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Abstract— Motion capture systems are extensively used to
track human movement to study healthy and pathological move-
ments, allowing for objective diagnosis and effective therapy
of conditions that affect our motor system. Current motion
capture systems typically require marker placements which is
cumbersome and can lead to contrived movements.

Here, we describe and evaluate our developed markerless and
modular multi-camera motion capture system to record human
movements in 3D. The system consists of several interconnected
single-board microcomputers, each coupled to a camera (i.e.,
the camera modules), and one additional microcomputer, which
acts as the controller. The system allows for integration with
upcoming machine-learning techniques, such as DeepLabCut
and AniPose. These tools convert the video frames into virtual
marker trajectories and provide input for further biomechan-
ical analysis.

The system obtains a frame rate of 40 Hz with a sub-
millisecond synchronization between the camera modules. We
evaluated the system by recording index finger movement
using six camera modules. The recordings were converted via
trajectories of the bony segments into finger joint angles. The
retrieved finger joint angles were compared to a marker-based
system resulting in a root-mean-square error of 7.5 degrees
difference for a full range metacarpophalangeal joint motion.

Our system allows for out-of-the-lab motion capture studies
while eliminating the need for reflective markers. The setup
is modular by design, enabling various configurations for
both coarse and fine movement studies, allowing for machine
learning integration to automatically label the data. Although
we compared our system for a small movement, this method can
also be extended to full-body experiments in larger volumes.

I. INTRODUCTION

Capturing natural movement is a key technique in var-
ious disciplines, such as biomechanics, sports engineering,
neuroscience, rehabilitation and robotics [1]. For instance,
motion capture is crucial to evaluate healthy and patholog-
ical movements in order to enable objective diagnosis, and
effective therapy for conditions that affect our motor system
[2]. Further developments enabling objective and contactless
measures will benefit the diagnostics of neurological disor-
ders, such as the finger-tapping test to evaluate bradykinesia
in Parkinson’s Disease [3] or the follow up gait identification
in the rehabilitation of children with cerebral palsy [4].
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Generally, motion capture studies are performed in a labo-
ratory using expensive and cumbersome equipment to study
movement [1]. Current passive motion capture systems use
cameras to record reflective markers, requiring marker attach-
ment prior to the recording and marker labelling afterwards.
Active motion capture systems resolve the inconvenient and
labour-intensive labelling process yet still require accurate
marker placement. Markers can introduce soft tissue artefacts
as the markers move with and relative to the skin. For
example, during finger movements, markers typically move
0.55 mm for each 10° of flexion around either the proximal
interphalangeal (PIP) or the distal interphalangeal (DIP)
joints [5]. Furthermore, participants move less naturally
with markers attached [6]. Ideally, motion capture systems
allow for measurements of natural movements under minimal
environmental constraints and without labour-intensive post-
processing.

Triangulation from multiple cameras provides the most
reliable motion recordings in 3D, especially for delicate
movements sensitive to occlusion. Synchronization of the
cameras is essential to capture the recorded movement from
the videos accurately. Standard computer workstations do
not allow for simultaneous acquisition of multiple video
streams due to the required high data transfer rates [7].
External triggers allow for simple direct synchronization.
Nevertheless, cameras allowing for external triggers are
expensive and impede out-of-the-lab experiments due to a
lack of flexibility. Most low-cost cameras do not allow for
direct synchronization, but post-processing can be performed
based on audio triggers (clapboard), audio fingerprints, or
blinking LEDs [8] [9]. These methods are effective as
post-processing techniques but prevent the use of real-time
applications. A computer network, where each unit operates
one or more cameras, allows for a real-time approach to
camera synchronization [7].

Recent developments in computer vision algorithms, com-
putational processing power, and electronic hardware provide
opportunities for optimizations of the motion capture work-
flow [10]. Time-consuming and error-prone marker labelling
can benefit from integration with upcoming machine learn-
ing techniques. Recent results indicate that OpenPose-based
markerless motion capture achieves positional errors smaller
than 30 mm for full-body movements [11]. Elaborate post-
processing can reconstruct occluded markers or correct the
joint centres [6]. Nevertheless, marker-based systems remain
the trusted tool in clinical and scientific settings due to their
superior accuracy. Further development of computer vision
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algorithms can improve the accuracy of the captured three-
dimensional joint positions in markerless motion capture.
In combination with low-cost hardware systems, the novel
software-based solutions will improve the performance of
markerless solutions while allowing for out-of-the-lab sys-
tems. Thereby, markerless motion capture is becoming more
and more a competitive alternative for marker-based systems.

Here we present a cost-effective markerless system that
allows for motion capture outside the laboratory environ-
ment. Our system is modular by design, enabling various
configurations for both coarse and fine movement studies.
This study validated our system with finger movement, a full
range metacarpophalangeal (MCP) joint motion. Capturing
these fine movements with old-style marker-based recordings
is affected by skin movement, occlusion by the fingers,
restricted movements (in case of more oversized markers),
or dropping of markers (in case of tiny 3mm markers).
We validated our system by comparing it to a conventional
motion capture setup using passive reflective markers as a
gold standard.

