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Abstract

Attitude estimation is one of the basic processes of the attitude and orbit control system
(AOCS) hosted by every satellite. The spacecraft should be orientated properly during the
orbit, according to the mission objectives. The estimation is based on a plethora of sensors,
like rate gyroscopes, star trackers, sun and earth sensors, magnetometers (for low earth or-
bits). However, during the orbit the spacecraft operates according to some protocol, which
is characterized from its different modes. During safe mode conditions, gyroscopes and/or
star trackers might be turned off for energy saving reasons. Then the satellite senses only the
geomagnetic field’s direction and directions of other celestial bodies. In addition, the motion
of a rigid body is described from well-known dynamic equations up to model uncertainties.
The goal is to estimate how the satellite faces the Earth at each instant of time, by utilizing
the two aforementioned sources of information. Limited research has been undertaken for
this problem; on the contrary, the vast majority of published works provide solutions to the
problem at the presence of rate sensors. Within a general non-linear framework, the problem
of orientation and rate estimation can be set under the Bayesian formulation of estimation.
The available tools provided by this approach, are the widely-known Kalman-Based filters.
An alternative compelling approach considers the dual optimal control problem thus being
more compatible with the geometric nature of the problem. This approach is also more
promising, since it overcomes some critical difficulties of the former one and it is applicable
in a coordinate free fashion.
In this thesis, the aforementioned observation is emphasized and looked into. Therefore, two
specific filters are studied: the second-order-optimal minimum energy filter on the special
orthogonal group TSO(3); and the predictive filter on TSO(3), which is derived on this work.
The two filters perform very well with the predictive filter to be less tolerant in measurement
noise. Both filters are analyzed and simulated in various scenarios and a comparison is
demonstrated, given particular emphasis to their structure. Finally, the predictive filter
on TSO(3) is extended and used in an attempt to provide an alternative approach for the
problem of the orbital position estimation by utilizing a kinematic model for the Earth’s
geomagnetic field. Towards this direction it is proved that under some realistic assumptions
this latter problem is equivalent to two separate problems and therefore the resulting filter
can be decomposed into two distinct filters interconnected in series. The optimal correction
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term which is determined through the estimation process provides information regarding the
orbital rotation rate.
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Chapter 1

Introduction

1-1 Overview and motivation

Attitude estimation is an important aspect of guidance, navigation and control of vehicles,
such as cars, drones and satellites [1]. In satellites -where accurate attitude estimation is of
paramount importance- it is performed via data fusion of several attitude sensors like star
trackers, coarse earth sun sensors and rate gyros. In order to achieve the desired accuracy,
the relative orientation of all sensors with respect to each other and all of them with respect
to the spacecraft’s mounting base should be known precisely; an apt calibration is therefore
necessary.
Furthermore, these systems are required to be cheap and have a robust operation. The sensors
that are employed need to be cheap with minimum hardware implementation. During failure,
the sensor should enter a safe mode operation, providing the necessary information in order to
maintain the desired orientation dictated by the mission objective. In conjunction to this, the
energy consumption during this mode should be minimized until the failure is restored. For
the above reasons, estimation methods that require only reference sensors under safe mode
conditions are utilized.
By setting the problem of attitude and rate estimation in a general nonlinear framework
the goal is to estimate the state of the system which evolves according to a nonlinear dif-
ferential equation from observations that are acquired from the state in a nonlinear fashion.
For nonlinear state space models under the Bayesian formulation of estimation, the mostly
known filtering techniques are the extended Kalman filter, the unscented Kalman filter and
the particle filters. However, the interaction between the various coordinate systems and the
architecture of the Bayesian filters indicates the following three difficulties: For some coor-
dinate systems the motion cannot be represented uniquely by coordinates. Highly nonlinear
state space models emerge which is difficult to be handled by the Kalman-based filters. In
case where a bilinear model is achieved, the Kalman-based filter architecture violates the
algebraic constraint which expresses the geometry of the space in which the state evolves.
Considering the special structure of the underlying space of orientation, the problem of orien-
tation and rate estimation without rate sensors can be formulated as a deterministic filtering
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2 Introduction

problem and be subjected to the theory of optimal control. Within the optimal control con-
text the geometry of the space of orientations can be maintained. The model error of the
dynamic equation, considered as unknown and deterministic signal, is utilized as a control
port. The observer can be driven then towards the physical system by applying optimal
corrections which result from well defined optimization problems. The kinematic equation
then remains unaffected and it is led by the dynamics. In addition, the space of orientations
admits the structure of a Lie group. Therefore, the aforementioned optimization problems
can be formulated and solved in a coordinate-free fashion. Furthermore, the Hamiltonian
formulation of optimal control combined with the theory of Lie groups, are the cornerstone
for the second-order-optimal minimum energy filter on Lie groups [2]. The above observations
and the inherent disadvantages of the Bayesian context constitute the main motivation for
the presented thesis.

1-2 Contributions

From the framework that was mentioned in the previous section the filtering problem is set
under the optimal control theory. In particular:

• The second-order-optimal minimum filter on the tangent bundle of the special orthog-
onal group TSO(3) [2] is implemented and basic points of its structure are commented.

• Formulating the control problem as in [3] a predictive filter is derived by modeling the
system directly on TSO(3).

• The error dynamics are derived for both the second-order-optimal minimum energy
filter and the predictive observer.

• The Riccati equation proposed but not provided by [4] is finally derived in this thesis
in case where the state lies in Rn.

• The aforementioned filters are compared and their performance is assessed.

• The predictive filter on TSO(3) is extended and used in order to provide alternative
approach for the problem of orbital position estimation. Also, it has been proved that
under some realistic assumptions, the whole problem can be decomposed into two dif-
ferent problems and therefore the resulting filter can be seen as a series interconnection
of two distinct filters.

1-3 Organization

The presented thesis is organized as follows: Chapter 2 contains the literature survey. The
Bayessian formulation of estimation and the deterministic filtering approach are discussed.
The Kalman based filters and the optimal controllers are analyzed in detail. Subsequently, a
brief discussion is made of how analytical mechanics are connected with the problem of atti-
tude estimation. The next section is dedicated to the main conclusions of this survey while
the last one presents the necessary numerical integrators regarding the rigid body motion.

Nikolas Koumpis Master of Science Thesis



1-3 Organization 3

Chapter 3 deals with the implementation of the second-order-optimal minimum energy filter
on TSO(3) proposed by [2]. Experiments for various initial conditions and filter’s parameters
indicate its performance. The error dynamics of the filter are also derived.
Furthermore, in Chapter 4, the predictive filter on TSO(3) is derived. Simulations for various
initial conditions and different filter’s parameters reveal its performance. The error dynamics
are also derived in this chapter.
In Chapter 5, the predictive filter on TSO(3) gives an alternative direction towards the prob-
lem of orbital position estimation. It has also been proved that the resulting filter can be
decomposed in two distinct filters connected in series.
The last chapter contains the main conclusions of this work and some proposals for future
research on this specific topic.
Finally, the appendix contains the proof regarding the Riccati equation of the second-order-
optimal energy filter in case where the state lies in Rn.

Master of Science Thesis Nikolas Koumpis
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Chapter 2

Literature survey

2-1 Introduction

The main goal of this chapter is to present the two approaches that have been utilized by
researchers in the available literature for the problem of orientation estimation from vector
measurements. Initially, the Bayesian formulation of the estimation problem is studied, which
culminates in the Kalman-based filtering framework and where the disadvantages of this
approach are highlighted. In the sequel, the estimation problem is considered as a dual
optimal control problem, which solves some of the main issues of the Bayesian approach.
Before the two approaches be presented, some necessary mathematical preliminaries should
be provided.

2-2 Mathematical preliminaries

A Lie group is a topological group that is also a smooth manifold, with some other properties
[5]. Associated with every Lie group is a Lie algebra, which is a vector space discussed below.
More importantly, a Lie group and its Lie algebra are closely related, allowing calculations in
one to be mapped usefully into the other.

Definition 2-2.1. An (n-dimensional) manifold is a pair (M,X) whereM is a set and X is a
maximal atlas into Rn, such that the topology induced by X is Hausdorff and second-countable.

Definition 2-2.2. A Lie group is a manifold that has a group structure consistent with its
manifold structure in the sense that group multiplication

µ : G×G→ G : (g, h) 7→ gh

is a smooth map. The maps Lg : G→ G : h 7→ gh and Rh : G→ G : g 7→ gh are called the
the left and right translation maps respectively.

Master of Science Thesis Nikolas Koumpis



6 Literature survey

As an example, the set defined as

SO(3) = {R ∈ R3×3|RTR = I, det(R) = +1} (2-1)

is a Lie group called the special orthogonal group of dimension 3.

Definition 2-2.3. A Lie algebra g is a vector space that is closed under the Lie commutator
[X,Y ] = XY − Y X, for X,Y ∈ Rn×n.

Every Lie group has an associated Lie algebra, which is the tangent space at the identity of
the group. The Lie algebra is a vector space generated by differentiating the group elements
along chosen directions in the space at the identity. A very important feature (not true for
any differentiable manifold) is that the tangent space has the same structure at all group
elements, though tangent vectors undergo a coordinate transformation when moved from one
tangent space to another.

The tangent space associated with a Lie group provides a space in which to represent dif-
ferential quantities related to the group. The latter is because the tangent space is a vector
space with the same dimension as the number of degrees of freedom of the group. Also, the
exponential map converts any element of the tangent space exactly into an element of the
group.

Finally, the adjoint action transforms linearly tangent vectors from one tangent space to
another. The adjoint property is what ensures that the tangent space has the same structure
at all points on the manifold, because a tangent vector can always be transformed back to
the tangent space around the identity [6].

Considering the SO(3) the associated Lie algebra is defined as

so(3) = {X ∈ R3×3|XT = −X} (2-2)

For the rest of this thesis every definition and proposition will be given w.r.t. the SO(3).

Proposition 1. The matrix Lie algebra so(3) is isomorphic to (R3,×) 1.

A 3 × 3 skew-symmetrtic matrix has dimension three. It is straightforward to transfer the
matrix addition. The matrix commutator corresponds to the vector product.
For

X =

 X1
X2
X3

 ∈ R3 ( )×
−−−→ X× =

 0 −X3 X2
X3 0 −X1
X2 X1 0

 ∈ so(3)

Then for X,Y ∈ R3

X×Y = X × Y = −Y×X = −Y ×X

and
[X×, Y ×] = X×Y × − Y ×X× = (X × Y )×

1Where "×" is referred to the vector product.
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2-3 Bayesian sequential estimation 7

Theorem 1. [7] The exponential map

exp : so(3)→ SO(3) (2-3)

is well defined and surjective.

In Lie groups, a tangent vector from a tangent space can be mapped linearly to another
tangent space. The adjoint performs this transformation. For an element R of a Lie group,
the adjoint is written AdjR. In the case of SO(3), the adjoint is [7]

AdjR = R

In many cases we are interested to differentiate functions w.r.t. group elements. Consider for
example R ∈ SO(3) and X ∈ R3. The representation X changes by R into the representation
Y ∈ R3 as

Y = RX

We are interested to see how Y changes w.r.t. a small variation δR from R, with δR ∈
TRSO(3), the tangent space in the group element R. Essentially, we seek the tangent mapdfR :
TRSO(3) → TY R3. From the adjoint property it follows that TRSO(3) = Rso(3) . The
tangent space TY R3 can be identified with R3 by using the isomorphism induced by the
parallel transport in R3.

For any tangent vector δR ∈ TRSO(3), let φ(t) = RetΩ
× be a curve with φ(0) = R and

d
dtφ(0) = RΩ×.

Then
dfR(RΩ×) = d

dt
(RetΩ×

X)(0) = RΩ×X

For more details in the theory of manifolds and Lie groups the reader is referred to [8, 7, 5]

2-3 Bayesian sequential estimation

Consider the nonlinear dynamic system that can be described by a state-space model of the
following form:

Ẋ1(t) = f1(X1(t), X2(t))
Ẋ2(t) = f2(X2(t), t) +BU(t)
Y (t) = h(X1(t);V (t), t)

(2-4)

where U ∈ Rm and V ∈ Rq express the model uncertainty and the measurement noise
respectively and X=(X1, X2) ∈ Rn is the state vector2. We are interested to sequentially
estimate the state of the above system.

The dynamic state space model (DSSM), together with the known statistics of the noise
random vectors as well as the prior distributions of the system states, defines a probabilistic

2At this point it is important to mention that the state is not necessarily a vector belonging to some vector
space. However, this expression is commonly used in the literature.
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8 Literature survey

generative model of how the system evolves over time and of how we observe the hidden state
evolution. By following [9, 10] it is assumed that a discrete time system is available since it
is easier for some important points to be revealed.

The problem statement of sequential estimation in the DSSM framework can be framed as
follows: How do we optimally estimate the hidden system variables in a recursive way as
noisy observations become available [11]. Given that in a Bayesian framework, the posterior
density allows to calculate the optimal estimate for any cost functional, the problem can be
recast as follows. How to recursively compute the posterior density as new observations arrive
online?

By combining the Bayes chain rule and the DSSM we arrive in the following result:

p (Xk|Y1:k) = p (Yk|Xk) p (Xk|Y1:k−1)
p (Yk|Y1:k−1) (2-5)

Although in principle (2-5) propagates the posterior distribution, implementing the above
relation in a closed form is in general not feasible. In the particular case where the DSSM
is linear (not necessarily time invariant) and the noisy sequences Gaussian, the posterior
distribution can be parametrized by its first two moments and be implemented by the Kalman
filter [12].

However, in the MSE sense the above recursion can be optimally implemented by a linear
estimator [12]. Therefore, even with a non-Gaussian, non-linear system, the optimal MSE
estimator; the conditional expectation, is a linear function of the observations:

X̂k = X̂−k +Kk

(
Yk − Ŷ −k

)
PXk = P−Xk −KkPY kK

T
k

(2-6)

where the optimal terms in this recursion are given by:

X̂−k = E [f (Xk−1, Uk)]

Ŷ −k = E
[
h
(
X−k , Vk

)]
Kk = E

[(
Xk − X̂−k

) (
Yk − Ŷ −k

)T ]
E

[(
Yk − Ŷ −k

) (
Yk − Ŷ −k

)T ]−1

= PXkY kP
−1
Y k

(2-7)

Nevertheless, the calculation of the above expected values requires all the moments of the
random state vectors and all the derivatives of the nonlinear functions involved [10].

2-3-1 Extended Kalman filter (EKF)

The Extended Kalman Filter makes the following assumption

X̂−k ≈ f
(
X̂k−1, V , Uk

)
Ŷ −k ≈ h

(
X̂−k , V

)
Kk ≈ P̂XkYk

(
P̂Yk

)−1

(2-8)

Nikolas Koumpis Master of Science Thesis



2-3 Bayesian sequential estimation 9

Clearly these approximations cannot be measured3 [4]. They are valuable only when the
nonlinearity of the system is small compared with the uncertainty of the state. However, this
is a condition that cannot be inferred in a strict mathematical way. This also reveals how
sensitive the EKF is to initial estimation errors. The EKF, arrives in these approximations by
using a first-order truncation of the multidimensional Taylor series expansion for the nonlinear
functions [11]. The first derivatives for both the nonlinear functions have to be calculated
and stored.

The expected values of (2-7) require knowledge of all the derivatives of f and h and all the
moments of the random states. By linearizing around the current state, implicitly, the ex-
pected values are determined by using only the first moment of the random variables involved
and up to the first derivative of the functions in (2-7). In other words not the whole informa-
tion that describes the uncertainty of the random variables is taken into account. There is no
meaning of linearizing around a random vector. It has a meaning though to linearize around
its first moment. The latter approach however, ignores its remaining inherent uncertainty.

