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Abstract
Dynamic languages, such as Python and Javascript, trade static

typing for developer flexibility and productivity. Lack of static typ-

ing can cause run-time exceptions and is a major factor for weak

IDE support. To alleviate these issues, PEP 484 introduced optional

type annotations for Python. As retrofitting types to existing code-

bases is error-prone and laborious, machine learning (ML)-based

approaches have been proposed to enable automatic type infer-

ence based on existing, partially annotated codebases. However,

previousML-based approaches are trained and evaluated on human-

provided type annotations, which might not always be sound, and

hence this may limit the practicality for real-world usage. In this

paper, we present Type4Py, a deep similarity learning-based hier-

archical neural network model. It learns to discriminate between

similar and dissimilar types in a high-dimensional space, which

results in clusters of types. Likely types for arguments, variables,

and return values can then be inferred through the nearest neigh-

bor search. Unlike previous work, we trained and evaluated our

model on a type-checked dataset and used mean reciprocal rank

(MRR) to reflect the performance perceived by users. The obtained

results show that Type4Py achieves an MRR of 77.1%, which is a

substantial improvement of 8.1% and 16.7% over the state-of-the-

art approaches Typilus and TypeWriter, respectively. Finally, to

aid developers with retrofitting types, we released a Visual Stu-

dio Code extension, which uses Type4Py to provide ML-based type

auto-completion for Python.
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1 Introduction

Over the past years, dynamically-typed programming languages

(DPLs) have become extremely popular among software developers.

The IEEE Spectrum ranks Python as the most popular programming

language in 2021 [3]. It is known that statically-typed languages

are less error-prone [54] and that static types improve important

quality aspects of software [20], like the maintainability of software

systems in terms of understandability, fixing type errors [23], and

early bug detection [20]. In contrast to that, dynamic languages such

as Python and JavaScript allow rapid prototyping which potentially

reduces development time [23, 59], but the lack of static types in

dynamically-typed languages often leads to type errors, unexpected

run-time behavior, and suboptimal IDE support.

To mitigate these shortcomings, the Python community intro-

duced PEP 484 [60], which adds optional static typing to Python 3.5

and newer. Static type inference methods [19, 24] can be employed

to support adding these annotations, which is otherwise a man-

ual, cumbersome, and error-prone process [46]. However, static

inference is imprecise [50], caused by dynamic language features

or by the required over-approximation of program behavior [39].

Moreover, static analysis is usually performed on full programs,

including their dependencies, which is slow and resource-intensive.

To address these limitations of static type inference methods,

researchers have recently employed Machine Learning (ML) tech-

niques for type prediction in dynamic languages [12, 26, 41, 51].

The experimental results of these studies show that ML-based type

prediction approaches are more precise than static type inference

methods or they can also work with static methods in a comple-

mentary fashion [12, 51]. Despite the superiority of ML-based type

prediction approaches, their type vocabulary is small and fixed-

sized (i.e. 1,000 types). This limits their type prediction ability for

user-defined and rare types. To solve this issue, Allamanis et al. [12]

recently introduced Typilus which does not constraint the type vo-

cabulary size and it outperforms the other models with small-sized

type vocabulary.

While the ML-based type inference approaches are effective, we

believe that there are two main drawbacks in the recent previous

work [12, 51]:
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• The neural models are trained and evaluated on developer-

provided type annotations, which are not always correct [46, 52].

This might be a (major) threat to the validity of the obtained

results. To address this, a type checker should be employed to

detect and remove incorrect type annotations from the dataset.

• Although the proposed approaches [12, 51] obtain satisfying

performance for Top-10, it is important for an approach to give

a correct prediction in Top-1 as developers tend to use the first

suggestion by a tool [48]. Like the API recommendation re-

search [25, 36], the Mean Reciprocal Rank (MRR) metric should

also be used for evaluation, which partially rewards an approach

where the correct API is not in the Top-1 suggestion.

Motivated by the above discussion, we present Type4Py, a type in-

ference approach based on deep similarity learning (DSL). The pro-

posed approach consists of an effective hierarchical neural network

that maps programs into type clusters in a high-dimensional feature

space. Similarity learning has, for example, been used in Computer

Vision to discriminate human faces for verification [15]. Similarly,

Type4Py learns how to distinguish between different types through

a DSL-based hierarchical neural network. As a result, our proposed

approach can not only handle a very large type vocabulary, but

also it can be used in practice by developers for retrofitting type

annotations. In comparison with the state-of-the-art approaches,

the experimental results show that Type4Py obtains an MRR of

77.1%, which is 8.1% and 16.7% higher than Typilus [12] and Type-

Writer [51], respectively.

Overall, this paper presents the following main contributions:

• Type4Py, a new DSL-based type inference approach.

• A type-checked dataset with 5.1K Python projects and 1.2M type

annotations. Invalid type annotations are removed from both

training and evaluation.

• A Visual Studio Code extension [9], which provides ML-based

type auto-completion for Python.

To foster future research, we publicly released the implementation

of the Type4Py model and its dataset on Zenodo.1

The rest of the paper is organized as follows. Section 2 reviews

related work on static and ML-based type inference. The proposed

approach, Type4Py, is described in Section 3. Section 4 gives de-

tails about the creation of the type-checked dataset for evaluation.

The evaluation setup and empirical results are given in Section 5

and Section 6, respectively. Section 7 describes the deployment of

Type4Py and its usage in Visual Studio Code. Section 8 discusses the

obtained results and gives future directions. Finally, we summarize

our work in Section 9.

