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Abstract

As autonomous driving is a popular and ever growing field of research, real world experiments
provide a required manner of testing. In this thesis a driving research platform is developed,
with a focus on platooning using visual messaging. These visual messages are conveyed using
LED matrices. This thesis proposes two methods of LED matrix detection using YOLOv2,
one using a sliding window, and one using the entire image. Furthermore two ways of distance
estimation are proposed, one using the centers of the estimation bounding boxes and one using
the used camera proprietary toolbox depth map. Results from an online experiment show
best results from the depth map based depth estimation. The LED matrix detection using a
sliding window gave generally dependable results in different environments, at the cost of being
computationally demanding. The detection using the entire image provided less consistent
results, but was significantly less computationally demanding. In a second offline experiment
using a preannotated validation dataset as groundtruth all LED matrices were detected for
all detectors. The SqueezeNet based YOLOv2 detector using a sliding window had the best
results between tested detectors, with the highest intersection over union between detection
and groundtruth.
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Chapter 1

Introduction

Autonomous driving vehicles is a popular field of research since the fifties of the last century,
and in the last decade real world testing and commercial applications have become increasingly
feasible.

One of the most important arguments to switch to autonomous vehicles is that for over ninety
percent of traffic accidents human error contributed to the cause, and for fifty-seven precent
it was the sole cause[1]. Despite being a promising technology, autonomous driving vehicles
have at the moment of writing not yet reached a level of autonomy where these vehicles are
allowed to drive without any human supervision.

Figure 1-1: Example of sensors implemented for autonomous driving1.

One of the focal points of this thesis is the development of a platform for research on au-
tonomous driving. A fundamental ability for autonomous vehicles and robots is autonomous
navigation. Herein the platform creates an environmental map of its surroundings using sen-
sors, either onboard or external. Using this understanding of the environment such a platform
is able then to plan a path and to subsequently execute this plan.

1Courtesy of https://www.engineering.com/IOT/ArticleID/18285/How-Sensors-Empower-Autonomous-
Driving.aspx
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2 Introduction

Platooning
Modern intelligent vehicles have to be able to perform a growing number of tasks. Included in
these requirements should be the ability to drive within a platoon. Platooning is grouping in
such a way that each car is automated to follow the car in front of it. This can have advantages,
such as reduced congestion and fuel consumption[2]. Platooning is possible without having
direct communication between vehicles, but communication allow cars to predict each other’s
behaviour more accurately and therefore enhances the earlier mentioned advantages.

Figure 1-2: Visualization of platooning. Figure 1-3: Visualization of real life ap-
plications of visual markers.

Visual Communication
In order to increase the reliability of these vehicles it can be important to have multiple
methods to communicate in-between vehicles and between vehicles and their environment.

As mentioned, semi-autonomous vehicles have a wide variety of sensors, including cameras.
This thesis explores the use of these cameras in combination with visual markers to commu-
nicate messages and depth estimation. In real world applications this commucation could be
run parallel to different types of communications, such as cellular, creating a certain level
of redundancy. If one of the communication systems would fail, for example the telecom-
munications provider experiencing a system failure, this redundancy would allow a different
communication system to keep the vehicle completely functional.

This thesis will only explore a laboratory set-up, using 8 × 8 LED matrices as visual markers,
but real world applications could be integrated into car tail lights, traffic signs and lights and
the signs of emergency services. For example, traffic lights could communicate the time left
until a green light, which allows the car motor’s automatic start/stop function to accurately
determine whether a full stop would increase fuel economy.

S.J. van der Marel Master of Science Thesis



1-1 Overview 3

1-1 Overview

Autonomous driving car control algorithms can be divided into three main components:

1. Recognition
Using a (stereo) camera system to create an overview of the surroundings and identify
objects, including other cars.

2. Path planning
With the gained knowledge about the surroundings and identified objects, plan an
optimal path avoiding obstacles and following the target vehicle.

3. Velocity Control
The velocity and steering angles of the vehicle will be determined using the determined
desired path and known properties of the other vehicles. Other cars should be avoided
to prevent collisions, also in case of unpredicted behavior, and in the case of platooning
a vehicle should properly follow these other cars.

The scope of this study is focussed on the first point, the recognition of the environment using
camera imaging.

1-2 Research Goal

This thesis will be focused on development of two subjects based on the previously mentioned
parts of the study.

1. Platform development for platooning
With one of the objectives of thesis being the development of a platform suitable for
research on platooning, the thesis focuses on the following research question:

A. What is a suited design of the vehicle for platooning purposes while satisfying the
design criteria of being easy to reproduce, having a balanced weight and flexible
camera placement, while minimizing cost?

2. Vision based communication
In order to develop an algorithm for visual communication, this thesis focuses on the
following research questions:

B. Using currently available vision toolboxes, is it viable to consistently localize a
LED matrix in a real time scenario?

C. Having found a LED matrix, is it viable to consistently estimate the depth of this
LED matrix from the camera in a real time scenario?

Master of Science Thesis S.J. van der Marel
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Chapter 2

Vision

In order to have an understanding of environment recognition of autonomous vehicles, this
chapter first discusses general (computer) vision and imaging. First the basics of camera
anatomy will be discussed. After this subject general optics will be introduced and be ex-
tended to stereo vision.

2-1 Camera Anatomy

A camera can be described as a combination of an optical system and a (digital) image sensor.
This optical system is used to focus an image on the sensor by using a combination of lenses,
apertures, mirrors and shutters.

Figure 2-1: Cut through of a modern digital camera.

This section will discuss all relevant parts of the camera, before discussing the typical appli-
cations.

Master of Science Thesis S.J. van der Marel



6 Vision

2-1-1 Lenses

Lenses are part of the optical system to either focus or disperse light beams. Lenses are
commonly made out of glass or translucent plastics and can be used individually or combined
in an optical system. Depending on properties of the lens images may be distorted, as shown
in fig. 2-2, which can, to a certain extent, be rectified numerically.

Figure 2-2: Three examples of lens distortion: barrel (a), pincushion (b), and fisheye (c) distor-
tion[3].

2-1-2 Color Filter Array

In order to create accurate images it is important to be able to accurately distinguish dif-
ferent colors. Photosensors however do have little capabilities to do so, with a exception of
monochrome sensors which only detect one color. To overcome these limitations color filters
can be applied on the sensor, these filters are then placed in a certain configuration to allow
optimal color recognition, such a filter is often refered to as a Color Filter Array (CFA). One
of the most commonly used is the Bayer CFA, in which the green color is twice as much
present as red and blue, therefore often refered to as RGGB filter, this and two other types
are shown in fig. 2-3.

Bayer
RGGB

Cyan Yellow Yellow Magenta
CYYM

Red Green Blue White
RGBW

Figure 2-3: Examples of types of CFAs.
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2-1 Camera Anatomy 7

2-1-3 Sensor Chip

The sensor chip is basically an array of photosensitive picture (pix) elements, where the term
pixels stems from. By exciting these arrays based on the source object one can create an image
of said object. The two most common sensor chip types are Charge-Coupled Device (CCD)
and Complementary Metal-Oxide-Semiconductor (CMOS), which are discussed below.

Charge-Coupled Device based Sensor Chips

One of the most common camera sensor chips are CCD type sensors, visualized in fig. 2-4,
these sensor only use one Analog to Digital (A/D) converter for the entire chip. These sensors
are built up of two types of active regions, a photosensitive region, built up from a capacitor
array, and a transmisson region, made from shift registers.

When exposing the sensor to an image, light falling on the photosensitive capacitor arrays of
the CCD causes charge to accumulate in each of the affected capacitors depending on light
intensity. After the sensor is exposed the accumulated charge is shifted to its neighbour. In
2D images this is done columnwise and these lines are shifted to the A/D converter, after
which a new image can be taken.

Photosensitive region

Transmission region

A/D Converter

Signal

Light

Coupled-Charge Device

Light

Photosensitive region

Active amplifier

Complementary Metal–Oxide–Semiconductor

Si
gn

al
s

Figure 2-4: Charge-Coupled Device (CCD) and Complementary MetalOxideSemiconductor
(CMOS) architecture.
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8 Vision

Complementary MetalOxideSemiconductor based Sensor Chips

The CMOS sensor, also known as an active-pixel image sensor, uses an active amplifier per
pixel. These amplifiers take up space on the sensor surface leading to a reduced photosensi-
tivity compared to CCD sensors, which may lead to problems capturing images in low light
situations. When capturing images this is typically done row-wise at a certain refreshment
rate, which in high speed applications may lead to a type of distortion often called the rolling
shutter effect, this can however be solved by using a global shutter as shown in fig. 2-5.
CMOS sensors are generally less expensive compared to CCD sensors, have higher possi-
ble frame rates and use less power. CMOS cameras are in general more noisy because the
production differences of the pixel amplifiers.

Figure 2-5: Effects of the use of rolling and global shutter CMOS1.

2-1-4 Trade-off Resolution versus Field of View

Generally there is a trade-off between the Field of View (FoV) and the resolution of a camera.
When taking a picture with a camera the image is spread over the entire FoV of its lens.
Having a wider FoV means having a lower resolution (in pixels per meter), losing detail in
the image of the observed object.

When selecting a system certain design criteria have to be determined concerning the demands
on the FoV and minimum resolution.

1Source of image: http://www.cropcopter.co/factors-impacting-uav-sensor-payloads/

S.J. van der Marel Master of Science Thesis



2-2 Optics 9

2-2 Optics

2-2-1 Camera Properties

For a camera system, such as the one in fig. 2-6, using a thin lens approximation wherein the
thickness is small compared to the curvature radii. The magnification M can be expressed as
shown in eq. (2-1). The thin lense law is shown in eq. (2-2).
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Figure 2-6: Thin lense model visual-
ization.

M = yi

yo
= − xi

xo
(2-1)

1
f

= 1
xi

+ 1
xo

(2-2)

Circle of Confusion

If a camera is not focussed correctly at the object, a circle of confusion appears; an area
wherein the ray of light shines on the image sensor. A smaller aperture leads to a smaller
circle of confusion, at the cost of darker images. The Depth of Field is the range around the
focal point wherein objects are ‘acceptably’ sharp. For example an object can be acceptably
sharp if the circle of confusion is smaller than sensor resolution/pixel size. The image shown
in fig. 2-7 gives an example of a non-ideal focussed lens, with the resulting circle of confusion.

In stereo imaging applications the focal point is often set at infinity, which allows objects
to be seen sufficiently sharp at finite distances, provided these objects are a certain distance
away from the camera.
For a camera focussed at infinity, in other words zi = f , the diameter of the circle of confusion
is given by eq. (2-3), wherein d is the aperture diameter.

c = fd

xo
(2-3)

The Hyperfocal distance H is the distance at which objects are viewed sufficiently sharp, with
a maximum allowed circle of confusion c. This c is often based on the pixel size.

H = fd

c
= f2

Nc
(2-4)

For example, the hyperfocal distance of the used ZED camera is around 500mm.
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Figure 2-7: Example of a non-ideal focussed lens.

Pinhole Model

A popular way to model a camera is by having a infinitesimal hole in a plate as camera
origin or optical center, wherein all detected beams coincide. Afterwards these rays are
projected on a image plane at focal distance, as is visualised in fig. 2-8. This result is a simple
geometric model, which is also suitable for normal cameras in certain boundary conditions,
lens distortions are for example neglected. As the image is rotated by 180° a choice is often
made to use a virtual image plane instead of the true image plane in models for the sake of
simplicity. The size of projections relate as shown in eqs. (2-5) and (2-6).
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Figure 2-8: World, camera
and image coordinate sys-
tems, and respective trans-
formations, based on image
in [4, p. 11].

Image plane: yo

xo
= −yi

f
(2-5)

Virtual image plane: yo

xo
= yi

f
(2-6)
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2-2 Optics 11

2-2-2 Projective Geometry

Using the pinhole model it is possible to start modelling the image ray behaviour from real
world objects to the sensor plane. Using projective geometry, allowing for rotation, transla-
tion, scaling, shear and projection as shown in fig. 2-9, it is possible to completely model this
behaviour using a combination of intrinsic and extrinsic transformations, which are explained
in this subsection.

Figure 2-9: Types of transformations2

Intrinsic transformations are the transformations from camera to pixel coordinates, extrinsic
transformations are those from world coordinate system and the camera coordinate system.

𝑂𝑊

𝑥𝑤

𝑦𝑤

𝑧𝑤

𝑍

𝑌

𝑋

𝑢

𝑣

𝑂𝐶 𝑂𝐼

𝐼

𝑝 𝑃1

Extrinsic 
transfomation

𝐸
Intrinsic

Transfomation
𝐾

World 
coordinate 

system

Camera 
coordinate 

system

Image
coordinate 

system

𝑃2

Figure 2-10: World, camera and image coordinate systems, and respective transformations,
based on image in [4, p. 11].

Expressing many eucleudian transformations from one coordinate system to another can be
described as one matrix multiplication:

xB = Rn (Rn−1 (Rn−2 (. . . (R1xA + t1) . . . ) + tn−2) + tn−1) + tn → x̃B = Ex̃A (2-7)

2https://publiclab.org/notes/anishshah101/06-02-2014/gsoc-update-leaflet-draw-and-non-affine-
transformations
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12 Vision

Herein x̃B, x̃A and E are partioned as follows:

x̃i =
[
xi

1

]
, E =

[
R t
0T

3 1

]
, x, t, 03 ∈ R3, E ∈ R4×4

In this particular context the upper transformations are useful to capture any number of real
world transformations in a single 4 × 4-matrix.

Extrinsic Transformation
In the case all real world transformations are gathered in one matrix, this matrix E is called
the Extrinsic transformation, as shown in eq. (2-8).

x̃camera = Ex̃world (2-8)

Intrinsic Transformation
Using pinhole model to represent intrinsic transformation, the transformation between pixel
coordinates and camera coordinates, leads to the transformation shown in eq. (2-9)[5, p. 47].

s

u
v
1

 =

f ρ cx

0 a · f cy

0 0 1


︸ ︷︷ ︸

K

x
y
z

 (2-9)

Herein s is a scaling, ρ skewness, f focal distance, cx,cy projection of optical center, a aspect
ratio. The matrix K is called the intrinsic matrix.

Homography Transformation
Combining a combined extrinsic transformation matrix E and the intrinsic transformation
K, the following transformation can be denoted, where H is called the homography matrix[5,
p. 46].

s

u
v
1

 =

f ρ cx

0 a · f cy

0 0 1

 [R t
] 

X
Y
Z
1


ximage = KExworld = Hxworld (2-10)
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2-3 Stereo Vision 13

2-3 Stereo Vision

Using one camera, it is possible to gather a large range of information, however one camera
set ups are generally quite limited for depth information. As shown in fig. 2-11 using a single
camera can be limiting as a closer smaller object, such as N1, appears at the (virtual) image
plane the same as a farther away larger object N2.

𝑍

𝑌

𝑋

𝑢

𝑣
𝑂𝐶

𝑂𝐼

𝐼

𝑁2

𝑁1

𝐼1

Figure 2-11: Three dimensional objects seen with a single camera system. No difference can be
seen between close small objects and larger further away objects in certain configurations.

In order to overcome these limitations a stereo camera setup can be extended by adding a
second camera, as shown in fig. 2-12, seperated by a certain distance or baseline, denoted by
b. Where the original camera, now in this case the left camera, can not detect a difference
between N1 and N2, the second camera can. By analysing the differences between the images
created by both camera’s information can be gathered about depth in these images.