Although the stochastic nature of the state is ignored when linearizing, the estimation error
covariance matrix takes place in the EKF algorithm and therefore attributing, stochastic
meaning to the estimated state. Therefore there exists an incompatibility regarding the way
EKF operates.

Since the linearization step considers only the first moment, the filter "trusts" its own estimates
more than is warranted by the true underlying state space evolution and observation sequence.
This has large implications for the accuracy and consistency of the resulting EKF algorithm
[11]. These approximations often introduce large errors in the EKF’s calculated posterior
mean and covariance of the (nonlinear) random variable, which may lead to suboptimal
performance and sometimes divergence of the filter [9, 10, 13].

2-3-2 Unscented Kalman filter (UKF)

From the above discussion there is one major shortcoming of the EKF that need to be ad-
dressed. The disregard for the "uncertainty" of the underlying system state and noise random
vectors during the linearization of the system equations, or in other words the limited first-
order accuracy of propagated means and covariances resulting from a first-order truncated
Taylor-series.

Due to the above flaws, derivativeless, deterministic sampling based Kalman filters have been
developed that consistently outperform the EKF not only in terms of estimation accuracy,
but also in filter robustness and ease of implementation, for no added computational cost
[14, 15, 16, 17, 18]. These filters use a deterministic sampling approach to approximate the
optimal gain and prediction terms in the Kalman filter framework and belong to a more
general class of filters called sigma-point Kalman filters. The Uncended Kalman Filters is one
of these and its core will be briefly analyzed here.

The UKF uses another approach in order to capture the statistics of the random state vector
up to the second moment, without using the Taylor expansion. Instead, it employes an
unscented transform (UT).

3It is not possible to measure how close the filter performs to the true stochastic mean.
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10 Literature survey

Essentially, the UT is the answer to the following question: Assuming that we can calculate
a set of weighted samples that accurately capture the relevant prior statistics of a random
variable, what should the value of these weights and sample locations be, such that we can
accurately approximate the posterior mean and covariance using only weighted sample mean
and covariance estimators operating on functional (nonlinear) evaluations of these samples
[19]?

Thus, the UT is a method for calculating the statistics of a random variable which undergoes
a nonlinear function and is based on the principle that it is easier to approximate a probability
distribution instead of an arbitrary nonlinear function [14, 20]. This is the main advantage
over the EKF method. The UKF is a straightforward application of the scaled unscented
transformation to the recursive Kalman filter framework. For more detail, see [20]. Another
advantage of the UKF (since it does not use the Taylor expansion) is that it does not require
the calculation of Jacobian matrices. In many applications, Jacobian matrix evaluation can
be nontrivial and lead to implementation difficulties [15].

2-3-3 Application of Kalman based filters in the problem of attitude estimation

The work of [21] can be considered as the first one where the problem of attitude and rate
estimation is studied in the absence of rate sensors. In this work, the Euler angles are
used for the motion to be expressed with coordinates. The well known problem of Euler
angles singularities is avoided by using a temporary shifted reference frame- the orientation is
estimated w.r.t. the previous orientation estimate. By doing so, the orientation is estimated
at each time instant w.r.t. a moving reference frame and therefore, the coordinated orientation
remains away from singular points4. Although the state space model is highly nonlinear an
EKF scheme is deployed. The flaws of the EKF mentioned in Sections 2-3-1 to 2-3-2 appear
in this work. The nonlinearity of the system is increased w.r.t. to the uncertainty of the
estimated state which leads into the filter’s poor performance.

Later works [22, 23] try to address the problem differently by employing different attitude
representations for the model to become quasi-linear. The only attitude representation that
achieves quasi-linear kinematics-dynamics is quaternions. However, only the (unit) quaternion
algebra is valuable for representing orientations and it does so by the quaternion multipli-
cation. The unit constraint is maintained only by the quaternion multiplication. On the
other hand, in the EKF algorithm, the previous state vector5 is added to the scaled estimated
error, thus violating the unit sphere constraint. The resulting estimates then, outside of the
three-unit sphere, do not represent orientation. Generally, two approaches are used to deal
with this issue: a Euclidean, or brute force normalization after the update stage [22], and the
more complex multiplicative approach of [23].

In the work of [22] the orientation is represented by using the directional cosine matrix (DCM).
The matrix is parametrized by using the algebra of quaternions but in its vectorial nature.
That parametrization allows the problem to be treated in a vectorial way. The true orientation
then is expressed as the sum of an estimate quaternion and a quaternion error. As state vector
is considered the quaternion error that is connected with the output error vector through a

4Of course the time interval of two successive measurements should be reasonably small
5The term vector here should not be considered as an element of a vector space but rather as an element

of Rn
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2-3 Bayesian sequential estimation 11

linear output equation. The algorithm for estimating the state is a simple recursive least
squares scheme in the underlying quaternion algebra. In order for the parametrization of the
DCM w.r.t. the quaternion to remain valid after the algebraic manipulations of the recursive
least squares algorithm, the quaternion has to be normalized on the unit three-sphere. As was
shown in [24] an optimal normalization in the Euclidean sense is achieved by simply dividing
the quaternion estimate by its Euclidean norm.

The second approach [23] tries to address this issue by performing the quaternion update
based on the Euler’s theorem. The kinematic equation is presented in the matrix quaternion
form. The underlying assumption is that, since instantaneously the motion is a rotation, the
updated quaternion is the rotation of the previous quaternion. The rotation is performed by
the constructed (according to the Rodrigues formula) skew symmetric matrix. In this way
the update is performed in a multiplicative fashion and the unit constraint is maintained.

It is worth to be noticed that the work of [22] is closely related and in some sense evolved to
the so called Multiplicative Extended Kalman filter (MEKF). In the MEKF [25] the attitude
is represented by a unit quaternion. The key idea is that the true orientation is represented
as a quaternion product of an error quaternion and a reference quaternion, with the error
quaternion parametrized by a Euclidean (axis) vector. This non-zero vector is a way to
indicate the deviation between an existing, imaginary reference frame and the estimated
frame. The estimation procedure is applied in a vector space in order for the well known
addition issues (with quaternions and EKF) to be avoided (this can be considered as the
central idea of [25], i.e to apply the EKF without problems with the underlying algebra). The
vectorial error is estimated, which implies an estimate for the quaternion w.r.t. the reference
quaternion. Then the last estimate becomes the new estimate. The later articles indicate a
way in order algebraic quaternion normalization issues to be avoided, i.e by parameterizing
the orientation with vectorial elements, in order for the EKF to be applicable in a meaningful
way.

So until now, the bad behavior of the EKF coupled with the Euler angles representation,
has been replaced with the quasi-linear dynamics provided by the quaternion representation.
However the issue that is shown up in that case has to do with the fact that the EKF does not
maintain the unit sphere constraint of the unit quaternions and therefore in order to produce
meaningful quantities the results have to be re-projected onto the unit sphere.

As indicated in Section 2-3-1, the UKF has the advantage of handling nonlinearities, through
the UT, better that the EKF. This makes reasonable the choice for using it in conjunction
with the Euler angles. An attempt towards this direction can be found in [26]. On the other
hand, when the quaternion representation is used, the UKF in a standard format cannot
be implemented straightforwardly. The reason is again the quaternion’s unit constraint.
If the kinematics are used in the filter directly, there is no guarantee that the predicted
quaternion mean of the UKF will satisfy the unit norm constraint and therefore express an
orientation. In [27] however, the authors overcome this problem by using an unconstrained
vector to represent an attitude-error quaternion instead of using all its four components.
They represent the local error-quaternion using the so called general Rodrigues parameters
(GRP) coordinate system [28]. A comparison between the EKF and the UKF under the
quaternion representation can be found in [29]. The conclusion is that the UKF performs
better compared with the EKF, when the kurtosis and the higher order moments in the state
error distributions are significant. The sampling rate is another cause why the UKF does
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not perform better when estimating quaternion motion. In general, if the sampling rate is
sufficiently high, the quaternion dynamics behave in a quasilinear fashion since, with small
time steps, the integration steps propagate the quaternions only small deviations away from
the unit sphere, making the error in linearization minimal.
Until now, the problem of attitude and rate estimation without rate sensors has been set
under the Bayesian formulation of estimation. In the previous paragraphs it is revealed how
the Kalman-based filters interact with the different coordinate systems and the quaternion
algebra. The next section presents an alternative approach for the estimation problem, outside
the Bayesian framework, using control theory.

2-4 Estimation problem as dual of the optimal control problem

The method of [30] determines the corrections added to the assumed model such that the
model and corrections yield an accurate representation of the system behavior. The model
uncertainty is considered as an unknown but deterministic signal within a Hilbert space. The
goal is to estimate the states so that the resulting measurements approximate the measured
observations while keeping the considered model as valid as possible. This is done by minimiz-
ing the total norm of the augmented error-uncertainty vector. However, since there is not a
limit on how much the cost function can be decreased, the optimization problem incorporates
a covariance constraint. This is done in order the state estimates to have statistical meaning.
The problem as formulated here is related to the classical optimal control problem.
The covariance constraint is satisfied by tuning a positive definite matrix that reflects the
amount of influence of the uncertain signal in the cost. By not allowing the uncertainty to
influence significantly the total cost (equivalently, by keeping strong faith in the model) we
might not be able to achieve good state estimates. On the other hand, by abandoning the
assumed model more, we might achieve estimates that are without meaning, i.e. estimates
that do not satisfy the covariance constraint. Essentially, the goal is to estimate the state
by keeping faith in the model as much as possible, or in other words, by allowing only for a
minimum model error. The necessary conditions for the minimization of the cost are called
Pontryagin’s necessary conditions. These conditions introduce an additional co-state vector
and lead to a two-point boundary value problem (TPBVP).
The above method is applied in the work of [31]. The state equations consist of the attitude
kinematics and dynamics. The output equations relate the known and the measured pointing
directions with the unknown orientation matrix. The orientation is represented by using
quaternions. One important fact that has to be mentioned here is that with this approach, the
kinematic equation remains isolated. This is due to the fact that the uncertainty is considered
as a deterministic signal that is determined separately during the estimation process and
is fed as a correction term only through the rigid body dynamics. In this way, problems
regarding the algebra of orientations can be avoided by updating the kinematics separately.
However, the above filter has a very important drawback. A Large sequence of observations
and many realizations have to be available since essentially we are talking about a batch
(offline) estimation process. Another difficulty that is posed is that the TPBVP requires a
tuning procedure in order for the boundary conditions to be satisfied. Despite the above
mentioned difficulties, the main reason this filter is introduced at this point is because it
reinforces the intuition for this non-Bayesian approach and reveals some initial benefits.
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In [3] a predictive controller for nonlinear systems is developed. The optimal controller
aims to minimize a prediction error based on a minimum current control expenditure. This
formulation results into an online filter. Another important characteristic of the above method
is that the optimization problem is not subject to the system’s vector field. Instead, the
information about the vector field is fed implicitly into the cost through the prediction that
is expressed via a Lie-Taylor expansion and therefore the boundary-value problem induced
from the Pontryagin’s minimum principle is avoided.

Based on the previously described controller and the duality principle, a filter can be derived.
The model uncertainty has to be considered as a deterministic and unknown signal of a
function space. Since the divergence of the next state depends on the error of the current
sate, the model error signal is considered as a function of the state. This state feedback
function is determined from an optimization problem. The minimization targets to achieve
the best output prediction while keeping the current model uncertainty low.

The prediction horizon step and the influence of the model uncertainty are conflict. By
allowing for a large prediction step a small prediction error can be achieved by remaining close
to the assumed model. On the other hand a small prediction error might not be achievable
for a small prediction step without abandoning the model. Although a big step ahead might
reduce the considered uncertainty set for a given prediction error, the results might not
be correct in a statistical sense. In order to do so, the optimization problem for the filter
derivation is subject to the covariance constraint referred to [30]. So, the goal is to choose
for a proper time step that achieves a statistically meaningful output prediction, while the
considered model remains as valid as possible.

2-4-1 Hamiltonian formulation of the optimal control problem

In [4] the modal trajectory estimator is studied. This approach is based entirely on the
Hamiltonian formulation of optimal control. The initial cost6 regulates the initial state and
this has to be done by minimizing the total error between the measured and estimated outputs.
The minimization is done w.r.t. both the deterministic model uncertainty signal and the initial
state that produce these measurements. This optimization problem has to be solved for every
time instant and is essentially the tracking problem of optimal control theory. The necessary
conditions of optimality lead to a boundary value problem which has to be solved for each
time instant.

This issue is solved by applying the Hamilton-Jacobi-Bellman theory and as a result the
desired observer’s differential equation is derived. The optimal estimate is then the final value
of the optimal state trajectory. The very important point that is implicitly mentioned from
[4] is the significance of the boundary conditions when they are used in combination with the
Hamilton-Jacobi-Bellman equation. This is the key fact for deriving the differential equation
for the filter. Another important fact is that a differential Ricatti-type equation analogous
to the one of [12] can be derived. However the second-order Ricatti-type equation results
by assuming that available information only up to second order is available for the estimate
error uncertainty. Essentially, maximum-likelihood nonlinear filtering suffers from the same
problem of moments7 as the minimum variance nonlinear filters mentioned in Section 2-3.

6The corresponding terminal cost of the control problem
7This terminology is given by [4]
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This is reasonable since the uncertainty is inherent and independent of how the problem is
formulated. However, remarkably, under this approach, the problem of moments is reflected
only in the gain operator. In particular in the fact that its evolution can be described up to
some finite order. Therefore, the problem of moments is appeared to affect the filter in a less
harmful way compared with the Bayesian formulation.

2-4-2 Second-order-optimal minimum energy filter for attitude estimation

The space of orientations admits the structure of a Lie group, the special orthogonal group
SO(3). The manifold structure on a set can be defined without an algebraic structure. How-
ever, the ability of defining an algebraic structure provides some extra advantages for handling
problems defined on the space. In the case of the matrix Lie groups, there is no need of work-
ing with coordinate maps and transition functions since the manifold structure itself is also
equipped with an algebraic structure. As in the case of a vector space, algebraic operations
are defined without using coordinates. It is completely valid to add and subtract vectors,
in a geometric sense, without using coordinates. After all this is the distinction between
geometry and linear algebra. The same is true if we consider the points that lie on the unit
circle represented by the complex numbers of unit length. In this later case, every point of
the circle operates on it and performs one of its symmetries.

However, coordinate system maps and transition functions are necessary in order to establish
the differential structure and thus being able to perform differential calculus in a coordinate
free fashion later on. The very important fact to be mentioned is that although it is feasible
(in principle) to embed the original space within a Euclidean space and treat it as a sub-
manifold, in some cases such information is not available and an intrinsic approach is needed.
This is where the theory of differentiable manifolds is truly necessary. For more details on
the theory of manifolds and Lie groups see [7, 8].

The next cornerstone needed in order to form a full picture about the work of [2] is analytical
mechanics. This is another way of modeling mechanics. The variational principle was an idea
based on the law of the lever proposed by Archimedes. Johann Bernoulli originally proposed
the variational method and Lagrange, by giving an explanation on Bernoulli’s method ended
up with the famous method of multipliers. One of the main results of analytical mechanics
is Hamilton’s principle of least action. Every physical system evolves in such a way that
minimizes a well defined length integral in an abstract differentiable manifold.