2 Related Work

Type checking and inference for Python: In 2014, the Python com-

munity introduced a type hints proposal [60] that describes adding

optional type annotations to Python programs. A year later, Python

3.5 was released with optional type annotations and the mypy type

checker [33]. This has enabled gradual typing of existing Python

programs and validating added type annotations. Since the introduc-

tion of type hints proposal, other type checkers have been developed

such as PyType [8], PyRight [7], and Pyre [6].

1https://doi.org/10.5281/zenodo.5913787

A number of research works proposed type inference algorithms

for Python [24, 40, 56]. These are static-based approaches that have

a pre-defined set of rules and constraints. As previously mentioned,

static type inference methods are often imprecise [50], due to the

dynamic nature of Python and the over-approximation of programs’

behavior by static analysis [39].

Learning-based type inference: In 2015, Rachev et al. [55] proposed

JSNice, a probabilistic model that predicts identifier names and type

annotations for JavaScript using conditional random fields (CRFs).

The central idea of JSNice is to capture relationships between pro-

gram elements in a dependency network. However, the main issue

with JSNice is that its dependency network cannot consider a wide

context within a program or a function.

Xu et al. [64] adopt a probabilistic graphical model (PGM) to

predict variable types for Python. Their approach extracts several

uncertain type hints such as attribute access, variable names, and

data flow between variables. Although the probabilistic model of Xu

et al. [64] outperforms static type inference systems, their proposed

system is slow and lacks scalability.

Considering thementioned issue of JSNice, Hellendoorn et al. [26]

proposedDeepTyper, a sequence-to-sequence neural networkmodel

that was trained on an aligned corpus of TypeScript code. The Deep-

Typer model can predict type annotations across a source code file

by considering amuchwider context. Yet DeepTyper suffers from in-

consistent predictions for the token-level occurrences of the same

variable. Malik et al. [41] proposed NL2Type, a neural network

model that predicts type annotations for JavaScript functions. The

basic idea of NL2Type is to leverage the natural language infor-

mation in the source code such as identifier names and comments.

The NL2Type model is shown to outperform both the JSNice and

DeepTyper at the task of type annotations prediction [41].

Motivated by the NL2Type model, Pradel et al. [51] proposed

the TypeWriter model which infers type annotations for Python.

TypeWriter is a deep neural network model that considers both

code context and natural language information in the source code.

Moreover, TypeWriter validates its neural model’s type predictions

by employing a combinatorial search strategy and an external type

checker. Wei et al. [62] introduced LAMBDANET, a graph neural

network-based type inference for TypeScript. Its main idea is to

create a type dependency graph that links to-be-typed variables

with logical constraints and contextual hints such as variables as-

signments and names. For type prediction, LAMBDANET employs

a pointer-network-like model which enables the prediction of un-

seen user-defined types. The experimental results of Wei et al. [62]

show the superiority of LAMBDANET over DeepTyper.

Given that the natural constraints such as identifiers and com-

ments are an uncertain source of information, Pandi et al. [47]

proposed OptTyper which predicts types for the TypeScript lan-

guage. The central idea of their approach is to extract deterministic

information or logical constraints from a type system and combine

them with the natural constraints in a single optimization problem.

This allows OptTyper to make a type-correct prediction without vi-

olating the typing rules of the language. OptTyper has been shown

to outperform both LAMBDANET and DeepTyper [47].

Except for LAMBDANET, all the discussed learning-based type

inference methods employ a (small) fixed-size type vocabulary, e.g.,
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Table 1: Comparison between Type4Py and other learning-based type inference approaches

Approach Size of type vocabulary ML model
Type hints Supported Predictions

Contextual Natural Logical Argument Return Variable

Type4Py Unlimited HNN (2x RNNs) � � � � � �

JSNice [55] 10+ CRFs � � � � � �

Xu et al. [64] - PGM � � � � � �

DeepTyper [26] 10K+ biRNN � � � � � �

NL2Type [41] 1K LSTM � � � � � �

TypeWriter [51] 1K HNN (3x RNNs) � � � � � �

LAMBDANET [62] 100a GNN � � � � � �

OptTyper [47] 100 LSTM � � � � � �

Typilus [12] Unlimited GNN � � � � � �

TypeBert [29] 40K BERT � � � � � �

a Note that LAMBDANET’s pointer network model enables to predict user-defined types outside its fixed-size type vocabulary.

1,000 types. This hinders their ability to infer user-defined and rare

types. To address this, Allamanis et al. [12] proposed Typilus, which

is a graph neural network (GNN)-based model that integrates infor-

mation from several sources such as identifiers, syntactic patterns,

and data flow to infer type annotations for Python. Typilus is based

on metric-based learning and learns to discriminate similar to-be-

typed symbols from different ones. However, Typilus requires a

sophisticated source code analysis to create its graph representa-

tions, i.e. data flow analysis. Very recently, inspired by "Big Data",

Jesse et al. [29] presented TypeBert, a pre-trained BERT model

with simple token-sequence representation. Their empirical results

show that TypeBert generally outperforms LAMBDANET. The dif-

ferences between Type4Py and other learning-based approaches are

summarized in Table 1.

3 Proposed Approach
This section presents the details of Type4Py by going through the

different steps of the pipeline that is illustrated in the overview

of the proposed approach in Figure 1. We first describe how we

extract type hints from Python source code and then how we use

this information to train the neural model.

3.1 Type Hints

We extract the Abstract Syntax Tree (AST) from Python source code

files. By traversing the nodes of ASTs, we obtain type hints that are

valuable for predicting types of function arguments, variables, and

return types. The obtained type hints are based on natural infor-

mation, code context, and import statements which are described

in this section.

Natural Information: As indicated by the previous work [27, 41],

source code contains useful and informal natural language infor-

mation that is considered as a source of type hints. In DPLs, devel-

opers tend to name variables and functions’ arguments after their

expected type [44]. Based on this intuition, we consider identifier

names as the main source of natural information and type hint.