𝑍𝑅

𝑌

𝑋

𝑢

𝑣
𝑂𝐶
𝑅
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𝐼
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𝑋𝑅

𝐼1
𝑅

𝑂𝐶
𝐿

𝐼2
𝑅

Figure 2-12: Three dimensional objects seen with a stereo camera system. Due to the different
viewing angles objects can be differentiated, that would not be visible on a single camera.

This section will discuss the background in among other things depth recognition and the
matching of both images, by first introducing concepts such as disparity and epipolar geom-
etry, before continuing to multiple methods to match images.
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2-3-1 Disparity

In order to determine the depth of a point the disparity of such a point needs to be determined.
For a given stereo image camera pair, as shown in fig. 2-13, looking at point of interest p, we
observe that both cameras can clearly detect this point. The detected coordinates, however,
are different for the left and right camera.

𝑓

𝑏

𝑍

𝑝

𝑢𝐿

𝑂𝐿 𝑂𝑅

𝑢𝑅

Figure 2-13: A 2D visualisation of dispartiy for a parallel stereo camera system.

This difference in pixel coordinates of similar features in a set of stereo images is called the
disparity. For a point which is closer to the camera pair this disparity is larger than for points
further away from the camera pair. Using this property the disparity can be used in stereo
image sets to determine depth of points and features. The disparity, ∆u, as shown in fig. 2-13
relates to the depth of a point as shown in eq. (2-11), the rest of the parameters are defined
as shown in fig. 2-13.

Z = f
b

uL − uR
= f

b

∆u
(2-11)

Points need to be matched between images in order to determine the disparity and depth of
a point, which will be discussed in section 2-3-3.
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2-3-2 Epipolar Geometry
Shown in fig. 2-14 is a set of stereo images. We consider a case wherein both of the stereo
images are still described using the pinhole model, and the image is projected on a virtual
image planes in front of the optical centers, OL and OR. When both camera’s are viewing
a point of interest such as point P , we have the projections of that point, x̄L and x̄R, on
the images planes. In the left camera there is no visible difference between point Q and
P , because for this camera the points lay in the same ray, while the right camera detects a
clear difference. The projection of one optical center on the virtual image plane of the the
other camera is called an epipole. As this works both ways the four points OL, OR, eL and
eR all lie on the same line, shown in the orange line. The line from point x̄ to e is called
the epipolar line, literature sometimes refers to the epipolar plane, which is spanned by the
points P, OL, OR.

𝑧𝐿
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𝑦𝐿

𝑥𝑅

𝑦𝑅

𝑧𝑅

𝑓𝐿

𝑂𝑅
𝑂𝐿

𝑃
𝑃𝑅𝑃𝐿

Epipolar line

ҧ𝑥𝐿 ҧ𝑥𝑃,𝑅

𝑒𝐿 𝑒𝑅

Left epipole

𝑄𝐿 𝑄𝑅
𝑄

𝑓𝑅
ҧ𝑥𝑄,𝑅

ҧ𝑥𝑄,𝑅 ∈ 𝐿 ҧ𝑥𝑃,𝑅 , 𝑒𝑅

𝑅, 𝑇

𝑃𝑅 = 𝑅 𝑃𝐿 − 𝑇
𝑇 = 𝑂𝑅 − 𝑂𝐿

Figure 2-14: Epipolar lines for non-parallel stereo camera system, based on [4, p. 11].

Often rectification is applied, a transformation of both (left and right) images such that the
transformed stereo system has horizontal epipolar lines, for a given stereo pair, with known
intrinsic and extrinsic parameters. After rectification the image points x̄L and x̄R always
lie on the same epipolar line, a property called the epipolar constraint. This property is
quite useful as instead of matching over two axis, there is only one search direction, over the
epipolar line, reducing the computation time by an order of magnitude.
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Figure 2-15: Epipolar lines for non-parallel stereo camera system after rectification, based on [4,
p. 11].
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2-3-3 Stereo Matching

The disparity can not be directly measured, instead it has to be estimated based on a number
of possible algorithms which attempt to match points or image features between images. These
algorithms can be divided in two categories: dense and sparse stereo matching algorithms, of
which the basics will be discussed in this subsection.

Dense Stereo Matching

In dense stereo matching it is attempted to match all pixels, yielding a disparity map of
the entire picture based on correlation. As each applicable pixel is matched, this method
is computational heavy and prone to noise. In fig. 2-16 an example disparity map is shown
which was post-filtered to reduce the noise.

Figure 2-16: Disparity map with post-filtering on KITTI Dataset [6], [7]. In the image there is
a sift from blue to red, blueish objects are closer by/ have a higher disparity and reddish objects
are further away, thus have a lower disparity. The red rectangle in the left of the image denotes
a region with an undefined disparity as that part of the stereo image set does not overlap and
therefore can not be matched.

The algorithm can be pictured as shown in fig. 2-17.

Left stereo 
image

Right stereo 
image

Rectified    
left stereo 

image

Rectified 
right stereo 

image

Left   
disparity  

mapImage 
rectification

and pre-
processing Right 

disparity  
map

Dense 
Stereo 

Matching 

Left and 
right 

validation 
post-

processing

Output 
disparity map

Figure 2-17: Dense stereo matching algorithm.
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Sparse Stereo Matching
In sparse stereo matching keypoints are sought and matched. This is done using feature
descriptors for each keypoint and these are matched between images in feature space. In
general this is a faster and possibly very accurate method to match points in both images.

Figure 2-18: Matched features using
stereo camera system[8].

Figure 2-19: Examples of recognizable
features, such as edges (green), corners
(white), and structures (red).

In sparse matching algorithms features are sought over the epipolar lines in rectified stereo
sets, as if the (ideal) rectifying process only allows for horizontal displacements of the search
window in the resulting stereo sets. As shown in fig. 2-20 corners can be, within some
boundary conditions, uniquely matched between images, horizontal lines however can be
translated along with the search window and often can not be matched uniquely.

Left rectified image Right rectified image

horizontal
edge

corner

Search window of
𝑊 ×𝑊

vertical
edge

Search direction along epipolar lines

Horizontal edge: no cost 
function change in 

horizontal direction
Corner: cost function 

change in all directions

Figure 2-20: Example of feature matching between two images in a rectified set.

There are many challenges in feature matching, either making it more difficult to differentiate
between features and/or making it harder to accurately recognize features, such as:
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18 Vision

• Reflective Surfaces
False feature matches can result from reflective surfaces, as the difference between the
true image and mirror image is for most algorithms difficult to differentiate.

• Repetitive Features
When encountering repetitive features it can be difficult to differentiate between multi-
ple instances in feature matching algorithms.

• Significant Different Angles
In stereo image pairs with large angles features will lose their similarity between images
and will therefore be paired less accurately.

2-4 Environment Representation

Where in the previous chapter creating a set of 3D points was discussed, this section will
discuss how to construct environmental representations based on the gathered points.

One could for example take the entire point cloud as a low level representation, this is however
computationally demanding. Higher level representations, such as object based, 21/2D grid
map-based or stixel based representations, may be a more computationally efficient solution.

2-4-1 Point Cloud

When all gathered points are shown
in a single three dimensional coor-
dinate system, the result is called a
Point cloud. Point clouds are used in
creating 3D meshes and can be used
to match a detected 3D structure to a
model, in which case it is called Point
set registration.

Figure 2-21: Example of a point cloud3.

2-4-2 Ground Plane Removal

One of the first steps in creating a point cloud is to estimate and remove the ground plane.
In doing so a number of assumptions are generally made. Depending on the environment it is
often sufficient to estimate flat ground, for example in a laboratory set-up. However, outside
laboratory environments the ground planes are often non-flat. On for example bridges and
or sloped roads assumptions about the curvature include assuming constant pitch.

3Courtesy of https://www.researchgate.net/figure/Example-of-a-point-cloud-representation-of-a-room-
visualized-using-the-PCL-library-16_fig3_303863276
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Chapter 3

System Description

This chapter discusses the physical platform, the design aim and requirements. A render of
the final design is shown in fig. 3-1, with the mayor sensors, actuators and other parts labeled.

Depth Camera
ZED stereo camera

Visual Markers
Motion capture overhead camera setup

Dual Battery Setup
split motors and computing

Front Wheel Steering
using servo motor

LED Matrices
8x8 LED matrices on four 
car sides for inter-car
communication

Back Wheel Driving
using DC motor

Figure 3-1: Render with sensors, actuators and other visible mayor parts annotated.
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20 System Description

3-1 Design Aim

This section discusses first comparable existing opensource projects, after which the design
requirements for the platform developed in this thesis will be discussed.

3-1-1 Overview of Comparable Systems

A number of comparable platforms are developed previously, widely ranging in focus, capa-
bilities and cost range. Listed below are some of the most common know opensource 1/16,
1/10 and 1/5 model vehicles.

• Donkey Car
Donkey Car is a 1/16 platform designed for low cost DIY construction aimed towards
research on self driving cars. The authors provide the ‘donkey library’ on their website1,
which can be run on most RC car compatible systems, but recommend the Donkey2
design, a vehicle build from around 250 USD in parts using a shopping list provided on
the previously mentioned website.

• BARC
Berkeley Autonomous Race Car (BARC)[9] is a fairly low cost 1/10 development plat-
form for autonomous driving. The system is equiped with among other sensors sensors,
the ELP USB3 camera module, an IMU and multiple line sensors (to research lane
changing). There are optionally more expensive sensors supported, such the RP LiDar
360.

• MIT RACECAR
The Rapid Autonomous Complex-Environment Competing Ackermann-steering Robot,
or RACECAR[10], is an 1/10 scale platform developed by MIT, housing state of the
art hardware. The RACECAR is equipped with, among other sensors, a Hokuyo UST
10LX 2D LiDar, ZED stereo camera and an IMU. Furthermore the system is equiped
with a VESC2 and a NVIDIA Jetson TX1 System on Module (SoM).

• F1/10
The F1/10 is a one to ten scale model project founded as a ‘Cyber-Physical Platform’
(CPS)[11], in order to allow researchers to perform real world experiments and testing.
The vehicle is equipped with, among other sensors, a Hokuyo UST 10LX 2D LiDar, a
stereo camera, a FLIR flea camera and an IMU. Furthermore the system is equipped
with a Foebox VESC X and a NVIDIA Jetson TX2 SoM. A system overview is shown
in fig. 3-2.

• AutoRally
The rugged AutoRally platform is a platform focused on aggressive autonomous driving
and high speed maneuvers[12]. The system is equiped with a Intel Skylake i7 quad
core processor and a NVIDIA GTX-750ti GPU and a number of sensors. These sensors
include a GPS sensor, IMU and two FLIR Flea3 FL3-U3-13E4C-C cameras. A photo
of the AutoRally without the protective cover is shown in fig. 3-3.

In table 3-1 an overview is shown of these systems.
1https://www.donkeycar.com/
2Opensource smart Electronic Speed Controller (ESC), the Vedder ESC, or VESC, project website http:

//vedder.se/2015/01/vesc-open-source-esc/

S.J. van der Marel Master of Science Thesis

http://vedder.se/2015/01/vesc-open-source-esc/
http://vedder.se/2015/01/vesc-open-source-esc/


3-1 Design Aim 21

Figure 3-2: Photo of the Donkey Car, cour-
tesy of the project website.

Figure 3-3: System overview of the Au-
toRally platform[12].

Figure 3-4: System overview of the MIT
RACECAR[10].

Figure 3-5: System overview of the F1/10
platform[11].

Platform Size Cost Construction time Weight Computation Module
in [USD] in [h] in [kg]

Donkey Car 1/16 250 2 2 Raspberry Pi
BARC 1/10 500 3 3.2 Odroid XU4
MIT RACECAR 1/10 3383 10 4.5 NVIDIA Jetson TX1
F1/10 1/10 3628 3 4.5 NVIDIA Jetson TX2
AutoRally 1/5 14000 not specified 21 Mini-ITX Intel Skylake i7

Table 3-1: Comparison between existing open source scaled autonomous platforms and the
research aim of this vehicle[12]. The build costs (and time) of each car does not include 3D
printed parts as costs vary heavily between manufacturers and can often be done for free in house
at research facilities.
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22 System Description

3-1-2 Design Requirements

This section discusses the design requirements for the vehicle. An overview of the system is
shown in fig. 3-7, herein the mayor mechanical and electrical parts are labelled. The developed
system was designed with a number of main design criteria:

1. Scalable fleet
As the vehicle is developed for platooning one of the design criteria is the scalability
of the size of the fleet, in other words, it should be easy to create extra vehicles when
required for an experimental set-up.

2. Flexible camera placement
The camera position and pitch should be adjustable for each car. For the current
experimental set-up in a laboratory environment no automatic camera pitch adjustment
is required, this could be different in later iterations wherein the car drives on slopes
and hills.

3. Balanced weight
In order to keep the propulsion and steering properties as intended, the center of gravity
should lie around the middle of the vehicle.

4. Minimizing cost
One of the design criteria is to keep the cost per vehicle low, apart from the systems
that can not be avoided - such as the ZED camera, NVIDIA Jetson TX2 and other
essential parts.

3-2 Design Considerations

The previous section listed the design aim and requirements. This section discusses consid-
erations about satisfying these requirements, some of which are visualized in fig. 3-6. This
thesis aims to to develop a platform in the ‘mid range’ compared to the in section 3-1-1
mentioned vehicles, with capabilities and costs between the BARC and the MIT RACECAR
and F1/10. The thesis aims at a cost around d1800.00 per platform, while having a powerful
stereo camera and processing capabilities.

• Camera Location
The camera is required to be placed at the end of the car, in order to be able to focus
on objects in front of the vehicle, because of the hyperfocal distance of the camera.

• Battery Location
Moving the camera backwards shifts the center of gravity towards the back, introducing
difficulties while steering. The batteries are places in the front of the car in order to
counteract this effect. This moves the center of gravity, according to the CAD software,
to the point indicated in fig. 3-6.

• Scalable Low Cost Design
The system is constructed mainly from laser cut acrylic and 3D printed parts, which
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generally low cost compared to alternatives. In section 3-6 there will be more informa-
tion available about this.

• Modular Design
In most designs there is a trade-off between modularity and integration of parts. In this
design there is a large focus on modularity, which comes at the cost of size. The system
is build up in different sub assemblies, as shown in fig. 3-7, which can be constructed
apart from each other, with the exception of the LED matrix connection as these are
each connected to a previous one. Combining these sub assemblies is done with a few
screws, allowing for replacement of a broken part when necessary.

• Camera Placement
The system has two camera systems, the main ZED stereo camera and one integrated in
the ErleBrain 3. The stereo camera is mounted in manner which allows manual vertical
and pitch adjustments, as shown in fig. 3-6. The integrated ErleBrain 3 camera is fixed
pointing behind the vehicle, with possible uses in later research.

Center of Gravity
(Calculated using CAD software) 

Hyperfocal distance
(minimum)

Optimization: blocking of field
of view versus height of vehicle

Figure 3-6: Visualized design criteria.
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3-3 Overview of Components

This section describes the mayor components used in the vehicle. A summarized list of the
mayor components and their purposes is shown below:

• ZED Camera
The ZED stereo camera used for robot vision and depth estimation.

• NVIDIA Jetson TX2
The NVIDIA Jetson TX2 is a high performance SoM used for camera processing. The
Jetson is mounted on a ConnectTech Orbitty Carrier board.

• ErleBrain 3
The ErleBrain 3 is a Raspberry Pi based computer which controls the vehicles motion.

• Batteries
The system uses two batteries. One battery mainly for the motion and ErleBrain, one
battery mainly for the NVIDIA Jetson and camera.

