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Abstract. Multi-level surrogate modelling offers the promise of fast approximation to expen-
sive simulation codes for the purposes of uncertainty quantification (UQ). The hope is that a
large number of cheap samples from the simulator on coarse grids, can be corrected by a few
expensive samples on a fine grid, to build an accurate surrogate. Of the various multi-level
approaches, a correction-based method using Gaussian process regression (Kriging) is studied
here. In particular, we examine the “additive bridge-function” method, for which — although
widely applied — results on theoretical convergence rates and optimal numbers of samples per
level are not present in the literature. In this paper, we perform a convergence analysis for
the expectation of a quantity of interest (Qol), utilizing convergence results for single-fidelity
Kriging, as well as existing multi-level analysis methodology previously applied in context of
polynomial-based methods. Rigorous convergence and computational cost analyses are pro-
vided. By minimizing the total cost, optimal numbers of sampling points on each grid level
are determined. Numerical tests demonstrate the theoretical results for: a 2d Genz function,
Darcy flow with random coefficients, and Reynold-Averaged Navier-Stokes (RANS) for the flow
over an airfoil with geometric uncertainties. The efficiency and accuracy of this method are
compared with standard- and multi-level Monte Carlo. All the test cases show that using our
multi-level kriging model significantly reduces cost.

Keywords: multi-level, gaussian process, uncertainty quantification, computational fluid dy-
namics, Kriging.
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1 INTRODUCTION

With the rapid growth of computational capacity and improvements in CFD simulation tech-
niques over the past two decades, CFD-based aerodynamic analysis and design have become
standard in industry. However, in any analysis of real-world systems there exist uncertainties
and errors, e.g.: discretization error, geometry uncertainty and turbulence model-form uncer-
tainty, which can cause the prediction of performance to be poor. Thus, it is necessary to
consider the effect of uncertainties on simulation predictions, i.e. which leads inexorably to
solving stochastic PDEs. Statistics of the solutions, such as the expectation of a Quantity-of-
Interest (Qol), E[y], can be straightforwardly estimated with Monte-Carlo or Taylor expansions,
however, due to the high computational cost of individual CFD simulations, the lack of reliable
derivatives, and strong nonlinearities, these methods are often impractical.

Surrogate-based methods on the other hand, can use a modest number of simulations to pro-
vide a fast approximation to E[y|, provided the stochastic dimension is moderate. Some com-
mon surrogates in the literature use polynomial-chaos expansions (PCE) for interpolation or re-
gression (often with sparsity), radial basis-function (RBF) interpolation, and Kriging. Of these,
Kriging is notable for its high flexibility, thanks to its Bayesian roots — and has performed well
in practical applications. Multi-fidelity and multi-level variants have been developed, which use
additional low-cost simulations to assist in the estimation of E[y|. In multi-fidelity methods the
low-cost simulation uses a simplified model of the problem (e.g. Euler versus Navier-Stokes);
in multi-level the low-cost simulation is the same continuous model as the high-cost, but dis-
cretized at a coarser grid resolution. In the former case the correlation between high- and low-
fidelities is responsible for the cost reduction (if any); in the multi-level case we can use stronger
relationships given by the rate of (grid-)convergence of the PDE solver. Although multi-fidelity
and multi-level Kriging methods are widely applied in engineering, they are known to be unre-
liable, and do not consistently reduce costs in practice. This is at least partially a result of the
lack of the convergence analysis for these methods — and as a consequence, the lack of rules for
optimal sample selection.

There has been enormous work on multi-fidelity or multi-level surrogate modelling. Haftka
et al. [1] [2] developed a variable-fidelity kriging model, which uses a multiplicative bridge
function to correct the low-fidelity model to approximate the high-fidelity function. Gano et
al. [3] developed a hybrid bridge function method, which uses a kriging model to scale the
low-fidelity model. Han et. al. [4] improved variable-fidelity surrogate modeling via gradient-
enhanced kriging and a generalized hybrid bridge function, to realize a more accurate and robust
model. Cokriging was originally proposed in geostatistics community by Journel et al. [5]
and then extended to deterministic computer experiments by Kennedy and O’Hagan, called
KOH autoregressive model [6]. Han et. al. [7] proposed an improved version of cokriging,
which can be built in one step, and a hierarchical kriging model [8], which avoids the cross-
variance between low- and high-fidelity model thus is more robust. More recently, the multi-
fidelity/level models are introduced into the field of uncertainty quantification. Palar et al. [9]
developed a multi-fidelity non-intrusive polynomial chaos method based on regression, which
builds two PCE:s for both the low-fidelity and correction functions, and then sum it up to provide
an estimation for the high-fidelity function. This method has been applied for flow around a
NACAO0012 airfoil and a Common Research Model wing with flow condition uncertainties, e.g.
Mach number, angle of attack. Parussini et al. [10] proposed a recursive multi-fidelity cokriging
model and tested it by stochastic Burgers equation and the stochastic Oberbeck-Boussinesq
equations. Palar et al. [11] investigated the capability of a Hierarchical Kriging model for
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uncertainty analysis and further improve it by combining with PCE method. The application to
RAE?2822 airfoil and CRM wing with flow condition uncertainty shows its high accuracy and
robust performance. Narayan et al. [12] proposed a multi-fidelity stochastic collocation method,
which leverage inexpensive low-fidelity models to generate surrogates for an expensive high-
fidelity model using a parametric collocation (nonintrusive) approach. Zhu et al. [13] present
a bi-fidelity algorithm for approximating the statistical moments of stochastic problems and
provide a basic error analysis.