Specifically, we extract the name of functions (Nf ) and their argu-

ments (Narдs ) as they may provide a hint about the return type of

functions and the type of functions’ arguments, respectively. We

also denote a function’s argument as Narд hereafter. For variables,

we extract their names as denoted by Nv .

Code Context: We extract all uses of an argument in the function

body as a type hint. This means that the complete statement, in

which the argument is used, is included as a sequence of tokens.

Similarly, we extract all uses of a variable in its current and inner

scopes. Also, all the return statements inside a function are extracted

as they may contain a hint about the return type of the function.

Visible type hints (VTH): In contrast to previous work that only

analyzed the direct imports [51], we recursively extract all the

import statements in a given module and its transitive dependen-

cies. We build a dependency graph for all imports of user-defined

classes, type aliases, and NewType declarations For example, if mod-
ule A imports B.Type and C.D.E, the edges (A, B.Type) and (A,
C.D.E) will be added to the graph. We expand wildcard imports

like from foo import * and resolve the concrete type refer-

ences. We consider the identified types as visible and store them

with their fully-qualified name to reduce ambiguity. For instance,

tf.Tensor and torch.Tensor are different types. Although the

described inspection-based approach is slower than a pure AST-

based analysis, our ablation analysis shows that VTHs substantially

improve the performance of Type4Py (subsection 6.3).

3.2 Vector Representation
In order for a machine learning model to learn from type hints, they

are represented as real-valued vectors. The vectors preserve seman-

tic similarities between similar words. To capture those, a word

embedding technique is used to map words into a d-dimensional

vector space, Rd . Specifically, we first preprocess extracted iden-

tifiers and code contexts by applying common Natural Language

Processing (NLP) techniques. This preprocessing step involves tok-

enization, stop word removal, and lemmatization [30]. Afterwards,

we employ Word2Vec [43] embeddings to train a code embedding

Ec : w1, . . . ,wl → R
l×d for both code context and identifier tokens,

wherewi and l denote a single token and the length of a sequence,
respectively. In the following, we describe the vector representation

of all the three described type hints for both argument types and

return types.
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Figure 1: Overview of Type4Py approach

Identifiers: Given an argument’s type hints, the vector sequence of

the argument is represented as follows:

Ec (Narд) ◦ s ◦ Ec (Nf ) ◦ Ec (Narдs )

where ◦ concatenates and flattens sequences, and s is a separator2.
For a return type, its vector sequence is represented as follows:

Ec (Nf ) ◦ s ◦ Ec (Narдs )

Last, a variable’s identifier is embedded as Ec (Nv ).

Code contexts: For function arguments and variables, we concate-

nate the sequences of their usages into a single sequence. Similarly,

for return types, we concatenate all the return statements of a func-

tion into a single sequence. To truncate long sequences, we consider

a window of n tokens at the center of the sequence (default n = 7).
Similar to identifiers, the function embedding Ec is used to convert
code contexts sequences into a real-valued vector.

Visible type hints: Given all the source code files, we build a fixed-

size vocabulary of visible type hints. The vocabulary covers the

majority of all visible type occurrences. Because most imported

visible types in Python modules are built-in primitive types such

as List, Dict, and their combinations. If a type is out of the visi-
ble type vocabulary, it is represented as a special other type. For
function arguments, variables, and return types, we create a sparse

binary vector of sizeT whose elements represent a type. An element

of the binary vector is set to one if and only if its type is present

in the vocabulary. Otherwise, the other type is set to one in the
binary vector.

3.3 Neural Model
The neural model of our proposed approach employs a hierarchi-

cal neural network (HNN), which consists of two recurrent neural

networks (RNNs) [63]. HNNs are well-studied and quite effective

for text and vision-related tasks [18, 35, 65]. In the case of type

prediction, intuitively, HNNs can capture different aspects of iden-

tifiers and code context. In the neural architecture (see Fig. 1), the

two RNNs are based on long short-term memory (LSTM) units [28].

Here, we chose LSTMs units as they are effective for capturing

long-range dependencies [22]. Also, LSTM-based neural models

2The separator is a vector of ones with appropriate dimension.

have been applied successfully to NLP tasks such as sentiment clas-

sification [53]. Formally, the output h
(t )
i of the i-th LSTM unit at

the time step t is defined as follows:

h
(t )
i = tanh(s

t
i )σ

���bi +
∑
j

Ui , jx
(t )
j +

∑
j

Wi , jh
(t−1)
j

��� (1)

which has sigmoid function σ , current input vector x j , unit state
sti and has model parametersW , U , b for its recurrent weights,

input weights and biases [22]. The two hierarchical RNNs allow

capturing different aspects of input sequences from identifiers and

code tokens. The captured information is then summarized into

two single vectors, which are obtained from the final hidden state

of their corresponding RNN. The two single vectors from RNNs are

concatenated with the visible type hints vector and the resulting

vector is passed through a fully-connected linear layer.

In previous work [41, 51], the type prediction task is formulated

as a classification problem. As a result, the linear layer of their

neural model outputs a vector of size 1,000 with probabilities over

predicted types. Therefore, the neural model predicts unkonwn if it

has not seen a type in the training phase. To address this issue, we

formulate the type prediction task as a Deep Similarity Learning

problem [15, 34]. By using the DSL formulation, our neural model

learns to map argument, variable, return types into real continuous

space, called type clusters (also known as type space in [12]). In

other words, our neural model maps similar types (e.g. str) into
its own type cluster, which should be as far as possible from other

clusters of types. Unlike the previous work [41, 51], our proposed

model can handle a very large type vocabulary.

