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For ensuring microbial safety, the current European bathing water directive (BWD) (76/160/EEC 2006)
demands the implementation of reliable early warning systems for bathing waters, which are known to
be subject to short-term pollution. However, the BWD does not provide clearly defined threshold levels
above which an early warning system should start warning or informing the population. Statistical
regression modelling is a commonly used method for predicting concentrations of fecal indicator bac-
teria. The present study proposes a methodology for implementing early warning systems based on
multivariate regression modelling, which takes into account the probabilistic character of European
bathing water legislation for both alert levels and model validation criteria. Our study derives the
methodology, demonstrates its implementation based on information and data collected at a river
bathing site in Berlin, Germany, and evaluates health impacts as well as methodological aspects in
comparison to the current way of long-term classification as outlined in the BWD.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Ensuring microbial safety is one of the key objectives of bathing
water management. The fecal indicator bacteria (FIB) Escherichia
coli (E. coli) and intestinal enterococci are the most frequently used
indicator organisms for the assessment of microbial safety at rec-
reational waters. The European Bathing Water Directive (BWD) (76/
160/EEC, 2006) uses both indicators for quality assessment of ma-
rine and inland waters. A major challenge regarding bathing water
management is that concentrations of FIB may show spatial and
temporal variability triggered by different causes and occurring on
different temporal (e.g. seasonal, monthly, diurnal, hourly), and
spatial scales (e.g. along-shore, longitudinal, depth) (US-EPA, 2010).
With respect to temporal variability, the occurrence of some phe-
nomena may follow regular and predictable patterns, like tidal

Abbreviations: WWTP, wastewater treatment plant; LOO-IC, Approximate leave-
one-out information criterion; PPD, Posterior predictive distribution; Q, Flow in
[m3/s]; MLE, Maximum likelihood estimate; MPN, most probable number; FIB, Fecal
indicator bacteria; P, Precipitation in [mm/d]; BWD, Bathing water directive; EU,
European Union; PI / CI, prediction interval/credible interval; CSO, combined sewer
overflow.
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changes at coastal beaches or within day variability caused by UV
irradiation (Boehm et al., 2002). In contrast, other reasons, like
event-scale variation due to heavy rainfall may show more sto-
chastic patterns (Traister and Anisfeld, 2006). The latter may lead to
discharges from multiple sources of urban drainage systems like
combined sewer overflows (CSO) and stormwater discharges,
which both may contain high amounts of FIB. Consequently, event-
scale variability leads to the highest variations with respect to
short-term temporal changes of FIB concentrations in surface wa-
ters (US-EPA, 2010). For this reason, the European BWD demands to
elaborate so-called bathing water profiles for all bathing waters in
order to identify the potential sources of contamination and to
assess, whether the bathing water is subject to short-term pollu-
tion. If the assessment reveals that a bathing water is expected to be
subject to short-term pollution, the current BWD (76/160/EEC,
2006, Article 12(c)) explicitly demands the implementation of
early warning systems in order to prevent bathers from being
exposed to contaminated water. However, the BWD neither pro-
vides guidance on how to implement early warning systems nor
does it provide single sample, indicator based threshold levels
above which an early warning system should start warning the
population. Bathing water quality is assessed only in the long term
by estimating parametric 90th and 95th percentiles based on the
surveillance data of the previous four years (cf. section 2.1.1). The
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lack of specified thresholds makes it difficult for the responsible
authorities to justify and defend short-term decisions about clo-
sures of or warnings on bathing sites.

An additional challenge regarding the implementation of early
warning systems for managing event-scale variability, or short-
term pollution, is the quality of available surveillance data. Bath-
ing water surveillance in Europe is only based on periodic (at least
monthly) grab samples. Accordingly, event-scale variability is
detected only by chance as pollution events may occur between
sampling intervals (Kay et al., 2005). Even if grab sampling takes
place same day a pollution event occurs the sampling time and the
occurrence of the pollution event do not necessarily coincide. In
such cases, the grab sample would indicate low FIB concentrations,
which would be correct for that specific location and time. If,
however, it is intended to manage the bathing site on a daily basis,
as e.g. outlined in (Stidson et al., 2012), the measurement will not
contain the correct information regarding the management
objective. Finally, even if a grab sample indicates short-term
pollution no information is given about the duration of the
contamination.

Due to the lack of a single sample threshold and the limited
information given by periodic/single grab samples, the prediction
of bathing water quality as well as its validation remain a challenge.
Studies which used statistical modelling, regardless of using clas-
sification or regression approaches, often validated the accuracy of
the made predictions by using a contingency matrix approach
(Brooks et al., 2013; Heberger et al., 2008; Herrig et al., 2015; Malzer
et al., 2016; Motamarri and Boccelli, 2012; Stidson et al., 2012;
Brady, 2007). This approach determines specificity and sensitivity
by the rate of false positives (FP), false negatives (FN), true positives
(TP) and true negatives (TN). If, however, the validation data cannot
be trusted to contain the correct information regarding the man-
agement objective (e.g. daily bathing water quality), a high false
positive rate may be either the result of an overly conservative
model or simply the result of random sampling error.

