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A Simultaneous Adaptation Law for a Class of
Nonlinearly-Parametrized Switched Systems

Spandan Roy and Simone Baldi

Abstract— This paper proposes a new adaptive control
method for a class of nonlinearly-parametrized switched sys-
tems that includes Monod kinetics and Euler-Lagrange sys-
tems with nonlinear in parameters form as special cases. As
compared to the adaptive switched frameworks proposed in
literature, the proposed adaptation framework has the distin-
guishing feature of updating the gains of the active and inactive
subsystems simultaneously: by doing this it avoids high gains
for the active subsystems, or vanishing gains for the inactive
ones. The design is studied analytically and its performance is
validated in simulation with a robotic manipulator example.

I. INTRODUCTION

Switched systems represent an important class of hybrid
systems consisting of subsystems with continuous dynam-
ics together with a logic that orchestrates the switching
action between them [1]–[9]. While some adaptive control
approaches have been proposed to deal with the relevant
problem of having parametric uncertainties in the subsystem
dynamics ([10]–[13] for linear and [14]–[18] for nonlinear
subsystems), only few approaches, namely [17], [18], address
some classes of uncertain switched systems whose subsystem
dynamics have nonlinear in parameters (NLIP) form.

Unfortunately, such classes are quite restrictive in the
sense explained hereafter. The procedure used in [17], [18]
to upper bound the uncertain system dynamics relies on
the parameter separation-based method pioneered in [19].
Such procedure requires to find two scalar functions (one
dependent on the states, one dependent on the uncertain
parameters) whose construction necessarily requires struc-
tural and parametric knowledge of the system dynamics
(see Example 1 in Section II). In addition, by considering
continuously differentiable dynamics, such classes do not
cover a large number of practically relevant non-smooth
dynamics.

In consideration of the above discussions, in this work
we consider a class of nonlinearly-parametrized switched
systems, with the following properties:
• no assumption is imposed on the smoothness of the

system dynamics;
• the upper bound structure does not require struc-

tural/parametric knowledge of the system dynamics;
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• the class includes (non-smooth) Monod kinetics and
Euler-Lagrange (EL) systems in NLIP form as special
cases.

In literature on adaptive control of switched systems, usually
only the gains of the active subsystem are updated: however,
this leads to several problems such as having monotonic high
gains for the active subsystems or having exponentially van-
ishing gains for the inactive subsystems (cf. [12], [17], [18]
and the discussion in Remark 5). In this work, a new adaptive
control method is formulated whose distinguishing feature is
of updating the gains of the active and inactive subsystems
simultaneously: by doing this it avoids the aforementioned
problems.

The rest of the paper is organized as follows: Section II
describes the objectives of this work; Section III details the
proposed control framework, with stability analysis carried
out in Section IV; a simulation study is provided in Section
V, while Section VI presents the concluding remarks.

The following notations are used throughout the paper:
λmin(•), λmax(•) and || • || represent minimum eigenvalue,
maximum eigenvalue and Euclidean norm of (•) respec-
tively; I denotes identity matrix with appropriate dimension;
(•)† denotes generalized inverse of (•).

II. SYSTEM DYNAMICS AND PROBLEM FORMULATION

Consider the following class of switched systems having
N nonlinear subsystem dynamics in line with [20], [21],

q̈ = fσ(q, q̇) + bσ(q, q̇)τσ, σ(t) ∈ Ω (1)

where q, q̇ ∈ Rn denote system states and σ(t) : [0∞) 7→ Ω
is a piecewise constant function of time, called the switching
signal, taking values in Ω = {1, 2, · · · , N}; for each σ,
fσ : R2n 7→ Rn and bσ : R2n 7→ Rn×m are the system
dynamics terms with m ≥ n and τσ ∈ Rm is the control
input. For each subsystem, fσ is considered to be NLIP, with
the following property:

Property 1: Define x , col[q q̇]. The system dynamics
term fσ(x) can be upper bounded as:

||fσ(x)|| ≤ θ0σ + θ1σ||x||+ · · ·+ θνσ||x||ν , YT
σ (||x||)Θσ,

(2)
where Θσ = [θ0σ θ1σ · · · θνσ]T is a vector of con-
stant parameters with θiσ ∈ R+, i = 0, 1, · · · , ν and
Yσ(||x||) = [1 ||x|| ||x||2 · · · ||x||ν ]T is the regressor.