To create the described type clusters, we use Triplet loss [14]

function which is recently used for computer vision tasks such as

face recognition [14]. By using the Triplet loss, a neural model learns

to discriminate between similar samples and dissimilar samples by

mapping samples into their own clusters in the continuous space.

In the case of type prediction, the loss function accepts a type ta , a
type tp same as ta , and a type tn which is different than ta . Given
a positive scalar marginm, the Triplet loss function is defined as
follows:

L(ta, tp , tn ) =max(0,m +
		ta − tp

		 − ‖ta − tn ‖) (2)
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The goal of the objective function L is to make ta examples

closer to the similar examples tp than to tn examples. We use the

Euclidean metric to measure the distance of ta with tp and tn .
At prediction time, we first map a query example tq to the type

clusters. The query example tq can be a function’s argument, the

return type of a function or a variable. Then we find the k-nearest
neighbor (KNN) [16] of the query example tq . Given the k-nearest
examples ti with a distance di from the query example tq , the
probability of tq having a type t ′ can be obtained as follows:

P(tq : t ′) =
1

N

k∑
i

I(ti = t ′)

(di + ε)2
(3)

where I is the indicator function, N is a normalizing constant,

and ε is a small scalar (i.e. ε = 10−10).

4 Dataset
For this work, we have created a new version of our ManyTypes4Py

dataset [45], i.e., v0.7. The rest of this section describes the creation

of the dataset. To find Python projects with type annotations, on

Libraries.io, we searched for projects that depend on the mypy pack-
age [5], i.e., the official and most popular type checker for Python.

Intuitively, these projects are more likely to have type annotations.

The search resulted in 5.2K Python projects that are available on

GitHub. Initially, the dataset has 685K source files and 869K type

annotations.

4.1 Code De-duplication

On GitHub, Python projects often have file-level duplicates [38] and

also code duplication has a negative effect on the performance ofML

models when evaluating them on unseen code samples [11]. There-

fore, to de-duplicate the dataset, we use our code de-duplication

tool, CD4Py [2]. It uses term frequency-inverse document (TF-IDF)

[42] to represent a source code file as a vector in Rn and employs

KNN search to find clusters of similar duplicate files. While as-

suming that the similarity is transitive [11], we keep a file from

each cluster and remove all other identified duplicate files from

the dataset. Using the described method, we removed around 400K

duplicate files from the dataset.

4.2 Augmentation

Similar to the work of Allamanis et al. [12], we have employed a

static type inference tool, namely, Pyre [6] v0.9.0 to augment our

initial dataset with more type annotations. However, we do note

that we could only infer the type of variables using Pyre’s query
command. In our experience, the query command could not infer

the type of arguments and return types. The command accepts a

list of files and returns JSON files containing type information.

Thanks to Pyre’s inferred types, the dataset has now 3.3M type

annotations in total. To demonstrate the effect of using Pyre on the

dataset, Figure 2 shows the percentage of type annotation coverage

for source code files with/without using Pyre. After using Pyre, of

288,760 source code files, 65% of them have more than 40% type

annotation coverage.

4.3 Type Checking
Recent studies show that developer-provided types rarely type-

check and Python projects may contain type-related defects [31,

46, 52]. Therefore, we believe that it is essential to type-check the

Figure 2: The effect of using Pyre on the type annotation

coverage of source code files

dataset to eliminate noisy ground truth (i.e. incorrect type annota-

tions). Not only noisy ground truth can be considered a threat to

the validity of results but also it may make the discrimination of

types in type clusters more difficult [21]. To clean the dataset from

noisy ground truth, we perform basic analysis as follows:

• First, we use mypy to type-check 288,760 source files in the

dataset. Of which, 184,752 source files are successfully type-

checked.

• Considering the remaining 104,008 source files, for further anal-

ysis, we ignore source files that cannot be type-checked further

by mypy due to syntax error or other fatal exceptions. This

amounts to 63,735 source files in the dataset.

• Given 40,273 source files with type errors, we remove one type

annotation at a time from a file and run mypy. If it type-checks,

we include the file. Otherwise, we continue this step up to 10

times. This basic analysis fixes 16,861 source files with type

errors, i.e, 42% of the given set of files.

4.4 Dataset Characteristics
Table 2 shows the characteristics of our dataset after code de-

duplication, augmentation, and type-checking. In total, there are

more than 882K functions with around 1.5M arguments. Also, the

dataset has more than 2.1M variable declarations. Of which, 48%

have type annotations.

Figure 3 shows the frequency of top 10most frequent types in our

dataset. It can be observed that types follow a long-tail distribution.

Unsurprisingly, the top 10 most frequent types amount to 59% of

types in the dataset. Lastly, we randomly split the dataset by files

into three sets: 70% training data, 10% validation data, and 20% test

data. Table 3 shows the number of data points for each of the three

sets.

4.5 Pre-processing

Similar to the previous work [12, 51], before training ML models,

we have performed several pre-processing steps:

• Trivial functions such as __str__ and __len__ are not included
in the dataset. The return type of this kind of functions is
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Table 2: Characteristics of the dataset used for evaluation

Metricsa,b Our dataset

Repositories 5,092

Files 201,613

Lines of codec 11.9M

Functions 882,657

...with return type annotations 94,433 (10.7%)

Arguments 1,558,566

...with type annotations 128,363 (14.5%)

Variables 2,135,361

...with type annotations 1,023,328 (47.9%)

Types 1,246,124

...unique 60,333

a Metrics are counted after the ASTs extraction phase of our pipeline.
c Comments and blank lines are ignored when counting lines of code.

Table 3: Number of data points for train, validation and test

sets

Argument type Return type Variable type

Training 90,114 37,803 426,235

Validation 9,387 3,932 48,518

Test 24,121 10,444 118,319

Total 108,888 (16.06%) 45,667 (6.74%) 523,271 (77.20%)

straightforward to predict, i.e., __len__ always returns int,
and would blur the results.

