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Abstract — The concept of memory disaggregation has
recently been gaining traction in research. With memory
disaggregation, data center compute nodes are able to di-
rectly access memory on adjacent nodes and can therefore
overcome local memory restrictions, introducing a new
data management paradigm for distributed computing.
This paper proposes and demonstrates a memory disag-
gregated in-memory object store framework for big data
applications by leveraging the newly introduced Thymes-
isFlow memory disaggregation system. The framework
extends the functionality of the existing Apache Arrow
Plasma object store framework to distributed systems by
enabling clients to easily and efficiently produce and con-
sume data objects across multiple compute nodes. This
allows big data applications to increasingly leverage par-
allel processing at reduced development cost. In addition,
the paper includes latency and throughput measurements
to evaluate the framework’s performance and to guide the
design of future systems that leverage memory disaggre-
gation as well as the newly presented framework.

1 Introduction

The ongoing expansion in scale of big data workloads de-
mands data centers to increasingly supply higher performance
facilities. As progress in power efficiency of the underly-
ing technology lags behind, the power consumption of data
centers increases accordingly. It is expected that data center
electricity consumption will account for up to 13% of total
global electricity supply as soon as 2030 [1]. This puts sig-
nificant pressure on global energy resources. Improving the
efficiency of big data infrastructures is an essential method to
ensure the sustainability of data center utilization and limit its
environmental impact.

1.1 Memory Disaggregation

Recently, work has been done on behalf of IBM, introducing
a memory disaggregation framework for data center infras-
tructures, called ThymesisFlow [2]. Memory disaggregation
refers to the decoupling of directly accessible memory from
compute nodes (e.g. servers in a data center rack). Specif-
ically, it entails hardware-enabled system integration which
allows compute nodes to directly access memory from other
— remote — compute nodes and therefore increase effective
memory volume. ThymesisFlow essentially allows servers to

access memory from adjacent servers through a custom net-
work as if it was their own and consequently bypass local
memory volume restrictions.

Application

Because big data workloads are often hindered in perfor-
mance by available memory volume and expanding memory
volume in data center servers is generally non-linearly expen-
sive [3], traditionally, a scale-out approach is used to scale
data center applications for larger data volumes. In a scale-
out approach, vast amounts of data are sent over the local
network and copied to local memory (Figure 1a), contending
for network bandwidth and possibly harming performance by
thrashing memory across the compute nodes [3]. Thymes-
isFlow could potentially mitigate these issues by providing
direct access to large memory volumes over a custom net-
work, relaxing the requirement to utilize precious local net-
work bandwidth and the burden to evict data from memory in
order to copy (Figure 1b).
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Figure 1: Distributed Computation Scaling Approaches

Moreover, by enabling separate compute nodes to access
and modify both local and disaggregated data concurrently,
without duplicating data, it has the potential to improve ap-
plication performance. An example use-case would be when
compute nodes operate on local in-memory data, while uti-
lizing in-memory data from the other nodes in the network
(i.e. wide-dependency operations). This increases the ability
of data center workloads to process data in a parallel manner.

Additionally, memory disaggregation could aid in data
center utilization strategies by allocating resources dynami-
cally and online across server racks. This allows increased
flexibility in server virtualization at high performance and
could therefore help data center utilization rates by reducing
resource down-time.



Essentially, by efficiently pooling processing and memory
resources, the technology has the potential to increase data
center utilization rates, decrease total cost of data center own-
ership, and improve both performance and cost of develop-
ment for applications [2]. Consequently, it can contribute to
improving the efficiency of data center workloads generally
and big data workloads in particular.

ThymesisFlow offers a first step towards memory disaggre-
gation in a way that is largely transparent to applications and
is already being researched by academia and industry [4]. Itis
supposed to show a functional proof-of-concept for a scalable
and financially viable memory disaggregation system which
is integrated in next generation data center processors. IBM
has announced memory disaggregation of this kind to be inte-
grated in the upcoming IBM POWER 10 processors as "Mem-
ory Inception’ [5].

