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Abstract: Sediment transport over intertidal flats is driven by a combination of waves, tides,
and wind-driven flow. In this study we aimed at identifying and quantifying the interactions
between these processes. A five week long dataset consisting of flow velocities, waves, water depths,
suspended sediment concentrations, and bed level changes was collected at two locations across a
tidal flat in the Wadden Sea (The Netherlands). A momentum balance was evaluated, based on field
data, for windy and non-windy conditions. The results show that wind speed and direction have
large impacts on the net flow, and that even moderate wind can reverse the tidal flow. A simple
analytical tide–wind interaction model shows that the wind-induced reversal can be predicted as a
function of tidal flow amplitude and wind forcing. Asymmetries in sediment transport are not only
related to the tide–wind interaction, but also to the intratidal asymmetries in sediment concentration.
These asymmetries are influenced by wind-induced circulation interacting with the large scale
topography. An analysis of the shear stresses induced by waves and currents revealed the relative
contributions of local processes (resuspension) and large-scale processes (advection) at different tidal
flat elevations.

Keywords: tide–wind interaction; wind-driven flow; sediment transport; intertidal flats;
suspended sediment fluxes; sediment storage

1. Introduction

Intertidal flats are habitats of vital importance for numerous flora and fauna species.
Migrating birds especially depend on these areas for their survival [1,2]. The flats provide a range
of ecosystem services, such as coastal protection, control of erosion, and habitat/fishery linkages
[3]. Fragmentation and loss of such environments, and the resulting habitat degradation, are often
consequences of human interference [4]. Depending on its future rate, sea level rise may cause the
drowning of intertidal areas [5–7]. Management strategies have to be developed to maintain and/or
restore intertidal flats, e.g., [8]. Recent studies, e.g., [9–11], show that dredged material can be re-used
to feed tidal flats and promote salt marshes restoration. The disposal in estuarine channels can have
long-term effects (order of years or decades) on the tidal flats and salt marshes morphodynamics [12].
A detailed understanding of the hydrodynamic and sediment transport mechanisms in intertidal areas
is key to predicting their morphological evolution.

Morphological changes are a consequence of spatial gradients in sediment fluxes [13,14] and result
from a number of interacting sediment transport processes. These processes depend on hydrodynamic
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forcing, sediment composition and properties, and biogenic influences [15]. The hydrodynamic forcing
is a combination of a deterministic tidal (astronomical) component and a stochastic (meteorological)
component. The former induces the daily variation and spring-neap variations in water level and
flow velocity. The latter includes the wind forcing. The action of wind on the sea surface results in
water level gradients (set-up/down) inducing large-scale circulation patterns (especially in enclosed
or semi-enclosed systems such as coastal lagoons or estuaries). Wind blowing on the sea surface also
generates wind-waves, which induce turbulence resulting in sediment resuspension from the seabed.
Wind waves interact with the (tide- and wind-induced) currents, modifying the bed roughness and
ultimately affecting the bed shear stress induced by the flow [16,17]. Furthermore, wind-driven flows
are related to wind induced shear stress penetrating the water column.

While the combined effect of wind events and tides has received significant attention in
the scientific literature, e.g., see [18–24], these studies focused primarily on the relative impacts
of wave-induced erosion and tide-induced accretion. However, the role of wind-driven flows,
and especially the interaction between tidal currents and wind-driven flow, has received much less
scientific attention. It has been demonstrated that wind-driven flows affect the tide-induced velocities
and suspended sediment concentrations on the Belgian inner shelf (thereby influencing the position of
the turbidity maximum [25]). Observations by Christiansen et al. [26], Mariotti and Fagherazzi [27],
and Talke and Stacey [28] demonstrate that different meteorological conditions generate asymmetries
in the intratidal sediment transport. In multi-inlet lagoons such as the Wadden Sea, the wind-induced
fluxes result in water and sediment exchange over the tidal divides, leading to an inter-connected
morphodynamic evolution of the adjacent tidal basins [29,30]. However, even though these studies
demonstrate the importance of wind-driven flows, it remains unclear how wind-driven flows interact
with tidal currents, and how this interaction subsequently impacts residual sediment transport.

In the present study we used field data obtained on a meso-tidal mudflat in the Western Wadden
Sea and we developed an analytical model to explain the tide-wind interaction at different elevations of
the tidal flat. More specifically, we aimed to: (i) quantify the interaction between tidal and wind-driven
flow at different elevations on the intertidal flat (upper and lower flat); (ii) understand the effect
of wind on the suspended sediment concentration (SSC); and (iii) understand the consequences of
wind-induced modification of flow and SSC on the suspended sediment fluxes (SSF). The paper is
structured as follows. Specifications about the study site, the field data collection, and the methodology
used for the suspended sediment flux (SSF) estimation are given in Section 2. The time series of
the measured variables are provided in Section 3. In Section 4 an analytical tide–wind interaction
model is developed and applied. Further, the effect of tide and wind on residual sediment fluxes
is quantified. The effects of this interaction on the SSC and the SSF are discussed. Conclusions are
given in Section 5. Appendix A shows the wave–current interaction model used to compute the shear
stresses at the bottom.

2. Material and Methods

2.1. Study Area

The area of investigation is a fringing mudflat located in the Vlie tidal basin (Dutch Wadden Sea,
The Netherlands). This basin is connected to the North Sea via an inlet between the islands Vlieland
(west) and Terschelling (east); see Figure 1. The tidal inlet develops into a fractal-type branching
channel system ending in the so-called Kimstergat channel, close to the Harlingen harbor. The Dutch
Wadden Sea is a meso-tidal lagoon with a mean tidal range of 2 m, measured at the tidal gauge of
Harlingen. Spring-neap tidal variations in water level are significant (S2/M2 = 0.25). Furthermore,
the water level can vary significantly due to surges in the North Sea, in addition to water level
gradients developing within the multi-inlet lagoon system. The considered mudflat is located near
the village Koehool, along the Dutch coast, 15 km northeast of the harbor of Harlingen. The Koehool
mudflat lies at the north-east edge of the Kimstergat tidal channel. This tidal channel, oriented parallel
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to the coast, forms a connection for water and sediment transport between the Harlingen harbor
and the mudflat area. The 2 km wide mudflat is mildly sloped, approximately 1:1000. In the last
century the relatively sheltered location favored the accumulation of very fine sediment [9]. Its median
diameter ranges from 100 µm at the lower mudflat (close to the channel) to 30 µm at the higher
mudflat zone (close to the shore). A similar decrease in median grain size and an increase in mud
content from the deeper foreshore towards the higher mudflat has been observed in other studies,
e.g., [15,31,32]. The Kimstergat tidal channel influences the hydrodynamics and sediment transport on
the Koehool mudflat. Fresh water discharge some ∼15 km south of the harbor affects the transport
in the deeper zones of the channel, resulting in seaward-directed baroclinic sediment transport [33].
The contribution of this baroclinic circulation significantly weakens in the shallower areas of the
channel (depth < 3 m) [33], and can be therefore neglected on the (even shallower) intertidal areas.