• We excluded Any and None type annotations as it is not helpful
to predict these types.

• We performed a simple type aliasing resolving to make type

annotations of the same kind consistent. For instance, we map

[] to List, {} to Dict, and Text to str.

• We resolved qualified names for type annotations. For example,

array is resolved to numpy.array. This makes all the occur-
rences of a type annotation across the dataset consistent.

• Same as the work of Allamanis et al. [12], we rewrote the com-

ponents of a base type whose nested level is greater than 2

to Any. For instance, we rewrite List[List[Tuple[int]]] to
List[List[Any]]]. This removes very rare types or outliers.

5 Evaluation Setup
In this section, we describe the baseline models, the implementation

details and the training of the neural models. Lastly, we explain

evaluation metrics to quantitatively measure the performance of

ML-based type inference approaches.

5.1 Baselines

We compare Type4Py to Typilus [12] and TypeWriter [51], which

are recent state-of-the-art ML-based type inference approaches for

Python. Considering Table 1, Type4Py has an HNN-based neural

Figure 3: Top 10 most frequent types (Any and None types are
excluded)

model whereas Typilus’s neural model is GNN-based. However,

Typilus has the same prediction abilities as Type4Py and has no

limitation on the size of type vocabulary which makes it an obvious

choice for comparison. Compared with Type4Py, TypeWriter has two

main differences. First, TypeWriter’s type vocabulary is small and

pre-defined (i.e. 1,000 types) at training time. Second, TypeWriter

cannot predict the type of variables, unlike Type4Py and Typilus.

5.2 Implementation Details and Environment

Setup
We implemented Type4Py and TypeWriter in Python 3 and its ecosys-

tem.We extract the discussed type hints fromASTs using LibSA4Py [4].

The data processing pipeline is parallelized by employing the joblib

package. We use NLTK [37] for performing standard NLP tasks

such as tokenization and stop work removal. To train the Word2Vec

model, the gensim package is used. For the neural model, we used

bidirectional LSTMs [57] in the PyTorch framework [49] to im-

plement the two RNNs. Lastly, we used the Annoy[1] package

to perform a fast and approximate nearest neighbor search. For

Typilus, we used its public implementation on GitHub [10].

We performed all the experiments on a Linux operating system

(Ubuntu 18.04.5 LTS). The computer had an AMD Ryzen Thread-

ripper 1920X with 24 threads (@3.5GHz), 64 GB of RAM, and two

NVIDIA GeForce RTX 2080 TIs.

5.3 Training
To avoid overfitting the train set, we applied the Dropout regular-

ization [58] to the input sequences except for the visible types. Also,

we employed the Adam optimizer [32] to minimize the value of

the Triplet loss function. For both Type4Py and TypeWriter, we em-

ployed the data parallelism feature of PyTorch to distribute training

batches between the two GPUs with a total VRAM of 22 GB. For

the Type4Py model, given 554K training samples, a single training

epoch takes around 4 minutes. It takes 7 seconds for the TypeWriter

model providing that its training set contains 127K training sam-

ples3. Aside from the training sample size, Type4Py is a DSL-based

3Note that TypeWriter uses only argument and return samples as it lacks the variable
prediction ability.
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Table 4: Value of hyperparameters for neural models

Hyperparameter Type4Py TypeWriter Typilus

Word embedding dimension (i.e. d) 100 100 N/A

Size of visible type hints vocabulary (i.e. T ) 1024 1024 N/A

LSTM hidden nodes 256 256 N/A

GNN hidden nodes N/A N/A 64

Dimension of linear layer’s output 1536 1000 N/A

Number of LSTM’s layers 1 1 N/A

Learning rate 0.002 0.002 0.00025

Dropout rate 0.25 0.25 0.1

Number of epochs 25 25 500a

Batch size 5864 4096 N/A

Value of k for nearest neighbor search 10 N/A 10

Tripet loss’ margin value (i.e.m) 2.0 N/A 2.0

Model’s trainable parameters 4.6M 4.7M 650K

a The model stopped at epoch 38 due to the early stopping technique.

model and hence it has to predict the output of three data points for

every single training batch (see Eq. 2). Typilus completes a single

training epoch in around 6 minutes4. For all the neural models,

the validation set is used to find the optimal number of epochs

for training. The value of the neural models’ hyperparameters is

reported in Table 4.

5.4 Evaluation Metrics
We measure the type prediction performance of an approach by

comparing the type prediction tp to the ground truth tд using two

criteria originally proposed by Allamanis et al. [12]:

Exact Match: tp and tд are exactly the same type.

Base Type Match: ignores all type parameters and only matches the

base types. For example, List[str] and List[int] would be
considered a match.

In addition to these two criteria, as stated earlier, we opt for the

MRR metric [42], since the neural models predict a list of types for

a given query. The MRR of multiple queries Q is defined as follows:

MRR =
1

|Q |

|Q |∑
i=1

1

ri
(4)

The MRR metric partially rewards the neural models by giving a

score of 1
ri
to a prediction if the correct type annotation appears

in rank r . Like Top-1 accuracy, a score of 1 is given to a prediction
for which the Top-1 suggested type is correct. Hereafter, we refer

to the MRR of the Top-n predictions as MRR@n. We evaluate the

neural models up to the Top-10 predictions as it is a quite common

methodology in the evaluation of ML-based models for code [12,

25, 51].