Some remarks are given to explain the relevance of (1)-(2)
as compared to the state of the art.
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Remark 1: Property 1 holds for many practical NLIP
systems such as Monod kinetic [22], EL systems [20] etc.
For such systems, the existing LIP-based adaptive control
solutions [14]–[16] are inapplicable. Determination of ν in
(2) does not require structural knowledge of the dynamics,
as ν can be determined from the first law of physics. For
example, EL dynamics with Coriolis and centrifugal terms
satisfy (2) with ν = 2, irrespective of the structures of system
dynamics (e.g., robotic systems, humanoids, ship dynamics,
pneumatic muscle, active suspension system [20], [21], [23]).
Also, Monod kinetics [23] satisfy (2) with ν = 2.

Remark 2: It is noteworthy that no assumption on
smoothness of fσ is necessary for (2) to hold. This is not
the case for the NLIP methods [17], [18], which assume
fσ to be continuously differentiable with fσ(0) = 0. The
first condition fails to hold for many practical systems
due to unavoidable friction effects, e.g. Coulomb friction
(e.g., robotic manipulators), Stribeck friction (high precision
systems [24]) etc. The condition fσ(0) = 0 implies that the
effects of time-dependent bounded external disturbances are
ignored. In (2), such disturbances can easily be accounted
through θ0σ .

Remark 3: Different upper bound structures have been
proposed in literature. Most notably, [17]–[19] consider

||fσ(x)|| ≤ ϕσ(x)φσ(θσ), (3)

where ϕσ(x) ≥ 1, φσ(θσ) ≥ 1 are two C∞ scalar func-
tions and θσ denote the set of unknown system parameters.
According to (3), for a polynomial ||fσ|| of order ν, one
should select ϕσ(x) to be a polynomial function of at least
(ν + 1)th (resp. (ν + 2)th) degree in order to satisfy (3)
when ν is an odd (resp. even) number. Moreover, as ϕσ is
a scalar function, some parametric knowledge of the system
dynamics is necessarily required to design a suitable ϕσ to
satisfy (3) globally for all x. Two clarifying examples follow:

Example 1: Consider the two spring-connected pendulum
from [17]

ẍ1 = ((m1gr)/J1 − (hr2)/4J1) sin(x1)+

(hr2(l − b))/2J1 + u1/J1 + (hr2 sin(x2))/4J1, (4a)

ẍ2 = ((m2gr)/J2 − (hr2)/4J2) sin(x2)+

(hr2(l − b))/2J2 + u2/J2 + (hr2 sin(ẋ1))/4J2, (4b)

where the meaning of all parameters in (4) can be found in
[17]. Employing the knowledge of the parameters h, r, l, b
and J1, J2, the choice made in [17] for ϕσ to satisfy (3) is
ϕ1 = 1+ ẋ2

1 + ẋ2
2 +3(x1 + ẋ1)2 +(2x2 + ẋ2)2(1+ex2)+v2

21,
ϕ2 = 1+x2

1+ẋ2
1+ẋ2

2+2(x1+ẋ1)2+(1+x2
2)(2x2+ẋ2)2+v2

22

(v21, v22 are adaptive control inputs designed as polynomials
of state and estimates of θσ , with at least degree one). The
interested readers can verify that it is not easy to select a ϕσ
that does not use any parametric knowledge. On the other
hand, it can be easily verified that ||fσ|| in (4) can be upper
bounded as in (2) with ν = 1, i.e., a polynomial with degree
one, and without using any knowledge of the parameters.