Figure 1. Study area. Top figures: The Western Wadden Sea is located in the northern part of the
Dutch coast. Four barrier islands and the Afsluitdijk are indicated (satellite image: Deimos Imaging
SLU, an UrtheCast company). The boundaries of the tidal basins (i.e., the tidal divides) are indicated
in black. Bottom figure: the Vlie tidal basin bathymetry in 2011. The bathymetric data are part of
the Vaklodingen dataset (available on www.OpenEarth.nl). Latitude and longitude are expressed
in the Rijks Driehoeken (RD) system; the bed elevation is indicated with respect to mean sea level
(MSL). White color in the top left corner indicates absence of data. Mainland and islands are in gray.
The Noorder Balgen meteorological station, used as the source of wind data, lies at ∼5 km offshore the
study site.

www.OpenEarth.nl
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2.2. Field Measurements

Two measuring frames were installed along a cross-shore transect on the Koehool mudflat
(Figure 2) from 14 April till 23 May 2016. One frame was located at the lower flat (indicated hereafter
as FLM, abbreviation of “frame lower mudflat”). The other frame was located at the higher mudflat
zone (indicated hereafter as FHM, or “frame higher mudflat”). FLM was placed at ∼1 km from the
land boundary, at a bed elevation of 0.97 m below MSL (mean sea level), i.e., close to mean low water
(MLW), which means an almost 100% submergence time. FHM was installed at 350 m from the land
boundary, at a bed elevation of −0.27 m MSL, with a submergence time of ∼60%.

Figure 2. Study sites and wind forcing. (a) Measuring sites at the Koehool mudflat transect: lower
mudflat frame (FLM) and higher mudflat frame (FHM). The bed levels are from the 2011 bathymetry.
The sign convention for long-shore and cross-shore flow is provided in the top left corner. (b) Transect
cross-shore profile with the elevations and distances from the land boundary of the two frames.
(c) Picture of the higher mudflat frame (FHM) with indication of the distances of sensors from the bed,
including the 15 cm blanking distances of the ADVs (i.e., the distance of the measurement volume from
the instrument probe). (d,e) Wind roses referring, respectively, to the deployment period and to the
period January 2016–December 2017.

At each frame, two ADVs (acoustic doppler velocimeters, Nortek Vector) were installed to perform
point-measurements at 20 cm and 25 cm above the bed. Both ADVs measured at a frequency of 8 Hz.
The ADVs at 20 cm from the bed were used to measure the flow velocity in continuous mode, whereas
the ADVs at 25 cm from the bed were set to measure in burst mode. These ADVs were configured
to measure with 20-min burst intervals, with 4800 samples/burst at FLM, and 2400 samples/burst at
FHM. This means that the ADV at FLM measured during 10 min out of the 20-min long burst interval
and the ADV at FHM during 5 min out of the same interval. The ADV measures the distance of the
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probe from the bed (i.e., the bed elevation) at the beginning and end of each burst, thereby providing
bed level measurements every 20 min at both sites.

Two OBSs (Optical Back Scatter, Campbell3+) were mounted at each station at 15 and 20 cm above
bed (see Figure 2). The OBSs at 15 cm from the bed were meant as duplicates for validation purposes,
which explains the short vertical distance between the two sensors. The backup OBSs showed almost
identical values to the OBSs installed at 20 cm above the bed; the latter were used in the data analysis.

In close proximity to each frame, one pressure sensor (OSSI-010-003C, Ocean Sensor Systems)
was installed at 5 cm above the bed, with the aim of providing further wave measurements (used to
check and validate the ADV pressure measurements). These sensors were configured to measure in
continuous mode with a frequency of 10 Hz.

The frames were installed for a total of 39 days. At each frame one extra-battery package (AWAC)
with 920 kWh energy capacity was connected to the ADVs measuring in a continuous mode. At FLM
the battery was sufficient to measure for 36.5 days. At FHM the battery dropped after 28 days. The data
were therefore processed for 73 tidal cycles at FLM and 56 tidal cycles at FHM. Every two weeks the
frames were inspected and no bio-fouling was detected on the sensors. At each inspection the bed
elevation at the two sites and the sensors’ distances from the bed were measured using a differential
GPS (DGPS-Leica GS14).

Wind data at 10-min intervals were obtained from the meteorological station Noorder Balgen,
situated in the Western Wadden Sea tidal basin (see Figure 1). This station is located 15 km offshore
from the measurement sites and no land boundaries separate the meteorological station from the two
sites. Air pressure variation information was not available at the Noorder Balgen station, so that the
air pressure data gathered at the Leeuwarden meteorological station (situated 20 km in-land from the
study site) were used.

The 10-min frequency water levels data measured at the tidal gauge of Harlingen harbor (15 km
south the investigated sites) were also used in the analysis.

2.3. Data Post-Processing

The flow velocity signals were de-spiked following the methodology proposed by Goring and
Nikora [34]. The sensors were not always submerged during the full tidal cycle. The emerged periods
were filtered out using the amplitude and beams correlation given by the ADV signals. Thresholds for
the amplitude signal of 100 counts and a beam correlation of 70% were applied.

The pressure signals from ADVs and OSSI sensors were corrected for the variations in air-pressure.
The pressure data provide information on water levels and waves. The astronomical components
of the water levels were estimated applying the harmonic analysis proposed by Codiga [35] (U-Tide
matlab function) on the Harlingen tidal gauge signal.

The ADV pressure signals, combined with the flow velocity information, were used to carry out a
directional wave spectral analysis. The OSSI pressure sensors were used to provide a non-directional
wave spectral analysis. Although the first analysis provides more detailed information, it is only
available for a reduced portion of the tidal cycle. In fact, the ADV pressure sensors were placed
at large distances from the seabed (up to 55 cm), due to the constraint of measuring the velocity at
20 cm from the seabed. In contrast, the OSSI pressure sensors provide less information, but given
the reduced distance of the sensors from the bed (i.e., 5 cm), this information is available for
almost the full period that the bed was submerged. Therefore, the wave heights and wave periods
resulting from the directional analysis were used only for validation of the results obtained from
the non-directional analysis. The wave parameters obtained from the non-directional wave spectral
analysis, more specifically the significant wave height and the mean period of the 33% highest waves
following [36], were used.

