed by the proposed method have not yet been tested in real op-
erations. It should be possible to test the performance of these policies in the field in future studies. This paper focused on pick-up, 
drop-off, and O-D policies, but it should be noted that the proposed model is extensible for additional studies on carsharing user 
behaviors and system dynamics. The trip splitting and merging policy, overall pricing determination, and even operator-based relo-
cation can also be integrated into the framework proposed in this paper, which could reveal more efficient operating measures in future 
studies. 
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Appendix A. Data repository 

This appendix provides detailed information about the 56 stations in the example, including the locations, triggering thresholds, 
and hourly demands of the stations during a day. Fig. 15 shows the position of the 56 stations. Detailed information station information 
and hourly aggregated demands of each stations which were collected from the EVCARD operation system during April 2015. The 
hourly demands could be generated from the origin–destination (O-D) data, which is the input of our model. Note that the O-Ds for all 
time intervals could not be presented here due to the page limitation, but the readers can access data with detailed station and O-D 
information at the following online repository: https://github.com/wangleicuail/EVsharingBasicData 

Appendix B. Demand generation 

Considering the system transaction/trip data only contains the served demands, the unserved and background demands are un-
known. Our previous study (Wang et al., 2020) adopted the user application log data to derive the background demands through app- 
user interaction data, which means that served and unserved demands can both be generated. 

By this method, we generated 1750 trip requests, which contains user ID, origin, destination, reservation time and departure time. 
However, User profiles were not collected in the system but can be randomly generated according to the user profiles in the SP survey. 
Information is summarized in the graph below. 

For each trip in the 1750 trips we randomly generate user profile. Supposing user properties follow the experienced distribution in 
Fig. 16, for one user generate five random number in (0, 1] following uniform distribution. If the random number falls into the cu-
mulative frequency of one group, then give the property of the group to the user. Hence the profile of the 1750 users can be generated. 
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Fig. 15. IDs and locations of the stations of the example.  
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Appendix C. Calibration of the two-level choice model 

Construct the likelihood function as: 

L
(
δ1(ij)n, δ0n; θ,φ, μ

)
=

∏

n∈N’

∏

i∈In

∏

j∈Jn

(
P

t
nij

δ1(ij)n ⋅ P
t
n0

δ0n
)

(47)  

where θ = {θi|i = 1,2}, φ = {φi|i = 1,⋯,6}, and μ = {μi|i = 1, 2}. The log likelihood function should be as follows. 

L = lnL
(
δ1(ij)n, δ0n; θ,φ, μ

)
=

∑

n∈N’

∑

i∈In

∑

j∈Jn

(
δ1(ij)nlnP

t
nij + δ0nlnP

t
n0

)
(48) 

The estimation of the parameters θ,φ, μ is to solve the problem 

max
θ,φ,μ

L = lnL
(
δ1(ij)n, δ0n; θ,φ, μ

)
(49) 

The log likelihood function does not guarantee convexity due to the interrelationship of P t
nij and P t

n0 through Γt
1n, and makes it 

difficult to find optimal θ,φ,μ. 
Note the following relation: 

P
t
nij = P

t
n(ij|1) ⋅ P

t
n1 (50)  

P
t
n1 = 1 − P

t
n0 (51) 

Then 

L =
∑

n∈N’

∑

i∈In

∑

j∈Jn

δ1(ij)nlnP
t
n(ij|1)+

∑

n∈N’

∑

i∈In

∑

j∈Jn

δ1(ij)nlnP
t
n1 +

∑

n∈N’

∑

i∈In

∑

j∈Jn

δ0nlnP
t
n0 (52) 

Split the function as: 

L = L1 + L2 +L3 

Fig. 16. Profiles of users in the SP survey.  
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L1 =
∑

n∈N’

∑

i∈In

∑

j∈Jn

δ1(ij)nlnP
t
n(ij|1) (53)  

L2 =
∑

n∈N’

∑

i∈In

∑

j∈Jn

δ1(ij)nlnP
t
n1 =

∑

n∈N’

(1 − δ0n)ln
(
1 − P

t
n0

)
(54)  

L3 =
∑

n∈N’

δ0nlnP
t
n0 (55) 

It has been proved that to estimate parameters stepwise is consistent but asymptotically less efficient than the overall maximum 
likelihood estimator (Amemiya, 1978) and its computation is considerably simpler. The two-step estimation could be: 

Step 1, 

max
θ

L1 =
∑

n∈N’

∑

i∈In

∑

j∈Jn

δ1(ij)nlnP
t
n(ij|1) (56) 

Step 2, 

max
φ,μ

L2(δ0n, θ*;φ, μ)+L3(δ0n, θ*;φ, μ) =
∑

n∈N’

(1 − δ0n)ln
(
1 − P

t
n0

)
+
∑

n∈N’

δ0nlnP
t
n0 (57) 

Note that θ are independent from L2 +L3 which is reasonable to be calibrated in Step 1. With estimated θ* in Step 2 the parameters φ 
and μ can be calibrated subsequently. Since the two steps can be regarded as isolated logit models, modern statistics software is feasible 
for logit model calibration. 
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