Performance Evaluation

Considering the technology has not yet been rigorously tested
with different workloads, there is an opportunity to test its po-
tential to accelerate data center workloads in general. In order
to do this, it is important to accumulate accurate data on la-
tency characteristics, for which microbenchmarks of simple
data fetching could be used. Ideally, microbenchmarking re-
sponse latencies in real-world applications, similar to what is
already described in [2], would be conducted with more dif-
ferent types of workloads. This data could guide the design of
future applications and even server-scale and rack-scale hard-
ware designs.

Furthermore, developing and benchmarking applications
that leverage the ThymesisFlow framework against existing
solutions provides insights into its general potential to en-
hance performance. Preferably, existing solutions would be
retrofitted with ThymesisFlow support and enhance perfor-
mance that way. If big data tools and frameworks can lever-
age the technology successfully, then by extension applica-
tions could be able to utilize it as well with minimal to no
modification. Alternatively, workloads could be scaled and
distributed more easily due to the simplified memory sharing
interface. Even if leveraging memory disaggregation in this
way yields only comparable performance, the reduced appli-
cation development cost may be significant.

1.2 Plasma Object Store

Big data applications often consume data from an exter-
nal source and acquire this data by querying the source.
A single source may have multiple consumers querying it.
The Apache Arrow framework [6] aims to standardize this
supplier-consumer dynamic in an efficient way. Part of this
framework is the Plasma in-memory object store, which is
used to store and access data within a system in which multi-
ple data suppliers and consumers may exist.

The object store lives as a separate process to which clients
of the store may commit and ’seal’ data objects with an ob-
ject identifier. The store manages the objects’ locations in
shared memory and makes them available to other clients
upon sealing. Sealing an object prompts the store to make it
immutable, such that sharing it with multiple processes does
not yield race conditions. Big data applications often do not

require mutability of the source data, e.g. the Resilient Dis-
tributed Dataset (RDD) of Apache Spark [7] is also built on
this premise.

Plasma store clients can access the existing sealed objects
by querying the store for their identifiers. The store then pro-
vides the client with a read-only buffer pointing to the object,
the client can consecutively retrieve the object data from the
buffer. Sharing through system memory ensures that both ob-
ject commitment and access do not incur large latency penal-
ties. Moreover, the standardized format of the store reduces
the need for serialization and deserialization between pro-
cesses which generally improves performance and efficiency.
The framework is already being leveraged in certain big data
workloads [8].

1.3 Memory Disaggregated Object Store

A significant limitation of Plasma is the fact that it only sup-
ports local object storage. This means that availability of both
memory volume and processing units are limited. Memory
disaggregation provides an opportunity to create a Plasma im-
plementation that has access to significantly larger volumes of
memory. Simply modifying Plasma to allocate in disaggre-
gated memory would already allow applications to use sig-
nificantly larger data sets without resorting to slow storage
devices, scale-out approaches, or stressing the network.

By extension, a closer integration of memory disaggrega-
tion would allow multiple compute nodes to operate on a
pool’ of memory. The different compute nodes would then
be able to generate and process data from this large pool con-
currently. This means that massively parallel tasks could
benefit tremendously from the large amount of distributed
compute nodes. Especially wide-dependency operations (e.g.
shuffle operations) would likely benefit from this type of in-
tegration.

Another advantage of the integration of these two frame-
works exists. Namely, the fact that Plasma clients can only
access immutable data objects. The immutability means
that the previously described cache coherency concerns that
ThymesisFlow faces do not represent an problem in this case.
Since the data objects are placed in disaggregated memory
and remain unmodified, they can be accessed by clients with-
out the risk of race conditions.

As it stands currently, memory disaggregation has been
featured in research to only limited extent, with the main
focus being on general feasibility [3]. Existing technologies
have so far demonstrated varying results on smaller systems.
At the time of writing, the memory disaggregated big data
analysis field is still in an exploratory phase of white papers
and feasibility studies, but seems to be gaining traction in
research [3][9][10]. ThymesisFlow — and eventually Memory
Inception — is the first memory disaggregation solution that
is designed for large-scale deployment and utilization. Addi-
tionally, it is supported by IBM as a vertically integrated data
center technology supplier. It thus has tremendous potential
to elicit impactful paradigm shifts in the data center industry.