The Euler Lagrange equations (the mathematical expression of Hamilton’s principle or a
generalization of Newton’s second law) give the evolution of the system, which appears to be
a particle within the manifold space, and express equations of straight lines (geodesics). The
optimal control problem then is the extension of Hamilton’s principle. This can be seen by
considering the constrained problem formed by incorporating the system’s dynamics (vector
field). By applying the variational method to the constrained (optimal control) problem,
Pontryagin’s principle gives the necessary conditions for optimality [32]. Instead of asking for
the trajectory that minimizes the cost functional, the optimal control problem incorporates
an additional port, the control commands, and asks for these control orders that produce a
trajectory which minimizes the cost functional.

The aforementioned points are first utilized by [4], and extended in the work of [2] where
a second-order-optimal minimum energy filter on Lie groups has been designed. The really
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remarkable fact, which is also the reason for its performance, is its structure. It is the Lie
group structure combined with basic principles of analytical mechanics and the Hamiltonian
formulation of optimal control that produce this particular structure.

Based on the discussion of the previous section, Kalman-based filters perform a correction
to both the kinematic and dynamic equation. However, working with bilinear equations, in
order to maintain the geometry an undesirable re-projection step is needed. Working with
the dual optimal control problem formulated as in [3], the attitude correction is performed
through the dynamic equation and the kinematic equation is isolated to be updated separately.
The success of observer proposed in [2] lies on the fact that it maintains the geometry and
performs corrections to both the kinematic and the dynamic part. The update of the attitude
equation is performed, in a geometric fashion, by utilizing the Lie group structure. This is
the advantage of working without coordinates. By incorporating coordinate systems or the
quaternion representation the natural algebraic structure of the space is not preserved.

2-5 Summary

In a nutshell, within the Bayesian context it can be observed how the Kalman based filters
developed for solving the estimation problem interact with the geometry of the attitude space
through the different coordinate systems the attitude can be expressed with. Either we end up
with a highly nonlinear state space model (difficult to be handled by EKF,UKF scheme) and
a filter without geometric problems8 or, with a bilinear coordinate system and a filter that has
problems to maintain its evolution within the space of orientations. By using the quaternion
representation we end up with a bilinear filter that can easily be treated by the EKF or the
UKF. However the next optimal estimate for the orientation is based on the previous optimal
re-projected estimate. The projection step induces a projection error that is accumulated with
time and therefore it might be considered as harmful for long time simulations. In the case
where the kinematics and dynamics are expressed with Euler angles, a singular coordinate
system, the orientation should be considered w.r.t. the previous estimate as in [21]. This is
how the coordinates remain away from the singular point.

By realizing that the Kalman filter framework is applicable in nonlinear dynamics it is per-
fectly valid to work within it. The resulting theory reveals two different tools, i.e. the EKF
and the UKF. One of the main features of the above strategies is that they require knowledge
of the first and second order statistics and in particular the estimate error covariance. The
estimate error covariance however requires knowledge of both the model and the measure-
ment error. While measurement errors may be determined in numerous ways, model errors
are generally unknown by definition [30]. The aforementioned filter strategies deal with the
model error knowledge requirement by assuming that the model error is a symmetrically dis-
tributed white noise sequence of known covariance, normally called "process noise". However,
this assumption often has no theoretical basis, and in fact, for physical systems, model errors
are more often smooth functions resulting from typical model simplification assumptions [30].

In [33], the author questions the appropriateness of a probabilistic treatment of the estimation
problem. It is sufficient to think about the reason of the statistical treatment. One of the

8The term "geometric problems" refers to problems of maintain the geometry of the space in the orientation’s
update step.
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main ingredients of the Bayesian formulation is the availability of probability distributions.
A probability distribution is required in order to localize the uncertainty and makes possible
to talk about intervals. This is of course a general approach, independent on any particular
state space. However, for the present problem, of the attitude and rate estimation, the state
can be considered to evolve in a compact state space. As an example, someone can think of
the two dimensional case, where the largest distance between any two orientations is 180o.
The present problem maintains this characteristic. There is a compact bounded set where
the orientation lies in. There is no need to localize this information by using a probability
distribution. The state space is already compact [7]. Of course, an assumption for the range
where the angular rate vary should be made as well. It is reasonable to consider the angular
rate of the spacecraft being bounded in its measure and free to have any direction9.

It is also a fact that none of the above mentioned Kalman based methods shows up as the
result of a well defined optimization criterion, rather they use an optimal result of the Bayesian
context of the recursive estimation problem. Also, although it is possible to perform close to
the optimum, there is no way to measure this performance in a rigorous mathematical way.

Trying to maintain the orientation’s geometry while the filter operates, the problem of attitude
and rate estimation is attacked within a deterministic framework as a dual optimal control
problem. By doing so, the kinematic equation does not suffer from the above mentioned
geometric issues. However the question of how the kinematic equation is properly integrated
in time remains valuable.

All the approaches lie in the stochastic framework utilize some coordinate map and subse-
quently derive the filter ’s differential equations. This is a commonly used strategy. By using
coordinate system (bijective) maps, and smooth transition functions, the abstract space of
interest is modeled (under some additional assumptions) as a differentiable manifold. Then
the problem is transferred on the manifold where the well known tools from calculus in Rn
can be utilized. The results are mapped back in the original space and conclusions are in-
ferred. Nevertheless, the problem of attitude estimation can be studied under the theory of
Lie groups. Lie groups are constructions with both a differential structure and an algebraic
structure. There is no need for establishing coordinates and the problem can be defined di-
rectly on the space it self. The second-order-optimal minimum energy filter on Lie groups
essentially transfers the derivation of [4] in the context of Lie groups. In some sense, the
problem is transformed to the Lie algebra which is a vector space resulting the trivialized
dynamics and as a result ends up with a filter which has familiar structure.

2-6 Geometric integrators for the rigid body motion

This section introduces the adapted numerical methods for Lie groups that are generated
by left invariant vector fields. General numerical integration algorithms approximate the
evolution of a dynamical system by utilizing only the information from the vector field. Nev-
ertheless, geometric integrators are designed in order to preserve inherent characteristics of
the continuous system, like the symplectic structure, the geometry of the configuration space.
The main advantage of a geometric integrator is that it can be used for long time simulations.

9The directions are in one-to-one correspondence with the points on the unit sphere embedded in the three
dimensional Euclidean space
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Modeling the rigid body motion within the context of Lie group theory provides us with a
coordinate-free and therefore a singularity-free approach. The continuous time equations of
a controlled rigid body are given by

Ṙ = RΩ×

Ω̇ = I−1((IΩ)×Ω + T
) (2-9)

where T ∈ R3 is the control torque, R ∈ SO(3) the rigid body orientation, Ω ∈ R3 the
rigid body angular rate and I ∈ R3×3 is the inertia tensor. As mentioned above, although it
is possible to express the motion with coordinates we prefer a numerical integration on the
configuration space directly.

2-6-1 Implicit second-order integrators

The challenge of designing an integrator for updating the rigid body dynamics equations
is that the differential equations are defined on a Lie group which as we saw in Section 2-
2 is a smooth manifold with curvature which is equipped with a group structure. For all
Hamiltonian systems the continuous time flow is symplectic and preserves the Hamiltonian.
Utilization of the Legendre transform implies that the total energy of the system is also
preserved [34].

The evolution of the system in a configuration manifold can be comprehended as a geodesic
of the deformed due to the potential energy function space. The state space equations are
the equations which describe the geodesics. Contrary, these differential equations, the so
called Lagrange equations, show as necessary conditions for optimality of a cost functional
which is expressed through an integral of an, most of the times, artificial Lagrangian function
defined on the deformed space. The differential equations are derived by applying the varia-
tional principle, which basically results into a generalization of the differential for a general
functional.

There are two approaches to create an update numerical scheme. The first one discretizes the
geodesics and the second discretizes the cost functional directly and derives the integration
algorithm as a result of applying the variational principle. The advantage of the second
approach is that it produces a numerical algorithm through a machinery, which naturally
leads to integrators that preserve essential characteristics of the continuous time system, as
for example the symplectic form or the momentum. Note that the Euler-Lagrange equations
are always second order differential equations. A numerically transcendent integrator can be
set as follows [34] :

Rk+1 = Rkτ(hΩk)
CT
τ (hΩk+1)IΩk+1 − CT

τ (−hΩk)IΩk = hT (Ωk)
(2-10)

Where for the map τ can be used either the exponential map or the Cayley map :

exp(Ω) = I3×3 + sin(||Ω||)
||Ω|| Ω× + 1− cos(||Ω||)

||Ω||2 (Ω×)2

cay(Ω) = I3×3 + 4
4 + ||Ω||2

(
Ω× + (Ω×)2

2
) (2-11)
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Finally the map Cτ : R3 → L(R3,R3) is, depending on the choice of the group map τ :

Cexp(Ω) = I3×3 −
1
2Ω× + 1

12(Ω×)2

Ccay(Ω) = I3×3 −
1
2Ω× + 1

4ΩΩT
(2-12)

By ignoring the quadratic terms in these later matrices, thus resulting in the map

C(Ω) ≈ I3×3 −
1
2Ω× (2-13)

the integration scheme ends up to be the trapezoidal Lie-Newmark method [35]. This map
can be substituted for either Cexp or Ccay without losing the second-order accuracy of the
discrete Euler Poincare equations. For the purpose of this thesis we use the exponential map
as a difference map which results in the following implicit integration scheme :

Rk+1 = Rke
hΩ×

k (2-14)

Cexp(−hΩk+1)
(
IΩk+1

)
= Cexp(hΩk)

(
IΩk

)
+ hT

(
Ωk

)
(2-15)

where h is the integration step. The integrator update step is summarized in the following
pseudococe [36] :

Given (Rk,Ωk)

• pick τ = exp or τ = cay

• Compute Cτ

• Solve (2-15) for Ωk+1 using a Newton solver

• Update (Rk+1,Ωk+1)

However, using the untruncated expressions (2-12) the resulting scheme is a variational sym-
plectic integrator which preserves the spatial momentum in the absence of applied torques.

2-6-2 Time step bounds

Both the trapezoidal and the symplectic methods are implicit, i.e they require the solution of a
nonlinear algebraic equation. Usually this nonlinear equation is solved by employing a Newton
method. In this case, a maximum allowed time-step rule can be derived which guarantees
solvability of the equation. For the trapezoidal algorithm particularly, the nonlinear equation
can be formulated as [34]:

E(Ω) =
(
I3×3 −

1
2Ω× + 1

12(Ω×)2
)
IΩ− ak = 0 (2-16)

where
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ak = Cexp(−hΩk)
(
IΩk

)
+ hT

(
Ωk

)
Newton solvers extract a solution for the above nonlinear algebraic equation by using the
initial guess Ωn0 = Ωk, ∀k ∈ N∗ which is then iterated according to

Ωn+1 = Ωn −
(
dΩE(Ωn)

)−1E(Ωn)
where

dΩE = I− h

2
(
IΩ
)× + h

2 Ω×I + h

4 ΩT IΩI3×3 + h

2 ΩΩT I

is the Jacobian of E which of course has to be invertible. From the above expressions can easily
be observed that for a very small time-step h ≈ 0 the Jacobian matrix is always invertible
(since the inertia tensor is always considered to be positive definite w.r.t. the body fixed
frame). However, for larger time steps we can write [34]

dΩE ≥
(
Imin −

h

4 ||Ω||(Imax − Imin) + h2||Ω||2
(
Imin −

1
4Imax

))
I3×3

From the above inequality we can conclude that if the time step is chosen such that 0 < h <
h̃(Ω) where the upper bound is defined by

h̃(Ω) =


∞ if κ ≥ 4

√
7− 7 or ||Ω|| = 0

κ−1−
√
κ2+14κ−63

(8−2κ)||Ω|| otherwise
(2-17)

with κ = Imax
Imin , the Jacobian matrix remains positive definite.

2-6-3 Comparison between explicit implicit and symplectic method

In what follows, a rigid body its inertia tensor w.r.t. to the principal axes has the diago-
nal representation I = diag(2, 5, 3) Kg m2 w.r.t the body frame. We assume that initially
there is no deviation of orientation, i.e that R(0) = I3×3 and the initial angular velocity is
Ω0 =

[
0.5 0.6 0.4

]T
. The input torque is T (t) =

[
sin(2π

3 t) cos(2π
1 t) sin(2π

5 t)
]T

. The
output equations relate the inertial directions αi=1,2, with the directions expressed w.r.t. the
body frame yi=1,2.

Ω̇ = I−1((ΩI)×Ω + T )[
y1
y2

]
=
[
RTa1
RTa2

]
,

where R ∈ SO(3), Ω ∈ R3, (.)× : R3 → so(3), ai ∈ R3. The Jacobian remains invertible even
for h = 0.1. Figure 2-1 shows the angular velocities and unit directions respectively.

The simplest Euler-method on SO(3) has the form

Rk+1 = Rke
hΩ×

k

Ωk+1 = Ωk + hI−1((IΩk)×Ωk + Tk
) (2-18)
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Figure 2-1: Angular velocity components (left) and unit directions (right) w.r.t. the body fixed frame
for symplectic integration

Since for small h the matrix RTkRk+1 is close to the identity where exp : so(3) → SO(3) is
a diffeomorphism, the above integration scheme explicitly updates the next state given the
current state.

Similarly to any other Euler method, the explicit scheme is only accurate up to the first order
and has numerical stability issues especially for large time-steps [34]. In order to see the
essential difference between an explicit Euler scheme (2-18) and the symplectic scheme, we
can look at the rigid body’s kinetic energy Kk = 1

2ΩT
k IΩk transferred from the input torque.

From Figure 2-2 one can observe the main difference between the two integration schemes.
The symplectic method conserves the energy while the explicit Euler scheme seems to add,
artificially, energy into the system. The latter can also be seen from the fact that the angular
rate norm diverges.

Symplectic

Explicit Euler

Symplectic

Explicit Euler

Figure 2-2: Kinetic energy and angular rate for explicit and symplectic scheme
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Figure 2-2 - although correct - does not convince for our claim since indeed, with a proper
torque input, the body could accelerate without limit. Another experiment that provides a
better intuition can be formed by eliminating the external input torque T (t) =

[
0 0 0

]T
∀t ∈ R+. Thereafter, the transferred work is zero and therefore the kinetic energy

Kk = 1
2ΩT

k IΩk = K0 = 1
2ΩT

0 IΩ0 = 1.19 ∀k ∈ N∗

However, in Figure 2-3, the integrator seems to artificially add an amount of energy into the
autonomous system, which also means that the norm of the angular rate increases without
limit as indicated the second plot in Figure 2-3. In the implicit Euler method the update
Ωk+1 appears on both sides of the equation and thus the method needs to solve an algebraic
equation for the unknown Ωk+1. The implicit integration rule reads

Ωk+1 = Ωk + h
(
(IΩk+1)×Ωk+1 + Tk

)
(2-19)

and by defining
Eimp(Ω) = Ω− Ωk − h

(
(IΩ)×Ω + Tk

)
(2-20)

the nonlinear algebraic equation Eimp(Ω) = 0 needs to be solved by means for example of a
Newton solver, with starting point Ωn=0 = Ωk. We make the comparison for all the three
integrators regarding their ability to conserve the kinetic energy as shown in Figure 2-4

Symplectic

Explicit Euler

Symplectic

Explicit Euler

Figure 2-3: Kinetic energy and angular rate for explicit and symplectic scheme (zero input torque)

From Figure 2-4, it is concluded that the symplectic scheme conserves the kinetic energy. The
explicit Euler method adds energy into the system, while the implicit integrator works as an
artificial damper, i.e. it removes energy from the system. Since the initial assumption for
the continuous time model demands the kinetic energy to remain constant, both the explicit
and the implicit methods are not valid for simulating the rigid body motion. Throughout the
presented thesis and its results, the symplectic method is therefore applied.