In this paper, We choose multi-level rather than multi-fidelity [14], in order to make use
of stronger convergence results. The popularity of multi-level methods has increased dra-
matically in recent years, thanks to the success of Multi-Level Monte-Carlo (MLMC) meth-
ods [15, 16, 17]. By correctly choosing the number of Monte-Carlo samples per level, the cost
of solving the stochastic PDE can be reduced to a constant multiple of the cost of a single deter-
ministic solution, in the best case. Similar ideas were used by Teckentrup et al. [18] to devise
a multi-level stochastic collocation method, dramatically improving upon MLMC for moderate
stochastic dimension. This paper addresses the convergence of a particular multi-level method
known as Additive Bridge-Function-based multi-level Kriging [19, 20, 21] for estimation of
E[y]. We use the Kriging mean as response surface only, the Kriging variance is not used in our
analysis. Our work follows closely the outline of [18], but considering Kriging models rather
than polynomial models. We employ error bounds derived for RBF interpolation [22] to esti-
mate the interpolation error in the Kriging mean. Finally we provide expressions for optimal
number of samples per level to obtain minimum computational cost.

The structure of this paper is as following: in Section 2, the additive-bridge function multi-
level Kriging model is described, and in Section 3 it’s convergence properties are analysed and
computational cost estimates are provided. Section 4 briefly introduces the numerical test cases
used in this paper, and numerical results are presented in Section 5, and compared to standard
MC and MLMC.

2 METHODOLOGY

A single-fidelity ordinary kriging model is presented in Section 2.1, see also e.g. [23]; and
then we describe how to construct a multi-level Gaussian process model from multiple single-
level models in Section 2.2.

2.1 Single-fidelity ordinary Kriging

Consider a Qol y € R, which (possibly via a PDE) is a function of (deterministic) variables
¢ € RM. Ordinary Kriging represents 3(£) by a Gaussian process Y of the form:

Y(§) =p+2(¢), (1)

where p is an unknown constant and Z(€) is a stationary Gaussian random process with zero-
mean and covariance
Cov[Z(¢),Z(¢)] = o*R(I€ - &]). 2)
Here R : R* — R s a positive-definite covariance kernel, so that the covariance of two points of
the process only depends on their Euclidean distance in £-space, and o is the standard-deviation.
Given observations y= € R" at a number of samples Z = (£,,..., &), we can construct
the conditional process Y | yg. Thanks to Gaussian assumptions, the mean of this process at an
unoberserved location £ can be formulated as a linear combination of the observed responses:

J=X(¢)" y=. 3)
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In particular by minimizing mean-squared error subject to unbiasedness constraints, the predic-
tor at any unsampled site is given by

j=p+r R (yz - pF), )
p=(F'TR'F)""(FTR 'yg). (5)
Here F := 1 € R”, the covariance matrix R := R(E,E) € RV*Y and finally r := R(E, &) €
R is the vector consisting of the covariance of the unobserved sample with respect to all

observed sample sites. Using this cheap surrogate, E¢[y| can be evaluated with e.g. Monte-
Carlo to any desired accuracy.

2.2 Additive bridge function based multi-level kriging model (AMLK)

If y results from the solution of a PDE, then by varying grid resolution we can have a se-
quence of numerical approximations to y, denoted vy, ..., ¥y, of increasing accuracy and in-
creasing computational cost. The heart of the additive bridge function based multi-level Kriging
model (AMLK) [19, 20, 21], is then to first write y;, as the telescopic sum

L
yL =>4, do:=Yo, 0=y —y-1,l€{L,....L}, (6)
=0

similarly to the MLMC method; and then approximate each 4, with a single-level Kriging sur-
rogate d;. An estimate of the expectation of the Qol can then be written:

> Sl] =D Ee[dl], (7)

=0 =0

Eely] ~ E¢[91] := Ee

where the expectations are then evaluated on the surrogate, independently of each other. This
decomposition is worthwhile because on the finest level L, the cost of the simulation is high, but
the absolute magnitude of §, is small, so surrogate modelling errors (&, — 5 1) contribute little to
the total error in [E¢[y], and therefore sufficient accuracy can be achieved with few samples. In
contrast, on the coarsest level many samples are needed to reduce the surrogate modelling error
there, but these samples are very cheap to obtain. Potentially then, the total cost of estimating
E[y] at a given accuracy can be reduced compared to the single-level method. Whether or not it
is, in fact, reduced is investigated in the next section.