Example 2: The situation of Example 1 occurs even with
simpler dynamics. For example, according to the upper

bound (3), the function fσ(x) = f(x) = θ∗x2 cannot be
globally upper bounded by ϕσ = (1 + a0x

2 + a1x
4) and

φσ = (1+θ2) for all x, unless a0, a1 ∈ R+ are designed with
some knowledge of θ∗ (i.e. parametric knowledge). Note
that, as highlighted by the functions in Example 1, the use
of odd powers in ϕσ is harmful in general. In fact, inserting
a term a2x

3 in ϕ may violate the condition ϕσ ≥ 1 for
negative values of x. Also, the absolute function cannot be
used in (3) because it would violate the C∞ property of ϕσ .

In this work, fσ is considered to be uncertain in the sense
that θiσ’s in (2) are completely unknown. On the other hand,
bσ is considered to be uncertain in the sense that only some
nominal knowledge is available, according to the following
assumption:

Assumption 1: Let b̂σ(x) be the nominal value of b(x).
Assume there exists a known scalar Ēσ such that for Eσ ,
(bσb̂

†
σ − I) the following holds

||Eσ|| ≤ Ēσ < 1, ∀σ ∈ Ω. (5)
Remark 4: Using the knowledge of b̂(x), the existence

of Ēσ defines the allowable amount of uncertainty in b(x).
The following class of switching signals is considered in

(1):
Definition 1: Average Dwell Time (ADT) [2]: For a

switching signal σ(t) and each t2 ≥ t1 ≥ 0, let Nσ(t1, t2)
denote the number of discontinuities in the interval [t1, t2).
Then σ(t) has an ADT ϑ if for a given scalar N0 > 0

Nσ(t1, t2) ≤ N0 + (t2 − t1)/ϑ, ∀t2 ≥ t1 ≥ 0

where N0 is termed as chatter bound.
For convenience of notation, we will use N (p) to denote

the set of inactive subsystems, when subsystem σ(t) = p is
active.

III. CONTROLLER DESIGN

Let us consider the tracking problem for a desired tra-
jectory qdσ(t) according to the following commonly-adopted
assumption [20], [21]:

Assumption 2: The desired trajectories are selected such
that qdσ, q̇

d
σ, q̈

d
σ ∈ L∞ and q, q̇ are available as feedback.

Let e(t) , q(t) − qdσ(t)(t) be the tracking error, ξ(t) ,
col[e(t) ė(t)] and rσ be the filtered tracking error variable
defined as

rσ , BTPσξ, σ ∈ Ω (6)

where Pσ > 0 is the solution to the Lyapunov equation
AT
σPσ + PσAσ = −Qσ for some Qσ > 0, Aσ ,[

0 I
−K1σ −K2σ

]
and B ,

[
0
I

]
. Here, K1σ and K2σ are

two user-defined positive definite gain matrices and their
positive definiteness guarantees Aσ is Hurwitz.

The control law is designed as

τσ = b̂†σ(−Λσξ − ρσrσ + q̈dσ), (7)

where Λσ , [K1σ K2σ] and the design of ρσ will be
discussed later. Substituting (7) in (1) yields

ë = −Λσξ − ρσrσ −Eσρσrσ + Ψσ, (8)



where Ψσ , fσ + Eσ(q̈dσ −Λσξ) is treated as the overall
uncertainty. Hence, using Property 1 and Assumption 2, one
can verify that ∃θ∗iσ ∈ R+ i = 0, · · · , ν ∀σ ∈ Ω

||Ψσ|| ≤ θ∗0σ + θ∗1σ||ξ||+ · · ·+ θ∗νσ||ξ||ν , YT
σ (||ξ||)Θ∗σ,

(9)
where θ∗iσ’s are unknown scalars and Θ∗σ =
[θ∗0σ θ

∗
1σ θ

∗
2σ · · · θ∗νσ]T . The gain ρσ in (7) is designed as

ρσ =
1

1− Ēσ
{(θ̂0σ + γ0σ) + (θ̂1σ + γ1σ)||ξ||+ · · ·

· · ·+ (θ̂νσ + γνσ)||ξ||ν} , YT
σ (||ξ||)(Θ̂σ + Γσ), (10)

where Θ̂σ , [θ̂0σ θ̂1σ θ̂2σ · · · θ̂νσ]T is the estimate of Θ∗σ;
Γσ , [γ0σ γ1σ γ2σ · · · γνσ]T is a dynamic auxiliary gain
whose adaptation laws must be properly designed for closed-
loop stability. To this purpose, the gains θ̂iσ, γiσ are adapted
using the following laws:

˙̂
θip = η||ξ||i+1 − αiθ̂ip,
˙̂
θip̄ = η||ξ||i+1 − αiθ̂ip̄, (11a)

γ̇ip = −
(
βi + ηεiθ̂ip||ξ||i+2

)
γip + βiεi,

γ̇ip̄ = −
(
βi + ηεiθ̂ip̄||ξ||i+2

)
γip̄ + βiεi, (11b)

θ̂ip(t0), θ̂ip̄(t0) > 0, γip(t0), γip̄(t0) > εi, (11c)

where η , maxσ∈Ω(λmax(Pσ)), p̄ ∈ N (p), αi, βi, εi, εi ∈
R+ i = 0, · · · , ν are static design scalars and t0 is the initial
time. From (11a)-(11b) and the initial conditions (11c), it
can be verified that ∃γ

iσ
∈ R+ such that

θ̂iσ(t) ≥ 0 and γiσ(t) ≥ γ
iσ
∀t ≥ t0. (12)

Remark 5: In state-of-the-art methods, the gains for in-
active subsystems are usually not updated (i.e., constant).
While this appears as a natural choice, such a choice may
be not robust in the sense of [25]. More specifically, in order
to provide robust adaptation via leakage, [12] has shown
that the gains for the inactive subsystems should decrease
exponentially. Clearly, if a subsystem remains inactive for
sufficiently long time, its gains will become very small,
leading to a new transient whenever the subsystem is acti-
vated again. Contrary to the constant or to the exponentially
decreasing policies, (11a) updates the adaptive gains for
both active and inactive subsystems simultaneously, while the
term η||ξ||i+1 prevents θ̂ip̄, p̄ ∈ N (p) from becoming very
small. Also, note that differently from state-of-the-art meth-
ods [17], [18], (11a)-(11b) do not require to monotonically
increase the gains of the active subsystems, thus preventing
issues stemming from high gains (cf. [25, §8.4]).

IV. STABILITY ANALYSIS OF THE PROPOSED ROBUST
ADAPTIVE CONTROLLER

We define %Mσ , λmax(Pσ), %mσ , λmin(Pσ), %̄M ,
maxσ∈Ω(%Mσ) and %

m
, minσ∈Ω(%mσ). Following Defini-

tion 1 of ADT [2], the switching law is proposed as

ϑ > ϑ∗ = lnµ/κ, (13)

where µ , %̄M/%m; κ is a scalar defined as 0 < κ < %

where %p , (λmin(Qσ)/λmax(Pσ)), % , minσ∈Ω(%p).
Theorem 1: Under Assumptions 1-2, the closed-loop tra-

jectories of system (1) employing the control laws (7) and
(10) with adaptive law (11) and switching law (13) are Uni-
formly Ultimately Bounded (UUB) if the gains αi and βi are
designed as αi > maxσ∈Ω(%σ/2) and βi > maxσ∈Ω(%σ/2).
Further, an ultimate bound b on the tracking error ξ can be
found as

b ∈
[
0,

√
(2%̄

(N0+1)
M B)/%(N0+2)

m

]
, (14)

B ,max


∑N
p=1

∑ν
i=0

(
α2
i

4ᾱip
+

%p
2

)
θ∗ip

2 +
(βiεip)

2

4β̄ip

(%− κ)
,

%
m

2γ4
m
ε2m

,
where ᾱiσ , (αi − %σ

2 ), β̄iσ , (βi − %σ
2 ), γ

m
,

minσ∈Ω,i=0,1,··· ,ν(γ
iσ

) and εm , mini=0,1,··· ,ν(εi).
Proof: Stability relies on the Lyapunov candidate:

V (t) = (1/2)ξT (t)Pσ(t)ξ(t) + (1/2)