II. METHODS
A. Experimental Setup

The MarkerLess Motion Capture (ML-MoCap) system
contains multiple interconnected single-board microcomput-
ers (Raspberry Pi 4 Model B) (Figure 1). Every micro-
computer is coupled to a camera (HQ Camera, Raspberry
Pi), forming a camera module, and provides the encoding
of the video stream. The camera modules are connected
to the network via a network switch (NETGEAR), which
also supplies power to the connected microcomputers via
the Power over Ethernet (PoE) board extensions. One other
microcomputer acts as the control module of the system.
Network time protocol (NTP) synchronization provides sub-
millisecond synchronization between the microcomputers in
the system. All hardware is commercially available. The total
cost for the setup is relatively low: starting around 100 euros
(for a controller and PoE switch), adding about 100 euros
for each camera module (depending on the cameras chosen,
exclusively cameras compatible with Raspberry Pi).

PoE Board

PoE Board PoE Board

Raspberry P Raspberry Pi Raspberry P

1 1 1
C Camera ) C Camera ) C Camera )

Fig. 1. System overview. Camera modules are interconnected via a Power
over Ethernet (PoE) network switch (top) and controlled by a control module
(dashed block on the left). Each camera module has a PoE board for power
supply, a microcomputer to encode the video stream, and a camera board
including an image sensor and lens. The number of camera modules is
flexible (modularity indicated by the dots on the right).

The system is operated using a web application, which

communicates with the control module. After recording a
trial, the videos were transferred from the camera modules
to a temporary network folder. At the end of the experiment,
all videos were uploaded to an encrypted network folder to
ensure data safety and participant privacy. The software to
operate and connect the controller and camera modules is
available with an open-source license (BSD 3-Clause)'.

Figure 2 provides an overview of the pipeline for studies
equipped with an ML-MoCap system. When initializing a
new project, two manual steps should be performed once:
calibration and training data. The calibration determines all
camera positions relative to each other and a 3D coordi-
nate system. We performed a ChArUco board calibration
(OpenCYV). Once a sufficient number of labels are applied
manually (usually between 50-200 frames), the remaining
frames will be labelled automatically by the model trained by
DeepLabCut [10]. After the automatic labelling of all video
frames from the multiple camera modules, the triangulation
process was performed with AniPose [14], a 3D extension
to the 2D DeepLabCut toolbox. Finally, the 3D marker
trajectories are converted into joint angles.

Add new
videos

o 5 N
[13] - 9

Initialize '} _ ->“ Calibrate . —-| lrManuaIIy ac[Id]:

project 3 4 | labels |

L ’ L ————— J

Automatically
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Inverse
Dynamics

Muscle Activity
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Fig. 2. Overview of the motion capture process. In blue are all automated
recurring steps. The two dashed blocks are manual steps performed at the
start of a new project to calibrate the cameras and initialize the automatic
labelling.

B. Camera module synchronization

Synchronization of the camera modules is essential for
accurate triangulation and extracting movement. The clocks
of all camera modules are synchronized. However, the time
needed for camera initialization at the start of a recording
varies slightly between cameras and between recordings. Ten

Thttps://github.com/JinneGeelen/ML-MoCap.git
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recordings in which all cameras simultaneously recorded a
laptop screen showing a digital clock with milliseconds were
initiated to check the synchronization. The laptop screen had
a refresh rate of 60 Hz. The videos from the six cameras were
stored and converted into frames. The displayed time from
the first ten frames was used to calculate the synchronization
between the cameras.

C. Validation of 3D finger motion capture

To validate the system simultaneous recordings with our
ML-MoCap system (six regular cameras with a resolution
of 1024 by 768 pixels at 40 Hz) and with an established
reflective marker-based system with twelve infrared cameras
at 100 Hz (Oqus 300 series & Qualisys Track Manager)
were performed on one healthy participant. The participant
completed a sequence of three MCP full range of motion
flexion of the index finger.

Following the Covid-19 regulations, solely movement of
the first author was captured. The participant sat in front
of the system, see Figure 3. The experiment was approved
by the Human Research Ethics Committee of the Delft
University of Technology.

Twelve 3 mm reflective markers were attached to the index
finger; three markers on each bony segment to reconstruct
each segment movement and the corresponding joint angles.
Reflective markers were positioned on the distal phalanx
(DP), intermediate phalanx (IP), proximal phalanx (PP), and
on the metacarpal (MC) of the index finger. The similar-
ity between the two systems was more relevant than the
biomechanics in this application. Therefore, the DIP, PIP,
and MCP joint angles were assessed as rotations between the
two consecutive bony segments over a single rotation axis.
Although no markers are required for a typical use of the
proposed pipeline, in this case, we decided to use them for
once to assure the best comparison between the two systems.

Fig. 3. Experimental setup for validation of the ML-MoCap, including
simultaneous Qualisys recordings. The participant is seated in front of the
ML-MoCap frame, which is placed in the middle of the Delft BioMechaMo-
tion Lab (including twelve Qualisys cameras). The Pi camera modules are
attached to each corner of the frame. Other parts as described in Figure 1
are attached to the back of the frame. The laptop on the floor initiated the
recordings from a web application.