Against this background the objectives of the present study are:

a.) To derive a decision criterion for early warning as well as to
develop model validation criteria in view of the probabilistic
character of European bathing water legislation and uncer-
tain data

b.) To develop statistical models, which allow for day-to-day
bathing water management based on official surveillance
data fulfilling the derived criteria

c.) To use event-based sampling to check whether models are
able to predict the duration of contamination in time scales
relevant for daily bathing water management

d.) To compare the proposed management approach to the
current way of long term classification, both in terms of
microbial safety and methodological aspects.

2. Material and methods

In order to be accepted by European authorities and beach
managers, alert levels for early warning should be related as closely
as possible to the thresholds outlined in the European BWD.
Therefore, we first elaborate a general methodological approach for
using the current numerical standards of the BWD as alert levels for
early warning systems as well as for validating the quality of model
predictions. In a second step, we apply the derived methodology at
a river bathing site, known to be recurrently affected by short term
pollution. Finally, we compare the suggested approach to the cur-
rent way of long-term classification in terms of microbial safety.

Since E. coli dominates bathing water classification in Berlin,

meaning that elevated concentrations of intestinal enterococci
without simultaneous increases of E. coli are rare, the study focuses
on the prediction of E. coli concentrations. However, the suggested
method can be readily applied to other FIB.

2.1. Methodological approach for deriving alert levels and model
validation criteria

2.1.1. Current approach of long-term classification as set in the EU
BWD

The European BWD defines numerical standards only for long-
term bathing water classification. To this end, a probabilistic
approach based on parametric 90th and 95th percentiles is applied.
The approach assumes that the measured data are logjp-normally
distributed and derives these percentiles by a) logyo-transformation
of the measured data, b) calculation of arithmetic mean and stan-
dard deviation c) calculation of the parametric 90th and 95th
percentiles by:

95th percentile = ps + 1.65*as (1)
90th percentile = ps + 1.282%c; (2)

and, d) back-transformation from the logyo to the linear scale. pig
and o, stand for the sample mean and the sample standard devi-
ation of a normal distribution N (ps, 62). Bathing waters are clas-
sified once a year in view of the upcoming bathing season. For this
purpose, the surveillance data of the four previous bathing seasons
are used with a minimum of 16 samples in total. Table 1 summa-
rizes the different quality classes ranging from “excellent” to
“poor”.

2.1.2. Using BWD quality standards as alert levels for early warning

In order to use the numerical quality standards of the BWD for
early warning systems, we need to a) define appropriate alert levels
and b) increase the timely resolution from once per year to time
scales relevant for bathing water management.

2.1.2.1. Defining appropriate alert levels. Regarding appropriate
alert levels, we are especially interested in the quality class “poor”,
since it is the quality we want the population to be warned of.
According to the BWD, bathing water quality is classified as “poor”
when the point estimate of the 90th percentile based on a mini-
mum of 16 samples collected over four years and assuming a
lognormal statistical model indicates that the probability of
measuring values larger than 900 MPN/100 mL exceeds 10%.
Consequently, if we want to use these standards for early warning
we have to predict a probability based on a lognormal model. A way
of estimating the “probability of exceeding”, which accounts for the
lognormality condition, is to fit a linear regression model on the
logqo-transformed data and to use the predicted mean and residual
standard deviation to construct a lognormal probability density
function (PDF). In the USA, Heberger et al., 2008 used such an
approach to first calibrate the “probability of exceeding” of the
single-sample swimming standard of Massachusettes of 61
enterococci cfu/100 mL. The calibrated probability was used

Table 1

Bathing water quality requirements for inland waters according to (76/2006/EC).
Indicator Excellent Good Sufficient Poor
E. coli [MPN/100 mL] <500* <1000* <900** >900**
Intestinal enterococci <200* <400* <330** >330**

[MPN/100 mL]

* Based on the 95th percentile, **based on the 90th percentile.
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subsequently as a decision criterion above which the model would
indicate impaired water quality.

In a European setting, we argue that bathing water quality
standards are already defined as “probabilities of exceeding”, so
there is actually no need to calibrate these values as they are
already given by the BWD, namely 10% for sufficient/poor quality
and 5% for good/excellent quality. Thus, we propose to estimate the
“probability of exceeding” based on statistical regression modelling
on the logio-transformed FIB data and use these estimates as de-
cision criteria against the percentile thresholds as outlined in the
BWD. In the present study, we applied a Bayesian approach for
regression modelling. Therein, the constructed PDF is referred to as
the posterior predictive distribution (PPD) and the 95% prediction
interval as the 95% credible interval (CI) of the PPD. In general, the
equivalent prediction interval could be computed using a fre-
quentist approach.