The current project is set out to perform and benchmark
this integration of ThymesisFlow memory disaggregation in



the Plasma framework. This paper contains the following
main contributions:

* The proposal and implementation of a memory disaggre-
gated Plasma framework, which enables easy and effi-
cient production and consumption of data objects across
distributed compute nodes.

e A set of microbenchmarks for measuring latency and
throughput of creating and retrieving data objects from
the Plasma object store [11].

 Considerations and recommendations for future work on
the newly proposed Plasma framework and memory dis-
aggregation technology.

The paper explores application and research of the per-
formance enhancing potential of ThymesisFlow memory
disaggregation for big data analytics and provides a stepping
stone for potential future work.

The rest of the paper is organized as follows. First, Section
2 provides additional background information on Thymes-
isFlow. Then, Section 3 presents the new memory disag-
gregated Plasma framework and corresponding set of mi-
crobenchmarks. Section 4 discusses the experimental setup
and results. Lastly, Sections 5 and 6 conclude and outline
recommendations for future work, while Section 7 elaborates
on the paper’s research ethics and reproducibility.

2 Background

ThymesisFlow is initially developed for POWERY [11] archi-
tectures and leverages the OpenCAPI [12] interface. The sys-
tem builds on FPGA accelerators that are interfacing between
the ThymesisFlow network and the Linux operating system
kernel. The disaggregated memory is exposed to the operat-
ing system as memory mapped I/O (MMIO), which is acces-
sible through the ThymesisFlow system such that it becomes
transparent to the user [2]. The MMIO mapping ensures that
caching is handled gracefully.

Figure 2 shows a schematic representation of the effective
physical flow of data in ThymesisFlow. Memory sharing hap-
pens through the FPGA accelerators, leveraging the Open-
CAPI FPGA stack. OpenCAPI [12], is an interface archi-
tecture that enables accelerators to cache coherently access
system memory. This means that the FPGA accelerator can
access memory from the host in a cache coherent way.
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Figure 2: ThymesisFlow Schematic Representation

For ThymesisFlow, this entails that a portion of local sys-
tem memory is marked as disaggregated and made available
to remote compute nodes. The system’s FPGA accelerator

then represents a kind of MMIO memory controller for re-
mote disaggregated memory. The operating system relays
calls for the MMIO to the FPGA, translating memory ad-
dresses and requesting the appropriate memory regions from
remote compute nodes. The remote compute node’s FPGA
then uses the OpenCAPI interface to retrieve cache coherent
data from the desired memory regions and returns this data to
the requesting node. This completes the call to remote disag-
gregated memory.

As it stands currently, memory disaggregation with
ThymesisFlow is subject to several valid concerns as well.
For example, calls to disaggregated memory carry an inher-
ent latency penalty due to the extra distance data has to travel
on wire relative to local data. This penalty has been ob-
served to be non-negligible [2], thus local memory remains
of importance for performant applications [3]. This extra
wire distance has to be traversed in scale-out approaches as
well and, with efficient custom hardware and network proto-
cols, memory disaggregation could even reduce this latency
penalty with respect to traditional local networking.

Moreover, compute nodes using ThymesisFlow could po-
tentially suffer from increased cache coherency and synchro-
nization issues related to the distributed nature of disaggre-
gated memory fetching. When multiple processes are ac-
cessing and modifying the same memory region, the cached
changes need to be flushed to memory before becoming avail-
able to other processes. Usually, cache coherency among
shared-memory processes is handled by the operating sys-
tem kernel, however, with memory disaggregation multiple
operating systems are involved. Cache coherency in this set-
ting is not supported by common operating systems and elim-
inating caching completely — which requires development of
custom kernel modules — comes at a cost. Additionally, the
increased latency of disaggregated memory calls begs extra
caution with race conditions.

