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Summary
In the construction of excavation pits, quay walls and soil reinforcing structures steel sheet piles may be used
to retain the soil at its place. Due to the difference in soil or water levels or external forces, the sheet piles
are loaded and may fail due to insufficient strength or instability. Several mechanism may lead to failure of
the pile, which all should be checked in order to declare a sheet piling design safe according to the Eurocode
NEN-EN 1993-5. A sheet pile will deform due to the loading, visualised in figure 1 by w0. If a vertical load, a
normal force, is applied to the sheet pile, this displacement will grow, visualised by w . This effect is known
as the global buckling mechanism, main topic of this thesis. In the current practice, the verification or unity
check on this mechanism depends on the critical global buckling load Fcr . If the normal force approaches
this load, the growth of the deformation will go to infinity, which will obviously give failure of the sheet pile.
Currently, the value of Fcr is determined based on the resistance the steel material of the sheet pile gives
against deformation. However, the soil must be deformed as well for the global buckling mechanism to occur,
but this is currently left out of account. This thesis aims to investigate the influence of the soil to the global
buckling mechanism.

Figure 1: Principle of global buckling in a sheet pile. Sheet pile anchored by a grout body anchor

From a literature study, it turned out that the verification of the global buckling mechanism in the Eurocode
for steel sheet piles is a check on the normal stress in the steel. Due to the displacement of the pile, the nor-
mal force will introduce a bending moment in the pile, causing an additional normal stress above the already
present stress. For most calculations, this bending moment is not embedded in the results of the calculation
and should be taken into account separately. To do so, a distinction was made between the type of the defor-
mation. Firstly, the pile deforms due to loading to the pile. Secondly, a deformation will be present because
a pile is never perfectly straight or has other (production) errors, known as the imperfections. Though both
types of deformation are initiating the global buckling mechanism, they are differently taken into account.
The global buckling mechanism initiated by imperfections is taken into account by reducing the capacity of
the normal force with a reduction factor χb . This factor is based on a mathematical derivation and depen-
dent to Fcr , but an important term is determined by experiments. From those experiments it was concluded
that the global buckling mechanism can be ignored for normal force less than 4% of Fcr . Unfortunately, this
factor χb does make an error resulting in an overestimation of the effects by the global buckling mechanism,
which is taken into account by a factor ky y (=1.15). Besides representing this error, ky y does also represent the



effects of the global buckling mechanism initiated by the deformations of the pile caused by loading. Though
complex formula’s are present to determine ky y for each case separately, the value of it was set to a constant
but conservative value of 1.15, valid for all sheet piling structures. Both the factors χb as 1.15 should be added
to the unity check on steel stress. This check is given in the left hand side of equation 1 and changes to the
check at the right hand side with the added factors, including an extra safety factor γM1. Both checks are from
NEN-EN 1993-5.

γM0
NE d

NRd
+γM0

ME d

MRd
< 1.0

if NE d > 4% of Fcr===========⇒ NE d

χb NRd (γM0/γM1)
+1.15

ME d

MRd (γM0/γM1)
< 1.0 (1)

Software packages are available which are able to calculate the deformation of the sheet pile due to loading,
including the influence of the normal force and so the global buckling effect. If this is done, this effect should
not be represented by the factor ky y (=1.15), which therefore only remains to represents the error made by
χb . Because this error is relatively small and overestimating, it can be ignored without the design becoming
unsafe. With both effects represented by ky y (=1.15) differently taken into account or even ignored, this thesis
proposes to remove the factor from the unity check. Taking the global buckling effect to the bending moment
ME d into account by software, the unity check could be reduced without much effort.

For the factor χb , the influence of the soil should be taken into account through Fcr , which can be deter-
mined by the use of linear elastic stiffnesses of the materials of the structure. Unfortunately, the stiffness of
soil is not elastic, let alone linear elastic, which gives that the exact influence of the soil to Fcr can not be
determined. Nonetheless, an approach of Fcr is given in this thesis. The interaction between the soil and the
structure must be described by one of the available models, where the stiffness of the soil is dependent to
the deformation of the pile and the soil. Only one model is existing which describes the soil stiffness partly
elastic, which is the spring model using the modulus of subgrade reaction to describe the soil stiffness. To
determine the value of Fcr , the soil must be modelled as an elastic support to the sheet pile, with a support
stiffness based on the available modulus of subgrade reaction of the soil. The exact value of Fcr can only be
approached because the soil stiffness might decrease during the mechanism of global buckling.

Because the influence of the soil to the value of Fcr can only be approached if the spring model is used to
model the interaction between the soil and the structure, the influence of the soil to χb can not be deter-
mined for other soil-structure interaction models, like those used in finite element software. Purpose of this
factor χb is to take the bending moment by the normal force due to imperfections relatively simple into ac-
count. As alternative, this thesis proposes to model the imperfections manually into a calculation program
or model which should be able to model an imperfect sheet pile. If this is done, the effects of the global buck-
ling mechanism due to imperfections are embedded in the results of the calculation, where the influence of
the soil is taken into account automatically. The factor χb will no longer be required when the sheet pile is
modelled including imperfections.
Recently, a method was proposed by the POVM 1 to take the bending moment caused by the normal force due
to imperfections into account by taking the product of the maximal initial imperfection and maximal normal
force as an additional bending moment. However, the growth of the imperfection, see figure 1, is neglected by
this method, which should therefor result in an underestimation of the actual bending moment. Fortunately,
due to changing soil stresses due to the global buckling mechanism, the maximal bending moment caused
by soil pressure reduces. For this reason, it was found that the method proposed by the POVM gives an small
overestimation instead of an underestimation for relatively low normal forces and is therefor valid.

In three example calculations it is shown that the proposed improvements for the unity check on global buck-
ling can lead to a significant reduction of this check. The order of the reduction is case dependent, but can be
up to 10% or even more based on the three example calculation. Taking the soil influence to Fcr into account
or the removal of χb gives roughly half the reduction to the check. The other improvement, removing the fac-
tor 1.15 if the influence of the normal force to the bending moment is determined by software, is responsible
of the rest of the reduction to the global buckling check. For larger values of the normal force, the effect of the
normal force to the bending moment will be larger and so the effect of the removal of the factor 1.15 will be
less than for low values of the normal force.

1The POVM, or POV Macrostabiliteit, is a Dutch regulation for the design of dikes.
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1
Introduction

In geotechnical engineering, soil retaining structures are used to retain soil at a position where it will be un-
stable otherwise. Not seldom these structures are made of steel sheet piles like the structure in the cover
image. These sheet piles are made of thin steel plates with a relatively large cross section as in figure 1.1 in
order to create a stiff structure. A sheet pile wall consists of multiple single sheet piles connected to each
other by interlocks, see figure 1.1. The design of structures and thus of sheet piles has to be done conform
the Eurocode, the European standard for structural design. For steel sheet piling structures, the design has to
be done according to NEN-EN 1993-5 (Eurocode 3: Design of steel structures - part 5: piling). Several failure
mechanisms are described in this standard, such as the exceedance of the yield stress, structural instabil-
ity, local buckling, global buckling, system failure, attack by corrosion, unacceptable deformations etc.. Not
seldom the governing mechanism of the design of steel sheet piles is the global buckling mechanism 1. If a
deformed sheet pile is loaded by a normal load, a load in the axial direction of the sheet pile, the normal load
will introduce a bending moment due to the deformation of the pile, enlarging the deformation. This is the
global buckling mechanism, where this thesis will review the verification check to this mechanism applied to
steel sheet piling.

(a) Z-profile (b) U-profile

Figure 1.1: Cross sections of sheet pile profiles (figure 39-1 and 39-2 from [2])

1.1. Problem statement
Conform the Eurocode, the verification of the global buckling mechanism should be executed if the normal
force exceeds the value of 4% of the critical global buckling load Fcr [3]. Below this percentage, the global
buckling mechanism may be fully ignored and only the verification of the cross sectional capacity should be
checked. This results in the reality of expression 1.1 giving both the check of the cross sectional steel stress
of the sheet pile (left hand side) as the check of the global buckling mechanism (right hand side) as given in
NEN-EN 1993-5. Taking a close look learns that both checks are quite similar. The bending moment ME d is
increased with 15% and the normal force capacity NRd is reduced by reduction factor χb , which is smaller
than 1 at all times. The partial safety factor γM0(=1.0) must be applied to design checks of the steel stress, but
this factor is replaced by γM1(=1.1), which must be applied to design checks on stability. All this differences
are giving that the check on the buckling mechanism is (much) more unfavourable compared to the check on

1In literature, global buckling is also referred to as column buckling, flexural buckling or just buckling.

1



2 1. Introduction

cross sectional capacity. Because the check of global buckling should only be done with a value of the nor-
mal force above 4% of Fcr , it could hypothetically be that an increase of the normal force of just 1% or even
smaller results in a growth of a unity check 2 in the order of 30%. Because the influence of the subsoil to the
global buckling mechanism is neglected in this design check, it is thought among engineers that this buckling
check is too conservative. The objective of this thesis to obtain the background of the factors χb and 1.15 and
describe possibilities to estimate the effects of global buckling in sheet piles more precisely. The partial safety
factor γM1 is prescribed by the Eurocode and won’t be an objective of this thesis.

γM0
NE d

NRd
+γM0

ME d

MRd
< 1.0

if NE d > 4% of Fcr===========⇒ NE d

χb NRd (γM0/γM1)
+1.15

ME d

MRd (γM0/γM1)
< 1.0 (1.1)

Next to obtaining the background of the above global buckling check, the influence of the subsoil to the criti-
cal global buckling load Fcr will be an important objective as well. Not only because the buckling mechanism
should not be checked if the acting normal force is less than 4% of Fcr , but also because χb depends directly
to Fcr . In the current practice, the soil is left out of account for the determination of Fcr , which is based only
on the structural resistance against global buckling. However, global buckling will deform the sheet pile and
consequently, it will deform the soil. This means that some force is required to deform the soil. If the soil
resistance is taken into account, it is thought that the value for Fcr will rise significantly. Consequently, the
check on the buckling mechanism would only be required at higher normal loads, which gives that the un-
favourable check of the global buckling mechanism should be executed in less designs.

Besides having a positive effect to the critical global buckling load Fcr , the soil pressure will have a negative
effect as well. In the first place, the soil pressure causes deformations of the sheet pile, and with that the
global buckling mechanism is initiated. On top of that, the soil pressure might introduce the normal force in
the sheet pile, enlarging the effects of the global buckling mechanism. Those negative effects will be discussed
in the thesis as well.

1.2. Research objectives and approach
The main objective of this thesis is to determine the influence of soil to the global buckling mechanism and to
improve the current global buckling check for steel sheet piles, which is thought to be too conservative among
engineers. Based on the previous, this objective can be answered qualitatively by stating the first two research
questions below, divided to several sub-questions. Based on the answers of both questions, a model, or pos-
sibly several models, will be described to approach the global buckling mechanism more precisely compared
to the current approach with the global buckling check. To describe the significance of possible improve-
ments a third research question is stated.

What is the background of the current global buckling check for steel sheet piles?
• Which effects leads to the reduction factor χb and 1.15 in the current global buckling check?
• How is the critical global buckling load Fcr derived for steel structures in general?
• Why should global buckling only be checked if the acting normal force exceeds 4% of the critical global

buckling load?

What are possible improvements to the current global buckling check to take the influence of the soil
into account?

• How can the influence of soil to the critical global buckling load Fcr be modelled?
• Can the current global buckling check be changed for steel sheet piles such that the resistance of the

soil is included in the check?

What is the quantitative effect of the found improvements of the current global buckling check?

The scope of the thesis will stick to the global buckling mechanism in steel sheet piles. Any other failure
mechanism will only be discussed when it is to support the theory of the global buckling mechanism. It

2A unity check is a check like given in expression 1.1 at the left hand side of the < sign. If a unity check of a mechanism is larger than 1.0,
the resistance of the structure against the mechanism is insufficient.
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might be that some aspects of the buckling mechanism are a minor detail in the design of steel sheet piles,
but when discussed it is of importance in order to understand the global buckling mechanism and the check
on this mechanism.
The global buckling mechanism is mainly a structural mechanism, but the structural behaviour of a sheet pile
is strongly correlated with the behaviour of the soil around the pile. For this reason, an important subject of
this report is the description of the available models the soil-structure interaction. This interaction tends to
have a time dependent behaviour due to the time dependent behaviour of soil, but this will be fully neglected
in the scope of this thesis. The global buckling effect develops at a short time scale, which indicates that the
most unfavourable design conditions in time could be used.

1.3. Report structure
As already written earlier, the interaction between the soil and the structure is of great importance to the be-
haviour of the sheet pile. This is certainly also the case for the buckling mechanism. For this reason, the first
chapter will describe the soil-structure interaction models available. Besides, this chapter will discuss the
other relevant aspects of a sheet piling structure as well. Chapter two contains the description and the rele-
vant backgrounds of the global buckling mechanism. For foundation piles, some models are already available
to determine the influence of the soil to the global buckling mechanism more correctly. Though sheet piles
are a different type of geotechnical structures than foundation piles, the models for foundation piles might
deliver some important insights for possible models for sheet piles. Therefor, those models will be described
in chapter three.

Based on the results of the literature study, chapter four will propose two models to approach the effect of
the soil resistance in the determination of the critical global buckling load Fcr . This will be done by the de-
scription of two methods which will firstly be discussed qualitatively with some supporting examples. This
examples may not be realistic for sheet piles, but they will support the proposed method to approach the
effects of the soil to the global buckling mechanism. Once the methods for sheet piles are described, an ex-
ample will be treated to quantify the effects of the improved models compared to the current check on the
global buckling mechanism. Chapter five will discuss a method to determine the effects of the global buck-
ling mechanism with finite element techniques. The quantitative effects of the proposed method’s will be
discussed by two example cases.

Chapter six discusses the validity, relevance and limitations of the model’s and method’s described in the
thesis. Finally, chapter seven gives the conclusions and recommendations of this thesis.
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Figure 1.2: Visual representation of the report structure



2
Sheet pile design

This chapter discusses the relevant requirements, models and lay-outs for sheet pile design in the current
design practice. An important aspect of the design is the soil-structure interaction and will be an important
subject of this chapter.

2.1. Sheet pile design lay-out
For those familiar with the lay-out of a steel sheet pile and combi-walls may skip through paragraph 2.2
To understand the mechanisms acting in a soil retaining sheet pile wall, it is important to understand lay-out
of the structure. With the lay-out clear, the reader of this thesis will be able to understand some choices made
better.

2.1.1. Conventional sheet piling
A steel sheet pile is designed to retain soil from displacement. Most times, a sheet pile is used to overcome a
soil surface and/or water level difference. Examples are quay walls, building pits, seepage screens, but also
reinforcement structures for dikes or embankments. To give an idea, figure 2.1 gives two examples of sheet
piling structures.

(a) Sheet pile supported by an anchor (b) Sheet pile supported by a strut

Figure 2.1: Sheet pile profiles (figures from D-sheet piling)

The horizontal soil pressure acting to the sheet pile can be divided between the active, neutral and passive
soil pressure. If the sheet pile moves away from the soil, the soil pressure will be active. Movement towards
the soil results in passive soil pressure, no movement of both the pile as the soil gives the neutral soil pressure.
Both the active as the passive soil pressure are dependent on the displacement of soil and sheet pile. The dis-
placement of the pile is directly dependent to the loading, which is (for a significant part) the soil pressure.
Consequently, the deformation of the sheet pile depends partly to itself and therefor the calculation of the

5
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forces and deformation of the pile is a complex process. This complex process is an important aspect of the
soil-structure interaction model, described in section 2.3.

Horizontal support
To ensure horizontal stability, the horizontal soil pressures and possibly external horizontal loads should be
in equilibrium. If an equilibrium is not reached or the displacements or cross sectional forces in the sheet
pile become too large, a horizontal support could be applied, which can be an anchor (figure 2.1a) or strut
(figure 2.1b). Alternative is to choose a larger sheet pile profile with more bending stiffness or a longer sheet
pile, but this won’t always be an economical solution.

The horizontal supports, the anchors or struts, are placed to the sheet pile wall with a certain distance be-
tween each support. This centre to centre (c.t.c.) distance is regularly in the order of a meter to a couple of
meters. In order to distribute the support from the anchors or struts along the sheet pile wall, a steel beam
can be placed in between the wall and the supports. A structural scheme of the cross section is given in figure
2.2, a more detailed scheme of the connection with the anchor/strut, wale and sheet pile is given by figure
2.3.

Figure 2.2: Structural scheme of waling and horizontal support (top view)

Figure 2.3: Cross sectional lay-out of a wale supported sheet pile (figure 40-1 from [2])(side view)

Struts can only be applied in a excavation pit, where the other end of the strut can be supported horizontally.
Usually, this support is given by another soil retaining structure, in unique cases special structures could be
applied to redirect the strut force. If struts cannot be applied, anchors can be applied which will be installed
in the soil behind the wall. The anchors can be fixed by a wall or plate placed far enough behind the wall, see
figure 2.4a. If it is impossible or inconvenient to use this anchor structures, an anchor could be installed with
a grout body as in figure 2.4b. To create enough strength of structure, the grout body is often installed in a
deeper situated stiff soil layer, while the support to the sheet pile wall is needed at a relatively high level. This
means that the anchors must be installed with an angle, which introduces a vertical force in the wall. This
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normal force from the anchor is affecting the global buckling mechanism.

(a) Example quay wall supported with an anchor and anchor wall (figure 41-4 from [2])

(b) Example soil retaining wall supported by grout anchor

Figure 2.4: Types of anchor systems

2.1.2. Sheet pile profiles
The profile of the sheet pile is of great importance to the behaviour of the wall. The thicker the steel plates or
the larger the profile height of the cross section is, the stiffer the pile will react resulting in less deformations.
Besides, the resistance to cross sectional forces (bending moment, normal forces or shear forces (respectively
the M-,N- and V-forces)) is larger if the cross section is larger. To create stiff and strong cross sections with
relatively little material, sheet piles are usually made of Z- or U- shaped profiles like in figure 2.5. Those
profiles consists of the flange (with thickness t in figure 2.5) and the web (with thickness s). One single pile
has width b and is connected to the next pile by an interlock. Sheet piles can be installed singular or in pairs
(2, 3 or 4 piles in once). Sheet piles installed in pairs are clamped or welded to each other at the interlocks
before installation such that they act as on structural element. For U-type profiles, extra care should be taken
into account due to asymmetry, which is further explained in section 2.5.2.

(a) Z profile (figure on page 4 from [4]) (b) U profile (figure on page 1 from [4])

Figure 2.5: Sheet pile profiles [2]
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Combi-walls
Most of this section is based on paragraph 3.3.5 of CUR 166 part 2 [5]

When sheet piles made from Z or U shaped cross sections are not stiff or strong enough, the structure can be
reinforced by stiffer piles in between the sheet piles (i.e. tubular piles (most common) or I profiles), creating
a combi-wall like the profiles in figure 2.6. Typically, relatively large tubular piles (diameter of about a meter)
are applied with 2 or 4 Z-profile sheet piles or 2 or 3 U profile sheet piles placed in between [5]. The stiffness
of the combined cross section is for a large part given by the stiff elements, but the sheet piles generate some
stiffness as well. The average stiffness of both the stiff elements as the sheet piles can be used as the stiffness
of the combined section.

Figure 2.6: Several cross sections for cimbi-walls: a) Tube piles with two Z-profiles in between; b) double U-profiles with two U-profiles
in between; c) quadruple Z-profiles with two Z-profiles in between; d) and e) IPE profiles as stiffeners behind U- or Z-profiles (figure
39-21 from [2])

Due to significant stiffness differences between the stiff piles and sheet piles, the sheet piles will transfer
much of the load to the stiff parts. Because of this redirection of forces, the sheet piles will tend to deflect
more compared to the stiff parts of the wall. As a consequence, the soil behind the sheet piles will deform
more compared to the soil behind the stiffer piles. This gives that an arch effect will occur in the horizontal
soil pressure, see figure 2.7. Due to this effect, the active horizontal soil pressure on the sheet piles will be less
than the soil pressure on the stiff piles which will take most pressure from the soil.

If a combi wall is anchored, the anchors are usually connected to the wall in the stiff elements. For this reason,
most, if not all, of the vertical anchor force is redirected to the soil via the stiff element. Other vertical loads to
the sheet pile are likely to be redirected to the stiff parts as well. This makes that most, if not all, of the normal
force in the combi-wall is inside the stiff elements. This normal force distribution in the combi-wall will result
in the fact that the global buckling mechanism will mostly occur in the stiff element, but the mechanism will
be resisted by both the soil and the weaker elements (the sheet piles) between the stiffer elements. This makes
a possible theory to describe the global buckling mechanism in combi-walls even more complex compared
to the regular sheet pile wall.

2.2. Subsoil model
In order to design a sheet pile, a soil-structure interaction model must be used. In order to describe such a
model, the basic principles of soil pressure must be known. This will be treated in this section.

2.2.1. Soil stress
The soil stress is the main loading to sheet piles, especially the horizontal soil stress. For the vertical soil
stress, simple equations can be used to determine the vertical (effective) soil stress (see equation 2.1). The
pore water pressure is based on the drainage of the soil. For purely hydrostatic water pressure (drained soil)
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Figure 2.7: Arch effect in horizontal soil pressure on combi-walls (figure 3.15 from [5])

the pore water pressure phydr can be defined as in equation 2.1. For undrained soils where the water pressure
is not purely hydrostatic, the over- or under waterpressure should be added to the hydrostatic water pressure.
For the remainder of this thesis, the soil conditions will assumed to be drained.

σv = γ∗h

σ′
v =σv −p

phydr = γw ∗hw

(2.1)

where:
γ = Soil density
p = Pore water pressure
h = Thickness of soil layer

The horizontal soil pressure is dependent to the vertical soil pressure, but also to the deformation of the soil.
Without any movement of the soil, the horizontal soil pressure is neutral. However, due to this horizontal
soil pressure, the sheet pile will start to deform. The deformation of the sheet pile will cause deformation,
and ultimately failure, of the soil. If the soil is compressed (movement of the pile towards the soil), the soil
pressure will grow to the passive soil pressure. If the soil relaxes (movement of the pile from the soil), the soil
pressure will go to the active soil pressure. This development develops gradually until the passive or active
soil pressure is reached, see figure 2.8[6]. When the soil deforms more due to the movement of the sheet pile,
the soil will fail and the soil body will move along the slip plane, like sketched in figure 2.9. In this case, the
limit state of the horizontal soil pressure has been reached. The sheet pile will stop the active soil body from
sliding away by a reaction force to the soil pressure. At the other side, the deformation of the pile will push
the passive soil body away.



10 2. Sheet pile design

Figure 2.8: Soil deformation behaviour (figure 24-3 from [2] (adapted))

Figure 2.9: Sketch of both straight (left) as curved (right) slip planes

The force delivered by the sheet pile to both soil bodies can be determined based on the principle of horizon-
tal force equilibrium. This can be best shown by figure 2.10, where all the forces to the soil body are sketched.
With this figure, the force from the sheet pile to the soil can be derived parametric (based on soil parameters)
based on the force balance. Using Newton’s third law (action is reaction), the force from the sheet pile to the
soil equals the acting soil pressure. [6]

Figure 2.10: Forces acting to the soil body sliding away (figure 34.1 from [6])

In literature [6] the derivation of equations 2.2 to 2.6 can be found, where the vertical soil pressure (known)
can be multiplied with the horizontal pressure coefficient K in order to find the horizontal soil pressure. The
pressure coefficient can be determined for the active, neutral and passive soil pressure (relatively equations
2.3, 2.4 and 2.6 [7]). The value for K can be determined by either straight (Müller-Breslau) or curved (Kötter)
slip planes. Straight planes are known to underestimate the active horizontal soil pressure and overestimate
the passive horizontal soil pressure [5]. This does lead to an unsafe design and therefor curved slip planes
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are preferred. However, for friction angle φ lower than 30° the made error is relatively small and straight slip
planes are allowed to use [5]. The horizontal pressure coefficients are defined by Kötter as in equations 2.3,
2.4 and 2.6, which are from [8]. In this equations, the cohesion c of the soil is introduced.
The active or passive soil pressure is reached when a certain displacement of the sheet pile and the soil occurs.
As long the active or passive soil pressure is not reached, the soil pressure can be expressed in percentages of
the passive soil pressure. This is called the mobilisation of the horizontal soil pressure 1

σ′
h,acti ve =σ′

v ∗Ka −2c
√

Ka (2.2)

Ka = 1− si n(φ)si n(2αa +φ)

1+ si n(φ)
exp((−π

2
+φ+2αa)t an(φ)) (2.3)

K0 = 1− si n(φ) (2.4)

σ′
h,passi ve =σ′

v ∗Kp +2c
√

Kp (2.5)

Kp = 1+ si n(φ)si n(2αp −φ)

1− si n(φ)
exp((

π

2
+φ−2αp )t an(φ)) (2.6)

with:
αa = 1

2 (cos−1( si n(δ)
si n(φ) )−φ+δ)

αp = 1
2 (cos−1( si n(δ)

si n(φ) )+φ−δ)
φ = Soil friction angle (Radians)
δ = Soil-structure friction angle (Radians)

For horizontal stresses below non-horizontal soil surfaces, the horizontal soil pressure coefficients becomes
more complex. Tables are available to withdraw the horizontal soil pressure coefficient, based on the angle of
the slope, the friction angle and the skin friction angle [9].
The sheet pile is not fixed to the soil and thus it is possible that the sheet pile will displace vertically with
respect to the soil. This relative settlement creates friction between the pile and the soil, which is influencing
the force balance of the soil body (as given in figure 2.10). For this reason, the skin friction is affecting the
horizontal soil pressure coefficients. To determine the angle δ of skin friction, various relationships are given
by the design codes. Figure 2.11 represents the values given by the NEN 9997-1 [10], while the same code
states that the design value of the angle δ should not be more than 0.67*φ at sheet piles. Based on experience
at the Rijkswaterstaat Bouwdienst, CUR166 [5] presents the values given in table 2.1. For peat, it is stated that
the skin friction angle must be 0°.

Tests to determine the skin friction angle are hard to execute and the correctness is limited [5]. Tests have
been done by Pontyondy [11] on various soils with various materials to determine the coefficient between
the wall friction angle and the soil friction angle. The results of the experiments are discussed at the end of
paragraph 2.4.1. This experiments however are not done specifically with sheet piles, so one should use the
values of Potyondy with care.

Soil δ

Gravel (d50 > 8 mm) 0
Sand (d50 > 2 mm) 1/3 φ
Sand (d50 < 2 mm) 2/3 φ
Loam 1/2 φ
Clay 1/3 φ

Table 2.1: Skin friction angle based on experience of the Rijkswaterstaat Bouwdienst [5]

1Short example: Ka = 1
2 , K0 = 2

3 and Kp = 2. In this case, the active horizontal soil pressure has a mobilisation ratio of 25%, the neutral
horizontal soil pressure has a mobilisation ratio of 33.3%. The passive horizontal soil pressure has always a mobilisation ratio of 100%
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Figure 2.11: Skinfriction angle δ based on the friction angle [10]

2.2.2. Drainage subsoil
When the soil profile or water heads in the subsoil are changing, it has a significant effect to the effective soil
pressure. When a sheet pile is installed and the conditions in the soil are changed, the soil will react. How
quickly the soil pressure changes depends on how easy the pore water can flow through the soil (drainage).
Some soils, like sands, have a quick drainage time and will respond relatively fast to the new circumstances.
Other soils, the cohesive soils, have a relatively long drainage time, which means that the soil and water pres-
sure are changing over a longer time scale. Besides, deformation of cohesive soils occurs after time, affecting
the soil pressure as well. This means that the load to the sheet pile, and with that the behaviour of the pile
and load to the soil, changes over time. This might result in large forces or deformations of the sheet pile after
time. It is therefor important to think about what the most critical moment in time is when it comes to the
global buckling mechanism. Because the global buckling mechanism occurs on a relatively short timescale,
the most critical state should be used to determine the required resistance against global buckling.

In the years 1999-2000 an experiment was conducted on a small construction pit in the port of Rotterdam.
The soil retaining walls in the construction pit were sheet piles supported by struts and were made of two
different types of profiles. Because a thick clay layer is present in the surrounding of the clay layer, it takes
time for the water pressure and with that the effective soil pressure to adapt to the new situation. Kort [12] has
evaluated the behaviour of the walls and concluded that time effects are occurring in the sheet pile, as visible
in figure 2.12. The soil supporting the sheet pile at the excavation side consist for an important part of clay.
If the excavation pit is pumped dry, it will take some time before the water pressure in the soil has reduced to
the lowered water head. Because the water pressure will resist the sheet pile to deform, the deformation of
the pile will grow after time. This can be seen in figure 2.12, where both the slope (rotation) as the bending
moment of the pile are increasing. [12]
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Figure 2.12: Reaction of sheet pile against log-scale time (figure 4.45 from [12])

2.3. Soil-structure interaction models
Based on the theories for soil pressure described in section 2.2, several calculation method’s can be described.
In this section, a manual method (Blum), a method based on the spring model and a FE method will be
elaborated.