• LED Matrices
Four LED matrices are mounted on the front, left, right and backside of the vehicle in
order to convey visual messages. These LED matrices each have a dedicated driver and
are controlled by an Arduino.

• MoCap Markers
In order for the motion camera system to estimate the location of the vehicle, this
vehicle needs to be equipped with visual markers. These markers need to have a unique
configuration per used vehicle in order to differentiate between these.

• Propulsion and Steering Motors
A DC motor is used as a propulsion motor with a matching RC car Electronic Speed
Controller (ESC). For steering a servo motor is used. Both the servo and ESC are
controlled by the ErleBrain.

An overview of the system is shown in fig. 3-7, and these components are connected as shown
in fig. 3-8. The following subsections expand on the mayor components discussed above.
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ZED Camera

Erle Rover Base

MoCap Markers

Battery Pack 

LED Matrices

2.

4.3.

1.

ErleBrain with camera

DC motor

PDB

NVIDIA Jetson TX2

ErleBrain

Arduino NanoElectronic Speed 
Controller (ESC)

Servo motor

DC motor

Figure 3-7: System overview; exploded view with mayor parts annotated (top), and cutthrough
with large part of electrical system visible (bottom).
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Figure 3-8: Overview of the complete electrical system.
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3-3-1 ZED Camera

The ZED camera, shown in fig. 3-9, is a dual 4 MP camera set up with specifications as
shown in table 3-2. The camera has a wide viewing angle and relatively low resolution, a
trade off discussed in section 2-1-4. For a driving vehicle this suits the purpose of having
a wide overview of the surrounding, at the cost of losing some details. These details, often
required to observe further away objects, often might not be as important as having a complete
overview. The ZED camera Software Development Kit (SDK) includes an extensive scala of
algorithms which include similar imaging processes as described. Due to the proprietary
nature of the toolbox it is unknown which exact methods/algorithms the toolbox uses.

Video
Capture Mode FPS Resolution

2.2K 15 4416 × 1242
1080p 30 3840 × 1080
720p 60 2560 × 720

WVGA 100 1344 × 376

Depth
Depth range 0.5-20 m
Stereo baseline 120 mm

Figure 3-9: The ZED camera.

Lens
Aperture f/2.0
Field of View 90°(H) × 60°(V) × 110°(D) max

Sensor
Resolution 4M pixels per sensor with

2 µm pixels

Table 3-2: The manufacturer specifications of the ZED camera.

3-3-2 Erle Brain 3

The Erle Brain 3 is the third generation of a Linux based autopilot for, among other systems,
the Erle Rover, with official support for ROS. This system combines a Raspberry Pi embedded
computer with a daughter board containing power electronics, a PPM receiver, a PWM
generator and multiple sensors. These sensors include a 5MP camera, an IMU, temperature
and pressure sensors. The Erle Brains PWM generator is used to relay the transmitter
commands to the actuators (ESC/motor combination and servo motor). These commands
are either directly relayed via the transmitters or generated in the Erle Brain depending on
a physical switch.

Source: Erle Brain Robotics

5MP Camera

Figure 3-10: The Erlebrain 3 embedded computer.3
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3Image courtesy of manufacturer, https://erlerobotics.com/, accessed on January 2020, website now
unavailable due to bankruptcy of Erle Robotics.
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3-3-3 NVIDIA Jetson TX2

The NVIDIA Jetson TX2 module is a embedded System on Module (SoM) used in the system
in order to process the camera images of the ZED stereo camera system.

Figure 3-11: Jetson TX2 module (Left), ConnectTech Orbitty carrier board(Right)4.

The TX2 module is used in combination with the ConnectTech Orbitty carrier board. The
carrier board is connected as shown in fig. 3-8.

Table 3-3: Technical specifications of the NVIDIA TX2 module

NVIDIA Jetson TX2 module
GPU 256-core NVIDIA Pascal GPU architecture with NVIDIA CUDA cores
CPU Dual-Core NVIDIA Denver 2 64-Bit CPU

Quad-Core ARM© Cortex©-A57 MPCore
Memory 8GB 128-bit LPDDR4 Memory 1866 MHx - 59.7 GB/s
Storage 32GB eMMC 5.1
Power 7.5W / 15W
WiFi Yes

ConnectTech Orbitty carrier board
Size 87 mm × 50 mm
Connections GbE, HDMI, USB 3.0, USB 2.0, 2x 3.3 V UART, MicroSD, I2C, 4x GPIO
Voltage 9 V to 14 V DC Nominal, 19 V Peak
Weight 41 g (Carrier only), 144 g (Carrier + Jetson TX2)

3-3-4 Batteries

The system uses two batteries. One 1600 mAh NiMH battery, with six cells, for the standard
Erle Robotics Erle Rover, with a nominal voltage of 7.2 V. This battery powers the ErleBrain,
the servo motor for steering, the DC motor for forward motion, and the 2.4 GHz RC receiver
for operation via a standard RC car remote control. The second battery, a 3800 mAh 3S LiPo
battery powers the NVIDIA Jetson, ZED camera and LED matrices.

4Both images courtesy of manufacturers, https://developer.nvidia.com/embedded/jetson-tx2, http://con-
necttech.com/product/orbitty-carrier-for-nvidia-jetson-tx2-tx1/
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3-3-5 Power Distribution Board

The Power Distribution Board (PDB) is designed to distribute power in the vehicle and
to automatically turn off when the battery voltage is below a predefined threshold. This
is achieved using a off the shelf low battery alarm, which triggers a latching relay in the
configuration shown in the image. Pressing the momentary on-off button resets the system,
in order to turn on the setup. The six pole latching changeover switch cuts all power, allowing
for safe storage or charging the battery in place. A schematic of the main power distribution
board is shown in fig. 3-12, wherein the low voltage module, shown in fig. 3-14, is included as
the symbol denoted as ‘undervoltage circuit’. The power to the motors and ErleBrain is in
the standard configuration on a separate battery, but may be connected to the PDB as well.
The figures shown in figs. 3-13 and 3-15 show the design in the CAD software.
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Figure 3-12: Power distribution board: Power Module.

Figure 3-13: Power distri-
bution board: Power mod-
ule.
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Figure 3-14: Power distribution board: Low voltage mod-
ule.

Figure 3-15: Power distri-
bution board: Low voltage
module.

The production of the printed circuit boards was done by a production company5, to which
the ‘Gerber files’ and drill hole coordinates were provided, both of which were exported in
the CAD software. The soldering of the components was done in house.

5SeeedStudio, a Chinese based electronics company.
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3-4 LED Matrices

In order to implement the LED matrix, two set ups are created, one to implement in the car
and one for data generation and software testing purposes. In both set-ups a number of LED
matrices will be controlled using an Arduino Nano and dedicated drivers connected to the
arduino via a SPI connection. The connections are shown in fig. 3-16.
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Figure 3-16: Connections for the LED matrix subsystem.

3-5 Visual Messages

Before the recognition of the LED matrices is discussed the structure of the messages will be
discussed in this section. First common QR codes will be discussed before we move on to the
used messages.
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3-5-1 Two Dimensional Barcodes

Two dimensional barcodes, and the better known ‘Quick Response (QR) Codes’, refer to
two dimensional patterns which encode data. Typical applications of these codes include
(commercial and industrial) labelling and a growing number of applications in augmented
reality.
Standard QR codes include some elements to denote position, alignment, spacing and for-
matting and version information. The image shown in fig. 3-17, denotes the template for a
QR codes [13], [14], with the mayor elements highlighted.

ISO/IEC 18004:2015(E)Structure of a QR Code symbol

Figure 3-17: ISO/IEC 18004:2015

3-5-2 Implementing Two Dimensional Barcodes

Standard type QR codes start at a resolution of 21 × 21-elements (version 1), where the used
set-up has a maximum of 8×8 resolution, therefore no standard QR-code can be implemented,
so a custom algorithm has to be created, for example as shown in fig. 3-18, with a simple
predetermined set of expressions.

Car Orientation 
4 possibilities - double 
redundant  
{Front/left/right/back} 

Free Elements 
25 free elements 

Position Marker 
Multiple sets of 3 × 3  
in corners 

LED matric 
8 × 8 elements 

Car Identifier 
16 possibilities - double 
redundant  
{1,2,3, … , 16} 

Figure 3-18: Example QR code based algorithm

Figure 3-19: Example QR
code resulting from algo-
rithm shown in fig. 3-18

An example of a LED matrix expression is shown in fig. 3-19, this expression will be used as
main expression throughout the thesis.
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3-6 Production and Construction of Custom Parts

This subsection discusses the production techniques and assembly of the vehicle. Most of the
vehicle is constructed from lasercut acrylic parts and 3D printed parts, the paragraphs below
expand on these techniques.

Lasercut Parts
The modifications on the Erle rover are largely made of lasercut acrylic. The choice for
lasercutting as production process is based on the quick production speed, low costs and
relative high tolerances. A drawback of lasercutting is that all operations have to be two-
dimensional.

The choice for acrylic, also known Poly(methyl methacrylate) (PMMA), is because of its
thermal and non toxic properties it is suited to be lasercut, which is the main production
process of the frame, while being a relative light weight material and relative inexpensive.

Joints between parts are generally as shown in fig. 3-20. The screw absorbs the for in the
direction perpendicular to the part screwed on the base part, as shown in red, while the
slot/nook construction absorbs forces in plane with this part, as shown in green. While
assembling one should be carefully to not overtighten the screws, as a primary failure mode
of this design is cracking of the t-slot between the nut and the head of the bolt.

Figure 3-20: The used method to how
the vehicle is assembled. The forces are
absorbed in shown directions.

Figure 3-21: Example of interface of the
used ‘Cura’ - CAM software for one of the
parts in the front sub assembly.

3D Printed Part
3D printed parts are generally low cost compared to other methods to create similar part.
A disadvantage of 3D printing is that it is, generally, a time consuming production method,
printing parts takes generally more time than part creation with other production methods,
and part post processing is time consuming for most prints. Post processing includes removing
print supports, removing bed adhesion constructions and refining the surface finish.
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3-7 Cost Overview

In table 3-4 the part costs, excluding shipping, are shown. The total indicative cost, are within
the earlier discussed price range. As the Erle Robotics Erle Rover is no longer available, a
suited replacement is shown here, a LRP S10 Twister 2 2WD monster truck in combination
with a Pixhawk PX4. At this moment the back camera from the ErleBrain 3 is not imple-
mented, and not added to the parts list, however there are numerous available if a necessity
should arise.

Catergory Component Amount Cost
per Component

Off the Shelf StereoLabs ZED Camera 1 $349.00
Orbitty carrier board 1 $174.00
NVIDIA Jetson TX2 1 d440.00
Computer fan, 12 V, 40 × 40 mm 2 d5.00
MoCap Markers 4 d5.00
LiPo 3s 3400 mAh battery 1 d60.00
LiPo alarm 1 d5.00
LED matrix + Driver 4 d2.50
Arduino Nano 1 d30.00
Erle Robotics Erle Rover 1
LRP S10 Twister 2 Monster Truck 2WD 1 d150.00
Pixhawk PX4 1 d195.00

Material 3D printer filament: PETG 1 kg d25.00
Acrylic sheet, 5 mm 0.5 m2 d20.00
Fasteners d10.00
Cables and connectors d15.00
General consumables, solder, heat shrink, etc d15.00

External Production Power distribution PCB (10×) 1 d10.00
Undervoltage PCB (10×) 1 d10.00

Total Indication value, excluding shipping d1550

Table 3-4: Component and indication price overview, excluding shipping.
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Chapter 4

LED Matrix Recognition

When a human looks at a situation it can recognize objects accurately, almost instantaneously
and can estimate interaction with other recognized objects within a glance (with certain
boundaries conditions). In computer vision this is a non-straightforward task to implement.
In this study the main objective for the system to localize LED matrices in the captured
camera images.
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36 LED Matrix Recognition

4-1 Detection Algorithm

The detection of objects is done in a number of stages;

1. Capture Images
First a set of images is captured, a left and a right images, using which a depth map is
determined (using the ZED camera toolbox).

2. Prefilter Images
Optionally the images are prefiltered using a LaB-filter in order to highlight the LED
matrix features.

3. Detect LED matrices
Apply the LED matrix detector to images. This is be done in two different approaches:

(a) Global detection
Apply the detector to complete images (two images of 1280 × 720 pixels).

(b) Local detection
Apply the detector to partions of images. The complete image is divided in subim-
ages with a predefined overlap. The detector is run on all these subimages.

4. Cluster Results
Cluster the found LED matrices in order to remove possible duplicates in one images
and if applicable between subimages.

5. Match Clusters
Match the found clusters between left and right images.

6. Determine Depth
Will be discussed in chapter 5.
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Figure 4-1: Detection and depth measurement algorithm.
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4-2 Preprocessing

In order to find an object, such as the LED matrix, in the image, it can be useful to preprocess
an image. Preprocessing operations used in the trainingset and using the live camera feed
include croppping and image filtering.

4-2-1 Cropping

In the image set a large amount of images are cropped to a size of 224 × 224, the input size
of some later discussed neural networks, around the LED matrix. When cropping the images
special care should be taken to not have the object in standard positions, as a detector might
be trained to have a unintentional preference to such positions. As without a working detector
there is no viable way to automatize this cropping, this tends to be time consuming task,
especially for larger data sets.

4-2-2 LaB Filter

In order to highlight the LED matrix in an image, an image filter can be used. The filtering
is done in CIE 1976 L*a*b* color space[15], wherein the L* approximated the light intensity
in the image, a∗ the green-red range and b∗ the blue-yellow. The colors of interest in the
LED matrix are mainly white and red1. In order to not lose too much context information
a fraction of the filtered image is added to a fraction of the original image, the sum of these
fraction should equal one. Image fig. 4-2 shows the process and an illustrative example of a
LaB filter application in this context.

Camera image
1280 × 720 × 3

Filtered Output Image
+

+

With constraint: ൗ1 𝐺1
+ ൗ1 𝐺2

= 1

Process:

+

+
Camera image

LaB filtered image

Output image

Example:

In example:
𝐺1 = 5/4
𝐺2 = 5

LaB Filter
RGB

LaB

LaB

RGB

Figure 4-2: LaB filtering procedure.

1For the design of the filter in this case the Matlab Computer Vision: Color Thresholding toolbox was used
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4-3 Introduction Neural Networks

Humans can process complex tasks, such as pattern recognition, reasoning and visual percep-
tion, in a efficient way, learning from examples and adapting from mistakes. In order to have
an artificial system do similar tasks neural networks were designed.

In biological neurons, shown in fig. 4-3, some signals {x1, ..., xn} enter the synapses and only
if these signals are higher than a voltage threshold, the neuron fires, in the form of a current
spike.

𝑥1

𝑥2

𝑥𝑛

Synapse Dendrite
Pre neuron

Axon

𝑦1 𝑦2

𝑦𝑚
Action 

potential

Output

Axon 

terminal

Figure 4-3: Example of a biological neuron2.

Artificial neural networks that mimic the biological counterparts, refered to as Hebbian Net-
works, are considered inefficient[16]. Instead models as shown in fig. 4-4 are applied. The
output of this neuron can be decribed as in eq. (4-1). An example of an activation function,
a thresholding function, is shown in eq. (4-2).

