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ABSTRACT

Direct numerical simulations of three-dimensional compressible Navier-Stokes equations are conducted
using high-order numerical methods in cylindrical coordinates. Aim of the work is to examine the effect
of three-dimensionality in the dynamics of vortex breakdown in swirling jets within a specific range of
Reynolds numbers. The main elements of vortex breakdown are revealed in our computations, and the
interaction between three-dimensional helical instabilities and the axisymmetric process of breakdown
is discussed. The results confirm a general tendency of swirling flows to burst into a sequence of bubbles
when the Reynolds number is increased. Comparing axisymmetric and fully three-dimensional compu-
tations, it’s observed the possibility that a single or double helical structure arising in linear regime can
work to extract energy from the axisymmetric waves.

1 Introduction

The term vortex breakdown refers to the drastic expansion of the vortex core occurring in swirling
flows when the swirl ratio exceeds a threshold value. Although it represents a strongly non-linear phe-
nomenon, many theoretical works [2,9] have provided physical insights based on small perturbations
analysis. The leit motiv of all the studies is the capability of a columnar swirling flow to sustain ax-
isymmetric waves.

Lord Kelvin was the first to observe that a vortex tube with uniform axial vorticity behaves as a wave
guide for small disturbances. The restoring effect of the wave is generated by a coupling between
stretching and tilting of axial vorticity [15]. Squire introduced the concept of criticality in swirling
flows [2]: the flow is said to be supercritical when the inertial Kelvin waves are convected downstream
from the basic axial flow; if upstream propagation of energy is possible the flow is subcritical. In his
view, the breakdwon is the final stage of an amplification process occurring when the flow switches
from supercritical to subcritical conditions.

Using a weakly non-linear analysis, Leibovich [6] found that waves of finite amplitude can evolve in a
vortex core as a soliton of permanent shape. In his work he indicates the multiple breakdown, i.e. the
appearence of a second smaller bubble on the axis, as the tail of the soliton. In addition, he explains the
well known tendency of the vortex bubble to migrate upstream as the result of a ‘positional instability’:
as the wave grows in amplitude, it becomes faster, and then can penetrate the supercritical region,
unaccessible to small perturbations. Thus, in Leibovich’s view the key issue of vortex breakdown is
the wave dispersion. In figure 1-a is reported the dispersion diagram associated to the axisymmetric
Kelvin waves for the Rankine vortex. It has been obtained following the standard procedure of normal
modes decomposition. For a single axial wave number, there exists an infinite countable sequence of
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Figure 1: Axisymmetric Kelvin waves sustained by the Rankine vortex. (a): Dispersion diagram. (b): Normalized eigen-
functions of axial velocity corrisponding to the axial wave number
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neutral modes whose temporal frequency lies in the range1 �
	���
���	 . Denoting by ����� this sequence,
the corresponding eigenfunctions are expressed in terms of Bessel functions of argument ��� . Figure
1-b reports the eigenfunctions for the first 4 modes. Due to the oscillating nature of Bessel functions,
it can be seen that the fastest modes corresponding to a fixed axial wavenumber, are those with less
radial structure, and that a lower group velocity competes to the higher wave-numbers � . Now, if the
Kelvin waves are responsible for vortex breakdown, it seems reasonable to extend the above dispersion
mechanism to the multiple breakdown process: a bigger wave pocket can propagate faster followed
behind by slower, smaller pockets. Also, since viscosity is more effective on short wavelengths, the
picture provides an explanation for the strong dependence on the Reynolds number found by numerical
computations [1] .

An other possibility is to rely multiple breakdown to successive supercritical/subcritical transitions
[2,14]. The idea is the following: once the first bubble has developed, the flow field behind it recovers
supercritical conditions due to inertial effects, and the subsequent bubble originates when a further
transition occurrs in the slowly spatially evolving wake.