3 CONVERGENCE ANALYSIS OF AMLK

The error of using any surrogate model to estimate [E[y| can be bounded by the discretization
error and the surrogate interpolation error separately:

Ely — g2]l < [Ely — yo)| + [Elyz — )], ®)

Vv Vv
EAx €h

where the former is a function of grid resolution Az > 0, and the latter depends on some
sampling parameter denoted h to be specified later.

In the multi-level case, assume that the grid resolution on level [ is Ax;, and further that there
exist constants «, Cy > 0 (independent of Ax), such that for all fidelity levels [ € {0,..., L}:

EAx = UE[ZJ - yl” < CyAxy, ©)
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i.e. the discrete approximation of E[y| converges at a fixed rate, where & = 2 implies a 2nd-
order accurate discretization, etc.

Consider now the interpolation error £;,. By analogy with radial-basis function (RBF) in-
terpolation [22], for a single-fidelity Gaussian process, the point-wise interpolation error in the
process-mean can be expressed in terms of a fill distance h, defined as

h = hg := sup {min 1€ — ﬁZH} :
ceq | &iEE

Here () is the interpolation domain, and = is the sample sites. Then h is the radius of the largest
(hyper-)sphere, whose center is contained in €2, and which contains none of the samples. Given
approximation of an infinitely differentiable function, the convergence order is dictated by the
continuity of the covariance kernel (or radial basis function in RBF interpolation). For example,
when the so-called thin-plate spline R(r) := (=1)""'r* logr, with k € N, r = [£€ — €| € R,
is used, the /*°-norm of the interpolation error will satisfy ¢ ~ O(h**1) [22]. For infinitely
differentiable covariance kernels, convergence in this norm will be spectral. In this article, all
derivations and numerical tests are based on the thin-plate spline with k£ = 1, though the results
can be extended to other correlation functions straightforwardly.

The interpolation error of an additive bridge based multi-level model can therefore be written

i@—i&]

=0 =0

en = |Elyr — 91| < |E (10)

IE[6, — &]|

] =

<

=0

CrAzI'R) .

Mh

l

I
o

where h; is the fill distance on level [, and [ is a constant depending on the correlation function
used in the Gaussian process (and the smoothness of the underlying function). Here, hlﬁ comes
from the approximation properties of the surrogate, and Ax}" describes the magnitude of the
interpolation error, which is proportional to size of the function being interpolated.

To limit the total error |E[y — ¢;]| to less than e, we bound both the discretization error
and interpolation error by ¢/2. First, we choose the finest level L large enough to satisfy
erns = CgAz$ < g/2. For simplicity, we assume that Az; = n~'Axy, i.e. that grid resolu-
tion is increased by a constant factor  on each level. By arbitrarily normalizing Axg to 1, the
discretization error constraint becomes

1 20(1)} | an

L < /2 L=|=log (=2
Cn <eg/2 = aogn(g

Similarly, to limit the interpolation error to £/2, the infill distance of the surrogate must satisfy

CiAz¢ Az, " Cyntr—to
n? < L= . 12
L= 1+ L) (14 L)C; (12

Given which, the total error is bounded as

[Ely — g.]| < 2CiAxt. (13)
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3.1 Cost analysis for AMLK

Having found bounds on /; in (12), it remains to specify the optimal number of samples per
level N;. Let the cost for a single sample of y; be 7;. Then the total computational cost is

L
T = Z NT,. (14)
=0

To choose N, optimally, we minimize 7" subject to the constraint on error. Treating /V; as a
continuous variables, we solve the optimization problem:

NZER+

L
min 7, subjectto » CrAzfh) =c/2. (15)
=0

Further assume that there exist constants C,, v € R (independent of Ax;), such that the cost of

a evaluation is
T = CCA:L*;’, (16)

which is approximately true for typical PDEs solvers. Finally, as it is usually difficult to estimate
h (especially in high-dimensional spaces), we choose to treat the estimated error as a function
of N (to which we have direct access). So, for a specific sampling method, we assume there
exist constants C and v, such that

hi = CsNy . a7

Note that v will vary with the stochastic dimension M, and depends also on the sampling
method. For tensor-product samples v = —% can be seen immediately, i.e. the curse of dimen-
sionality. In terms of N, the convergence rate of the surrogate model method deteriorates with
an increasing of number of input variables. In terms of /, it is dimension-independent.