Similar to the evaluation methodology of Allamanis et al. [12],

we consider types that we have seen more than 100 times in the

train set as common or rare otherwise. Additionally, we define the

set of ubiquitous types, i.e., {str, int, list, bool, float}. These
types are among the top 10 frequent types in the dataset (see Fig. 3)

and they are excluded from the set of common types. Furthermore,

Unlike Type4Py and Typilus, TypeWriter predicts unknown if the
expected type is not present in its type vocabulary. Thus, to have

4The public implementation of Typilus does not take advantage of our two GPUs.

Figure 4: TheMRR score of themodels considering different

top-n predictions

a valid comparison with the other two approaches, we consider

other predictions by TypeWriter in the calculation of evaluation

metrics.

6 Evaluation
To evaluate and show the effectiveness of Type4Py, we focus on the

following research questions.

RQ1 What is the general type prediction performance of Type4Py?

RQ2 How does Type4Py perform while considering different predic-

tions tasks?

RQ3 How do each proposed type hint and the size of type vocabu-

lary contribute to the performance of Type4Py?

6.1 Type Prediction Performance (RQ1)
In this subsection, we compare our proposed approach, Type4Py,

with the selected baseline models in terms of overall type prediction

performance.

Method: The models get trained on the training set and the test set

is used to measure the type prediction performance. We evaluate

the neural models by considering different top-n predictions, i.e.,
n = {1, 3, 5, 10}. Also, for this RQ, we consider all the supported

inference tasks by the models, i.e., arguments, return types, and

variables.

Results: Table 5 shows the overall performance of the neural models

while considering different top-n predictions. Given the Top-10

prediction, Type4Py outperforms both Typilus and TypeWriter based

on both the exact and base type match criteria (all). Specifically,

considering the exact match criteria (all types), Type4Py performs

better than Typilus and TypeWriter at the Top-10 prediction by a

margin of 5.9% and 11%, respectively. Moreover, it can be seen that

the Type4Py’s performance drop is less significant compared to the

other two models when decreasing the value of n from Top-10 to

Top-1. For instance, by considering Top-1 rather than Top-10 and

the exact match criteria (all), the performance of Type4Py, Typilus,

and TypeWriter drop by 3.4%, 7.2%, 12.1%, respectively. Concerning

the prediction of rare types, Typilus slightly performs better than

Type4Py, which can be attributed to the use of an enhanced triplet

loss function. It is also worth mentioning that Type4Py achieves

a 100% exact match for the ubiquitous types at Top-1, which is

remarkable.
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Table 5: Performance evaluation of the neural models considering different top-n predictions

Top-n predictions Approach
% Exact Match % Base Type Matcha

All Ubiquitous Common Rare All Common Rare

Top-1

Type4Py 75.8 100.0 82.3 19.2 80.6 85.2 36.0

Typilus 66.1 92.5 73.4 21.6 74.2 81.6 41.7

TypeWriter 56.1 93.5 60.9 16.2 58.3 64.4 19.9

Top-3

Type4Py 78.1 100.0 87.3 23.4 83.8 90.6 43.2

Typilus 71.6 96.2 83.0 26.8 79.8 88.7 49.2

TypeWriter 63.7 98.8 79.2 20.8 67.3 83.5 27.9

Top-5
Type4Py 78.7 100.0 88.6 24.5 84.7 92.1 45.5

Typilus 72.7 96.7 85.1 28.2 80.9 90.1 51.0

TypeWriter 65.9 99.6 84.9 23.0 70.4 89.1 32.1

Top-10
Type4Py 79.2 100.0 89.7 25.2 85.4 93.3 46.9

Typilus 73.3 97.04 86.4 28.9 81.5 90.9 51.9

TypeWriter 68.2 99.9 90.8 25.5 73.2 93.8 36.5

MRR@10

Type4Py 77.1 100.0 85.1 21.4 74.1 79.9 29.4

Typilus 69.0 94.4 78.5 24.4 67.4 75.8 32.8

TypeWriter 60.4 96.1 71.3 19.1 56.5 68.0 19.7

a Ubiquitous types are not a base type match. However, they are considered in the All column.

As stated earlier, developers are more likely to use the first sug-

gestion by a tool [48]. Therefore, we evaluated the neural models by

the MRR@10 metric at the bottom of Table 5. Ideally, the difference

between the MRR@10 metric and the Top-1 prediction should be

zero. However, this is very challenging as the neural models are not

100% confident in their first suggestion for all test samples. Given

the results of MRR@10, we observe that Type4Py outperforms both

Typilus and TypeWriter by a margin of 8.1% and 16.7%, respectively.

In addition, we investigated the MRR score of the neural models

while considering different values of Top-n, which is shown in Fig-
ure 4. As can be seen, Type4Py has a substantially higher score than

the other models across all values of n. Moreover, the MRR score

of all the three neural models almost converges to a fixed value

after MRR@3. Given the findings of the RQ1, we use MRR@10 and

the Top-1 prediction for the rest of the evaluation as we believe

this better shows the practicality of the neural models for assisting

developers.

6.2 Different Prediction Tasks (RQ2)
Here, we compare Type4Py with other baselines while consider-

ing different prediction tasks, i.e., arguments, return types, and

variables.

Method: Similar to the RQ1, the models are trained and tested on

the entire training and test sets, respectively. However, we consider

each prediction task separately while evaluating the models at

Top-1 and MRR@10.