2.1.2.2. Increasing the timely resolution. In Scotland, information
systems are in place, which inform the public about potentially
impaired water quality on a daily basis (Stidson et al., 2012).
Following this approach, we use correlations between FIB and
readily available data (cf. section 2.2.4), to update our estimates of
the probability of exceeding on a daily basis.

2.1.3. Validating predicted probabilities by percentage coverage

A challenge regarding the prediction of probabilities is that they
cannot be validated by comparing predicted classes to single
measurements using e.g. a contingency matrix approach. As an
illustration, if a regression model predicts a probability of exceed-
ance of 20% the classification would be “poor”. However, if the
prediction were correct, we would expect 80% of the validation data
to fall below the threshold and 20% to fall above it. Thus, a single
measurement gives no information about the correctness of the
prediction. Moreover, official surveillance data deliver only one
data point per day, so we cannot validate the true distribution for
each day using only daily grab samples. For this reason, we focus on
evaluating overall model consistency by looking at all validation
data points at once. If the model is able to capture reality, from a
probabilistic perspective, 95% of the validation data should fall
within the 95% credible intervals (CI) of the PPD, 95% should fall
below the 95th percentiles and 90% should fall below the 90th
percentiles. So, e.g. from one hundred validation data points
collected on one hundred days, the constructed one hundred 95%
Cls of the PPDs should cover 95%.

As these criteria are in turn subject to sample size-based un-
certainty, we define a one-sided cut-off criterion based on a beta
distribution to exclude all models for which the probability that the
true coverage rate is 95% and 90%, respectively, is less than 5%. A
Beta (1,1) is used as a uniform prior distribution. We underline that
fulfilling these criteria is no proof that the PPD predicted for each
day is correct, it is rather an additional minimum requirement,
which checks for overall model consistency with the test/validation
data.

2.14. Differences between suggested regression-based approach
and the approach for long-term classification

Although both the current way of long-term classification and
the suggested regression-based approach estimate the probability
of exceeding based on a lognormal model there are some concep-
tual differences. First, the current way of calculating upper per-
centiles according to the BWD does not account for parameter
uncertainty regarding p and ¢2. From a human health perspective,
we prefer including parameter uncertainty, which leads to a more
conservative estimate of the upper percentiles. Secondly, current
long-term bathing water classification is based on the data from

only four years. In order to increase the chances that the training
data include data influenced by short-term pollution as well as to
reduce parameter uncertainty we include all available surveillance
data. Thirdly, according to the classification methods as outlined in
the BWD all variance in the empirical data is described by the
variance parameter o2 of the lognormal PDF. In regression, the
variance in the training data is partly explained by the linear model,
expressed as R% Thus, the residual standard deviation decreases
with an increase in R2. This relation will become important for
model selection and validation (cf. section 3.3).

2.2. Application of the described methodology to a river-bathing
site in Berlin, Germany

2.2.1. Bathing site

The bathing site “Kleine Badewiese” is situated on the River
Havel, downstream of the city center of Berlin, Germany. The
bathing site is an official European bathing water and is regularly
monitored for FIB during the bathing season (May 15 to September
15). In Berlin, the usual sampling interval is 14 days. From 2012 to
2015, bathing water quality was classified as “poor”, while in 2016
and 2017 it was classified as “good” and “excellent”, respectively.
Due to water quality problems from 2012 to 2015, the responsible
health authorities increased sampling frequencies to weekly sam-
plings during 2016 and 2017.

2.2.2. Catchment description

The sewer system in Berlin consists of a separate sewer system
in the outer parts of the city and a combined system in the city
center (Fig. 1). There are approximately 170 combined sewer
overflow (CSO) outlets in Berlin. Heavy rainfall can therefore lead to
discharges from CSOs and CSO-impacted river water, which even-
tually reaches the bathing location. In Berlin, flow velocities are
usually very low. Depending on the flow (Q) in the river, travel
times from the city center to the bathing site may range between
32 h and 14 days (Schumacher and Storz, 2016).

In addition to the CSO outlets, the largest of Berlin's six waste-
water treatment plants (WWTP) is located upstream of the bathing
location. In dry weather, the WWTP treats approximately
250000 m3/d. In order to protect bathing water quality during dry
periods the majority of the secondary effluent of the WWTP is not
discharged into the rivers Spree and Havel but is pumped south and
discharged into a bypassing canal. The proportion of secondary
effluent, which is not pumped south, is treated by an additional UV
disinfection. Therefore, only disinfected wastewater is discharged
into the adjacent river in dry weather. During rainy weather,
however, water volumes are too high to be treated completely by
the disinfection unit or to be pumped southwards. Consequently,
non-disinfected secondary effluent is discharged into the river with
a maximum flow of approximately 3 m>/s. Water impacted by these
discharges will eventually reach the bathing site.