In this work, we present a numerical survey on vortex breakdown in swirling jets. Special emphasis is
given to the multiple breakdown and to its interaction with the loss of stability to three-dimensional per-
turbations. Comparing axisymmetric and fully 3D calculations, we have found this coupling mechanism
to be dominant when a self sustained global mode contaminates all the domain: since multiple break-
down manifests itself in a series of bubbles sequentially smaller, it turns out that the high wavenumbers
are dissipated as soon as the instability occurrs. Nevertheless, we present a higher Reynolds number
case in which a certain axial position acts as wave marker for perturbation travelling downstream, leav-
ing unchanged the peculiar structure of multiple breakdown. We believe this case to be representative
of the non-linear mechanism discussed by Pier and Huerre [12] for spatially developing wakes.

1The time scale is � ��� , where
�

is the angular velocity of the solid body rotation in the vortex core.



2 Problem formulation and numerical method

The swirling flow under investigation is initially columnar (1D) , with non-dimensional velocity com-
ponents expressed in cylindrical coordinates ��� �"!#�%$'& by:(*),+ -/.10�243657098;: <>=?0@=BA.DC�0 0FEBA(HGI+ A (1)(�J,+ <
In writing (1) the vortex core radius K and the uniform axial velocity LNM have been used as reference
dimensional quantities. The swirl number OQPRL*S��T�UPWV�&YXZL[M is the ratio between the azimuthal velocity
at the vortex edge and the uniform axial velocity. It is related to the Rossby number, often referred in the
literature, and represents a measure of the intensity of the vortex core. The initial pressure \ is choosen
to balance the centrifugal force, while the density ] is constant through the domain. Thus, assuming ]
and ] L_^M as density and pressure reference values, the thermodynamic conditions initially assigned are` + Aa 2b0[: + A
cedgf 8h_i Jh ( 8)jRk j (2)l 2b0[: + a 2b0[:dgf 8h
with mQn the Mach number on the axis.
The unsteady, compressible Navier-Stokes equations are solved in cylindrical coordinates, within a do-
main of dimension opMNP 	;q , oDrsPtV q and qvu ! uw	;x . The spatial derivatives in the axial and radial
directions are calculated using the V q9y�z order Lele’s compact schemes [7]. The method requires the
inversion of a penta-diagonal matrix with constant coefficients. Following [4], a lower-upper decom-
position is performed in a preliminar stage, and the derivatives are then calculated by simple matrix
multiplication. A spectral method employing a base 2 FFT has been used for the periodical direction.
The spectral method provides a strightforward way to alleviate the CFL time restriction when the equa-
tion are explicitly integrated in time. Indeed, the number of azimuthal modes can be dropped when
approaching the axis: a limit point � n can be defined such that for � � ��n the number of modes ac-
counted {FSZ�T�;& is given by | ) 2b0[: + A3g} ) 00 h (3)

where ~ S is the number of grid points in the azimuthal direction. For the time advancement we used a
third order low-storage Runge-Kutta method, and the above strategy has revealed robust and efficient.
However, for the higher Reynolds number case presented here, Re=800, resolution requirements has
forced us to mantain the number of azimuthal modes nearly constant when moving along the radial
direction. For this specific case, to overcome the difficulty of the time step restriction, time integra-
tion was performed by a Dual Time Stepping method: equations are discretized in time by a II order
backward difference formula�3��F��������� 5 3���'��� c A3����'������� +���� .�2 ������� : (4)

and the solution at level ���7V is obtained by integration in a dual variable � :k �k[� + 5 � �3���� c ��� .�2 � :�5��Y5 3�F� ��� c A3���� ���[����� (5)



A steady solution of (5) gives the updated physical solution ���;��� in (4). The integration in the dual time
variable is obtained by a Runge-Kutta Jameson-like scheme [3] with the Local Time Stepping applied
to accelerate the convergence.