Inputs Weights OutputActivation
function

Summation
function

Bias Threshold

Input
Layer

Hidden
Layer

Output
Layer

Figure 4-4: Example of an artificial neuron.

y = φ
(
b1 + Σn

j=1wjxj

)
(4-1)

φ(u, θ) =
{

1 if u ≥ θ

0 if u < θ
(4-2)

2Image courtesy of Kalita, H., Krishnaprasad, A., Choudhary, N., Das, S., Dev, D., Ding, Y., ... & Roy, T.
(2019). Artificial Neuron using Vertical MoS 2/Graphene Threshold Switching Memristors. Scientific reports,
9(1), 1-8.
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The weights {w1, w2, ..., wn}, biases and thresholds {b, θ} are optimized in a ‘learning’ process,
as will be discussed later in this chapter. Combining multiple neurons in a configuration of
choice in a network can yield a Multi Layered Artificial Neural Network (ANN) as shown
in fig. 4-5. The shown network is fully connected, but this is no given constraint. Each
connection is assigned a weight, wi/. Neurons can have multiple in and output connections
as shown in the image. When two or more hidden layers exist the ANN is refered to as a
Deep Neural Network (DNN).
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Figure 4-5: Example of a Multi Layered Artificial Neural Network (ANN).

The propagation function of a neuron, in fig. 4-4 refered to as u, calculates the input to a
neuron from the output of the previous neurons and optional biases.

Neurons are organized in layers, wherein neurons typically only interact with other neurons
in directly adjacent layers. The first layer, which interacts with external input, is referred
to as the input layer, and the layer which produces the output is referred to as the output
layer. Networks with connections in the same or to previous layers are referred to as recurrent
networks.

In a typical classification problem a networks input can be an image, and the network purpose
is to determine whether the image contains one or multiple instances of the classes which the
network is designed to classify.

4-4 Introduction to Detectors

Modern detection systems repurpose classifiers in order to perform detection; to detect an
object a classifier for this object is taken for evaluation at different locations and scales in a
test image. Some systems such as Deformable Parts Models (DPM) use an approach based
on a sliding window, where the classifiers are run at an even interval. Other approaches like
R-CNN resize patches of the image in order to detect regions of interest [17], [18].
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4-5 Detector Design

In order to design and train a suitable detector there are a few prerequisites, which will be
discussed in this section. A summary is shown below:

1. Training Data
In order to train a network to recognize LED matrices a dataset of prelabelled images
is required to teach the network what a ‘LED matrix’ is, section 4-5-1 discusses this
further.

2. Network Layout
The structure of the network is of course very important to the functionality of the
detector. This network layout is discussed in section 4-5-2.

3. Training Capacity
Training a network is computationally intensive task, running it on the platform itself
could be a time demanding task with reduced performance.

4. Selection of Optimizer and Hyperparameters
Training networks is done using optimization algorithms, which are discussed in sec-
tion 4-5-3. The working of these algorithms depend on Hyperparameters, which include
the maximum amount of training cycles, the learning rate and similar parameters. The
used hyperparameters will be discussed together with the results.

4-5-1 Training Data

In order to train the network a database of around 2500 annotated images was created3,
where in each image a Region-of-Interest (ROI) was noted. A limitation of the used software
toolboxes is that all ROIs are square and non rotatable. The training data generation set-up
discussed in section 3-4 and fig. 3-16 was used to create a large portion of the dataset. Other
training data was generated based on scenarios which are not common in the setup in order
to diversify the data set. Examples of setting included images in front of a window, aquarium
and next to reflective surfaces, all with changing lighting conditions. Furthermore data was
added with filtered images in order to provide a more abstract understanding of the object.

3The Matlab image labelling app was used, however serious limitations and quirks were found, so if given
a choice a different labeller would be advisable. For more information and the complete dataset, please check
my Github repository https://github.com/SimonvanderMarel/datasetLEDMatrixDetector.
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Figure 4-6: Examples of labeled training images, if the object to be labeled is rotated, it is still
required to apply a non rotated ROI, as shown in the right image. The shown images are cropped
to 224 × 224 pixels and filtered.

The quality of the training dataset determines to a great extent the quality of the detector,
there a several factors influencing the quality of the trainingsdata and therefore the quality
of the detector.

• Quantity
A large amount of images in the dataset is paramount to train a high performance
detector.

• Diversity
The diverseness of the data is influencing the ability of the detector to work in more
than one specific environment, angle, lighting etc. If one would make a large dataset of
images taken in similar settings the detector would probably only work in those exact
circumstances.

• Representativeness
However the dataset should be diverse, it should represent the use case. If one has a
large very diverse dataset which includes little data representing the situation wherein
the detector is going to be applied, the trained detector will probably preform worse
than one trained on a less diverse but more representative set. Also constraints should
be placed on artifacts which are placed around the object of interest, certain mounting
constructs or brackets might intentionally be included in trainingsdata. This is also true
for the object location in the images, a unintentional preference for a certain location
might be trained if in the data the object is often shown in this location in the image.

• Label Accuracy
The quality of the labels in the training data is a factor in the performance of the
detector; if the detector is trained on inaccurate labelled data, the detector will detect
similarly inaccurate.
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4-5-2 Network Layout

In order to train an image detector one could design an deep learning network, but a more
efficient method could be to retrain an existing network. A large amount of pre-trained
network are available, such as the ones available in Matlab shown in fig. 4-7. The majority of
these is trained on subsets of the ImageNet database [19], containing over a million images,
with over a thousand different classification categories, such as mugs, keyboards and different
animals.

These pre-trained networks have different characteristics, which influence the suitability for
different applications. These characteristics include accuracy, size and speed, where one in
general has to evaluate a suited trade-off between these properties. The image shown in
fig. 4-7 shows these characteristics .

Figure 4-7: List of pre-trained networks available in Matlab [20].

For the experiment several pre-trained networks will be evaluated:

• SqueezeNet
• DarkNet19
• DarkNet53
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SqueezeNet
SqueezeNet is a deep neural network released in 2016 [21]. It is developed for embedded
applications, with a focus on a smaller size and speed instead of accuracy, achieving AlexNet
accuracy with fifty times fewer parameters. The net layout is shown in fig. 4-9.

DarkNet19
DarkNet19 is a 19 layered net based on the Extraction net (by the same author[22], based
on GoogLeNet), merged with parts of publications such as Network in Network, Inception
and Batch Normalization, prosoped in the publication of YOLOv2[22], [23]. The net layout
is shown fig. 4-10.

Figure 4-8: Darknet logo[22].

DarkNet53
DarkNet53 is a 53 layered net, improved on DarkNet19[22], by the same author, proposed in
the publication on YOLOv3[24]. The net layout, shown in fig. 4-11, has more layers then the
DarkNet19 variant and performs generally more accurate, but significantly slower.
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Figure 4-9: SqueezeNet
layout[21].

Type Filters Size/Stride Output
Convolutional 32 3 × 3 224 × 224
Maxpool 2 × 2/2 112 × 112

Convolutional 64 3 × 3 112 × 112
Maxpool 2 × 2/2 56 × 56

Convolutional 128 3 × 3 56 × 56
Convolutional 64 1 × 1 56 × 56
Convolutional 128 3 × 3 56 × 56
Maxpool 2 × 2/2 28 × 28

Convolutional 256 3 × 3 28 × 28
Convolutional 128 1 × 1 28 × 28
Convolutional 256 3 × 3 28 × 28
Maxpool 2 × 2/2 14 × 14

Convolutional 512 3 × 3 14 × 14
Convolutional 256 1 × 1 14 × 14
Convolutional 512 3 × 3 14 × 14
Convolutional 256 1 × 1 14 × 14
Convolutional 512 3 × 3 14 × 14
Maxpool 2 × 2/2 7 × 7

Convolutional 1024 3 × 3 7 × 7
Convolutional 512 1 × 1 7 × 7
Convolutional 1024 3 × 3 7 × 7
Convolutional 512 1 × 1 7 × 7
Convolutional 1024 3 × 3 7 × 7

Convolutional 1000 1 × 1 7 × 7
Avgpool Global 1000
Softmax

Figure 4-10: Dark-
net19 layout[23].
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Figure 4-11: Dark-
net53 layout[24].
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4-5-3 Optimization Algorithms

After a pretrained network is selected for repurposing as detector a selection needs to made
for the optization algorithm. There is a wide range of optimizers available for the teaching
of deep neural network. For the sake of conciseness only the algorithms available in the used
Matlab environment will be discussed in this subsection, and are listed below.

• Stochatics Gradient Descend Method (SGDM)
• Root Mean Square Propagation (RMSprop)
• Adaptive Moment Estimation (ADAM)

SGDM
The Stochastic Gradient Descent Method (SGDM) performs a parameter update for each
training iteration

θt+1 = θt − η · ∇θJ(θt, x(i), j(j)) (4-3)

Herein the variables θt and θt+1 denote the parameter vectors of the current and next iteration
steps, η denotes the learning rate, ∇θ the gradient with respect to θ and J(θt, x(i), j(j)) denotes
a cost function.

Figure 4-12: Example of SGDM behaviour without and with momentum [25]

SGDM has problems with curvature behaviour around local minima [26] [27]. In order to
improve this behaviour [28] proposed a momentum term, νt, which takes into account the
previous search directions. As shown in eq. (4-4) the parameters are updated by a combination
of the current gradient and a fraction γ of the previous update term. Typical values of γ are
γ = 0.9.

νt = γνt−1 + η · ∇(θ)J(θt, x(i), j(j))
θt+1 = θt − νt

(4-4)
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RMSprop
Root Mean Square Propagation (RMSprop) is an unpublished optimization designed for neu-
ral networks, proposed by Geoff Hinton in his lecture slides, designed to overcome the short-
comings of the AdaGrad algorithm. The algorithm is shown in eq. (4-5)4. The term mt is
used to scale the learning rate in each dimension, based on the gradient in each dimension
and previous values.

mt = βmt−1 + (1 − β)∇θJ(θt) � ∇θJ(θt)
θt+1 = θt − η∇θJ(θt) �

√
mt + ε

(4-5)

In order to manage the size of mt RMS prop uses exponential decay. RMSprop decays the
contribution of older gradients at each iteration in order to prevent mt becoming to large
that it stops learning. β denotes a decay factor, η the learning rate and ε a smoothing factor
to prevent division by zero. Typical values, proposed by Hinton, are β = 0.9, η = 0.001 and
ε = 10−8. In practice RMSprop was the preferred optimizer until the introduction of ADAM,
which outperforms the former.

ADAM
Adaptive Moment Estimation (ADAM)[29] computes adaptive learning rates for each param-
eter. Adam keeps a exponentially decaying average of squared past gradients, ν(t), similarly
to RMSprop, but also keeps an exponentially decaying average of past gradients m(t), cal-
culated as shown in eq. (4-6). The former acts as the first moment, the mean, where the
latter acts the second moment, the uncentered variance[30]. Therefrom the methods name is
derived.

mt = β1mt−1 + (1 − β1)∇θJ(θt)
νt = β2νt−1 + (1 − β2)∇θJ(θt) � ∇θJ(θt)

(4-6)

Since both moments are initialized as zero vectors, [29] observed that they are biased towards
zero, especially in the first iteration steps and when the decay rates are small, in other words,
β1 → 1, β2 → 1. In order to counteract these biases, the bias corrected moment estimates are
calculated as shown in eq. (4-7).

m̂t = mt

1 − β1

ν̂t = νt

1 − β2

(4-7)

Using these estimates the parameters are updated as shown in eq. (4-8).

θt+1 = θt + η m̂t �
√

ν̂t + ε (4-8)

Typical hyperparameter values, proposed by the authors, are β1 = 0.9, β2 = 0.999, η = 0.001
and ε = 10−8. RMSprop is still used in instances wherein ADAM tends to osculate around
an optimal solution.

4Herein � refers to the Hadamard product, or element wise multiplication, and � refers to Hadamard
division, or element wise division.
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4-5-4 Detector Training
This subsection describes an algorithm to train a detector on the earlier discussed labeled
training data. A dataset is prepared by first and optionally filtering images are as will be
discussed in section 4-2-2, afterwards these images will cropped if the designed detector will
be used in combination with a sliding window, as will be discussed in section 6-5. After this
the images are annotated, in this case by hand and the dataset is exported for training.

Retrain model
on dataset on 
computative

capable platform

Export
Detector

Test on 
vehicle

Cropped camera 
images

224 × 224 × 3

Labelled cropped 
camera images

Human

Input

Human

Input

new model

previous 

detector

rejected

approved Deploy
Detector

on vehicle

select 

pretrained

…

SqueezeNet

DarkNet53

DarkNet19
add 

yolov2

layers

Prepare model

Prepare data

Camera images

1280 × 720 × 3

Filter image
Partially add

LaB filtered image

Labelled uncropped 
camera images

‘LEDmatrix’-dataset:

Ground truth data
~2500 images

Cropped
∼ 40%

Uncropped
∼ 60%

∪

Figure 4-13: Visualization of the detector training algorithm.

The training algorithm is shown in fig. 4-13 and described using pseudocode in algorithm 1 and
a brief summary of the specifications of the computer used for training is shown in table 4-1.

Algorithm 1 Train Detector
1: procedure Prepare data
2: Take batch of camera images
3: Select images for dataset
4: (Optional) Apply filters
5: (Optional) Crop camera images
6: Annotate images
7: Export Groundtruth-file
8: procedure Train Detector on Data
9: Prepare model and add yolov2 layers

10: Select optimizer and hyperparameters
11: (Re)train model on dataset
12: Export Detector

Part Description

CPU Intel Core i5-4570 CPU @ 3.20 GHz
GPU NVIDIA GeForce GTX 1070ti 8 GB
Installed RAM 16 GB

Table 4-1: Brief overview of the used training
computer hardware. It should be noted that the
used training computer was a bit underpowered
for this purpose, leading to relative small batch
sizes in training.
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4-6 YOLO

The approach YOLO uses is simpler in comparison to previously discussed methods. Multiple
bounding boxes and their class probabilities are predicted simultaneously by a single convo-
lutional network. YOLO is generally trained on full images, as opposed to cropped images
around the object of interest, and optimizes detection performance directly. This section will
first discuss the original YOLO publication, before expanding to YOLOv2.

You Only Look Once:
Unified, Real-Time Object Detection

Joseph Redmon∗, Santosh Divvala∗†, Ross Girshick¶, Ali Farhadi∗†

University of Washington∗, Allen Institute for AI†, Facebook AI Research¶

http://pjreddie.com/yolo/

Abstract
We present YOLO, a new approach to object detection.

Prior work on object detection repurposes classifiers to per-
form detection. Instead, we frame object detection as a re-
gression problem to spatially separated bounding boxes and
associated class probabilities. A single neural network pre-
dicts bounding boxes and class probabilities directly from
full images in one evaluation. Since the whole detection
pipeline is a single network, it can be optimized end-to-end
directly on detection performance.

Our unified architecture is extremely fast. Our base
YOLO model processes images in real-time at 45 frames
per second. A smaller version of the network, Fast YOLO,
processes an astounding 155 frames per second while
still achieving double the mAP of other real-time detec-
tors. Compared to state-of-the-art detection systems, YOLO
makes more localization errors but is less likely to predict
false positives on background. Finally, YOLO learns very
general representations of objects. It outperforms other de-
tection methods, including DPM and R-CNN, when gener-
alizing from natural images to other domains like artwork.

1. Introduction
Humans glance at an image and instantly know what ob-

jects are in the image, where they are, and how they inter-
act. The human visual system is fast and accurate, allow-
ing us to perform complex tasks like driving with little con-
scious thought. Fast, accurate algorithms for object detec-
tion would allow computers to drive cars without special-
ized sensors, enable assistive devices to convey real-time
scene information to human users, and unlock the potential
for general purpose, responsive robotic systems.

Current detection systems repurpose classifiers to per-
form detection. To detect an object, these systems take a
classifier for that object and evaluate it at various locations
and scales in a test image. Systems like deformable parts
models (DPM) use a sliding window approach where the
classifier is run at evenly spaced locations over the entire
image [10].