2.2.3. Data availability of FIB and event-based monitoring

Official surveillance data, based on periodic grab samples from
2010 to 2017 (N =114) were provided by the Berlin health au-
thorities (LAGeSo). Grab samples are measured using most probable
number methods (ISO 9308-3) with a 2-fold dilution and a lower
detection limit (LOD) of 15 MPN/100 mL. Since biweekly grab
samples only detect short-term pollution by chance and do not give
any information about the duration of a contamination, refrigerated
automated samplers (HYDREKA, Sigma AS 950, see supplementary
material) were installed for event-based sampling during the
bathing seasons 2016 and 2017. The main purpose of event-based
sampling was to identify periods of major fecal pollution from
CSO and WWTP discharges relevant for daily bathing water
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Fig. 1. Overview of study area: WWTP: wastewater treatment plant, Q + arrows indicate flow direction.

management. Samples were taken during the five days following
rain events. Since impacts from urban wastewater were expected,
samples were diluted 4-fold in order to ensure that the upper
detection limit would suffice. Samplers contained 24 1L PE bottles
(HACH PS241000). Each bottle was filled within 1 h taking 200 mL
every 12 min. Samplers were cooled at 4 °C. Samples were taken
about 5m from the riverbank at a depth of approximately 1.2 m.
Prior to the actual sampling tubes were rinsed three times to avoid
carry over. For the transport to the laboratory, bottles were stored
in cooling boxes with cold packs. Samples were unified to 12 h
composite samples. The sampling bottles were washed in a labo-
ratory washing machine at 55 °C with de-ionized water for 60 min
and dried in a drying cabinet at 50 °C. The latter was considered
acceptable against the monitoring objective of detecting periods of
high fecal pollution from municipal wastewater. Due to logistic
reasons (laboratory working hours) samples had to be collected
around noon. Thus, given that the initiating rain event occurred in
the afternoon the first 24 h sampling period was stopped at noon of
the following day. This way the first sampling period was short-
ened. Starting times of the individual composite samples are pre-
sented in the supplementary material. Samples were analyzed for
FIB, the afternoon samples were collected using MPN methods (ISO
9308-3). Therefore, the first aliquots of the first 12 h composite
sample of the 24 h sampling period may have exceeded the rec-
ommended time-period for analysis of 24 h by up to 4 h and might
be under-represented. Since the intention was to sample different
rain weather conditions no specific threshold level for the

minimum precipitation was defined. Due to the low flow velocities
in Berlin and the short driving distances to the bathing site, auto-
mated samplers could be started manually.

By implementing event-based sampling as an additional sam-
pling protocol, two distinct data sets are available. The first one
consists of official surveillance data based on grab samples from
2010 to 2017 (N =114) with a lower detection limit (LOD) of 15
MPN/100 mL (ISO 9308-3). The second one consists of 12 h com-
posite samples collected during 2016—2017 with a LOD of 40 MPN/
100 mL (N = 118). As the data sets are distinct regarding the infor-
mation they contain, the two types of data were used differently for
model checking and validation (cf. section 2.2.9.1 and section
2.2.92).

2.2.4. Variable selection for regression modelling

For the implementation of an early warning system for event-
scale variability due to heavy rainfall, explanatory variables for
regression modelling were selected considering the following
criteria: a) explanatory variables should be measured in high timely
resolution b) data should be readily available to minimize efforts for
implementation, and c) there should be a plausible explanation for
the effect of the explanatory variable on fecal contamination at the
bathing site. Following these criteria, precipitation (P), river flow
(Q) and the volume of the non-disinfected discharge of the WWTP
(WWTP) were selected as key explanatory variables. The Berlin
Water Utilities (BWB) (WWTP, P) and the Berlin Senate Department
for the Environment, Transport and Climate Protection (SenUVK)
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(Q) provided the necessary data. A more detailed justification for
choosing these variables is provided in the supplementary material.

2.2.5. Variable construction and transformations

Due to changing travel-times of CSO discharges to the bathing
site water quality at the bathing site might be impaired concur-
rently by both rain events that occurred just recently and rain
events that happened several days ago. The arrival time of the
contamination depends on the river flow Q. In order to account for
these kinds of variations, different explanatory variables were
constructed. From WWTP discharges as well as from flow data Q,
daily sums (WWTP) and averages (Q) were calculated up to five
days prior to sampling for each individual day (Qq, Qy, ... Qs and
WWTP;, WWTP, ... WWTPs5). Moreover, variables were con-
structed which summed/averaged over multiple days prior to
sampling, e.g. Q-3 WWTP 1_3 represent the average/sum over three
days prior to sampling. A similar approach has already been suc-
cessfully applied by Cyterski et al. (2012) and Herrig et al. (2015).
Rainfall variables were created analogously, with two exceptions.
First, spatial averages over all 15 rain gauges were calculated before
averaging over time. Secondly, the created rainfall variables were
log-transformed. A value of 1 was added before log-transformation.
The rationale for log-transformation is that while discharges of CSO
and stormwater may increase FIB concentrations by orders of
magnitude in the first instance, a further increase in rainfall and
consequently discharge volume will not increase the concentration
further linearly on a logyg scale. By log-transformation, the effect of
higher rainfall levels is weakened. The sampling day was not
included in the averaging, since in the case of historical data pre-
cipitation might have started after sampling creating artefacts of
wet weather conditions, when the sample might actually have been
taken during dry weather conditions. Due to the lognormality
assumption given by the BWD (cf. section 2.1.1), E. coli data were
logjp-transformed. Values at the lower and upper detection limit
were kept at these values.