2.3.1. Blum’s method
A much used method in manual calculations is Blum’s method. This method assumes that the soil has failed
and thus that the horizontal soil pressure is fully active or passive, see figure 2.13. Blum’s method is based
on determining the point of zero bending moments in a sheet pile (point D in figure 2.13). This point is at
an unknown depth t . By describing the bending moment at the pile tip using t as a variable, the value for t
can be determined such that M equals zero. Blum’s assumption is that the length based on this calculation
is not sufficient. If in reality the sheet pile is just a bit too short or the soil delivers a lower passive pressure,
the pile will become unstable. Therefor, the pile length must be a bit longer in order to guarantee stability
[6]. The extra length can be determined by applying a factor (see figure 2.14) over the embedded depth of the
sheet pile. Once the length of the sheet pile is known, the soil pressure to the pile can be determined and the
internal forces of the sheet pile can be calculated.

For an anchored or strut supported wall, the bending moment should be calculated around the support in-
stead of the pile tip. To reach a bending moment equilibrium, a certain embedded depth t is required. For
multiple supports, Blum’s method is unable to be used.
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Figure 2.13: Schematisation of displacement, loading and effective loading by Blum (figure 39.7 from [2])

Figure 2.14: Factor for embedded depth by Blum’s method (table 39.4 from [2])

2.3.2. Spring model

As already presented in figure 2.8 and again in figure 2.15a, the soil pressure is dependent to the strain of
the subsoil. The displacement of the soil and thus the sheet pile is directly dependent to the strain of the
soil. Therefor, the relationship between the horizontal soil stress and displacement of the sheet pile will be
of similar shape as the graph in figure 2.15a. Based on this relationship, the soil can be modelled as a spring,
where a certain displacement results in a certain reaction force. This is visualised in figure 2.15b, where the
curved graph of figure 2.15a graph is simplified and split up in 3 linear parts. In this pressure-displacement
curve, the soil pressure to the sheet pile is based to the displacement of the sheet pile at that specific point.
At the neutral pressure, there is zero displacement. The active soil pressure (lower left part of figure 2.15b) is
already reached with just a little displacement. To reach the passive soil pressure, much more displacement
is required, which gives that the passive horizontal soil pressure is not always reached. [2]

The spring stiffness values of the 3 branches in figure 2.15b are generalised for the Dutch practice and are
given in figure 2.16. The stiffness is based on the cone resistance qc for sands and the undrained shear
strength fundr for clays and peat (see second column). Two values are given, klow and khi g h . For displace-
ment calculations, klow should be used. In most cases, this value is also governing for the force distribution
in the sheet pile, but it should be checked whether or not khi g h leads to higher internal forces [2].
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(a) Stress-Displacement diagram (figure 24.3 from [2]
(adapted)) (b) Stress-Displacement diagram (figure 33.5 from [2])

Figure 2.15: Stress-deformation relationships

Figure 2.16: Spring stiffness values for different soils (table 33.1 from [2])

The previous section stated Blum’s method, which neglects the above described theory that some displace-
ment of the soil should take place in order to reach the active/passive soil pressure. The calculation will be
closer to reality if this is taken into account. However, because the displacement of the soil is dependent to
the displacement of the sheet pile and thus the soil pressure to the sheet pile, a manual calculation with this
spring model will become way to complex and labour intensive (iterations should be done). So for manual
calculation’s Blum’s method should give a good estimation of reality. However, with available software it is
easy and more precise to use the above described spring model.

2.3.3. FE-models
In the spring model, the whole soil body is simplified to a set of horizontal springs. This schematisation
neglects the fact that the soil is also redistributing the forces vertically to the subsoil. This redistribution is
done in a non-linear and complex way, depending to the soil model used to describe the relationship between
the soil parameters, soil stresses and deformations. It is possible to split up the soil body in a number of small
soil parts, creating a mesh of soil elements. For each part, the stress and deformation can be determined
based to the stress and deformations of all neighbouring elements. Such a method is called a Finite Element
Method (FEM) and is able to model the soil more precisely compared to the spring model. A finite element
method takes into account that soil close to the sheet pile will be more affected by the displacement of the
sheet pile compared to soil further away. This is clearly visible in figure 2.17, which gives the horizontal soil
stress of a sheet pile in an excavation pit determined with a FEM. At the left, far from the sheet pile, the soil
stress is not affected. Just before the sheet pile, the horizontal soil stress starts to decrease towards the active
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soil pressure. At the excavation side of the sheet pile, the local increase of the soil stress can be very large,
but as can be seen, it is quickly redirected to other parts of the subsoil. The stress distribution in the soil is
of great influence to the soil deformation and therefore to the sheet pile. This soil behaviour, and therefor
the soil-structure interaction, is complex and non-linear, which gives that FE-models can only be evaluated
with FE-program’s. In this thesis, Plaxis 2D will be used as a FE-program. The sheet pile itself is modelled
and evaluated with linear mechanics, thus without finite elements in this program [13]. How this structural
modelling is done is discussed in section 2.5.

Figure 2.17: Horizontal soil stress around an excavation with a sheet pile wall

For the modelling of the soil in a FEM multiple soil models are available to describe the relationship between
the soil parameters, deformation and stress in the soil elements. The FE program Plaxis for instance has the
ability to imply no less than 13 soil models, of which a description can be found in literature [13]. Based on
the situation and the type of soil, it might differ which soil model should be used. By Dutch regulations for the
design of dikes 2 it is stated that the Hardening Soil (HS) model is preferred for non-cohesive soils, where for
cohesive soils (clay, peat) the Soft Soil Creep (SSC) model should be used [14]. For undrained soils, the NGI-
ADP model should be used, which can take the undrained shear strength into account [14]. For the remaining
of this thesis, the HS and SSC models will be used as to model the behaviour of the soil in FE programs.

2.4. Friction and vertical bearing capacity
Besides horizontally, the sheet pile is also loaded in the vertical direction. This load can originate in the ver-
tical anchor component, an external vertical force or, not in the last place, the earlier discussed skin friction
between the soil and the sheet pile. This section will discuss how the normal loading can be redirected to the
soil.

2.4.1. Wall friction
The skin friction between the soil and the sheet pile will only occur if the sheet pile moves with respect to the
soil directly besides the pile. When the soil settles harder than the sheet pile, the pile experience a downward
directed friction force (the soil ’hangs’ on the pile). When the pile settles harder, an upward directed friction
force is experienced (the pile ’hangs’ on the soil). In figure 2.18, it is assumed that the soil at the right side
(active soil pressure) settles more than the sheet pile, the soil at the left side (passive soil pressure) settles less
than the sheet pile. The friction between the soil and sheet pile at the right side will lead to an additional
normal force in the sheet pile. At the left side, the friction will lead to a reduction in the normal force. The
maximal friction can be determined by using equation 2.7, but this value is not necessarily reached by the soil-
structure interaction. Just as with the horizontal soil stress, some displacement is required in order to create
all the friction possible between the soil and structure. Again, this is dependent on the non-linear behaviour
of the soil and the soil-structure interaction. The linear relation between the friction and the displacement is

2In the Netherlands, dikes should be designed according to the POVM: Project Overstijgende Verkenning Macrostabiliteit
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given in figure 2.19. The displacement where the maximal friction τmax is being reached equals to 10 mm for
sand and 20 mm for cohesive soils according to the Dutch "CUR166: Handboek damwandconstructies" [5].

τmax =σ′
h t an(δ) (2.7)

Figure 2.18: interaction between horizontal soil pressure and sheet pile (figure 5.1 from [5])

In the friction formula given in equation 2.7 the cohesion of the soil is neglected. However, when cohesion
is present, this does affect the shear stress in the soil (and thus the skin friction). Pontyondy et al. [11] took
this into account for his research to the relation between the skin friction angle δ and the internal friction
angle φ. He used formula 2.8 instead of formula 2.7 to account for the cohesion term in the skin friction.
With experiments he carried he was able to derive the factors fδ and fc , given in table 2.2. For shallow soils,
the account of cohesion can be significant, where for deep soils, this significance reduces where soil stress
becomes larger and more important.

τmax = fc c +σ′
h t an(δ) (2.8)

With:
δ = fφ∗φ

Sand Cohesionless silt Cohesive Clay
granular soil

Dry Sat. Dry Sat. - -
Dense Dense Loose Dense - - - - -

Steel surface roughness fφ fφ fφ fφ fφ fφ fc fφ fc fc,max

Smooth polished steel 0.54 0.64 0.79 0.40 0.68 0.40 - 0.50 0.25 0.50
Rusted rough steel 0.76 0.80 0.95 0.48 0.75 0.65 0.35 0.50 0.50 0.80

Table 2.2: fφ and fc values based on experiments (values from [11])
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Figure 2.19: Mobilisation curve skin friction (figure 21 from [7])

2.4.2. Vertical stability
Due to the vertical loading to the sheet pile it might be that the pile becomes unstable vertically and fails.
Vertical stability should be reached by mobilising enough skin friction and toe bearing capacity. The resis-
tance against vertical settlement consists of the bearing capacity of the pile tip and the upward directed skin
friction at the passive soil pressure. If not enough resistance is given by the soil, the pile will become unstable
and start to settle.

Slip method
The vertical stability of the sheet pile can be determined with the slip method. The above derived theory for
the skin friction is the basis for the slip method as described in [15]. This method assumes that if the vertical
bearing capacity is not enough, the pile starts to settle. In this way it can occur relatively quickly that the lower
parts of the sheet pile settle more than the soil at both sides. In that case, the skin friction angle δ at the side
with the active soil pressure should be reduced or completely reversed where the pile settles more than the
soil. A reduction of the friction angle would mean that the friction between the soil and the pile is reducing
as well. A reversing of the angle would mean that the friction force is directed upward instead of downward.
With less downward directed friction forces, vertical stability might be reached. One can split up the soil in
small layers (let say a meter) and may then reverse the angle starting with the lowest layer. If the reversed
friction of this layer alone does not result in enough vertical stability, the skin friction angle δ of the next layer
should be reversed. This process repeats itself until vertical stability is reached. It should be noticed that with
a lower or even negative angle for the skin friction, the horizontal soil pressure factor Ka rises. With that, the
loading from the soil to the sheet pile and thus the deformations will increase.

In the magazine of Geotechniek a case study has been conducted with the slip method [15], see figure 2.20.
The sheet pile was constructed in extreme conditions (thick peat layer (4.5 m), founded in thick clay layers
(at a sum of 14.5 m) and a relatively steep anchor (45°)). Because of the weak soil, the soil settlement was
significant at the top (275 mm) and vertical stability was not reached without settlement of the sheet pile.
The settlement of the pile was enlarged to no less than 200 mm to reach stability, such that the soil above
NAP -13m settled and the soil below this level raised with respect to the pile. This made the friction below
this level at the right side directed upwards, and above this level directed downwards. In figure 2.20b it can
be seen that only a small part of the friction along the wall was not fully mobilised (over less than a meter in
vertical direction the settlement difference between the soil and the pile are less than 20 mm).

qc method
Another method to determine the vertical stability is the qc method. This method states that if the sheet pile
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(a) Soil profile case study vertical stability (figure 6 from
[15]) (b) Settlement of the soil and sheet pile (figure 7 from [15])

Figure 2.20: Case study Geotechniek

is fixed and undeformed (negligible deformations) in the soil below the lower zero shear force point (at this
point a horizontal force balance is reached), that the part of the pile below the zero shear point may be seen
as foundation pile. In that case, the bearing capacity may be calculated in the same way it is done with foun-
dation piles. The bearing capacity of foundation piles can be determined based on the cone resistance qc ,
which is determined by a Cone Penetration Test (CPT). Limitation to this method is that it can only be used
until a vertical displacement of the sheet pile of 25 mm or 10% of the piletip diameter. [15]

The qc method is used to verify the above described case study. This method gave an significant lower bearing
capacity compared to the slip method. However, considering the displacements of this case, the qc method is
not allowed to be used. The same structure was calculated by a FE program, showing that the displacement
found with the slip method was indeed (more or less) correct. [15]

2.5. Structural analysis of sheet piles
The previous sections focused to the behaviour of soil around a sheet pile, where this section will focus to the
structural behaviour of the sheet pile. Steel has a certain maximum stress it could take without permanent
deformation: the yield stress. Steel has some extra capacity for stresses larger than the yield stress, but the
steel fibres will deform permanent if such stresses are reached and the sheet pile won’t return to it’s original
shape after unloading (plastic deformation). Besides, once the steel starts to yield, the deformations becomes
large as well. For those reasons, sheet piles are generally designed with the yield stress as upper limit [14]. The
design with the yield stress as upper limit is an elastic design. If the yield stress may be exceeded, the design
is plastic. Because the design of sheet piles should be elastic most times, this section will focus to the elastic
structural behaviour of steel elements.

2.5.1. Elastic structural analysis
In order to check if the capacity of the sheet pile is exceeded or not, the relationship between the loading,
deformation and internal forces must be known. This relationship for elastic design is presented in equations
2.9 to 2.12 assuming a normal force is not present. The derivations have been done based on the structural
element given in figure 2.21. First of all, a displacement w of the sheet pile is assumed, which can be derived
in order to find the rotation of the sheet pile (equation 2.9). It is known that the bending moment is the
product of the bending stiffness E I and the curvature of the cross section (equation 2.10).

d w

d x
=−φ (2.9)
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Figure 2.21: Structural element loaded by bending moment M and shear force V

E I
dφ

d x
= E I ∗κ= M (2.10)

d M

d x
=V (2.11)

dV

d x
=−q (2.12)

The above equations are valid for a structural element loaded with a bending moment M and a shear force V.
But for the global buckling mechanism the influence of the normal force N should be known. If a normal force
N is added, equation 2.11 will change, where equations 2.9, 2.10 and 2.12 remain to be valid. For an element
loaded with the M-,V- and N-forces (figure 2.22), the expression of the shear force is derived in equation 2.13
based on the moment balance of the element in figure 2.22 (bending moment taken around right centre of
forces).

Figure 2.22: M-,V- and N- forces on small structural element
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M +d M = M +V ∗d x −N ∗d w

d M

d x
+N

d w

d x
=V

−E I
d 3w

d x3 +N
d w

d x
=V

(2.13)

E I
d 4w

d x4 −N
d 2w

d x2 = q (2.14)

In the last derivation given in this section, an elastic support is connected to the structural element with a
spring stiffness k, see figure 2.23. The force from the support equals k ∗ w (the extra displacement d w is
negligible with respect to w) and will act as a distributed load directed upwards. This results in equation
2.15, where the reaction of the elastic support is subtracted from the distributed load. This equation is of
importance in the spring model, as will be seen in the derivation of the critical global buckling load Fcr for
sheet piles which are designed according to the spring model.

Figure 2.23: M-,V- and N- forces on small structural element with an elastic support

E I
d 4w

d x4 −N
d 2w

d x2 = q −k ∗w (2.15)

2.5.2. Reduced bending stiffness
In the derived relation between the displacement, loading and internal forces, the bending stiffness E I is of
great importance. This can be taken as a constant from the cross sectional properties of the sheet pile. How-
ever, there are some influences which affects the bending stiffness negatively. Two of them are discussed in
this section: Asymmetrical cross sections and corrosion.

Asymmetrical cross sections
The reduction to the bending stiffness due to asymmetrical cross sections is a problem occurring in U-shaped
cross sections. This is best described with the help of figure 2.24. The first situation is the most ideal situa-
tion: all the interlocks between the single sheet piles are fixed to each other and the neutral axis 3 goes straight
trough centre of the combined profile. In this case, the cross section is symmetric and the bending stiffness
should not be reduced. However, because of practical reasons not all of the interlocks can be fixed to each
other before installation. If an interlock is not fixed, the cross sectional forces can not be fully transmitted to
the next sheet pile by the interlock. The friction in the interlock will only transfer a part of the cross sectional
forces. This results in less resistance against bending and thus in a lower bending stiffness E I . Three more
situations are given in figure 2.24. In situation two, non of the interlocks are fixed, and the bending stiffness is

3The neutral axis is the axis in the cross section where zero normal stress occurs
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reducing significantly. The neutral axis is no longer in the centre of the combined profile but in the centre of
the single pile. If only half of the interlocks (situation three) are connected, two single piles acts as one single
profile. With the profile being present over the full height of the combined profile, the bending stiffness is
not reduced, but an other problem occurs. The cross section is asymmetrical, resulting in bending in two
directions and larger normal stresses in the steel, known as oblique bending. To account for this effect, the
bending stiffness should be reduced. The reduction factor to the bending stiffness is given in equation 2.16
[5]. The reduction to the section modulus W , an important parameter to determine the bending moment
capacity 4, can be determined by equation 2.17.

Figure 2.24: Oblique bending of U-shaped sheet piles (figure 3.7 from [5])

βB = Iz Iy − Iy z Iz y

−Iy z y + Iz z

h

2Iy
+

6∑
n=1

∆βB ,n<1.0 (2.16)

βD = 1− Iy z Iz y

Iz Iy
+

6∑
n=1

∆βD,n<1.0 (2.17)

If two out of three interlocks are fixed before installation (situation four in figure 2.24), the effect of oblique
bending does not occur. However, the neutral axis is still not in the centre of the combined profile. Therefor,
the bending stiffness should be reduced in theory. However, for sheet piles where two out of three (or more)
interlocks are fixed, the reduction in the bending stiffness can be neglected [5].

Corrosion of steel sheet piles
Due to the environment of steel sheet piling structures, the steel piles are prone to corrosion over it’s life
time. This corrosion reduces the thickness of the sheet pile and with that the bending stiffness reduces. The
magnitude of the corrosion depends to the local circumstances. For instance, a sheet pile applied in a quay
wall has multiple parts with different rates of corrosion. Above the splash zone and the high water level, water
will be less present than at lower parts, resulting in less corrosion than in the parts where water and oxygen are
often present. At lower parts, water or/and soil will always be present reducing the corrosion rate. This gives
that several bending stiffness are present along the sheet piles once corrosion occurs after time. This might
result in complex calculations, especially for the global buckling mechanism which is strongly dependent to
the bending stiffness along the sheet pile.

4The bending moment capacity MRd can be determined by the product of the section modulus W and the yield strength fy
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The mechanisms of global buckling for

steel structures
To determine the influence of soil on the global buckling mechanism in sheet piles, it is important to know
what the cause of the mechanism is, what the theoretical background of the mechanism is and how the cur-
rent global buckling check for sheet piles in the Eurocode is derived in the first place. This will be described
in this chapter, neglecting all influences of the soil against the mechanism.

3.1. Global buckling
When an initial displacement is present in a structural element, eccentricities will occur between the de-
formed element and the line of action of the normal force, visualised in the left part of figure 3.1. The normal
force in combination with the eccentricity introduces a bending moment in the element, increasing the dis-
placement and so the bending moment itself. An equilibrium will be reached where the driving bending
moment from the normal force is in balance with the resisting bending moment from the beam. It may be
possible that the enlarged bending moment exceeds the moment capacity leading to failure, which would be
failure due to the global buckling mechanism.

3.1.1. Interaction between normal force and displacements
The initial displacement and bending moment due to the normal force are the first order effects to the struc-
ture. The increase of both the displacement as the bending moment is the second order effect. The growth
of the deformation from the first to the second order is called the amplification. This section will discuss the
derivation and formula’s in order to describe the second order effects. [16]
As example, two cases are given below. The first case results in a well known formula from the structural me-
chanical theory, which is often used to calculate the second order displacement for structures in general. As
will be seen by the second case, this is not completely correct.

Amplification with an initial sinusoidal displacement field
In figure 3.1 a displacement field of a beam is given. In this example, the first order displacement field w0

is described by equation 3.1. If the structural element is loaded with a normal force, the displacement will
increase to an unknown displacement w .

w0(x) = ŵ0 ∗ si n(
πx

l
) (3.1)

23
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Figure 3.1: First order (left) and second order (right) displacement field (figure 11.4 from [16])

In section 2.5 the relation between the displacement, normal force and bending stiffness was derived, repre-
sented by equation 3.2. Because there is no distributed load q present, the equation could be set equal to zero.
Expression 3.3 gives a solution of w(x) for which the equilibrium of equation 3.2 is valid 1. Four unknowns are
included in this equation: C1,C2, C3 and C4. These could be found by solving equation 3.3 for the situation
sketched in figure 3.1. It is known that at both x = 0 as x = L both the displacement w as the bending moment
ME d must be zero, leading to conditions 3.4 and 3.5. Solving those four boundary equations gives that all four
unknown constants are equal to zero. The equation for the displacement can be rewritten to equation 3.6.

E I (
d 4w

d x4 − d 4w0

d x4 )+NE d
d 2w

d x2 = q = 0 (3.2)

w(x) = E I
ŵ0π

2si n( xπ
L )+ (L2 − π2

NE d
)C1cos(

p
NE d xp

E I
)+ (L2 − π2

NE d
)C2si n(

p
NE d xp

E I
)

E Iπ2 −NE d L2 +C3x +C4 (3.3)

for both x = 0 as x = L:
w(x) = 0 (3.4)

M(x) =−E I (
d 2w

d x2 − d 2w0

d x2 ) = 0 (3.5)

w(x) = E I ∗π2

E I ∗π2 −NE d L2 ŵ0si n(
xπ

L
) = 1

1−NE d /Fcr
ŵ0si n(

xπ

L
) = 1

1−n−1 ŵ0si n(
xπ

L
) (3.6)

with:
Fcr = E Iπ2

L2

n = Fcr
NE d

The second order displacement w(x) can grow very large when the normal force NE d goes to the critical buck-
ling load Fcr . When this happens, the ratio n becomes close to 1 and the amplification factor (1/(1−n−1))

1Computations are done with Maple TA. Maple TA is a powerful software program able to solve non-linear algebraic complex functions.
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becomes large. This effect is visualised in figure 3.2. With the displacement, the bending moment due to the
normal force becomes very large as well. Dependent to the quantity of the initial displacement and normal
force, the maximal resisting bending moment will be reached (long) before the critical global buckling load is
reached.

Figure 3.2: Deformation w against the axial force F

Amplification with an initial parabolic displacement field
The above derivation for the example gave an equation to take the second order effects into account which
is rather convenient. As said, this expression yields for a sinusoidal displacement field, but the next example
will treat the expression for the displacement field described by equation 3.7 (this example is taken from
literature [16]). Again, a general solution must be found which full-fills the equilibrium of expression 3.2.
This general solution is found by Maple TA1 and presented in equation 3.8. With the conditions 3.4 and 3.5,
the four unknowns C1 to C4 can be determined, which gives equation 3.9 for the displacement field including
the second order effects.

w0 = 4ŵ0

L2 (Lx −x2) (3.7)

w(x) =C1 +C2x +C3si n(αx)+C4cos(αx)

α=
√

NE d

E I

(3.8)

w(x) = 8

(αL)2 ŵ0(
si n(αL−αx)+ si n(αx)

si n(αL)−1
) (3.9)

The above derived amplification factor differs obviously from the amplification factor for a sinusoidal dis-
placement field, which is less complex. For the middle of the beam, at x = L/2, both equations 3.6 and 3.9
are compared with each other for several values of the ratio n. In order to express equation 3.9 in terms of n,
the term αL has been rewritten in expression 3.10. The comparison is made for several values for n in table
3.1, which shows that the amplification factor (n/(n −1)) is a well approximation of the exact amplification.
The error is limited to only 2.8% for a normal force of 90% of the critical buckling load. Because of it’s sim-
plicity and it’s relative small error, equation 3.6 is often used to determine the second order displacement
independent from the shape of the first order displacement (parabolic, triangular, sinusoidal etc).
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αL =
√

NE d l 2

E I
=

√
π2NE d

Fcr
= πp

n
(3.10)

n Parabolic amplification Sinusoidal amplification
100 1.01 1.01
50 1.021 1.020
20 1.054 1.053
10 1.114 1.111
5 1.257 1.250
2.50 1.686 1.667
2 2.030 2.000
1.50 3.061 3.000
1.25 5.125 5.000
1.11 10.284 10.000

Table 3.1: Amplification factor’s for both sinusoidal and parabolic displacement fields

Dischinger correction factor
As described, the simplification made when one use’s the simple amplification factor from equation 3.6, an
error is made. Dischinger [17] proposed to introduce a correction factor δ for other type of displacement
fields to account for this error. The sinusoidal amplification factor can be rewritten as in equation 3.11. For
the example above with the parabolic initial displacement field, the correction factor can be set to 0.031. This
value will reduce the maximal error from 28%%to only 0.6%%, a significant reduction of the error with a factor
47.

1

1−n−1

1+δn−1

1−n−1

(3.11)

3.1.2. Critical global buckling load
In the above derivations of the second order effects, a critical value for the normal force Fcr was introduced.
Apparently, it is impossible for the normal force to grow beyond this value since the displacement will go to
infinity if the the normal force goes to Fcr . Even with the smallest thinkable initial deformation, the value
of displacement including the second order effect will rocket if Fcr is approached. Since a beam is never
perfectly straight, Fcr will be the absolute upper limit for the normal force NE d . Let’s consider the, what seems
to be straight, beam of figure 3.3 with an imperfection of 1 µm (own weight not considered). If NE d equals
99.9999% of Fcr , the displacement including the second order effect equals a meter according to equation
3.6. This shows that even the smallest displacements may leads to significant second order effects.
This section discusses the derivation of Fcr . Based on the described theories, a method will be described in
chapter 5 to determine Fcr taking into account the resistance of the soil.
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Figure 3.3: Global buckling of a straight structure without initial displacement (Fk = Fcr )

Derivation critical buckling load according to Euler
A well known method to determine the critical global buckling is derived by Euler [16], which is based on

the earlier derived equilibrium equation 3.12. In theory, a perfectly straight beam does not exist and a dis-
placement w0 will always be present. The value for Fcr can be derived for w0 going to 0, which can therefor
be neglected. This resulted in the right hand side of equation 3.12. The general solution to this simplified
equation 3.12 is given in equation 3.13.

E I (
d 4w

d x4 − d 4w0

d x4 )+NE d
d 2w

d x2 = q −→ E I
d 4w

d x4 +NE d
d 2w

d x2 = 0 (3.12)

w(x) =C1cos(αx)+C2si n(αx)+C3x +C4

α=
√

NE d

E I

(3.13)

The four unknowns C1, C2, C3 and C4 can be determined by solving the boundary conditions given in ex-
pressions 3.14 and 3.15. Those four conditions can be rewritten into the matrix shape given in equation 3.16.
The buckled shape of the structural element in figure 3.3 occurs when the normal force NE d equals Fcr . The
buckling shape has clearly a non-zero displacement field, which means that its not possible that all the con-
stants C1 to C4 are zero. Yet, all the boundary conditions must be zero, which means that the determinant
of the coefficient matrix should be zero [16]. The determinant of this coefficient matrix is given by equation
3.17, which equals zero if NE d is set equal to Fcr as given in equation 3.18. This value for Fcr is the well known
(Euler’s) critical global buckling load.

Boundary conditions:

w(0) =C1 +C4 = 0

w(L) =C1cos(αL)+C2si n(αL)+C3L+C4 = 0
(3.14)
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M(x) =−E I
d 2w

d x2 = E Iα2(C1cos(αx)+C2si n(αx)) = 0

M(0) = E Iα2C1 = NE dC1 = 0

M(L) = E Iα2(C1cos(αL)+C2si n(αL)) = NE d (C1cos(αL)+C2si n(αL)) = 0

(3.15)


NE d 0 0 0

1 0 0 1
NE d cos(αL) NE d si n(αL) 0 0

cos(αL) si n(αL) L 1




C1

C2

C3

C4

=


0
0
0
0

 (3.16)

L∗N 2
E d si n(

√
NE d

E I
L) = 0 (3.17)

Ncr = Fcr = π2E I

L2 (3.18)

Apart from Euler, Rayleigh [16] has derived a method based on an energy approach to determine the critical
buckling load. In appendix A, the derivation of Rayleigh is given.

Buckling length
The above derived equation 3.18 only yields for the structural element given in figure 3.3. For other structural
elements with other boundary conditions, the formula will change. It was found [16] that the critical global
buckling load for structural elements could be determined by equation 3.19, where Lk is not the length of the
structural element, but the critical buckling length. In literature (for example [16]), various examples could
be found of the critical buckling length for different boundary conditions. Three examples are given in figure
3.4 with the critical buckling length given as fraction of the structure length. Once the beam has buckled, a
displacement occurs, which is different for each structure in figure 3.4. This shape of the displacement is the
buckling shape, which will be mentioned more in this thesis.