With assumptions (16) and (17), and formulating the constrained minimization problem (15)

in terms of a Lagrange multiplier A, we obtain the equivalent problem, find V;, A such that:

of of
an " Y
where
L L
1=0 1=0
Explicitly
af ¥ wB vB—1
N, C.Azx] + ANCrAz CJvBN, =0, (19)
of ¢ M v\ B
o= > CrAzf(CNy) — /2 =0, (20)
1=0
whereupon solving for /V; gives
1 L
" \ecicds(r) ’ e

405



Y. Zhang, R.P. Dwight, and Z.-H. Han

With N; determined, we now examine the complexity of the multilevel approximation:

L
T.=Y NT, (22)

1

€ vB e
<—) (Aw) i + 1| C.Az)

L
(Az) 5 C.AZ] +> ColAa]

=0

L
Co(Ar)' =7 +3 CoAa)

=0

1 L
g 1—-L
= C.S(L) v + E C.Ax]

(20105) () o :

The cost analysis of the AMLK model follows that of multi-level stochastic collocation method
in [18]. First, let’s bound the second term on the right side. Recall (11), bounding the finest

level L by X logn(Q%) + 1, where 7 is the scaling parameter of Az; (Az; = n~'), we have

L L
Y Coax] ~> " Cap™ (23)
=0 =0

Tt -1
o —1
77_'7(1’_1) — 77'7
1—n
_ Ol 108y (*2))
11—
C.(2Cy) =

=i O

C

Then, we provide a bound on the geommetric sum S(L). When u # yv[3, we have

p=ovp

L L
S(L)=3" Az " =Yy tEE (24)
=0 =0

nHEE 1
= T]_ #17_11235 1
L= e
1 . nul—:%ﬁ
_p—vB

77 1—vp

C —yv
(£ log, (254)) _ 4=

_ k=B p=yvB
(20d) a(l-vp) nw—yvp n 1-vp
= n—vpB (6) o= — p—vp )

1_771—1/,8 1—’]’]1—Vﬁ
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when . = yv, we have

2Cy

1
S(L) = L+ 1= —log,(—%) +2. (25)

Finally, when p # 13, the computation cost versus € can be bounded by

e\
T. < C.S s + C.Azx) (26)
(mzcﬂ> W E: l
%(1 L) 1 5
<€DB€D¢(1 v3) v +€DB +€a

1 vB—p
e gvﬁ avf _|_5VB +5a'

when . = yvf3,
T. < &7 |log, ()| 77 4 77 + e&. 7)
Consequently, we have
e it pu>vp,
T. < {ewllog, ()77 if =, (28)
€Vﬂ+vﬁﬁu if pu<~vp.

Usually, in terms of Ax, the size of the difference between two consecutive level has the same
convergence rate with the discretization error, thus ;2 = «, which is also showed in the following
numerical test cases. When i < yv/3, we have

yvB—p

T, < gvptravs (29)
sp(1=5)+2

=&

o R

Ea,

IN

3.2 Parameter estimation and practical details

A practical algorithm is given below. In the first step, a grid convergence study is needed to
provide an estimation for discretization error and determine the finest level L. The second step
is to estimate the constants assumed in the model of interpolation error.

Recalling (10), the interpolation error of AMLK model is assumed to be C; Az}’ hf . Again,
hlﬁ represents the convergence properties of the surrogate model, and Az}’ comes from the logic
that the magnitude of the interpolation error should be proportional to the size of the function
being interpolated, which is the difference between two consecutive levels. Here, 5 and p are
both constants - which are assumed to be independent of level, and can be estimated separately.
The assumption of interpolatin error should ideally be numerically verified.

As already mentioned, it is difficult to estimate / in high-dimensional spaces, so we assume
that h; = C, N/, so that

CrAzth) = 1Azl (CNY)P = CrCP Azl NYP,

and instead of estimating [ directly, we treat the error as a function of N and estimate v(3
together, as well as estimating the combined constant C;C? together. Remember that v varies
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with the stochastic dimension M and also depends on the sampling method, so must be re-
estimated for each new problem.

To estimate these parameters, firstly, by quantifying the interpolation error for the cheapest
three levels using standard kriging model with a fixed, small number of sample points, an es-
timation for ; can be obtained. At the same time, the computational cost per sample on each
level is collected, which gives us an estimation of +. Then, using the coarsest level only, (3
and C;C¥ can be estimated by varying the number of sampling points. With these estimated
constants, the optimal number on each level is determined. Through the algorithm below, UQ
with the multi-level kriging model can be conducted.