The cache coherency concerns arise from the data flow
within ThymesisFlow and have important implications for
its usage. The OpenCAPI [12] interface ensures that read-
ing remote disaggregated memory is cache coherent (Figure
3a). Alternatively, writing to remote disaggregated memory
is cache coherent with the local system, but not necessarily
with the remote system. Explicitly, this means that data writ-
ten to remote disaggregated memory is not necessarily imme-
diately available to the remote system. The written data will
be flushed to the remote disaggregated memory, however, the
remote system may have cached a previous value (Figure 3b).
This has implications for the memory disaggregated Plasma
store, which will be discussed in the next section. Note that
Figure 3 is only a conceptual schematic representation.
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Figure 3: Cache Coherency in ThymesisFlow Transactions



3 Memory Disaggregated Plasma Framework

The goal of the current project is to develop and test a vari-
ant of the Apache Arrow Plasma object store [6] that lever-
ages memory disaggregation backed up by ThymesisFlow
[2]. This process was conducted in three distinct stages:

1. Setup of a memory disaggregation testing environment

2. Integration of ThymesisFlow into the original Plasma
framework

3. Benchmarking of the new Plasma framework

The main yield of the project is the second stage with the
third stage providing a context to the framework performance
potential, therefore, this paper predominantly focuses on the
second stage. This section elaborates on the 3 project stages.

3.1 Testing Environment

Initially, a testing environment had to be setup for develop-
ment. This was needed due to the fact that no functional
ThymesisFlow prototype was directly available during the
project. A single POWERY system — modified to be able
to incorporate ThymesisFlow using a loopback design — was
available for testing, however, technical issues were encoun-
tered when attempting to setup ThymesisFlow on this system.
Consequently, a testing environment was created using virtual
machines to simulate ThymesisFlow behaviour.

The testing setup was simulated by 2 Linux virtual ma-
chines (VMs) run on QEMU-KVM version 4.2.1 [13]. The
VMs were both connected to a QEMU inter-VM shared mem-
ory object. For this, a memory backend file was created and
connected to both VMs as a PCI device. The PCI device can
then be memory mapped from inside the VM to use the shared
memory similar to how disaggregated memory would func-
tion. The final system was tested extensively with this setup.

As discussed in the previous section, ThymesisFlow mem-
ory disaggregation differs from traditional shared memory in
its cache coherency characteristics. With the inter-VM shared
memory functionality [14], Qemu ensures cache coherency
among operating systems. Thus, the virtualized test setup
clearly differs from a ThymesisFlow system in terms of cache
coherency behaviour. This has to be accounted for during
testing for the system to remain functional upon deployment
on an actual ThymesisFlow prototype.

3.2 ThymesisFlow Plasma Store Integration

The integration of ThymesisFlow in Plasma can be further
subdivided in two separate steps:

1. Disaggregated memory allocation; the Plasma store
needs to allocate objects in disaggregated memory such
that they can be accessed by remote clients.

2. Remote object sharing; the objects contained in the
Plasma store need to be shared so that they can be re-
trieved by clients on all compute nodes.

Remote object sharing is necessary because of the archi-
tecture of Plasma; since Plasma clients can only connect with
a local Plasma store, they are limited to requesting object
buffers from this local store. The local store is not by de-
fault aware of remote objects, which gives rise to the need for
sharing of remote objects.

For development, the Apache Arrow repository (containing
Plasma) [6] was cloned at version 4.0.0. Plasma was origi-
nally developed by Ray [15] and is recently adopted by the
Apache Arrow repository. Hence, the Apache Arrow imple-
mentation was used as a base.

Disaggregated Memory Allocation

As an initial step, the Plasma store was modified to allocate
objects in local disaggregated memory. Since the Plasma
store is essentially a memory region bookkeeping service for
Plasma data objects, it requires sufficiently performant mem-
ory allocation. Originally, Plasma uses the infamous Doug
Lea’s Malloc library (dlmalloc) [16] for this purpose together
with a file descriptor system to coordinate memory mapping
across Plasma store and clients. This ensures portability, but
does not suit the purpose of allocating in disaggregated mem-
ory.

Since ThymesisFlow is inherently Linux-based, the loss of
portability by substitution of dlmalloc is not a limiting factor.
Thus, dlmalloc was replaced by a simpler allocation algo-
rithm that receives the memory mapped local disaggregated
memory region and uses it to allocate Plasma objects. The
algorithm simply allocates a chunk of memory to the first
available region that can accommodate it. By using an or-
dered map data structure with logarithmic time look-up to
keep track of the sizes of available regions, allocation should
remain relatively fast. The replacement allocator does not
consider e.g. locality, alignment, and fragmentation in mem-
ory allocation and thus surrenders some benefits to the orig-
inal dlmalloc library [16]. It should, however, suffice for the
purpose of exploring the performance of memory disaggre-
gated systems.