Ncr = Fcr = π2E I

L2
k

(3.19)

Figure 3.4: Several values for the critical buckling length Lk (figure 36-2 from [2](adapted))

The lower the critical buckling length is compared to the structure length, the more the structure has to bend,
see also the examples of figure 3.4. Bending of a structure requires energy and thus a force. The larger the
bending must be, the larger the force must be. So a smaller critical buckling length requires a higher critical
global buckling load Fcr . The critical buckling length therefor says something about the resistance against
global buckling delivered by the bending stiffness of the structure.

3.1.3. Global buckling in sheet piles
Above the background of global buckling mechanism has been derived for regular structural elements. In
this derivation, the global buckling mechanism and the second order effects strongly depends to the critical
global buckling load Fcr . CUR 166 states equation 3.20 to determine the bending moment due to the normal
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force. In this equation, w0 is the first order displacement of the sheet pile [5]. Though it is known to be
incorrect, this equation should be used independent from the shape of the deformation. Previously, it has
been found that the amplification ratio in equation 3.20 (the fraction) is only correct if and only if the shape
of the deflection is of the same shape as the global buckling shape (see figure 3.4). For any other deflection
shape, a small error is made for this equation. The error made by this simplification can for a large part be
removed by Dischinger’s correction factor δ. In chapter 5.3 it will be concluded that values of δ are negative
for sheet piles. This gives that equation 3.20 is an overestimation of the actual second order effect to the
displacement.

M = NE d
1

1−n−1 w0 (3.20)

Back in the days, when software was not or hardly available, the above described method was a well approx-
imation to determine the second order effects in sheet piles. However, nowadays, this could be done more
precisely using the available software. This would mean that the above described method could be replaced.
However, as will be seen later, the amplification ratio used in equation 3.20 will be of importance for the de-
sign check to the global buckling mechanism.

Critical buckling length
The value of Fcr for steel sheet piles must be known before the structure could be checked on the global buck-
ling mechanism. Eurocode 1993-5 for sheet piles recommends equation 3.19 in order to determine Fcr . The
code defines the critical buckling length as presented in figure 3.5. If the toe of the sheet pile is fixed 2 in the
soil (figure 3.5b), the critical buckling length becomes to be 70% of the distance between the lowest anchor
and the toe. If the toe is not fixed 3, the critical buckling length is not reduced (figure 3.5a).

(a) Buckling mode for a free supported sheet pile (b) Buckling mode for a fixed supported sheet pile

Figure 3.5: Buckling length according to Eurocode

The effect of corrosion to the buckling capacity
Over the life time of a sheet pile, the pile gets affected by corrosion reducing the thickness, and with that

the bending stiffness E I , of the sheet pile. It is possible that the rate of the corrosion is not constant over the
length of the pile. If the steel is constantly above the water level, the corrosion will be less compared to the
steel which is around the water line. Due to this various corrosion rates, the bending stiffness will be variable
over the height of the sheet pile as well [5].

Because of variation in the bending stiffness, the sheet pile must be split up in the calculation model in differ-
ent sections with different bending stiffnesses, like the example in figure 3.6a. When the buckling verification
check of the Eurocode is done, it is not seldom done to use the bending stiffness of the cross section of consid-
eration to determine the critical global buckling load Fcr . However, because other sections of other stiffness’s

2A fixed toe gives that the sheet pile can hardly rotate at the pile tip
3A non fixed toe gives that the sheet pile can rotate quite easily at the pile tip
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influence critical load Fcr as well, this is false. This section will give a model to determine the size of this effect
and if it can be ignored or not.

As an example, a sheet pile is modelled as in figure 3.6a, which is belonging to the buckling shape figure
3.5b with a fixed tip of the sheet pile. The stiffness E I1 of the top has been reduced by 20%, while the other
part has still the initial stiffness (100 000 kN m2). In order to find the critical buckling load, Euler’s method
described in section 3.1.2 should be used. For this method, equation 3.21 should be solved to find the critical
buckling shape. This equation is solved by equations 3.22 and 3.23 for respectively the upper and lower half
of the sheet pile in figure 3.6a. Both equations are very similar, but the difference is between the bending
stiffness E I1 and E I2. These two equations have combined 8 unknown parameters, which could be found
by stating the boundary conditions, like done in section 3.1.2. These conditions could be rewritten into the
shape of equation 3.16. If the normal force NE d equals the critical global buckling load, the determinant of
the coefficient matrix equals zero. The determinant of this matrix is plotted in figure 3.6b, where it is visible
that the determinant equals zero if the normal force equals 17 431 kN . With the current design practice,
where only one single bending stiffness E I is used, the top and bottom half of the sheet pile would have a
critical global buckling load of respectively 16 153 kN (-7.3%) and 20 191 kN (+15.8%). So the current design
practice will be conservative for the top part of the pile, but will be progressive for the bottom part of the wall.
This is a significant error which might be solved quite easily, based on the above theory.

E I ∗ d 4w

d x4 +F ∗ d 2w

d x2 = 0 (3.21)

w1 = C1 +C2x +C3 sin

(p
F xp
EI1

)
+C4 cos

(p
F xp
EI1

)
(3.22)

w2 = C5 +C6 x +C7 sin

(p
F xp
EI2

)
+C8 cos

(p
F xp
EI2

)
(3.23)

(a) Model (b) Determinant of coefficient matrix

Figure 3.6: Example of fixed sheet pile with variable stiffness

3.2. Global buckling due to geometrical imperfections
The initial displacement introducing second order effects and with that the global buckling mechanism can
have two causes: Loading to the sheet pile or geometrical imperfections of the sheet pile. The displacement
due to loading to the sheet pile can be calculated with the available soil-structure interaction models and
software. As already discussed above, some software is able to determine the second order effect of those dis-
placements, also for sheet piling structures. With the second order effect known, the consequences of global
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buckling mechanism are known, including the impact of the soil resistance. At this point, it seems to be that
the influence of the soil to the global buckling mechanism can simply be determined with the use of software.
However, the global buckling mechanism caused by geometrical imperfections is not discussed yet. As will
be seen, this effect is not so easy determined with a software package.

Geometrical imperfections are errors in the structure which weren’t taken into account in the design. This
might for example be that the profile of the sheet pile is a bit thinner or that the pile is not perfectly straight.
Those imperfections are dependent on the fabrication (possible errors/deviations), history (new or used pile)
and installation of the pile. Several geometrical imperfections might occur in sheet piles, for which NEN-
EN 10248 [18] defines tolerances for the thickness, height, width and other geometrical parameters. This
tolerances leads to imperfections which may bring small reductions into the stiffness (both axial (E A) as
bending (E I )). Other imperfections can be residual stresses, pre-deflections of the sheet pile, lower yield
stress etc.. But mostly, this imperfections will lead to a sheet pile which is not perfectly straight, which leads
to the global buckling mechanism.
Figure 3.7 is an example of an geometrical imperfection, where the thickness of the sheet pile has a tolerance
and so a possible imperfection of 6%. The geometrical imperfections are unknown in the design. Therefor,
tests were conducted to develop standard values for imperfections which were included in Eurocode 3 for
steel structures [17]. Below, the derivation and the application of this value is described.

Figure 3.7: Example of possible imperfections in steel sheet piling (table 9 from [18])

3.2.1. Geometrical imperfections, global buckling check and the Eurocode
Geometrical imperfections may result in an initial displacement and cause the global buckling mechanism.
To take all imperfections into account, a representative eccentricity e0 for all geometrical imperfections is
introduced like in figure 3.8. The bending moment due to the interaction between the normal force and
imperfections is given by equation 3.24, which is basically an extension of equation 3.20 but with geometrical
imperfection e0 instead of displacement w0. The normal force and the bending moment will induce normal
stresses in the cross section. This normal stress should not exceed the yield stress, leading to the unity check
presented in equation 3.25. The bending moment ME d represents the bending moment caused by all loads
to the structural element including the second order effect. The initial imperfection e0 is still an unknown.
[17]

M = NE d
n

n −1
e0 (3.24)

NE d

Npl ,Rd
+NE d

1

1− NE d
Fcr

e0

MRd
+ ME d

MRd
<1 (3.25)

A complex derivation has been conducted in order to derive the current method used in the Eurocode. With
rewriting the first two terms equation 3.25, the first term of equation 3.26 is derived. Reduction factor χb can
be found with equation 3.27. The full derivation of this equation can be found in appendix B. Though the
initial imperfection e0 is lost in the derivation (it is represented by α together with other parameters), the
critical global buckling load Fcr is still of importance.

NE d

χb Npl ,Rd
+ ME d

MRd
<1 (3.26)
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Figure 3.8: Imperfections represented by eccentricity e
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(3.27)

Parameter α has been introduced to represent several parameters (8 parameters in total, see appendix B). To
determine the value for α, tests have been conducted with sheet piles, of which the results are presented in
figure 3.9. Based on those results, the reduction factor χb could be determined using the European buckling
curve d 4, as presented in figure 3.9. All the test results are (well) above this curve, meaning that the curve
is a bit conservative. The buckling curve could be described using equation 3.27 with a value for α of 0.76,
corresponding to an initial eccentricity e0 of 5.5%%for Z-profiles or 5%%for U-profiles of the sheet pile length
[17].

When the relative slenderness λ̄b is smaller then 0.2, the reduction factor χb is constant 1.0 (see figure 3.9).
In principle, the buckling curves results in larger values for the reduction factor for those low slenderness
values. However, a reduction factor larger than 1.0 results in fact in an increment instead of a reduction of
the normal force capacity, which is impossible. For this reason, the second order effects of the imperfections
must be neglected if the value of λ̄b is lower than 0.2. Based on the definition of λ̄b in equation 3.27, the
Eurocode for the design of steel structures (NEN-EN 1993-1-1) states that the second order effects initiated
by the geometrical imperfections should be neglected if the acting normal load NE d is less than 4% of the
critical global buckling load Fcr .

4Buckling curves a0, a, b and c are also existing, but those are valid for other steel profiles than sheet pile profiles
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Figure 3.9: Experimental results of buckled sheet piles (figure 2.6-9 from [17])

In principle, the global buckling mechanism initiated by displacements caused by loading is still present for
those low normal forces (<4% of Fcr ). However, those effects will be limited and as stated by the Eurocode,
can be neglected as well.

Because both the normal load as the bending moment are causing a normal stress in the structural element,
the two are influencing each others capacity. If the normal load increases, the normal stress capacity left
for the bending moment capacity reduces (M-N interaction). This interaction for the elastic design of steel
structures is represented by the unity check in equation 3.28. Because the first two terms in equation 3.28
are rewritten to one term in equation 3.29, this M-N interaction isn’t as straight forward anymore. Equation
3.28 depends non-linear to the normal load NE d , while equation 3.29 depends linearly to NE d . The two
equations are only equal if the acting normal force NE d equals the normal force capacity χ̄b Npl ,Rd . For any
lower normal force, the first term of equation 3.29 is larger than the first two terms of equation 3.28 and thus
an overestimation. This means that extra capacity of the cross section is left for the bending moment ME d ,
which is visible in figure 3.10. If the normal force equals 50% of the capacity (so NE d

χNRd
= 0.5)), the bending

moment can be 50% of the capacity (MRd ) according to equation 3.29, but it could be 54.2% according to the
exact equation 3.28. To account for this error, the acting bending moment ME d can be reduced by a factor
0.92 such that the error is removed. This factor is included in ky y as in equation 3.29 , appendix C discusses
the derivation of this factor.

NE d

Npl ,Rd
+NE d

1

1− NE d
Fcr

e

MRd
+ ME d

MRd
<1 (3.28)

NE d

χb NRd
+ky y

ME d

MRd
<1 (3.29)

Annex A of the Eurocode for steel structures gives complex formula’s to calculate ky y [19]. In appendix C of
this thesis, this factor is treated, from which it comes clear that ky y is also representing the amplification of
the bending moment ME d due to second order effects. Consequently, the used value for ME d must be the
first order bending moment.
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Figure 3.10: Comparison between equation 3.28 (exact equation) and equation 3.29 (simplified equation)

For steel sheet piles, it was decided to derive one constant, but conservative, value for ky y [17]. In total, 30
experiments were carried out, of which the results are presented in figure 3.11. Based on this results, a line
was sketched such that all the experimental results were above this line. This line could be described by
equation 3.29 if ky y is set to 1.15. It could be argued that for small normal forces the value of 1.15 is much
to high for ky y , but the Eurocode for sheet piles (NEN-EN 1993-5) prescribes the value of 1.15 independent
to the value of the normal force [3]. This results in equation 3.30 for the unity check on the global buckling
mechanism, including the partial safety factor γM1(=1.1) [3].

NE d

χb NRd (γM0/γM1)
+1.15

ME d

MRd (γM0/γM1)
<1 (3.30)

Figure 3.11: Test results of failure points by M-N interaction (figure 2.6-12 from [17])
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Based on the results of appendix C, the factor ky y and with that the factor 1.15 is introduced to account for
the error made by the reduction factor χb and the second order effects to the bending moment ME d . With the
current state of technology, the second order effects to the bending moment ME d can simply be determined
using software ([20] and [8]). This requires only a little effort, it is usually only opting a option on or off in the
program or calculation settings. If this is done, it is no longer necessary to take the second order effects into
account by the use of factor ky y . If ky y is totally left out of account, it would be neglected that the reduction
factor χb makes an error. In sheet piling structures, the normal force is usually in the order of 0 to 30% of
the capacity (χb ∗NRd ). For this range of the normal force, the error made by χb is only small, see figure 3.10.
Consequently, the design would be slightly conservative if ky y is neglected, but it won’t be unsafe. This means
that the factor 1.15 could be removed from equation 3.30 if the second order effects to ME d are determined
exactly. In other words, the bending moment ME d should not be increased with 15%. Due to the second
order effect, the first order bending moment will increase usually in the order of 5 to 10% by a normal force
(low normal forces). This means that the value of 1.15 can be replaced by a value of about 1.05, depending on
the structure and the size of the load. If the normal force in the sheet pile increases, the enlargement of the
bending moment increases as well. In theory, the enlargement of the bending moment could become more
than the removed value 1.15. However, the ignored error made by the reduction factor χb starts to increase as
well and so the overestimation made by this error will become large. If this error taken into account, the en-
largement of the bending moment may be reduced. As can be seen from the experimental results presented
in figure 3.11, the enlargement of the bending moment will not be larger than 15%, independent to the value
of the normal force.

To conclude, the removal of the factor ky y (=1.15) by taking the second order effects to the bending moment
into account is may be done for all values of the normal force. For large values of the normal force, where
the second order effects become large, it might be more wise to use the value of 1.15 which is proven by
experiments to be the upper limit of the factor ky y .

3.2.2. Introducing geometrical imperfections into the model
The global buckling effect due to initial imperfections could be taken into account by applying the reduc-
tion factor χ̄b to the normal force capacity, but Eurocode 1993-1-1 section 5.3 gives an alternative. Instead
of a perfectly straight sheet pile, a geometrical imperfect sheet pile could be modelled in the soil-structure
model. If the model can determine the second order effects, the effect of the geometrical imperfections is
embedded in the outcome of the model. The shape of this imperfection should be of the same shape of the
buckling shape. The maximal geometrical imperfection is predefined by the Eurocode (see figure 3.12) based
to the buckling curve (curve d for steel sheet piles) and the type of analysis [19]. As a result, the reduction
factor χ̄b should not be applied and the value of the critical global buckling load Fcr is no longer a point of
interest.

(a) Initial imperfection shape (figure
5.4 from [19])

(b) Values for initial imperfections (table 5.1 from [19])

Figure 3.12: Imperfection model according to Eurocode 1993-1-1
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With a model taking geometrical imperfections into account, expression 3.31 becomes valid as a unity check
for a structural element loaded by and only by a normal force. When the reduction factor χ̄b is used, expres-
sion 3.32 should be used as unity check. For several sheet pile cross sections both unity checks 3.31 and 3.32
have been conducted. For the initial imperfection e0 a value is assumed of e0/L = 1/150 (see figure 3.12b).
The results are shown in table 3.2, where it comes clear that the unity check presented in equation 3.31 is
more conservative as equation 3.32. Main explanation for this difference in the unity checks is that an initial
imperfection e0 of 0.0067∗L is used. However, from the experiments discussed in section 3.2.1 (figure 3.9) it
became clear that the initial imperfection e0 should be maximal 0.0055∗L for Z-profile sheet piles or 0.005∗L
for U-profile sheet piles, but the initial imperfections may even be lower [17]. Therefor, an initial geomet-
rical imperfection e0 of 0.0067∗L is too conservative and thus equation 3.31 results in higher unity checks
compared to the unity check 3.32.

u.c. = NE d

NRd
+ Fcr /NE d

Fcr /NE d −1
∗ NE d ∗e0

MRd
< 1.0 (3.31)

u.c. = NE d

χ̄b NRd
< 1.0 (3.32)

Equation 3.31 Equation 3.32
Sheet pile length NE d e0 (mm) e2nd ME d u.c. χ̄b NRd u.c.
profile (m) (kN) (mm) (kNm) (kN)
AZ 12-700 10 1 500 0.0667 0.108 162 1.09 1 573 0.95
AZ 18-700 10 2 200 0.0667 0.093 203 1.09 2 218 0.99
AZ 36-700N 10 3 800 0.0667 0.084 318 1.13 3 875 0.98
AU 16 10 2 100 0.0667 0.096 202 1.14 2 194 0.96
AU 25 10 3 000 0.0667 0.090 269 1.14 3 090 0.97
Hoesch 1605 10 1 900 0.0667 0.099 188 1.09 1 977 0.96
Hoesch 2605 10 3 000 0.0667 0.098 293 1.09 3 080 0.97
L23 10 2 800 0.0667 0.098 275 1.19 2 899 0.97

Table 3.2: Unity check of normal load

Based to the above, it seems to be that the method using the reduction factor χ̄b is results in better (lower)
unity checks compared to the method including the initial geometrical imperfection e0 in the calculation.
However, it is not always possible to use this method as it is meant to be. Firstly, the method with the reduc-
tion factor is derived and determined experimentally for a structural element loaded by a constant normal
force. Secondly, it may not be possible to determine Fcr correctly for sheet piles (influence of the soil), while
modelling an imperfect sheet pile in the soil-structure interaction software might be possible. As stated be-
fore, the value of Fcr is no point of interest if the imperfections are modelled into the soil-structure interac-
tion model. For those two reasons, it might be useful to determine the effects of geometrical imperfections by
modelling an imperfect sheet pile in the soil-structure model instead of the use of buckling reduction factor
χb .

3.3. Conclusions to the general global buckling theory
The global buckling mechanism is a result of an interaction between the normal force in a sheet pile and dis-
placements. This displacements are caused by either loading to the sheet pile or geometrical imperfections.
To determine the second order effects of the buckling mechanism, a relation is derived between the first order
displacement w I , the normal load in the structure NE d and the critical global buckling load Fcr .

For displacements caused by loading, the second order effects can be determined by software (D-sheet pil-
ing, Plaxis 2D). However, in the current global buckling check for steel sheet piles, those second order effects
are represented by a constant factor of 1.15 to the bending moment ME d determined without second order
effects. If the second order effect to ME d is determined by software, this factor 1.15 can be neglected. In
chapters 5 and 6, examples has been derived in which the factor 1.15 has been removed.

To determine the second order effects caused by geometrical imperfections, two approaches are available.
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The first method is the most common in the current design practice, which uses Fcr to determine a reduc-
tion factor χb to the normal force capacity. Because this method is the most common in the current design
practice, chapter 5 will solely focus on the influence of the soil to the value of Fcr .
A second approach to determine the second order effects of geometrical imperfections is to model a sheet
pile with the geometrical imperfections, discussed in the previous section. This approach is likely to be the
most convenient method to take the effect of the soil resistance against the second order effects caused by
the imperfections into account. Chapter 6 describes how this method can be used for sheet piles and does
describe some limitations of this method as well.

Development of the normal force in the sheet pile
Important in the global buckling mechanism or for the second order effects is the development of the normal
force in the sheet pile. A typical diagram of the normal force in a sheet pile is given in figure 3.13. At the
top of the pile, a normal force of 200 kN is introduced by an external vertical load. At the anchor level, just
a meter below the top, the vertical anchor force is introduced and thus a jump is visible. The soil-structure
friction gives that the normal force is not constant in the sheet pile. This friction is present at both sides of
the pile, but the absolute value of the friction at the passive soil pressure (right side) is significant larger than
the friction at the active soil pressure (left side). Therefor, below the excavation level, the friction has a larger
effect to the normal force as above and the normal force increases rapidly.

Figure 3.13: Example of normal force development in sheet piles (Figure from Plaxis 2D)

The effect of this development in the normal force to the second order effect is hard to determine by a manual
method. The first method described above to approach the second order effects due to geometrical imper-
fections using the reduction factor χb , is manually derived (see appendix B), and is not able to be adapted
for a non-constant normal force. So unfortunately, the acting normal force should be constant and the exact
effect of the normal force as given in figure 3.13 cannot be determined by this method. As a solution, one
could use the maximum occurring normal force in the diagram. In the case of figure 3.13, this would be 304.5
kN . This would lead to an overestimation of the global buckling effect, but the method will result in a safe
design.

If the second approach of section 3.2.2 is used to determine the second order effects of the geometrical imper-
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fections, the non-linear development of the normal force will be taken into account directly by the software
used. The software will see the external force, the anchor force and the soil-structure friction as a load and
will determine the effect of each load to the force distribution and deformation of the sheet pile. If imperfec-
tions are already introduced, the effect of each separate load to this imperfection is taken into account. In
other words, the problem with the non-constant occurring normal force in the first approach is no problem
in the second approach.



4
Global buckling in sub-soil structural

elements
For free beams with known boundary conditions, known deformations and load schemes derivations are
known and the mechanism of global buckling is quite well understood. When it comes to in soil founded
structures, additional factors influence the global buckling behaviour and this behaviour is not known well.
In the first place the resistance of the soil against bending and thus against global buckling is not taken into
account by determining the buckling load. For the structure to buckle, it will have to displace the soil and
so more force is required to overcome this resistance. In the second place the friction between the soil and
structure influences the normal force, which is not taken into account. This chapter focuses on theories
which are already known for subsoil elements.

4.1. Elastic supported beams
Figure 4.1 gives two structural beams loaded by a normal force F. The right beam is horizontally supported by
two supports at both sides. The left beam is also continuous supported by horizontal springs with a spring
stiffness k (kN /m/m), an elastic support. This horizontal support will resist against global buckling and will
therefor influence Fcr .

Figure 4.1: Displacement of an elastic supported beam (Left: elastically supported; Right: not elastically supported) (figure 7.20 from
[16])

39
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The elastic support as given in figure 4.1 is able to take both compression as tension forces. Soil however, is
only able to take compression forces. In the case of foundation piles, soil is situated at all sides of the pile and
can be modelled with an elastic support. For sheet piling structures however, only below the excavation level
the soil is present at both sides and only below this level the soil can be modelled as an elastic support.

4.1.1. Derivation of critical global buckling load Fcr
For the derivation of the critical global buckling load, the fourth order differential equation derived in section
2.3.2 is used. This equation is given once more in equation 4.1, where the distributed load q is set to zero.

E I ∗ d 4w

d x4 +F ∗ d 2w

d x2 = q −k ∗w

E I ∗ d 4w

d x4 +F ∗ d 2w

d x2 +k ∗w = 0

(4.1)

The buckling shape of this elastic supported beam is assumed and sketched in figure 4.2 and described by
equation 4.2. Parameter m represents the buckling mode governing in the beam. For example, the buckling
shape in figure 4.2 has a value of 4 for m, the maximal displacement occurs four times in the buckling shape.
Which buckling mode is governing for the structure depends on the bending stiffness of the beam and the
spring stiffness of the elastic support. A higher mode results in less resistance from the elastic support (less
deformation of the soil), but to more resistance from the beam itself (more bending of the structure) and vice
verse. The critical buckling mode is the mode resulting in the lowest buckling load.

w(x) = ŵ ∗ si n(
m ∗π∗x

L
) (4.2)

Solving equation 4.1 with the displacement described by equation 4.2 results in the buckling load derived in
equation 4.3. Setting the spring stiffness of the elastic support to zero, one should obtain the critical buckling
load derived in section 3.1.1 for a simple, non elastic supported beam.

(E I ∗ m4 ∗π4

L4 −F ∗ m2 ∗π2

L2 +k)∗ ŵ ∗ si n(
m ∗π∗x

L
) = 0

E I ∗ m4 ∗π4

L4 −F ∗ m2 ∗π2

L2 +k = 0

E I ∗ m4 ∗π4

L4 +k = F ∗ m2 ∗π2

L2

(E I ∗ m4 ∗π4

L4 +k)∗ L2

m2 ∗π2 = F

E I ∗ m2 ∗π2

L2 +k ∗ L2

m2 ∗π2 = F = Fcr

(4.3)

Approach of Fcr by Engesser

Based on equation 4.3, Engesser derived a formula to determine the critical buckling mode m and with that
the critical buckling load. He rewrote equation 4.3 to equation 4.4 and argued that the combined terms be-
tween brackets would be minimal if the both terms are equal to each other. With this argumentation, the
critical buckling mode m can be described by equation 4.5, where it should be mentioned that m should be
a whole number. The critical buckling mode results in the critical buckling load described by equation 4.6,
independent to the length L of the beam. In the end, the critical global buckling load by Engesser in equation
4.6 is a simplified approach of equation 4.3 by Euler. [16]

Fcr = π2 ∗E I

L2 ∗ (m2 + k ∗L4

m2π4E I
) (4.4)

m = 4

√
k ∗L4

π4E I
(4.5)

Fcr = 2∗
p

k ∗E I (4.6)
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Figure 4.2: Fourth buckling mode of a elastically supported beam (figure 7.21) from [16])

4.1.2. Mobilisation of the horizontal soil pressure
As already discussed in section 2.3.2, the interaction between the horizontal soil pressure and the displace-
ment could be schematised by springs. Using this schematisation, it could be possible to use the above theory
in order to determine the critical global buckling load for sub-soil elements. However, the above derived value
for Fcr yields for elastic supports with linear spring stiffness where the spring stiffness is independent from
the displacement of the spring. For soil however, the soil pressure (modelled by a spring force) does have a
limit in the minimal (active) or maximal (passive) soil pressure. The relationship between the deformation of
the modelled soil and the soil stress is given in figure 4.3. This relationship makes it complex to derive a value
for Fcr for sub-soil structures, but, as will be seen in chapter 5, not completely impossible.

Figure 4.3: Stress-Displacement diagram (figure 33.5 from [2])

4.2. Global buckling in foundation piles
For reference the global buckling mechanism in foundation piles will be reviewed, for which other regulations
applies. Dutch regulations (NEN-EN 1997-1) states that the global buckling mechanism does not has to be
checked for foundation piles situated in subsoil where undrained shear strength of the soil is 10 kPa or more
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[9], where the German design codes requires a minimal strength of 15 kPa [21]. Research has been done to the
resistance of the soil to the global buckling mechanism, with the conclusion that the above stated boundaries
of 10 kPa and 15 kPa can lead to an unsafe design [22].

Methods to determine the critical global buckling load in foundation piles are derived by Shields [21] and
Vogt et al. [22]. Tests are done by Vogt et al. to compare the proposed model with the reality. The tested
foundation piles are piles with a steel core, with a grout body around the core. Result is a foundation pile with
a cross section combining steel and grout. Results of this tests are represented in figure 4.4 by the green dots.
Also graphs are plotted for Vogt et al. (TUM, blue line), Shields and a new method. This new method is the
result of a master thesis by Lankreijer [23], and is clearly the best one to fit with the tests.

Figure 4.4: Comparison of several methods and tests for pile buckling (figure 7-1 from [23])

4.2.1. Vogt et al.
Vogt et al. made a derivation of the buckling load based on equilibrium of momentum, as drawn in figure 4.5.
The derivation will be shortly discussed based on this figure.

A foundation pile is loaded by and only by a normal force. Therefor, displacements of the pile do not occur,
except for possible geometrical imperfections. Those imperfections are represented by an eccentricity of the
pile, w0,M , see figure 4.5. Due to the normal force, this eccentricity will grow. With the growing eccentricity,
the soil will be displaced. The resulting soil pressure can be defined as pM , the resisting bending moment
MM can be determined based on the curvature of the foundation pile.