The OBSs were calibrated in the laboratory, using sediment-laden water samples collected in the
field (maximum SSC 15 g/L, i.e., higher than maximum SSC measured in the campaign). These samples
were collected in proximity to the higher mudflat frame, while holding a sample at ∼30 cm from
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the bed and simultaneously inducing sediment resuspension by eroding the upper seabed layers.
The procedure in the laboratory included synchronized OBS measurements in a 8 L calibration bowl
and sample filtration through 0.45 µm pore filters. Thirty dilution steps were carried out. At each
step a sample of 500 mL of the sediment-laden water was extracted from the calibration bowl and
replaced by 600 mL of clear water. Through this process, the initial sediment-laden water was reduced
to almost clear-water. After each dilution step the OBS data (voltage) were collected for a 5-min period,
and during this period, a 100 mL sample was taken in proximity to the optical sensors. These samples
were filtered and the filters were dried for 24 h in an oven at 105 °C. The filters were weighted
before and after the filtration procedure, so that given the volume of the sample (100 mL) the sediment
concentration (in g/L) was established. The pattern in the calibration curves shows a linear relationship
up to 1 g/L (R2 ≈ 0.97), whereas a quadratic regression can better describe the relationship for SSC
above this threshold (R2 ≈ 0.95).

2.4. Suspended Sediment Flux Estimate

The depth-integrated suspended sediment flux (SSF) is defined by integrating the product of the
velocity profile and the sediment concentration profile over the water column. We expect a logarithmic
profile for flow velocity and a Rouse profile for the SSC distribution over the vertical. Continuous
measurements are, however, only available at 20 cm above the bed. We therefore approximate the
SSF by assuming that the velocity and SSC measured at 20 cm above the bed are representative of the
depth-averaged values:

SSF(t) = h(t) · u20(t) · SSC20(t) (1)

with long-shore or cross-shore flow velocity u20 and suspended sediment concentration SSC20 at 20 cm
above the bed and h water depth. The effects of the vertical distribution of the velocity and sediment
concentration on the fluxes were therefore not taken into account. A similar approach was followed in
Andersen and Pejrup [37]. The suspended sediment flux has been integrated to estimate the fluxes
cumulated over a tidal-cycle:

∫ T∗

0
SSF(t) =

∫ T∗

0
h(t) · u20(t) · SSC20(t) (2)

where the time scale T∗ is based on the submergence time per tide (hence not necessarily equal to the
tidal period). The minimum water level was used to separate two subsequent tides in case the bed did
not emerge. These integrated fluxes can be interpreted as the net flux per tide.

2.5. Definitions and Conventions

We define the long-shore and cross-shore directions based on the topographic (contour) lines
at the two locations (Figure 2). At both sites the contour is oriented along the SW–NE axis direction
(with deviations smaller than 10%). Hence, we consider the flow in the SW–NE direction as long-shore
flow, and the flow in the SE–NW direction as cross-shore flow. The local coordinate system is shown in
Figure 2a. In the long-shore direction, the flow is up-channel during flood and down-channel during
ebb. In the cross-shore direction, the flow is onshore-directed during flood and offshore-directed
during ebb.

In this paper we consider a “flow reversal” a situation in which the wind induces a flow direction
opposite to the tide-only direction of the flow. We therefore define a “reversed flood” as a period
with rising water and with down-channel long-shore flow and offshore-directed cross-shore flow.
Vice versa, we define a “reversed ebb” as a falling-water period with up-channel long-shore flow and
onshore-directed cross-shore flow.

The standard nautical definition is used for the wind direction, e.g., SW wind indicates wind
blowing from the SW towards the NE direction.



J. Mar. Sci. Eng. 2020, 8, 910 7 of 26

3. Results

3.1. Full-Period Time Series

The time series of wind speed and direction, water depth, long-shore and cross-shore flow velocity,
significant wave height, and SSC are shown in Figure 3 for the lower mudflat (FLM) and in Figure 4 for
the higher mudflat (FHM).

Figure 3. Time series at the lower mudflat (FLM): (a) Wind speed and direction; (b) Water depth
(moving mean over 10-min intervals); (c) Long-shore and cross-shore flow velocities; (d) Significant
wave height; (e) Suspended sediment concentration. Spring-neap variations are indicated by the moon
phases. The gray bands indicate the tides affected by the wind-induced reversal of ebb flow. The tides
indicated by S1, S2, and S3 are used in Section 3.2 to analyze the intratidal variations during three
different wind scenarios.
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Figure 4. Timeseries at the higher mudflat (FHM): (a) Wind speed and direction; (b) Water depth
(moving mean over 10-min intervals); (c) Long-shore and cross-shore flow velocities; (d) Significant
wave height; (e) Suspended sediment concentration. Spring-neap variations are indicated by the moon
phases. The gray bands indicate the tides affected by the wind-induced reversal of ebb flow. The tides
indicated by S1, S2, and S3 are used in Section 3.2 to analyze the intratidal variations during three
different wind scenarios.
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The average wind speed (Figure 3a or Figure 4a) was 7 m/s, and the mean of the 5% highest
values was 14 m/s. The maximum wind speed was 16 m/s and it occurred in SW wind direction.
The dominant wind direction during the measurement period was NW, and the maximum wind
speeds (16.4 m/s) had SW wind direction. Based on the wind roses in Figure 2d,e it is noticed that
along a year instead, the dominant wind direction is SW.

The water depth (Figures 3b and 4b) depends on the tide and on a wind-induced water level
set-up. Increased water levels occur for example in the period 24–28 April for NW wind of ∼13 m/s.

The tidal flow amplitude (Figures 3c and 4c) is ∼0.5 m/s at FLM and ∼0.25 m/s at FHM.
The flow at FLM is mainly directed in the long-shore direction (NE–SW). The cross-shore component
magnitude (SE–NW) is ∼20% of the long-shore flow. At FHM, the cross-shore component is
much larger (both relatively and absolutely), with a magnitude comparable to the long-shore
flow velocity component. In Figure 4c the large variations in flow velocity are evident: the flow
is not necessarily flood-directed (positive) and then ebb-directed (negative) during each tidal
cycle. During several periods of falling water (i.e., during ebb), the flow remains up-channel
(i.e., flood-directed). These reversed ebb flow conditions are caused by wind-driven flow and occur
during wind from the SW (i.e., wind parallel and opposite to the ebb flow). The reversal conditions are
highlighted in Figures 3a,c and 4a,c by gray colored bands. In particular, Figure 4c shows that the tidal
flow was up-channel during three consecutive tidal cycles (29–30 April). This wind-induced reversal
of the ebb flow occurred during 17% of the monitored period at the higher mudflat (FHM) but only
once (1.3% of the time) at the lower mudflat (on 16 April).

Maximum wave heights were observed during maximum water levels (Figures 3d and 4d),
resulting from a larger fetch (related to the submergence of the shoals) and weaker bed friction at
larger depths. The highest significant wave height was 0.6 m on both sites. The wave conditions
are dominated by the local wind, because the barrier islands shelter the study area from North Sea
(swell) waves.

The SSC varies throughout the tidal cycle (Figures 3e and 4e), with values ranging from
several g/L during low water conditions (i.e., at the end of the ebb phase) to values in the order
of 10−2–10−3 g/L during maximum water depth. The highest SSC values did not coincide with the
largest wave height, but coincided instead with high wind speeds blowing during low water conditions
(up to 8 and 12 g/L at the FHM and FLM, respectively).