Algorithm: AMLK to estimate E[y| with error < ¢

Determine the finest level L from (11) interpolation error is /2.

Use the cheapest three levels [ = 0, 1, 2 to estimate C;C? and v, v3, .
for(=0:Ldo

Calculate the optimal number of samples /V; using (21);

Generate N; sample points =;, with e.g. Latin hypercube sampling;
Evaluate y,(Z;) and y,_, (E;) with the PDE solver (note y_; = 0);
Evaluate §;(5)) := y,(5)) — y,_1(E));

Construct a kriging model for ;;

Evaluate IE[&] on surrogate model response surface using e.g. Monte Carlo;
end

L
Evaluate result E[y;] = Z E[d] 5
1=0

4 TEST CASES
4.1 Oscillatory Genz function (M=2)

To quickly verify basic properties of AMLK, we consider an almost-trivial analytic test-case
based on the osciallatory Genz function in 2d [24]. The basic function is

y(&) = cos (m 4 581 + 58) , (30)

where &1,& ~ U(0,1) i.i.d. To simulate multi-level analyses we introduce an artificial mesh-
dependent term:

(&) == y(&) + sin(|€]) Az, 31)

where Az; = 27 Az, Axy = %, and L = 4. Note that §;(£) has the same form on every level,
with only a scale difference. Two hundred random uncertainty samples are used to estimate the
discretization error, shown in Figure 1a, which shows quadratic convergence as we expected,
ensr = |Ely — yi]| < CaAz ~ Az?. To make a comparison with MLMC method, the variance
for the difference function is also estimated, and the rate of convergence is 4, double the rate of
convergence of the expectation, as expected in this case, shown in Figure 1b.
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(a) Discretization error of multi-level analyses (b) Variance of difference function

Figure 1: Performance plots of multi-level analyses for Genz case

4.2 Darcy flow with random coefficients (M=21)

The first PDE-based test-case is Darcy on D = (0,1)¢,d = 2, with both Dirichlet and
Neumann boundary conditions [17]:

=V (k(x,w)Vp(x,w)) =1, x€ D, (32)
p|x1:0 = 17 p‘mlzl == 07 (33)

dp B dp B
%\xzzo =0, 8_n’:r2:1 =0, (34)

where k is a scalar-valued random field with

log k(x, w) = Z(x,w) = E[Z(x,)] + ) _ v/0n&n(w)ba(x), (35)
n=0
where the Karhunen-Loeve expansion orginates from the covariance function
O(x,y) := o exp (—@) L A=03, o’=1 p=1. (36)

where {0, },en and {b, },en are the eigenvalues and normalised eigenvectors of the covariance
matrix. The uncertain variables {¢, },cn are a sequence of independent, uniform random vari-
ables on [—1,1]. In this problem, We use 21 terms in the K-L expansion (M = 21), which
includes 84% of the total spectral energy.

This PDE is solved with finite-volumes on a uniform Cartesian grid of m x m cells. Let k; ;
and p; ; denote the values of k, and p at a cell centre x; ;, (7,7 = 1,...,m). The discretization
used is

— — — — ~

—ki,j,%pi,jfl - k)z;%’jpifl,j - ki+%,jpi+1,j - k’i,ﬂ%pi,jﬂ + 4p; jkij =0 (37)

where kij = (k;;_1 + k1 + ki1, +k;; 1)/4 Here k.1 is the value at the mid-point
. , -2 27- 27 k . 2 . 7 2 . .
of an edge, which is approximated by the arithmetic average of k; ;1 and k; ;. At Dirichlet
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boundaries, the derivative is approximated by a one-sided difference. At Neumann boundaries,
the derivative is known explicitly, and % is approximated by k; ;. The quantity of interest is

dZL'Q ~ Z ka_l‘l
j=1

1
.__/ Ip
v= 8[E1
0

given all of which the discretization error is O(Az?).

We choose a sequence of spatial grids with the cell size Ax; = 27'Axy and Az = é.
Six levels are used, i.e. L = 5. The computational cost per sample is measured to be C; =
C.Az] oc Az;?, thanks to an efficient multi-grid solver. Taking the grid with Az = 1/512
as a reference, the discretization error is estimated using 200 samples per level and shown in
Figure 2a. Clean 2nd-order convergence is observed, so a = 2 in this case. The variance for
the difference function is estimated as an 4th-order convergence rate in terms of Az, shown in

Figure 2b.