Where w0,M is the first order imperfection, wN ,M is the second order imperfection. With little displacements
of the soil, the soil reacts with a certain stiffness. When the deformation of the soil starts to grow, the stiffness
of the soil will decrease. When the reduction of the stiffness starts, the resistance of the soil against buckling
of the foundation pile will decrease. Therefor, the critical global buckling load will decrease if the soil stiffness
decreases. For this reason, there is a maximum displacement of the sheet pile, wki , see also figure 4.6 (at the
line named ’bilinear gebetteter Stab’). For this reason, the critical global buckling load can be derived using
the value of this critical displacement wki for wN ,M .

Nbuc =
wN ,M

π2

L2
H w

Ep Ip + 1
π2 pmL2

H w

wN ,M +w0,M
(4.7)
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Figure 4.5: Equilibrium of momentum at buckling (figure 2 from [22])

Figure 4.6: Normal force - displacement curves based on different models (figure 3 from [22])

Adaption of Vogt’s method by Lankreijer
Lankreijer showed the shortcomings of the model by Vogt. In the model of Vogt, a constant value for the
bending stiffness of the foundation pile is used. However, due to crack development in the grout body of
the pile, the bending stiffness reduces when the normal load grows. When this is not taken into account, an
overestimation occurs of the bending stiffness and critical global buckling load. This appeared to be the most
significant error by the method of Vogt. Lankreijer does put effort into the determination of the soil stiffness
leading to significant better results as can be seen in figure 4.4. [23]

The error made by Vogt was mainly caused by the neglect of the cracked grout body. Because this error won’t
occur in steel sheet piles, Vogt’s method should be a good approximation of the Euler buckling load of sheet
piles. However, Vogt method only yields for foundation piles, not for soil retaining structures like regular
sheet piling structures and is therefor only valid if the sheet pile is used as a foundation pile.
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4.2.2. Shields
Shields came up with a single formula to determine the critical global buckling load based on the formula of
Engesser, see section 4.1. To model the soil stiffness, Shields used a spring stiffness k of 90*Su , where Su is
the undrained shear strength of the soil [23]. Doing this Shields defined the buckling force capacity as given
in equation 4.8 with a value of β of 19, which corresponds to equation 4.6. This factor is based on a perfect
formed beam. However, just as in section 3.2, this perfect beam does not exist. In reality, the factor β lies
between 8 and 14, which takes these imperfections into account [23]. In the Netherlands, it is advised to use
a β value of 11 (CUR 236 [24]).

Fcr =β
√

SuE I (4.8)



5
Critical global buckling load Fcr of sheet

piles
Based on the theories discussed in the previous chapters, two method’s will be described in order to derive
the critical global buckling load Fcr for steel sheet piles. Nevertheless, the first discussed examples will be
non-realistic for the conditions of the soil or sheet piles. Though not realistic, those examples will help to
explain the proposed method.

The first described method is discussed in section 5.1. This method is an analytical derivation of the critical
global buckling load Fcr of which the derivation is based on Euler’s buckling theory discussed in chapter 3.
For this method, the soil-structure interaction must be described by the use of the spring model. Using this
method it is possible to approach the critical global buckling load Fcr .
A numerical method to determine Fcr is introduced in section 5.2. This second method is based on the am-
plification factor previously discussed in section 3.1.1. This relation consists of the first order displacement,
the second order displacement, Disschinger’s correction factor δ, the normal force and the unknown criti-
cal normal force. With the use of available software able to determine second order effects to displacements
caused by loading, the only unknowns in this relation are the critical buckling load and Disschinger’s correc-
tion factor. Based on multiple examples evaluated by the software, from which the normal force and both
first an second order displacements are known, those two unknowns can be determined.
Because the second, numerical, method can be used independent to the soil-structure interaction model, this
method might be more interesting than the analytical method discussed firstly in section 5.1. A comparison
between those method’s is made in section 5.3 from which it will become clear that only the analytical method
is valid to determine the critical load Fcr for sheet piles. Finally, in section 5.4 the proposed analytical method
to derive Fcr for sheet piles will be compared with the method stated by the Eurocode, used in the current
practice.

5.1. Method 1: Fcr based on Euler’s buckling theory and the spring model
The soil-structure interaction of a sheet pile can be schematised by the spring model, where the soil can be
modelled as a elastic-plastic support 1. Based on section 4.1, it became clear that it is possible to determine
the critical global buckling load for structure supported by an elastic support.
This section will treat the theoretical derivation of the critical buckling load of a elastic-plastic supported
structural element. This will be done firstly for elastic supports without taking into account the mobilisation
of the horizontal soil pressure. Afterwards, the effect of the soil pressure mobilisation will be discussed. The
sensitivity of the global critical buckling load to the parameters used in the model are included as well.

Chapter 3 discusses the relevance of the critical buckling length for structures. Because the value of Fcr for
steel structures in general can be determined quite easily using the critical buckling length, this length is his-
torically of importance to determine the global buckling effect. Though this historical importance, this sec-
tion will propose a method to determine Fcr without using the critical buckling length. This is done for two

1Elastic-plastic behaviour of material, and in this case support, is the behaviour of material which is elastic for small displacements, but
will be plastic for large displacements

45
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reasons. Firstly, this length is based on the buckling shape of the sheet pile, which is significantly influenced
by the subsoil. For each sheet piling structure, the buckling shape and with that the critical buckling length
should be determined separately. In contrast with steel structures above the soil surface, there are no simpli-
fied equations available to determine the critical length. Secondly, with the critical buckling length, only the
resistance against global buckling from the bending stiffness of the sheet pile can be taken into account. The
critical buckling length does not say anything about the resistance against global buckling delivered from the
soil. For those two reasons, the critical buckling length is no point of interest in the following method.

5.1.1. Derivation of the theoretical critical global buckling load for sheet piles
For the derivation of the critical global buckling load Euler’s theory will be applied, see section 3.1.2. This the-
ory has also been used for the elastically supported beam in section 4.1, so it should be possible to determine
Fcr by Euler’s theory for sheet piles using the spring model. Firstly, for the derivation of Fcr , the sheet pile is
modelled as in figure 5.1. The excavation of the pile will be at the right side so that the soil level at the left side
is at a higher level than at the right side of the pile. This gives that the pile will buckle rightwards since there
is less resistance of the soil. The soil at the left side will therefor not resist against global buckling and only an
elastic support at the right side is schematised. In the example of figure 5.1 soil is only present at the lower
part of the pile at the right side and so only an elastic support is schematised at this lower part.
Some inconsistencies with this schematisation are made compered to the actual structural model of steel
sheet piles. First of all, supports are added at both tips of the sheet pile. Secondly, the modelled elastic sup-
port at the lower half has an elastic spring stiffness k which is independent to the displacement of the pile.
The non-linear behaviour of the soil pressure will be reviewed later.

Without deformation of the sheet pile and therefor the soil, the soil pressure at both sides equals the neutral
horizontal soil pressure σ′

v,n . Once the sheet pile start to deform, the pressure at the left (side with the higher
soil surface) will deform the sheet pile to the right (at the right side, the soil surface is at a lower level). This
means that the horizontal soil pressure at the left side will decrease towards the active horizontal soil pressure.
Because the active soil pressure is reached with a relatively small displacement, the horizontal soil pressure
at the left side is assumed to be fully active in this example. This soil pressure will be modelled as a load to
the pile.
At the right side, the horizontal soil pressure will increase towards the passive horizontal soil pressure. This
increase in the soil pressure is represented by the force from the elastic support to the pile and will therefor
not have to be modelled as a separate load. Though the elastic support can take both compressive as tensile
forces, soil can only take compressive forces. So it would seem that this schematisation is false, since it is
possible that the elastic support is loaded with a tensile force. However, the soil is at both sides of the pile
which gives that a tensile force of the elastic foundation represents compression of the soil at the left side of
the pile 2. The initial, neutral horizontal soil pressure can be modelled as a load to the sheet pile. Together
with the active horizontal soil pressure, the load to the sheet pile can be modelled as in figure 5.1.

2If the pile moves to the right in figure 5.1, the elastic foundation is compressed and a compressive force will occur. If the pile moves to
the left, the elastic foundation is elongated and a tensile (rightward) force occurs. Because the soil at the left side is compressed with
this movement, this soil generates a rightward force, in the direction of the elastic foundation force. With that, this schematisation is
valid.
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Figure 5.1: Schematisation of the sheet pile neglecting the mobilisation of the soil

Euler’s theory is based to the equation of equilibrium given by expression 5.1, derived in section 2.5. In the
schematisation of figure 5.1, the pile should be split up in two parts (upper and lower half), where each part
has different conditions. For both parts, equation 5.1 yields and the bending stiffness E I and normal force F
are equal. However, the spring stiffness k differs over both parts. Clearly, the upper half does not have any
support from the soil, and so k should be set to zero. The lower half is supported horizontally by the soil and
a spring stiffness k is present.

Because of the difference between the upper and lower part, the solution for the displacement w of equation
5.1 differs for both parts of the sheet pile. The solution of the upper part can be described by equation 5.2,
for the lower part the solution is given by equation 5.3. This two equations contains of 8 unknowns in total
(C1 to C8), which could be solved by the 8 conditions given expression 5.4. The first and last two conditions
are to ensure that the pile does not displace or create a resisting bending moment at both pile tips. At the
intersection of the two parts at x = L/2, both the equations 5.2 and 5.3 are valid. This gives that the four
conditions at x = L/2 as given are valid.

E I ∗ d 4w

d x4 +F ∗ d 2w

d x2 +k ∗w = 0 (5.1)
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For x = 0: w1(x = 0) = 0

M1(x = 0) = 0 −→−E I
d 2w1

d x2 = 0

For x = L/2: w1(x = L/2) = w2(x = L/2)

φ1(x = L/2) =φ2(x = L/2) −→−d w1

d x
=−d w2

d x

M1(x = L/2) = M2(x = L/2) −→−E I
d 2w1

d x2 =−E I
d 2w2

d x2

V1(x = L/2) =V2(x = L/2) −→−E I
d 3w1

d x3 −F
d w1

d x
=−E I

d 2w2

d x2 −F
d w2

d x
For x = L: w2(x = L) = 0

M2(x = L) = 0 −→−E I
d 2w2

d x2 = 0

(5.4)

Equation 5.2 and 5.3 will be solved by the given conditions. As already discussed in section 3.1.2, all condi-
tions as given in expression 5.4 are valid if all constants are set to zero. However, if all the 8 constants are set
to zero, the displacements of w1 or w2 are zero, independent to x. It is known that if a structural element
buckles, displacements will occur. Therefor, the solution of all constants being zero won’t be a solution for
the buckling problem.

As described in section 3.1.2, the 8 conditions could be rewritten into the shape of equation 5.5. By definition,
a non-zero solution for the 8 constants and therefor displacement is only possible if the determinant of the
coefficient matrix equals zero. Unknown parameters in this matrix are E I , k, L and F . Since E I , k and L are
known, the determinant could only be set to zero by varying the normal force F . Based on this theory, the
critical value Fcr for the normal force could be found. Below an example has been discussed, in which this
method is used.

Coefficient matrix∗



C1

C2

C3

C4

C5

C6

C7

C8


= 0 (5.5)

A sheet pile with a length of 10 m and profile AZ 18-700 (E I = 79 380 kN m2) has been modelled as an example
according to the model in figure 5.1. The soil stiffness of the spring foundation equals 1 000 kN /m/m2. Based
on these parameters and the above given boundary conditions, the determinant of the coefficient matrix has
been determined. Because of the size, the matrix has been given in (see appendix D), where also the deter-
minant of this matrix is given. In this appendix it becomes clear how complex the derivation of the critical
global buckling load Fcr can be. In this case, it is not possible to write a short equation to determine Fcr . It
is more convenient to plot the determinant against the normal force. This is done in figure 5.2, from which
it appears that the determinant consists of a real part and an imaginary part. The imaginary part could be
ignored if this part is negligible compared to the real part of the determinant, which can be confirmed using
the plots of both parts in figure 5.2.

From figure 5.2b, it is visible that the critical global buckling load equals 12 666.85 kN. In addition, the second
time the determinant becomes to be zero is at 17 819 kN. For the critical global buckling load of the structure
this value is not of use, but it is interesting to see that this value equals Engesser’s approximation of an elastic
supported structural element (Fcr = 2∗pk ∗E I , see section 4.1). This means that, mathematically, the struc-
ture buckles at this normal load because the embedded part of the sheet pile (lower half) becomes unstable.
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(a) Real part of the determinant (b) Zoomed real part of determinant

(c) Imaginary part of determinant

Figure 5.2: Determinant of coefficient matrix plotted against the normal force F

5.1.2. Mobilisation of horizontal soil pressure
In the above executed example, the soil stiffness k is independent to the displacement of the soil. However,
the soil stiffness does depend on the deformation and is thus not linear (see figure 5.4). Euler’s derivation
of Fcr uses equation 5.1, which requires constant parameters and thus a constant soil stiffness. It is impor-
tant to realise that the critical global buckling load Fcr itself is much higher (about a factor ten) than regular
occurring normal load in sheet piles. The critical global buckling load is used to calculate second order ef-
fects, caused by the interaction between the normal force and displacements of the pile (see chapter 3.1).
This second order effect is represented by figure 5.3, the initial displacement w0 will grow to displacement
w1 when the pile is loaded by a normal force. Because the normal load is typically relatively small compared
to Fcr , the growth of the initial displacement (by the second order effects) will be small as well. This small
displacement will result in only a small reduction of the soil stiffness. This fact will be the crux of the solution
in order to determine the influence of soil to the critical global buckling load (when the spring model is used).
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Figure 5.3: Effect of imperfections and normal force combined

When the spring model is used to model the soil-structure interaction, the modelled soil stiffness is semi-
linear, see figure 5.4. The soil stiffness does only change if the soil stress grows across a certain value. In the
case of figure 5.4, which is much used in the Dutch design practice [5], the soil stiffness decreases when the
horizontal soil stressσ′

h reaches 50%, 80% or 100% ofσ′
h,max (σ′

h,max =σ′
h,passi ve ). Between this three percent-

ages, the soil stiffness k is constant, and consequently, the critical global buckling load could be derived. The
extra displacement due to the second order effects will be relatively small, which means that the soil stiffness
can be seen as constant according to the spring model.
For example, if the initial horizontal soil stress3 equals 35% of σ′

h,max , soil stiffness k1 must be used. Due to
the second order effect, the displacement of the sheet pile and with that the soil displacement will grow. A
growth in the soil displacement could lead to an decrease of the soil stiffness. The soil stress should grow to
more than 50% of σ′

h,max for the soil stiffness to reduce, to stiffness k2. Such a growth of the horizontal soil
stress due to second order effects is unlikely. Therefor, to determine the critical global buckling load Fcr , soil
stiffness k1 can be used to model a linear spring stiffness. However, if the initial horizontal soil stress equals
45% ofσ′

h,max , it is likely that the soil stiffness changes due to the global buckling mechanism. If this happens,
the soil stiffness reduces during the global buckling mechanism, but this can not be described by the critical
global buckling load Fcr , which requires a constant elastic stiffness. To tackle this problem, the soil stiffness
could be modelled with the value of stiffness k2 instead of k1. If the soil stress increases from 45% to over 50%
of σ′

h,max , the modelled soil stiffness may be too low for the part between 45 and 50%, but it is not too high
for the part above 50%. For this reason, it would be wise to use spring stiffness k2 instead of k1 to determine
Fcr when the initial horizontal soil stress exceeds 40% of σ′

h,max . Result of this approach gives that Fcr is not
determined exactly, but approached from a safe side. For the same reason, above an initial horizontal stress
of 70% instead of 80% of σ′

h,max , k3 should be modelled and above an initial stress of 90% instead of 100% of

σ′
h,max , no soil stiffness should be modelled.

The mobilisation of the horizontal soil stress, and with that the soil stiffness, is variable over the depth of the
soil. This gives that the soil stiffness varies as well over the depth of the soil and several soil layers should
be modelled with each a constant soil stiffness. This model is shown in figure 5.5, which does also take the
horizontal support of the anchor (or strut) into account. This support is not fully rigid, but will displace when
loaded. Therefor, this support should be modelled as a spring.

3The initial horizontal soil stress refers to the horizontal soil stress where the second order effects are not taken into account
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Figure 5.4: Stress-Displacement diagram (figure 33.5 from [2])

Figure 5.5: Structural model of sheet pile example

Example calculation
As an example, the sheet pile given in figure 5.6 has been evaluated with the help of the D-sheet piling soft-

ware. The relevant technical details of the sheet pile, the anchor and the sand as used in the D-sheet piling
model are given in table 5.1. The initial horizontal soil stress of the horizontal soil pressure is determined and
given in figure 5.7a.
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Figure 5.6: Example calculation of the global critical buckling load based on partly elastic support

Property Value Unit
Sand Unsaturated unit weight sand 18 kN /m3

Saturated unit weight sand 20 kN /m3

Cohesion 0 kN /m2

Friction angle φ 30 °
Delta friction angle δ 20 °
Spring stiffness k1 12 000 kN /m3

Spring stiffness k2 3 270 kN /m3

Spring stiffness k3 1 000 kN /m3

Sheet pile Profile AZ18-700
Bending stiffness EI 79 380 kN m2/m
Bottom tip level -11 m
Level excavation -5 m
Original surface level 0 m

Anchor Level at sheet pile -1 m
Axial stiffness EA 840 000 kN/m
Length 10 m
Angle 45 °
Horizontal anchor stiffness kanchor 42 000 kN /m/m

Table 5.1: Soil and material properties of the structure given in figure 5.6

Based on the calculations with D-sheet piling, the sheet pile was schematised as a structural element like
given in figure 5.8. It is easy to see that the meter sheet pile above the anchor level is not modelled in figure
5.8. The normal force is introduced at the anchor level, and thus the top part of the pile will not be loaded
by the normal force. However, due to the buckling shape of the buckling mechanism, this part might rotate
towards the soil. In theory, this rotation would be resisted by the subsoil and should therefor increase Fcr . For
simplicity of the calculation, this resistance to the global buckling mechanism.

The anchor is modelled as a spring, a spring stiffness of 42 000 kN /m/m is found based on the cross sectional
properties and length of the anchor 4. The mobilisation ratio horizontal soil stress is already known from the
D-sheet piling calculation and is given in figure 5.7a. Based on this ratio, the soil stiffness can be determined,
figure 5.7b gives how the soil stiffness for the calculation of Fcr is divided over the depth of the soil.

4It is assumed that the other end of the anchor, deep in the soil, will not displace
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(a) Ratio initial horizontal soil pressure / passive horizontal
soil pressure

(b) Division of soil stiffness based on the ratio initial hori-
zontal soil pressure / passive horizontal soil pressure

Figure 5.7: Initial soil pressure mobilisation of the model

Figure 5.8: Structural model of sheet pile example

In order to find the critical global buckling load of the structural model in figure 5.8, the equilibrium equation
given in equation 5.6 has to be full filled for each part of the sheet pile. Solution to this equation is given in
equation 5.7 for w0 and equation 5.8 for w I ,w I I and w I I I . The lengths of L0, L I , L I I and L I I I are, based on
figure 5.7b, respectively 4.2 m, 0.3 m, 0.9 m and 4.6 m. With the 4 equations to describe the displacement of
the sheet pile (1 equation for each part of the pile), there are 16 unknowns. This unknowns could be found by
solving the 16 conditions stated below.

E I ∗ d 4w

d x4 +F ∗ d 2w

d x2 +k ∗w = 0 (5.6)
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Boundary and interface conditions:

x = 0: M0(0) = 0 x = 4.5 m: w I I (4.5) = w I (4.5) x = 5.4 m: w I I (5.4) = w I I I (5.4)
V0(0) = 42 000*w0 φI I (4.5) = φI (4.5) φI I (5.4) = φI I I (5.4)

x = 4.2 m: w0(4.2) = w I (4.2) MI I (4.5) = MI (4.5) MI I (5.4) = MI I I (5.4)
φ0(4.2) = φI (4.2) VI I (4.5) = VI (4.5) VI I (5.4) = VI I I (5.4)
M0(4.2) = MI (4.2) x = L = 10 m MI I I (L) = 0
V0(4.2) = VI (4.2) VI I I (L) = 0

With the above 16 conditions rewritten into a coefficient matrix, the critical global buckling load Fcr could be
found. The determinant of this matrix equals zero when the normal load F equals Fcr . For this example, it
appeared to be impossible to calculate Fcr for this model with three different types of soil stiffness because
of the complexity 5. Therefor, only spring stiffness kI I I (=k1) and kI I (=k2) are modelled and the resistance to
buckling of the rest of the soil, with spring stiffness kI (=k3), is neglected (see figure 5.8). The determinant
is plotted against the normal force in figure 5.9, where it can be seen that the critical global buckling load
equals 22 390 kN. In comparison, conform the current Eurocode for sheet piles the buckling length is set to 7
m (fixed bottom tip), resulting in a value for Fcr of 16 027 kN.

Figure 5.9: Plot of determinant against the normal force. Critical global buckling load Fcr equals 2 2 390 kN

Verification of extra stress mobilisation
At the start of the derivation, it was assumed that the second order effects of the imperfections would not
increase the soil stress mobilisation in such an extent that the spring stiffness should change according to the
spring model. Once the critical buckling load is known, this can simply be verified by equation 5.9 where w I

is the initial displacement of the soil.

5The number of terms in the determinant depends on the size of the matrix (in this case a 16x16 matrix). A n x n matrix has a determinant
with n! terms. For two displacement fields (n=8), the determinant has 40 320 terms, with 3 fields it has 479 million terms and with 4
fields this equals 21 trillion (1E12) terms. As long the sheet pile is not elastically supported, most of the terms cancels because of the
relatively simple equation (see equation 5.7, w0). When an elastic support is introduced, the terms becomes more complex and less
terms cancels (but still far most of the terms fall out). This makes it hard to impossible to determine the theoretical critical buckling
load for models with more than two different kind of soil stiffness values.
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The value of Fcr is determined to quantify the effect of the geometrical imperfections in the sheet pile. In
corresponding with section 3.2.2, the maximal geometrical imperfection e0 in equation 5.9 should be set
to 66.67 mm (e0 = L/150). If the normal force is set to 400 kN (additional external loading), the maximal
imperfection grows to e2nd ,or der = 67.88 mm. Because the exact buckling shape is unknown, it is unknown
where the maximal imperfection occurs. Therefor, it is assumed that the growth of the imperfection may be
1.21 mm all along the pile. It is possible to use FE-software to find the precise critical buckling shape and
load, but this will be discussed later. If this is done, the exact value of the imperfection at the point of interest
can be determined.
The question is that if the soil may be modelled with the soil stiffness which is assumed. In the above example,
it is assumed that for the soil at 5.4 m and more below the anchor, the stiffness may be set to 12 000 kN /m3

(k1). With a growth of the imperfection of 1.21 mm, the horizontal soil pressure grows with 14.57 kPa. At
5.4 m below the anchor, the mobilisation ratio horizontal soil stress equals 39%. With an increase of 14.57
kPa, this ratio would have a value of 50%, and so soil stiffness k1 may be modelled for the soil lower than this
point. Above this level, the soil should be modelled using k2 because the soil pressure will be more than 50%
of σ′

h,max . This means that the found critical buckling load of 22 390 kN can be used as an approach to the
actual critical buckling load Fcr .

e2nd ,or der =
1

1−n−1 ∗e0 (5.9)

To conclude, it is possible to take the resistance of the soil into account in the determination of Fcr . When the
soil displacement increases due to the buckling mechanism such that the soil stiffness decreases to another,
lower, modelled soil stiffness, this lower soil stiffness should be used in the derivation. If this is done, the
found value for the critical buckling load is a safe side approximation of the actual critical buckling load.

5.1.3. Parametric determinant coefficient matrix
The above example has been done with known parameters. Based on this calculation, it is known that it takes
a long time to calculate the determinant of the coefficient matrix. Besides, the scripting of the formula’s re-
quires significant time as well and is prone to errors. Therefor, the determinant of the coefficient matrix has
been determined parametric for the two models in figure 5.10. The model of figure 5.10a is capable to take
into account 4 different stiffness values E I for the sheet pile into account and can model only 1 soil stiffness.
The model in figure 5.10b can model 3 different stiffnesses for the sheet pile and 2 different values for the
soil stiffness. This parametric model will be used in section 5.1.4 to determine the importance of the input
parameters to the value of Fcr . More complex models were not derived by hand because it was impossible to
run the derivation of the parametric formula.

Determining critical load with FE-software
To determine the critical global buckling load for more complex cases, it is possible to run a buckling anal-

ysis with structural finite element analysis (FEA) tools. In this report, the FEA-program Diana FEA is used to
model the sheet pile and the spring supports like modelled in figure 5.8. In principle, such a program is able
to analyse the most complex schemes with many different soil stiffnesses and bending stiffnesses of the sheet
pile. The limitation is rather on the time to put the data into the program as in the calculation time of the
model.

In appendix F the FEA model is given for the example in section 5.1.2. Based on the model of the previous
example a stability analysis was done, which has shown a critical global buckling load of 22 369 kN , just 21
kN off from the value which was found with Euler’s theory. The buckling shape of the structure is shown
in figure 5.11. In addition, the soil stiffness which was ignored before (k3) is added to the calculation using
Diana FEA, which returns a critical global buckling load of 22 627 kN (+1.15%).
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(a) 1 elastic stiffness value, 4 sheet pile stiffness values (b) 2 elastic stiffness values

Figure 5.10: Structural model for the critical buckling load calculation/approach of a sheet pile
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Figure 5.11: Buckling shape computed by Diana FEA

With the use of Diana FEA, more complex models can be analysed. In the example above, the part of the
sheet pile above the anchor level was neglected. However, because this part will rotate into the soil due to
the global buckling mechanism, the soil around this part of the pile will resist against global buckling as well.
Because of the complexity, this was cancelled in earlier calculations. With the use of Diana FEA, this could be
taken into account easily. This is done according the structural model given in figure 5.12. The soil stiffness
ktop was set to 12 000 kN /m/m2. This structural model has, based on calculations with Diana FEA, a value
of Fcr of 23 519 kN , which is just 4% more compared to the value of Fcr found without the top part taken into
account. Besides, it’s questionable if the soil stiffness of 12 000 kN /m/m2 is present at this level in the soil.
Because the soil is shallow at this location, the maximal horizontal stress is quickly reached, resulting in not
much resistance of the soil. If one takes the resistance of this part of the soil into account, it should be done
with care.
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Figure 5.12: Structural model of sheet pile in figure 5.6

5.1.4. Parameter sensitivity analysis
The model presented in section 5.1.2 requires 4 input values: the anchor stiffness, the bending stiffness of the
sheet pile, the soil stiffness and the length of the sheet pile. Because the parameters may be uncertain during
the design, this section treats the sensitivity of Fcr to the stiffness parameters. The length is assumed to be
known and certain, therefor the sensitivity of the critical buckling load to the length of the sheet pile is left
out of account.
The value of the critical global buckling load is based on the stiffness of the system. Three different types of
stiffness are influencing the value. If one of the three stiffnesses reduces and the other two stiffnesses remain
constant, it should be expected that the critical global buckling load reduces as well, but less strongly since it
is also dependent two the other two stiffnesses.

The influence of the parameters is determined by varying the parameters with a certain deviation around the
mean value. For a large amount of values for the parameters the value for Fcr is calculated for the example of
section 5.1.2. In total, 1 000 calculations have been done for each parameter. Based on this set calculations,
the sensitivity of the critical global buckling load to the parameter can be determined.

Influence of soil stiffness
The example of section 5.1.2 has been used to determine the sensitivity of the critical global buckling load.
The soil stiffness has been varied around it original values of 12 000 kN /m2 and 3 270 kN /m2 (for k1 and k2

respectively) by a reduction factor. The reduction factor has a mean of 1.0 and standard deviation of 0.05.
Thousand random numbers based on this distribution are plotted in figure 5.13. For each of these 1 000 val-
ues, the soil stiffness has been determined and with that the critical buckling load is determined. This load
has been divided by the mean value found in section 5.1.2 (22 390 kN ) in order to plot it’s normal distribution
in figure 5.13. The mean of this distribution equals 1.0, the value of the standard deviation is 0.0276.
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Figure 5.13: Normal distribution of soil stiffness and critical buckling load with varying soil stiffness as input

Influence of bending stiffness
The bending stiffness has been varied similar to the soil stiffness with a variable reduction factor normally
distributed with a mean of 1.0 and standard deviation of 0.05. The values for the critical normal force, divided
by the critical force found in section 5.13, were found to be normal distributed around 1.0 with a standard
deviation of 0.0210.