2.2.6. Model formulations

The constructed explanatory variables were used to construct
nine different models. Table 2 gives an overview of the constructed
models and explanatory variables using the notation outlined in
section 2.2.5. Models 1—4 focus on different times scales prior to
sampling regarding WWTP and P. Models 5—7 include the WWTP
with two individual days prior to sampling and differ regarding the
rain variables. Model 8 uses only Q and rainfall data P. Model 9 was
created by stepwise forward selection, allowing for pairwise in-
teractions of explanatory variables and limiting the maximum
number of explanatory variables to five.

Interactions: Due to the low flow conditions and long travel

Table 2

times many discharges located upstream of the bathing site are
only relevant if flow conditions are high enough to allow the fecal
contamination to reach the bathing site within a certain time. This
dependency is considered by including interaction effects between
P and Q as well as between WWTP and Q. In statistical modelling
interaction effects are included as the product of two or more
predictors (see Table 2). Thereby, the effect of Q depends on P and
vice versa.

2.2.7. Model fitting

All models were fitted using Hamiltonian Monte Carlo (HMC) for
Markov Chain Monte Carlo (MCMC) using the programming lan-
guages R (R Development Core Team, 2008) and Stan
(StanDevelopmentTeam, 2017b) accounting for full parameter un-
certainty. In R, the package for applied Bayesian regression
modelling rstanarm and the package function stan_Im()
(StanDevelopmentTeam, 2017a) was used. Priors were based on the
R? statistic (R? = 0.8).

2.2.8. Data separation for model fitting and validation

For model fitting and determination of regression parameters 6
the historical data (grab samples) from regular bathing water sur-
veillance from 2010 to 2015 (N = 74) were used. For model vali-
dation both the collected event-based samples (N = 118) and the
surveillance data of the regular surveillance monitoring of the years
2016 and 2017 (N =40) were used. (cf. section 2.2.9.1 and section
2.2.9.2). The two validation years were very distinct. The year 2016
was dryer than average with 89% of the annual average precipita-
tion and low flow conditions in June, July and August. In contrast,
2017 was one of the rainiest years ever recorded, with precipitation
of more than 200% of the annual average for the same months,
including a 120-year-rain-event. Therefore, models could be vali-
dated against a broad range of different conditions.

2.2.9. Model checking and comparison

Normality and homoscedasticity of residuals were tested using
the Shapiro-Wilk Test and the Breusch Pagan Test, respectively. R?
was used to analyze how much of the variance in the training data
is explained by each statistical model. However, since the proposed
decision criteria for early warning are based on the upper percen-
tiles of the PPD, we are less interested in R? but rather in whether
the model is able to capture the variance in the test data. Thus, the
criteria outlined in section 2.1.3 were applied to each bathing sea-
son as well as to all grab samples.

2.2.9.1. Percentage coverage. For the application of the percentage
coverage criterion, only the official surveillance data (grab samples)
were used to ensure, that the data for fitting and validating the

Overview of model equations used for statistical modelling. E. coli: E. coli concentration [MPN/100 mL], Q: river flow [m?/s], P: rain log [mm/d], WWTP: discharge of WWTP

[1000m>/d], e: Error term.

Model Equation

Modell LogoE. coli ~ o + BQ*QZ + Bp*long + BWWTP*WWTPZ + BQp*Qz*long + BQ,WWTP*QZ*WWTPZ + e

Model2 LogioE. coli ~ & + Bo*Qi-2 + Bp*logP1_3 + Bwwrr*WWTPy 3 + Bop*Q1-2*10gP1-3 + Bowwrp*Q12*WWTP 5 + ¢

Model3 LogioE. coli ~ o + Bo*Qi-2 + Bp*log P1-4 + Bwwrp"WWTP1_4 + Bop*Q1-2*10gP14 + Bowwrer Q12" WWTP;_4 + €

Model4 LogoE. coli ~ 0. + Bo*Qi2 + Pp*log Pis + Bwwir"WWTP15 + Bop* Qi2*10gP15 + Bowwre Q2" WWTPy5 + &

Model5 LogyoE. coli ~ o + Bo*Q1-2 + Bp*log P12 + Pwwre1™*WWTP; + Bwwre2"WWTP; + Bowwre1*Q1-2"WWTP; + Bowwrr2*Qi-2"WWTP, + Bop Qi
logP1> + ¢
2logP1;