(38)

)
m+3.j

r1=1

10'
. o'k
10" - Gt ——t>
AL } 107
@ 10
32
l; 10‘2 = * '_..'."} -
b - =
8 10°F o}
§,1U¢ L >
0%
mmﬁ___ L
10-6 L 10 il
1 1 . 1 " |
1075 iy i i 107557 by ks 00
AX, Ax,
(a) Discretization error of multi-level analyses (b) Variance of difference function

Figure 2: Performance plots of multi-level analyses for Darcy flow case

4.3 RANS flow over an airfoil with geometric uncertainties (M=10)

Finally, a more challenging test-case is considered: Reynolds Averaged Naiver Stokes (RANS)
for the RAE2822 airfoil at M., = 0.734, a = 2.79°, and Re = 6.5 x 10°. Manufacturing
variability of the aerofoil surface of approximately 0.2% of the chord length is modeled by a
Gaussian random fields with the correlation

C(s1,82) := o?exp (—M) , A=0.1, (39)

where s; and s, are two surface nodes, distance is the standard Euclidean norm, and the standard
deviation ¢ is assumed to be

(10 — 102)%7 x 0.001  if 09 <z < 1.0,
o =< 0.001 if 0.1<z<0.9, (40)
(102)°7 x 0.001 if 0<ax<o0.l.
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Similar to Darcy, the Gaussian-process is parametrized by independent standard Gaussian ran-
dom variables using Karhunen-Loeve:

Gls,w) = > VO(w)bi(s). a1)

The eigenvalues are shown in Figure 3, and the first 10 K-L modes are used to parametrize the
perturbation. Figure 4 shows three realizations of the perturbation and corresponding pressure
distribution of the perturbed airfoils. The CFD solver used is finite-volume and nominally

Eigenvalue

Figure 3: Eigenvalues of K-L expansion for geometric uncertainty

0.002
0.0015 F
0.001 |

Il

=4

g
cp

Perturbation
I
2
8 o

-0.001

Realization 1
_____ Realization 2
10F ——— Realization 3

-0.0015 |-
-0.002 F

(a) Three realizations of K-L expansion (b) Pressure distributions

Figure 4: Visualization of the geometric uncertainty in the airfoil surface and corresponding
pressure distribution of perturbed airfoils

2nd-order accurate, though this case exhibits a shock reducing the ¢?-norm of the solution to
Ist-order. The Qol used in this case the lift coefficient, and is observed to converge at slightly
higher-order in practice.

In this final case, we define 5 grid levels, the parameters of which are given in Table 1. The
parameter of the reference computational grid is also shown in the last line. Discretization error
is estimated using 100 random samples, shown in Figure 6a. Note that in the Darcy case the
discretization error was estimated with respect to grid-cell size, but number of cells is used in
this case for simplicity. We have the discretization error [Ely — y]| < CyK® ~ K135, The
variance for the difference function decreases at the rate of K 3 in terms of K, shown in
Figure 6b.

411



Y. Zhang, R.P. Dwight, and Z.-H. Han

/
R
W

AN
W
1w R
T
S v
SRR 0
S

S

-
s

SR
i
2

i
755
i

\“‘\\‘“‘\‘\‘\\\\\\\\\I\\\\\\\\\\\

= AVULARNRNVARVRTAR AN
W@@“\\\\\‘\\\\“““\“\\\\\\\\x\‘\\\\\\\\\n‘\‘\\\\\\ )
S \\\\\\§\\\\\\\‘“‘\\\“\\\\“\\ \\\\\\\\n\\\\\\\‘n\\‘\\\\“‘“\\

X i

IV W
T “\\““l\\l\

MW ST
T i

714 i

47 77 pratsear e o
el g ity i i
g i 2 s
i i il iy .

Table 1: Grid parameters for RANS flow case

Level #cells

I-cells
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# surface cells
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Figure 5: Multi-level computational grids for RANS flow case
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Figure 6: Performance plots of multi-level analyses for RANS flow case
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5 RESULTS
5.1 2D ”Oscillatory” Genz funcion

First, the unknown constants in the model of interpolation error are estimated. Halton sample
sequence is used to generate uniformly-distributed random points in the parameter space. The
estimated interpolation error is shown in Figure 7. The left figure shows us that the magnitude
of the error decreases at a second order (1 = 2), and in the right figure, it can be seen that the
interpolation error from different levels collapses well to a single line when scaled by Axz?2. The
parameters estimated on the basis of these plots are given in Table 2. These figures confirms
our assumptions in the convergence properties of interpolation error. Following Algorithm 1:

B WN =
|

Ax, No. of samples

(a) Interpolation error versus grid size (b) Interpolation error versus No. of samples