Remote Object Sharing

Plasma conducts Inter-Process Communication (IPC) be-
tween Plasma store and clients through Unix domain sockets.
This means that Plasma clients cannot directly communicate
with remote Plasma stores as the latter exist in a different
operating system, unreachable by the Unix domain sockets.
An additional infrastructure could be created to accommo-
date this, however, that would require all clients to connect
with remote Plasma stores and would cause large amounts
of duplicate data to be sent over the network. Therefore, it is
more convenient to interconnect Plasma stores directly. Addi-
tionally, this means the distributed nature can remain hidden
to Plasma clients for a large part.

Sharing remote Plasma objects between stores introduces
several additional constraints to the system. Obviously,
Plasma stores must be able to communicate with each other
about currently existing objects. Two new constraints were
identified with significant consequences:

¢ Identifier uniqueness; object identifiers must be unique
across the system of all connected Plasma stores.

* Distributed object-usage sharing; Plasma stores should
have up-to-date information about which of their local
objects are in use by clients system-wide.

The requirement for identifier uniqueness is an immediate
consequence of the distributed nature of the proposed frame-
work. If object identifiers are not unique across all existing



Plasma stores, then clients will not be able to retrieve all avail-
able objects unless extra logic is introduced for this scenario.

The distributed object-usage sharing constraint relates to
a Plasma store’s internal policy about evicting objects when
needed. Locally, the Plasma store keeps track of which ob-
jects are in use by its connected clients. In-use objects will
not be evicted, because clients might still be reading from
memory and evicting the objects would likely corrupt their
data. This logic should be extended to adopt this functional-
ity across several Plasma stores. In the scope of the current
project this constraint was considered, however, no solution
is currently implemented yet.

A rough subdivision can be made in the possible ap-
proaches used to share Plasma object information across the
system:

e A shared data structure in disaggregated memory;
Plasma stores can share their data structure which maps
object identifiers to their corresponding buffers.

* Messaging via disaggregated memory; Plasma stores
can perform point-to-point messaging between each
other.

» Sharing via LAN; Plasma stores can communicate over
the local network using common networking techniques.

The type of approach has far-reaching implications for the
system architecture. These implications will be discussed
next.

The first approach would allow remote Plasma stores to
efficiently look up whether an object already exists and find
its corresponding buffer. This approach requires handling is-
sues specific to usage of data structures in shared memory by
preventing (local) heap allocation. Moreover, since this is a
one-way (local Plasma store to remote store) communication
system, there is no way for the remote store to feedback infor-
mation on currently used objects for the eviction policy. The
latter relates to the previously discussed fact that writing to
remote disaggregated memory may lead to cache coherency
issues on the remote compute node and doing so regardless
would open the door to unfavourable race conditions. This
could be accommodated by designing a kernel module to dis-
able the memory caching behaviour, but this is outside the
scope of the current project.

For the second approach, a messaging system could be im-
plemented, similar to the system suggested in [4]. Messag-
ing in traditional shared memory is a trivial task, however,
the cache coherency characteristics complicate the task sig-
nificantly. This would require developing a robust messag-
ing system using both local and remote disaggregated mem-
ory. Any potential performance gain relative to using existing
LAN techniques would be marginal considering communica-
tion protocol costs and incurs significant additional develop-
ment cost. A hybrid system which combines disaggregated
memory hash map look-up with messaging could perhaps
yield more favourable results, but this is outside the scope
of the current project.

Lastly, the third approach could be implemented in several
ways as well. A simple, robust, and performant approach to
do this is based on the Remote Procedure Call (RPC) concept.
In this concept, an application can call a function through

an RPC client as if it was executed by a remote application.
It is a way to hide networking complexity from the appli-
cation. An efficient implementation for HPC is gRPC [17],
which is a high-performance RPC based on Protocol Buffers
and HTTP/2 [18]. Internally, a gRPC client connects a stub
to a remote gRPC server and relays the local function call
to the server, which executes the call and returns the result
[17]. This RPC functionality could be used to satisfy the con-
straints outlined before (Figure 4).
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Figure 4: gRPC Functionality

Considering the previously discussed drawbacks of disag-
gregated memory communication and the simplicity and per-
formance potential of LAN communication, gRPC (version
1.38.0) was used to share objects between Plasma stores. The
incorporation of gRPC has a major implication for the re-
mainder of the system.