Model6 LogoE. coli ~ o. + Bo*Qi-2 + Bp*log P12 + Bwwrp1 " WWTPy + Bwwre2"WWTP; + Bowwrp1*Qi-2"WWTP; + Bo,wwre2 Q12" WWTP; + Bop*Qs.
slogP3 s + &

Model7 LogioE. coli ~ 0. + Bo*Qi2 + Bwwrri"WWTP; + Bwwrp2 " WWTP; + Bo,wwrp1*Q12WWTPy + Bo,wwrpz“Q12WWTP; + Bop*Qi-5l0gP15 + ¢

Model8 LogioE. coli ~ a. + Bq*Qi-2 + Bp*log P12 + Bp l0gP3.5 + Bo,p*Qi-s5logPs.s + ¢

Model9 (forward
selection)

LogoE. coli ~ 0. + Bo*Qa + Pp*logP13 + Pwwrr " WWTP' 15 + Bowwrp Q2a"WWTPy; + Bpwwiplog P13"WWTPy; + &
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model have the same quality. For the individual years of 2016 and
2017, as well as for both years combined, the minimum number of
data points required to fall within the test intervals for validation of
the 95% credible interval and the 95th percentile, are 19/21, 17/19
and 36/40 (90%). For validation of the 90th percentile, the criteria
are 17/21, 16/19 and 34/40 (86%). Validation data are considered
inside the prediction interval if the best estimate of the MPN
analysis falls within the predicted interval.

2.2.9.2. Graphical model checking. The concentrations measured
within the collected composite samples represent the arithmetic
mean (AM) of the FIB concentrations during the sampling period.
Model predictions are based on the logjp-transformed data and
consequently predict the geometric mean (GM) of FIB concentra-
tions. In comparison to the GM, the AM is easier dragged to higher
concentrations in case a pollution event occurs during the sampling
period. Therefore, the AM can be considered a more conservative
estimate of the average concentration during the sampling period
than the GM (Reicherts and Emerson, 2010). For the assessment of
model quality, we used the composite samples for graphical model
checking. Since composite samples give information about the
duration of contamination at a 12 h resolution, we used these
samples to check whether the models are able to cover that 12 h
trend (see supplementary material).

2.2.9.3. Use of information criteria. The approximate leave-one-
out-cross validation information criterion (LOO-IC) was used as
an additional indication for the predictive performance of each
model (Vehtari et al., 2017). All calculations were conducted using
the “loo” —package in combination with the function loo() (Vehtari
et al., 2016). The LOO-IC was calculated for both the training set as
well as after refitting the models with all grab samples. Lower LOO-
IC value indicate better predictive performance.

2.3. Comparison to long-term classification with regard to health
protection

In order to analyze the health implications of the suggested
management approach, it was applied retrospectively to the years
2016 and 2017. For each day from May 15 to September 15 the 90th
and 95th percentiles of the PPD were simulated using the

log-transformed data
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posterior_predict() function (StanDevelopmentTeam, 2017a) and
compared to the percentile thresholds as outlined in the BWD (cf.
Table 1). Thereby, bathing water quality was classified for each day
using the hydraulic information from the days before. The results
were compared to official bathing water classifications com-
plemented with official warnings communicated by the local
health authority. The latter are communicated via press release and
are mainly experience-based ad-hoc decisions.

3. Results
3.1. Checking for lognormality and basic models assumptions

The individual test results for normality and homoscedasticity
for each model are given in the supplementary material. Two
(models 6 and 7) out of nine models failed the normality test. The
residuals showed no heteroscedasticity. A comparison of the
normality assumption before and after regression modelling is
shown in Fig. 2. Results show that while both raw data and
lognormally transformed data are not normally distributed,
regression modelling now leads to normally distributed residuals.
The latter justifies the use of a lognormal parametric approach for
estimating the 90th and 95th percentiles (Fig. 2).

3.2. Checking for percentage coverage

The results of model checking against the percentage coverage
criteria are shown in Fig. 3. Fig. 4 shows an illustrative example of
the best performing model (model 3). Models, which violated the
normality assumption, are not shown anymore. From the remain-
ing seven models, only three (model 3, model 4 and model 8)
passed the applied criteria. The 95th percentile test interval in-
dicates to be the strictest criterion among the applied test intervals.
Fig. 5 shows the relation between the variance-explained (R?) and
the different percentage coverage criteria for both validation years.
The model covering the highest proportion of validation data
(model 3) has the second lowest R? whereas the model with the
highest R? (model 5) value performs the worst. This behavior shows
that optimizing models only in terms of R? may lead to overfitting
and thereby yields to poor predictive accuracy. Applying the per-
centage coverage criterion instead reduces overfitting by ensuring

residuals of regression model 2
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Model comparison against percentage coverage criterion

model9 © 2]
model8 Ame
model5 © &=

model4 ®
model3 ®
model2 ®

model1 ®

model9 @ |
model8 Ame
models| @ [ |

model4 ®
model3
model2 &

model1 ®

model9 ®
model8 ©
model5 ® [ |

model4
model3
model2 ®
model1 ® [ |

A

>
2J8d Y106 Mojeq

Year

® 2016

A 7017

B both years

|

Accepted
@® no
@ yes

24 Lds
218d YiG6 Mojeq

B p
=
L
1D %56 Ul

0.80 0.85 0.90

0.95 1.00

ratio of data points in test interval

Fig. 3. Model comparison against percentage coverage criteria. Perc. = percentile, CI = credible interval of posterior predictive distribution.