Since the implicit numerical scheme is characterized by a poor performance, the symplectic’s
scheme property of conserving the kinetic energy is not implied from its implicit character.
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Symplectic

Explicit Euler

Implicit Euler

Figure 2-4: Kinetic energy for all three integration methods

Symplecticity should be understood as a distinct property. The symplectic integrator is
produced under the machinery of the variational principle of mechanics by discretizing directly
the cost functional. This is the map which transferes all the desired properties to the numerical
scheme.
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2-7 Problem statement

The problem is stated into two parts. The first part aims to estimate the orientation and
rate of the spacecraft w.r.t. the local-vertical-local-horizontal frame (L.V.L.H.)10 frame. The
second part aims to estimate the orientation w.r.t. the Earth-centered inertial (E.C.I)11 frame.

• Part I
Given the Sun’s and the Geomagnetic field’s direction w.r.t the L.V.L.H. frame and
measuring the Sun’s and the Geomagnetic field’s direction, the goal is to estimate the
orientation and the angular rate of the spacecraft w.r.t. the L.V.L.H. frame.
Afterwards, the estimated rate is the relative angular rate of the body frame w.r.t. the
L.V.L.H. frame. Let us declare with R(t) ∈ SO(3) the orientation of the body frame
w.r.t. the L.V.L.H. frame at the time instant t ∈ R and with Ω(t) ∈ R3 the corresponding
angular rate w.r.t. the same frame. Let us declare with (R,Ω), R ∈ SO(3),Ω ∈ R3 the
state of the system. Euler’s theorem states that the motion of the rigid body w.r.t. its
center of mass is instantaneously a rotation, or in other words:

RT (t)Ṙ(t) = Ω×(t) (2-21)

The time variation of R, when it is accounted from the body frame, is seen for a small
time as a rotation. This equation is of the form Ẋ1 = f1(X1, X2). A second equation,
Euler’s equation, describes how the axis of rotation Ω changes with time while is affected
by the external torques Text and the angular momentum H = IΩ. The external torques
are considered to include both environmental and control torques Text = Te + Tc. The
angular rate expressed in body fixed frame evolves according to

Ω̇ = I−1((ΩI)×Ω + Text) , (2-22)

where I ∈ R3×3 is the inertia tensor and T ∈ R3 the environmental torques represented
w.r.t. the body frame. This equation is of the form Ẋ2 = f2(X2, U). In addition, the
environmental torques are not (precisely) known and the same holds for the inertia
tensor. This lack of knowledge makes the true angular rate Ω at time t, to deviate from
what the given model indicates by an unknown and deterministic term δ(t). Therefore,
the model can be recast to

Ω̇(t) = I−1((Ω(t)I)×Ω(t) + T (t)) + δ(t) (2-23)

where T refers to the control torques and both unknown factors are accumulated within
the term δ(t).
On the other hand, the measured directions yi=1,2(t) are represented w.r.t. the body
frame and related to the corresponding, known, inertial directions ai=1,2(t) w.r.t. the
L.V.L.H. frame by the body’s orientation, as a change of coordinates,[

y1
y2

]
=
[
RTa1
RTa2

]
(2-24)

10The L.V.L.H. frame is analogous to the Frenet-Serret frame which appears in differential geometry.
11An E.C.I frame has its origin in the Earth’s center of mass and does not rotate with respect to the stars.
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However, measurements are subject to additive sensor noise ε and (2-24) should be
modified to [

y1
y2

]
=
[
RTa1
RTa2

]
+ ε (2-25)

or in general to Y = h(X1, ε, t).
Based on the above, given the control torques T and the available on-board measure-
ments yi=1,2 the goal is to estimate the system’s state (R,Ω).

• Part II
However, as the problem stated above, a unique R might correspond to many orienta-
tions of the spacecraft w.r.t. the E.C.I. frame. For the configuration to be estimated
uniquely, knowledge of how the L.V.L.H. frame is oriented w.r.t. the E.C.I. frame is
necessary. Since the L.V.L.H. is essentially the Frenet frame on the orbit, the previous
requirement is equivalent with estimating the orbital position θ. Given that no position
information is available on board, the goal is to find a way to estimate the orbital po-
sition only from vector measurements. Thereupon, the pair (θ,R) determines uniquely
the orientation of the spacecraft w.r.t. the E.C.I. frame.
Intuitively, the motion can be thought of as the concept of a robot manipulator’s mo-
tion. The first degree of freedom corresponds to the orbital position θ and the second
degree of freedom to the rigid body’s orientation R w.r.t. the L.V.L.H. frame. Although
kinematically the two motions result the orientation of the body fixed frame w.r.t. the
E.C.I. frame the motion dynamics of the center of mass are uncoupled with the attitude
dynamics. However, a proper state space model has to contain output equations which,
ideally, involve both R and θ. In other words, ideally we want a state space model of
the form

RT Ṙ = Ω×

Ω̇ = I−1((ΩI)×Ω + T ) +Bδ

θ̈(t) = f(θ̇, θ, ξ)[
y1
y2

]
=
[
RTR(θ)Ta1
RTR(θ)Ta2

]
+Dε

(2-26)

where ai=1,2 refer to representations w.r.t. the E.C.I. frame, ξ ∈ R to some torque input
which affects the orbital motion of the spacecraft and f : R→ R a nonlinear function.
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Chapter 3

Second-order-optimal minimum energy
filter on TSO(3)

3-1 Filter’s structure

This section deals with the implementation of the second order-optimal minimum energy
filter. The cornerstone of the minimum energy filtering is analytical mechanics and the
Hamiltonian formulation of optimal control. The basic problem of analytical mechanics is to
derive geodesics by minimizing a well defined cost functional. The minimization is performed,
by utilizing the variational principle. The geodesics are expressed from the Euler-Lagrange
equations and essentially emerge as the necessary conditions for optimality.
Subsequently, the optimal control problem can be comprehended as a constrained optimiza-
tion problem. The search is performed only among these trajectories of the manifold space
which can be produced from a parameterized vector field in some space of admissible controls.
The constrained optimization problem can be recast into an unconstrained problem by intro-
ducing the Lagrange multiplier. Since the whole formulation is based on physical quantities,
the multiplier is introduced by a work function which is the fundamental quantity in analyti-
cal mechanics. The Lagrange multiplier acts from the co-tangent space. It represents how the
control commands are introduced into the problem represented by a physical quantity. The
latter observation can be checked also from Pontryagin’s maximum principle which provides
the necessary conditions for optimality. These conditions express a boundary value problem.
Based on the above, the estimation problem can be formulated as a dual optimal control
problem.
The main contribution of Mortensen in [4] is that he managed to overcome the difficulty from
the boundary value problem and to extract a differential equation for the filter. The filter
contains a gain operator the evolution of which can be described up to a countable ordered
differential equation. In the second-order-optimal minimum energy filter a gain operator is
evolved according to a second-order Riccati-type equation. A second-order-optimal minimum
energy filter is derived from [2] in the case where the considered state space is modeled as a Lie
group. The main contribution of [2] lies in the derivation of the disturbed Riccati equation.
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26 Second-order-optimal minimum energy filter on TSO(3)

Given the system

RT Ṙ = Ω×

Ω̇ = I−1((ΩI)×Ω + T ) +Bδ[
y1
y2

]
=
[
RTa1
RTa2

]
+Dε

(3-1)

where R ∈ SO(3), Ω ∈ R3, (.)× : R3 → so(3), D ∈ R6×6, ai ∈ R3, the second order minimum
energy filter is expressed by the following differential equations:

R̂T
˙̂
R =

(
Ω̂ +K11r

R +K12r
Ω
)×

˙̂Ω = I−1
(
(ÎΩ̂)×Ω̂ + T

)
+K21r

R +K22r
Ω

(3-2)

where the residual rt = [rR rΩ]T and the second order optimal gain

K =
[
K11 K12
K21 K22

]

are given bellow. Let ŷ1 = R̂Ta1 and ŷ2 = R̂Ta2 then the residual rt is given by

rt =
[
rR

rΩ

]
=
[
−
(
q1/d

2
1
)

(ŷ1 × y1)−
(
q2/d

2
2
)

(ŷ2 × y2)
0

]

while the gain K is the solution of the perturbed matrix Riccati differential equation:

K̇ =− αK +AK + KA> −KEK +BR−1B>

−W (K, rt)K−KW (K, rt)>
(3-3)

where

A =
[
−Ω̂× I

0 I−1
[
(IΩ̂)× − Ω̂×I

] ]

E =
[ ∑2

i=1−
(
qi/d

2
i

) (
â×i a

×
i + a×i â

×
i

)
/2 0

0 03×3

]

BR−1B> =
[

03×3 0
0 B2R

−1B>2

]
, and

W (K, rt) =
[

1/2
(
K11r

R + K12r
Ω
)×

0
0 03×3

]
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3-1 Filter’s structure 27

for the (0)-connection function and

A =
[

0 I

0 I−1
[
(̂IΩ̂)× − Ω̂×I

] ]

E =
[ ∑2

i=1−
(
qi/d

2
i

)
a×i â

×
i 0

0 0

]

BR−1B> =
[

03×3 0
0 B2R

−1B>2

]
, and

W (K, rt) = 0

for the (-)-connection function. The remarkable feature of the above filter is its structure.
Since only the rigid body dynamic equation is considered uncertain we would expect a correc-
tion term acting only on the second equation. However, the filter incorporates an additional
term which affects also the kinematic equation. By introducing the map ( )−× : so(3)→ R3

we can write :

[ (
R̂T

˙̂
R
)−×

˙̂Ω

]
=
[

Ω̂
I−1

(
(IΩ̂)×Ω̂ + T

) ]+
[
K11 K12
K21 K22

] [
rR
rΩ

]
(3-4)

or
Ẋ = f(X) + Krt (3-5)

which is exactly the structure of an unbiased estimator like for example the Kalman filter.
So the above filter achieves the structure of a Kalman filter without violating the geometry
of the space. The Kalman filter was originally developed by utilizing basic tools from the
theory of Hilbert spaces, an approach which is not applicable in general since it is based on
the assumption that the underlying space is a vector space. The alternative, Hamiltonian for-
mulation of optimal control provides more freedom for deriving the aforementioned structure
in more general cases.

This is the advantage of formulating the estimation problem as an optimal control problem
instead of utilizing the Bayesian formulation. The former, more conservative approach, applies
successfully in this specific problem due to the fact that the orientations are mapped into a
compact manifold.
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28 Second-order-optimal minimum energy filter on TSO(3)

3-2 Simulations

The filter is implemented by employing the symplectic integration method from Section 2-
6. Without loss of generality it is assumed that the inertia tensor is expressed w.r.t the
principal axes and therefore represented with the diagonal matrix I = diag(2 5 3) Kgm2.
Initially the rigid body deviates R(0) = (60o,

[
0 0 1

]
) from the identity and rotates with

Ω0 =
[

0.5 0.6 0.4
]T

. The tracking directions w.r.t. the inertial frame are considered to

be a1 =
[

0 0 1
]T

and a2 =
[

0 1 0
]T

. As in [2], the measured output is obtained
by adding a Gaussian white noise with standard deviation σn = 0.5/3m, corresponding to
assume that with probability 99.7% the output samples have a distance of less than 0.5m
from the nominal output samples. A sample error of 0.5m corresponds to an error of about
30 deg in the measurement of the reference directions. Figure 3-1 represents, for the (0)-
and (-)-connection functions, the attitude error eR ∈ [0,π] and the angular velocity error eΩ.
These errors are defined as

eR(t) := acos

1−
tr
(
I −RT (t)R̂(t)

)
2


eΩ(t) := Ω̂(t)− Ω(t)

(3-6)

Both filters show similar performances, with the (0)-connection function performing best.

(-) connection

(0) connection

(-) connection

(0) connection

Figure 3-1: Plots for attitude error eR and angular rate error eΩ for both connection functions

By varying the inertia tensor to I = diag(1, 8, 3) Kg m2 the role of the connection function
becomes crucial as shown in Figure 3-2.
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(-) connection

(0) connection

(-) connection

(0) connection

Figure 3-2: Plots for attitude error eR and angular rate error eΩ for both connection functions

3-3 Time varying reference directions

Constant reference directions a1 =
[

0 0 1
]T

and a2 =
[

0 1 0
]T

represented w.r.t.
the L.V.L.H. frame declare that the direction of the sun is always perpendicular to the orbital
plane and also the geomagnetic field is tangent on the orbit which is not the case in practice.
This also implies that the position information is known from a separate source. However,
in general both unit vectors vary with the orbital position θ(t). We can write the reference
directions as vector functions of the orbital position. This also implies that in this case, the
L.V.L.H. frame is considered not as reference but as a frame which is rotated w.r.t. the E.C.I.
frame. So, both ai=1,2 are considered time varying representations w.r.t. the E.C.I. frame
encoding also the position information. The radius of the orbit is considered to be known and
constant. The model error is simply simulated as Gaussian white noise, in order to declare a
model error which we are not interested to determine.

Both the reference directions are vector functions of the position

a1(θ(t)) = α1(t) =
[

cos
(
θ(t)

)
sin
(
θ(t)

)
0
]

a1(θ(t)) = α2(t) =
[

sin
(
θ(t)

)
− cos

(
θ(t)

)
0
]

with θ(t) = 2π
5 t and are chosen such that

〈α1(t), α2(t)〉 = 0, ∀t > 0 (3-7)

Figure 3-3 shows the performance of the filter when both directions vary with time. Decreasing
the measurement noise the filter presents a more smooth orientation estimation error which
however is affected from the model uncertainty.
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30 Second-order-optimal minimum energy filter on TSO(3)

Figure 3-3: Attitude error eR and angular rate error eΩ for (0) and (-)-connection and time
varying directions. Initial deviations: (R0,Ω0) = ((60, [1 4 1]T ), [.3 .2 .4]T ). Model error standard
deviation σm = 0.1, measurement noise standard deviation σε = 0.01

3-4 Error dynamics for the second order optimal minimum energy
filter

For deriving the error dynamics we consider the left invariant group error for the orientation

R0 = R̂TR ∈ SO(3) (3-8)

The above error function replaces the commonly used error function x̂− x in observer theory
when x̂, x are elements of a vector space. Notice that

R0 = I3×3 ⇔ R̂ = R (3-9)

By differentiating (3-8) we obtain

Ṙ0 = ˙̂
RTR+ R̂T Ṙ

= −(Ω̂ + K11rR)×R̂TR+ R̂TR(Ω)×

= −(Ω̂ + K11rR)×R0 +R0Ω×
(3-10)

or
RT0 Ṙ0 = −RT0 (Ω̂ + K11rR)×R0 + Ω×

(!)= (Ω−RT0 (Ω̂ + K11rR))×

= (Ω−RT0 Ω̂ +RT0 K11rR)×
(3-11)

where (!) holds because XTY ×X = (XTY )× with X ∈ SO(3) and Y × ∈ so(3).