Results: Table 6 shows the type prediction performance of the ap-

proaches for the three considered prediction tasks. In general, con-

sidering the exact match criteria (all), Type4Py outperforms both

Typilus and TypeWriter in all prediction tasks at both Top-1 and

MRR@10. For instance, considering the return task and Top-1,

Type4Py obtains 56.4% exact matches (all), which is 13.9% and 5.7%

higher than that of Typilus and TypeWriter, respectively. Also, for

the same task, the Type4Py’s MRR@10 is 11.9% and 3.7% higher

compared to Typilus and TypeWriter, respectively. However, con-

cerning the prediction of common types and MRR@10, TypeWriter

performs better than both Type4Py and Typilus at the argument and

return tasks. This might be due to the fact that TypeWriter predicts

from the set of 1,000 types, which apparently makes it better at the

prediction of common types. Moreover, both Type4Py and Typilus

have a much larger type vocabulary and hence they need more

training samples to generalize better providing that both argument

and return types together amount to 22.8% of all the data points

in the dataset (see Table 3). Lastly, in comparison with Typilus,

Type4Py obtains 7.7% and 6.7% higher MRR@10 score for the exact

and base type match criteria (all), respectively.

6.3 Ablation Analysis (RQ3)
Here, we investigate how each proposed type hint and the size of

type vocabulary contribute to the overall performance of Type4Py.

Method: For ablation analysis, we trained and evaluated Type4Py

with 5 different configurations, i.e., (1) complete model (2) w/o

identifiers (3) w/o code context (4) w/o visible type hints (5) w/ a

vocabulary of top 1,000 types. Similar to the previous RQs, we mea-

sure the performance of Type4Py with the described configurations

at Top-1 and MRR@10.

Results: Table 7 presents the performance of Type4Py with the five

described configurations. It can be observed that all three type hints

contribute significantly to the performance of Type4Py. Code context

has the most impact on the model’s performance compared to the
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Table 6: Performance evaluation of the neural models considering different tasks

Metric Task Approach
% Exact Match % Base Type Match

All Ubiquitous Common Rare All Common Rare

Top-1 prediction

Argument

Type4Py 61.9 100.0 64.5 17.4 63.9 69.3 20.1

Typilus 53.8 83.3 46.6 23.7 57.0 52.5 29.6

TypeWriter 58.4 93.6 61.3 19.6 60.1 64.4 22.1

Return

Type4Py 56.4 100.0 59.3 14.4 60.3 65.4 20.9

Typilus 42.5 84.0 41.6 12.3 49.9 49.5 24.8

TypeWriter 50.7 93.3 59.9 9.2 54.1 64.4 15.0

Variablea
Type4Py 80.4 100.0 86.8 20.7 85.9 89.1 44.6

Typilus 71.4 95.1 80.5 22.5 80.7 89.1 48.6

MRR@10

Argument

Type4Py 64.2 100.0 69.5 20.7 59.9 62.2 20.6

Typilus 58.7 87.9 55.4 27.5 56.0 52.2 28.1

TypeWriter 63.3 96.2 72.4 23.0 59.6 69.3 22.7

Return

Type4Py 57.9 100.0 63.3 16.1 52.9 55.8 18.5

Typilus 46.0 86.9 49.8 14.3 44.9 46.6 21.4

TypeWriter 54.2 95.9 68.9 10.9 49.9 65.1 14.2

Variablea
Type4Py 81.4 100.0 89.1 22.7 79.1 85.0 34.1

Typilus 73.7 96.3 84.7 25.1 72.4 82.7 36.1

a Note that TypeWriter cannot predict the type of variables.

Table 7: Performance evaluation of Type4Py with different configurations

Metric Approach
% Exact Match % Base Type Match

All Ubiquitous Common Rare All Common Rare

Top-1 prediction

Type4Py 75.8 100.0 82.3 19.2 80.6 85.2 36.0

Type4Py (w/o identifiers) 72.7 100.0 71.8 17.4 76.5 73.9 30.9

Type4Py (w/o code context) 67.9 100.0 59.2 11.4 70.6 63.3 17.9

Type4Py (w/o visible type hints) 65.4 86.2 71.9 15.8 70.0 74.9 31.5

Type4Py (w/ top 1,000 types) 74.5 100.0 83.3 12.9 79.1 86.3 28.5

MRR@10

Type4Py 77.1 100.0 85.1 21.4 74.1 79.9 29.4

Type4Py (w/o identifiers) 73.8 100.0 74.6 19.2 69.3 66.6 25.1

Type4Py (w/o code context) 69.7 100.0 63.9 13.6 63.8 55.4 17.7

Type4Py (w/o visible type hints) 68.6 89.3 76.2 18.2 65.8 70.1 26.2

Type4Py (w/ top 1,000 types) 75.6 100.0 86.2 14.2 72.4 81.7 22.8

other two type hints. For instance, when ignoring code context, the

model’s exact match score for common types drops significantly by

23.1%. After code context, visible type hints have a large impact on

the performance of the model. By ignoring VTH, the model’s exact

match for ubiquitous types reduces from 100% to 86.2%. Although

the Identifiers type hint contributes substantially to the prediction

of common types, it has a less significant impact on the overall

performance of Type4Py compared to code context and VTH. In

summary, we conclude that code context and VTH are the strongest

type hints for our type prediction model.

By limiting the type vocabulary of Type4Py to the top 1,000 types,

similar to TypeWriter, we observe that the model’s performance

for common types is slightly improved while its performance for

rare types is reduced significantly, i.e., 7.2% considering MRR@10.

This is expected as the model’s type vocabulary is much smaller

compared to the complete model’s.

7 Type4Py in Practice
To make the Type4Py model practical, we developed an end-to-end

solution including a web server and a Visual Studio Code (VSC)

extension. We deployed this as an openly accessible web service
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Figure 5: A type auto-completion example from VSC. The code has not seen during training. The expected return type is

Optional[str].

that serves requests from the VSC extension. In this section, we

describe the deployment components of Type4Py.

7.1 Deployment
To deploy the pre-trained Type4Py model for production, we convert

the Type4Py’s PyTorch model to an ONNXmodel [17] which enables

querying the model on both GPUs and CPUs with faster inference

speed. Thanks to Annoy [1], fast and memory-efficient KNN search

is performed to suggest type annotations from type clusters.