3.2. Three Selected Wind Scenarios: Analysis of Wind-Induced Tidal Flow Reversal

In order to isolate the effects of wind on the tide-induced flow, SSC, and SSF, we selected three
representative wind scenarios: one scenario with weak wind (S1, u10 < 5 m/s) and two scenarios
with long-shore directed wind, i.e., NE wind (S2, ebb directed) and SW wind (S3, flood-directed).
The latter two scenarios exhibit the wind-effects on the flow when the tidal and wind forcings are
aligned. These three scenarios occurred on May 7 (S1), May 12 (S2), and April 29 (S3), respectively,
as indicated in Figures 3 and 4 and detailed at intratidal time scale in Figures 5 and 6.

Scenario S1 is characterized by the formation of a standing wave, with maximum flow velocities
during maximum gradients in water level (generally occurring when the water level is around MSL).
Flood velocities are generally higher than ebb velocities and the falling water phase lasts longer
(8 h) than the rising water phase (4 h). This implies a peak flow asymmetry in flood direction.
This Eulerian asymmetry in peak flow velocities is modified when the wind enhances tidal flow
velocities, as discussed in detail hereafter.

In scenario S1, the weak offshore directed wind resulted in significant wave heights smaller than
0.1 m (Figures 5b and 6b). The tide-averaged wind speed during scenario S3 was slightly higher
(12 m/s) compared to S2 (10.6 m/s). In scenario S3 this high wind speed persisted for 12 consecutive
hours, whereas in scenario S2 the wind speed was above 10.6 m/s during the 67% of the tidal cycle.
As a consequence, the significant wave height peaks were ∼10 cm higher during scenario S3 than S2.
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Figure 5. Intra-tidal variation at the lower mudflat (FLM) in three wind scenarios: S1 (weak wind);
S2 (ebb-directed wind); S3 (flood-directed wind). (a) Wind speed (solid line) and direction (markers);
(b) Water depth and significant wave height (black solid line); (c) Flow velocity in the long-shore
direction and cross-shore direction; (d) Suspended sediment concentration (SSC); (e) Left axis:
suspended sediment flux (SSF) in long-shore and cross-shore directions; right axis: time-integrated
suspended sediment flux (

∫
SSF) in long-shore and cross-shore directions.



J. Mar. Sci. Eng. 2020, 8, 910 11 of 26

Figure 6. Intra-tidal variation at the higher mudflat (FHM) in three wind scenarios: S1 (weak wind);
S2 (ebb-directed wind); S3 (flood-directed wind). (a) Wind speed (solid line) and direction (markers);
(b) Water depth and significant wave height (black solid line); (c) Flow velocity in the long-shore
direction (solid line) and cross-shore direction (dashed line); (d) Suspended sediment concentration
(SSC); [e] Left axis: suspended sediment flux (SSF) in long-shore and cross-shore directions; right axis:
time-integrated suspended sediment flux (

∫
SSF) in the long-shore and cross-shore directions.
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During scenario S2, wind from the NE enhances the ebb flow, increasing the peak long-shore flow
velocity by more than 20 cm/s at both sites, thereby becoming ebb-dominant. During scenario S3 the
flow generated by the opposing wind reverses the tidal flow: during part of the ebb phase at FLM
and during the full cycle at FHM. The vertical dotted lines in Figures 5 and 6 indicate the moment of
high water, which at FLM in scenarios S1 and S2 corresponds to slack water conditions. In scenario S3
at FLM the wind opposing ebb delays slack water and consequentially increases the length of flood
directed flow by about three hours. At FHM in scenario S2 the flood phase is shortened by about one
hour due to the opposite NE wind, whereas in scenario S3 the flood-directed flow persisted during the
full tidal cycle.

The Eulerian asymmetries in the hydrodynamic forcing affect the intratidal asymmetries in SSC
(Figures 5d and 6d). During no-wind conditions (S1) the flow is flood dominant and SSC values
are larger during flood than during ebb. Ebb flows at FHM were not strong enough to transport or
resuspend sediment, and therefore the SSC was zero. The intratidal variation of SSC was especially
asymmetric during scenario S2. The maximum in SSC during ebb increased by up to 10 g/L and
4 g/L at FLM and FHM, with respect to the S1 scenario. Interestingly, despite larger wave heights and
comparable water levels, the maximum SSC during scenario S3 was much smaller than during S2.

The effect of wind on the SSF variation is comparable for the two locations. As the water depth,
flow velocity, and SSC are larger at FLM, the resulting SSF are one order of magnitude larger at FLM
than at FHM (note the different vertical axes in the two figures). The magnitude of the cross-shore
sediment transport (dashed lines) is smaller than the long-shore transport (solid lines), but the response
to wind action of the two components is similar. The SSF was considerably higher during scenario S2.
The time-integrated SSF at the end of the tidal period (representative for the residual transport over
the tide) increased up to three orders of magnitude compared to scenario S1 at FLM. During scenario
S3, at FHM the reversed ebb resulted in a flood-directed residual transport (3.4× 103 kg/m) one order
of magnitude larger compared to scenario S1 (2.5× 102 kg/m). In scenario S2 the (ebb-directed) net
flux (−9.6× 103 kg/m) increased by almost three orders of magnitude compared to S1.

3.3. Sediment Transport, Bed Shear Stress and Bed Level Change

The wind-induced effects on water depth, flow velocity and SSC resulted in a large variability
in SSF (Figure 7b,c). No clear spring-neap variation is observed in the SSF during the deployment
period. The time-integrated SSF indicates that over the full period the net transport was negative
(sediment export) at FLM and slightly positive (sediment import) at FHM.

Figure 7d,e indicate that the bed shear stress related to currents is larger at FLM than at FHM
(submerged period average 0.25 Pa and 0.17 Pa, respectively) whereas the wave-induced shear stresses
are higher at FHM than at FLM (submerged period average 0.63 Pa and 0.33 Pa, respectively).

The change in bed elevations (Figure 7f) shows that over the full deployment period the bed
eroded 1 cm at FLM while it increased 6 cm in elevation at FHM. Comparing the two sites, the bed level
is highly dynamic at the higher mudflat and more stable at the lower mudflat.

At FHM increasing time-integrating fluxes correspond mainly to increases in bed elevation
(orange boxes in Figure 7c,f), vice versa decreasing time-integrated fluxes corresponds mainly to
decreases in bed elevation (purple boxes in Figure 7c,f). This alignment in trends is absent at FLM
(purple and orange boxes in Figure 7b,f). Furthermore, at FLM the magnitude of the instantaneous
SSF is larger than at FHM, but the smaller net fluxes (less influenced by wind) result in a less dynamic
bed. The data also suggests a minor effect of waves on bed level changes at FLM: SW wind results in
relatively high wave-related bed shear stress (up to 4 pa), but not necessarily in bed erosion.
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Figure 7. (a) Wind speed u10 and direction (color of the markers); (b,c) Long-shore and cross-shore
SSF and time-integrated SSF in the positive (up-channel) and negative (down-channel) direction,
respectively at FLM and FHM; (d,e) Current and wave induced shear stresses, respectively at FLM and
FHM; (f) Bed level change. The value of the bed elevation is indicated as zero at the beginning of the
measurement period. The boxes indicate specific wind events for which the boxes are colored orange
in case of SW wind and purple in case of NE wind.