Setting

Ω0 = Ω−RT0 Ω̂ , (3-12)

the orientation’s estimation error dynamics read
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3-4 Error dynamics for the second order optimal minimum energy filter 31

RT0 Ṙ0 = (Ω0 +RT0 K11rR)× (3-13)

Please notice that (2-23) for the angular rate of the rigid body, has this particular form
because the angular rate is represented w.r.t. the body fixed frame. At this point it might
be helpful to think of the observer as a distinct frame of reference. Both R and R̂ declare
the deviation of the body’s and the filter’s frame w.r.t. L.V.L.H frame. However, Ω and Ω̂
are representations of the body’s and filter’s angular rate w.r.t. the body and filter’s frame
respectively. Therefore, both Ω and Ω̂ refer to different frames. On the other hand, R0 is the
deviation of the filter’s frame w.r.t. the body frame. Thereupon, it can be understood that
the expression Ω0 = Ω−RT0 Ω̂ transfers the filter’s angular rate from the filter’s frame to the
body frame and then computes the error in the same frame. There is no meaning of adding
representations referred to different frames. Nonetheless, the difference eΩ = Ω − Ω̂ has a
meaning since both Ω and Ω̂ are axes of rotation and thus valid representations if considered
w.r.t. the inertial frame.

For deriving the angular rate error, we first multiply by the inertia tensor and then apply the
time derivative operator in both sides of (3-12) which then reads

IΩ̇0 = IΩ̇− I
d

dt
(RT0 Ω̂)

= (IΩ)×Ω + T + IBδ − I(−(Ω0 +RT0 K11rR)×RT0 Ω̂ +RT0
˙̂Ω)

= (IΩ)×Ω + T + IBδ − I(RT0 Ω̂)(Ω0 +RT0 K11rR)− IRT0
˙̂Ω

=
(
(IΩ)× − (RT0 Ω̂)×I− I(RT0 Ω̂)×

)
Ω0 + T + IBδ − (RT0 Ω̂)×I(RT0 Ω̂)− I(R0Ω̂)×RT0 K11rR − IRT0 I−1I ˙̂Ω

By setting

H× = (IΩ)× − (RT0 Ω̂)×I− I(RT0 Ω̂)×

it can be verified that H× ∈ so(3). Furthermore,

I ˙̂Ω = (IΩ̂)×Ω̂ + T + IK21rR

and therefore

IΩ̇0 = H×Ω0 + T + IBδ − (RT0 Ω̂)×I(RT0 Ω̂)− I(R0Ω̂)×RT0 K11rR − IRT0 I−1((IΩ̂)×Ω̂ + T + IK21rR
)

= H×Ω0 +
(
I3×3 − IRT0 I−1)T + IBδ − I

(
(R0Ω̂)×RT0 K11 +RT0 K21

)
rR +RT0

(
XY + Y X)IΩ̂︸ ︷︷ ︸

γ(R0, Ω̂, y)
(3-14)

where, X = Ω̂× and Y = R0IRT0 I−1.

Finally, the angular rate estimation error can be written as

Ω̇0 = I−1(H×Ω0 + γ(R0, Ω̂, y)
)

(3-15)

where γ : SO(3)× so(3)× R3 → R3 is independent on Ω0.
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32 Second-order-optimal minimum energy filter on TSO(3)

Overall the error dynamics are given by the following structure.

RT0 Ṙ0 = (Ω0 +RT0 K11rR)×

Ω̇0 = I−1(H×Ω0 + γ(R0, Ω̂, y)
) (3-16)

3-5 Summary

In this chapter the second-order-optimal minimum energy filter on TSO(3) [2] is implemented
in order to stress the significance of the symplectic integration method mentioned in Sec-
tion 2-6. The filter presents an excellent performance and it is extremely tolerant to model
errors. Although the kinematics essentially express Euler’s theorem and therefore cannot be
uncertain, the filter acts directly through the kinematics as well. Finally, the error dynamics
are derived and can be used towards a stability analysis of the filter.
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Chapter 4

Predictive observer for attitude
estimation

In this chapter the dual optimal control problem is considered and a predictive filter is derived
based on the nonlinear predictive controller of [3]. The filter predicts the necessary model
error which drives the attitude estimate towards the true orientation of the spacecraft under
the presence of significant model errors. As stated in Section 2-4 a benefit of this approach
lies on the fact that the correction is performed through the dynamics while the kinematic
equation remains isolated and thus can be integrated geometrically. This was the problem
faced when a Kalman-based filter is deployed in conjunction with the algebra of quaternions.
The observer is derived in a coordinate free fashion directly on the special orthogonal group.

4-1 Observer’s structure

Given the following state space model:
RT Ṙ = Ω×

Ω̇ = I−1 ((ΩI)×Ω + T
)

+Bδ

y =
[
y1
y2

]
=
[
RTa1
RTa2

]
+Dε ,

(4-1)

the goal is to find the value of δ at time t which minimizes the cost

J
{
δ(t)

}
= 1

2(y(t+ h)− ŷ(t+ h))TQ(y(t+ h)− ŷ(t+ h)) + 1
2δ

T (t)Σδ(t) (4-2)

subject to
R̂(t)T ˙̂

R(t) = Ω̂×(t)
˙̂Ω(t) = I−1

(
(Ω̂(t)I)×Ω̂(t) + T (t)

)
+Bδ(t)

ŷ(t) =
[
ŷ1(t)
ŷ2(t)

]
=
[
R̂T (t)a1(t)
R̂T (t)a2(t)

] (4-3)

Master of Science Thesis Nikolas Koumpis



34 Predictive observer for attitude estimation

The value of the uncertainty term δ at time t influences the state (R,Ω) at a posterior instant
of time t+h and subsequently the same is true for the output since the state-output relation
is expressed via a memoryless system. Therefore, it has a meaning to ask for the value of δ
at time t that minimizes the weighted norm of the prediction error y − ŷ at time t + h for
each time instant t. The matrices penalize the prediction error and the correction term are
Q = qI3×3 and Σ = σI3×3 respectively, with q, σ > 0.

The estimated output ŷ at time t+ h can be expanded in time by using Taylor series up the
second order1derivative as

ŷi(t+ h) = ŷi(t) + ˙̂yi(t)h+ ¨̂yi(t)
h2

2 (4-4)

However, this approach requires expressions for the time derivatives of a1,2 and thus, both
directions should have been modeled as known functions of time. This latter requirement
though cannot always be sutisfied.

Instead of using time derivatives, expansions from [37, 38] can be utilized. These expansions
are based on the concept of relative derivative. Since the second order derivative of the output
depends on the control input, each output estimate ŷi=1,2 can be written as

ŷi(t+ h) ≈ ŷi(t) + z(R̂, Ω̂, h) + Λ(h)W(R̂, Ω̂)δ(t) (4-5)

where

zi
(
R̂, Ω̂×, h

)
= hL1

f (ŷi) + h2

2! L
2
f (ŷi) (4-6)

and
Λ(h) = h2

2 I3×3

whith h being the selected time step. The Lk=1,2
φ (ŷi) denotes the kth order Lie derivative of

ŷi w.r.t. the system.

Equation (4-5) declares that the correction term at time t influences the state times a factor of
O(h2). The larger the time step the larger the influence the control term has. This is because
the output depends on the orientation only and the correction term δ at time t affects the
orientation less compared to the angular velocity since they distant two derivatives.

Please notice how the time-delay dependency between the input and the output has been
transformed from a derivative expression into a polynomial expression. Essentially, this ex-
pansion expresses the time dependency from the input to the output with polynomial instead
of differential terms. In this way, the optimization problem becomes unconstraint which is
another benefit of this approach.

After substituting (4-5) in the cost function, the necessary condition for optimality

dδ(t)(J
{
δ(t)

}
) = 0

reads
1The reason why we choose to expand until the 2nd order derivative will become clear later on.
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4-1 Observer’s structure 35

dδ(t)(J
{
δ(t)

}
) = 0

dδ(t)((y(t+ h)− ŷ(t+ h))TQ(y(t+ h)− ŷ(t+ h)) + δT (t)Σδ(t)) = 0
dδ(t)(−2yT (t+ h)Qŷ(t+ h) + ŷT (t+ h)Qŷ(t+ h) + δT (t)Σδ(t)) = 0

dδ(t)(−2yT (t+ h)Qŷ(t+ h)) + dδ(t)(ŷT (t+ h)Qŷ(t+ h)) + dδ(t)(δT (t)Σδ(t)) = 0

(4-7)

The last equality of (4-7) has three terms. Since only these at time instant (t+h) depend on
the correction δ(t), for the first one we obtain

dδ(t)(−2yT (t+ h)Qŷ(t+ h)) =

dδ(t)(−2yT (t+ h)Q(ŷ(t) + z
(
R̂, Ω̂×, h

)
+ Λ(h)W(R̂, Ω̂)δ(t))) =

dδ(t)(−2yT (t+ h)Q(Λ(h)W(R̂, Ω̂)δ(t))) =
−2yT (t+ h)Q(Λ(h)W(R̂, Ω̂))

(4-8)

The second term of (4-7) can be written as

dδ(t)(ŷT (t+ h)Qŷ(t+ h)) =
dδ(t)

{
(ŷi(t) + zi(R̂, Ω̂, h) + Λ(h)Wi(R̂, Ω̂)δ)TQ(ŷi(t) + zi(R̂, Ω̂, h) + Λ(h)Wi(R̂, Ω̂)δ)

}
=

dδ(t)
{
ŷT (t)QΛ(h)W(R̂, Ω̂)δ(t) + zT

(
R̂, Ω̂×, h

)
QΛ(h)W(R̂, Ω̂)δ(t)+

δT (t)WT (R̂, Ω̂)(Λ(h))2QW(R̂, Ω̂)δ(t)
}

=

ŷT (t)QΛ(h)W(R̂, Ω̂) + zT
(
R̂, Ω̂×, h

)
QΛ(h)W(R̂, Ω̂) + 2δT (t)WT (R̂, Ω̂)(Λ(h))2QW(R̂, Ω̂)

(4-9)

and the quadratic term w.r.t. δ(t) is simply given by

dδ(t)(δT (t)Σδ(t)) = 2δT (t)Σ (4-10)

By combining (4-8), (4-9), (4-10) we obtain

−2yT (t+ h)QΛ(h)W(R̂, Ω̂)+
2δT (t)Σ + ŷT (t)QΛ(h)W(R̂, Ω̂)+

zT
(
R̂, Ω̂×, h

)
QΛ(h)W(R̂, Ω̂)+

2δT (t)WT (R̂, Ω̂)(Λ(h))2QW(R̂, Ω̂) = 0

(4-11)

Transposition in both parts of the above equation and inversion yield

δ(t) = −1
2
{
(Λ(h))2WT (R̂, Ω̂)QW(R̂, Ω̂) + ΣT}−1(WT(R̂, Ω̂)QΛ(h)

)
·{

− y(t+ h) + ŷ(t) + z
(
R̂, Ω̂×, h

) } (4-12)
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36 Predictive observer for attitude estimation

Finally, (4-3) and (4-12) define the structure of the predictive observer. The terms z(R̂, Ω̂, h)
and W(R̂, Ω̂) remain to be determined. In the case where ai=1,2 are constant, (4-4) can be
used with

˙̂yi(t) = dt(R̂T )ai
= −Ω̂×R̂Tai

(4-13)

and
¨̂yi(t) = −dt(Ω̂×R̂Tai)

= −dt(Ω̂×)R̂Tai − Ω̂×dt(R̂T )ai

= −( ˙̂Ω)×R̂Tai − Ω̂× ˙̂
RTai

= −( ˙̂Ω)×R̂Tai + (Ω̂×)2R̂Tai
(!)= (R̂Tai)× ˙̂Ω + (Ω̂×)2R̂Tai

= (R̂Tai)× ˙̂Ω + (Ω̂×)2R̂Tai

= (R̂Tai)×I−1
(
(Ω̂I)×Ω̂ + T + IBδ

)
+ (Ω̂×)2R̂Tai

(4-14)

where (!) is because in general for two vectors A, B ∈ R3

(A)×B = A×B = −B ×A = −(B)×A

and therefore

ŷi(t+ h) = ŷi(t) + (−Ω̂×R̂Tai)h+ ((R̂Tai)×I−1
(
(Ω̂I)×Ω̂ + T + IBδ

)
+ (Ω̂×)2R̂Tai)

h2

2

= ŷi(t) + (−Ω̂×R̂Tai)h+
{

(R̂Tai)×I−1
(
(Ω̂I)×Ω̂ + T

)
+ (Ω̂×)2R̂Tai

}h2

2︸ ︷︷ ︸
zi(R̂, Ω̂, h)

+h2

2 (R̂Tai)×B︸ ︷︷ ︸
Wi(R̂, Ω̂)

δ

= ŷi(t) + zi(R̂, Ω̂, h) + Λ(h)Wi(R̂, Ω̂)δ

For the more general case where both inertial directions vary with time, the expansion from
(4-6) should be employed.

4-2 Lie derivatives in SO(3)

In this Section it is presented another way to derive the correction term and it is used while
assuming reference directions that vary with time and cannot be modeled by specific known
functions. This derivation does not process the inertial directions.
The first term of (4-6) reads

L1
φ(ŷi) =

(
d

(R̂,Ω̂)
ŷi
)
f

=
(
d

(R̂,Ω̂)
R̂Tai

)
f

=
[

dR̂R̂
Tai dΩ̂R̂

Tai
] [ Ω̂

I−1
(
(Ω̂I)×Ω̂ + T

)
+Bδ

] (4-15)
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4-2 Lie derivatives in SO(3) 37

where Ω̂ ∈ R3. The first term can be written as

dR̂R̂
Tai = dR̂(R̂Tai)(δ̂R) = dR̂(R̂δ̂R)Tai

= ∂

∂Ω̂
(
e−Ω̂×

R̂Tai
)
|Ω̂=0 =

(
R̂Tai

)× = ŷ×i
(4-16)

The latter results by expanding the exponential matrix, and from the fact that with X =
x× ∈ so(3)

dX
(
XTa

)
= dx

(
(x×)Ta

)
= dx

(
− x×a

)
= dx

(
a×x

)
= dx

(
a×x

)
= a× ∈ so(3)

(4-17)

Finally, since dΩ̂R̂
Tai = 0 we obtain

L1
φ(ŷi) =

(
R̂Tai

)×Ω̂ = −Ω̂×
(
R̂Tai

)
+ 0 (4-18)

Furthermore, the second-order Lie derivative of (4-6) reads

L2
φ(ŷi) = L1(− Ω̂×

(
R̂Tai

))
= −

[
dR̂
(
Ω̂×
(
R̂Tai

))
dΩ̂
(
Ω̂×
(
R̂Tai

)) ] [ Ω̂
I−1

(
(Ω̂I)×Ω̂ + T

)
+Bδ

]

= −
[

Ω̂×
(
R̂Tai

)× −
(
R̂Tai

)× ] [ Ω̂
I−1

(
(Ω̂I)×Ω̂ + T

)
+Bδ

]
= −Ω̂×

(
R̂Tai

)×Ω̂ +
(
R̂Tai

)× (I−1
(
(Ω̂I)×Ω̂ + T

)
+Bδ

)
=
(
Ω̂×
)2(
R̂Tai

)
+
(
R̂Tai

)× (I−1
(
(Ω̂I)×Ω̂ + T

)
+Bδ

)
(4-19)

where the term dR̂
(
Ω̂×
(
R̂Tai

))
is computed using the product rule:

dR̂
(
Ω̂×
(
R̂Tai

))
= Ω̂× ∂

∂Ω̂
(
R̂Tai

)
|Ω̂=0

= Ω̂×
( ∂

∂Ω̂
(
e−Ω̂×)

R̂Tai
)
|Ω̂=0

= Ω̂×
(
R̂Tai

)×
(4-20)

Notice that the optimal correction term makes the observer a non-causal system since δ at
time t uses the value of the measured output at the next time instant which of course is not
known a priori. By reducing the integration step h we can manage to have y(t + h) → y(t).
However, as (4-5) indicates, by decreasing h, the influence of the correction term weakens for
constant penalty matrices Q and Σ.
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38 Predictive observer for attitude estimation

4-3 The covariant constraint

In the present method the optimal state trajectory estimate is determined on the basis of
the assumption that consistent estimates of the state trajectories must match the available
measurements with a residual error covariance which is approximately equal to the known
measurement error covariance [30]. In other words the uncertainty of the estimation error be-
tween the estimated outputs and the measured observations cannot be less than the covariance
of the measurement noise as shown in (4-21).