N∑
p=1

ν∑
i=0

{(θ̂ip(t)− θ∗ip)2

+ γ2
ip(t)}, (15)

Note that Λσξ = K1σe + K2σė. Using this relation, the
error dynamics obtained in (8) becomes

ξ̇ = Aσξ + B (Ψσ − ρσrσ −Eσρσrσ) . (16)

Note that V (t) might be discontinuous at the switching
instants and only remains continuous during the time in-
terval of two consecutive switchings. The active subsystem
is σ(t−l+1) when t ∈ [tl tl+1) and σ(tl+1) when t ∈
[tl+1 tl+2). Without the loss of generality, the behaviour
of the Lyapunov function is studied at the switching instant
tl+1, l ∈ N+. We have before and after switching

V (t−l+1) = (1/2)ξT (t−l+1)Pσ(t−l+1)ξ(t−l+1)

+ (1/2)

N∑
p=1

ν∑
i=0

{(θ̂ip(t−l+1)− θ∗ip)2 + γ2
ip(t
−
l+1)},

V (tl+1) = (1/2)ξT (tl+1)Pσ(tl+1)ξ(tl+1)

+ (1/2)

N∑
p=1

ν∑
i=0

{(θ̂ip(tl+1)− θ∗ip)2 + γ2
ip(tl+1)},

respectively. Thanks to the continuity of the tracking error
ξ in (16) and of the gains θ̂i’s and γi’s in (11), we have
ξ(t−l+1) = ξ(tl+1), (θ̂ip(t

−
l+1) − θ∗ip) = (θ̂ip(tl+1) − θ∗ip)

and γip(t
−
l+1) = γip(tl+1). Further, owing to the facts

ξT (t)Pσ(t)ξ(t) ≤ %̄MξT (t)ξ(t) and ξT (t)Pσ(t)ξ(t) ≥
%
m
ξT (t)ξ(t), one has

V (tl+1)− V (t−l+1) =
1

2
ξT (tl+1)(Pσ(tl+1) −Pσ(t−l+1))ξ(tl+1)

≤
%̄M − %m

2%
m

ξT (tl+1)Pσ(t−l+1)ξ(tl+1) ≤
%̄M − %m

%
m

V (t−l+1)

⇒ V (tl+1) ≤ µV (t−l+1), (17)



with µ = %̄M/%m ≥ 1. At this point, the behaviour of V (t)
between two consecutive switching instants, i.e., when t ∈
[tl tl+1) can be studied.

Using (6), (16) and the Lyapunov equation AT
σPσ +

PσAσ = −Qσ , the time derivative of (15) yields

V̇ (t) = (1/2)ξT (t)(AT
σ(t−l+1)

Pσ(t−l+1) + Pσ(t−l+1)Aσ(t−l+1))ξ(t)

+ ξT (t)Pσ(t−l+1)B
(
Ψσ(t−l+1) − (I + Eσ(t−l+1))ρσ(t−l+1)rσ(t−l+1)

)
+

N∑
p=1

ν∑
i=0

{
(θ̂ip(t)− θ∗ip)

˙̂
θip(t) + γip(t)γ̇ip(t)

}
≤ −(1/2)ξT (t)Qσ(t−l+1)ξ(t) + ||Ψσ(t−l+1)||||rσ(t−l+1)||

− (1− Ēσ(t−l+1))ρσ(t−l+1)||rσ(t−l+1)||
2

+

N∑
p=1

ν∑
i=0

{
(θ̂ip(t)− θ∗ip)

˙̂
θip(t) + γip(t)γ̇ip(t)

}
. (18)

Owing to (12) and Assumption 1, one has ρσ(t) ≥ 0 ∀t.
Further, from (6) we have ||rσ|| ≤ λmax(Pσ)||ξ||. Using
these observations and (9), (18) is simplified as

V̇ (t) ≤ −(1/2)ξT (t)Qσ(t−l+1)ξ(t)

+ YT
σ(t−l+1)

Θ∗
σ(t−l+1)