More recent approaches like R-CNN use region proposal

1. Resize image.

2. Run convolutional network.

3. Non-max suppression.

Dog: 0.30

Person: 0.64

Horse: 0.28

Figure 1: The YOLO Detection System. Processing images
with YOLO is simple and straightforward. Our system (1) resizes
the input image to 448× 448, (2) runs a single convolutional net-
work on the image, and (3) thresholds the resulting detections by
the model’s confidence.

methods to first generate potential bounding boxes in an im-
age and then run a classifier on these proposed boxes. After
classification, post-processing is used to refine the bound-
ing boxes, eliminate duplicate detections, and rescore the
boxes based on other objects in the scene [13]. These com-
plex pipelines are slow and hard to optimize because each
individual component must be trained separately.

We reframe object detection as a single regression prob-
lem, straight from image pixels to bounding box coordi-
nates and class probabilities. Using our system, you only
look once (YOLO) at an image to predict what objects are
present and where they are.

YOLO is refreshingly simple: see Figure 1. A sin-
gle convolutional network simultaneously predicts multi-
ple bounding boxes and class probabilities for those boxes.
YOLO trains on full images and directly optimizes detec-
tion performance. This unified model has several benefits
over traditional methods of object detection.

First, YOLO is extremely fast. Since we frame detection
as a regression problem we don’t need a complex pipeline.
We simply run our neural network on a new image at test
time to predict detections. Our base network runs at 45
frames per second with no batch processing on a Titan X
GPU and a fast version runs at more than 150 fps. This
means we can process streaming video in real-time with
less than 25 milliseconds of latency. Furthermore, YOLO
achieves more than twice the mean average precision of
other real-time systems. For a demo of our system running
in real-time on a webcam please see our project webpage:
http://pjreddie.com/yolo/.

Second, YOLO reasons globally about the image when
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Figure 4-14: The YOLO detection model[17].

4-6-1 Grid Cell

YOLO divides an input image into a S × S grid. Each grid cell predicts only one object and
a fixed number, later referred to as B, of bounding boxes. For example, in image fig. 4-15
the yellow marked grid cell proposes an object ‘person’, whose center falls in this cell. This
grid cell then proposes two bounding boxes, both the blue squares, with the centers marked
as blue dots. This ‘one object per grid cell’-rule limits how close objects can be detected,
as illustrated in fig. 4-16. There are more people in the left bottom corner than there are
detections, as there are no more grid cells available.

Figure 4-15: An example of
detection using YOLO5.

Figure 4-16: An example of detection using YOLO
with multiple overlapping objects6.

.

5 Courtesy of Jonathan Hui, https://jonathan-hui.medium.com/real-time-object-detection-with-yolo-
yolov2-28b1b93e2088, accesed on 2021-04-27

6See previous footnote
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4-6-2 Unified Detection

As discussed earlier each cell predicts B bounding boxes and a confidence score for each of
these boxes. This confidence score indicates the likelihood of the box containing an object,
the so called objectness, and the accuracy of the bounding box, formally defined as in eq. (4-
10). If there is no object in the discussed grid cell, all its confidence scores should be zero,
otherwise this score should equal the Intersection over Union (IoU) between the predicted
box, noted as Ad, and the ground truth, noted as Ag[17]. The IoU is defined as shown in
eq. (4-9), and is visualized in fig. 4-18.

IoU = Ag ∩ Af

Ag ∪ Af
(4-9)

Each bounding box contains five elements, {x, y, u, v, s}, the first four elements being the
location, width and height of the bounding box, and the fifth element being a box confidence
score. The {x, y} are offsets relative to bounds of the corresponding grid cell and {u, v}
elements are normalized to image size. There all five bounding box elements range between
zero and one. Each cell predicts C conditional class probabilities, which are conditioned on
a grid cell containing an object. Regardless of the number of bounding boxes B there is only
one set of class probabilities C. For each class the class confidence score is calculated, as
shown in eq. (4-12). YOLO prediction is a S × S × B · N + C tensor, where N denotes the
number of classes. The algorithm is visualized in fig. 4-17.

box confidence score ≡ Pr (Object) ∗ IoUtruth
pred (4-10)

conditional class probability ≡ Pr (Classi|Object) (4-11)
class condifidence scores = Pr (Classi) ∗ IoUtruth

pred (4-12)
Herein:

Pr (Object) probability predicted box contains an object
IoUtruth

pred IoU between predicted box and ground truth
Pr (Classi|Object) given an object is present, the probability

this object belongs to Classi

Pr (Classi) probability an object belongs to Classi

making predictions. Unlike sliding window and region
proposal-based techniques, YOLO sees the entire image
during training and test time so it implicitly encodes contex-
tual information about classes as well as their appearance.
Fast R-CNN, a top detection method [14], mistakes back-
ground patches in an image for objects because it can’t see
the larger context. YOLO makes less than half the number
of background errors compared to Fast R-CNN.

Third, YOLO learns generalizable representations of ob-
jects. When trained on natural images and tested on art-
work, YOLO outperforms top detection methods like DPM
and R-CNN by a wide margin. Since YOLO is highly gen-
eralizable it is less likely to break down when applied to
new domains or unexpected inputs.

YOLO still lags behind state-of-the-art detection systems
in accuracy. While it can quickly identify objects in im-
ages it struggles to precisely localize some objects, espe-
cially small ones. We examine these tradeoffs further in our
experiments.

All of our training and testing code is open source. A
variety of pretrained models are also available to download.

2. Unified Detection

We unify the separate components of object detection
into a single neural network. Our network uses features
from the entire image to predict each bounding box. It also
predicts all bounding boxes across all classes for an im-
age simultaneously. This means our network reasons glob-
ally about the full image and all the objects in the image.
The YOLO design enables end-to-end training and real-
time speeds while maintaining high average precision.

Our system divides the input image into an S × S grid.
If the center of an object falls into a grid cell, that grid cell
is responsible for detecting that object.

Each grid cell predictsB bounding boxes and confidence
scores for those boxes. These confidence scores reflect how
confident the model is that the box contains an object and
also how accurate it thinks the box is that it predicts. For-
mally we define confidence as Pr(Object) ∗ IOUtruth

pred . If no
object exists in that cell, the confidence scores should be
zero. Otherwise we want the confidence score to equal the
intersection over union (IOU) between the predicted box
and the ground truth.

Each bounding box consists of 5 predictions: x, y, w, h,
and confidence. The (x, y) coordinates represent the center
of the box relative to the bounds of the grid cell. The width
and height are predicted relative to the whole image. Finally
the confidence prediction represents the IOU between the
predicted box and any ground truth box.

Each grid cell also predicts C conditional class proba-
bilities, Pr(Classi|Object). These probabilities are condi-
tioned on the grid cell containing an object. We only predict

one set of class probabilities per grid cell, regardless of the
number of boxes B.

At test time we multiply the conditional class probabili-
ties and the individual box confidence predictions,

Pr(Classi|Object) ∗ Pr(Object) ∗ IOUtruth
pred = Pr(Classi) ∗ IOUtruth

pred (1)

which gives us class-specific confidence scores for each
box. These scores encode both the probability of that class
appearing in the box and how well the predicted box fits the
object.

S × S grid on input

Bounding boxes + confidence

Class probability map

Final detections

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an S×S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,
and C class probabilities. These predictions are encoded as an
S × S × (B ∗ 5 + C) tensor.

For evaluating YOLO on PASCAL VOC, we use S = 7,
B = 2. PASCAL VOC has 20 labelled classes so C = 20.
Our final prediction is a 7× 7× 30 tensor.

2.1. Network Design

We implement this model as a convolutional neural net-
work and evaluate it on the PASCAL VOC detection dataset
[9]. The initial convolutional layers of the network extract
features from the image while the fully connected layers
predict the output probabilities and coordinates.

Our network architecture is inspired by the GoogLeNet
model for image classification [34]. Our network has 24
convolutional layers followed by 2 fully connected layers.
Instead of the inception modules used by GoogLeNet, we
simply use 1× 1 reduction layers followed by 3× 3 convo-
lutional layers, similar to Lin et al [22]. The full network is
shown in Figure 3.

We also train a fast version of YOLO designed to push
the boundaries of fast object detection. Fast YOLO uses a
neural network with fewer convolutional layers (9 instead
of 24) and fewer filters in those layers. Other than the size
of the network, all training and testing parameters are the
same between YOLO and Fast YOLO.

Figure 4-17: The YOLO detection algo-
rithm visualized[17].

𝐴𝑚 : Missed area

𝐴𝑓 : False area

𝐴𝑖 : Intersection

𝐴𝑔 : Groundtruth box

𝐴𝑑 : Detected box

=
𝐴𝑔 ∩ 𝐴𝑑

𝐴𝑔 ∪ 𝐴𝑑
IoU

=
𝐴𝑖

𝐴𝑚 + 𝐴𝑖 + 𝐴𝑓

Intersection over Union

Figure 4-18: The intersection over union
(IoU) visualized.
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4-6-3 Training

The YOLO algorithm predicts multiple bounding boxes per grid cell. In order to determine
the loss for the true positive match, only one grid cell is responsible for the detection. In
order to achieve this the grid cell with the highest IoU with the ground truth is selected. This
strategy leads to specialization between the bounding box predictions as each prediction gets
better at predicting certain object sizes and aspect ratios.

Independent of the base network used, the final layer should output both the bounding box
coordinates and the class probability scores of these boxes. The output of the model is
optimized using sum-squared error. This error does not suit the purpose ideally however,
as it weighs localization equally with missclassifications. Another problem is that in images
not all grid cells contain objects. As the confidence of these cells should be zero, this can
overpower the gradient from cells containing objects, often resulting in model instability,
causing the training to diverge early on[17].

In order to counteract these problems the loss from bounding box coordinate predictions are
increased and the loss from confidence predictions for empty grid cells is decreased. Two
parameters are introduced to accomplish this, λcoord and λnoobj, both of which typically are
defined as five.

The following loss function, shown in eq. (4-13), is used in the optimization, as discussed in
section 4-5-3[17].

L = λcoord

s2∑
i=0

B∑
j=0

1
obj
ij

[
(xi − x̂i)2 + (yi − ŷi)2

]
+

λcoord

s2∑
i=0

B∑
j=0

1
obj
ij

[(√
ui −

√
ûi

)2
+
(√

vi −
√

v̂i

)2
]

+

s2∑
i=0

B∑
j=0

1
obj
ij

(
Ci − Ĉi

)2
+

λnoobj

s2∑
i=0

B∑
j=0

1
noobj
ij

(
Ci − Ĉi

)2
+

s2∑
i=0
1

obj
i

∑
c∈classes

(pi(c) − p̂i(c))2 (4-13)

Herein 1obj
i denotes whether an object appears in grid cell i. Element 1obj

ij denotes that the
jth bounding box in grid cell i is responsible for its prediction. Therefore the loss function
only penalizes a classification error when an object is present in that grid cell. The bounding
box coordinate error is only penalized if a predictor is responsible for the ground truth box,
in other words, if it has the largest IoU[17].
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4-6-4 Improvements in YOLOv2

Compared to similar detection systems YOLO suffers a number of shortcomings. These in-
clude a significant number of localization errors compared to Fast R-CNN[18] and a relative
low recall compared to region-proposal based methods[18]. In contrast to the trend of com-
bining multiple networks or training larger networks, the author of YOLOv2 proposed to
simplify the network and make the representation easier to learn. In order to accomplish this
a number of ideas of existing work and new concepts are implemented in YOLOv2, of which
the mayor improvements are listed below:

• Batch Normalization
Implementing batch normalization yield improvments in convergence and eliminates the
need for other forms of regularization[18], [31].

• Convolutional with Anchor Boxes
In contrast to YOLO, which predicts the bounding box coordinates directly using fully
connected layers on top of the convolutional feature extractor, YOLOv2 uses anchor
boxes to predict bounding boxes, similar to Faster R-CNN[18], [32]. These anchor
boxes can be either designed manually or determined automatically from input data.
When determining the anchor boxes from input data k-means clustering is used on
the training data, in order to automatically extract suitable priors. The used distance
metrics proposed by the author is as shown in eq. (4-14)[18].

d (box, centroid) = 1 − IoU (box, centroid) (4-14)

• Direct Location Prediction
Implementing anchor boxes in YOLO leads to the problem of model instability, espe-
cially in early iterations, mainly due to the predictions of {x, y} locations of the box.
Typically in region proposal networks the network predicts values {tx, ty} and the co-
ordinates {x, y} are determined as shown in eq. (4-15). These values {tx, ty} shift the
box proportional to the size of the anchor box. As this shift is unconstrained the box
can be placed anywhere in the image, regardless of which grid cell proposed the box.

x = (tx · ua) − xa

y = (ty · va) − ya
(4-15)

YOLOv2 implements a different approach, where instead of predicting offsets, location
coordinates relative to the location of the grid cell are determined. This casts the
value in bounds between zero and one, similar to the approach in YOLO. The network
predicts five coordinates for each bounding box, {tx, ty, tu, tv, to}. The offsets to the top
left corner of the image are denoted by {cx, cy} and the anchor box has a width and
height {pu, pv}. Using this notation the prediction {bx, by, bu, bv, b0} corresponds to the
set of equations shown in eq. (4-16)[18]. As the location prediction now is constrained,
the parametrization should be easier to learn, making the network more stable[18].

bx = σ(tx) + cx

by = σ(ty) + cy

bu = puetu

bv = pvetv

bo = Pr (Object) ∗ IoU (b, Object) = σ(to)

(4-16)

S.J. van der Marel Master of Science Thesis



4-6 YOLO 51

4-6-5 Advantages and Disadvantages

Compared to other approaches for object detection YOLOv2 has several benefits:

• Processing Time
Compared to traditional methods the YOLOv2 algorithm is extremely fast.

• Contextual Information
Since the YOLO algorithm uses the entire image, the algorithm has implicitly encoded
the context of classes and their appearance. This results in fewer background errors,
compared to methods which do not use this information[17], [18].

• Generalizable Representations
By training YOLO on natural images of an object, it learns a general representation of
the object. When applying a YOLO detector, trained on natural images, on artwork
YOLO outperforms methods such as DPM and R-CNN[17], [18].

Disadvantages of YOLO include:

• Struggles to Detect Small Objects
YOLO struggles to detect small objects, especially when these appear in groups.

• Struggles to Detect Nearby Objects
Since each grid can only propose two bounding boxes YOLO struggles to detect nearby
objects[17].

• Struggles to Detect Objects in Unusual Aspect Ratios
Since YOLO learns bounding boxes aspect ratios from data it has trouble detecting
objects in unusual aspect ratios[17].

• YOLOv2 Struggles with Scaling of Object
The version used, YOLOv2, struggles with scaling of objects, which is less problematic
in newer versions.
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Chapter 5

Depth Estimation

Since the location of the LED matrix can be determined in pixel locations using the informa-
tion in the previous sections a logical next step would be to determine the depth of the LED
matrix from the camera. Building on the information described in chapter 2, this section
discusses two ways to determine this distance, one using a simple disparity calculation using
the bounding boxes centers and an other using the camera toolboxes depth information.

5-1 Depth Estimation using Bounding Box Centers

In order to measure the depth of the LED matrix a simple disparity calculation, as discussed
in section 2-3-1, can be used using the centers of the bounding boxes,
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Figure 5-1: Calculating depth using the disparity.