Due to the requirement of low-latency access to data by
Plasma, gRPC is configured in a synchronous manner. Con-
sequently, the gRPC server needs to be available continu-
ously for requests and thus requires a dedicated thread. gRPC
clients do not have this requirement as they do not receive re-
quests. Upon a client request for a remote object, the local
Plasma store makes an RPC call to look up the object iden-
tifier(s) in the remote store hash map and receive the corre-
sponding object buffer(s). Similarly, on object creation, RPC
calls are used to ensure uniqueness of object identifiers. This
multithreaded look-up introduces the need for thread-safety
mechanisms as both the Plasma store main thread and gRPC
server thread may attempt to access the hash map structure
concurrently.
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Figure 5: Memory Disaggregated Plasma Framework

To ensure thread-safety, mutex functionality of the hash
map in question was built in. This eliminates race conditions
among the main Plasma store thread and the gRPC server
thread. Since mutex usage can incur significant synchroniza-
tion costs, it should be kept to a minimum. Since the Plasma



store main thread will both read and write to its hash map,
while the gRPC server thread will exclusively read from it,
adding mutexes to reads from the main thread is not neces-
sary. This arises from the fact that race conditions only occur
when either of the threads is writing or will write to the mem-
ory region. Hence, only writing from the main thread and
reading from the gRPC server thread needs to be protected.

Moreover, gRPC allows to configure single- or bidirec-
tional data streams for large or continuous data requirements.
Considering that only data regarding the identifiers and mem-
ory regions of Plasma objects needs to be sent, there is likely
no performance benefit — perhaps even a performance hit due
to additional package overhead — to using streams. Thus,
gRPC was configured with unary RPC.

A schematic block diagram with full the proposed system
can be found in Figure 5.

3.3 Benchmarking

The last stage of the project was dedicated to benchmarking
the full memory disaggregated Plasma system. By bench-
marking the system, the premises on which it is built can be
verified and its performance can be put in context. Two types
of benchmarks can be performed in this case. Firstly, the la-
tency and throughput of retrieving remote Plasma objects can
be measured and compared against the same measurements
when retrieving local objects. Secondly, the performance of
a fully integrated system could be tested against established
distributed computing solutions. While the latter could pro-
vide valuable information on performance potential in real
workloads, it falls outside of the scope of the project.

The current project includes a set of microbenchmarks to
quantify the difference in latency and throughput between lo-
cal and remote Plasma object retrieval. The benchmarks are
designed to test a system of at least 2 Plasma stores. Plasma
objects with random data are committed to one of the stores
and both local and remote clients will then request these ob-
jects’ buffers from their local Plasma stores and retrieve their
data. The data contents should have no influence on the sys-
tem performance. Gathering buffers and reading the buffers
is measured separately. Additionally, measurements are made
while creating and writing to the objects to retrieve a refer-
ence value. The benchmarks should yield information about
the premises on which this system is built and could guide
the design of future systems leveraging memory disaggrega-
tion and Plasma as well.

6 different benchmarks were included to investigate per-
formance relations in different scenarios, each repeated 100
times to capture the effect of jitter in the system. The bench-
marks test Plasma store with different orders of magnitude in
object sizes and also vary the number of objects created. This
way, the benchmarks can capture differences in local and re-
mote memory performance and variability of full-system per-
formance with different object sizes. The number of objects
is varied to mitigate potential influence of caching of smaller
objects. The specifications for each benchmark can be found
in Table 1.

Number of | Object Size
Objects (kB)

1 | 1000 1

2 | 500 10

31200 100

4 | 100 1000

5150 10000

6 | 10 100000

Table 1: Benchmark Specifications

4 Benchmarking Setup

The main result of this paper is the memory disaggregated
Plasma prototype. In order to put the potential of this system
prototype in context and to aid the design of future memory
disaggregated systems, a benchmarking experiment was at-
tempted as well. This was based on the previously described
Plasma system and accompanying microbenchmarks.