The boundary conditions are treated with the NSCBC formulation of Poinsot and Lele [13]. To reflect
the physical condition of a swirling jet in an open domain, density and velocity are held constant at the
inflow according to (1) and (2), while non-reflective boundary conditions are applied at the open sides.
For the axis treatment we have adopted the method of O’Sullivan and Breuer [11]: the values in the
centre are reconstructed by a Fourier summation� 2b0 + <[: + �g ¢¡ 8£¤�¥ �§¦  ¨ª©� ¤ 2b0 + <[:�« ¬ ¤ )

(6)

with the coefficients calculated using polynomial expansions in the radial direction satisfying specific
parity conditions. In particular, for the single valued variables �T]­�%L�M'��\­& , it can be seen [8] that

©� ¤ 2b0 + <[: + < |¯®+ < (7)k ©� ¤k 0 2b0 + <[: + < | + A
while for the multiple valued variables �°L�rZ�%L­S�&

©� ¤ 2b0 + <[: + < |¯®+B± A (8)k ©� ¤k 0 2b0 + <[: + < | +B± A
Using (6)-(7) and (8), the values in the center are calculated after performing a modal decomposition of
the updated values near the axis. The method of Mohseni and Colonius [10], based on a staggered grid
to avoid the singularity, was even tested, but not noticeable differencies were found.

The grid is stretched in the radial direction in order to increase the resolution within the vortex core. The
transformation adopted to map the computational variable qNu�²Fu V into the physical one qsu � u o�r ,
is given by: 0*2b³*: + ´ J«;µ�5?A 24« µ·¶ 5?AZ: (9)

with ¸¹P q#º » a stretching factor held constant for all the computations presented. The grid resolution
adopted for different Reynolds numbers is reported in table 1.

Re � M � r � S � n
200 256 95 64 0.5
400 256 95 64 0.5
600 320 125 64 0.4
800 320 200 64 0.15

Table 1: Grid resolution for different Reynolds numbers



Figure 2: Re=200 S=1.1 case. Temporal evolution of streaklines. Box size: 20x2x2.

3 Results

We study the evolution of the swirling jet defined by equations (1) within the range of Reynolds numbers
200 u Re u 800. In all the computations the Mach number is m n =0.5. We proceed describing a low
Reynolds number case, for which other numerical results are available [14]. This will serve to validate
the code and to illustrate the sequence of events characterizing the breakdown process.

3.1 Code validation: Re=200 case

In figure 2 is reported a streaklines visualization for the case Re=200, S=1.1. The streaklines are obtained
releasing particles from six positions localized at the inflow boundary (left side), on a circle of radius
r=0.1. The particles are coloured according to their emission time. The initial columnar swirling jet
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Figure 3: Re=200 case. Temporal evoolution of azimuthal Fourier coefficients for axial velocity (solid), radial velocity
(dash), azimuthal velocity (dash-dots). Control station: z=5, r=0.2. (a): S=1.1 (b): S=1.5.

Figure 4: Re=200 S=1.5 case. Streaklines visualization after saturation. Box size: 20x2x2.

rapidly decelerates in the vortex core near the inflow. To satisfy mass conservation the flow expands in
the center, and when stagnating conditions are reached a region of recirculating flow (the vortex bubble)
is formed. In order to render the computation fully three-dimensional, a small random perturbation in
the azimuthal component of velocity was superimposed on the initial conditions. Until the breakdown
has fully developed, the flow remains axisymmetric. Then, once the bubble has formed, the wake behind
it becomes unstable to the azimuthal disturbance introduced. In figure 3-a it is shown the temporal
evolution of the first four modes for each velocity component at a control station fixed in the wake of the
bubble. The plot is on log scale to highlight the exponential growth rate. The linearly unstable mode is
m=1; at Time=300 its amplitude is big enough to render the non-linear interactions not longer negligible,
and higher modes start growing in a cascade process. Saturation is reached at approximately Time=420.
At this stage, the dominant mode still remains m=1 (ten times bigger than the m=2 amplitude), and the
corresponding sreaklines (the