4. Discussion

4.1. Determination of Leading Order Terms in the Momentum Balance Equation

Section 3 revealed the prominent role of wind in modifying the flow velocity at the two study sites,
especially on the higher mudflat. In this section, we quantify the mechanisms explaining this difference
using the depth-averaged momentum balance equation (MBE) in the dominant flow direction:

ρwh
∂ux

∂t
− ρacDu10|u10|+ ρwc fwc ux|ux|+ ρwgh

∂η

∂x
+ ρwuxh

∂ux

∂x
= 0 (3)

with the density of seawater ρw = 1020 kg/m3; water depth h; long-shore flow velocity ux; time t;
density of air ρa = 1.23 kg/m3; wind drag coefficient cD; wind speed at 10 m above the surface u10;
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bed friction coefficient related to waves and currents c fwc ; gravitational acceleration g and water level η.
The first three terms in Equation (3) can be determined from the time series of the variables measured
at the two sites.

The first term in Equation (3) represents inertia and can be estimated using the time series of the
water depth and the long-shore flow velocity measured at 20 cm from the seabed.

The second term is the stress induced by the wind on the sea surface, computed using the wind
speed time-series. The dimensionless wind drag coefficient typically ranges between 0.001 and 0.002
for wind speed between 5 m/s and 20 m/s, e.g., [38]. This coefficient can be estimated from the wind
speed [39,40]:

cD =
ρa

ρw
· (a + b · u10) (4)

with a and b coefficients as estimated by Wu [40]: a = 0.8, b = 0.065. The mean value of the drag
coefficient obtained for the measurement period is 0.015, which corresponds well to values found in
literature. As we compute the momentum balance in the long-shore direction, we evaluate the case of
wind in the same direction (positive when blowing in the flood direction).

The third term represents the current-induced bed shear stress. The coefficient c fw represents
the exchange of momentum between the bed and the water, and depends on the combined effect of
current and waves. Waves modify the vertical profile of the flow velocity resulting in a net bed shear
stress in addition to the current-induced shear stress. The friction coefficient by waves and currents
c fwc is defined as (Soulsby [41] and Faria et al. [16]):

c fwc =
τm

ρwu2 (5)

with τm is the mean bed shear stress by currents and waves and u the depth-averaged flow velocity.
The mean bed shear stress τm is estimated using the model proposed by Soulsby [41], as elaborated
in detail in Appendix A. Its mean value during the field experiment was 0.0034 at FLM and 0.0025 at
FHM, respectively.

The fourth term represents the barotropic pressure gradient, which is composed of two
components: a time-averaged component (resulting in water level set-up/-down) and a time-varying
component (related to the propagation of the tidal wave). The former cannot be established from the
local time-series, so it remains excluded from our balance. The latter can be estimated from the celerity
c =

√
gh, so that the spatial water level gradient can be computed from its temporal gradient:

ρwgh
∂η

∂x
≈ −ρw

√
gh

∂η

∂t
(6)

The fifth term represents advection and requires estimation of the spatial velocity gradient,
for which we apply the approach of Equation (6) as well:

ρwuxh
∂ux

∂x
≈ −ρwuxh

1√
gh

∂ux

∂t
(7)

Advection in the cross-shore direction has been neglected as the cross-shore gradient of the
long-shore velocity (∂ux/∂y) is relatively small. Substituting these estimates into Equation (3) gives:

ρwh
∂ux

∂t
− ρacDu10|u10|+ ρwc fwc ux|ux| − ρw

√
gh

∂η

∂t
− ρwuxh

1√
gh

∂ux

∂t
+ res = 0 (8)

with ’res’ a residual term, representing errors in the estimations and the terms that could not be
computed using the time series.
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In Figure 8 the five terms are presented for the three wind scenarios. Advection (O(10−3)) and
inertia (O(10−2)) are small compared to the wind-induced stress, the bed shear stress, and the pressure
gradient (O(10−1)).

Figure 8 suggests that three dominant terms in the MBE are: the wind induced stress, the bed
shear stress, and the (time-varying) pressure gradient. Furthermore, comparing the scenarios S2–S3
with scenario S1, Figure 8 shows that an increase in wind-induced stress is mainly compensated by a
higher bed shear stress. Differently from the bed shear stress, the pressure gradient does not show a
clear variation with wind-shear stress.

Figure 8 also reveals that wind has a more pronounced effect in modifying the tide-induced flow
at FHM than at FLM: the velocity at FHM is positive (i.e., flood-directed) during the full tidal cycle
for S3, while the same wind conditions did not fully reverse the ebb flow at FLM. The mechanisms
responsible for this difference are explored in the next section via the development of a tide-wind
interaction model (Section 4.2) which is subsequently compared to the data (Section 4.3).

The different terms do not result in a closure of the balance, leading to a residual. The residuals
are also shown in Figure 8. These residuals reflect: (1) the terms that cannot be estimated from a
point-measurement; (2) assumptions in the definitions of the bed shear stress term and wind shear stress
term, including the uncertainties in the related to the coefficients c fwc and cD, and (3) measurement
inaccuracies. The residuals have similar magnitudes as the dominant terms, implying that the excluded
terms (especially the time-varying pressure gradient, given the relatively small advection values in the
long-shore direction) play a role in the momentum balance. If we compare the residuals of S1 and S2
for FLM, a similar pattern is found. No clear influence of the wind can be identified. In S3, instead,
the residuals partly compensate for the wind induced shear stress. This is, however, not the case for S3
at FHM: at this site, the residuals have the same sign as the wind shear stress. No particular general
pattern could be deduced from the time variation of the residual. High resolution numerical modeling
could provide more insights into the residual term.

4.2. Tide–Wind Interaction Model

Figure 8 indicates that the time-varying pressure gradient, the bed shear stress, and the wind
shear stress are three dominant terms in the momentum balance. In this section we elaborate on the
balance of these three terms in windy and non-windy conditions. We especially aim at exploring the
interaction between these terms and the implications for the flow velocity.