The benchmarking experiment was attempted on an IBM
Power System AC922 in combination with an Alpha Data
ADM-PCIE-9V3 FPGA. The experiment was set up on a
single compute node for lack of access to additional nodes.
In order to accommodate the single-node setup, a modified
ThymesisFlow system with data loopback was used.

Generally, ThymesisFlow uses the Xilinx Aurora proto-
col and corresponding bitstream IP for link layer network
communications [2]. In the applied loopback-modification,
this Aurora IP is bypassed such that the transmitting side of
ThymesisFlow is directly connected to the receiving side and
vice versa. This way, a single node can internally simulate
real traffic from ThymesisFlow disaggregated memory calls
with similar latency and throughput characteristics as a two-
node system. Since the data in the loopback design bypasses
part of the networking stack and wire distance, the subsequent
latency will be slightly more favourable than in an actual
multi-node system. However, considering the small amount
of operations and distance, this difference should be minimal.
Moreover, an SoC integrated design such as Memory Incep-
tion in POWER10 is hypothesized to perform at significantly
lower latencies in general [2].

Due to technical issues with ThymesisFlow, only a single
functional system existed world-wide at the time of writing.
This system was limitedly accessible for experimentation and
we were unable to conduct the experiment successfully and
collect data within the limited timespan of the project due to
system incompatibilities.

5 Discussion & Future Work

Within the limited scope of this paper, the current project ex-
plores a new paradigm in distributed computing and its uses
for big data analysis, namely memory disaggregation. This
new paradigm of memory management in distributed systems
requires a different perspective of data management within
analysis systems and could transform common data center
practices as they stand today. As such, the current paper aims
to pioneer the field of memory disaggregation with Thymes-
isFlow [2] and provide a stepping stone for further research.



5.1 System Demonstration

Unfortunately, we were unable to conduct the outlined exper-
iment within the timespan of the project. This was due to
technical issues with the test setup and did not relate to the
proposed framework or memory disaggregation technology.
At the time of writing, work is ongoing to perform the out-
lined experiment and evaluate the system performance.

As discussed as part of the experimental setup, a modi-
fied ThymesisFlow loopback design was used for testing pur-
poses. This affects the latency and performance character-
istics resulting from the experiment relative to a multi-node
setup. However, the bypassed Aurora networking IP used in
ThymesisFlow, which runs on 401MHz clocks [2] should in-
cur overheads around 55 clock cycles in a non-pipelined ap-
proach [19]. Considering the majority of this overhead occurs
in the protocol engine [19], this number should quickly di-
minish in the pipelined design [2]. Moreover, the wire latency
should be minimal since rack-scale wire lengths are typically
very short.

Furthermore, it should be noted that the full potential of the
presented framework can only be tested with solutions that
fully integrate it. As motivated before, memory disaggre-
gation introduces a new paradigm in memory management,
which can only be fully exploited in specialized solutions.
For example, systems relying on wide-dependency operations
(e.g. shuffles) will likely benefit most from this technology.
This is due to the fact that wide-dependency operations by
definition depend on a large volume of remote data in a dis-
tributed dataset.

With the presented Plasma framework, compute nodes can
perform operations on their local data while retrieving data
from remote disaggregated memory, without risking memory
thrashing such as in a scale-out approach. In this way, sys-
tems integrating the Plasma framework can optimally lever-
age memory disaggregation without being restricted by cache
coherency concerns. More work is needed to evaluate this hy-
pothesis.

5.2 System Improvements

Nevertheless, the newly presented memory disaggregated
Plasma system still leaves room for improvement both in
terms of functionality and performance. Most of these op-
portunities have already been touched upon in Section 3 as
part of the motivation of design choices. The following para-
graphs will elaborate on those opportunities and further future
work for the presented Plasma system.