Figure 5.14: Normal distribution of bending stiffness and critical buckling load with varying bending stiffness as input

Influence of anchor stiffness
At last the influence of the anchor stiffness has been determined with the same normal distribution as the
previous two parameters. As visible in figure 5.14, the critical buckling load is only very limited influenced by
the anchor stiffness. When the anchor stiffness deviates with a standard deviation of 5%, the critical buckling
has a standard deviation of 0.03%. Even with a reduction of 50% to the anchor stiffness, the critical buckling
load reduces with only 0.67%.
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Figure 5.15: Normal distribution of bending stiffness and critical buckling load with varying bending stiffness as input

Conclusion of sensitivity analysis
As seen, the critical global buckling load depends strongly to the bending stiffness of the sheet pile and the soil
stiffness. The anchor stiffness however has only very limited impact. Before the results were presented the
expectation was stated that the reduction to the critical global buckling load would be less than the reduction
to the stiffness. Based on the results, this is indeed the case.
It is important to realise that the found sensitivity is only valid for this particular case. For another set of
parameters, the sensitivity is likely to be different.

5.2. Method 2: Fcr based on first and second order displacements
The method derived in the previous section is unfortunately only available if the spring model is used to
model the soil-structure interaction. For other models, this section proposes a numerical method to find Fcr ,
based on the relationship between the critical buckling load Fcr , the acting normal load NE d , the first order
displacement w I and the second order displacement w I I . In this section, examples are used to explain the
method. Those examples are not representative for sheet piling structures. In section 5.3, it will be reviewed
if this numerical method is valid or not for sheet piles.

Section 3.1.1 introduced the relationship between the critical buckling load Fcr , the acting normal load NE d ,
the first order displacement w I and the second order displacement w I I . As reminder, this relation is pre-
sented again in equation 5.10 including Dischinger’s correction factor δ. In theory, the critical buckling load
could be determined based on equation 5.10 if the other parameters are known (NE d , w I , w I I and δ).

w I I = w I 1+δn−1

1−n−1 (5.10)

Relation 5.10 is rewritten in equation 5.11 resulting in a function for Fcr . This equation includes Dischinger’s
correction factor δ, which is unknown. Because the value of δ is unknown, the determination of Fcr is less
straightforward then it might seem.
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w I I

w I
(1−n−1) = 1+δn−1

w I I

w I
−1 = n−1(δ+ w I I

w I
)

n−1 = w I I /w I −1

w I I /w I +δ
n = w I I /w I +δ

w I I /w I −1

Fcr = w I I /w I +δ
w I I /w I −1

NE d

(5.11)

The displacements w I and w I I can be calculated using software or manually in the case of relatively simple
structures. When a value is assumed for δ (for example 0.00), the critical buckling load can be calculated.
Doing this for multiple values for NE d , multiple values for Fcr will be found. Based on those multiple values,
the average could be used as a value for Fcr . For each acting normal force NE d , the found value for Fcr will
deviate from the average value. Of all this deviations, an average error should be determined. To minimise
this error, δ should be varied 6 for a certain range of values. From every different value for δ, a value for Fcr

and the error will be found. The Fcr belonging to the minimal error should be the value for the critical global
buckling load. Examples are executed to show this method.

5.2.1. Example of the method
To support the above theory, an example with the beam given in figure 5.16 is worked out. The beam is sup-
ported at both ends with a rigid support and with a spring foundation in between (parameters given below).
Though this is not a sheet pile, it does give a relatively simple insight of the theory proposed above. Besides,
the critical global buckling load could be determined with existing buckling theories and therefor this pro-
posed method could be verified.

The beam in the example is loaded with a distributed load of 100 kN /m causing a parabolic deformation
given in figure 5.17 (first order displacement) 7. When the beam is loaded by a normal force NE d , the dis-
placements of the beam will grow with the second order effects. For a normal force of 2 000 kN , the second
order displacement is given in figure 5.17. For 15 values of the normal force (ranging from 1 000 kN to 15 000
kN ) the critical global buckling load is determined, of which the results are given in table 5.2. The values of
the displacement given in this table were calculated manually, the calculation is given in appendix E.1. Due
to the precision of the displacement (5 decimals are known), it is possible to calculate Fcr quite precisely.
In total, the calculations are done for 2 000 values for δ. For each of the 15 values for the normal load, the
value of Fcr has been determined based on the found data (6th column in table 5.2). The error between this
value and the average value of Fcr is given by the 7th column of the same table. For all 2 000 values of δ, the
average error is plotted in figure 5.18. From this figure, it can be seen a correction factor δ of 0.006 results
in a minimal error. The average found critical buckling load equals 17 955.6 kN with an average error of just
0.08%%(last column of the table).

6Variation should be done for a large set of δ values. This can be done by and only by a powerful calculation tool. For this examples,
Python has been used to run the calculation

7Calculation of deformations are given in appendix E.1
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E I = 79 380 kN m2 (Sheetpile profile AZ18-700)
k = 1 000 kN /m2

L = 10 m

Figure 5.16: Example A: Elastic founded beam loaded by a distributed load of 100 kN /m

Figure 5.17: First and second order displacement of the example, loaded by a normal force of 2 000 kN
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NE d (kN ) w I (mm) w I I (mm) w I I /w I n Fcr Error (%%)
1 000 71.18115 75.40399 1.059 17.957 17 957.4 0.10
2 000 71.18115 80.15667 1.126 8.978 17 956.3 0.04
3 000 71.18115 85.54544 1.202 5.985 17 955.5 0.01
4 000 71.18115 91.70697 1.288 4.489 17 954.8 0.04
5 000 71.18115 98.82012 1.388 3.591 17 954.2 0.07
6 000 71.18115 107.12351 1.505 2.992 17 953.8 0.10
7 000 71.18115 116.94281 1.643 2.565 17 953.7 0.11
8 000 71.18115 128.73441 1.809 2.244 17 953.7 0.09
9 000 71.18115 143.15828 2.011 1.995 17 953.9 0.07
10 000 71.18115 161.20580 2.265 1.795 17 954.3 0.03
11 000 71.18115 184.43752 2.591 1.632 17 954.9 0.01
12 000 71.18115 215.46026 3.027 1.496 17 955.8 0.08
13 000 71.18115 258.98028 3.638 1.381 17 956.9 0.08
14 000 71.18115 324.44976 4.558 1.283 17 958.3 0.15
15 000 71.18115 434.06564 6.098 1.197 17 960.0 0.25

Average 17 955.6 0.08

Table 5.2: Determination of critical buckling load of the beam in figure 5.16 based on displacements with a δ correction factor of 0.006

Figure 5.18: Errors for different correction factors δ

In section 4.1 the theoretical critical buckling load was derived for a structure similar to the structure in figure
5.16 and equation 5.12 was found. Using this equation for the above example, a critical buckling load of

17 967 kN is found. Compared with this value, the critical buckling load found based on displacements is just
11.3 kN or 0.6%%off.

E I ∗ m2 ∗pi 2

L2 +k ∗ L2

m2 ∗pi 2 = F = Fcr (5.12)

In the above example, the proposed method offers a good approach for the critical global buckling load.
Before more conclusions are made to this proposed method, more examples are discussed. In appendix E 4
other examples are given, of which the lay-out is given in figure 5.19 and results are given in table 5.3. For
comparison, the example given above (example A) is given as well in this table.

From the results it is visible that the 5 load cases give different results, but are well centred around the theo-
retical critical global buckling load of 17 967 kN . The maximal error of the calculated critical buckling load is
0.48%. If the average value is taken from the 5 calculations, the critical load becomes 17 973.9 kN , which is
just 7 kN or 0.04% off from the actual value.
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(a) Example B: Loaded by two
moments of 100 kN m

(b) Example C: Loaded by a
point load of 100 kN

(c) Example D: Loaded by a
point load of 100 kN , a dis-
tributed load of 10 kN /m and
two moments of 100 kN m

(d) Example E: Loaded by a
single moment of 100 kN m

Figure 5.19: Several load cases for the determination of the critical global buckling based on displacements

Example Loading Initial dis- Critical global δ error Fcr with error Fcr with
placement (mm) buckling load (kN ) average (%%) reality (%)

A q = 100 kN /m 71.18115 17 955.6 0.006 0.08 -0.06
B M = 100 kN m 6.59123 17 880.2 0.051 0.72 -0.48
C Fv = 100 kN 11.6534 17 998.4 -0.024 0.26 0.18
D M = 100 kN m 25.3627 17 954.7 0.004 0.01 -0.07

Fv = 100 kN
q = 10 kN /m

E M = 100 kN m 3.7427 17 992.2 -0.07 0.98 0.14

Table 5.3: Results of the various examples in figure 5.19

5.3. Comparison of method 1 and method 2
In the previous two sections, two method’s are proposed in order to derive the critical global buckling load
Fcr . The first method, based on Euler’s derivation, gives good results and is compatible with the spring model
as soil-interaction model. However, this model is not always used as soil-structure interaction model and
thus it is not always possible to define Fcr with this model. For other soil interaction models, the second
proposed method might be an outcome. However, the correctness of this method has only be confirmed for
quite simple structures, not for sheet piles. This section compare both methods and will answer the question
if the second method may be used for steel sheet piles.

Figure 5.20 shows an adaption of figure 5.1 to schematise a sheet pile more realistic, but the reduction of the
soil stiffness k is still neglected in this example. This is done such that the method based on Euler’s derivation
does not approach the value of Fcr

8, but calculates the value exactly. The soil stiffness is modelled as a spring
support with a variable full elastic spring stiffness , the anchor is modelled as a spring with a stiffness of 42
000 kN /m/m. Results are given table 5.4 for three sets of parameters. The data used for the second method,

8The first method based on Euler’s derivation uses at some places lower values for the soil stiffness as actual present. This gives that the
value of Fcr is not determined exactly but approached if the variability of the soil stiffness is taken into account.
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where Fcr is based on calculated displacements, is given in appendix E.3.

Figure 5.20: Sheet pile lay-out to compare the theoretical method with the method based on displacements

While for parameter set 2 both methods give a similar result (differential of 1.6%), parameter set 1 gives a
large error of 17.3% where set 3 gives an even larger error of no less than 35.8%9. The critical global buckling
load derived by Euler’s method is known to be correct [16]. Therefor, the value of Fcr can be trusted when it’s
derived by the first method. Apparently, the second proposed method which uses displacements to find Fcr

results in wrong numbers for sheet piles.

Parameter L1 (m) L2 (m) E I k Fcr based on δ correction Fcr based on
set (kN m2) (kN /m/m2) displacements factor for displa- Euler’s

(kN) cement method theory (kN)
1 5 5 79 380 1 000 9 720 -0.745 8 285
2 5 5 79 380 12 000 24 372 -0.350 23 985
3 5 10 79 380 1 000 11 267 -0.474 8 295

Table 5.4: Results of both methods for different parameter sets

For the example in section 5.2 the value for Fcr based on displacements (method 2) approached the exact
value of Fcr pretty well. This is in contrast with the discussed example in this section, which gave poor results.
Important difference is that both ends of the beam in the example of section 5.2 are fixed and can not move,

9Though the sheet pile with parameter set 3 is much more embedded in the soil, the critical global buckling force is hardly affected
compared to parameter set 1. Because the sheet pile gets longer, the steel resists less against global buckling in set 3 than in set 1.
Because more soil must be displaced, the soil resists more against global buckling in set 3 than in set 1. Apparently, the reduction in
steel resistance is more or less equals the raise in soil resistance against buckling when the parameter L2 is raised from 5 m to 10 m.
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while both pile tips in the example of this section can move. The top of the pile, at the anchor, is fixed by
a stiff spring. Displacement of this anchor requires a large force, therefor the pile top is more or less fixed.
The bottom half of the pile is supported by the elastic support of the soil. If this support is stiff, the pile is
less able to move than when this support is weak. In the three parameter sets worked out in table 5.4, two
parameter sets have a weak support of the soil (k=1 000 kN /m/m2) and one set has an stiff support (k=12
000 kN /m/m2). For the stiff support, where the pile is less able to move, the error of the found value of Fcr

was limited (1.6%). For the other two parameter sets, with a weak support, the pile is able to move easily.
Both sets gave large errors of the calculated value for Fcr . Apparently, the method to determine Fcr with the
displacement becomes invalid when the structure can move quite easily. Because a sheet pile is non-fixed at
the pile tip, the pile is able to move and thus the second method described in section 5.2 is not valid for sheet
piles.

5.4. Proposed method compared with the Eurocode method
The proposed method, method 1, will approach the actual critical global buckling load better compared to
the current method of the Eurocode, which is neglecting the soil resistance. Unfortunately, it is not possible to
make a comparison of both method’s for sheet piles in general. The critical global buckling load is dependent
to too much parameters (soil parameters, type of sheet pile, anchor, lay-out etc.) to make a comparison valid
for all sheet piles. Though, to compare both method’s, an example is analysed by both method’s. The lay-out
of the example is given in figure 5.21, the properties of the soil and structural elements are given in table 5.5.

Figure 5.21: Lay-out of the example for comparison method of the proposed with the current method
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Property Value Unit
Sand Unsaturated unit weight sand 18 kN /m3

Saturated unit weight sand 18 kN /m3

Cohesion 0 kN /m2

Friction angle φ 30 °
Delta friction angle δ 20 °
Spring stiffness k1 12 000 kN /m3

Spring stiffness k2 3 270 kN /m3

Spring stiffness k3 1 000 kN /m3

Structure lay-out Level sheet pile tip -11 m
Level excavation -5 m
Original surface level 0 m
Water level left side -6 m
Water level left side -1 m

Sheet pile Profile AZ12-700
Bending stiffness E I 18 880 kN m2/m
Section modulus w 1 205 cm3/m
Yield strength 240 N /mm2

Bending moment capacity MRd 289 kN m
Normal force capacity NRd 2 952 kN

Anchor Level at sheet pile -1 m
Axial stiffness E A 840 000 kN /m
Length 10 m
Angle 45 °
Horizontal anchor stiffness kanchor 42 000 kN /m/m

Table 5.5: Soil and material properties of the structure given in figure 5.21

The sheet pile should satisfy condition 5.13, where the u.c. (unity check) should be less than 1 for a safe
design. The example has been modelled with D-sheet piling (software), which gave an first order bending
moment ME d of 146.4 kN m.

Because it’s assumed that the normal force will be introduced at the top of the pile, the critical buckling length
is set to 11 m. The value for Fcr according to the current design practice would be 3 234 kN . This critical global
buckling load results in a value of 0.49 for the reduction factor χ̄b .

Based on the initial horizontal soil pressure determined by D-sheet piling, the available soil stiffness against
the global buckling mechanism have been derived. Based on the available soil stiffness, the structural model
given in figure 5.22 is used for the sheet pile. For the first meter below the soil surface, it appeared that no soil
stiffness was left to resist against buckling. This model was analysed with Diana FEA, which returns a value
for Fcr of 6 507 kN , twice the value found with the current method. This value results in a reduction factor χ̄b

of 0.66.

NE d < 0.04∗Fcr :u.c. = NE d

NRd
+ ME d

MRd

NE d > 0.04∗Fcr :u.c. = NE d

χ̄b NRd
+1.15

ME d

MRd

(5.13)

Based on the known data, equation 5.13 can be filled in. Based on the critical buckling load with the method
from the Eurocode (Fcr = 3 234 kN ), equation 5.14 returns. With the critical load found with the proposed
method (Fcr = 6 507 kN ), equation 5.15 is found. Both equations are plotted in figure 5.23, where it is visible
that the proposed method results in lower unity checks than the current method from the Eurocode. Most
significant profit of the new method is that the unfavourable check on global buckling is required from a
higher normal force (from 260 kN instead of 129 kN ). The higher reduction factor χ̄b of the proposed method
results in a slightly lower development of the unity check compared to the current method.
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Figure 5.22: Structural model to determine Fcr for the sheet pile of figure 5.21

NE d < 129kN :u.c. = NE d

2952
+ 146.4

289

NE d > 129kN :u.c. = NE d

0.49∗2952
+1.15

146.4

289

(5.14)

NE d < 260kN :u.c. = NE d

2952
+ 146.4

289

NE d > 260kN :u.c. = NE d

0.66∗2952
+1.15

146.4

289

(5.15)

Section 3.2 treated the background of the factor 1.15 in equation 5.13. It stated that the factor (ky y =)1.15 may
be neglected if the second order effect to the bending moment ME d is taken into account. With this given
equation 5.15 can be rewritten to equation 5.16, where M I I

E d is the bending moment including second order
effects.

NE d < 260kN :u.c. = NE d

2952
+ 146.4

289

NE d > 260kN :u.c. = NE d

0.66∗2952
+ M I I

E d

289

(5.16)

The example above used D-sheet piling to analyse the soil-structure model, but this program is only limited
able to take second order effects into account. Appendix G describes how D-sheet piling can take the second
order effects into account. This has been done for the above example for 15 values of the normal force (100 to
1 500 kN ), which were all modelled from the sheet pile top to the tip. Figure 5.24 represents the outcome of
the current method by the Eurocode (equations 5.14 and 5.15) and method using the second order bending
moment (equation 5.16). From figure 5.23 it was already concluded that the proposed method to determine
Fcr resulted in a much more favourable unity check compared with the method described by the Eurocode.
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Figure 5.23: Plots of equations 5.14 and 5.15

From figure 5.24 it comes clear that when the factor 1.15 is replaced by taking the second order effects into
account, the unity check becomes even more favourable for low values for the normal force NE d . For normal
forces higher than 1 200 kN , taking the second order effects into account resulted in less favourable unity
checks. This can explained by the fact that from about 1 120 kN the second order effects to ME d are more
than 15%, while in the current check this is set constant to 15% independent from NE d .

Figure 5.24: Plots of equations 5.13, 5.15 and 5.16
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5.5. Conclusions to the determination of Fcr for sheet piles
This chapter proposed two methods to take the influence of the soil into account in the determination of the
critical global buckling load. The first method, based on the Eulerian global buckling theory, is an analytical
method which can be used to approach the value of Fcr for sheet piles if and only if the spring model is used
to model the soil-structure interaction. Because the soil stiffness may decrease when the displacement of the
soil grows, the soil stiffness must be underestimated at some places along the sheet pile such that the value
of Fcr can only be approached.
Because the requirement to use the spring model is restrictive for the first described method to use, a second
method is proposed. This method approaches the value of Fcr by the usage of the relation between the nor-
mal force and the first and second order displacements. Though quite good results were found for non-sheet
piling structures with fixed boundaries, the method proved to be invalid for sheet piling structures and must
therefor be rejected. The invalidity of this method seems to have an origin because the bottom tip of the sheet
pile is able to move and is not fixed.

Lastly, an example is presented where the first method is used to determine the value of Fcr . On the top of
that, the value of 1.15 in the current check on global buckling is removed as well in this example. Both im-
provements results in a significant reduction of the unity check. However, for higher values of the normal
force, the second order effect to the bending moment starts to be significant. Though the value of 1.15 is
removed, bending moment must be increased with a factor in the same or even higher order because the
second order effect becomes large. Therefor, for the higher normal forces, only the better approached value
of Fcr leads to an reduction of the unity check.

To conclude, the influence of the soil to the value of Fcr can be only be approached if and only if the spring
model is used to model the interaction between the soil and the structure. Because this is not always the case,
chapter 6 discusses alternatives to determine the effects of the global buckling mechanisms in sheet piles.



6
Effect of geometrical imperfections to the

soil-structure interaction calculation
model

The previous chapters have focused on the determination of the critical global buckling load Fcr of sheet
piles. In itself, the value of Fcr is no point of interest, but it is used to determine the effect of the global buck-
ling mechanism or the second order effects to the displacements or possible geometrical imperfections in
sheet piles. The relation between the critical global buckling load and the second order effects is discussed in
sections 3.1.1 to 3.1.3. The second order effects due to displacements caused by loading can be determined
relatively simple by the use of software. This is done in section 6.1 in an attempt to describe the effects of
the subsoil to the global buckling mechanism in sheet piles. Section 6.2 discusses the effect of possible geo-
metrical imperfections in the pile. In the current method stated by the Eurocode the critical global buckling
load is of importance in order to determine those effects. Section 6.2 will discuss alternative approaches to
determine those effects. An important approach is to model the sheet pile with geometrical imperfections in
the soil-structure interaction model. This approach has been introduced in section 3.2.2. The finite element
software package Plaxis 2D is able to model a sheet pile with an imperfection. Figure 6.1 gives an example
of an large imperfection 1. Besides, the program is able to calculate second order effects 2. So in principle,
when Plaxis 2D is used for the design of the sheet pile, the method described in section 3.2.2 can be applied.
Therefor, this software is used to evaluate the given examples. Additionally, a fourth method is described,
which is a pragmatic approach of the effects of the global buckling mechanism.
This chapter introduces two method’s to determine the global buckling mechanism of geometrical imperfec-
tions. Section 6.3 compares this two method’s with the method by the Eurocode currently used.

Figure 6.1: Extreme imperfection modelled in Plaxis 2D

1Imperfection in the middle of the 8 m long sheet pile is set to 0.5 m (12,5%) in order to make the imperfection visible in the figure.
2To calculate second order effects with Plaxis 2D, the option Updated Mesh should be opt on in the settings of the calculation.

71
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6.1. Discussion of the global buckling mechanism in sheet piles
The effect of the soil resistance against the second order effects is defined using two examples. The first
example in figure 6.2a consist of a sheet pile structure which is fully surrounded by a sand soil layer with a
water table one meter below the surface. More data to the sheet pile, the subsoil and model data is given in
appendix H. Based by the application of an additional vertical or normal force Ftop at top of the sheet pile,
the second order effects could be determined. The structure has been analysed by Plaxis 2D, which requires
that a vertical support is added at the tip of the sheet pile. This must be done because the tip resistance of the
sheet pile is not calculated correctly by Plaxis [14] [20].
At first, the sheet pile and anchor are loaded by and only by the soil and water pressure resulting in the de-
flection of figure 6.2b. Based to this load scheme, the maximal initial displacement and bending moment in
the sheet pile are respectively 63 mm and 164.9 kN m. The top of the pile, where the additional normal force
is introduced, displaces with 45.58 mm.

(a) Lay-out (b) Shape of displacement

Figure 6.2: Lay-out and displacement shape of sheet pile example in sand soil layer

The additional normal force Ftop will increase the bending moment in the deformed sheet pile causing the
second order effects. To determine which part of the maximal bending moment is caused by this normal
force, the horizontal distance between this normal force and the cross section with the maximal bending mo-
ment should be known, After all, the bending moment caused by the normal force equals Ftop × w . This
distance is given in figure 6.3 as wdifferential, which might be in the first order (neglecting the influence of the
normal force) or in the second order (taking the influence of the normal force into account). For the structure
of figure 6.2a the first order differential displacement wI

differential between the normal force and the maximal
bending moment equals 16.60 mm.
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Figure 6.3: Differential displacement between the normal force and maximal displacement

The sheet pile structure of figure 6.2a has been loaded by an additional normal force Ftop in the model. The
model has been analysed for several values of Ftop , the results are given in table 6.1. For reference, the results
are discussed for a normal force Ftop of 100 kN .
Though the displacements are increasing due to Ftop , the second order differential displacement wI I

differential
between the normal force and the maximal bending reduces with (a negligible) 0.04 mm to 16.56 mm. This
means that 1.6 kN m of the maximal bending moment is caused by the normal force Ftop . However, the
maximal bending moment only increases with 0.7 kN m, which means that the bending moment caused by
other loads than the normal force (the soil pressure, water pressure and the anchor force) decreases with 0.9
kN m. Clearly, those forces are affected by the normal force. This effect must be explained by the soil struc-
ture interaction. The normal force causes an extra displacement of the pile and the soil, which results in an
increase or decrease in the soil pressure and a disturbance of the force balance. Because the forces must be in
equilibrium, the anchor force is affected as well by this redistribution of forces and thus by the normal force.
This redistribution of the forces results in another value of the maximal bending moment caused by the soil
pressure and the anchor force. In this example, the redistribution resulted in a decrease of 0.9 kN m for ME d

For 18 more values of Ftop results are given in table 6.1. This table gives the values for the first and second
order differential displacement between the force Ftop and the maximal bending moment. Based on this
displacements, the bending moment caused by the normal force can be determined, based to the first order
(d M I ) or the second order (d M I I ) differential displacement. The total value of the maximal bending mo-
ment including second order effects is given by ME d . The increment of ME d with respect to the load scheme
without Ftop is expressed as d ME d .
The data shows a few trends, of which the most remarkable is that the second order differential displacement
w I I

di f f er enti al hardly changes or even decreases (negligible) for low normal forces. wdi f f er enti al is defined as

the difference between the displacement of Ftop and the maximal bending moment. Clearly, the displace-
ment of Ftop grows more than the displacement at the maximal bending moment for normal forces until 300
kN . As a result, the second order differential displacement is negligible less than the first order differential
displacement.
Due to the displacements, it should be expected that the maximal bending moment grows by the introduc-
tion of the normal force. The part of the maximal bending moment caused by the normal force is given by
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d M I I (Ftop × wI I
differential), this should be added to the bending moment ME d without second order effects

(= 164.9 kN m) in table 6.1. However, it’s observed in table 6.1 that the growth of the maximal bending mo-
ment is always less than the bending moment d M I I caused by the normal force. In fact, for normal forces
until 1 000 kN the bending moment growth is even less than what might be expected based on the first or-
der differential displacement (d M I ). This can be explained by the soil-structure interaction discussed before.

Ftop (kN) wI
differential (mm) d M I (kNm) wI I

differential (mm) d M I I (kNm) ME d (kNm) d ME d (kNm)
0 16.60 0 16.60 0 164.9 0
100 16.60 1.66 16.56 1.66 165.6 0.7
200 16.60 3.32 16.55 3.31 166.5 1.6
300 16.60 4.98 16.57 4.97 167.5 2.6
400 16.60 6.64 16.61 6.64 168.6 3.7
500 16.60 8.30 16.67 8.37 169.8 4.9
600 16.60 9.96 16.98 10.19 172.1 7.2
700 16.60 11.62 17.20 12.04 173.9 9.0
800 16.60 13.28 17.32 13.86 175.3 10.4
900 16.60 14.94 17.60 15.84 177.3 12.4
1 000 16.60 16.60 17.85 17.85 179.3 14.4
1 100 16.60 18.26 19.51 21.46 186.8 21.9
1 200 16.60 19.92 19.47 23.36 187.4 22.5
1 300 16.60 21.58 19.48 25.33 188.3 23.5
1 400 16.60 23.24 19.56 27.38 189.6 24.5
1 500 16.60 24.90 19.88 29.82 191.9 26.5
1 600 16.60 26.56 21.82 34.91 200.5 35.6
1 700 16.60 28.22 21.76 37.00 201.0 36.1
1 800 16.60 29.88 21.80 39.24 202.0 37.1
1 900 16.60 31.54 22.03 41.86 203.9 38.9
2 000 16.60 33.20 22.37 46.51 206.1 41.2

Table 6.1: Data on the sheet pile structure of figure 6.2a in a sand soil layer

The same analysis has been done again with the same structure, but this time a thick clay layer is present at
the top of the soil profile (figure 6.4a). Results are given in table 6.2. In this case, other trends can be described
compared with the previous example.
Though the second order differential displacement is strictly increasing for all normal loads, the absolute
value is very small (in the order of millimetres). In figure 6.4b it becomes clear why this value is so small. A
small differential displacement between the normal force on top of the sheet pile and the maximal bending
moment would mean that the bending moment caused by the normal force is small to negligible. This is
verified by table 6.2 (see the values for d M I I ), but it is also found that the total maximal bending moment
ME d grows significantly (see the values for d ME d ). This means that the maximal bending moment caused
by the soil pressure, water pressure and the anchor force is growing due to the normal force. This in contrast
with the previous example, where the maximal bending moment caused by this forces is decreasing.
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(a) Lay-out (b) Shape of displacement

Figure 6.4: Lay-out and displacement shape of sheet pile example in sand-clay mixed soil profile

Ftop (kN) wI
differential (mm) d M I (kNm) wI I

differential (mm) d M I I (kNm) ME d (kNm) d ME d (kNm)
0 2.99 0 2.99 0 211.3 0
100 2.99 0.30 3.05 0.30 212.6 1.3
200 2.99 0.60 3.16 0.63 214.2 2.9
300 2.99 0.90 3.32 0.99 215.9 4.6
400 2.99 1.20 3.86 1.54 219.3 8.0
500 2.99 1.49 4.01 2.00 220.9 9.6
600 2.99 1.79 5.08 3.05 226.1 14.8
700 2.99 2.09 5.22 3.66 227.7 16.4
800 2.99 2.39 5.43 4.34 229.6 18.3
900 2.99 2.69 6.89 6.20 236.1 24.8
1 000 2.99 2.99 7.07 7.07 237.8 26.5

Table 6.2: Data on the sheet pile structure of figure 6.4 in a clay soil layer

The two examples discussed have different behaviour when it comes to the second order effects. The second
order displacement is easy to determine using Plaxis 2D. The theory of the global buckling mechanism learns
that the increment of the bending moment at a certain cross section should equal the product of the normal
force and the second order displacement at that specific cross section. However, based on the above two
examples, it is learned that this is not valid for sheet piles. For the first example, the maximal bending moment
increased less strongly than what should be expected according to the global buckling theory. However, for
the second example it was found that the increase of the maximal bending moment was more than what
might be expected. The interaction between the structure and the soil could be held responsible for these
results. This makes it hard to describe the qualitative effects of the global buckling mechanism in sheet piles.
Only thing what could be said on the qualitative effect of global buckling in sheet piles is that the maximal
displacement and bending moment of the sheet pile will grow due to an extra normal force. But both are
very dependent to the lay-out of the soil, the structural properties of the structure, the soil and the hydraulic
conditions (water pressure etc.).
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6.2. Second order effects due to geometrical imperfections
For displacements caused by loads or soil/water pressures to the structure, the second order effects could
simply be determined by the use of the FE-software like Plaxis 2D. For displacements caused by geometrical
imperfections, this is not so simple because the software does not take the imperfections into account, let
alone the second order effects to those imperfections. The current method stated by the Eurocode to take
imperfections into account uses the critical global buckling load Fcr . The critical load Fcr and the critical
buckling shape are both based on elastic stiffnesses of the materials. Because the stiffness of the soil is all but
elastic, it is practically impossible to determine the effect of the soil to the the elastic buckling shape. When
the spring model is used to model the soil-structure interaction, the soil is semi-linear and thus a linear elas-
tic value for Fcr can be determined, see chapter 5. In the soil models used for FE-software, this is not possible,
and thus the soil resistance to Fcr cannot be determined. This section presents two different approaches to
determine the second order effects of the possible geometrical imperfections. To give a clear line through this
document, those two approaches are named method 3 and 4, after methods 1 and 2 are already discussed in
the previous chapter.