λmax(Pσ(t−l+1))||ξ(t)||

+

N∑
p=1

ν∑
i=0

{(θ̂ip(t)− θ∗ip)
˙̂
θip(t) + γip(t)γ̇ip(t)}. (19)

Using (11a) we have
N∑
p=1

ν∑
i=0

(θ̂ip − θ∗ip)
˙̂
θip =

N∑
p=1

ν∑
i=0

(θ̂ip − θ∗ip)(η||ξ||i+1 − αiθ̂ip)

=

N∑
p=1

{
ν∑
i=0

ηθ̂ip||ξ||i+1 + αiθ̂ipθ
∗
ip − αiθ̂2

ip} −YT
p Θ∗pη||ξ||.

(20)

Similarly (11b) leads to

γipγ̇ip = −
(
βi + ηεiθ̂ip||ξ||i+2

)
γ2
ip + βiεiγip

≤ −βiγ2
ip − ηγ2

ip
εiθ̂ip||ξ||i+2 + βiεiγip, (21)

where the last inequality comes from (12), as
γiσ ≥ γ

iσ
∀t ≥ t0. By design η = maxσ∈Ω(λmax(Pσ))

we have {YT
σ(t−l+1)

Θ∗
σ(t−l+1)

λmax(Pσ(t−l+1))||ξ|| −∑N
p=1 YT

p Θ∗pη||ξ||} ≤ 0. Using this relation and substituting
(20) and (21) in (19) yields

V̇ (t) ≤ −1

2
λmin(Qσ(t−l+1))||ξ(t)||2 +

N∑
p=1

ν∑
i=0

{αiθ̂ip(t)θ∗ip

− ηθ̂ip||ξ(t)||i+1(γ2
ip
εi||ξ(t)|| − 1)− αiθ̂2

ip(t)− βiγ2
ip(t)

+ βiεiγip(t)}. (22)

Since θ̂ip ≥ 0 by design (12), one obtains

V ≤ 1

2
λmax(Pσ)||ξ||2 +

1

2

N∑
p=1

ν∑
i=0

θ̂2
ip + θ∗ip

2 + γ2
ip. (23)

Hence, using (23), the condition (22) is further simplified to

V̇ (t) ≤− %V (t) +

N∑
p=1

ν∑
i=0

{αiθ̂ip(t)θ∗ip − ᾱipθ̂2
ip(t)

− ηθ̂ip||ξ(t)||i+1(γ2
ip
εi||ξ(t)|| − 1) + (%p/2)θ∗ip

2

− β̄ipγ2
ip(t) + βiεiγip(t)}, (24)

where ᾱip > 0 and β̄ip > 0 by design (from (14)). Again,
the following rearrangements can be made

αiθ̂ipθ
∗
ip − ᾱipθ̂2

ip = −ᾱip
(
θ̂ip −

αiθ
∗
ip

2ᾱip

)2

+

(
αiθ
∗
ip

)2
4ᾱip

,

βiεiγip − β̄ipγ2
ip = −β̄ip

(
γip −

βiεi
2β̄ip

)2

+
(βiεi)

2

4β̄ip
. (25)

We had defined earlier 0 < κ < %. Then, using (25), V̇ (t)
from (24) gets simplified to

V̇ (t) ≤ −κV (t)− (%− κ)V (t) +
N∑
p=1

ν∑
i=0

(
α2
i

4ᾱip
+
%p
2

)
θ∗ip

2

− ηθ̂ip||ξ(t)||i+1(γ2
ip
εi||ξ(t)|| − 1) + (βiεi)

2
/(4β̄ip). (26)

Again, the definition of the Lyapunov function (15) yields

V (t) ≥ (1/2)λmin(Pσ(t))||ξ||2 ≥ (%
m
/2)||ξ||2. (27)

Hence, applying (27) to (26) and considering the structure of
B in (14), the behaviour of V (t) between the two consecutive
switching intervals, i.e., t ∈ [tl tl+1), is studied for two
possible scenarios:
• V (t) ≥ B, we have V̇ (t) ≤ −κV (t) from (26) implying

exponential decrease of V (t);
• when V (t) < B, V (t) may increase.