7.2 Web Server
We have implemented a small Flask application to handle concur-

rent type prediction requests from users with Nginx as a proxy.

This enables us to have quite a number of asynchronous workers

that have an instance of Type4Py ’s ONNX model plus Type Clusters

each. Specifically, the web application receives a Python source file

via a POST request, queries an instance of the model, and finally it

gives the file’s predicted type annotations as a JSON response.

7.3 Visual Studio Code Extension
As stated earlier, retrofitting type annotations is a daunting task for

developers. To assist developers with this task, we have released a

Visual Studio Code extension for Type4Py [9], which uses the web

server’s API to provide ML-based type auto-completion for Python

code. Figure 5 shows an example of a type recommendation from

the VSC IDE. As of this writing, the extension has 909 installs on

the Visual Studio Marketplace. Based on the user’s consent, the VSC

extension gathers telemetry data for research purposes. Specifically,

accepted types, their rank in the list of suggestions, type slot kind,

identifiers’ name, and identifiers’ line number are captured from the

VSC environment and sent to our web server. In addition, rejected

type predictions are captured when a type auto-completion window

is closed without accepting a type.

By analyzing the gathered telemetry data from Jul. ’21 to Aug. ’21

and excluding the author(s), of 26 type auto-completion queries, 19

type annotations were accepted by the extension’s users. Moreover,

the average of accepted type annotations per developer is 69.6%.

Given that the gathered telemetry data is pretty small, we cannot

draw a conclusion regarding the performance of Type4Py in practice.

However, our telemetry infrastructure and concerted efforts to

broaden the user base will enable us to improve Type4Py in the

future.

8 Discussion and Future Work
Based on the formulated RQs and their evaluation in Section 6, we

provide the following remarks:

• We used Pyre [6], a static type inference tool, to augment our

dataset with more type annotations. However, this can be con-

sidered as a weakly supervision learning problem [66], meaning

that inferred types by the static tool might be noisy or imprecise

despite the pre-processing steps. To eliminate this threat, we

employed a static type checker, mypy, to remove source files

with type errors from our dataset. Future work can devise a

guided-search analysis to fix type errors in source files, which

may improve the fix rate.

• It would be ideal for ML-based models to give a correct predic-

tion in their first few suggestions, preferably Top-1, as develop-

ers tend to use the first suggestion by a tool [48]. Therefore, dif-

ferent from previous work on ML-based type prediction [12, 51],

we use the MRR metric in our evaluation. We believe that the

MRR metric better demonstrates the potential and usefulness of

ML models to be used by developers in practice. Overall, con-

sidering the MRR metric, Type4Py significantly outperforms the

state-the-art ML-based type prediction models, namely, Typilus

and TypeWriter.

• Considering the overall type prediction performance (RQ1), both

Type4Py and Typilus generally perform better than TypeWriter.

This could be attributed to the fact that the two models map

types into a high-dimensional space (i.e. type clusters). Hence

this not only enables a much larger type vocabulary but also

significantly improves their overall performance, especially the

prediction of rare types.

• Given the results of RQ1 and RQ2, our HNN-based neural model,

Type4Py, has empirically shown to be more effective than the

GNN-based model of Typilus. We attribute this to the inherent

bottleneck of GNNs which is over-squashing information into a

fixed-size vector [13] and thus they fail to capture long-range in-

teraction. However, our HNN-based model concatenates learned

features into a high-dimensional vector and hence it preserves

information and its long-range dependencies.

• According to the results of ablation analysis (RQ3), the three

proposed type hints, i.e., identifiers, code context, and VTHs

are all effective and positively contribute to the performance of
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Type4Py. This result does not come at the expense of generaliz-

ability; our visible type analysis is not more sophisticated than

what an IDE like PyCharm or VSCode do to determine available

types for, e.g., auto-completion purposes.

• Both Type4Py and Typilus cannot make a correct prediction for

types beyond their pre-defined (albeit very large) type clusters.

For example, they currently cannot synthesize types, meaning

that they will never suggest a type such as Optional[Dict[str,
int]] if it does not exist in their type clusters. To address this,
future research can explore pointer networks [61] or a GNN

model that captures type system rules.

• We believe that Type4Py’s VSC extension is one step forward

towards improving developers’ productivity by using machine-

aided code tools. In this case, the VSC extension aids Python

developers to retrofit types for their existing codebases. After

gathering sufficiently large telemetry data from the usage of

Type4Py, we will study how to improve Type4Py’s ranking and

quality of predictions for, ultimately, a better user experience.

9 Summary
In this paper, we present Type4Py, a DSL-based hierarchical neural

network type inference model for Python. It considers identifiers,

code context, and visible type hints as features for learning to pre-

dict types. Specifically, the neural model learns to efficiently map

types of the same kind into their own clusters in a high-dimensional

space, and given type clusters, the k-nearest neighbor search is per-
formed to infer the type of arguments, variables, and functions’

return types. We used a type-checked dataset with sound type

annotations to train and evaluate the ML-based type inference mod-

els. Overall, the results of our quantitative evaluation show that

the Type4Py model outperforms other state-of-the-art approaches.

Most notably, considering the MRR@10 score, our proposed ap-

proach achieves a significantly higher score than that of Typilus

and TypeWriter’s by a margin of 8.1% and 16.7%, respectively. This

indicates that our approach gives a more relevant prediction in its

first suggestion, i.e., Top-1. Finally, we have deployed Type4Py in

an end-to-end fashion to provide ML-based type auto-completion

in the VSC IDE and aid developers to retrofit type annotations for

their existing codebases.
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