In absence of wind, a balance is assumed between the time-varying pressure gradient and the bed
shear stress; i.e., the flow velocity is purely tide-induced, i.e., ux ≡ uT :

ρwgh
∂η

∂x
= −ρwc fwc uT |uT | (9)

The wind (S2, S3) induces a considerable shear stress at the surface (up to 0.4 Pa in S3). The balance
therefore requires an additional wind-induced shear stress and a bed shear stress generated by tides
and wind (i.e., ux ≡ uTW):

ρwgh
∂η

∂x
= ρacDu10|u10| − ρwc fwc uTW |uTW | (10)

The pressure gradient term due to the tide – first term in Equation (10) – follows from Equation (9),
as this term is hardly influenced by the wind; see Figure 8:

− ρwc fwc uT |uT | = ρacDu10|u10| − ρwc fwc uTW |uTW | (11)

Equation (11) is an approximation of the MBE in which uT and uTW are now explicit.
We emphasize that the effect of water level set-up/-down is not included here. This implies that
the flow velocity uTW is to be considered as an upper limit.
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Figure 8. Terms of the momentum balance equation in the three wind scenarios (S1–S3 from left to
right) at the lower mudflat (FLM, upper panels) and higher mudflat (FHM, bottom panels). The terms
include the sign given in Equation (3).

Rearranging Equation (11) yields an expression for the velocity due to tides and wind, expressed as
the sum of the two components:

uTW |uTW | = uT |uT |︸ ︷︷ ︸
TIDE

+
ρacD

ρwc fwc

u10|u10|︸ ︷︷ ︸
WIND

(12)

This relation is explored for a sinusoidal tide uT = û sin
( 2π

T t
)
, with velocity amplitude û and tidal

period T. To keep the model simple, we use the mean time-invariant value of the friction coefficient
c fwc = 0.00285. The velocity due to tide and wind uTW can thus be computed for a given wind speed
(Figure 9).

The two panels of Figure 9 present two contrasting cases of wind in flood direction (Figure 9a)
and in ebb direction (Figure 9b). The mean uTW decreases for increasing û, implying that the effect of
wind-driven flow is smaller when the “background” (pressure-induced) tidal flow is larger. Wind in
flood direction (Figure 9a) leads to a non-linear summation of tidal and wind-driven flow during flood,
and in the opposite direction during ebb. During both flood and ebb, uTW is larger for higher wind
speed. However, the wind-driven flow is less effective at larger tidal flow amplitude, so that uTW
tends to the value of uT (black lines with 1:1 slope). In cases of opposing wind, the uTW during ebb
can be positive (i.e., reversed in flood direction). These results are confirmed by observations at the
two sites, the tidal flow amplitudes of which are indicated by gray dashed lines. Figure 9 suggests
flow reversal at FHM at wind velocities exceeding ∼10 m/s, which corresponds to the observations in
Figure 6. The figure suggests that a wind speed of ∼20 m/s should reverse the ebb flow at the lower
mudflat (FLM), but such a wind speed (and flow reversal) did not occur during our field campaign.

Two specific hydrodynamic conditions in the tide-wind interaction model require attention.
The first is the absence of tidal flow (û = 0 m/s). This condition equals the first order estimate derived
in De Vet et al. [42]. The second is the zero-flow condition (uTW = 0 m/s, indicated by black markers).
Zero-flow corresponds to the turning point for wind-induced tidal flow reversal: the tidal flow and
wind-driven flow are equal in magnitude. This condition implies that the wind shear stress equals the
pressure gradient related to the tide. The two cases are therefore related: for a given wind velocity,
uTW at uT = 0 m/s is equal to û at uTW = 0 m/s. This implies that for constant wind conditions,
the flow velocity uTW at zero tidal flow is equal to the wind-driven flow û required to reverse the
tidal flow. The circular-like shape of the ebb curves when wind blows in flood direction, and for
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the flood curves when wind blows in ebb direction, results from Equation (12) getting the form of a
circumference equation: x2 + y2 = r2. For u10 > 0 the circular-like shape exists for uT < 0, i.e., during
ebb; and for u10 < 0 the circular-like shape exists for uT > 0, i.e., during flood.

The interaction between tidal and wind-driven flow also depends on the tidal asymmetry, which is
only marginally important for our case. In case of flood dominance, the wind is more effective in
modifying the ebb; and in cases of ebb-dominance the flow velocity during flood will be more sensitive
to the wind-induced modifications (at the same wind speed). The tide–wind interaction results in
modified asymmetries in peak flow velocity during flood and ebb. Therefore, the effect of the wind on
the flow depends on the Eulerian asymmetries in the astronomical signal (being stronger for small
tidal asymmetry) and affects the Eulerian asymmetries in the meteorological signal (possibly reversing
the flow during flood or ebb).

Figure 9. Tide–wind interaction model results. Tide-averaged flow velocity resulting from the
interaction of tidal flow and wind-driven flow (uTW) as a function of the tidal flow amplitude (û).
(a) Wind is in flood direction; (b) Wind is in ebb direction. The tide-averaged velocity (blue) and
the maximum tide-averaged velocity during flooding (pink) and during ebb flow (green) are computed
as functions of the tidal flow amplitude. The case of no interaction between tide and wind is represented
by the dashed lines. The flow tidal amplitudes at the FHM and FLM are 0.25 and 0.5 m/s, respectively.
The black markers indicate the turning points for wind-induced reversal of the tidal flow.
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4.3. Effect of Wind on Tide-Averaged Flow: Model and Data Comparison

This tide–wind interaction model was verified using data from the full measurement period
(Figure 10). For wind speeds close to zero the observed tide-averaged flow velocity is close to zero,
whereas tide-averaged flow velocities increase with higher wind speeds. Although the absolute flow
velocity is larger at FLM than at FHM, the net flow is strongest at FHM. The direction of the net flow
is determined by the wind direction: not only long-shore directed winds, but also wind non-parallel
to the flow (e.g., NW or SE) enhance flood and ebb currents in their main direction (i.e., long-shore
direction). This effect results from the bathymetry of the channel, forcing the flow to align with the
main tidal channel flow.

The dashed lines in Figure 10 indicate the computed tide-averaged velocity by wind over a
still body of water, i.e., without tide–wind interaction: 〈uTW〉 = τW

ρwc fcw
. Including the tide–wind

interactions (solid line) the net flow depends on the tidal amplitude also (for which we use typical
values of û = 0.5 m/s at FLM and û = 0.25 m/s at FHM).

Both the solid and the dashed lines represent conditions where the wind is exactly in stream-wise
direction and persists during the full tidal cycle, and are therefore upper limits of the wind effect.
At FHM the dashed and the solid lines are closer than at FLM. On the higher mudflat the tidal flow
is small (0.25 m/s), and even weak winds are able to influence the net flow. On the lower mudflat,
the lines diverge because of the larger tidal flow (0.5 m/s), resulting in stronger non-linear interactions
between the two components, and therefore in weaker net flows.

The model shows good agreement with the observations, highlighting the difference in the
tide–wind interaction at the different elevations of the mudflat. Contrary to the approximation by
De Vet et al. [42], this model predicts the flow velocity, including the interaction between tidal flow
and wind-driven flow. The contribution of such a mechanism is key for predicting net flow velocities
at larger tidal flow velocities. The relative and absolute influence of the wind on the flow decreases
with increasing tidal flow.