� J½¼
of fig. 2) reveal a stable axisymmetric bubble followed by an helical

wake. The helix rotates in the counterclockwise direction if seen from downstream, but it revolves
spatially in the clockwise direction. Following the classification of Saffmann [15], it is a retrograde
mode, i.e. in a frame of reference moving with the basic flow, it travels in the negative direction. Same



behaviour has been found in other numerical studies [14], and actually the linear theory confirm the
retrograde modes to be the most unstable in swirling wakes [9].
The growth rate for the m=1 mode is calculated by¾ + A� 8 5¿� �ÁÀ�Â ©Ã 2b� 8 :©Ã 2b� � :where ÄÅ is the m=1 Fourier coefficient of any variable, while Æ � and Æ ^ are different times taken within the
linear regime. For this specific case we have found 
 P¿Ç º »�È V qÊÉ ^ . Ruith et al. [14] found 
 PRË º ËZÇ È V q�É ^
with the same velocity profiles but for an incompressible flow. The period of oscillation agree very well,
T=6, and the streaklines reveal a very similar spatial structure.

Increasing the swirl number leads to higher growth rates as it can be seen from figure 3-b which refers
to the S=1.5 case. In addition, the higher modes grow in a less regular way. Higher resolution has not
changed this trend which is rather attributed to a competition of effects: for this set of parameters the
linearly unstable modes are m=1,2,3. They grow at approximately the same rate until Time=230, then,
the growth rate of m=2 and m=3 suddenly increases. Comparing the amplitude values in fig. 3-a and fig.
3-b, it can be noticed that the transition for the S=1.5 case occurrs when the third mode starts growing
in the S=1.1 case. It is therefore suggested that the transition develops when the non-linear poduction of
higher modes becomes dominant on the linear higher modes selection. After saturation the amplitude of
m=2 becomes comparable with m=1, and the spiral wake switches from a single to a double helix (fig.
4). The disturbance travels into the bubble, where the flow becomes chaotic, and the particles remain
trapped before been ejected rotating in clockwise and counterclockwise direction randomly. However,
the bubble preserves its original topology of well confined region of recirculating flow.

3.2 Higher Reynolds numbers.

Increasing the Reynolds number to Re=400, the computations reveal a tendency of the flow to manifest
multiple breakdowns. In figure 5-a we plot the instantaneous streamlines on a meridional plane obtained
by axisymmetric calculations. They refer to steady conditions. It can be observed that for S=0.95, the
second breakdown is very mild, and located at a considerable distance from the first. Increasing the
swirl to S=1.1 renders the second breakdown more pronounced and reduces its distance from the first
bubble, which has, in turn, widely increased in size (observe the radius of the recirculating region).

The effect of the Reynolds number can be appreciated comparing figure 5-a and 6-a which refer to the
same level of swirl: it can be noticed that the topology of the flow changes only in the size of the second
breakdown. These qualitative results reveal the inviscid nature of the phenomenon and seem to validate
the dispersion mechanism described in the introduction. We refer to [1] for a complete discussion on
the Reynolds number dependence. What we point out here is that the 3D calculations have temporarily
evolved to the same axisymmetric solutions, with the same multiple breakdown configuration. As for
the Re=200 case, the flow remains axisymmetric until the breakdown has fully developed. Then, three-
dimensional perturbations amplify in the wake and contaminate the whole domain. In figure 5-b and
6-b are reported the instantaneous streamlines on a single meridional plane after the saturation has been
reached. Comparing with the corresponding axisymmetric steady solutions, it can be noticed that the
smaller bubbles are completely dissipated, and that for the Re=400 S=1.1 case, even the first bubble
appers weakened.

The corresponding streaklines are reported in figure 7. The axial wavenumber of the helix is increased
compared to the Re=200 case and is insensitive to the swirl level, while the amplitude of the oscillations
is bigger at S=1.1. A further correlated difference is that for the lower swirl case, the first vortex bubble
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Figure 5: Re=400 case. Streamlines on a meridional planes for different swirl levels. (a): steady solutions obtained by
axisymmetric calcualtion. (b): three-dimensional calculation after saturation.
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Figure 6: Re=600 case. Streamlines on a meridional planes for different swirl levels. (a): steady solutions obtained by
axisymmetric calcualtion. (b): three-dimensional calculation after saturation.