Using a disparity calculation the depth can be calculated, as shown below:

Z = f
b

uL − uR
= f

b

∆u
(5-1)
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Measurement Errors
Because the bounding boxes are estimates using neural networks, these are in most cases not
covering the LED matrix in a consistent manner. Imperfect bounding box estimation leads in
these depth estimation cases cause an offset in the disparity, ∆u and therefore to an offset in
depth, Z, as shown in fig. 5-1. Since the accuracy of the depth measurement method based on
the centers of the bounding boxes is directly dependent on the accuracy of the detection, this
information should be used to determine how much one should trust the results. The example
shown in fig. 5-2 shows examples of imperfect estimated led matrices and the influence on the
used center.
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𝑥𝑅
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𝑣𝐿
𝑣𝑅

LEDMLEDM

Left Image Right Image

𝑑𝑣1

𝑉 𝑏
𝑏
𝑜
𝑥
,𝐿

𝑉 𝑏
𝑏
𝑜
𝑥
,𝑅

𝑑𝑣2

Figure 5-2: Error types in depth estimation using dis-
parity and bounding boxes.

Misalignment w.r.t. left image:

Cm,L = |vL − vR|
vbb,L

= |dv|
vbb,L

(5-2)
Size difference w.r.t. left image:

Cs,L = |vbb,L − vbb,R|
vbb,L

(5-3)

Since only a simple matching algorithm is used, there is little information available on the
likeliness of the match. Information that is available include the sizes of the bounding boxes
and the vertical offset of the centers. When the bounding boxes are estimated with different
vertical sizes this is an indication that is likely that at least one of the bounding boxes is not
estimated correctly. A similar thing can be said about the bounding box centers; since the
images are rectified the LED matrices and therefore the bounding boxes should be on the
same horizontal line in both images. Combining both confidence reducing properties lead to
the equation show in eq. (5-4).

C1 =
(

1 − max
(

1,
|dv|

2 vbb,L
+ |dv|

2 vbb,R

))
·
(

1 − max
(

1,
|vbb,L − vbb,R|

2 vbb,L
+ |vbb,L − vbb,R|

2 vbb,R

))
(5-4)

Herein:
dv distance of bbox centers in the vertical direction in pixels

vbb,L, vbb,R heights of left and right bboxes in pixels
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5-2 Depth Estimation using Neighbouring Pixels

In order to estimate the location of the LED matrix the depth information provided by the
ZED camera toolbox can be used, instead of the bounding boxes as discussed before, as that
method might prove unreliable. The depth information this toolbox provides is unreliable
at the LED matrix itself. Possibly because the LED matrix contains repetitive patterns,
which can disturb the stereo matching process. The blooming caused by the LEDs might also
influence this matching.

One workaround for this issue is to take not the depth information of the LED matrix pixels
themselves, but instead use the neighbouring pixels, provided that the neighbouring pixel lie
in the same plane as the LED matrix pixels. In order to enforce this constraint a modified
version of the LED matrix assembly is used, as shown in fig. 5-4.

LEDM

Search Area

𝑑𝑚𝑥

𝑑𝑠𝑥

𝑑𝑚𝑦 𝑑𝑠𝑦

Figure 5-3: Example of a neighbourhood
search area around a LED Matrix.

Figure 5-4: A render of the modified
LED matrix assembly.

When a LED matrix is detected, a search area is constructed around the bounding box of
the LED matrix, as shown in fig. 5-3. The size of the rectangular search area is proportional
to the size of the LED matrix bounding box in both axis respectively, where unless specified
otherwise ds = 1.8 · dm is used.
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Determining Depth and Confidence metric
An example of a depth map is shown in fig. 5-5, where the white/greyish areas show useful
data and the black data shows bad data. The blue marked area shows the region of interest
for the depth measurement.

LED matrix 
bounding box

Augmented 
bounding box

Marked pixels

Depth map

Figure 5-5: Example of usable data in depth map.

A naive approach to determine the depth would be taking the average of all data points, as
shown in eq. (5-5). A disadvantage of this method is the sensitivity to bad data, as bad data
can skew the mean. A better approach would be taking the median of the useful data since
this is approach is less sensitive to noise.

Z = 1
N

N∑
i=1

ai, N = numel (Saug,bbox \ Sbbox) , ai ∈ Saug,bbox \ Sbbox (5-5)

Z = median (Saug,bbox \ Sbbox) (5-6)

Herein:
Sbbox set of points in the bbox

Saug, bbox set of points in the augmented bbox
Snodepth set of points wherein no depth was determined

numel number of elements in set
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LED matrix 
bounding box

Augmented 
bounding box

Marked pixels

Depth map

𝒂𝟏

𝒂𝟒

𝒂𝟐

𝒂𝟑
𝒂𝟎

𝑎0

𝑎2
𝑎3
𝑎4

𝑎1

Sectors

Figure 5-6: Useable data divided in sectors.

A problem with the previous methods is these do not handle rotation of the marker well, as
often the amount of useable pixel on one side of the marker is larger, leading to an offset. A
solution can be dividing the markers in sectors, as shown as in fig. 5-6, and take the mean of
the sector medians. In this way a lack of data on one side does not skew the median or mean.

Z = 1
Ns

Ns∑
i=1

median(ai) (5-7)

One disadvantage of eq. (5-7) is sensitivity to sectors with little data, which increases the
sensitivity to noise. Applying a correction factor ni/nt per sector, wherein ni denotes
the amount of points in the sector, and nt denotes the total amount of useful points in
(Saug,bbox \ Sbbox) ∩ Snodepth.

Z = 1
nt

Ns∑
i=1

(ni · median(ai)) (5-8)

As the median of the available usual data is used, one could describe the confidence in as the
fraction of usable data. As shown in eq. (5-9) this confidence is determined by dividing the
number of elements in the intersection between the sets of points with no data and the data
in the region between the augmented bounding box and the LED matrix bounding box by
the total amount of points in this region.

C2 = 1 − numel ((Saug,bbox \ Sbbox) ∩ Snodepth)
numel (Saug,bbox \ Sbbox) (5-9)
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Minimal Reliable Distance
In fig. 5-7 an example is shown of two camera images and the depth maps belonging to those
two images. In the first set of images the depth information is clearly unreliable, because the
object (the LED matrix) is to close to the camera.

Depth image
Legend

No Info

Closer 
to camera

Further 
away

Figure 5-7: Example of a neighbourhood search area around a LED Matrix for a close by
(∼ 700 mm) and further away (∼ 1400 mm) scenario.
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Reflectiveness of the Neighbourhood
When the neighbourhood of the LED matrix is reflective, this can influence the distinctiveness
of LED matrix on the camera image During the set up of the experiment a number of different
iterations of the border were used, some of which are shown in fig. 5-8.

(b) Reflective border; 
difficult to distinguish LED matrix from 
neighboorhood

(a) Few iterations of border design:
a. No border
b. White border; 3D printed from White eSun PLA+. 

Reflections were influencing detection with moderate 
environment light.

c. Grey slightly translucent border; 3D printed from Real 
filament Smokey Black PETG. Sanded down. Reflections 
were influencing detection only with bright environment 
light.

d. Brownish matt border; 3D printed from Real filament 
corkfill PLA, sanded down. Reflections are not influencing 
detection for all tested environment lights.

(c) Non reflective border; 
less difficultly to distinguish LED 
matrix from neighboorhood

Figure 5-8: Influence of the material of the neighbourhood of the LED matrix on the reflective-
ness.

Under circumstances with a lot of light exposure the best results, using a simple visual
inspection on the camera images, were archieved using a 3D printed border of sanded ‘corkfill’-
PLA, which results in a matte brownish finish as shown in the picture above. For the rest of
the experiment this border was used.
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Chapter 6

Experiment

In an experiment to test the visual communication one device will design and display a simple
pseudo QR code message on a LED matrix. The vehicle will attempt to read and localize
this message using the ZED stereo camera. An overview of the protocol is shown in fig. 6-1.

Extract message and location

Display on 
LED matrix

Recognize Pseudo QR

Design matrix
View using camera

Apply Filter

Figure 6-1: LED matrix recognition experiment.
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6-1 Setup

In order to test the accuracy and precision of the algorithms, the LED matrix will be moved
along one axis. This known movement will be compared with the measured distance. This
allows an error to be measured for both algorithms and therefore a comparison can be drawn
between those.

LED Matrix
Display

Linear stage

ZED Camera 𝑥

𝒚𝑦

𝑧

Light sources

USB3 to camera

USB to 
Linear stage

USB to 
LED matrix

Figure 6-2: LED matrix recognition experimental setup.

The LED matrix is mounted on a linear stage (a modified LPKF ProtoMat 91 PCB mill),
which allow the LED matrix to be translated by 330 mm in x direction, 200 mm in y direction
and 150 mm in z direction. Only the x direction will be used.

The initial distance will be set up using a one point five meter rod between the starting
position and the faceplate of the camera on the vehicle. All other positions will be calculated
from that point, introducing a set up error of ∼ 3 − 4 mm.

Evaluated Methods
The experimental set-up will be used to evaluate several approaches, this includes detectors
based on multiple types of pretrained networks (SqueezeNet, DarkNets, etc) and will test
local and global approaches. A local approach in this context denotes using a moving sliding
window to attempt to detect a LED matrix in a small sub image in the image, whereas a
global approach uses the entire image.
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Error metrics
The used metrics will be the error and the absolute relative error as show in eqs. (6-1) and (6-
2). In these equations Ẑ refers to the measured depth, Z refers to the actual depth (plus or
minus the earlier discussed setup error).

e1 = Ẑ − Z (6-1)

e2 = |Ẑ − Z|
Z

(6-2)

Confidence metrics
As confidence metrics the confidence scores of the YOLO detection algorithms are used, as
defined in section 4-6-2. Furthermore the in eqs. (5-4) and (5-9) proposed confidence metrics
are used as indications whether their measurements are reliable. However these metrics are
not suited to compare both methods as no viable normalization is used.

6-2 Testing Protocol: Online experiment

The experimental protocol is shown in algorithm 2, the protocol is divided in a setup pro-
cedure and a main loop procedure. In the experimental setup the user has to input certain
experimental parameters in the start-up GUI, as shown in fig. 6-3, afterward dependencies
are imported and external hardware is initialised.

Local
Global

Approach

1495

Z_offset in [mm]

100

Number of data points

N B1

Command to LED Matrix

RES/_detectors/2021.03.01_15.22_yolo2test4_darknet19_detector.mat

Detector Path

Show images
Save data
Save all images

Start experiment

Cancel

Figure 6-3: Graphical User Interface (GUI) used at experiment start.

In the main loop the algorithm discussed in section 4-1 and fig. 4-1 is run. The camera is
opened, takes a set of pictures, and is closed afterwards1.

1Because of hardware/software limitations the camera can not be run at the same time instance as the
YOLOv2 detector
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Algorithm 2 Experimental Protocol: Online Experiment
1: procedure Setup
2: User input in GUI . Using GUI shown in fig. 6-3
3: Import dependencies

• experiment settings, non user input parameters
• detector

4: System Initialization
• initialize LED Matrix
• initialize linear stage

– home
– move to initial position

5: User: move camera in correct position . 1.5 m rod between camera and LED matrix
6: Generate linear stage trajectory . Randomized N points between start and end
7: procedure Main Loop
8: for N positions do
9: Linear stage: Move to position

10: Camera
• open
• create left, right and depth images
• close . Failing to close requires a system reboot

11: if approach = Global then
12: Run Detector on Left and Right images . One type of Detector per trial
13: else if approach = Local then
14: for k subimages do
15: Run Detector on Left and Right sub images
16: Cluster LED matrices . Overlap & Duplicate LEDm in sliding windows
17: Match found clusters
18: Determine depth for matched clusters

• bounding box centers method
• depth map method

19: Plot found results for current iteration . for real time check
• Left and right images with all found bboxes
• Left and depth map images with matched found augmented bboxes

20: procedure Finalise
21: Plot experiment results

• Raw data plot
• Boxplot error
• Boxplot absolute error
• Confidence plot

22: Save experiment parameters and results to .mat-file
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6-3 Testing Protocol: Offline experiment

In order be able to validate the detected LED matrices against a human annotated one, a
second offline experiment will be done on the same set up. The detectors of interest will be
applied to a validation dataset2 of annotated images. The detected LED matrix bounding
boxes will be compared with the groundtruth bounding boxes in order to gain multiple metrics:

• Intersection over Union
The Intersection over Union (IoU) is the metric capturing the overall accuracy of the
detector and is used by the author of YOLO.

• Normalized missed area
The missed area of the groundtruth box normalized to the size of the ground truth box.

• Normalized false area
The falsely labeled area outside of the groundtruth box, normalized to the size of the
groundtruth box.

Counteracting Hand Labeling Errors
Annotations created by hand are not consistently labeled throughout the datasets. Generally
a offset of ±2 pixels captures all of these hand labeling fluctuations. In order to counteract
this influence the groundtruth bounding box is extended with 2 pixels on either side, within
this area, as visualized in fig. 6-4, all possible bounding boxes are labeled as groundtruth
- allowing for translation, resizing and a combination of these. These groundtruth bound-
ing boxes are then compared with the computer detected bounding box. The best match-
ing groundtruth bounding box is the ‘true groundtruth’ used in the further calculations.

𝐴𝑚 : Missed area

𝐴𝑓 : False area

𝐴𝑖 : Intersection

𝐴𝑔 : Groundtruth box

𝐴𝑑 : Detected box

𝐴𝑔,𝑖 : Groundtruth box space

For example:

Figure 6-4: The intersection over union (IoU) visualized, with a range of possible groundtruth
images. The size of this range depends on the maxium deviation, in the shown example this
deviation is one pixel.

2Dataset not used in the training of the detectors, and one complete trajectory. A dataset of N datapoints,
includes 2N annotated images, as both left and right images are captured and annotated.
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6-3-1 Creating Validation Dataset

First the validation dataset will be created. This is done by first capturing images and saving
data about these images. Afterwards these images are hand annotated. This procedure is
described in algorithm 3.

For this experiment a dataset of 400 datapoints, and therefore 800 images, will be created in
one trajectory using the set up shown in fig. 6-2.

Algorithm 3 Experimental Protocol: Offline Experiment, Prepare Data
1: procedure Create Dataset
2: User input in GUI
3: System Initialization

• initialize LED Matrix
• initialize linear stage

– home
– move to initial position

4: User: move camera in correct position . 1.5 m rod between camera and LED matrix
5: Generate linear stage trajectory . Randomized N points between start and end
6: for N positions do
7: Linear stage: Move to position
8: Create new datapoint instance
9: Camera

• open
• create left, right and depth images
• close . Failing to close requires a system reboot

10: Add to datapoint instance: position, time, paths to images, camera parameters
11: Save data

• in image (.bmp) files: left, right and depth
• in ‘maindata’ file(.mat): datapoint instance

12: procedure User Annotate Dataset
13: Using Matlab ‘Image Annotator’, import all left and right images
14: for 2N images do . For each datapoint left and right images need to be annotated
15: User: Zoom to correct view
16: User: Annotate
17: Export to ‘Groundtruth’ file (.mat)
18: procedure Match Annotations Dataset to Data
19: import ‘maindata’ and ‘groundtruth’ files
20: for N datapoints do
21: lookfor datapoints’ left and right image filenames in ‘Groundtruth’ file
22: import annotations to datapoint instance
23: Update ‘maindata’ file (.mat)
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6-3-2 Detection Validation

This part of the experiment compares hand annotated LED matrices in the images, the
groundtruth, to the detected ones. These LED matrices will be detected using all detectors
of interest, in order to compare these detectors with each other.

The validation based on the created dataset is explained in algorithm 4, which follows the same
general structure of algorithm 2. The results of this experiment will be shown in section 7-4.