Figure 7: Approximation for interpolation error of AMLK for Genz case

Table 2: Estimated parameters for Genz case

parameters w vB O CP
Estimated value 2.0 -1.66 11.261

given accuracy requirement ¢, L is determined by limiting the discretization error to /2. The
computational cost per sample is assumed as 7} = C.Ax] ~ Axl_l. Then the optimal number
of sampling points on each level are determined using (21), the result of which is shown in
Figure 8a. For comparison, Monte-Carlo (MC) and Multilevel Monte-Carlo (MLMC) methods
are also applied to this case. For MC the number of points required for a certain accuracy is
simply N = o2 /&2. For MLMC, the optimal points per level [17] is given by

N, = 5_2(2 vV Vlcl)\/ga

=0

and a comparison of total cost against MLMC and MC for this problem is shown in Figure 8b. In
this paper, standardized costs are presented always, which is scaled by the cost oper sample on
the coarsest level. From literature [17], the total computational costs of MC and MLMC should
be proportional to e=2t7/2 and 2, if the variance V{yi — yi—1] decays faster than the increase
of T;. We observe that the computational costs of MC and MLMC method grow along with
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2 2

the improvement of accuracy at the rate of ¢=2° and £~ 2, respectively, which agrees with the
theoretical result. In this case, we find p is larger than /3, so that the limit of the convergence
of cost versus ¢ should be e~/1% according to (28). In Figure 8b, the cost of AMLK model
increases as £~ 1/11, which is much slower than other methods, but faster than the theoretical
value. The reason is that the lower-order error terms in (26) is also influential. With the increase
of the required accuracy, more benefit can be gained by AMLK model.

10? _ . _ 10°
—a— ¢=6.5e-4 107
@ — a4 e=26e3 i
- —&—— e=1.0e-2 10%
E
a B 10°F
3 :
¢ = 10°F
n A
- = 107
E pe
5 3
(o] ;
10'F
i i i i i ol | i i .4
-1 0 1 2 3 4 5 10,0 10° 107 10" 10°
Level 3
(a) Optimal No. of points of AMLK (b) Computational cost versus error

Figure 8: Performance plots of AMLK for Genz case

5.2 Darcy flow with random coefficients

Halton sequences are also used in this case. The estimated interpolation error is shown in
Figure 9. These results confirms our assumptions again, but with different estimated parameters,
shown in Table 3. Based on the estimated parameters, the optimal number of sampling points
on each level are shown in Figure 10a, and the total cost are shown in Figure 10b, as well as that
of MLMC and MC. The results show that the total costs of MC and MLMC achieve an error of
O(e) is e~ and e~ 2. Same as the first case, Figure 10b also indicates the cost of AMLK method
grows as ¢ '/%61 which is a bit faster than theoretical value e~/ but is slower than MC and
MLMC methods.

MC is seen to be completely impractical for very low ¢ but highly comparative for high er-
rors (especially given its simplicity and use of a single grid). Despite MLMC achieving optimal
rates, at low ¢ it is soundly beaten by AMLK. This result is not surprising, as similar perfor-
mance was observed for polynomial surrogates in [18]. It does however rely on the regularity of
the underlying response y(&), which the MC-based techniques do not. It is therefore instructive
to proceed to a case where regularity is not guaranteed, see next section.

Table 3: Estimated parameters for the Darcy case

Parameter w v3 CCP
Estimated value 2.0 -0.75 8.3
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(a) Interpolation error versus grid size (b) Interpolation error versus No. of samples

Figure 9: Approximation for interpolation error of AMLK for Darcy flow case

No. of samples
Total cost

(a) Optimal No. of points of AMLK (b) Computational cost versus error

Figure 10: Performance plots of AMLK for Darcy flow case

5.3 RANS flow over an airfoil with geometry uncertainties

In this final case, the interpolation error of the AMLK is assumed to be C; K npf , again
independent of level. Similarly to the first case, actually we estimate

CiM!'RY = CrK!(C,NYY? = CLCPKI'NP.

The normally-distributed random samples are obtained by transferring the Halton samples based
on the probability integral property. The estimated interpolation error with respect to the number
of grid-cells and sampling points are shown in Figure 11 and the estimated parameters is present
in Table 4. Once more, the convergence of the interpolation is seen to be independent of the
grid level (under appropriate scaling), justifying the choice of level-independent parameters in
(10). The computational cost per sample on each level is estimated, shown in Figure 12, which
shows that 7} = C. K] ~ K%,