With these possibilities, two cases with initial conditions are
further selected as: Case (i) V (tl) ≥ B and Case (ii) V (tl) <
B.

Case (i): V (tl) ≥ B
Let T1 denote the time instant when V (t) enters into

the bound B and N1(t) denotes the number of intervals a
subsystem p, p ∈ Ω remains active for t ∈ [tl tl + T1).
Accordingly, for t ∈ [tl tl + T1), using (17), (26) and
Nσ(tl, t) from Definition 1 we have

V (t) ≤ exp
(
−κ(t− tN1(t)−1)

)
V (tN1(t)−1)

≤ µ exp
(
−κ(t− tN1(t)−1)

)
V (t−N1(t)−1)

≤ µ exp
(
−κ(t− tN1(t)−1)

)
× µ exp

(
−κ(tN1(t)−1 − tN1(t)−2)

)
V (t−N1(t)−2)

...

≤ µNσ(t0,t) exp (−κ(t− t0))V (t0)

= c (exp (−κ+ lnµ/ϑ))V (t0), (28)

where c , exp (N0 lnµ) is a constant. Substituting the ADT
condition ϑ > lnµ/κ in (28) yields V (t) < cV (t0) for
t ∈ [tl tl + T1). Moreover, as V (tl + T1) < B, one has
V (tN1(t)+1) < µB from (17) at the next switching instant



tN1(t)+1 after tl + T1. This implies that V (t) may be larger
than B from the instant tN1(t)+1, leading to further analysis.

We assume V (t) ≥ B for t ∈ [tN1(t)+1 tl + T2),
where T2 denotes the time before next switching. Let
N2(t) represent the number of all switching intervals for
t ∈ [tN1(t)+1 tl + T2). Then, substituting V (tl) with
V (tN1(t)+1) in (28) and following the similar procedure for
analysis as (28), we have V (t) ≤ cV (tN1(t)+1) < cµB
for t ∈ [tN1(t)+1 tl + T2). Since V (tl + T2) < B, we
have V (tN1(t)+N2(t)+2) < µσ(t−

N1(t)+N2(t)+2
)B at the next

switching instant tN1(t)+N2(t)+2 after tl + T2. Following
similar lines of proof recursively, one can conclude that
V (t) < cµB for t ∈ [tl + T1 ∞). This implies that once
V (t) enters the interval [0,B], it cannot exceed the bound
cµB any time later with the ADT switching law (13).

Case (ii): V (t) < B
It can be easily verified that the same argument mentioned

above for Case (i) also holds for Case (ii).
Thus, observing the stability notions of the Cases (i) and

(ii), it can be concluded that the closed-loop system remains
UUB globally. Further, based on this analysis, we have

V (t) ≤ max (cV (t0), cµB) , ∀t ≥ t0. (29)

Using (27) and (29) we have

||ξ||2 ≤ (2/%
m

) max (cV (t0), cµB) , ∀t ≥ t0. (30)

Therefore, using (30), an ultimate bound b on the tracking
error ξ can be found as (14).

Remark 6: The existence of ᾱiσ > 0 and β̄iσ > 0 to
establish (25) justifies the reason for the selection of αi >
maxσ∈Ω(%σ/2) and βi > maxσ∈Ω(%σ/2).

Remark 7: The proposed method is a robust adaptive
design in the sense of [25], i.e. it can cope with external
disturbances and unmodelled dynamics. As a trade-off, it
cannot guarantee asymptotic convergence of the tracking
error. On the other hand, the adaptation method in [17],
[18] has the merit of attaining asymptotic convergence of
the tracking error, at the price of considering the ideal case,
i.e. ignoring external disturbances and unmodelled dynamics.
A robust adaptation method for nonlinearly-parametrized
switched systems with asymptotic tracking error in the ideal
case is, to the best of the authors’ knowledge, still missing.