DeepLabCut uses transfer learning and therefore requires
minimal training data. We manually labelled five frames of

4 repetitions from all six camera angles, resulting in 120
training frames. Subsequently, the model (ResNet-50, with a
90% training fraction, p-cutoff of 0.6, and the DeepLabCut
defaults settings) was trained for 500,000 iterations, which
took less than 10 hours on a computer with a discrete
GPU (NVIDIA GeForce RTX 3090). The 3D virtual marker
coordinates were converted to joint angles similar to the
procedure with the marker-based system.

III. RESULTS

A. Camera module synchronization

The synchronization test (Figure 4) revealed that the
average time difference between cameras is below 10 ms,
which is well below the required 25 ms to prevent a frame
shift. All cameras provide a recording in which the event in
front of the cameras will be captured by consecutive frames,
not more than one frame number apart.

Initial timing difference between recordings
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Fig. 4. Synchronization test setup and results. All cameras face one monitor
displaying a digital millisecond clock. The time difference for the first ten
frames between the six cameras (std of displayed time). The solid line shows
the average std of the displayed time over the ten repetitions. The shaded
area shows the std over the repetitions.

B. Validation of 3D finger motion capture

The 2D model trained by DeepLabCut labelled frames
from the six cameras with a training error of 2.13 pixels
mean average Euclidean error (MEA) between the manual
labels and the ones predicted by DeepLabCut, and a test error
of 2.39 pixels MEA. After calibration and triangulation with
Anipose, the 3D coordinates retrieved were transformed to
joint angles. As the coordinate systems of the two systems
were not aligned, the relative joint angles were compared,
see Figure 5. The difference between both systems for a
full range metacarpophalangeal (MCP) joint motion was 7.5
degrees (expressed root-mean-square-error, RMSE). The DIP
and PIP joints moved across a smaller range and thus resulted
in smaller errors of 2.3 degrees and 3.2 degrees, respectively.

IV. DISCUSSION

We described and evaluated a new markerless system for
motion caption named ML-MoCap. The system is modular,
i.e. it can contain a variable number of cameras. The first
results presented here indicate that the ML-MoCap can
record finger movements.

We performed a synchronization test with a setup with a
limited screen resolution of 60 Hz. This limit resulted in an
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Comparison ML-MoCap and Qualisys
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Fig. 5. Comparison of the joint angles retrieved with a marker-based system
(Qualisys, dashed lines) and our markerless system (ML-MoCap, full lines).
Three angles are compared: MCP (blue), DIP (yellow) and PIP (red) joints.

overestimation of the error between cameras, adding at most
16 milliseconds of error. A test conducted with a screen with
a higher frame rate or blinking LEDs could show the actual
delays between the recordings more accurately.

Our comparison based on simultaneous recording with
two capture systems resulted in suboptimal circumstances
for either system. ML-MoCap was blocking the ’sight’ of the
Opus cameras resulting in reduced visibility and suboptimal
positioning of the hand. Currently, an accuracy of 7.5 mm
RMSE was achieved over a range of O to 70 degrees flexion, a
substantial difference between the two systems, the accuracy
should be improved to provide biomechanically relevant data.
Improvements can be made in the hardware, creating better
lighting conditions and angles towards the cameras. The
post-processing could be improved by extended training and
increased iterations to specify the model for use in hands.

The model used to compare our system to a marker-based
system was trained to recognise the reflective markers on
one hand. While this provided the best comparison to the
marker-based system, it does not reflect the optimal use of
the ML-MoCap system. Markers reduce the advantage of the
minimal environmental constraints of the system. Ideally, a
hand model should be trained on multiple bare hands and
without requiring attachments to the skin.

In the evaluation experiment, we tracked relatively slow
finger motions. For these motions, a frame rate of 40 Hz was
sufficient. However, for faster motions such as natural grasp-
ing, higher frame rates are required. Current commercially
available cameras compatible with Raspberry Pi systems
can record up to 60-90 Hz depending on the chosen image
resolution. Next-generation products will allow for higher
frame rates and thus serve a wider range of experiments,
including natural and fast behaviour.

V. CONCLUSION

We present a new markerless motion capture setup and
proposed integrating it with an automated analysis pipeline
based on recently developed machine learning toolboxes. The
ML-MoCap system is a compact, markerless, and modular
motion capture solution. The setup eliminates the need for

special-purpose hardware or labour-intensive post-processing
and allows for out-of-the-lab experiments.

We evaluated the system by recording joint flexion se-
quences of the index finger in 3D using six camera modules
and compared the trajectories to the results from a commer-
cial system based on passive reflective markers. We obtained
sub-frame synchronization of the videos from all camera
modules and achieved a difference of 7.5 degrees RMSE
between both approaches for index finger movements.

The ML-MoCap system can potentially be extended to
capture motion of the full-body, specific body parts or
other animals. This framework promotes integration with
upcoming machine learning techniques such as DeepLab-
Cut and AniPose, providing an alternative for commercial
camera-based motion capture while eliminating the need
for reflective markers and labour-intensive labelling. Further
validation has to be performed for more configurations of
the system.
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