Algorithm 4 Experimental Protocol: Offline Experiment, Validation
1: procedure Setup
2: Import dependencies

• experiment settings, non user input parameters
• detectors
• validation dataset

3: procedure Main Loop
4: for Q detectors do
5: for N positions do
6: open datapoint from dataset
7: if approach = Global then
8: Run Detector on Left and Right images . One type of Detector per trial
9: else if approach = Local then

10: for k subimages do
11: Run Detector on Left and Right sub images
12: Cluster LED matrices . Overlap & Duplicate LEDm in sliding windows
13: Compare LED matrix: groundtruth and detection

• IoU
• normalized missed area
• normalized false area

14: Add results to datapoint instance
15: procedure Finalise
16: Plot experiment results

• Raw data plot: IoU, missed and false area vs position
17: Save experiment parameters and results to .mat-file
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6-4 Training Datasets for Experiment

The LED matrix detectors are trained on subsets of the complete annotated dataset. The
general requirements on these kinds of datasets are discussed in section 4-5-1, and the training
procedure in section 4-5-4.

Training Data for Local Detectors
During preliminary testing the local detectors, trained on only cropped 224 × 224 images,
showed viable detections on a relatively small dataset, starting from ∼ 200 − 300 images.
During the experiment design this cropped images database was increased to around 1000
annotated images, with a high degree of diversity of environment, lighting, filtering and
rotation. A selection of such images is shown in fig. 6-5.

Figure 6-5: Typical cropped and annotated training images. Images are taken in different
environments, with different lighting and elements such as reflections.

Training Data for Global Detectors
For the global detectors only entire images were used, as combining data with the cropped
images reduced the performance of the trained detectors. The size and aspect ratios are
different to the entire images, and while techniques exist to overcome these problems, such
as (zero) padding the images, these were not implemented. During preliminary testing the
global detector was shown to require orders of magnitudes more of training data in order to
perform on a similar level as the local detectors. As annotating by hand is a time consuming
task certain sacrifices were made to keep the task approachable in favor of the experiment.
The dataset for the global detector was created with focus on the experiment, still using
diverse lighting and filtering conditions, but with less orientation and environments changes.
By creating the dataset in this way it was hoped to achieve a detector with an abstract
description of the object in one orientation. Despite of these compromises it is still expected
to have a detector with lower IoU and confidence scores as the desired amount of data required
for a detector, which is comparable to the local ones, seems infeasible for this thesis.
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6-5 Sliding Window

Since the input size of the network is 224 × 224(×3) and the camera image is larger, for the
ZED camera (two images of) 720 × 1280(×3), this image need to be handled in a certain
way. The image is divided in a grid and a sliding window passes each square and attempts
to detect a LED matrix in each square.

𝑥𝑖

𝑦𝑖

𝑦𝑤
𝑥𝑤

𝑑

Herein:
𝑥𝑖 , 𝑦𝑖 image coordinates
𝑥𝑤 , 𝑦𝑤 window coordinates
𝑑 window overlap

Figure 6-6: Sliding window.

The window overlap is needed for images wherein the LED matrix is in not completely captures
in one subimage. This window overlap is a set-up parameter set at d = 1/2.
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Chapter 7

Results
This chapter discusses the results of the measurement set-up discussed in the previous chap-
ter. The first section discusses the results for the online experiment per detector type, the
second section draws a comparison between detectors and the third section notes observations
during the online experiment. The last section describes the results for the offline validation
experiment.

The complete list of the evaluated detectors1 for both online and offline experiments is shown
below:

• SqueezeNet based YOLOv2 detector

– Local Detector

• DarkNet19 based YOLOv2 detector

– Local Detector

• DarkNet53 based YOLOv2 detector

– Local Detector
– Global Detector

For the depth map based depth estimation the ‘Weighted mean of medians of sectors’ ap-
proach, introduced in section 5-2, for depth estimation was used, which will be compared to
alternatives in section 7-2-2.

1A quick reminder of the terminology used. The local detectors use a sliding windows over the images in
both directions, with a certain overlap, running a detector on each subimage. The global detector uses the
entire image, therefore using the detector only one time per iteration.
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7-1 Online Experiment: Results per Detector

This section discusses the results per detector type, split in local (using the sliding window)
and global (entire image) detectors.

7-1-1 SqueezeNet Based Yolov2 Detector

The first discussed detector is the SqueezeNet based Yolov2 Detector. This is the detector
with the fewest amount of parameters it should be expected to run quicker compared to the
DarkNet based counterparts.

Local Detector
The graphs shown in fig. 7-1 shows the online measurement using the setup described in the
previous chapter. The left figure shows the error over the distance, wherein positive error
denotes an object that is estimated to be further away from the camera than in reality. The
right figure shows boxplot of the true error and absolute error for both methods of depth
estimation. First of all a negative bias is visible for both the depth map and bounding
box based methods. In early testing this bias was shown to be ambient lighting dependent.
The depth map based method outperforms the bounding box based method error wise in
this distance range as expected. A periodic behaviour seems to occur in the depth map
based method. This could possibly happen due to interpolation between pixels, due to the
requirement for subpixel accuracy, this will be discussed in section 7-3-2. Based on the
confidence graph there are no datapoints visible based on bad data or mismatched LED
matrices. A broader comparison between methods will be drawn in section 7-2, which will
compare error, computation time and score performance between the tested methods.

Global detector
The global SqueezeNet detector returned no viable results, since in all iterations no LED
matrices were detected. The decisions for the hyperparameters will be discussed in section 7-
1-3, since this detector was the only global detector to return viable results. Attempts for
other global detectors were based on the global DarkNet53 hyperparameters.

7-1-2 DarkNet19 Based Yolov2 Detector

Local Detector
The used detector was trained using the hyperparameters shown in section 7-1-2. The results
are shown in fig. 7-2. Again a negative bias is shown for both methods. An outlier is shown
between 1.20 m and 1.25 m, as the confidence for this point is very low as well, it should be
safe to assume that a mismatch was done between LED matrices in the left and right image.
Similar to the local SqueezeNet detector a periodic influence is visible in the depth map based
method.

Global Detector
An attempt was made to train Global DarkNet19-448 (input size 448) based YOLOv2 de-
tector, with the same parameters, optimizer and hyperparameters as for the DarkNet53-448
based detector. This attempt did not give viable results as no LED matrices were detected.
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Figure 7-1: Measurement data of the previous discussed online experiment in a known environ-
ment using SqueezeNet based detector, N denotes the amount of measurements, Nm denotes
the amount of missed frames.

Detector

Local

Global

Parameter Value

Optimizer ADAM
Base learning rate 10−4

Mini Batch Size 180
Max Epochs 300

Optimizer RMSprop
Base learning rate 10−5

Mini Batch Size 80
Max Epochs 300

Parameter Value

Input size 224 × 224 × 3
Anchor boxes 18

Input size 448 × 448 × 3
Anchor boxes 18

Table 7-1: Used hyperparameters in the training of the Local SqueezeNet detector.

Master of Science Thesis S.J. van der Marel



74 Results

1.2 1.25 1.3 1.35 1.4 1.45

 Distance  to camera in [m]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

 E
r
r
o

r
 i
n

 [
m

]

 Error over Distance

N = 100, N
m

 =   0, local YOLOv2 + darknet19

depth map

bbox center

depth map bbox center

Data set

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

  
E

r
r
o

r
 

 i
n
 [
m

]

 Error 

depth map bbox center

Data set

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

  
A

b
s
o

lu
te

 E
r
r
o

r
 

 i
n
 [
m

]

 Absolute Error 

1.2 1.25 1.3 1.35 1.4 1.45

 Distance  to camera in [m]

0

0.2

0.4

0.6

0.8

1

C
o

n
fi
d

e
n

c
e

 Confidence

score left

score right

bbox cent conf

depth map conf

Figure 7-2: Measurement data of the previous discussed experimental setup in a known envi-
ronment using a local DarkNet19 based detector, N denotes the amount of measurements, Nm

denotes the amount of missed frames.

Detector

Local

Global

Parameter Value

Optimizer ADAM
Base learning rate 10−4

Mini Batch Size 80
Max Epochs 300

Optimizer RMSprop
Base learning rate 10−5

Mini Batch Size 20
Max Epochs 300

Parameter Value

Input size 224 × 224 × 3
Anchor boxes 18

Input size 448 × 448 × 3
Anchor boxes 18

Table 7-2: Used hyperparameters in the training of the DarkNet19 detectors

Detector

Local

Global

Parameter Value

Optimizer ADAM
Base learning rate 10−4

Mini batch size 40
Max Epochs 300

Optimizer RMSprop
Base learning rate 10−5

Mini batch size 8
Max Epochs 300

Parameter Value

Input size 224 × 224 × 3
Anchor boxes 18

Input size 448 × 448 × 3
Anchor boxes 18

Table 7-3: Used hyperparameters in the training of the DarkNet53 detectors.
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7-1-3 DarkNet53 Based Yolov2 Detector

Local DarkNet53 Based Yolov2 Detector
The used detector was trained using the hyperparameters shown in table 7-3. The results
are shown in the upper image in fig. 7-3. Again a slightly larger spread it shown towards the
1.5 m for the bounding box based method. A larger periodic influence is visible compared to
the previously discussed detectors. A few points with a relative low confidence are shown,
but no large influence is shown in the measurement error.

Global DarkNet53-448 Based Yolov2 Detector
In order to have a viable global detector the input size was increased to 448 × 448 × 3 after
the standard input size gave no viable results2. The resulting detector gives viable results, as
shown in fig. 7-3.

The net was trained using the optimizer and hyperparameters shown in table 7-3 using only
complete training images. The mini batch parameter is low compared to typical values, as the
training computer does not allow a higher value in combination with the rest of the hyperpa-
rameters. This makes the training more susceptible to oscillations since using a low number
images increases the influence of one difficult to classify image or one ‘bad’ annotation3.
Since these oscillations were observed during training using the Adaptive Moment Estima-
tion (ADAM) optimizer, a switch was made to the Root Mean Square Propagation (RMSprop)
optimizer , since this one is less susceptible to oscillations, as discussed in section 4-5-3. Using
RMSprop the net did converge to a suitable detector.

In fig. 7-3 a positive bias is shown for the global detector measurement data. The bias might
have changed because this dataset was created under slightly different lighting condition, this
will be further discussed in section 7-3-3.

For all found LED matrices low scores were assigned, which is according to expectations and
will be further discussed in section 7-2-1.

2The increased size DarkNet53-448 was not included in the Matlab software. Although it is possible to
change the input size of the one included in Matlab the weights are absent. The increased size net was sourced
from the website of the author of [17], and imported using a plugin for Matlab; the "Deep Learning: Darknet
Importer" by Kei Otsuka.

3However during labeling by hand care was taken to make all annotations as precise and consistent as
possible. Some images are easier for the net to classify then others leading to higher scores for one mini batch
compared to others using the same detectors. If this effect occurs during training oscillations may occur.

Master of Science Thesis S.J. van der Marel



76 Results

1.2 1.25 1.3 1.35 1.4 1.45

 Distance  to camera in [m]

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 E
r
r
o

r
 i
n

 [
m

]

 Error over Distance

N = 100, N
m

 =   0, local YOLOv2 + darknet53

depth map

bbox center

depth map bbox center

Data set

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

  
E

r
r
o

r
 

 i
n
 [
m

]

 Error 

depth map bbox center

Data set

0

0.02

0.04

0.06

0.08

0.1

0.12

  
A

b
s
o

lu
te

 E
r
r
o

r
 

 i
n
 [
m

]

 Absolute Error 

1.2 1.25 1.3 1.35 1.4 1.45

 Distance  to camera in [m]

0

0.2

0.4

0.6

0.8

1

C
o

n
fi
d

e
n

c
e

 Confidence

score left

score right

bbox cent conf

depth map conf

1.2 1.25 1.3 1.35 1.4 1.45

 Distance  to camera in [m]

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

 E
r
r
o

r
 i
n

 [
m

]

 Error over Distance

N = 100, N
m

 =   0, global YOLOv2 + darknet53-448

depth map

bbox center

depth map bbox center

Data set

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

  
E

r
r
o

r
 

 i
n
 [
m

]

 Error 

depth map bbox center

Data set

0

0.02

0.04

0.06

0.08

0.1

0.12

  
A

b
s
o

lu
te

 E
r
r
o

r
 

 i
n
 [
m

]

 Absolute Error 

1.2 1.25 1.3 1.35 1.4 1.45

 Distance  to camera in [m]

0

0.2

0.4

0.6

0.8

1

C
o

n
fi
d

e
n

c
e

 Confidence

score left

score right

bbox cent conf

depth map conf

Figure 7-3: Measurement data of the online experiment in a known environment using a local
DarkNet53 based detector and a global DarkNet53-448 based detector.
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7-2 Online Experiment: Comparison between Methods

In this section comparisons are drawn between different methods; the first subsection discusses
performance and computation time between detectors using different base networks. The
second subsection draws a comparison between approaches to depth approximation using the
depth map, which were introduced in section 5-2.

7-2-1 Base Net Comparison

Performance Comparison
In fig. 7-4 the results are shown for all used approaches for depth measurements, the left
image shows the results using the depth map and the right image using the bounding boxes.
The first thing to note is the depth map based methods outperforms the bounding box based
method in all cases in accuracy. Both sets of data tend to have a bias for both the depth map
and bounding box based methods. For the local approaches the error is similar for the depth
map based estimation.
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Figure 7-4: Measurement data of the depth map (left) and bounding boxes (right) based method
for the experimental setup in a known environment using various approaches and base networks.

The detectors seems to perform worse with increasing distance for the bounding box based
depth estimation, with the global Darknet53-448 detector in particular, as shown in fig. 7-
3. The depth map based method does not share this property. Since the detectors tend to
have more difficulties with detecting objects further away, this falls in the line of expectations.
The DarkNet53 based method has a slightly more accurate estimation for the bounding boxes
based approach.
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Computation Time Comparison
During the experiment operation times were measured4. An overview of mean operation times
is shown in table 7-4. The operation that takes most time is the detection, by a wide margin.

Detection Clustering Matching Depth bbox Depth map
in [ms] in [ms] [ms] in [ms] in [ms]

Local squeezenet 5745.684 0.440 0.159 0.925 0.925
Local darknet19 7593.779 0.406 0.112 0.885 0.885
Local darknet53 12553.591 0.355 0.106 0.809 0.809
Global darknet53-448 266.289 0.550 0.212 2.538 2.538

Table 7-4: Computation times per operation.

The box plot shown in fig. 7-5 shows the detection times for various base nets and approaches.
The local methods, using a sliding window, take a significant longer time to detect compared
to the global DarkNet53-448 approach. This makes sense as using the global detector the
detection network is used one time, while using the local approaches the net is run dozens of
times. It can be problematic to apply the local detectors to real world applications because
of the significant computation time, as these times are prohibitively high - a vehicle can not
have a five second delay in braking, because it possible will have crashed in the meantime.
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Figure 7-5: Detection times for the experimental setup in a known environment using various
approaches and base networks.

It should be noted that this might not reflect well to real life applications, since the unopti-
mized Matlab code was run on a HP ‘Zbook’ laptop5, leaving much room for improvements
in this perspective. Improvements in algorithms, such as only scanning a region of interest in
the next image, might speed up the local approaches as well by orders of magnitude.

4The are measured using Matlab tic and toc commands.
5A laptop with the specifications:Intel i7, NVIDIA M1200 Quadro GPU 4GB vRAM, 8GB RAM.
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Detection Score Comparison
In table 7-5 and fig. 7-6 the detection scores, the YOLOv2 confidence scores as described in
section 4-6-2, are shown. The scores for the local detectors are significantly higher compared
to the global detector. These results is in line with the in section 6-4 described expectations.