In order to asses the model’s applicability to other locations and environments, the assumptions
made are discussed hereafter. Firstly, the model is based on Equation (12) in which we neglected the
contribution by the residuals in the MBE, and especially the component related to the wind-induced
pressure gradient. The model does include the barotropic pressure gradient related to the tide. It does
not, however, include changes in the pressure gradient by wind, which would induce a time-averaged
water level set-up/-down. We expect this contribution to be relevant in semi-enclosed systems like
coastal lagoons or in estuaries, where solid land boundaries allow the development of a spatial
pressure gradient. In such systems, the wind shear stress is to a larger extent counterbalanced by a
pressure gradient. The Wadden Sea tidal basin shape is elongated in the direction of the dominant
wind direction (see Figure 1): the land boundaries in the NE and SW result in smaller set-ups with
wind blowing in the long-shore direction (e.g., the dominant wind direction, SW) compared to the
boundaries in the cross-shore direction.

Secondly, a term excluded from the MBE was the advection of the long-shore velocity in
cross-shore direction. Given the magnitude of advection in the main velocity direction, we do not
expect that this term plays an important role. However, this term is expected to have more relevance
at tidal flats which are more elevated relative to MSL. In this case, refraction of the tidal wave on the
coastal shelf would increase cross-shore flows on the higher flat.

Thirdly, a constant (time-averaged) value for the drag coefficient and the bed friction coefficients
is used. This assumption was based on an assessment of the time-dependency of the drag and friction
coefficients not reported here (see as a reference [43]), which showed consistency with values suggested
in the literature.

Even though this assessment suggests that the temporal variability of the drag and friction
coefficients was sufficiently small to use values typical for the full observation period, the model might
be further improved by including the time-dependence of these parameters.
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We conclude that the representation of the momentum balance equation by three terms
(pressure gradient term, bed friction, and wind forcing) shows that there is a strong non-linear
interaction. The influence of the wind diminishes for increasing tidal flow. Furthermore, the model
provides a simple algebraic formulation for the estimation of flow reversal.

Figure 10. Flow velocity resulting from the interaction of tidal flow and wind driven flow as a
function of wind speed. The dashed lines indicate uTW in case of no interaction between tide and
wind-driven flow; the solid lines represent uTW accounting for the tide–wind interaction. The tidal flow
amplitude was set as 0.5 m/s at FLM and 0.25 m/s at FHM. The drag coefficient was set as cD = 0.0015,
i.e., the mean value of the time-dependent drag coefficient during the full measurement period. The bed
friction coefficients were set as c fcw = 0.0034 at FLM and c fcw = 0.0025 at FHM, i.e., the mean value
of the time-dependent wave–current bed friction coefficient during the full measurement period.
Each marker represents the long-shore flow velocity averaged during one tide. Positive values in the
figure imply flood-directed net flow; negative values imply ebb-directed net flow. The color of the
marker indicates the dominant wind direction during the tide. The tides representing the three wind
scenarios are indicated.
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4.4. Resuspension and Advection by Currents and Waves

In order to generalize the impact of wind on SSC to a wider range of wind conditions, we analyze
tide-averaged wind direction and speed, bed shear stresses, and SSC in more detail. From Figure 11c–f
it was noticed that both at FLM and FHM the SSC increases with wind speed (larger circles at higher
wind velocities). For low wind speed (u10 < 3 m/s), the tide-averaged SSC is ∼0.8 g/L at FLM,
and ∼0.3 g/L at FHM. Hence, during tide-only conditions, the sediment concentration is higher on the
lower flat than on the higher flat.

Figure 11. Tide-averaged wind conditions, bed shear stresses, and SSC. (a,b) Tide averaged SSC versus
tide-averaged current shear stress and wave shear stress, respectively. The coefficients of determination
R2 for the linear regressions applied to (a,b) are indicated in the legends. (c,f) SSC-bed shear stress-wind
roses: each marker corresponds to one tide (i.e., tide-averaged values are used). The positions of the
markers in the rose are representative of the wind conditions during the tide: tide-averaged wind speed
and dominant wind direction (e.g., marker position in the upper right quadrant implies a dominant
wind from NE). The color of the marker indicates the tide-averaged current-induced shear stress (c,e)
or wave-induced shear stress (d,f). The sizes of the markers scale with the tide-averaged SSC. The tides
of the three wind scenarios are indicated. In the panels dedicated to FLM, only the 56 tides measured at
FHM are included.
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At FLM the SSC increases with the current-induced bed shear stress (i.e., darker markers have
a larger size in Figure 11c). Such a trend is present, but less evident, at FHM (Figure 11e). The effect
of the wave-induced stress is instead more evident at FHM (i.e., darker markers have a larger size in
Figure 11f) compared to FLM (Figure 11b). Apparently, variations in SSC at the higher mudflat are both
related to currents and waves, whereas at the lower mudflat variations in SSC are primarily the results
of a high current-induced bed shear stress. Figure 11a,b provides statistical information to quantify
this difference in the relative contribution of current-induced and wave-induced shear stress to SSC.
The current-induced shear stress explains 70% and 65% of the variance in SSC, respectively, at FLM
and FHM, highlighting the contribution of sediment advection at both sites. Differently, the analysis
indicates that the wave-induced shear stress explains 54% of the SSC variance at FHM and only
22% of the SSC variance at FLM, confirming what was observed in the SSC-wind roses, i.e., that the
contribution of the resuspension to the sediment concentration is poor at the lower mudflat and
relevant at the higher mudflat.

The two locations respond differently to wind from the SW and NE. At the lower mudflat,
SSC is highest during NE wind (largest circles in the NE quadrant of Figure 11c,d), despite higher
waves occurring during western winds (blue colors in the NW and SW quadrant of Figure 11d).
The current-induced bed shear stress is comparable for NW and NE winds (Figure 11c). This suggests
that the high sediment concentration during NE winds results from advection, rather than local
resuspension. In contrast, both SSC and wave induced bed shear stress are highest during NW winds
at the higher mudflat (Figure 11f), implying a large relative contribution of local reususpension.

Eventually, the increase in sediment concentration with NE wind (especially for the lower
mudflat) suggests the presence of a sediment source east of the observation locations. This may result
from transport over the tidal divides, as suggested by Sassi et al. [29] and Duran-Matute et al. [30].
Alternatively (or additionally), tidal divides can become temporal sediment sinks [44] from which
sediment is resuspended during larger winds following a calm period.

4.5. Conceptual Model of Wind-Induced Sediment Transport and Storage in Intertidal Areas

The strong dependency of sediment transport on wind speed and direction is related to the
hydrodynamics (Section 4.3), but also to sediment concentration (Section 4.4). This is illustrated in
Figure 12.