The first approach, discussed in section 6.2.1, is based on the theory in section 3.2.2, which states that the
second order effects of geometrical imperfections are approached by modelling those imperfections into the
soil-structure model. However, this is easier said than done. Though the maximal first order displacement
caused by the imperfections is known by a generalised number it is not clear where this displacement will
occur. It is given by the Eurocode that the displacements will occur in the shape of the elastic buckling mode
[19], which is discussed in chapter 3. Because this buckling shape is unknown, one of the shapes of figure 6.5
should be used.
The second approach is from a new, yet to be published, version of the POVM 3. This method is discussed in
section 6.2.2 and gives a simplified approach to determine the bending moment caused by the normal force
and the geometrical imperfection. It should be clear that this method is developed by the author’s of the
POVM [25], This thesis compares both proposed method’s.

(a) Buckling mode for a free supported sheet pile (b) Buckling mode for a fixed supported sheet pile

Figure 6.5: Buckling shapes as defined by Eurocode 3 part 5 (NEN-en 1993-5)

6.2.1. Method 3: Second order effects to imperfections determined by geometrical im-
perfections in the model

This method is based on the fact that geometrical imperfections can be introduced to the sheet pile in a
soil-structure interaction model. With one of the buckling shapes of figure 6.5 the shape of the geometrical
imperfections can be assumed. This method is discussed by the use of the two examples treated in section 6.1.

3Project Overstijgende Verkenning Macrostabileit, discussed earlier in chapter 2
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In both examples of section 6.1 the main part of the normal force is introduced at the top of the sheet pile
by Ftop . Therefor, geometrical imperfections are modelled over the full length of the sheet pile. The length
of the piles are in both examples 12 m. For sheet piles, the Eurocode demands a maximal initial geometrical
imperfection e0 of L/150 [19]. This gives that the maximal geometrical imperfection equals 0.08 m, where the
shape of the imperfection is given 6.6a according to figure 6.5b. Though Plaxis is able to model geometrical
imperfections in a sheet pile, there are two drawbacks. The first drawback is that the imperfections must be
modelled point by point, each with it’s own coordinate in the model. This makes modelling the sheet pile a
manual and labour intensive task. Second drawback is that the coordinates can be as precise as centimetres.
So if, for instance, an imperfection equals 45 mm, it should be rounded to either 40 or 50 mm, an error of
11.1%. These two drawbacks make it impossible to model the shape of the geometrical imperfections exactly.
Therefor, this shape must be approached. For the two examples, this approach is presented in figure 6.6b.

(a) Shape of the initial imperfection of the sheet pile (b) Shape of the initial imperfection and the Plaxis 2D model
of the sheet pile

Figure 6.6: Imperfection in a sheet pile (not to scale)

The sheet pile structure from figure 6.2a has been analysed again, but this time including the initial geomet-
rical imperfection as given in figure 6.6b. Table 6.3 gives the maximal bending moment and as a reference,
the maximal bending moment for the sheet pile without geometrical imperfections is given as well. The dif-
ference between this two values (fourth column) can be seen as the influence of the imperfection to the total
bending moment. By the current method stated by the Eurocode, this extra bending moment is taken into
account by applying the reduction factor χ̄b to the normal force capacity. When geometrical imperfections
are modelled into the soil-structure interaction model, this reduction factor is no longer necessary.

The buckling shape used to model the geometrical imperfections in the model is known to be incorrect. How-
ever, the geometrical imperfections are modelled in order to determine the effect of those imperfections to
the bending moment due to the second order effect. The larger the geometrical imperfection at a cross sec-
tion, the larger the extra bending moment at that section. If the largest imperfection is at the cross section
with the maximal bending moment, the maximal possible bending moment will be found. In this example,
the maximal bending moment is at 4.3 m below the top of the sheet pile, while the maximal imperfection (80
mm) is between 4 and 5 m below the top. It should be expected that the modelled geometrical imperfection
shape has a maximal effect to the maximal bending moment. Also the other buckling shape, of figure 6.5a,
has been modelled as an imperfection shape as well in Plaxis. In this case, the maximal geometrical imperfec-
tion is not at the maximal bending moment. It was found that all maximal bending moments, for each value
of Ftop , were less than those found with the geometrical imperfection shape of figure 6.5b. So out of the two
buckling shapes in figure 6.5, the shape of figure 6.5b leads to the highest values of the bending moment ME d .

The imperfection shapes of figure 6.5 are also modelled to the second example of the previous section. Re-
sults of this model with the imperfection shape of figure 6.5b are given in table 6.4. Also for this example
the assumed imperfection shape is likely to be wrong, but again the largest imperfection is at the same cross
section where the maximal bending moment is present, creating the largest possible negative effect for the
maximal bending moment. For the other imperfection shape in figure 6.5 the model has been analysed as
well. With this shape, the maximal bending moment is not at the largest geometrical imperfection and less
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Ftop ME d without ME d with Difference (kN m)
imperfections (kN m) imperfections (kN m)

0 164.9 166.1 -1.2
100 165.6 174.2 -8.6
200 166.5 177.2 -10.7
300 167.5 189.5 -22.0
400 168.6 195.0 -26.4
500 169.8 205.4 -35.6
600 172.1 213.8 -41.7
700 173.9 219.5 -45.6
800 175.3 231.7 -56.4
900 177.3 240.3 -63.0
1 000 179.3 251.6 -72.3
1 100 186.8 263.1 -76.3
1 200 187.4 267.0 -79.6
1 300 188.3 285.8 -97.5
1 400 189.6 300.2 -110.6
1 500 191.6 313.9 -122.3
1 600 200.5 328.6 -128.1
1 700 201.0 342.5 -141.5
1 800 202.0 358.5 -156.5
1 900 203.9 375.9 -172.0
2 000 206.1 394.0 -187.9

Table 6.3: Bending moments caused by the geometrical imperfections for the example in figure 6.2a

than found with the other imperfection shape. Though it might not be the correct shape, the imperfection
shape used for the results of table 6.4 seems to deliver the maximal possible bending moment in the sheet pile.

Ftop ME d without ME d with Difference (kN m)
imperfections (kN m) imperfections (kN m)

0 211.3 213.8 -2.5
100 212.6 220.1 -7.5
200 214.2 230.8 -16.6
300 215.9 240.8 -24.9
400 219.3 247.5 -28.3
500 220.9 261.1 -40.2
600 226.1 272.4 -46.3
700 227.7 279.9 -52.2
800 229.6 296.6 -67.0
900 236.1 309.0 -72.1
1 000 237.8 324.1 -86.3
1 100 240.0 339.5 -99.5
1 200 247.3 355.0 -107.7
1 300 249.1 370.9 -121.8
1 400 251.7 390.3 -138.6
1 500 260.3 408.6 -148.3

Table 6.4: Bending moments caused by the imperfections for the example in figure 6.4a
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6.2.2. Method 4: simplified approach of the POVM
It is clear that it is hard, maybe impossible, to predict the exact effect of imperfections to the sheet pile. The
current global buckling check is based on the fact that the normal force introduces, due to the imperfec-
tions, an additional bending moment in the sheet pile. Because the shape of the imperfections is unknown,
it is impossible to determine where this additional bending moment is maximal. For simplicity, the maximal
bending moment caused by the normal force and imperfections should be added to the maximal bending
moment caused by the soil and water pressure and the anchor force. This is done with the current global
buckling check of the Eurocode by the reduction factor χb , as can be seen in the derivations given in chapter
3, and is the starting point of this method.

The above has led to a pragmatic method for normal forces NE d below 20% of Fcr , derived for the develop-
ment of the POVM [25]. In this method it is proposed to increase the bending moment by the product of the
maximal normal force in the sheet pile and the maximal first order geometrical imperfection, which equals
e0*NE d . This method ’forgets’ that this initial imperfection e0 and thus the additional bending moment will
increase due to the normal force. To review this error, this method is applied for the first example in sec-
tion 6.1. This example have been modelled with imperfections, which means that the actual effect of the
imperfections are embedded in the result. Using the analysis of the examples where imperfections were not
included, the new method of the POVM could be used as well. By comparing both method’s, it is possible to
check the validity of the method described by the POVM [25]. This comparison is made in table 6.5, where an
e0 of 0.08 m is used for equation 6.1.

ME d = ME d ,model +ME d ,addi t i onal = ME d ,model +e0 ∗NE d (6.1)

Ftop ME d with ME d with Difference (kN m)
POVM method (kN m) imperfections in

the model (kN m)
0 164.9 166.1 1.2
100 165.6 + Ftop *0.08 = 173.6 174.2 0.6
200 166.5 + Ftop *0.08 = 182.5 177.2 -5.3
300 167.5 + Ftop *0.08 = 191.5 189.5 -2.0
400 168.6 + Ftop *0.08 = 200.6 195.0 -5.6
500 169.8 + Ftop *0.08 = 209.8 205.4 -4.4
600 172.1 + Ftop *0.08 = 220.1 213.8 -6.3
700 173.9 + Ftop *0.08 = 229.9 219.5 -10.4
800 175.3 + Ftop *0.08 = 239.3 231.7 -7.6
900 177.3 + Ftop *0.08 = 249.3 240.3 -9.0
1 000 179.3 + Ftop *0.08 = 259.3 251.6 -7.7
1 100 186.8 + Ftop *0.08 = 274.8 263.1 -11.7
1 200 187.4 + Ftop *0.08 = 283.4 267.0 -16.4
1 300 188.3 + Ftop *0.08 = 292.3 285.8 -6.5
1 400 189.6 + Ftop *0.08 = 301.6 300.2 -1.4
1 500 191.6 + Ftop *0.08 = 311.6 313.9 2.3
1 600 200.5 + Ftop *0.08 = 328.5 328.6 0.1
1 700 201.0 + Ftop *0.08 = 337.0 342.5 5.5
1 800 202.0 + Ftop *0.08 = 346.0 358.5 12.5
1 900 203.9 + Ftop *0.08 = 355.9 375.9 20.0
2 000 206.1 + Ftop *0.08 = 366.1 394.0 27.9

Table 6.5: Bending moments caused by the imperfections for the example in figure 6.2a, based on the POVM method (with Ftop ) and the
model including geometrical imperfections in the sheet pile

Though an underestimation is expected because second order effects are neglected, the POVM method over-
estimates the effect of imperfection to the maximal bending moment ME d for values of Ftop between 200
and 1 400 kN . Because the bending moment is larger than found with the model which takes imperfections
into account, this value can be used safely (though a bit conservative). For normal forces lower than 200 kN ,
the POVM method seems to be invalid, but an error has been made in the determination of the results given
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in table 6.5. Only the vertical force on top of the pile is taken into account, but both the skin friction as the
anchor force creates additional normal forces in the sheet pile as well. Figure 6.7 shows that the normal force
on top of the sheet pile has an arm of 0.08 m to the maximal imperfection, the arm of the vertical anchor force
Fanchor has an arm of 0.05 m, causing an additional bending moment. The vertical anchor force is between
75 and 80 kN , depending on the value of Ftop . If this force is taken into account for the POVM method, an
additional bending moment of 3.75 to 4.0 kN m should be taken into account. If this value is added to the
results of table 6.5, the POVM method is valid for vertical forces Ftop smaller than 1 600 kN .

Figure 6.7: Place of the normal forces Ftop and Fanchor with respect to the maximal imperfection

The normal force NE d is besides the external forces (Ftop ) and the vertical anchor force also affected by the
skin friction. This skin friction is fully neglected in the above, and still the POVM method proved to be valid.
In fact, it will be quite difficult to take the skin friction into account. Because the buckling and imperfection
shapes are not exactly known, the distance between the friction forces and the maximal imperfection are un-
known. Actually, this does also yield for the other forces (Ftop or Fanchor ) affecting the normal force. Though
the exact displacement is unknown, the maximum first order displacement of the imperfection is known by
the Eurocode (L/150). This value of the displacement could be used for all normal forces, no matter what the
actual distance to the maximal imperfection is. In the example of figure 6.7 this would mean that the anchor
force Fanchor should be multiplied by 0.08 m instead of 0.05 m. This does give an overestimation of the oc-
curring bending moment due to the vertical anchor force, but it does leads to a conservative and safe design.
This approach is stated by the POVM [25], which therefor replaces the global buckling check in the Eurocode
by the equation given in expression 6.2. For the value of NE d , the maximal value of the normal force in the
sheet pile should be taken.

NE d

χ̄b NRd
+1.15

M I
E d

MRd
−→ NE d

NRd
+ M I I

E d +e0NE d

MRd
(6.2)

Equation 6.2 is applied to the example given above, but this time the maximal normal force NE d is used
instead of Ftop . Results of this application are given in table 6.7. For every value of Ftop , 21 values in total,
the maximal bending moment according to the POVM method is given, followed by the bending moment
determined with method 3 in the previous section, where the geometrical imperfections are included in the
model. From this comparison, it can be seen that the POVM method starts to underestimate the maximal
bending moment from a normal force NE d of 1 802 kN . Therefor, for higher normal forces, the POVM method
is invalid.



6.2. Second order effects due to geometrical imperfections 81

Ftop Maximal ME d with ME d with Difference (kN m)
value POVM method (kN m) imperfections in
NE d the model (kN m)

0 107.8 164.9 + NE d *0.08 = 173.5 166.1 7.4
100 206.0 165.6 + NE d *0.08 = 182.1 174.2 7.9
200 304.5 166.5 + NE d *0.08 = 190.9 177.2 13.7
300 403.1 167.5 + NE d *0.08 = 199.8 189.5 10.3
400 501.9 168.6 + NE d *0.08 = 208.8 195.0 13.8
500 600.8 169.8 + NE d *0.08 = 217.9 205.4 12.5
600 701.2 172.1 + NE d *0.08 = 228.2 213.8 14.4
700 800.9 173.9 + NE d *0.08 = 238.0 219.5 18.5
800 900.1 175.3 + NE d *0.08 = 247.3 231.7 15.6
900 1 000.0 177.3 + NE d *0.08 = 257.3 240.3 17.0
1 000 1 100.0 179.3 + NE d *0.08 = 267.3 251.6 15.7
1 100 1 204.0 186.8 + NE d *0.08 = 283.1 263.1 20.0
1 200 1 302.0 187.4 + NE d *0.08 = 291.6 267.0 24.6
1 300 1 401.0 188.3 + NE d *0.08 = 300.4 285.8 14.6
1 400 1 499.0 189.6 + NE d *0.08 = 309.5 300.2 9.3
1 500 1 599.0 191.6 + NE d *0.08 = 319.5 313.9 5.6
1 600 1 704.0 200.5 + NE d *0.08 = 336.8 328.6 8.2
1 700 1 802.0 201.0 + NE d *0.08 = 345.2 342.5 2.7
1 800 1 900.0 202.0 + NE d *0.08 = 354.0 358.5 -4.5
1 900 2 000.0 203.9 + NE d *0.08 = 363.9 375.9 -12.0
2 000 2 099.0 206.1 + NE d *0.08 = 374.0 394.0 -20.0

Table 6.6: Bending moments caused by the imperfections for the example in figure 6.2a, based on the POVM method (with NE d ) and the
model including geometrical imperfections in the sheet pile

In section 6.1 two example are discussed, of which the first example is used to discuss the POVM method
above. For the second example, the POVM method is executed as well of which the results are given in table
6.7. Until a value of Ftop of 1 000 kN , the POVM method is valid. From this value, the maximal bending
moment is underestimated and the POVM method is no longer valid.

Ftop Maximal ME d with ME d with Difference (kN m)
value POVM method (kN m) imperfections in
NE d the model (kN m)

0 104.9 211.3 + NE d *0.08 = 219.7 213.8 5.9
100 204.8 212.6 + NE d *0.08 = 228.6 220.1 8.5
200 304.8 214.2 + NE d *0.08 = 238.6 230.8 7.8
300 404.9 215.9 + NE d *0.08 = 248.3 240.8 7.5
400 505.4 219.3 + NE d *0.08 = 259.7 247.5 12.2
500 605.2 220.9 + NE d *0.08 = 269.3 261.1 8.2
600 706.2 226.1 + NE d *0.08 = 282.6 272.4 10.2
700 806.1 227.7 + NE d *0.08 = 292.2 279.9 12.3
800 906.1 229.6 + NE d *0.08 = 302.1 296.6 5.5
900 1 007 236.1 + NE d *0.08 = 316.7 309.0 7.7
1 000 1 107 237.8 + NE d *0.08 = 326.4 324.1 2.3
1 100 1 207 240.0 + NE d *0.08 = 336.6 339.5 -2.9
1 200 1 308 247.3 + NE d *0.08 = 351.9 355.0 -3.1
1 300 1 408 249.1 + NE d *0.08 = 361.7 370.9 -9.2
1 400 1 508 251.7 + NE d *0.08 = 372.3 390.3 -18.0
1 500 1 609 260.3 + NE d *0.08 = 389.0 408.6 -19.4

Table 6.7: Bending moments caused by the imperfections for the example in figure 6.4a, based on the POVM method (with NE d ) and the
model including geometrical imperfections in the sheet pile
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6.3. Comparison of proposed method’s with current Eurocode method
In this chapter 3 method’s are proposed in order to increase the correctness of the global buckling check for
sheet piles, which is given in the left hand side of equation 6.2. The quantitative effect of this three method’s
is given below in figures for the two examples worked out in this chapter. Before this can be done, it must
be known what the value of the critical global buckling load Fcr is, based on the current method neglecting
the resistance of the soil. To determine this value, the critical buckling length should be estimated from the
displacement diagrams, given in figure 6.8. The example with the sand profile in figure 6.8a seems to have an
fixed toe, which would mean that the critical buckling length equals 70% of the sheet pile length. However,
the top of the sheet pile is not really fixed and displaces quite easily. Based on this boundary, the buckling
length is set to the full length of the sheet pile. The same has been done for the other example with a thick clay
layer in the soil profile, of which the displacement diagram is given in figure 6.8b. With both the structures
having an bending stiffness E I of 39 648 kN m2 and a length of 12 m, the critical global buckling load equals
2 717 kN .

(a) Fully sand profile (b) Mixed clay-sand profile

Figure 6.8: Displacements of both examples without a vertical force on top of the sheet pile

The first order bending moment for both examples are 164.9 kN m (sand soil profile) and 211.3 kN m (clay-
sand soil profile). With a value for Fcr of 2 717 kN , this leads to a diagram of the current unity check in
equation 6.3 for both examples as given in figure 6.9. The value 1.15 can be replaced in the global buckling
check when the second order effects to the bending moment M I

E d are determined, as in equation 6.4. Since

the bending moments M I I
E d are already determined in previous sections, the improved unity check can simply

be plotted against the current unity check. This plot is given in figure 6.9. For low normal forces, an significant
improvement can be observed. For the high normal forces, the second order effects are around the 15%, so
the removal of the factor 1.15 has a limited and unfavourable effect.

u.c. = NE d

χ̄b NRd
+1.15

M I
E d

MRd
(6.3)

u.c. = NE d

χ̄b NRd
+ M I I

E d

MRd
(6.4)
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(a) Fully sand profile (b) Mixed clay-sand profile

Figure 6.9: Unity check of the current check on global buckling and the improved check with the factor 1.15 replaced by M I I
E d

The proposed method where the imperfections are modelled in the soil-structure interaction model and the
method proposed by the POVM are compared as well with the current method. For those methods, the global
buckling effect is included in the bending moment. Therefor, equation 6.5 yields as an unity check for those
methods. With the data from the previous section, the unity checks could be plotted as in figure 6.10 for both
examples. From this figure it can be concluded that the method proposed by the POVM and the method
where imperfections were included give similar results for lower values of the normal force. Besides, both
method’s shows significant improvements compared to the current method. The POVM starts to underesti-
mate the unity check for high normal forces, which is because this method uses the first order geometrical
imperfection instead of the second order. This error is low to negligible for low normal forces, but becomes
significant for large normal forces.

u.c. = NE d

NRd
+ M I I

E d

MRd
(6.5)

(a) Fully sand profile (b) Mixed clay-sand profile

Figure 6.10: Unity check of the current check on global buckling compared with the method by modelling imperfections and the method
proposed by the POVM
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7
Discussion

The research done and models proposed for this thesis made some assumptions and gave some results to im-
prove the current global buckling check. The validity, relevance and limitations of the results are dependent
to the assumptions. Improvements to the current buckling check were found for the reduction factor χb and
the value of 1.15, see equation 7.1. For each proposed improvement, the validity, relevance and limitations
are discussed.

γM1
NE d

χb NRd
+γM1 ∗1.15

ME d

MRd
< 1 (7.1)

The global buckling reduction factor χb is introduced to the global buckling check in order to take the effects
of geometrical imperfections into account. An important parameter to determine the reduction factor χb is
the critical global buckling load Fcr , which is the focus of chapter 5, proposing two models. Those models
were developed in an attempt to determine the influence of the soil resistance to Fcr to take the influence of
the soil to the global buckling mechanism into account. Though it appeared to be impossible to determine
the exact value for Fcr if the soil resistance is taken into account , the first proposed method gave a relatively
well approach after all. Several limitations come along with this method:

• The critical global buckling load Fcr can be approached if the spring model is used for the soil-structure
interaction. Unfortunately, this model is not always used. For other soil-structure interaction models,
no method’s are known to determine Fcr .

• Fcr is based on an assumed constant elastic soil stiffness. Once the value of Fcr is known, it should be
verified if the assumed soil stiffness does not decrease due to the global buckling mechanism. If the soil
stiffness does decrease, Fcr should be re-calculated, this time with a lower soil stiffness. The verification
of the soil stiffness must be done with great care because an error is made easily.

• Because the spring stiffness must be assumed and may be underestimated, it is only possible to ap-
proach the value of Fcr , not to determine the value exactly. Because the approach will lead to an un-
derestimation of the critical global buckling load, it will be a safe side approach.

• Finally, Fcr is used to determine the value of reduction factor χb in order to take the effects of geometri-
cal imperfections into account. Unfortunately, this determination requires a constant normal force in
the structural element and thus in the sheet pile. However, the normal force in a sheet pile is not con-
stant by principle because of the soil-structure friction and the anchor force, which are not introduced
at the top of the sheet pile. In order to use the reduction factor χb safely, the maximum normal force in
the sheet pile could be used. This will lead to an overestimation of the global buckling mechanism due
to geometrical imperfections, but it will give a safe design of the sheet pile.

Because the first method is only applicable if the spring model is used, a second method was derived which
was based on first and second order displacements. This method would be usable for all soil-structure in-
teraction models. However, though relatively good results were found for non-sheet piling structures, the
second method proved to be invalid for sheet piling structures. Based on a comparison with the first analyt-
ical method based on example calculations for a sheet piling structure, the second numerical method gave
quite pore results and gave errors up to 35.8%. This error seems to be caused by the fact that the bottom tip
of the pile is able to move. It was noticed that the more the tip was able to move due to lower soil stiffnesses,
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the larger the error made by the numerical method becomes.

Because Fcr can only be approached if the spring model is used, other method’s are derived to determine the
global buckling effects caused by geometrical imperfections, discussed in chapter 6. In the third method the
geometrical imperfections are modelled into design software for sheet piles. In contrast to the first proposed
method, this method is able to take into account that the normal force is not constant in the sheet pile. How-
ever, also for this model, some limitations are present:

• Not all software is able to model a sheet pile including the geometrical imperfections. Therefor, it de-
pends to the software used if this method is applicable or not. Typically, FE-software packages are able
to model imperfections, less advanced software is not. Software available for the spring model as soil-
structure interaction model is not able to model those imperfections. Therefor, the third method can
not be used to describe the global buckling mechanism if the spring model is used.

• Unknown in the third method is the shape which should be used to model the geometrical imper-
fections. As discussed, this shape should be the same shape of the elastic buckling shape, but this is
unknown. Therefor, a shape of the imperfections should be assumed which will lead to errors. How-
ever, as discussed, those errors will result in an overestimation, and therefor this method could be used
safely.

The above approach has been simplified by a new approach included in the POVM, the fourth method. This
approach can be used independent to which model has been used to model the soil-structure interaction.
This method is a good approach which has been proven by the third method discussed. But again, also to this
method are some limitations:

• For larger normal forces, the method becomes to be invalid. It is not really known what the maximal
normal force is for which this method can be used. The POVM, where this method is come from, states
that the method is valid until normal forces of about 20% of Fcr , where Fcr could be determined using
the current method by the Eurocode neglecting the sub-soil. This is a somewhat vague boundary, not
in the last place because the soil resistance to the critical global buckling load Fcr is neglected. More
research to this boundary value might give a clear boundary.

• The prove of this method is based on two examples in this thesis, which is only a thin prove which
should be strengthened with a multiple of examples. However, this method has been derived for and
comes from the POVM. For this derivation, other examples has been worked out, but those are not yet
published and are therefor not used.

The growth of the displacements is not only affecting the sheet pile, it is affecting the soil pressure as well. This
gives that the loading to the sheet pile and a possible anchor force are changing as well due to the global buck-
ling mechanism, resulting in another value of the bending moment caused by the soil pressure and anchor
force. However, the existing global buckling equation with reduction factor χb does not take this influence of
the global buckling mechanism into account. Therefor, even though the influence of the soil is taken into ac-
count to determine Fcr , the method stated by the Eurocode ignores this soil-structure interaction. The POVM
method also ignores this soil-structure interaction, but for this method it has been proven that this neglect
leads to only a small error and may even overestimate the bending moment caused by the global buckling
mechanism.



8
Conclusions

The aim of this thesis is to investigate what the influence of the soil is to the global buckling mechanism
in steel sheet piles. If possible, improvements to the current global buckling check given below as stated in
the Eurocode, NEN-EN 1993-5, are proposed. Answers and possible improvements are found and discussed
below. Once all questions are answered, a small wrap up of the two main conclusions will be given. From the
answers, there are still a few questions left, which are treated by the recommendations.

NE d

χb NRd (γM0/γM1)
+1.15

ME d

MRd (γM0/γM1)
< 1 (8.1)

8.1. Conclusions
In order to define the influence of the soil to the global buckling mechanism, three questions are stated. First
of all, it is discussed what the background is of the global buckling mechanism. Secondly, how the current
check to global buckling can be improved by taking the soil resistance into account and lastly, the quantity of
those improvements are discussed.

What is the background of the current global buckling check for steel sheet piles?
The global buckling mechanism occurs if a normal force is applied to a sheet pile which is deformed. Due
to the normal displacement of the deformed pile, the normal force introduces a bending moment. This mo-
ment should be taken into account by the verification of the steel stress in the sheet pile. This is done by
the current check on global buckling as stated in equation 8.1. Two types of displacements occurs, to be the
displacement caused by loading to the pile and the displacement caused by geometrical imperfections. The
interaction between the normal force and the displacement caused by the loading is taking into account by a
factor ky y , which equals 1.15 in the current check for all steel sheet piling structures. For the bending moment
caused by the normal force due to the imperfections, the factor χb has been introduced, which is dependent
to the critical global buckling load Fcr . This load can be determined using Euler’s global buckling theory, with
the requirement that the materials in the structure have a linear elastic stiffness. Besides depending on Fcr ,
the value of χb depends to another factor as well. This factor is based on experiments and set to a constant
value. From those experiments, it was concluded that the global buckling mechanism does not occur if the
normal force falls below 4% of the value of Fcr . The unity check on global buckling should therefor not be
executed in this case.