V. SIMULATION RESULTS

Consider the following switched EL dynamics with two
(non-smooth) subsystems, where each subsystem represents
a 2-link manipulator with different system parameters:

Mσ(q)q̈+Cσ(q, q̇)q̇+Gσ(q) +Fσ(q̇) +dσ = τσ, (31)

Mσ =

[
Mσ11 Mσ12

Mσ12 Mσ22

]
,q =

[
ql
qu

]
,

Mσ11 = (mσl +mσu)l
2
σu +mσu lσl(lσl + 2lσu cos(qu)),

Mσ12 = mσu lσu(lσu + lσl cos(qu)),Mσ22 = mσu l
2
σu ,

Cσ =

[
−mσu lσl lσu sin(qu)q̇u −mσu lσl lσu sin(qu)(q̇l + q̇u)

0 mσu lσl lσu sin(qu)q̇u

]
,

Gσ =

[
mσl lσlg cos(ql) +mσug(lσu cos(ql + qu) + lσl cos(ql))

mσuglσu cos(ql + qu)

]
,
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Fig. 1: The switching signal.
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Fig. 2: Tracking performance of the proposed controller.

Fσ =

[
fσvlsgn(q̇l)
fσvusgn(q̇u)

]
,dσ =

[
0.05 cos(0.05t)
0.05 cos(0.05t)

]
,

where ‘sgn’ is standard ‘signum’ function defining static
Coulomb friction. The system dynamics (31), when repre-
sented in the form (1), becomes NLIP (due to the inversion
of Mσ) and has ν = 2 following Property 1 [20]. Here
(mpl , lpl , ql) and (mpu , lpu , qu) denote the mass, length and
position of link 1 and 2 respectively for subsystem p with
p = {1, 2}. The actual (and unknown) parametric values of
the manipulator subsystems are taken as

1. m1l = m1u = 1.2kg, l1l = l1u = 1m and
f1vl = f1vu = 0.5;

2. m2l = m2u = 2.4kg, l2l = l2u = 2m and
f2vl = f2vu = 0.6,

with g = 9.8m/sec2 for both subsystems. The objective
is to track a desired trajectory defined as {qdl , qdu} =
{2 sin(0.5t), sin(0.5t)}rad. Selection of K11 = 170I,K12 =
120I,K21 = 25I,K22 = 12I,Q1 = Q2 = 0.2I, κ = 0.9%
yields the ADT ϑ∗ = 6.26sec according to (13). Therefore,
a switching law σ(t) is designed as in Fig. 1 (note that the
fast switchings for 1 − 3sec and 3 − 5sec are compensated
by slower switching later on). To have a b̂p in (7), we
select the nominal parameter as m1l = m1u = 1.0kg, l1l =
l1u = 0.9m and m2l = m2u = 2.0kg, l2l = l2u = 1.9m,
while Cσ,Fσ,Gσ and dσ are considered to be completely
unknown. It is possible to show that (5) is satisfied with
Ē1 = Ē2 = 0.3. Other control parameters are designed as
αi = βi = 1, εi = εi = 0.2 with i = 0, 1, 2. The initial
conditions are selected as θ̂ip(0) = θ̂ip̄(0) = γip(0) =
γip̄(0) = 0.3 and ql(0) = qu(0) = 0.5rad, respectively.

The performance of the proposed controlled system is
depicted in Fig. 2 in terms of state responses and tracking
errors (reported in degree for better comprehension). In line
with Remark 5, it can be noted from Figs. 3-4 that, the gains
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θ̂ip̄ of the inactive subsystems do not decrease exponentially
for the entire switch-off period (e.g., for t ∈ [15, 30) and
t ∈ [30, 40) for subsystems 1 and 2, respectively).

VI. CONCLUSIONS

A new adaptive control framework was presented for
a class of nonlinearly-parametrized switched systems. The
class under consideration comprises Monod and Euler-
Lagrange dynamics (with possibly non-smooth terms) as a
special case. A highlighting feature of the proposed frame-
work was to simultaneously update the gains of the active
and inactive subsystems, avoiding high gains for the former
and vanishing gains for the latter. Robust stability analysis
was provided in terms of uniformly ultimately boundedness
and the performance of the controller was verified using a
robotic manipulator simulation example.
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