E
{

(ŷ(t)− y(t))(ŷ(t)− y(t))T
}
≥ E

{
ε(t)ε(t)T

}
(4-21)

This constraint has to be imposed next by the dual optimal control problem in order the esti-
mates to be statistically consistent. Furthermore, in order to achieve optimal and statistically
consistent estimates the penalty matrix Σ has to be chosen such that the following equality
approximately holds:

E
{

(ŷ(t)− y(t))(ŷ(t)− y(t))T
}
≈ σεI6×6 (4-22)

The estimated outputs should fit the measurements with approximately the same uncertainty
as the actual measurements fit the truth (without noise) output. While δ(t) may in fact be
large, it should be as small as possible. The presence of ||δ||Σ in the cost functional J produces
somewhat ambivalent results. If the original state model equations contain significant errors,
then the addition of large model correction terms should enable the estimate to better fit
the measurements. Thus, the first term in the cost J is decreased. However, the addition
of the weighted norm for δ(t) overall increases cost J . The proper balance between the two
competing effects depends on the choice of Σ.
The matrix Σ is determined in order the covariance constraint to be satisfied. If Σ is decreased
below this value, the estimate matches the measurements too closely and becomes too affected
by the measurement noise. If Σ is too large, the estimate is too far from the measurements.
If Σ is too small, the estimate is based more on the measurements. From (4-22) it can be seen
that the proper value for Σ is decided only after the output estimates have been obtained.

4-4 Simulations

Various simulation scenarios are set for testing the observer’s performance. Both constant
and time varying inertial directions ai=1,2 are considered with different initial states. The
attitude estimation error is given from the following function

eR(t) = cos−1
(

1− tr(I −RT (t)R̂(t))
2

)
(4-23)

and the angular rate estimation error is calculated as eΩ = Ω(t)− Ω̂(t). For representing the
initial orientation the principal rotation vector notation (θ,K) is used. From the principal
rotation vector representation we can derive the orientation matrix R ∈ SO(3) by using the
Rodrigues formula [39]:

R = I + (sin(θ))K× + 1− cos2(θ)
2 (K×)2 (4-24)
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The control torque is considered to be T (t) =
[

sin
(2π

10
)

cos
(2π

2
)

sin
(2π

50
) ]T

and exerts in
a rigid body with inertia tensor I = diag(2, 5, 3) Kg m2 w.r.t. the principal axes.The inertial
directions a1 =

[
0 0 1

]T
and a2 =

[
0 1 0

]T
are used.

Initially we perform simulations for various initial conditions (R0,Ω0) using a fixed time
step h = 0.1. The prediction and uncertainty error are penalized with Q = 150I6×6 and
Σ = 0.001I3×3 respectively. The measured output is obtained by adding zero mean Gaussian
white noise with standard deviation σε = 0.1 m. The model error is considerred to be zero.
The results are shown in Figure 4-1

Figure 4-1: Performance of predictive observer for the three different initial conditions
(R0,Ω0). The top, middle, and bottom figures correspond to ((4, [1 4 1]T ), [.3 .1 .2]T ),
((3, [.1 4 10]T ), [.3 .1 .2]T ) and ((3, [.1 4 10]T ), [.5 1.5 1]T ) respectively.
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40 Predictive observer for attitude estimation

The observer reduces the estimation error starting from large initial deviations both for the
angular rate and the orientation. However, does not behave well in steady state since the even
the rate estimation error is not even close to zero. Essentially, this means that measuring the
orientation error in degrees is misleading since the axes of rotations of the system and the
estimator are not aligned. One idea is to increase the penalty Q = qI6×6 while abandoning
the considered model more by also decreasing Σ = σI3×3. The results for Q = 50I6×6,
Σ = 0.0001I3×3 and (R0,Ω0) = ((3, [.1 4 10]T ), [.5 1.5 1]T )are shown in Figure 4-2.

Figure 4-2: Performance of predictive observer for (R0,Ω0) = ((3, [.1 4 10]T ), [.5 1.5 1]T ) and
penalties Q = 50I6×6, Σ = 0.0001I3×3.

We observe that the estimation error converges faster but the steady state error oscillates
heavily around 10 deg. The results become even worse by increasing Q since then the es-
timated outputs are forced to follow in more detail the noisy measurements as discussed in
Section 4-3.

Figure 4-3: Performance of predictive observer for (R0,Ω0) = ((3, [.1 4 10]T ), [.5 1.5 1]T ) and
penalties Q = 50I6×6, Σ = 0.0001I3×3.

At this point it is worth to be mentioned that by decreasing the horizon step h, the influence
of the correction term δ is decreased for constant penalty matrices. However, by decreasing
the time horizon and also tuning the penalty matrices we can achieve the result that is shown
in Figure 4-4. Simulations reveal that for any given estimation error accuracy we can find
time step h and penalty matrices Q and Σ that achieve the given error accuracy in an also
statistical valid way.
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Figure 4-4: Performance of predictive observer for (R0,Ω0) = ((3, [.1 4 10]T ), [.5 1.5 1]T ) , h = 0.01
and penalties Q = 103I6×6, Σ = 10−5I3×3 (top), and for (R0,Ω0) = ((3, [.1 4 10]T ), [.5 1.5 1]T ),
h = 0.001 and penalties Q = 105I6×6, Σ = 10−6I3×3 (bottom).

Finally, Figure 4-5 shows the result when the observer is tested in the presence of model error
and measurement noise with the time step decreased. In this case, the model error is simply
simulated as the deterministic signal δ(t) =

[
0.9 cos 2π

5 0 0
]T

Figure 4-5: Performance of predictive observer for (R0,Ω0) = ((3, [.1 4 10]T ), [.5 1.5 1]T ) , h = 0.01
and penalties Q = 103I6×6, Σ = 10−4I3×3. The measurement noise is set to have standard deviation
σε = 0.1 and the model error is equal to δ.

From Figures 4-4 and 4-5 we can conclude the following: By decreasing the horizon step h the
observer seems to perform better. As it was mentioned earlier, the influence of the correction
term δ is affected by the size of the horizon step. By choosing a large step, the observer is
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42 Predictive observer for attitude estimation

influenced more from the correction term δ. However, a smaller step allows to reduce the
penalty Σ more or equivalently to abandon the considered model more by allowing for larger
model errors.

4-5 Time varying reference directions

By representing both directions in the L.V.L.H. frame we also implicitly assume knowledge
about the orbital position θ(t). In an attempt to incorporate the information about the
orbital position, both directions should vary with θ(t). This also implies that in this case,
the L.V.L.H. frame is considered not as reference but as a frame which is rotated w.r.t. the
E.C.I. frame. The later frame is then the inertial one. The radius of the orbit is considered
to be known and almost constant.

Both reference directions vary with time

a1(t) =
[

cos
(2π

5 t
)

sin
(2π

5 t
)

0
]

a2(t) =
[

sin
(2π

5 t
)
− cos

(2π
5 t
)

0
]

and are chosen such that
〈a1(t), a2(t)〉 = 0, ∀t > 0 (4-25)

In this case we assume that the sensors used, introduce measurement noise with small (positive
definite) covariance matrix, σε = 0.05 m. In this section the predictive nonlinear filter is tested
w.r.t. to its tolerance in model errors and with the reference directions to vary with time as
mentioned earlier.

A model uncertainty δ(t) =
[

cos 2π
5 0 0

]T
drives the actual system. We expect that

the filter will show a good performance by determining, through the estimation process, the
optimal δ∗(t) that drives the estimates. Furthermore, in order to stress the significancy of the
time step, we simulate first for h = 0.1 and Q = 1000I6×6, Σ = 0.001I3×3 and subsequently for
h = 0.01, Q = 105I6×6 and Σ = 10−5I3×3. The simulations involve different initial conditions
(R0,Ω0). The results for h = 0.1 are given in Figure 4-6.
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4-5 Time varying reference directions 43

Figure 4-6: Attitude and angular rate error of the predictive observer for different model uncertainties
and time varying reference directions. Initial condition (R0,Ω0) = ((4, [1 4 1]T ), [.4 .5 .6]T ), and horizon
step h = 0.1 sec. Inertia tensor I = diag(11 18 15) (top), and I = diag(60 80 50) (bottom) and model
uncertainty a model uncertainty δ(t) rad/sec.

The model uncertainties tested correspond to large model deviations which indicates that the
filter presents tolerance in model errors. This is a very important fact since the environmental
torques are not known and can deviate notably. The filter’s tuning parameters do not seem
to depend on the model uncertainty and the initial conditions which is of course desirable.
Do they depend however on the inertia tensor. This is reasonable since the inertia tensor
determines the amount of nonlinearity which characterizes the motion. A larger penalty q,
forces the estimated output to follow in a more detailed way the "more" nonlinear output.
This also requires a smaller penalty in the control action δ. Of course a larger inertia tensor
results in a more "slow", "not so nonlinear" motion given the fact that the control torque is
"small" as the one used in these simulations.

Finally the observer is examined for smaller time steps and for adapted penalties Q = 105I6×6
and Σ = 10−5I3×3 under the same model errors and for measurement noise with standard
deviation σε = 0.01 m. The results for h1 = 0.01 and h2 = 0.001 are shown in Figure 4-7 and
Figure 4-8 respectively.

5 10 15
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0.5

1

1.5

2

Figure 4-7: Attitude and angular rate error of the predictive observer. Initial condition (R0,Ω0) =
((4, [1 4 1]T ), [.4 .5 .8]T ), and horizon step h = 0.01 sec. Model error δ(t) rad/sec and inertia tensor
I = diag(20 50 30).

Master of Science Thesis Nikolas Koumpis



44 Predictive observer for attitude estimation

5 10 15
0

0.5

1

Figure 4-8: Attitude and angular rate error of the predictive observer. Initial condition (R0,Ω0) =
((4, [1 4 1]T ), [.4 .5 .8]T ), and horizon step h = 0.001 sec. Model error δ(t) rad/sec and inertia tensor
I = diag(20 50 30).

4-6 Error dynamics for the predictive observer

The error dynamics for the predictive observer are based on the same method followed in
Section 3-4. Again, the left invariant group error for the orientation is used

R0 = R̂TR ∈ SO(3) (4-26)

Applying the time derivative we obtain

RT0 Ṙ0 = (Ω0)× (4-27)

where
Ω0 = Ω−RT0 Ω̂ (4-28)

By time differentiation of the latter equation we get

IΩ̇0 = H×Ω0 + T + IBδ − (RT0 Ω̂)×I(RT0 Ω̂)− IRT0 I−1((IΩ̂)×Ω̂ + T + Iδ∗(R̂, Ω̂)
)

= H×Ω0 +
(
I3×3 − IRT0 I−1)T + IBδ − IRT0 δ∗(R̂, Ω̂)︸ ︷︷ ︸

γ(R0, Ω̂, y)

(4-29)

where δ∗(R̂, Ω̂) is defined in (4-12). The error dynamics for the predictive observer maintain
the well known form of the rigid body dynamics. A skew symmetric matrix H×- the angular
momentum of the error frame- affects the angular rate error Ω0. In addition, a correction
term γ independent on Ω0 acts as the input torque.

Nikolas Koumpis Master of Science Thesis



4-7 Comparison between the predictive observer and the second-order-optimal minimum energy filter on
TSO(3) 45

4-7 Comparison between the predictive observer and the second-
order-optimal minimum energy filter on TSO(3)

In this section a comparison between the two filters is performed and justifications are made
regarding their performance. Setting

(
R̂T

˙̂
R
)−× = ˙̂

X1 ∈ R3, and focusing in their structure,
both filters can be written as follows:

[ ˙̂
X1
˙̂
X2

]
=
[

X̂2
φ(X̂2, δ)

]
+
[
K11 K12
K21 K22

] [
r1(X̂1, X̂2, y)

0

]
K̇ = E

(
K
) (4-30)

[ ˙̂
X1
˙̂
X2

]
=
[

X̂2
φ(X̂2, δ)

]
+
[

03×3
B

]
δ(X̂1, X̂2, y) (4-31)

Figure 4-9: Comparison between the second order minimum energy filter (red) and the predictive
observer (blue). Tuning parameters: Q = 1, R = 10−2 (second-order-optimal min. energy filter) and
Q = 104, Σ = 10−4 predictive filter. Model error δ(t) =

[
0.1 cos( 2π

3 ) 0.1 sin( 2π
5 ) 0

]T .
For the comparison, to both filters exerts an input torque T (t) =

[
sin
(2π

3
)

cos
(2π

1
)

sin
(2π

5
) ]T

,
the reference directions are chosen as

a1(t) =
[

cos
(2π

5 t
)

sin
(2π

5 t
)

0
]

a2(t) =
[

sin
(2π

5 t
)
− cos

(2π
5 t
)

0
]

and the inertia tensor w.r.t. the principal axes is I = diag(20, 50, 30). Both filters are
integrated with the same time step h = 0.01. The measurement noise is simulated as gaussian
white noise sequence with variance σε = 0.05 m. The results shown in Figure 4-9 indicate
that the two estimators perform equally with the second-order-optimal minimum energy filter
to converge faster than the predictive filter.

However, by increasing the measurement noise σε = 0.1 the minimum energy filter is expected
to be superior against the predictive observer. Indeed from Figure 4-10 can be seen that the
predictive observer is not tolerant to measurement noise. One way to solve this issue, is to
decrease the penalty matrix Σ. The estimated outputs are then not overfitted to the noisy
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46 Predictive observer for attitude estimation

measurements. However, the value of Σ should be chosen carefully according to the discussion
of Section 4-3 in order for a reasonable level of accuracy to be maintained and also for the
filter to provide statistically consistent estimates.

Figure 4-10: Comparison between the second order minimum energy filter (red) and the pre-
dictive filter (blue) with increased measurement noise. Tuning parameters: Q = 1, R = 10−2

(second-order-optimal min. energy filter) and Q = 104, Σ = 10−4 predictive filter. Model error
δ(t) =

[
0.1 cos( 2π

3 ) 0.1 sin( 2π
5 ) 0

]T .
Although in the second order minimum energy filter the measured observations influence
linearly the estimates too, the noise effect is reduced by the matrix K which corresponds to
the covariance matrix of the Kalman filter [4]. The matrix K combines linearly, optimally,
at each instant of time, the prior knowledge and the incoming measurements and evolves
according to the perturbed Riccati equation. This is the reason why, with increased noisy
measurements, the second-order-optimal minimum energy filter performs better than the
predictive filter.

The predictive filter performs a correction through the dynamics only. Instead, the mini-
mum energy filter introduces two correction terms, one in the dynamics and a second one
in the kinematics. Overall, we can conclude that the filter’s performances emerge from their
structure as a result of formulating the optimization problem differently.

Under the assumption that the sensors are of good quality and precision, both the predictive
filter on TSO(3) and the minimum energy filter can be considered that perform almost equally
as shown in Figure 4-9. The main advantage of both filters is that they are extremely tolerant
to model errors as a result of the deterministic filtering approach.