From Figure 6a, we found that the discretization error on finest level is 0.00132, which
indicates that the grid is sufficiently accurate to resolve the lift coefficient to around 0.1 count,
which already meets the engineering requirement. However, the observed interpolation errors,
whose magnitude ranges from 10~ — 1075, are much smaller than the discretization error. It is
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Table 4: Estimated parameters for RANS flow case

parameters L vp3 C,CP
Estimated value —1.35 —1.12 2.639 x 10°

10" —
—a =
—_—l—— |=2
—a— a2
o o | |m=——— 263937N™"
107 ]
= | W
le 'ﬁi
!&.3_ loZ 1 i
i =
10°F [y
| P S | v ™ | M
10° 10° 10° 010" 107 10°
K N
(a) Interpolation error versus grid size (b) Interpolation error versus No. of samples

Figure 11: Approximation for interpolation error of AMLK for RANS flow case

Figure 12: Computational time versus number of grid cells for RANS flow case

impractical to bound the discretization error and interpolation error equally. Therefore, in this
case, we fix the discretization error on finest level - 5 levels involved, and estimate the optimal
computational cost required to achieving a certain interpolation accuracy.

Based on the estimated parameters, the optimal number of sampling points on each level are
shown in Figure 13a, and the total cost are shown in Figure 13b. Both the total costs of MC
and MLMC grows at the rate of £~2, which is consistent with the theoretical result when the
involved multi-level analyses are fixed. Meanwhile, as the multi-level analyses are fixed, the
cost of AMLK method grows as ¢~ /112 exactly. In this practical application case, the same

convergence property of AMLK model is observed, which can save much computational cost
than MC and MLMC methods.

416



Y. Zhang, R.P. Dwight, and Z.-H. Han

10° - 10°
—p—— e=Se-6 M
—&— e=le-5 10
105k | | =——ttr—— gz5es5 |
v T
0 3 10
L7 e
o w
E Q0%
] 4 < F
w 107 =
= B 10F
g | "
100k 10 3
10°k
w4 2L | " | 1a
10_1 10105 10° 10° 10°
Level £
(a) No. of sampling points of AMLK (b) Computational cost versus error

Figure 13: Performance plots of AMLK for RANS case

6 CONCLUSIONS

In this work, we performed theoretical convergence and cost analyses on the AMLK model,
utilizing convergence results for single-fidelity Kriging, as well as existing multi-level analysis
of stochastic collocation method. Three numerical test cases with different number of uncer-
tainty variables were utilized to demonstrate the effectiveness of proposed method. All the
numerical results verified the assumptions for the mathematical form of discretization error and
interpolation error. The comparisons of total computational cost showed that using multi-level
kriging model for UQ can significantly reduce the cost, compared with the MLMC and standard
MC method.

In this study, only the thin-plate spline was considered as the covariance kernel used in
kriging model. As we mentioned before, the convergence property of a kriging model is only
dependent on the smoothness of the covariance kernel. For finitely differentiable kernels, the
convergence and cost analyses results are analogous to this study. However, for infinitely dif-
ferentiable kernels, as it shows spectral convergence, the form of interpolation error can be
assumed as C; Az} e~¢M™ and the convergence study could be conducted accordingly.

On the other hand, the theoretical convergence rate of kriging model was given with re-
spect to the fill distance h. However, it is very difficult to estimate the h, especially for high-
dimensional stochastic space. We defined h = C; N for a specific sampling method and trans-
ferred the interpolation error in terms of /V instead. In this way, the sampling method is also
essential for the convergence study of a surrogate model. In this study, we used the Halton
pseudo-random samples for convergence study, which are deterministic, of low discrepancy but
appear randomly. To estimate the interpolation error, we generated a series of sample data set
with increasing number of points and ensured that a smaller-size data set is always a subset of
a larger-size data set, such that the convergence study of interpolation error is consistent and
smooth. Nevertheless, it was still difficult to obtain a smooth estimation for the interpolation
error in E[y]. In fact, the error in E[y] is not equivalent to any norm of the point-wise error. We
used the mean of the ¢!-norm of the point-wise error to bound the error in E[y]. In Figure 7, 9
and 11, we can find that smooth estimations for interpolation error are obtained.

For the RANS flow case with geometric uncertainty, we chose the lift coefficient as quan-
tity of interest and gained good estimation of discretization error. As for the drag coefficient,
because of the existences of a strong shock, it was difficult to get a linear convergence of dis-
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cretization error. One of the largest difficulties we met in this case is that the magnitude of
the disretization error was much larger than that of the interpolation error. Thus, we could not
bound the two error terms equally, as we did in other two cases. However, even the accuracy on
the finest level meets the requirement of engineering application, so it is not necessary to further
improve the resolution of computation grid. Therefore, we fixed the finest level, and estimated
the minimal total computational cost needed in order to achieve a certain interpolation error.

Besides the additive-bridge function based multi-level kriging model, there are potential
models, such as multi-level hierarchical kriging model and cokriging. In future work, the con-
vergence analysis of these two models will be studied comparatively.
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