remains clearly axisymmetric. The perturbation never propagates upstream of the axial position where
the second small bubble had originally developed. A different behaviour is observed for S=1.1. Here,
although the second vortex bubble is more pronounced, it is completely swept out and the perturbation
moves up to the first bubble. We point out that, at the list for moderate Reynolds numbers, the latter
case is representative of the general behaviour observed in most of the simulations, while the former
can be considered as a limit case, which, however, resembles very well some breakdown configurations
found experimetally [16]

Now we consider the highest Reynolds number under investigation, namely Re=800.
It represents the most interesting case with remarkable qualitative differences. It is instructive to con-
sider the evolution of the flow beginning from the earlier stages when the flow is nearly columnar. From
figure 8 it can be seen that the expansion of the vortex core is accompanied by a large upstream ex-
cursion. These are the main features of vortex breakdown: a wave growing in amplitude and moving
upstream, as discussed in the introduction. It’s worth of mentioning that this behaviour can be obtained
only if the swirl number is chosen close to the critical point, defined as the minimum level of swirl
necessary to breakdown the vortex: fixing an higher swirl leads to a rapid explosion of the vortex core
similar to what seen at lower Reynolds numbers. The drawback is that with a moderate swirl the whole
dynamics is slower and the time needed increases proportionally to the Reynolds number. Furthermore,
the combination high Reynolds - moderate swirl leads to a strong domain dependence. Consequently,
the computational effort necessary to highlight the wave like connotations of vortex breakdown, is very



Figure 7: Re=400 case. Streaklines visualization after saturation for different swirl levels. Box size: 20x2x2.

demanding.

The sequence of events is not changed: the breakdown process is still essentially axisymmetric. When
the first bubble is formed, the flow behind it accelerates as indicated by the restriction of the streaklines
immediately behind the bubble at Time=153. Contemporarily, a new wave starts moving usptream and
growing until an other bubble, smaller in size, is formed at Time 210. The formation of the second
bubble is again accompanied by acceleration in the wake, and further swelling appears visible behind
it. The physical interpretation is the following: an inward motion of the particles moving over the
bubble is generated for inertial effects. This increases the angular momentum and reduces the pressure
in the wake enhancing the axial acceleration. Although the angular momentum is locally increasing,
the strong axial acceleration renders the flow locally supercritical, i.e. unable to sustain steady waves of
finite wavelength. The second breakdown represents a further transition between two flows dynamically
different. This is better seen at Time=310, where the two the swirling flows, ahead and behind the second
bubble, are both nearly columnar but appear clearly different.

The three-dimensional instabilities become visible at later stage. In this case the dominant mode is
m=2 producing a double helix structure without switching from single to double helix. The period
of oscillation is T=3 and the time simulated should be sufficient to observe the a self-sustained mode
contaminating the whole domain. Here, however, the perturbation remain localized downstream, behind
a specific axial position, and the multiple breakdown structure remains perfectly preserved.



Figure 8: Re=800 S=0.95 case. Temporal evolution of streaklines. Box size: 20x2.8x2.8.

4 Conclusions

A numerical investigation on three-dimensional vortex breakdown in swirling jets has been conducted
using Direct Numerical Simulations. The code used is validated against results available in the literature
for low Reynolds numbers, and an extension to higher Reynolds number cases is presented.

The numerical computations reveal the main elements underlying the phenomenom: (a) large-amplitude
axisymmetric waves and (b) linear three-dimensional instabilities to azimuthal perturbations. The at-
tempt we have tried to undertake in this paper is to analyze their interactions, or, in other worlds, to see
whether the growth of azimuthal modes can interfere with the axisymmetric process of breakdown. It
is found that at low Reynolds number a global mode contaminates the entire physical domain and the
coupling becomes inportant: the perturbation can penetrate inside the vortex bubble, and the axisym-
metric smaller bubbles eventually presented in a multiple breakdown configuration, dissipate as soon
as the three-dimensional perturbations become big enough.

At higher Reynolds number, the behaviour is different: a steep transition is generated at some stream-
wise stations in the wake of the bubbles. A sharp front develops, leaving the peculiar structure of a
multiple breakdown substantially unchanged.
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