4-8 Summary

In this chapter the predictive filter on TSO(3) is derived. The filter’s performance was assessed
both for constant and time varying reference inertial directions. Finally the predictive filter
on TSO(3) is compared with the second-order-optimal minimum energy filter on TSO(3) [2].
The comparison study shown that both filters are extremely tolerant to model errors. The
predictive filter is however, disturbed heavily from the measurement noise compered with
the minimum energy filter. Another significant observation is that the predictive filter comes
with the covariant constraint which requires a tuning procedure for the model error penalty
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matrix. Finally, the error dynamics are also derived and can be used for analyzing the filter
w.r.t. its stability properties.

Master of Science Thesis Nikolas Koumpis



48 Predictive observer for attitude estimation

Nikolas Koumpis Master of Science Thesis



Chapter 5

Geomagnetic field estimation for
orbital position estimation

In this chapter the second part of the problem of attitude and rate estimation discussed in
Section 2-7 is studied. The method proposed takes advantage of the deterministic filtering
approach. The goal is to estimate the orientation of the spacecraft w.r.t. the E.C.I. reference
frame. This can be done by employing a kinematic model for the geomagnetic field up to
some model error. This model error is considered to be deterministic and unknown within
a Hilbert space. The deterministic filtering approach presented in Chapter 4 is appropriate
for this task. In order to extract the kinematic model for the geomagnetic field the transport
theorem [40] is utilized. In order to estimate the orientation, angular rate and geomagnetic
field of the spacecraft, the predictive filter in TSO(3) derived in Chapter 4 is extended and
used. The important characteristic of the deterministic filtering approach is that the model
error is determined during the estimation procedure. The main idea is that after estimating
the Earth’s geomagnetic field we can impose a specific structure on the model uncertainty and
extract information about the orbital angular velocity of the spacecraft which when integrated
gives the (angular) orbital position. This can be stated after assuming a dipole model for
the geomagnetic field. The chapter starts with the problem statement. Subsequently the
optimization problem is solved and the extended filter emerges. Subsequently it is proved
that under realistic assumptions, the problem can be decomposed into two separate problems
where the resulting filter is equivalent with the series interconnection of two predictive filters.
As in Chapter 4 the problem is set and solved without using coordinates.
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50 Geomagnetic field estimation for orbital position estimation

Before stating the problem it is important to present the transport theorem of analytical
mechanics.

Theorem 2. [28] Let A and B be two frames with relative angular velocity vector ωA/B, and
let r be a vector. The time derivative of r in the A frame can be related to the time derivative
of r in the B frame as

dA

dt
r = dB

dt
r + ωA/B × r (5-1)

Please notice that the theorem does not specify some particular representation for the vector
r and therefore it can be represented arbitrarily either w.r.t. A or w.r.t. B. This note is impor-
tant in order to form the output equation for the geomagnetic field. The kinematic equation
refers to the time derivative of the geomagnetic field as shown from the body frame while
it is represented in the inertial frame. Furthermore, since ωA/B indicates the instantaneous
angular rotation vector of A w.r.t. B its representation is the same for both frames.

Consider a nonlinear dynamic system that can be described by a state space model of the
following form:

RT (t)Ṙ(t) = Ω×(t)
Ω̇(t) = I−1((Ω(t)I)×Ω(t) + T ) +B1δ(t)
ġ(t) = Ω×(t)g(t) +B2σ(t)

y(t) =

 y1(t)
y2(t)
y3(t)

 =

 RT (t)a1(t)
RT (t)a2(t)
RT (t)g(t)

+Dε(t)

(5-2)

where R(t) ∈ SO(3), g(t) ∈ R3 is the geomagnetic field and, Ω(t), δ(t), σ(t), ε(t) ∈ R3. For the
output noise, it is considered that there is no inference between the various output channels
and also that is white and Gaussian. ThereforeD = diag(d1, d2, d3), di ∈ R3×3. The transport
theorem is used for extracting the kinematic equation for the geomagnetic field g. The orbital
radius is considered constant. It is worth to be noticed that both inertial directions ai=1,2
are considered known w.r.t. the inertial frame and correspond to the Sun’s direction and the
direction of (possibly) another celestial body respectively.

As can be seen from Theorem 2 the time variation of the geomagnetic field as seen from the
body frame and represented w.r.t. the inertial has two terms. The kinematic equation for the
geomagnetic field in (5-2) considers only the second term of (5-1). This variation expresses
how the field changes w.r.t. body frame due to the fact that the body frame is instantaneously
rotating. The second part refers to how the geomagnetic field changes w.r.t. the inertial frame.
This component is unknown and it is modeled as an unknown and deterministic model error.
As a first step, we hope that the (deterministic) predictive filtering approach will reveal the
(minimum) model error that produces the available noisy measurements.

Nikolas Koumpis Master of Science Thesis



5-1 Problem statement 51

5-1 Problem statement

The predictive filter in this case emerges from the following optimization problem:

min
U(t)

1
2(y(t+ h)− ŷ(t+ h))TQ(y(t+ h)− ŷ(t+ h)) + 1

2U
T (t)ΠU(t)

s.t. R̂T (t) ˙̂
R(t) = Ω̂×(t)

˙̂Ω(t) = I−1((Ω̂(t)I)×Ω̂(t) + T ) +B1δ(t)
˙̂g(t) = Ω̂×(t)ĝ(t) +B2σ(t)

ŷ(t) =

 ŷ1(t)
ŷ2(t)
ŷ3(t)

 =

 R̂T (t)a1(t)
R̂T (t)a2(t)
R̂T (t)ĝ(t)


(5-3)

where Q ∈ R9×9 > 0, Π ∈ R6×6 > 0, and U(t) =
[
δT (t) σT (t)

]T
. It is also assumed that

Bi=1,2 = I3×3.
Each estimated output can be expanded according to [37, 38] as shown in Chapter 4. For
ŷi=1,2 we have already shown that

ŷi=1,2(t+ h) = ŷi=1,2(t)− hΩ̂×R̂(t)Tai=1,2

+ h2

2
{

(Ω×)2R̂T (t)ai=1,2 + (R̂T (t)ai=1,2)×
(
I−1((IΩ̂)×Ω̂ + T ) + δ(t)

)}
= ŷi=1,2(t)− hΩ̂×R̂(t)Tai=1,2+
h2

2
{

(Ω×)2R̂T (t)ai=1,2 + (R̂T (t)ai=1,2)×
(
I−1((IΩ̂)×Ω̂ + T )

}
+ h2

2 (R̂T (t)ai=1,2)×δ(t)

= ŷi=1,2(t) + zi=1,2(R̂, Ω̂, h) + Λi=1,2(h)wi=1,2(R̂, Ω̂)δ

(5-4)

Deriving the corresponding expression for ŷi=3(t+h) is much easier since the least number of
times y3(t) has to be differentiated for any component of u(t) to appear in its time derivative
is equal to one. This is because the geomagnetic field g is involved in y3(t), and subsequently
because it is directly affected by the model error σ(t) in U(t). Therefore we have

ŷ3(t+ h) = ŷ3(t) + hL(R̂T (t)ĝ(t)) (5-5)

where

L(R̂T (t)ĝ(t)) =
[

dR̂R̂
T (t)ĝ(t) dΩ̂R̂

T (t)ĝ(t) dĝR̂T (t)ĝ(t)
]  Ω̂

I−1((Ω̂(t)I)×Ω̂(t) + T ) + δ(t)
Ω̂×(t)ĝ(t) + σ(t)


The term dR̂R̂

T (t)ĝ(t) has already been calculated in Section 4-2 and dΩ̂R̂
T (t)ĝ(t) = 0 since

the angular velocity is not involved in y3(t). Finally, dĝR̂T (t)ĝ(t) is simply the Jacobian of
the vector R̂T (t)ĝ(t) w.r.t. ĝ(t) and hence equal to R̂T (t). Therefore, we have
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ŷ3(t+ h) = ŷ3(t) + h
(
(R̂T (t)ĝ(t))×Ω̂(t) + R̂T (t)Ω̂×(t)ĝ(t)

)
+ hR̂T (t)σ(t)

= ŷ3(t) + z3(R̂, Ω̂, h) + Λi=3(h)w3(R̂, Ω̂)σ(t)
(5-6)

By denoting
Y =

[
ŷT1 (t) ŷT2 (t) ŷT3 (t)

]T
Z(R̂, Ω̂, h) =

[
zT1 (R̂, Ω̂, h) zT2 (R̂, Ω̂, h) zT3 (R̂, Ω̂, h)

]T
W (R̂, Ω̂, h) =

 w1(R̂, Ω̂, h) 03×3
w2(R̂, Ω̂, h) 03×3

03×3 w3(R̂, Ω̂, h)


we can write

Ŷ (t+ h) = Ŷ (t) + Z(R̂, Ω̂, h) +W (R̂, Ω̂, h)U(t) (5-7)

and therefore, the solution U∗(t) of the optimization problem (5-3) as shown in Section 4-1
can be written as

U∗(t) = −1
2
{
W T (R̂, Ω̂, ĝ, h)QW (R̂, Ω̂, ĝ, h) + Π

}−1
W T (R̂, Ω̂, ĝ, h)Q·(

− Y (t) + Ŷ (t) + Z(R̂,Ω, ĝ, h)
) (5-8)

where U∗[1:3](t) = δ∗(t) and U∗[4:6](t) = σ∗(t).

At this point it is possible to prove that the aforementioned predictive filter can be decomposed
in two separate predictive filters connected in series as follows:

W TQ =


w3×3

1 03×3

w3×3
2 03×3

03×3 w3×3
3


T  Q6×6

11 Q6×6
12

Q3×6
21 Q3×3

22

 =

 w6×3
12 06×3

03×3 w3×3
3


T  Q6×6

11 Q6×3
12

Q3×6
21 Q3×3

22



=

 wT, 3×6
12 Q6×6

11 wT, 3×6
12 Q6×3

12

wT, 3×3
3 Q3×6

21 wT, 3×3
3 Q3×3

22


(5-9)

where w6×3
12 =

[
w3×3

1
w3×3

2

]
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Therefore, for W TQW we have

W TQW =

 wT,3×6
12 Q6×6

11 wT,3×6
12 Q6×3

12

wT,3×3
3 Q3×6

21 wT,3×3
3 Q3×3

22

[ w6×3
12 06×3

03×3 w3×3
3

]

=

 wT,3×6
12 Q6×6

11 w6×3
12 wT,3×6

12 Q6×3
12 w3×3

3

wT,3×3
3 Q3×6

21 w6×3
12 wT,3×3

3 Q3×3
22 w3×3

3


(5-10)

By using the inversion lemma [41] for W TQW + Π we have:

(W TQW + Π)−1W TQ =

=

 wT,3×6
12 Q6×6

11 w6×3
12 + Π3×3

11 wT,3×6
12 Q6×3

12 w3×3
3 + Π3×3

12

wT,3×3
3 Q3×6

21 w6×3
12 + Π3×3

21 wT,3×3
3 Q3×3

22 w3×3
3 + Π3×3

22


−1  wT, 3×6

12 Q6×6
11 wT, 3×6

12 Q6×3
12

wT, 3×3
3 Q3×6

21 wT, 3×3
3 Q3×3

22



=

 I3×3 03×3

−(wT,3×3
3 Q3×3

22 w3×3
3 + Π3×3

22 )−1(wT,3×3
3 Q3×6

21 w6×3
12 + Π3×3

21 ) I3×3

 ·
 [(wT,3×6

12 Q6×6
11 w6×3

12 + Π3×3
11 )− (wT,3×6

12 Q6×3
12 w3×3

3 + Π3×3
12 )(wT,3×3

3 Q3×3
22 w3×3

3 + Π3×3
22 )−1(wT,3×3

3 Q3×6
21 w6×3

12 + Π3×3
21 )]−1 ......

03×3 ......



...... 03×3

...... (wT,3×3
3 Q3×3

22 w3×3
3 + Π3×3

22 )−1


 I3×3 (wT,3×6

12 Q6×3
12 w3×3

3 + Π3×3
12 )(wT,3×3

3 Q3×3
22 w3×3

3 + Π3×3
22 )−1

03×3 I3×3

 ·
 wT,3×6

12 Q6×6
11 wT,3×6

12 Q6×3
12

wT,3×3
3 Q3×6

21 wT,3×3
3 Q3×3

22

 =M(R̂, Ω̂, ĝ, h)

(5-11)
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Given the above discussion and by denoting Y[1:6] =
[
yT1 (t) yT2 (t)

]T
, Y[7:9] =

[
yT3 (t)

]T
and Z[1:6] =

[
zT1 (t) zT2 (t)

]T
, Z[7:9] =

[
ẑT3 (t)

]T
we can write (5-8) as follows:

U∗(t) = −1
2M(R̂, Ω̂, ĝ, h)

[
−Y[1:6] + Ŷ[1:6] + Z[1:6]
−Y[7:9] + Ŷ[7:9] + Z[7:9]

]
(5-12)

By declaring X̂ = (R̂, Ω̂, ĝ) the resulting filter has the form

˙̂
X = f(X̂)− Γ

2M(X̂, h)(−Y + Ŷ + Z) (5-13)

where Γ =
[

03×6

I6×6

]
. In particular, by writingM∈ R6×9 as a block matrix we obtain:

[
δ∗(t)
σ∗(t)

]
= −1

2

[
M11 M12
M21 M22

] [
−Y[1:6] + Ŷ[1:6] + Z[1:6]
−Y[7:9] + Ŷ[7:9] + Z[7:9]

]
(5-14)

At this point, from (5-11) it is easy to verify that for Q12 = 06×3 and Q21 = 03×6 and Π
diagonal, the matrixM becomes block diagonal with

M11 = (wT,3×6
12 Q6×6

11 w6×3
12 + Π3×3

11 )−1wT,3×6
12 Q6×6

11

M22 = (wT,3×3
3 Q3×3

22 w3×3
3 + Π3×3

22 )−1wT,3×3
3 Q3×3

22
(5-15)

and therefore

δ∗(t) =− 1
2(wT,3×6

12 Q6×6
11 w6×3

12 + Π3×3
11 )−1wT,3×6

12 Q6×6
11 (−Y[1:6] + Ŷ[1:6] + Z[1:6])

σ∗(t) =− 1
2(wT,3×3

3 Q3×3
22 w3×3

3 + Π3×3
22 )−1wT,3×3

3 Q3×3
22 (−Y[7:9] + Ŷ[7:9] + Z[7:9])

(5-16)

By comparing the structure of the above equations with (5-8) and (4-12) we can conclude that
the solution to the initial problem (5-3) can be given by taking the solutions of two separate
problems with the resulting filters to be interconnected in series as shown in Figure 5-1.
The first problem is the one that was solved in Chapter 4 and the second one is the following:

min
σ(t)

1
2(y3(t+ h)− ŷ3(t+ h))TQ(y(t+ h)− ŷ3(t+ h)) + 1

2σ
T (t)Πσ(t)

s.t. ˙̂g(t) = Ω̂×(t)ĝ(t) +B2σ(t)
ŷ3(t) = R̂T ĝ(t)

(5-17)

with Q = Q3×3
22 , Π = Π3×3

22 and R̂, Ω̂ known.
By considering the penalty matrix Q such that Q12 = 06×3 and Q21 = 03×6 and the Π
matrix to be diagonal, the prediction error of the first two measurements is independent of
the prediction error of the third measurement and also the prediction error for the third
measurement does not depend on the error of the first two measurements. Furthermore, it
is worth to be noticed that the above decomposition makes the implementation of the above
filter easier.
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F1

Y[1:6]

F2

Y[7:9]

R̂, Ω̂ ĝ,σ∗

Figure 5-1: Series interconnection of the two filters. Filter F1 estimates the orientation R̂ and angular
velocity Ω̂ of the spacecraft using only two on-board measurements Y[1:6]. Filter F2 takes as inputs
the attitude and angular velocity estimates as well as the the third measurement Y[7:9] to produce the
geomagnetic field estimate ĝ and the optimal correction term σ∗.