During dominant wind conditions the residual sediment transport is directed from the tidal
channel to the higher flats: the transport is controlled by the channel, and the sediment concentration
is relatively low (phase 1). The sediment deposits onto the more elevated intertidal zones, including
where present, the tidal divides (phase 2). However, the majority of that sediment is only temporally
deposited. Even moderate winds having directions opposite to the dominant winds generate large
down-channel residual transport (phase 3). In this case the sediment fluxes are characterized by very
large sediment concentrations. The observation that sediment is easily eroded from this temporal
sediment storage implies that the material is poorly consolidated (even after weeks of phase 1 and phase
2 conditions). This conclusion is important for our understanding of the long-term morphodynamics
of muddy intertidal flat systems.

Our results are particularly important for muddy areas where the dominant wind direction
is, within a certain directional spreading, aligned with the coastline, and the tidal currents are also
primarily aligned with the coastline. The role of wind-driven currents is much less pronounced
when the dominant wind direction is primarily normal to the coastline, or when the tidal currents
are primarily in the cross-shore direction. The angle between wind and coastline depends strongly
on the larger-scale geological setting, such as river mouths in estuaries or the large-scale coastal
development. The alignment of along-shore tidal currents with respect to the coastline is more strongly
influenced by local conditions. Many tidal flats, especially along exposed coastlines with low wave
energy, develop extensive, mildly sloping foreshores where cross-shore tidal currents are stronger
than long-shore currents. Long-shore tidal currents are more common in estuarine environments
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where tidal channels encroaching the estuarine embankments lead to steeper cross-shore profiles,
or in lagoons where sheltering barriers limit the number of cross-shore tidal channels, leading to the
development of long-shore tidal channels.

Figure 12. Conceptual model of wind-induced sediment transport and storage within our study site.
Phase 1 (orange arrows): wind driven transport during dominant wind direction (corresponding to
the direction of flood currents). Phase 2: temporal storage following phase 1. Phase 3 (purple arrows,
in ebb direction): transport opposite to the dominant wind direction. The widths of the arrows relate
to the SSC in the net fluxes (larger for the opposite-to-dominant wind case), whereas the lengths of
the arrows relate to the number of occurrences in time (larger for the dominant wind case). The two
investigated locations are included in the scheme. The transport location FLM is current dominated
(i.e., advection controls the SSC), has large gross fluxes but small net fluxes, and it is characterized
by limited bed level changes. At the storage location FHM, where both advection and resuspension
contribute to the SSC, the net fluxes are controlled by wind speed and direction and it is characterized
by larger and continuous changes in bed level.

5. Conclusions

Waves, water levels, flow, and sediment concentrations were measured on an intertidal flat in
a meso-tidal system. Based on these data, the interactions among wind-waves, tide-induced flow,
and wind-driven flow were investigated and the effects of this interaction on the sediment transport
were explored.

The flow velocity resulting from the non-linear interaction between tide and wind-driven flow
was estimated by applying the momentum balance equation and using field data to quantify its terms.
The tide-induced pressure gradient, the wind-induced stress, and the bed shear stress dominate the
balance, and can be used to model the flow velocity induced by tide and wind. The model shows
that the magnitude of wind-driven flow decreases (increases) for increasing (decreasing) tidal flow
amplitude. At sites characterized by a relatively weak tide-induced flow (∼0.2 m/s) the wind is
able to reverse the direction of the tidal flow also at moderate wind speeds (∼10 m/s). Therefore,
wind-induced reversal of the tidal flow is a common phenomenon in environments characterized by
small tidal flow amplitudes. The model predictions of the net flow, and of the wind speed at which the
tidal flow reverses, show good agreement with data.

The intratidal SSC asymmetry is highly influenced by wind speed, but also by wind direction,
as the latter affects the fetch length and therefore the areas prone to resuspension. Highest sediment
concentrations were not observed during the highest wave-induced stress, but during one wind event
that followed a period of low/moderate wind from a direction opposite to the dominant wind direction.
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This study therefore shows that the crucial role of wind in tidal flat sediment dynamics not only relates
to the wave-induced resuspension, but also to the generation of wind-driven flows enhancing the
tide-induced advection of sediment, ultimately affecting the net sediment transport and hence the
morphodynamics of intertidal areas.

Our results further suggest that sediments can be temporarily stored in the shallower areas of
the intertidal system, and then easily resuspended and advected during wind events. These storage
environments accumulate sediments in conditions of low/moderate wind having the same direction
as the tide-induced residual transport, and release sediment during events with winds having opposite
directions. Fairly short windy periods opposite to tide-induced residual transport may in this way
balance the residual transport of sediment that occurred over longer time periods in calm wind
conditions. This temporal storage of sediment in combination with wind-driven transport is crucial for
understanding short- and long-term sediment dynamics in muddy systems, but is in general poorly
accounted for in literature. We expect that the results provided by this study are especially relevant at
locations where the dominant wind direction and the main tidal flow direction are aligned with the
coastline (such as in estuaries and lagoons, but less so for exposed, broad muddy coastlines).
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Appendix A. Bed Shear Stress Induced by Wave–Current Interaction

The bed shear stress resulting from the combined action of waves and currents is estimated using
the wave-current-interaction (WCI) models proposed by Soulsby [41]. The mean bed shear stress
resulting from the interaction of currents and waves is estimated as:

τm = τc

[
1 + 1.2

(
τw

τc + τw

)3.2
]

(A1)

with τc current-induced shear stress, and τw wave-induced shear stress. The usage of the mean bed
shear stress as expressed in Equation (A1) is suitable when estimating the effect of waves on the
current-induced flow, e.g., [16].

The current-induced shear stress is estimated as:

τc = ρwc fc u2 (A2)

with c fc the current-related friction coefficient and u = (ux, uy) the flow velocity magnitude. The bed
friction coefficient depends on the roughness height z0:

1
√c fc

=
1
κ

(
ln
(

h
z0

)
− 1
)

(A3)

The estimation of the roughness height z0 is not straightforward, as it depends on the skin friction
(sediment diameter), on the presence of bed forms (e.g., current and wave induced ripples), on the
hydrodynamics, and among other factors, on sediment stratification, e.g., [16,45,46]. Values of the
current related friction coefficient c fc available in literature suggest a variability of the parameter
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in the range 0.001–0.004, e.g., [16,41,45–50]. A value of 0.002 has been selected, based on which the
roughness length z0 has been estimated along the full measurement period, as a function of water
depth (Equation (A3)). The so-estimated z0 values are one order of magnitude higher than the values
obtained from a definition based on the grain size only (e.g., z0 = ks

30 = D50/12).
The wave-induced shear stress is estimated based on the wave-friction factor fw and the wave

orbital velocity at the bottom Uδ:

τw =
1
2

ρw fwUδ
2 (A4)

The wave orbital velocity is estimated using the linear wave theory:

Uδ =
πH
T
· 1

sinh(kh)
(A5)

The wave number k is obtained by resolving the dispersion relationship using a polynomial
approximation, based on the measured water depth and mean wave period following [51]. The wave
friction factor fw is estimated using the formulation proposed by Soulsby et al. [45] :

fw = min
[

0.3, 1.39
(

UδT
2πz0

)]
(A6)

where z0 is the bed roughness.
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