that the model's residual standard deviation remains sufficiently
high to reflect the variation in the test data. Fig. 4 also shows that
the standard deviation of the predicted distributions has to be very
high (SD =0.6) to cover this variation. The PPD covers approxi-
mately 2—2.5 orders of magnitude.

3.3. Graphical model checking and information criteria

Times series plots of the seven models which passed the
normality test are given in the supplementary material. In order to
visualize the temporal trends, the confidence intervals of the
geometric mean are connected by linear interpolation. The
graphical comparison to the 12 h composite samples indicates
that the three models, which passed the percentage coverage
criterion, are able to predict periods of severe fecal pollution.
However, models 3 and 4 cover both composite samples and grab
samples better than model 8. Due to the lower LOO-IC value
(supplementary material) of model 3 in comparison to model 4,
model 3 is preferred.

3.4. Comparison to long-term classification with regard to health
protection

Fig. 6 shows the comparison between long-term classification
based on data from the previous four years (official classification)
and daily classifications based on model 3. The latter is based on
the information and evidence contained in the training data from
2010 to 2015. Fig. 7 shows the related time series plots, moni-
toring data (grab and composite samples), and periods of “ad-
hoc” precautionary warnings. Due to the low concentrations
measured between 2013 and 2016, in 2017 bathing water quality

was classified as “excellent” by long-term classification. However,
due to the rainy weather in 2017, the results from composite
sampling after heavy rainfall reveal severe fecal contamination
with measured E. coli concentrations of up to 10> MPN/100 mL. It
is worth to mention that even weekly grab samples did not
capture this contamination. The results prove that long-term
classification only based on the surveillance data from the pre-
vious four years and not considering any other environmental
conditions may lead to substantial misjudgments of the actual
bathing water quality and may pose a hazard to human health. In
contrast, by updating percentile estimates on a daily basis,
bathing water quality classifications would alternately indicate
periods of better and “poor” quality. Predictions of “poor” comply
with elevated concentrations measured in composite samples,
which represent 12 h averages. The model generally shows high
consistency regarding the results from both sample types.
However, at three occasions (marked with white arrows in Fig. 7)
the model would have predicted “sufficient” water quality or
better, while the results from composite samples indicate con-
centrations above the percentile threshold of 900 MPN/100 mL.
At two of the three occasions (1 and 3), heavy rainfall (90 mm,
12.8 mm) on the sampling day itself could be identified as the
cause for these high values. However, including rainfall on the
sampling day as an additional explanatory variable in the
regression model did not improve predictions for these days.
Thus, the information was missing in the training data. With
regard to observation 2 only minor rainfall occurred on the
sampling day (2 mm). However, the approach presented dem-
onstrates that health protection is improved substantially in
comparison to the current way of “ad-hoc warning” and espe-
cially in comparison to long-term classification.
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Fig. 4. Estimated distributions (model3) for each day in bathing seasons 2016 and 2017 based on evidence contained in the training data. Black horizontal lines indicate the LOD
(lower line) and the percentile threshold for sufficient bathing water quality of 900 MPN/100 mL (upper line). Yellow dots indicate the measured surveillance data, which are used
for percentage coverage validation. CI of PPD: credible interval of the posterior predictive distribution. Perc.: percentile. (For interpretation of the references to color in this figure

legend, the reader is referred to the Web version of this article.)

4. Discussion
4.1. Comparison of proposed alert values to similar studies

Previous studies which focused on implementing early warn-
ing systems for bathing water management in Europe used the
90th percentile threshold for “sufficient quality” either as
threshold for classification models (Stidson et al., 2012 for marine
waters) or compared the maximum likelihood estimate (MLE) of
regression models to this threshold (Herrig et al., 2015; Bedri
et al,, 2016). Malzer et al. (2016) used an even higher concentra-
tion of 1800 MPN/100 mL as a classification threshold. Each of
these approaches tolerates that the bulk of the probability mass of
the measured data is located very close or even above the
percentile threshold. When using the MLE as applied by (Herrig
et al., 2015) the “probability of exceeding” is tolerated to be up
to 50%. When using the approach proposed by Malzer et al. (2016)