5-1-1 Simulations

Here, we assume that the system is driven by the model error σ(t) =
[

90 sin(2π
3 t) 0 0

]T
.

The orientation and angular rate estimation error in Figure 5-2 are not affected, as it was
expected from the geomagnetic field observations. However, the performance of the second
filter depends on R̂, Ω̂ since good geomagnetic field estimates require both good orientation
and angular velocity estimates. Finally, the right plot at the bottom shows that indeed the
correction term determines the model error being disturbed however by the measurement
noise.

We expect that in steady state, the optimal correction term σ∗ will be equal to the model
error. In other words, we expect that the filter will have determined the appropriate model
error that drives the system (5-2). Please notice that the optimization problem (5-3) requests
for the signal σ∗ that minimizes the prediction error and which also has minimum energy.
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56 Geomagnetic field estimation for orbital position estimation

Figure 5-2: Attitude estimation error (top left) and angular velocity estimation error (top right). Ge-
omagnetic field and geomagnetic field estimates (middle left), angular velocity and angular velocity esti-
mates (middle right) geomagnetic field estimation error (bottom left) and model correction term (bottom
right). Horizon step h = 0.05 sec., initial conditions (R0,Ω0, g0) = ((4, [1 4 1]T ), [.4 .5 .8]T , [20 14 21]T ),
noise standard deviation σε = 0.05 m.

This of course does not mean that σ∗ will be equal with the true model error signal that
produces the actual measurements. The two signals however will have the same energy and
therefore we can say that they differ up to a unitary transformation. In other words, by
setting the true model error as given above, there is not guarantee that the σ∗ resulting from
the optimization problem will have its second and third component equal to zero for each
time instant. The energy of σ∗ can be distributed over all the three components.
However, in case where the subspace the model error lies in is known, we can achieve the
desired structure by tuning properly the penalty matrix Π22. By penalizing less some of the
entries in matrix Π22 it would be possible to drive the energy flow of model error σ∗ through the
corresponding components of σ∗ and therefore to achieve the desired structure. Equivalently,
the aforementioned penalty matrix Π22 may result from the singular value decomposition
(SVD) under the following reasoning:

δ(t)TΠ22δ(t) = δ(t)TV ΣV T δ(t) = δ(t)T (σ1V1 + σ2V2 + σ3V3)δ(t)T =
3∑
i=1

σi||δ(t)||Vi (5-18)

where rank(Vi) = rank(V (:, i)V T (:, i)) = 1, V (:, i) is the i-th column of V and ||δ(t)||Vi is
the energy flow towards the direction V (:, i). The columns V (:, i)i are chosen to constitute
an orthonormal basis of the subspace the model error lies in, with the singular values σi to
regulate the energy flow towards the directions V (:, i)i=1,2,...

5-2 Orbital position estimation

As stated at the beginning of this chapter, the goal is to use the geomagnetic field estimates
in order to obtain (angular) orbital position estimates. Towards this direction, the next step
is to apply the transport theorem for the geomagnetic field once again:

dA

dt
g = dB

dt
g + Ω× g (5-19)
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where the first term corresponds to the time variation of the geomagnetic field due to the fact
that it is rotating by its nature. Therefore, the term dB

dt g can be written as

dB

dt
g = g × ωo (5-20)

where ωo is the rotation rate of the geomagnetic field if the spacecraft had a fixed orientation.
This first term of (5-20) was previously declared as a deterministic function corresponding to
the model error. The model error is determined through the estimation process and therefore
is a known function of time, depending linearly on the noisy measurements. Hence we can
write:

σ∗(t) = (ĝ × ω̂o)(t) + n(t) (5-21)

where n(t) ∈ R3 is a noise vector.

Given the fact that the frequency content of n(t) does not overlap with the frequencies of
the slower signal g × ωo, the noise can be removed after applying a low pass filter on each
component of σ∗(t). By assuming a dipole model for the geomagnetic field, we can claim
that the mean value of the instantaneous frequency of the filtered signal is half the frequency
of the spacecraft orbiting the Earth. The reason is that the geomagnetic field is rotating
two times during a full orbit. Figure 5-3 justifies this claim. Starting from the south pole
and moving counterclockwise up to the north pole, the geomagnetic field makes a full turn.
Subsequently, continue moving in a counterclockwise direction from the north to the south
pole, the geomagnetic field performs another full turn.

Figure 5-3: Dipole model for the Earth’s geomagnetic field. For a fixed orientation, the geomagnetic
field vector, as seen from the body frame is rotating.

5-2-1 Orbital rotational rate from geomagnetic field estimates

The faster the variation of (ĝ × ω̂o)(t) is in time, the faster the spacecraft is orbiting the
Earth. The rotation rate ωo indicates the rate with which the geomagnetic field rotates if the
spacecraft had a fixed orientation. Equivalently, ωo indicates the geomagnetic field’s rotation
rate w.r.t. the L.V.L.H. frame. Therefore, ωo belongs to the frequency content of (ĝ × ω̂o)(t)
and subsequently to the frequency content of σ∗ as well.

The spectrograms shown in Figure 5-4 reveal the frequency content of the model error’s and
the signal’s σ∗ x-component. The window length is chosen to be large compared with the
signal length (equal to 5000 samples) in order to achieve good frequency resolution. The
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Figure 5-4: The magnitude of the short time Fourier transform (STFT) for the optimal correction
term σ∗ (left) and the model error signal (right).

vertical axes represent discrete frequencies. The x-component of σ(t) is a sine wave with
analog frequency f0 = 0.3 Hz sampled with fs = 5 KHz. Therefore, the corresponding
discrete frequency is λ0 = 16 · 10−3. Subsequently, the horizontal axis represent the samples
of the discrete time signal.

The x-component of the model error σ(t) is a pure sine wave with discrete frequency λ0 =
16 · 10−3 and therefore is characterized by a constant instantaneous frequency law. The
determined optimal correction term σ∗ however contains additional higher frequencies due to
the measurement noise. Nevertheless, the important fact is that the desirable frequency does
appear in the frequency content of σ∗ and can be filtered out using deterministic techniques
in the frequency domain.

The reason why the spectrogram is used instead of the discrete Fourier transform aims to
stress the fact that the actual model error might have a more complicated instantaneous
frequency law that cannot be determined by classical frequency domain techniques. In this
case, time-frequency techniques appear to be more suitable since the geomagnetic field rotates
in a non-uniform way especially close to the geomagnetic poles as shown in Figure 5-3.

5-2-2 Summary

In this chapter, the predictive filter on TSO(3) has been extended and used to provide an
alternative approach for the problem of the orbital position estimation by utilizing a kinematic
model for the geomagnetic field. Towards this direction it has been proved that under some
realistic assumptions the resulting filter can be seen as the series interconnection of two filters,
which leads to the conclusion that the initial problem can be decomposed into two separate
problems. We can clearly observe another benefit of the deterministic filtering approach as
outcome of the dual optimal control theory: The fact that the correction term corresponding
to the model error is actually determined through the estimation process allows us to estimate
the orbital rotation rate and therefore of the orbital position of the spacecraft.
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Chapter 6

Conclusions and future work

6-1 Conclusions

In this work, the problem of attitude and rate estimation has been studied for a low earth
orbit satellite at the absence of rate sensors. The distinction between two main mathematical
contexts for estimation is emphasized and investigated. On the one hand, in the stochastic
context, which-is commonly used-the state space model is defined by stochastic differential
equations and both model and measurement uncertainties with white noises. The objectives
are then to produce an estimate of the mean state using the data at hand in the sense of the
maximum likelihood estimator, or a mean square estimator, or a least square estimator. On
the other hand, numerous contributions have been proposed in a purely deterministic context,
where the model is described as a dynamical system. The errors are then unknown quantities
defined in a Hilbert space with well defined function norms characterizing their weight.
The present work was focused on the deterministic description. One of the basic milestones of
this problem is that the output equations are affected only by the orientation state, which lies
in a curved space, the special orthogonal group SO(3). Otherwise, if a function of the angular
rate could be measured, it would be possible through the model uncertainty to control the
orientation via the angular velocity-an object which evolves in a vector space.
Within a general non-linear framework, the deterministic non-linear optimal observer can
also be formulated and was first introduced by Mortensen [4]. This architecture was later
employed by [2] to produce the second-order-optimal minimum energy filter on Lie groups.
The controller derived in [3] allows to develop, a predictive observer directly on the tangent
bundle of the special orthogonal group.
Both observers were analyzed and their performance was evaluated in different operating
scenarios. In most simulated scenarios, the minimum energy filter was found to be superior
compared to the predictive filter, where the latter was affected significantly from the measure-
ment noise. Nonetheless, the derived predictive filter is extremely tolerant in model errors.
It is evidently clear that this characteristic property is desired, since unknown environmen-
tal torques might vary significantly in practice. Furthermore, the error dynamics have been
derived for both observers in an attempt for a Lyapunov stability evaluation.
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Finally, the predictive filter on TSO(3) is extended and used in order to provide an alternative
approach for the problem of the orbital position estimation by utilizing a kinematic model for
the Earth’s geomagnetic field. Towards this direction it is proved that under some realistic
assumptions this later problem is equivalent to two separate problems and therefore the
resulting filter can be seen as the series interconnection of two distinct filters. We can clearly
observe another benefit of the deterministic filtering approach as an outcome of the dual
optimal control theory. The fact that the correction term corresponding to the model error is
actually determined through the estimation process allows us to estimate the orbital rotation
rate and therefore, potentially, the orbital position of the spacecraft.

Overall, the main conclusion of this work could be summarized as follows: The dual optimal
control approach with the resulting deterministic filters, outperforms the Bayesian techniques.
The reason seems to be double. Through the deterministic approach the filtering problem
can be set and solved in a coordinate free fashion under the theory of lie groups. In this way,
nonlinearities induced from the coordinate system maps and the main issues of the Kalman-
based architectures to preserve the space geometry are avoided. In addition, the fact that
the model error is actually determined during the estimation process provides an alternative
direction towards the problem of attitude and rate estimation.

6-2 Future work

Some directions for future research are the following:

• Improve the predictive filter on TSO(3) by finding an iterative way for updating the
model error penalty matrix. This might lead into better, less noisy estimates.

• Formulate the problem by deploying D’ Alembert principle might be another promising
approach.

• Solve the problem stated in Chapter 5 with the minimum energy filter approach. By
assuming two decomposed filters, the Riccati equation derived in Appendix A can be
used for the second filter.
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Appendix A

Proofs regarding the minimum energy
filter

A-1 Derivation of the Riccati equation

It is
K(x∗, t) = Hess1V(x∗, t; t0, x0)

and we want to find the evolution of K w.r.t. time. In order to do so, we apply the time
derivative operator in both sides of the above equation.

d

dt
K(x∗, t) = d

dt

(
Hess1V(x∗, t; t0, x0)

) (A-1)

From the total derivative formula the right hand side of the above equation reads

d

dt

(
Hess1V(x∗, t; t0, x0)

)
= dx∗

(
Hess1V(x∗, t; t0, x0)

)
ẋ∗(t) + ∂

∂t

(
Hess1V(x∗, t; t0, x0)

)
= d3

x∗
(
V(x∗, t; t0, x0)

)
ẋ∗(t) + ∂

∂t

(
Hess1V(x∗, t; t0, x0)

)
= Hess1

(∂V
∂t

(x∗, t; t0, x0)
)

+ h.o.t

(A-2)

but
∂V
∂t

(x∗, t; t0, x0) = H(x∗,d1V(x∗, t; t0, x0), t) (A-3)

therefore
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Hess1
(∂V
∂t

(x∗, t; t0, x0)
)

= −Hess1
(
H(x∗,d1V(x∗, t; t0, x0), t)

)
= −Hessx∗

(
H(x∗,d1V(x∗, t; t0, x0), t)

)
= dx∗

(
dx∗

(
H(x∗,d1V(x∗, t; t0, x0), t)

))
= dx∗

(
d1

(
H(x∗,d1V(x∗, t; t0, x0), t)

))
= dx∗

(
d1(H(x∗,d1V(x∗, t; t0, x0))+

d1
(
d1V(x∗, t; t0, x0)

)
d2H(x∗,d1V(x∗, t; t0, x0)

)
= dx∗

(
d1(H(x∗,d1V(x∗, t; t0, x0))+

Hess1V(x∗, t; t0, x0)d2H(x∗,d1V(x∗, t; t0, x0)
)

(A-4)
From the chain rule the first term reads

dx∗d1(H(x∗,d1V(x∗, t; t0, x0))) =
= Hess1H(x∗,d1V(x∗, t; t0, x0))+(

d2d1H(x∗,d1V(x∗, t; t0, x0)
)THess1V(x∗, t; t0, x0)

(A-5)

and the second term from the product rule reads

dx∗
(
Hess1V(x∗, t; t0, x0)d2H(x∗,d1V(x∗, t; t0, x0)

)
=

dx∗
(
Hess1V(x∗, t; t0, x0)

)
d2H(x∗,d1V(x∗, t; t0, x0)+

Hess1V(x∗, t; t0, x0)dx∗
(
d2H(x∗,d1V(x∗, t; t0, x0)

)
=
(
Hess1V(x∗, t; t0, x0)

)
dx∗

(
d2H(x∗,d1V(x∗, t; t0, x0)

)
+ h.o.t

(A-6)

Again from chain rule the last equation reads

(
Hess1V(x∗, t; t0, x0)

)
dx∗

(
d2H(x∗,d1V(x∗, t; t0, x0)

)
+ h.o.t

=
(
Hess1V(x∗, t; t0, x0)

)
d1d2H(x∗,d1V(x∗, t; t0, x0)+

Hess2H(x∗,d1V(x∗, t; t0, x0)Hess1V(x∗, t; t0, x0) + h.o.t

(A-7)

Given that d1V(x∗, t; t0, x0) = 0 and K(x∗, t) = Hess1V(x∗, t; t0, x0), the evolution of the gain
operator follows

K̇(x∗, t) = Hess1H(x∗, 0, t)
+d2d1H(x∗, 0, t)TK(x∗, t)

+K(x∗, t)d1d2H(x∗, 0, t) +K(x∗, t)Hess2H(x∗, 0, t)K(x∗, t)
(A-8)
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However we are interested in the evolution of the operator K(x∗, t) = (Hess1H(x∗, 0, t))−1.
Therefore we can write

d

dt
K(x∗, t) = d

dt
(Hess1H(x∗, 0, t))−1

= d

dt
(K−1(x∗, t))

(A-9)

but
0 = d

dt
I = d

dt

(
K(x∗, t)K−1(x∗, t)

)
= d

dt

(
K(x∗, t)

)
K−1(x∗, t) +K(x∗, t) d

dt

(
K−1(x∗, t)

) (A-10)

which means that

d

dt

(
K−1(x∗, t)

)
= −K−1(x∗, t) d

dt

(
K(x∗, t)

)
K−1(x∗, t) (A-11)

Finally by substituting (A-8) into (A-11) we have

K̇(x∗, t) = −K(x∗, t)Hess1H(x∗, 0, t)K(x∗, t)
−K(x∗, t)d2d1H(x∗, 0, t)T − d1d2H(x∗, 0, t)K(x∗, t)

−Hess2H(x∗, 0, t)
(A-12)

or simply

K̇(t) = −K(t)Hess1H(x∗, 0, t)K(t)
−K(t)d2d1H(x∗, 0, t)T − d1d2H(x∗, 0, t)K(t)

−Hess2H(x∗, 0, t)
(A-13)
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