As already discussed briefly, the initial memory allocator
was replaced for a simpler and less performant alternative.
This was done to enable allocation in local disaggregated
memory by the Plasma store and was deemed sufficient for
demonstrative purposes. Allocator performance can differ
quite substantially [20], so ideally a more performant allo-
cator should be used. The original dlmalloc library is tried
and tested as default allocator in several Linux versions [16].
This allocator was originally integrated in Plasma and should
provide good performance and configurability when modified
to accommodate disaggregated memory allocation, but other
viable alternatives exist.

Moreover, the performance of remote object sharing could
potentially be improved with an elaborate solution leveraging
disaggregated memory. Local Plasma stores could maintain
the existing hash map structure for mapping object identifiers
to buffer information in their local disaggregated memory.
Remote Plasma stores would be able to efficiently look up
identifiers in this structure. This direct disaggregated mem-
ory look-up likely performs marginally better than the current
gRPC solution due to the lack of LAN networking.

If ThymesisFlow cache coherency issues would be re-
solved by disabling memory caching through a custom ker-
nel module, then remote stores would be able to feedback
information regarding e.g. the object eviction policy as well.
As discussed in Section 3, tracking which objects are in use
by clients shapes the eviction policy, but this is not cur-
rently maintained across remote Plasma clients. With a cus-
tom kernel module, this could be achieved, however, dis-
abling memory caching could potentially degrade application
performance as well. Alternatively, extra RPC functionality
could be added to the current solution to attain the same re-
sult.

In addition to the current RPC solution, which performs a
remote call on every client request for object identifiers that
are not available locally, a caching mechanism could be im-
plemented. This could increase performance for repeated re-
quests for identifiers, but the actual effect depends on sys-
tem usage. Besides, this caching would require caution with
tracking object-usage by remote clients for the eviction pol-
icy and could result in corrupted object buffers if not handled
carefully.

Finally, the currently presented system is able to accom-
modate a 2 node system. For rack-scale solutions, this needs
to be modified to accommodate multiple nodes. The mod-
ification should be minor for the current system as most of
the implemented functionality can trivially be generalized to
more nodes.

Lastly, the currently presented Plasma system was de-
signed for ThymesisFlow, however, it is hypothesized that
an SoC integrated solution — such as the announced Mem-
ory Inception feature in POWER10 [5] — would carry signifi-
cant performance improvements [2]. The presented system is
modularly designed such that it should be able to use Memory
Inception directly or with marginal modification. Memory
Inception will be the first scale-manufactured memory disag-
gregation solution and future work should focus on utilizing
and testing its performance with the presented Plasma sys-
tem.

6 Conclusion

As the topic of memory disaggregation in data centers con-
tinues to be become more relevant, the demand for software
frameworks that leverage the technology and quantify its po-
tential increases. The current project set out to propose and
demonstrate a novel type of in-memory object store based
on the Apache Arrow Plasma API [6], which leverages the
ThymesisFlow memory disaggregation framework [2]. The
introduced Plasma framework pioneers a new paradigm in
big data analysis for handling very large data volumes in-



memory and leveraging distributed computing in an efficient
and application-transparent manner.

The current paper demonstrates the potential for memory
disaggregated big data frameworks to transform the field of
big data analysis. Nevertheless, with the current state of tech-
nology, there is tremendous opportunity for technological im-
provements and future research in different forms. For exam-
ple, the introduction of closely integrated memory disaggre-
gation technology such as in Memory Inception [5] and fur-
ther integration into server- and rack-scale system designs.
At the time of writing, the system is already in the process
of being microbenchmarked according to the outlined experi-
ment. Furthermore, the introduced Plasma framework should
be subjected to more extensive testing in fully integrated ap-
plications to quantify its true potential. The current project
provides a stepping stone for this future work.

7 Responsible Research

No particular risks for conflicting research ethics were iden-
tified in the current project. The paper only includes ex-
periments of the system it introduces on a specified test
setup, which exclusively uses publicly available compo-
nents. The discussed loopback modification for Thymesis-
Flow is not currently publicly available, however, the ex-
periment could be reproduced on a multi-node setup to re-
trieve similar results, as motivated. The system source code,
benchmarks, and install scripts for dependencies are publicly
available on https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/
rp-group-64/rp-group-64-rabrahamse. Therefore, the results
retrieved from the current project are fully reproducible given
the right resources.
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