up to 100% of the data points are tolerated to fall between 900
MPN and 1800 MPN, without warning. If 900 MPN is used as a
classification threshold, 100% of the data should fall below the
threshold. On the other hand, since the lognormal condition is not
considered, measured data would be allowed to be located very
close to the threshold. In contrast, if the lognormality condition is
considered, the bulk of the probability mass has to be located
much lower. As to our case, to determine “sufficient” water quality
the evidence in the training data has to indicate that 50% of the
data falls below 152 MPN/100 mL 80% below 488 MPN/100 mL,
only 10% between 500 and 900 MPN/100 mL, and an additional
10% is tolerated above 900 MPN/100 mL. Thus, the approach
proposed is much stricter regarding the expected frequency of
data between 500 and 900 MPN/100 mL, while it will, like the
BWD, tolerate occasional outliers. Fig. 8 illustrates the tolerable
ranges and frequencies the different approaches allow the data to
fall in without warning.



W. Seis et al. / Water Research 143 (2018) 301312 309

Comparison of percentage coverage vs. variance explained
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Fig. 6. Comparison of daily classifications made by model 3 in comparison to long
term bathing water classification according to BWD and official warnings by the
responsible health authorities.

4.2. Model validation by percentage coverage

The introduced model validation criteria based on percentage
coverage provide a suitable way to apply probabilistic model
checking when only periodic surveillance data are available.
Moreover, it prevents overfitting and ensures that the residual
standard deviation remains wide enough when models are inten-
ded to be used for prediction. The latter is particularly important for
low sample sizes. The criterion has to be considered as an addi-
tional minimum requirement for checking model consistency

against the test data and not as a proof that the predicted distri-
bution represents the true variability during each individual day. To
validate the latter, many grab samples in high timely resolution
would be necessary. However, heavy rainfall, the major source of
temporal variation (US-EPA, 2010), and accordingly of health
concern, shows rather stochastic patterns. Therefore, grab samples
collected periodically over long time-periods are likely to capture
event-scale variations in the end. Overall, the approach showed
very promising results at a large riverine bathing water site in
Berlin and should therefore be tested and verified at other locations
and for other types of bathing waters.

4.3. Sources of uncertainty

Assessment approaches which are based on statistical inference,
i.e. which make decisions upon estimates of unobservable quanti-
ties like parametric 90th or 95th percentiles are always conditional
on a) the chosen statistical model b) the quality and quantity of
available data. This accounts for both the currently used method for
long-term classification as well as for the proposed method for
regression modelling.

4.3.1. Uncertainties resulting from (random) sampling error

All statistical inference is conditional on the observed data. In
particular, the estimation of high percentiles is subject to statistical
error due to low sample sizes (Berthouex and Hau, 1991). Moreover,
if by random sampling no short-term pollution is detected and no
other prior information is used to build the model, a statistical
model might not be able to make correct predictions. Due to both
reasons, inferences might be wrong. However, in comparison to the
current BWD, which only uses the data from the previous four
years, the presented approach certainly improves the inferences on
bathing water quality since all available data as well as the infor-
mation about their correlation to relevant predictors are used. By
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updating models regularly as more data becomes available, un-
certainty will be further reduced over time.

4.3.2. Uncertainties related to the statistical model

The estimation of high parametric percentiles of a logip-normal
statistical model is sensitive to the choice of the lower detection
limit (LOD). The reason for this sensitivity is that e.g. the difference
between 10 MPN/100 mL and 1 MPN/100 mL, i.e. an absolute dif-
ference of 9 MPN/100 mL at the lower end of the scale represents a
whole order of magnitude. Thus, it will have a larger effect on the
estimate of the geometric standard deviation as e.g. an absolute
difference of 500 MPN between 500 MPN and 1000 MPN (differ-
ence ~ 0.3 orders of magnitude). The BWD does not explicitly define

requirements for the LOD. In the present study, we used data from
official bathing water surveillance with a LOD of 15 MPN. This LOD
follows recommendations according to the reference method out-
lined in the BWD (ISO 9308-3). Therefore, we consider this LOD as
appropriately low or at least in line with current European legis-
lation. However, due to the sensitivity of estimates of high per-
centiles to the lower LOD clear standards would be desirable.

5. Conclusions

o Statistical regression modelling offers a promising solution to
translate the existing percentile thresholds for long-term clas-
sification to daily bathing water management.
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e The application of the derived percentage coverage criteria ac-
counts for the probabilistic character of EU bathing legislation
and reduces the risk of overfitting and thus overly optimistic
prediction accuracy in comparison to optimizing models in
terms of RZ.

Event-based monitoring provided valuable additional informa-
tion about periods of major fecal pollution and model checking.
Regarding microbial safety, the application of the proposed
methodology at a riverine bathing water site in Berlin demon-
strated the shortcomings of current long-term classification as
well as the potential for improvement by applying the proposed
approach.

Since statistical classification approaches do not account for the
lognormality assumption, preference should be given to
regression approaches including the corresponding uncertainty.
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