What are possible improvements to the current global buckling check to take the influence of the soil
into account?
This thesis has reviewed the possibilities to take the influence of the soil to Fcr for steel sheet piles into ac-
count, but this appeared to be only limited possible. The problem is that Fcr can only be determined for
structures composed by materials with a linear elastic stiffness with linear stiffnesses. Steel can be modelled
with a linear elastic stiffness, the soil however has a behaviour which hardly can be described by a linear
stiffness. Nevertheless, a method has been found to approach the value of Fcr . The interaction between the
soil and the sheet pile must be modelled with a certain model, for which many models are available. Of the
existing models, only the spring model is able to model the soil with a (semi-)linear elastic stiffness. There-
for, if the spring model is used, the value of Fcr can be approached using Euler’s buckling theory. This thesis
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describes a method which leads to the value of the critical global buckling force Fcr for steel sheet piles, in-
cluding the influence of the soil. Unfortunately, there is one problem occurring which gives that the exact
value of Fcr can not be determined. According to the spring model, the soil stiffness is dependent to the dis-
placement of the soil. Consequently, the soil stiffness might decrease due to the extra displacement caused
by the global buckling mechanism. If this is likely to happen, the soil stiffness should be modelled with the
decreased value of the soil stiffness. This underestimation gives that the determined value of Fcr is only an
approach and underestimation of the actual critical global buckling load.
A significant note to this method is that the well known and much used critical buckling length is not a point
of interest. It will be quite difficult to determine the critical buckling length for steel sheet piles in the first
place, general equations for the length are not available. Besides, if the critical length is known, only the in-
fluence of the soil to the critical length is known, not the influence to the critical global buckling load Fcr . A
method using the critical buckling length would take much more time than the proposed method.

Several improvements can be made to the global buckling check stated by the Eurocode. One improvement
is that the reduction factor χb can be replaced by taking the effects of the geometrical imperfections into
account differently. This can be done by modelling a geometrical imperfect sheet pile into the calculation
model. Some software is able to analyse such models and can also determine the growth of displacements due
to the normal force. With this method, the effect of the global buckling mechanism initiated by geometrical
imperfections can simply be calculated by the soil-structure interaction models. If this is done, applying the
reduction factor χb to the normal force capacity would mean that the effects of the geometrical imperfections
are double taken into account. Therefor, χb does not have to be applied and more importantly, the value of
the critical global buckling load Fcr is no longer a point of interest.
The POVM, a Dutch design regulation for the design of dikes, gives an alternative, simplified approach. The
factor of χb tries to represent the bending moment which is introduced by the normal force due to geomet-
rical imperfections. In the POVM method, this bending moment is simply determined by the product of the
normal force acting in the sheet pile with the value of the maximal geometrical imperfection. This should
be added to the bending moment caused by the loading to the sheet pile. If this is done, the global buckling
mechanism caused by geometrical imperfections is taken into account. Because this method is still relatively
new, more prove is required before it can be used safely. However, for two worked out examples given in
chapter 6 this method proved to be valid for relatively small values of the normal force. Therefor, this method
is promising.

Above it has been discussed that the factor 1.15 is added to account for the effect of the normal force to the
bending moment. Besides, the factor χb makes a small error, which gives that the effect of the global buckling
mechanism is overestimated. This error is represented as well by the factor 1.15. This factor, which is orig-
inally expressed as ky y is set constant to 1.15 and is a safe value for all sheet piling structures, independent
of the loading. However, for much structures, the value of 1,15 is way to high. As alternative, the effect of
the normal force to the bending moment can easily be determined with the calculation software as well. If
this is done, the factor ky y (=1.15) should no longer represent the effect of the normal force to the bending
moment, but only the error made by χb . However, because this error results in a small overestimation of the
verification check on global buckling, it may be ignored without the design becoming unsafe.

What is the quantitative effect of the found improvements of the current global buckling check?
For the proposed method’s, three examples have been treated with quantitative results, which all gave an sig-
nificant improvement to the unity check on global buckling. Two quantitative effects of the improvements
can be described. Firstly, a reduction to the unity check is seen because of the better approached effects of
the geometrical imperfections. Secondly, the removal of the factor 1.15 by taking the global buckling effect to
ME d into account gives an significant reduction of the unity check. The reduction to the unity checks of both
improvements are similar for low values of the normal force.

The removal of the factor 1.15 can be done if the increment of the bending moment ME d due to the normal
force is taken into account. Due to the normal force, the bending moment will certainly grow, but it is likely to
be less as the 15% with the factor 1.15. The lower the normal force in the sheet pile is, the lower the growth of
the bending moment will be. In other words, for large values of the normal force, the removal of the factor 1.15
will only result in a small reduction of the check on global buckling. If the bending moment grows more than
15% with the proposed method, it would be better to use the current factor 1.15. This is allowed because the
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error made by χb is not accounted for by the proposed method, but it is accounted for by the factor 1.15. In
other words, it may be beneficial to remove the factor 1.15 if the influence of the normal force to the bending
moment is less than 15%.

For reference, most sheet pile structures have only a small normal force. Mostly, the influence of the normal
force to the bending moment is about 0 to 10%. Though this percentage must be determined for each struc-
ture separately, it indicates the significance of this proposed improvement for much structures.

Though the removal of 1.15 is relevant for low normal forces only, the methods proposed to encounter the
effects of global buckling due geometrical imperfections are relevant for both low and high values of the nor-
mal force.

To wrap up, two important conclusions can be taken from the answers to the research questions. Firstly, the
effect of the global buckling mechanism due to possible imperfections can be taken into account by the re-
duction factor χb , at which the influence of the soil can be included by taking the soil resistance into account
for the critical global buckling load Fcr . Unfortunately, the latter can only be done if the spring model is used
to model the interaction between the soil and sheet pile. Because some drawbacks are in place with this
method, it might be better to model the geometrical imperfections directly into available calculation soft-
ware. If this is done, the effect of the imperfections to the internal forces in the sheet pile will be included in
the results from the software.

Secondly, an important conclusion is that the factor 1.15 in the current Eurocode verification check on the
buckling mechanism may be removed. This can simply be reached by taking the effect of the normal force to
the bending moment ME d into account, a possibility most calculation software does provide. This will only
have an effect if the normal force is relatively small, which is generally the case. For the unusual case that the
normal force becomes large, it will be better to remain at the use of the factor of 1.15.

8.2. Recommendations
The research questions stated at the introduction are answered above, but from the answers, some new ques-
tions can be stated. Besides, other relevant questions to the global buckling check for steel sheet piles are still
present. Those questions can be used for future research for which recommendations are given below.

• For future usage of the current check on global buckling, the factor 1.15 can be removed from the check
if the influence of the normal force to the bending moment is taken into account in the calculation of
the internal forces in the sheet pile.

• The most adequate approach to determine the effects of geometrical imperfections in the sheet pile is
to model imperfections into the sheet pile. This method might provide a good alternative of the current
check on global buckling stated by the Eurocode. For designs of sheet piling structures which uses the
spring model to model the soil structure interaction, this is not possible. There are simply no software
packages available which support the spring model and are capable to model imperfections into the
sheet pile. It might be interesting to develop a program which is able to apply this method for the
spring model.

• The shape in which geometrical imperfections should be modelled into the sheet pile is unknown. It is
stated by the Eurocode that it should be done according to the elastic buckling shape, but this shape is
unknown. More research could be done to which shape should be used.

• The method stated by the POVM is argued to be valid for relatively small values of the normal force.
This thesis gives two worked out examples worked out with this method, where the method proved
to be correct for those examples. Other sheet piling structures, with different conditions, might react
different to the normal force. To prove that this method is valid for sheet piling structures in general,
more example cases should be worked out with different. If this is done, this method gives a quite
simple approach to determine the effects of global buckling in steel sheet piles.

• An additional question to the POVM method is which upper limit should be used where the method
can be assumed to be valid. It is known that for large forces, the method starts to underestimate the
global buckling mechanism. It is unknown from which value the method starts to become invalid. The
POVM itself states that it is valid till a normal force of 20% of Fcr , but then the question is what the value
of Fcr is. Additional research should be done to define the upper limit of this method.

• For the check on global buckling, safety factor should be used γM1. This factor should be used for sta-
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bility checks for steel structures and equals 1.1 for steel sheet piles. The global buckling mechanism
might lead to instability if the normal force goes to Fcr because the deformation of the structure be-
comes infinite. However, the normal force in sheet piles will not go to Fcr and instability due to global
buckling will not occur. In reality, the global buckling check is more a check on the steel stress than on
stability. For the steel stress, a safety factor γM0(=1.0) should be used. It’s unclear which factor should
be used. As a reference, for steel structures in general, γM1 is set to 1.0 according to NEN-EN 1993-1-1
instead of 1,1 for sheet piling structures according to NEN-EN 1993-5. It will be interesting to find out
which value for γM1 should be used, especially because the value for sheet piles differs from the value
for steel structures in general.
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A
Derivation of the critical global buckling

load according to Rayleigh
In adition to Euler’s derivation of the critical global buckling load, another method described by Rayleigh [26]
is available to determine this load. This method is based on the energy required to bend the element as in
figure 3.1.2. The energy required to deform the beam (both axial as bending deformation) must originate in
the work delivered by the displacement of the normal force (the product of force and displacement). Figure
A.1 is added to visualise the deformation of the beam and displacement of the force [26].

Figure A.1: Displacement of the force and deformation of the beam in critical global buckling (figure from [26])

For lower values of the normal force, the deformation of an element is purely in the axial strain of the element
(middle element in figure A.1). The strain energy required to deform the element axially is introduced by the
normal force and is given given in equation A.1. The bending deformation of the buckled element (lower
element in figure A.1) requires energy, which depends on the curvature which in turns depends on the dis-
placement field.

The critical global buckling mechanism will occur suddenly when reaching the critical buckling load. Just
before the normal force reaches this critical value, the element does not buckles and remains straight. But
with minimal increment of the normal force, buckling occurs and the force will displace due to the bending.
The energy delivered by this force displacement, will be the energy required for the bending deformation.
The strain energy at buckling can be described by equation A.2. Since the normal force increases minimal,
the first of this equation term could be eliminated. Therefor, equation A.4 could be written.

The energy stored in the beam before buckling:

Ev =
∫ L

0

1

2
∗E A∗ε2d x (A.1)
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102 A. Derivation of the critical global buckling load according to Rayleigh

The energy stored in the beam after buckling:

Ev =
∫ L

0

1

2
∗E A∗ε2d x +

∫ L

0

1

2
∗E I ∗κ2d x (A.2)

The displacement of the force due to the bending can be written by [26]:

u f =
∫ L

0

1

2
∗ (

d w

d x
)2d x (A.3)

∫ L

0

1

2
∗E I ∗ (

d 2w

d x2 )2d x = F ∗u f (A.4)

w(x) = ŵ ∗ si n(
m ∗π∗x

L
) (A.5)

Solution to equation A.4:

Ncr = Fcr =
∫ L

0 E I ∗ ( d 2w
d x2 )2d x∫ L

0 ( d w
d x )2d x

=
E I ∗ ŵ2 ∗ (π

2

L2 )2 ∗∫ L
0 si n2(π∗x

L )d x

ŵ2 ∗ (π
2

L2 )2 ∗∫ L
0 cos2(π∗x

L )d x
= π2 ∗E I

L2 (A.6)



B
Derivation of global buckling reduction

factor χb
To take imperfections into account, Eurocode 3 (steel) uses the imperfection curves given in figure B.1. The
derivation of this curves are started with equation B.1. Factor C is added to the equation in order to reduce
the plastic bending moment capacity if a normal force is applied. If the elastic bending moment capacity is
used, this factor may be removed.

NE d

Npl ,Rd
+C

1+δNE d
Ncr

1− NE d
Ncr

NE d ∗e0

MRd
+C

ME d

MRd
<1 (B.1)

Equation B.1 is rewritten and parameters are replaced by parameters with the same physical meaning. Since
the third term of equation B.1 is independent from the normal force, this term is cancelled and reintroduced
after the derivation. It takes some mathematical effort, but a generalised equation for the buckling resistance
based on imperfections is found.

With the reduction factor:

χb = NE d

Npl ,Rd
(B.2)

and relative slenderness:

λ̄b =
√

Npl ,Rd

Ncr
(B.3)

and the fact that δ=0 gives that equation B.1 can be rewritten to:

NE d

Npl ,Rd
+C

1+δNE d
Ncr

1− NE d
Ncr

NE d ∗e0

MRd
=⇒χb +C

e0 ∗ A∗ fy

W ∗ fy

χb

1−χbλ̄b
2 <1 (B.4)

with:
A = cross sectional area
W = section modulus

Introducing:

ηb =C
e0 ∗ A

W
(B.5)

gives that equation B.4 can be rewritten to:

χb +ηb
χb

1−χbλ̄b
2 <1 (B.6)
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104 B. Derivation of global buckling reduction factor χb

In literature ([17], p. 97) ηb is rewritten to the form given in equation B.7. The term α can be seen as a box
where all the cross sectional parameters are put into with one exception. The document for the development
of Eurocode 3 part 5 states the following on page 98:

’The European buckling curves a to d in EN1993-1.1 use values for α which were calibrated on tests and which
are dependent on the cross sectional geometry and fabrication, see Rondal and Maquoi. The factor ε is not
considered in the European buckling curves, so that the approach is safe sided for steel grades higher than
S235’[17]

ηb =α∗ε∗ (λ̄b −0.2) (B.7)

α= e ∗C ∗ h
2

l0 ∗ i ∗αpl

√
E

235
∗π∗ φ̄b (B.8)

ε=
√

235

fy
(B.9)

From tests (see [17] and [27]) it has been found that a value of 0.76 is representing the imperfection factor
α sufficiently well for sheet piles (buckling curve d). To fit the curves with the test results, the relative slen-
derness λ̂b was adapted with the subtraction of 0.2. This gives that the elements with a slenderness lower
than 0.2 have a reduction factor χ higher than 1 (so technically it is not a reduction factor anymore). How-
ever, since the elements will fail theoretical on yielding due to normal compression instead of bending, the
buckling curve is capped of for slenderness lower than 0.2. For this reason, the buckling check for structural
elements do not have to be carried out for slenderness ratios below 0.2, which is also stated in Eurocode 3
[19]. This means that no buckling check is required when NRd ,pl is less than 4% of Ncr . In Eurocode 3 it is
stated that the acting normal force NE d should be less than 4% of Ncr .

Figure B.1: Buckling curves according to European standards (The critical buckling load is referred to as Euler buckling load)(figure 2
from [28])

The value of α only yields for certain deflection values. For Z-profiles, the maximal deflection ratio e/l0 is
5.5%%, 5 %%for U piles with full interlock shear transfer and 7 %%for single U-profiles [17]. For larger imperfec-
tions, the buckling capacity reduces. The ignorance of the yield stress factor ε leads to an underestimation of
approximately 10% in the case of sheet piles with S430.

With some mathematical effort the reduction factor can be expressed as:

χb = 1

Φ+
√
Φ2 − λ̄b

2
(B.10)



105

With:

Φ= 0.5(1+α∗ε∗ (λ̄b −0.2)+ λ̄b
2

) (B.11)

With the above, the buckling capacity can be determined by equation B.12, by using χb according to formula
B.10.

Nb,Rd =χb Npl ,Rd (B.12)
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C
M-N Interaction for structural cross

sections by the ky y factor
Note to the reader
This appendix gives several plots which are based on the set of parameters given below. Though this parameters
are irregular to steel sheet pile structures, it results in clear plots which are contributing to the explanation
to the background of the factor ky y for the M-N interaction. The qualitative effects are independent on the
parameters.
NRd = 3 000 kN Fcr = 1 000 kN
MRd = 150 kNm e0 = 0.05 mm

Appendix B used equation C.1 to derive a generalised approach given by equation C.2. Due to two effects
treated later in this appendix, a factor is required for the interaction between the bending moment and the
normal force (the M-N interaction). This is called the ky y factor which is taken into account in the bending
moment term. For steel sheet piles, it was decided to determine a constant but conservative value. This value
was set to 1.15 based on FE-experiment results [17]. If this value could be made less conservative, the buckling
check on steel sheet piles could be less conservative as well. Therefor, this appendix will treat the background
of this factor ky y firstly, after which it is discussed how this factor could be made less conservative in use. The
given equation for ky y is taken from annex A from Eurocode 1993-1-1 based on elastic design (steel class 3)
and the ignorance of torsional buckling related factors.

NE d

Npl .Rd
+ 1

1− NE d
Fcr

NE d ∗e0

MRd
+ ME d .2ndor der

MRd
< 1 (C.1)

NE d

χ∗NRd
+ky y ∗ ME d

MRd
< 1 (C.2)

ky y =Cmy
µy

1− NE d
Fcr

µy =
1− NE d

Fcr

1−χb
NE d
Fcr

(C.3)

As a reference, the design lines based on equation C.2 for several constant ky y values are given in figure C.1.
When a load case results in a point above such a design line, the structure does not have enough strength and
will fail according to the model.
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Figure C.1: Linear design line when neglecting the M-N interaction factor

C.1. Error made by the buckling equation
For a load case where the normal force is the only load, equation C.4 is valid. As mentioned earlier, equation
C.4 is replaced by equation C.5. The equation is rewritten in such a way that both equations are exactly similar
at a unity check of 1.0. For cases with a lower load NE d the simplified equation C.5 is an overestimation of the
exact equation C.4. For larger load cases, the simplified equation is an underestimation. The latter is not a
problem since the capacity (unity check =1.0) is exceeded in both equations. Figure C.2 shows clearly that the
effect of the buckling mechanism is overestimated by equation C.5 for normal loads lower than the normal
buckling capacity.

NE d

Npl .Rd
+ 1

1− NE d
Fcr

NE d ∗e

MRd
<1 (C.4)

NE d

χ∗NRd
< 1 (C.5)

In itself, the overestimation by equation C.5 of the buckling effect is not a problem since it should check if
the capacity is exceeded or not. For both the simplified as the exact equation, the capacity is exceeded at
the same normal load. It does become a problem when a bending moment is added to the check as already
described by equation C.1. If this bending moment is simply added to equation C.5, equation C.6 remains.
Since the first term is an overestimation of the reality, this equation is a conservative replacement of equation
C.1. Figure C.3 shows the design lines of both equations. When the load exceeds the simplified design line
in figure C.3, some resistance is left before the design line of the exact equation is exceeded. Partly for this
reason, the M-N interaction factor ky y is introduced to equation C.7.

NE d

χb ∗NRd
+ ME d .2ndor der

MRd
< 1 (C.6)
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Figure C.2: Unity check of buckling mechanism: exactly and linear

Figure C.3: Plot of both the simplified equation (C.6) as the exact equation C.1 to model the M-N interaction with the buckling mecha-
nism

NE d

χb ∗NRd
+ky y

ME d .2ndor der

MRd
< 1 (C.7)
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One part of the interaction factor ky y as defined in appendix A of Eurocode 1993-1-1 is the factor µy . For now
the factor ky y is replaced by µy and the both design lines of the equations C.1 and C.7 are plotted, resulting in
figure C.4. With the help of this figure, it is concluded that with the introduction of µy the simplified equation
C.7 equals exactly the exact equation C.1 and therefor µy cancels the error made by the simplified buckling
equation.

µy =
1− NE d

Fcr

1−χb
NE d
Fcr

(C.8)

Figure C.4: Plot of both the exact solution as the simplified solution in combination with the correction factor

The error made by the buckling reduction factor χb is removed by the introduction of µy , but ky y depends on
more than just µy . In the next section, the physical meaning of the remaining part of ky y will become clear.
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C.2. Amplification of bending moment
The previous section describes the background of the correction parameter µy included in ky y . If the equa-
tion for ky y is written like expression C.9, the amplification factor introduced in section 3.1.1 is recognised.
This indicates that instead of the second order bending moment, the first order bending moment should be
used in the equations given above. This is verified by the example treated below.

ky y =Cmy
µy

1− NE d
Fcr

ky y =Cmy
1

1− NE d
Fcr

µy

(C.9)

The structural element given in figure C.5 is loaded by a distributed load causing an initial displacement
w0. Due to the application of a normal force, this displacement will grow to a displacement w1. Due to the
displacement, the normal force will introduce a bending moment. Adding this bending moment to the initial
bending moment caused by the distributed load results in the initial expression for the second order bending
moment. This initial expression, given in the first line of the derivation in expression C.11, is rewritten step by
step until a shape is found which is recognised as the interaction factor ky y without the correction factor µy .
The factor Cmy is given by appendix A in Eurocode 1993-1-1 in the exact same form with the same value of
0.03. Doing the same derivation for other loading schemes also resulted in similar results for Cmy as defined
in the Eurocode. Whit this derivation it is concluded that the M-N interaction factor ky y is introduced to take
the second order effects to the bending moment into account.

Figure C.5: Amplification of a beam loaded by distributed load

w0 = 5

384

qL4

E I

w1 = 5

384

qL4

E I

1

1− NE d
Fcr

(C.10)
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ME d .2ndor der =
qL2

8
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1

1− NE d
Fcr

5qL4

384E I

= qL2

8
(1+ NE d
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)
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ME d .1stor der

= ky y

µy
ME d .1stor der

Cmy = 1+0.03
NE d
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(C.11)

C.3. Conclusions to the ky y interaction factor
In this appendix it has been found that the M-N interaction factor ky y is used for two effects: to account for
the error made with the use of the buckling reduction factor χb and to account for the second order bending
moment. As mentioned earlier, the factor ky y is set to 1.15 for steel sheet piles. This factor can be removed
when one calculates the second order bending moment with the use of software. When this is done, the error
made by the reduction factorχb by the simplified buckling equation C.5 is neglected instead of being removed
by ky y . However, this does not lead to unsafe design of the pile because neglecting this overestimation will
be conservative. For steel sheet piles, the second order bending moment is usually in the order of 5% higher
than the first order bending moment. This is less than the 15% currently taken into account, and thus sheet
piles can be designed more economically.



D
Determinant of schematised sheet pile

chapter 5.1
In chapter 5.1 the critical global buckling load for a simplified sheet piled has been derived by the Euler
theory. Because of the size of the both the coefficient matrix as the it’s determinant, both the matrix as the
determinant are given below.
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Figure D.1: Coefficient matrix of buckling derivation for sheet pile schematisation in chapter 5.1
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Figure D.2: Determinant of the coefficient matrix of buckling derivation for sheet pile schematisation in chapter 5.1



116



E
Examples of displacement based critical

buckling loads
This appendix gives the data of examples treated in the main report of which the critical global buckling load
was calculated based on displacements. Of each example, the displacements have been determined using
the theory given in section E.1.

E.1. Calculation of deformation
Section 2.3.2 introduced the relation between the displacements and forcing of a elastic founded structural
element. The relation is repeated in equation E.1. Because the normal force N is assumed positive as a ten-
sile force, it can be replaced by compressive force −F . With the use of Maple TA equation E.2 is found. The 4
unknowns can be solved by stating 4 boundary conditions. Once this is done, the exact displacements can be
found for elastic supported structural elements.

E I
d 4w

d x4 −N
d 2w

d x2 = q −k ∗w

E I
d 4w

d x4 +F
d 2w

d x2 +k ∗w = q

(E.1)
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(E.2)

M(x) =−E I
d 2

d x2 w(x) (E.3)

E.2. Calculations of displacements for the examples in section 5.2.1
In section 5.2.1 the critical global buckling load of the beam in figure E.1 has been determined based on dis-
placements. For 5 load cases, the displacements has been evaluated to find the critical load. This section
gives the data of the displacements of each load case. The general properties of the beam are given below.

- Bending stiffness E I = 79380kN m2 (sheet pile profile AZ18-700)
- Length L = 10m
- Elastic foundation stiffness k = 1000kN /m2
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E.2.1. Example A
This section gives the results of example A given in section 5.2.1 and given again in figure E.2.

Figure E.1: Example A: Distributed load of 100 kN/m

Determination of displacements
The displacements are based on the general formula E.2 combined with the boundary conditions. At the both
sides (x=0 and x=L), it is known that both the displacement as the bending moment are zero. This results in
equation E.4 for the displacement field of this example. The imaginary part of the solutions is negligible to
the real part (order of 1e-16 compared to an order of 1e-2 m).

w(x,F, q,k,E I ) = q
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(E.4)

Determination of the critical global buckling load based on displacements This section gives the values
which are used to find the critical global buckling load based on displacements. Because the main report
treats the determination based on displacements defined to the 5th decimal, this section only treats the de-
termination based on displacements defined to the first and second decimal.
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Displacements rounded to the first decimal

NE d (kN) w I (mm) w I I (mm) w I I /w I n Fcr Error (%%)
500 71.2 73.2 1.0281 35.959 17 980 17.78
1 000 71.2 75.4 1.0590 17.647 17 647 1.03
1 500 71.2 77.7 1.0913 11.757 17 635 1.73
2 000 71.2 80.2 1.1264 8.769 17 537 7.25
2 500 71.2 82.8 1.1629 7.027 17 569 5.48
3 000 71.2 85.5 1.2008 5.889 17 668 0.15
3 500 71.2 88.5 1.2430 5.042 17 645 1.14
4 000 71.2 91.7 1.2879 4.411 17 643 1.29
4 500 71.2 95.1 1.3357 3.925 17 665 0.54
5 000 71.2 98.8 1.3876 3.533 17 666 0.50

Average 17 665 0.360

Table E.1: Determination of critical buckling load of the beam in figure E.1 based on displacements rounded to the first decimal with a δ
correction factor of -0.018

Displacements rounded to the second decimal

NE d (kN) w I (mm) w I I (mm) w I I /w I n Fcr Error (%%)
500 71.19 73.22 1.0287 35.618 17 809 2.35
1 000 71.19 75.40 1.0591 17.775 17 775 0.41
1 500 71.19 77.71 1.0916 11.831 17 747 1.14
2 000 71.19 80.16 1.1260 8.873 17 746 1.20
2 500 71.19 82.76 1.1625 7.104 17 759 0.44
3 000 71.19 85.55 1.2017 5.918 17 754 0.77
3 500 71.19 88.52 1.2434 5.075 17 763 0.26
4 000 71.19 91.71 1.2882 4.442 17 766 0.06
4 500 71.19 95.13 1.3363 3.950 17 775 0.41
5 000 71.19 98.82 1.3881 3.556 17 780 0.70

Average 17 767 0.77

Table E.2: Determination of critical buckling load of the beam in figure E.1 based on displacements rounded to the first decimal with a δ
correction factor of -0.008
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E.2.2. Example B
This section gives the results of example B given in section 5.2.1 and given again in figure E.2. With an error
of 0.083 %%and a δ correction factor of 0.042, a critical buckling load of 17 757 kN is found. Figure E.3 gives
the error plot as a function of δ.

Figure E.2: Example B: Double moment loading, M = 100 kN m

Determination of displacements
The displacements are based on the general formula E.2 combined with the boundary conditions. At the both
sides (x=0 and x=L), it is known that the displacements are zero and the bending moment equals the external
moment. This results in equation E.5 for the displacement field of this example.
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Determination of the critical global buckling load based on displacements
This section gives the values which are used to find the critical global buckling load based on displacements.

NE d (kN) w I (mm) w I I (mm) w I I /w I n Fcr Error (%%)
1 000 6.59123 7.00101 1.062 17.905 17 905.1 1.40
2 000 6.59123 7.46304 1.132 8.946 17 892.0 0.66
3 000 6.59123 7.98756 1.212 5.961 17 883.4 0.18
4 000 6.59123 8.58811 1.303 4.469 17 876.4 0.21
5 000 6.59123 9.28235 1.408 3.574 17 870.8 0.52
6 000 6.59123 10.09380 1.531 2.978 17 866.8 0.75
7 000 6.59123 11.05460 1.677 2.552 17 864.3 0.89
8 000 6.59123 12.20980 1.852 2.233 17 863.5 0.93
9 000 6.59123 13.62450 2.067 1.985 17 864.5 0.88
10 000 6.59123 15.39660 2.336 1.787 17 867.2 0.72
11 000 6.59123 17.67997 2.682 1.625 17 871.9 0.46
12 000 6.59123 20.73197 3.145 1.490 17 878.7 0.08
13 000 6.59123 25.01706 3.796 1.376 17 887.5 0.41
14 000 6.59123 31.46810 4.774 1.278 17 898.5 1.03
15 000 6.59123 42.27584 6.414 1.194 17 911.9 1.78

Average 17 880.2 0.73

Table E.3: Determination of critical buckling load of the beam in figure E.2 based on displacements with a δ correction factor of 0.051

Figure E.3: Error against delta plot example B

Displacements rounded to the first decimal

NE d (kN) w I (mm) w I I (mm) w I I /w I n Fcr Error (%%)
500 6.6 6.8 1.0303 33.274 16 637 18.69
1 000 6.6 7.0 1.0606 17.137 17 137 10.81
1 500 6.6 7.2 1.0909 11.758 17 637 40.30
2 000 6.6 7.5 1.1364 8.172 16 344 35.97
2 500 6.6 7.7 1.1667 6.868 17 170 12.75
3 000 6.6 8 0 1.2121 5.611 16 832 7.20
3 500 6.6 8.3 1.2576 4.797 16 789 9.70
4 000 6.6 8.6 1.3030 4.227 16 910 2.61
4 500 6.6 8.9 1.3485 3.806 17 129 10.33
5 000 6.6 9.3 1.4091 3.391 16 953 0.03

Average 16 954 14.84

Table E.4: Determination of critical buckling load of the beam in figure E.2 based on displacements rounded to the first decimal with a δ
correction factor of 0.022
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Displacements rounded to the second decimal

NE d (kN) w I (mm) w I I (mm) w I I /w I n Fcr Error (%%)
500 6.59 6.79 1.0304 35.631 17 815 3.24
1 000 6.59 7.00 1.0622 17.893 17 893 1.10
1 500 6.59 7.22 1.0956 11.994 17 991 6.57
2 000 6.59 7.46 1.1320 8.961 17 922 2.73
2 500 6.59 7.72 1.1715 7.129 17 823 2.80
3 000 6.59 7.99 1.2124 5.947 17 842 1.77
3 500 6.59 8.28 1.2565 5.098 17 844 1.64
4 000 6.59 8.59 1.3035 4.463 17 852 1.18
4 500 6.59 8.92 1.3536 3.973 17 877 0.19
5 000 6.59 9.28 1.4082 3.575 17 874 0.03

Average 17 873 2.12

Table E.5: Determination of critical buckling load of the beam in figure E.2 based on displacements rounded to the first decimal with a δ
correction factor of -0.051

E.2.3. Example C
This section treats example C given in section 5.2.1 and given again in figure E.4. With an error of 0.02 %%and
a δ correction factor of -0.021, a critical buckling load of 18 042 kN is found. Figure E.5 gives the error plot as
a function of δ.

Figure E.4: Example C: Point load loading, F = 100 kN

Determination of displacements
The displacements are based on the general formula E.2 combined with the boundary conditions. Because
a point load is attached in the middle, two displacements fields are used: one left and one right of the load.
This results in 8 unknown parameters. At both boundaries (right and left end of the beam), the conditions of
zero displacements and bending moment yields. At the transition of both fields, 4 conditions can be defined:
equal displacements, rotation and bending moments in both fields. The 4th condition is that the value of
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the shear force (first derivative of the bending moment) equals 0.5*F. This results in equation E.6 for the left
displacement field of this example. The right displacement field similar to the left field but mirrored.
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Determination of the critical global buckling load based on displacements
This section gives the values which are used to find the critical global buckling load based on displacements.

NE d (kN) w I (mm) w I I (mm) w I I /w I n Fcr Error (%%)
1 000 11.65340 12.32284 1.057 17.990 17 989.9 0.47
2 000 11.65340 13.07570 1.122 8.997 17 993.4 0.28
3 000 11.65340 13.92870 1.195 5.999 17 996.3 0.11
4 000 11.65340 14.90320 1.279 4.500 17 999.3 0.05
5 000 11.65340 16.02740 1.375 3.600 18 001.5 0.17
6 000 11.65340 17.33879 1.488 3.001 18 003.1 0.26
7 000 11.65340 18.88850 1.621 2.572 18 004.1 0.32
8 000 11.65340 20.74824 1.780 2.251 18 004.5 0.34
9 000 11.65340 23.02170 1.976 2.000 18 004.3 0.33
10 000 11.65340 25.86460 2.219 1.800 18 003.3 0.28
11 000 11.65340 29.52210 2.533 1.637 18 001.7 0.18
12 000 11.65340 34.40367 2.952 1.500 17 999.3 0.04
13 000 11.65340 41.24860 3.540 1.384 17 996.0 0.13
14 000 11.65340 51.54164 4.423 1.285 17 992.0 0.36
15 000 11.65340 68.76950 5.901 1.199 17 987.0 0.63

Average 17 998.4 0.26

Table E.6: Determination of critical buckling load of the beam in figure E.4 based on displacements with a δ correction factor of -0.024

Figure E.5: Error against delta plot example C



124 E. Examples of displacement based critical buckling loads

Displacements rounded to the first decimal

NE d (kN) w I (mm) w I I (mm) w I I /w I n Fcr Error (%%)
500 11.7 12.0 1.0256 28.938 14 969 7.90
1 000 11.7 12.3 1.0513 15.469 15 469 41.57
1 500 11.7 12.7 1.0855 9.681 14 522 22.19
2 000 11.7 13.1 1.1197 7.201 14 402 30.28
2 500 11.7 13.5 1.1539 5.823 14 558 19.81
3 000 11.7 13.9 1.1880 4.946 14 838 0.90
3 500 11.7 14.4 1.2308 4.215 14 754 6.60
4 000 11.7 14.9 1.2735 3.713 14 852 0.01
4 500 11.7 15.4 1.3162 3.346 15 059 13.93
5 000 11.7 16.0 1.3675 3.019 15 095 16.36

Average 14 852 15.95

Table E.7: Determination of critical buckling load of the beam in figure E.4 based on displacements rounded to the first decimal with a δ
correction factor of -0.258

Displacements rounded to the second decimal

NE d (kN) w I (mm) w I I (mm) w I I /w I n Fcr Error (%%)
500 11.65 11.98 1.0283 36.762 18.381 7.04
1 000 11.65 12.32 1.0575 18.614 18 614 5.55
1 500 11.65 12.69 1.0893 12.348 18 521 0.54
2 000 11.65 13.08 1.1228 9.253 18 506 0.32
2 500 11.65 13.49 1.1579 7.414 18 535 1.25
3 000 11.65 13.93 1.1957 6.176 18 528 0.91
3 500 11.65 14.40 1.2361 5.291 18 520 0.47
4 000 11.65 14.90 1.2790 4.631 18 525 0.73
4 500 11.65 15.44 1.3253 4.114 18 512 0.05
5 000 11.65 16.03 1.3760 3.694 18 472 2.13

Average 18 511 1.90

Table E.8: Determination of critical buckling load of the beam in figure E.4 based on displacements rounded to the first decimal with a δ
correction factor of 0.013
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E.2.4. Example D
This section treats example D given in section 5.2.1 and given again in figure E.6. With an error of 0.011 %%and
a δ correction factor of 0.003, a critical buckling load of 17 941 kN is found. Figure E.7 gives the error plot as
a function of δ.

Figure E.6: Example D: Double moment loading, M = 100 kN m, distributed load loading, q = 10 kN /m and point load loading, Fv = 100
kN

Determination of displacements
As a combi of the previous 3 examples, this example is made. The displacement field for the left side of the
point load is given in equation E.7.
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Determination of the critical global buckling load based on displacements
This section gives the values which are used to find the critical global buckling load based on displacements.

NE d (kN) w I (mm) w I I (mm) w I I /w I n Fcr Error (%%)
1 000 25.36272 26.86434 1.059 17.958 17 957.8 0.174907
2 000 25.36272 28.55442 1.126 8.978 17 956.5 0.102194
3 000 25.36272 30.47077 1.201 5.985 17 955.3 0.036703
4 000 25.36272 32.66201 1.288 4.489 17 954.3 0.018466
5 000 25.36272 35.19177 1.388 3.591 17 953.5 0.063111
6 000 25.36272 38.14495 1.504 2.992 17 952.9 0.096631
7 000 25.36272 41.63740 1.642 2.565 17 952.5 0.117640
8 000 25.36272 45.83150 1.807 2.244 17 952.4 0.126147
9 000 25.36272 50.96205 2.009 1.995 17 952.5 0.121263
10 000 25.36272 57.38175 2.262 1.795 17 952.8 0.102210
11 000 25.36272 65.64581 2.588 1.632 17 953.4 0.068134
12 000 25.36272 76.68167 3.023 1.496 17 954.3 0.018235
13 000 25.36272 92.16369 3.634 1.381 17 955.5 0.048514
14 000 25.36272 115.45472 4.552 1.283 17 957.0 0.133066
15 000 25.36272 154.45190 6.0901 1.197 17 958.9 0.236454

Average 17 954.6 0.10

Table E.9: Determination of critical buckling load of the beam in figure E.4 based on displacements with a δ correction factor of 0.004

Figure E.7: Error against delta plot example D

Displacements rounded to the first decimal

NE d (kN) w I (mm) w I I (mm) w I I /w I n Fcr Error (%%)
500 25.4 26.1 1.0276 36.088 18 044 29.33
1 000 25.4 26.9 1.0591 17.375 17 375 8.87
1 500 25.4 27.7 1.0906 11.679 17 519 0.65
2 000 25.4 28.6 1.1260 8.676 17 351 10.20
2 500 25.4 29.5 1.1614 6.991 17 477 3.04
3 000 25.4 30.5 1.2008 5.816 17 448 4.67
3 500 25.4 31.5 1.2402 5.027 17 593 3.59
4 000 25.4 32.7 1.2874 4.365 17 459 4.07
4 500 25.4 33.9 1.3347 3.890 17 503 1.52
5 000 25.4 35.2 1.3858 3.506 17 532 0.01

Average 17 530 6.60

Table E.10: Determination of critical buckling load of the beam in figure E.4 based on displacements rounded to the first decimal with a
δ correction factor of -0.033
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Displacements rounded to the second decimal

NE d (kN) w I (mm) w I I (mm) w I I /w I n Fcr Error (%%)
500 25.36 26.09 1.0288 35.775 17 887 1.14
1 000 25.36 26.86 1.0592 17.924 17 924 0.89
1 500 25.36 27.68 1.0915 11.942 17 913 0.30
2 000 25.36 28.55 1.1258 8.958 17 916 0.44
2 500 25.36 29.48 1.1625 7.162 17 904 0.22
3 000 25.36 30.47 1.2015 5.968 17 903 0.24
3 500 25.36 31.53 1.2433 5.114 17 900 0.42
4 000 25.36 32.66 1.2879 4.477 17 910 0.12
4 500 25.36 33.88 1.3360 3.980 17 908 0.01
5 000 25.36 35.19 1.3876 3.582 17 912 0.25

Average 17 908 0.40

Table E.11: Determination of critical buckling load of the beam in figure E.4 based on displacements rounded to the first decimal with a
δ correction factor of 0.001

E.2.5. Example E
This section treats example E given in section 5.2.1 and given again in figure E.8. With an error of 0.100 %%and
a δ correction factor of -0.057 a critical buckling load of 18 189 kN is found. Figure E.9 gives the error plot as
a function of δ.

Figure E.8: Example E: single moment loading, M = 100 kN m
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Determination of displacements
As an adaption to example B example E is done. The displacement field for the left side of the point load is
given in equation E.8.
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Determination of the critical global buckling load based on displacements
This section gives the values which are used to find the critical global buckling load based on displacements.

NE d (kN) w I (mm) w I I (mm) w I I /w I n Fcr Error (%%)
1 000 3.74270 3.94805 1.055 17.950 17 950.1 2.33
2 000 3.74270 4.17868 1.116 8.984 17 967.3 1.39
3 000 3.74270 4.43969 1.186 5.994 17 981.8 0.58
4 000 3.74270 4.73763 1.266 4.498 17 993.8 0.09
5 000 3.74270 5.08108 1.358 3.601 18 003.4 0.62
6 000 3.74270 5.48155 1.465 3.002 18 010.4 1.01
7 000 3.74270 5.95475 1.591 2.574 18 014.7 1.25
8 000 3.74270 6.52279 1.743 2.252 18 016.1 1.33
9 000 3.74270 7.21771 1.929 2.002 18 014.8 1.25
10 000 3.74270 8.08781 2.161 1.801 18 010.6 1.02
11 000 3.74270 9.20931 2.461 1.637 18 003.9 0.65
12 000 3.74270 10.70990 2.862 1.500 17 995.0 0.16
13 000 3.74270 12.82064 3.426 1.383 17 984.5 0.43
14 000 3.74270 16.00656 4.277 1.284 17 973.5 1.04
15 000 3.74270 21.36132 5.707 1.198 17 963.4 1.60

Average 17 992.2 0.98

Table E.12: Determination of critical buckling load of the beam in figure E.4 based on displacements with a δ correction factor of -0.07

Figure E.9: Error against delta plot example E
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Displacements rounded to first decimal

NE d (kN) w I (mm) w I I (mm) w I I /w I n Fcr Error (%%)
500 3.7 3.8 1.0270 36.779 18 390 46.82
1 000 3.7 3.9 1.0541 18.890 18 890 75.28
1 500 3.7 4.1 1.1081 9.945 14 917 150.85
2 000 3.7 4.2 1.1351 8.156 16 312 71.47
2 500 3.7 4.3 1.1622 6.963 17 408 9.06
3 000 3.7 4.4 1.1892 6.113 18 334 43.65
3 500 3.7 4.6 1.2432 4.975 17 414 8.71
4 000 3.7 4.7 1.2703 4.5779 18 312 42.38
4 500 3.7 4.9 1.3243 3.982 17 917 19.93
5 000 3.7 5.1 1.3784 3.556 17 778 12.02

Average 17 567 48.02

Table E.13: Determination of critical buckling load of the beam in figure E.4 based on displacements rounded to the first decimal with a
δ correction factor of -0.033

Displacements rounded to second decimal

NE d (kN) w I (mm) w I I (mm) w I I /w I n Fcr Error (%%)
500 3.74 3.84 1.0267 37.689 18 845 8.32
1 000 3.74 3.95 1.0562 18.471 18 471 11.67
1 500 3.74 4.06 1.0856 12.465 18 698 0.47
2 000 3.74 4.18 1.1177 9.339 18 677 0.66
2 500 3.74 4.31 1.1524 7.437 18 592 5.21
3 000 3.74 4.44 1.1872 6.241 18 724 1.86
3 500 3.74 4.58 1.2246 5.368 18 787 5.24
4 000 3.74 4.74 1.2674 4.669 18 676 0.72
4 500 3.74 4.90 1.3102 4.163 18 733 2.34
5 000 3.74 5.08 1.3583 3.738 18 690 0.04

Average 18 689 3.65

Table E.14: Determination of critical buckling load of the beam in figure E.4 based on displacements rounded to the first decimal with a
δ correction factor of -0.019

E.3. Critical buckling loads based on displacement of sheet piles in sec-
tion 5.3

Section 5.3 treats the comparison between the theoretical method and method based on displacements in
order to find the critical global buckling load. In order to do this, a large amount of displacements are re-
quired for the method based on displacements. The data of this method is given in this section. Each set of
parameters in section 5.3 is represented by a table below.
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NE d (kN) w I (mm) w I I (mm) w I I /w I n Fcr Error (%%) δ corection
with average factor

800 28.82533 29.53431 1.025 11.343 9 074.6 66.4 -0.745
1 600 28.82533 30.32670 1.052 5.884 9 414.9 31.4 -0.745
2 400 28.82533 31.22986 1.083 4.050 9 719.4 0.12 -0.745
3 200 28.82533 32.28822 1.120 3.118 9 976.5 26.33 -0.745
4 000 28.82533 33.57966 1.165 2.542 10 169.7 46.21 -0.745
4 800 28.82533 35.25497 1.223 2.141 10 274.5 57.00 -0.745
5 600 28.82533 37.64978 1.306 1.831 10 253.6 54.85 -0.745
6 400 28.82533 41.68741 1.446 1.570 10 048.9 33.79 -0.745
7 200 28.82533 51.09382 1.773 1.329 9 571.0 15.38 -0.745
8 000 28.82533 112.43001 3.900 1.087 8 701.7 104.81 -0.745

Average 9 720.5 43.6

Table E.15: Determination of critical buckling load for the structure in figure 5.1 with parameter set 1 based on displacements

NE d (kN) w I (mm) w I I (mm) w I I /w I n Fcr Error (%%) δ correction
with average factor

1 000 5.5574 5.71186 1.02779 24.386 24 386.7 1.6 -0.35
2 000 5.5574 5.87998 1.05805 12.198 24 369.4 1.2 -0.35
3 000 5.5574 6.06363 1.09109 8.136 24 407.1 0.8 -0.35
4 000 5.5574 6.26511 1.12735 6.104 24 416.9 0.4 -0.35
5 000 5.5574 6.48715 1.16730 4.885 24 426.2 0.0 -0.35
6 000 5.5574 6.73309 1.21155 4.073 24 435.0 0.4 -0.35
7 000 5.5574 7.07069 1.2723 3.492 24 442.7 0.7 -0.35
8 000 5.5574 7.31420 1.31612 3.056 24 449.5 1.0 -0.35
9 000 5.5574 7.66096 1.37852 2.717 24 455.1 1.2 -0.35
10 000 5.5574 8.05564 1.44953 2.446 24 459.4 1.4 -0.35
11 000 5.5574 8.50906 1.53112 2.224 24 462.1 1.5 -0.35
12 000 5.5574 9.03557 1.62586 2.039 24 462.8 1.5 -0.35
13 000 5.5574 9.65470 1.73727 1.882 24 461.2 1.5 -0.35
14 000 5.5574 10.39368 1.87024 1.747 24 456.9 1.3 -0.35
15 000 5.5574 11.29173 2.03184 1.630 24 449.2 1.0 -0.35
16 000 5.5574 12.40751 2.23261 1.527 24 437.4 0.5 -0.35
17 000 5.5574 13.83298 2.48911 1.437 24 420.5 0.2 -0.35
18 000 5.5574 15.72111 2.82886 1.355 24 397.4 1.2 -0.35
19 000 5.5574 18.34695 3.30135 1.282 24 366.4 2.4 -0.35
20 000 5.5574 22.26053 4.00557 1.216 24 325.3 4.1 -0.35

Average 24 372.0 3.1

Table E.16: Determination of critical buckling load for the structure in figure 5.1 with parameter set 2 based on displacements

NE d (kN) w I (mm) w I I (mm) w I I /w I n Fcr Error (%%) δ correction
with average factor

800 27.25713 28.62324 1.050 11.495 11 494.9 11.3 -0.474
1 600 27.25713 30.24617 1.110 5.797 11 593.2 2.9 -0.474
2 400 27.25713 32.21767 1.182 3.890 11 670.8 3.8 -0.474
3 200 27.25713 34.68350 1.272 2.931 11 722.3 8.2 -0.474
4 000 27.25713 37.89236 1.390 2.348 11 740.5 9.8 -0.474
4 800 27.25713 42.31160 1.552 1.952 11 714.2 7.5 -0.474
5 600 27.25713 48.94833 1.796 1.661 11 626.8 0.0 -0.474
6 400 27.25713 60.48382 2.219 1.432 11 452.0 15.0 -0.474

Average 11 627 7.3

Table E.17: Determination of critical buckling load for the structure in figure 5.1 with parameter set 3 based on displacements
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Input data of Diana FEA

In chapter 5.1 the theoretical critical buckling load based on Euler’s theory has been determined. Because it
took quite some effort to do this manually, this appendix treats how the example from section 5.1.2 can be
determined using software program Diana FEA. The structural model of the example is given in figure F.1.
Data is given in table F.1. For simplicity, the sheet pile will be modelled as one straight plate with the same
bending stiffness. To reach this stiffness, a plate with a thickness of 165.54 mm and a width of 1 m will be
modelled.

Figure F.1: Structural model of example section 5.1.2
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Parameter Value Unit
Length sheet pile 10 m
L0 4.2 m
L I 0.3 m
L I I 1.1 m
L I I I 4.4 m
kI 1 000 kN /m/m2

kI I 3 270 kN /m/m2

kI I I 12 000 kN /m/m2

kanchor 42 000 kN /m/m
E I 79 380 kN m2

Table F.1: Data input for FEA model
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F.1. Diana FEA model
The final result of the FEA model is given in figure F.2. Compared to figure F.1, a few things are added. In
order to provided the vertical and longitudinal 1, extra rigid supports are added. This supports won’t restrict
the deformation in the buckling direction and will therefor not affect the global critical buckling load. The
anchor is modelled as five separate springs on top of the sheet pile. The points visible at the lower part of the
pile in figure F.2 are the springs which represents the soil. Diana is not able to model an elastic support like in
figure F.1 which is therefor replaced by enough springs. Those are placed each 0.1 m in height and each 0.2 m
in width. Below, the input to get this model is given step by step.

Figure F.2: Final model of the sheet pile in Diana FEA

1This direction is not given in the 2D figure F.1
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(a) Step 1: Units used in the model

(b) Step 2:Shape of the sheet pile

Figure F.3: Steps 1 and 2 of DIANA FEA stability analysis

(a) Step 3: Steel property assignment
(b) Step 4: Input of steel geometry

Figure F.4: Steps 3 and 4 of DIANA FEA stability analysis
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(a) Step 5: Input of steel model

(b) Step 6: Input of steel properties

Figure F.5: Steps 5 and 6 of DIANA FEA stability analysis

(a) Step 7: Input of rigid supports at anchor level
(note the red coloured (selection) edge)

(b) Step 8: Input of rigid supports at sheet pile tip
(note the red coloured (selection) edge)

Figure F.6: Steps 7 and 8 of DIANA FEA stability analysis
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(a) Step 9: Input of point at anchor level to connect anchor
spring

(b) 5 points where the anchor spring will be attached

Figure F.7: Steps 9 of DIANA FEA stability analysis

(a) Step 10: Material model of the springs

(b) Step 11: Input of material parameters of the anchor
spring

Figure F.8: Steps 10 and 11 of DIANA FEA stability analysis
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(a) Step 12: Input of spring direction using element geome-
try

(b) Step 13: Property assignment of anchor spring

Figure F.9: Steps 12 and 13 of DIANA FEA stability analysis

(a) Step 14: Input of spring point for elastic soil foundation (b) Step 15: Copying first spring point to 270 spring points

Figure F.10: Steps 14 and 15 of DIANA FEA stability analysis
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(a) Step 16: Input of material model soil
stiffness k1

(b) Step 17: Input of spring properties soil stiffness k1

Figure F.11: Steps 16 and 17 of DIANA FEA stability analysis

(a) Step 18: Input of material model soil
stiffness k2

(b) Step 19: Input of spring properties soil stiffness k2

Figure F.12: Steps 18 and 19 of DIANA FEA stability analysis
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(a) Step 20: Property assignment of 215 spring representing
the elastic support k1

(b) Step 21: Property assignment of 55 spring representing
the elastic support k2

Figure F.13: Steps 20 and 21 of DIANA FEA stability analysis

(a) Step 22: Input of material model for points

(b) Step 23: Input of material properties for point material

Figure F.14: Steps 22 and 23 of DIANA FEA stability analysis
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(a) Step 24: Input of point properties for all added points
(spring attached points)

(b) Step 25: Input of dummy load into load case ’Load’

Figure F.15: Steps 24 and 25 of DIANA FEA stability analysis

The model in figure F.2 can be reached by applying step 1 to step 25. With an stability analysis Diana FEA
returns a value for a certain load case. This value induces how much times this load case can be applied
before buckling occurs. For this reason, a load of -1 kN was applied such that if the stability analysis returns
a value of 1 000, the critical buckling load equals 1 000 kN . Before this analysis can be done, the mesh must
be defined. The input of the mesh and the mesh itself is given figure F.16.
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(a) Step 26: Defining the mesh size

(b) Mesh of the model

Figure F.16: Step 26 and Mesh of DIANA FEA stability analysis
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Second order effects determined by

D-sheet piling
The software package D-sheet piling is able to calculate the second order effect due to a normal force, but
there are some serious limitations. Firstly, the second order effects are only determined if the normal force is
manually defined. The anchor force or the wall friction to the pile are not taken into account for the second
order effects. This is proven in the example calculation given below. Therefor, the anchor forces and skin
friction must be calculated firstly. With the results of this calculations, the development of the normal force
inside the sheet pile could manually defined. Once this is done, the second order effects can be determined
with a second calculation. This second order effects might affect the anchor force and the skin friction, which
would require third calculation. With this method, the second order effects are known by D-sheet piling,
which replaces the factor 1.15 in equation 5.13.

Drawback to the second order calculation is that the development of the normal force can only limited be
defined at four points along the sheet pile: at the pile top and tip and at both surface levels (left and right
surface). Because one of the surface levels is often at the same level as the sheet pile top, the normal force
can practically only be defined at three levels. Due to this reason, the effect of the normal force can only be
approached. An example of such an approach is given by figure G.1, which gives both the diagrams of the
actual normal force as the modelled normal force. Fortunately, Deltares, the developers of the program, have
said that in future versions of the program will be able to define the normal force at more points than the four
points discussed (Deltares, personal E-mail, November 25, 2019).

Example calculation second order bending moment
The sheet pile structure in figure G.2 is designed to support a soil level difference of 7 m. On the top of the pile
a vertical force of 1 000 kN is present. Analysing this model results in a bending moment at the excavation
level of -136.42 kN m, the vertical and horizontal anchor force are both 61.46 kN . At the excavation level, the
soil pressure at the right side equals 42 kPa, which develops fully linear from the soil surface. The bending
moment at the excavation level caused by the soil pressure equals 343 kN m, the horizontal anchor force
causes a bending moment of -430.22 kN m and the vertical load of 1 000 kN causes -49.1 kN m. The sum of
those three contributions is -136.32 kN m, while the program calculates a value of -136.42 kN m. The vertical
anchor force should introduce a bending moment of 3 kN m, which is not found by the results of the program.
It can be concluded that, strangely enough, the vertical external load is the only normal load which is taken
into account for the second order effects.
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Figure G.1: Development of normal force in the sheet pile

Figure G.2: Example for second order calculation by D-sheet piling



H
Plaxis model data

Below the data is given for the Plaxis models used for the examples in chapter 6. As a reminder, the lay-out of
the structure is given in figure H.1.

Figure H.1: Lay-out of sheet pile structures in chapter 6
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Property Value Unit
Model width 50 M
Model height 20 M
Sheet pile type AZ 12-700 -
Material type Elastic -
Axial stiffness EA 2.587e6 kN /m
Bending stiffness 39.648 kN m2

Weight 0 kg /m
Isotropic Yes -
Interfaces Positive and Negative -
Right coordinate anchor rod (20.19) -
Left coordinate anchor rod (11.13) -
Right coordinate embedded beam row (11.13) -
Left coordinate embedded beam row (8.11) -

Mesher type Medium -

Table H.1: Properties of Plaxis models

Figure H.2: Material properties of the anchor rod

Figure H.3: Material properties of the embedded beam row
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Figure H.4: Sand properties in the Plaxis models (table 3.1 from [29])
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Figure H.5: Clay properties in the Plaxis models (table 3.1 from [29])
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(a) Construction phase 1

(b) Construction phase 3

(c) Construction phase 4 (d) Construction phase 5

Figure H.6: Construction phases of the model

The construction of a sheet pile must be done in phases. For the models in the example of chapter 6, some of
the phases are represented in figure H.6. Phase 1 represents the installation of the sheet pile, the water head
in the soil is at +19 m (1 m below the surface. In phase 2, the water head at the right side is lowered with 6 m
to +13 m. In phase 3 the soil at the right side is excavated for 3 m, so the anchor can be installed in phase 4.
The anchor is pre-stressed with a force of 200 kN . Finally, in phase 5 the soil is excavated for 3 more meters.
After this phase, the normal force on top of the sheet pile is increased step by step to get the results given in
chapter 6.
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In order to determine the effect of imperfections, the imperfections might be modelled. This is for example
given in figure H.7, where the pile geometry is defined by 15 points so that the initial imperfections occur.
Two imperfection shapes are used as an example. For the fixed imperfection shape, the following coordinates
are used:

(20;20).(20.03;19).(20.05;18).(20.07;17).(20.08;16).(20.08;15).(20.08;14).(20.06;12.83).(20.05;12.20).(20.0;11.61),
(20.03;11.02).(20.02;10.39).(20.01;9.64).(20;19.14).(20;8)

For the simple imperfection shape, the coordinates are as given below:

(20;20).(20.02;19).(20.04;18).(20.06;17).(20.07;15.9).(20.08;15).(20.08;14).(20.08;13).(20.07;12.10).(20.06;11).
(20.04;10).(20.02;9).(20.0;8)

Figure H.7: Imperfection model in Plaxis 2D
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