Error depthmap Error bbox Score Detection time
in [cm] in [cm] in [ms]

Local squeezenet -1.734 -5.965 0.911 5745.684
Local darknet19 -1.894 -6.234 0.931 7593.779
Local darknet53 -1.708 -3.992 0.932 12553.591
Global darknet53-448 2.291 -5.975 0.618 266.289

Table 7-5: Overview of mean score results.
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Figure 7-6: Detection scores for the experimental setup in a known environment using various
approaches and base networks. Per category 100 data points are used.

7-2-2 Depth Map Measurement Comparison

In order to draw a comparison between the different depth map based algorithms, these
algorithms, shown below, were applied on one dataset. In the experiment five sectors are
used. These are used in the configuration as shown in fig. 7-7, for 100 measurement points
in a distance range between 1180 mm and 1500 mm. The results for all detectors are shown
in fig. 7-8. For all datasets the unweighted sector based method performs best. Comparing
this unweighted sector based method between approaches (local/global and different nets)
yield similar absolute errors with similar variances. The depth estimation from the previous
results was based on the ‘Weighted mean of medians of sectors’ and will stand to improve by
switching to the ‘Mean of medians of sectors’-approach in further experiments.
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Figure 7-7: Recap of a sector division of
the LED matrix marker.

1. Mean of complete marker area,
as shown in eq. (5-5).

2. Median of complete marker area,
as shown in eq. (5-6).

3. Mean of medians of sectors,
as shown in eq. (5-6) and fig. 7-7.

4. Weighted mean of medians of
sectors,
as shown in eq. (5-6) and fig. 7-7.
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Figure 7-8: Measurement data for all used approaches for all depth map based determinations.
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7-3 Online Experiment: Analysis of Observations

7-3-1 Detection Robustness Local versus Global

During the experiment the observation was made that the global detectors perform worse
compared to the local detector in cases where the scene changes; for the change shown in
fig. 7-9 the angle for the measurement was changed. The local detectors, of which only the
the SqueezeNet based one is shown for conciseness, have a comparable detection performance
compared to the case of normal experimental conditions. The global detector in contrast has
a similar detection score to the experimental setup, but the overlap of bounding boxes with
the actual LED matrix is less then using the local detectors, of which an example is shown
in fig. 7-9.

Local
SqueezeNet

Global
DarkNet53-448

Figure 7-9: Detection under slight angle using a local squeezenet and a global DarkNet53-448
based YOLOv2 detector.

This is in line with the expectations, as the datasets for the global were significantly less
diverse concerning rotations, as described in section 6-4. Of course in applications this would
result in problems and therefore in further research the dataset would need to be extended
with images containing the LED matrix in different orientations and environments. This will
be discussed later, together with different recommendations for further research, in section 8-
2-2.
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7-3-2 Depth Map Estimation Error: Periodic Behaviour

There seems to be a periodic behaviour in the error for the depth map based approaches.
One hypothesis is due to the need for subpixel accuracy in the disparity; an interpolation is
done between pixels, which could lead to larger errors. In order to investigate whether the
periodic nature of the measurement errors could be caused by, or at least be contributed by,
these interpolations, the errors are plotted versus the disparity6 as shown in fig. 7-10.

54 56 58 60 62 64 66 68 70

 Disparity   in [pixel]

0.005

0.01

0.015

0.02

0.025

0.03

0.035

 E
rr

o
r 

 i
n
 [
m

]

 Error over Disparity 

N = 100, global YOLOv2 + darknet53-448

Figure 7-10: The disparity versus the error for the global DarkNet53-448 based YOLOv2 detector.

In fig. 7-10 disparity versus the error is shown, however a periodic influence is visible, this
seems to have no correlation with the interpolation between integer values. Since the used
toolbox is proprietary and closed source further investigation might prove difficult.

7-3-3 Depth Estimation Bias

In the depth map based approaches there seems to be a bias in all measurements. During
experiments this bias seems to change depending on ambient light conditions, for example
the time of the day, curtains open or closed, and the ceiling lamps on or off. In order to keep
a constant measurement the experiment was done in the evening were only artificial light was
added. The possible bias introduced by the set-up method (∼ 3 − 4 mm) could contribute to
the bias, but can not be the sole cause, as it is a order of magnitude lower. In preliminary
test the biases were in the range of [−5, 5] mm even in extreme light conditions. Finding the
exact source of the bias might prove difficult due to the proprietary nature of the toolbox.

Biases in this range should probably cause little harm in real life applications wherein a vehicle
is tracked.

6Since the toolbox has no readily available or properly documented disparity map, this disparity is back-
calculated from the distance.
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7-4 Offline Experiment: Results

The LED matrix detection validation results of the offline experiment, as introduced in sec-
tion 6-3, on one dataset of N = 400 datapoints7. The missed and false areas are shown
normalized to the size of the groundtruth bounding box. For all sets there is stepwise behav-
ior in the results, due to the type of error; as a bounding box is right or wrong per column
or row of pixels, this error occurs mostly stepwise, as shown in fig. 7-11. Because of the
normalization to the groundtruth box these errors are not complete steps.

Local SqueezeNet + YOLOv2
For the results of the local SqueezeNet YOLOv2 detector, the missed and falsely detected
areas show similar trends generally. Closer by, in the 1.20 − 1.25 m range the missed area is
larger than the falsely detected area, but in the rest of the distance range these are similar.
Outside of this area the normalized missed and false areas are generally in the 0 to 10% range,
and the Intersection over Union (IoU) is generally in the 85 to 100% range.

LocaL DarkNet19 + YOLOv2
The validation of the LED matrix detection shows a decrease of performance compared to
the SqueezeNet based YOLOv2 detector over most of the range. This is in contrast to the
results in the online experiment, wherein the local DarkNet19 YOLOv2 detector had slightly
better results. This discrepancy could have come from different lighting conditions, due to
being captured at a different time of the day, different ambient lighting, weather or similar
causes.

Local DarkNet53 + YOLOv2
The local DarkNet53 YOLOv2 detector has a better performance compared to the DarkNet19
one, with an IoU generally in the 75 to 100% range. The normalized missed area is generally
slighty larger compared to the falsely detected area.

Global DarkNet53-448 + YOLOv2
The global DarkNet53-448 YOLOv2 detector peforms the worst from the tested detectors
IoU-wise. The detector has the tendency to create too large bounding boxes, which reflects
back in the results shown in fig. 7-11. Especially at larger distances the missed area goes to
zero, while the falsely detected area becomes larger, behavior visible if a too large estimated
bounding box is detected on the LED matrix and it groundtruth label. Furthermore the
IoU, which is linked to the confidence scores, is similarly lower compared to the results of the
online experiment.

In all detectors the results were better at further distances. During early experiments there
were issues with detecting consistently at the end of the range. To counteract this a larger
part of annotated images in this range was added to the local and global training datasets. It
is possible that due to the larger percentage of far away images, the detector is better trained
at those distances.

7Which includes 800 groundtruth images, as both the left and right images are annotated and included.
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Figure 7-11: Detection results of offline experiment using multiple detectors and approaches, as
labeled in the image tile, N denotes the amount of measurements.
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Chapter 8

Conclusions and Discussion

This chapter draws conclusions based on the results in the previous chapter and discusses
improvements on the the experimental setup or research apporach for further research.

8-1 Conclusions

8-1-1 Conclusions about Platform Development

This subsection has as aim to answer research question about the platform development, A,
which are stated below.

A. What is a suited design of the vehicle for platooning purposes while satisfying the
design criteria of being easy to reproduce, having a balanced weight and flexible camera
placement, while minimizing cost?

A driving platform was developed with stereo vision and processing, visual messaging capa-
bilities, which can be localized by a motion capture system using visual markers. In order to
enable these capabilities the following parts where implemented:

• StereoLabs ZED Camera
The ZED stereo camera used for robot vision and depth estimation.

• NVIDIA Jetson TX2 and ConnectTech Orbitty
The NVIDIA Jetson TX2 is a high performance system on module used for camera
processing. The ConnectTech Orbitty carrier board allows interfacing of the NVIDIA
Jetson TX2 with the other vehicle parts.

• Erle Robotics Erle Rover
The Erle Robotics Erle Rover is vehicle base used for robotics research, and is equipped
with the ErleBrain 3. The ErleBrain 3 is a Raspberry Pi based computer which controls
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the vehicles motion. Due to the bankruptcy of Erle Robotics a replacement for these
parts is required, the LRP S10 twister 2 2WD (which is base from Erle Rover), and a
Pixhawk PX4 might prove a suitable alternative.

• Batteries
The system uses two batteries. One NiMH battery mainly for the Erle Rover, including
the ErleBrain, one 3S LiPo battery mainly for the NVIDIA Jetson and camera.

• LED Matrices
Four LED matrices are mounted on the front, left, right and backside of the vehicle in
order to convey visual messages. These LED matrices each have a dedicated driver and
are controlled by an Arduino Nano.

• MoCap Markers
In order for the motion camera system to estimate the location of the vehicle, this
vehicle needs to be equipped with visual markers. These markers need to have a unique
configuration per used vehicle in order to differentiate between these.

• Custom Power Electronic Management Board
The system uses a custom power electronic management board, which distributed power
and cuts power from the battery when the voltage gets to low. Furthermore it allows
the system to be run on one battery instead of two, should the need arise.

These parts are mounted on a frame which is mounted on the Erle Rover body. This frame
is mainly constructed from acrylic and 3D printed parts. These parts should be easy repro-
ducible for a low cost, allowing to for little added costs on top of the previously mentioned
parts. The design of this frame places the camera at the back of the platform, allowing sharp
vision just in front of the car. In order to compensate for this weight added to the back, the
batteries are places in the front, yielding a center of mass in the middle of the robot.
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8-1-2 Conclusions about Visual Communication

This subsection has as aim to answer research question about the visual communication, B,
which is stated below. In order to answer this question, first a few conclusions will be drawn
from the previous chapters, before applying these to the research question.

B. Using current available vision toolboxes, is it viable to consistently localize a LED matrix
in a real time scenario?

C. Having found a LED matrix, is it viable to consistently estimate the depth of this LED
matrix from the camera in a real time scenario?

Two experiments were conducted, in both causes the vehicle was placed in front of a linear
stage (modified LPKF ProtoMat 91 PCB mill), on which a LED matrix was mounted. This
LED matrix was moved in one direction in a distance range of 1.2 to 1.5 m, with no rotation
and a plain background.

1. Online Experiment: Distance Estimation
An online experiment wherein each iteration the linear stage moves and the platform
detects LED matrices and estimates distances. These distances are compared with the
known position of the linear stage to determine the estimation errors.

2. Offline Experiment: Detection Validation
An offline experiment wherein the detection algorithms are run on a validation dataset
of annotated images, captured over the entire distance range. These detections are
compared with the hand annotated groundtruth in order to determine the main metric,
the Intersection over Union (IoU).

From the results, for both the online and offline experiments, shown in the previous chapter
the following conclusions are be drawn:

• Depth map based approaches outperform bounding box based approaches
in the tested distance range.
In the tested distance range, between 1.2 m and 1.5 m, the depth map based approach,
which uses the camera toolbox method based on covariances, outperforms the bounding
box based approach. The error using the depth map is on average a factor five lower
compared to the bounding based method, with lower variances and less outliers.

• Local detectors have significantly higher confidence scores, but little added
accuracy in experimental setup.
The confidence scores of the LED matrix detection for the global approach are consider-
ably lower compared to the local approach based scores. According to the measurement
data, the depth accuracy based on the depth map based approach is comparable be-
tween local and global approaches in the experimental setup. It was observed that in
measurements outside the experimental setup the bounding box estimation of the global
approach is less reliable, compared to the local detectors. One possible solution could
be to create training data of more situations, leading to a more diverse dataset.
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• Local detectors are too slow for real time platooning, global DarkNet53
based detector is possibly viable, using the development hardware, using
the current approach.
The local detectors take between 5.75 s and 12.5 s per iteration, depending on base
net, to detect a LED matrix. This is in real time applications an unviable amount of
time. The global DarkNet53-448 based YOLOv2 detector takes a more suited 0.266 s,
which, after optimization, could be a viable computation time. The depth estimation
time is generally negligible in time consumption compared to the detection time, taking
generally 0.8 to 2.5 ms.
It should be noted that this might not reflect well to real life applications, since the
unoptimized Matlab code was run on a HP ‘Zbook’ laptop.

• Unweighted sector based depth estimation has the highest performance for
depth map based approaches.
The sector based approach for depth estimation using the depth map had the lowest
error and therefore the highest performance for the tested approaches.

• LED matrices can be consistently found, however quality of matches vary.
In the offline experiment, wherein on a validation dataset, with hand annotated LED
matrices, the detection algorithms are applied, all LED matrices were localized for all
detectors. The quality of these detections, mainly quantified using the IoU, varies per
detector and over distance. The best results in terms of IoU were achieved for the local
SqueezeNet YOLOv2 detector, with IoUs generally between the 85 and 100%. The worst
results were achieved by the global DarkNet53-448 YOLOv2 detector, which had IoUs
in the 50 to 75%. These low IoU were caused by too large estimated bounding boxes,
which missed no groundtruth area, but falsely labeled neighborhood pixels around the
LED matrix as well.

The next step is to apply these conclusion to the research question B. It is shown in the
previous conclusion that it is indeed possible to consistently detect and localize LED matrices,
and it is indeed possible to localize LED matrices in a real time scenario. Combining the two
properties however might prove troublesome using the current research, as the global detector
which is fast enough for real world scenarios, have trouble with situations which are not exactly
the experimental set-up. The local detectors do not share this limitation, but are too slow
for real world scenarios. When expanding the training image database this problem with the
global detector might be solved in further research. For the global detectors a solution might
lie in vastly expanding the training database, for local detectors parallel computing and only
rescanning part of an image.
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8-2 Discussion and Future Research

8-2-1 Hardware

This subjection discusses limitations of the current hardware of the vehicle and proposes
possible solutions.

• Erle Robotics dependency: Robot base.
For the scalability there is a dependency on the Erle Robotics base platform. During the
research period, after the design was finished, Erle Robotics went bankrupt. It should
probably be possible to find a other similar robot base. In fact Erle Robotics used a
prebuilt vehicle from LRP (Lautenbach Racing Products GmbH), a vehcile very similar
to the LRP S10 twister 2 2WD, which still sells the vehicle. Since RC cars use a largely
standardised control of the steering and forward motion motors, changing to a different
brand may prove trivial. Therefore the bankruptcy or Erle robotics should not prove a
unsolvable problem.

• Erle Robotics dependency: ErleBrain 3.
Continuing on the last item, the ErleBrain 3 embedded computer is a part less trivially
replaced. Other RC autopilots are available, such as the PixHawk. Connecting such a
system to the NVIDIA Jetson and a RC vehicle would solve this problem.

• Implementing motion capture camera system.
On the platform the motion capture markers were mounted, but due practical limitations
these were not implemented and tested yet. In applications where a reference to the
vehicles own locations is required, this might be a useful tool.

• Automatic pitch correction of the camera.
In the current state the camera is in a fixed, but adjustable, position. When at some
point in time the vehicle will be used on non-flat surfaces, this might be problematic.
Having an a system that can change the pitch angle while driving might be beneficial.

Master of Science Thesis S.J. van der Marel



90 Conclusions and Discussion

8-2-2 Object Recognition

This subjection discusses potential improvements of LED matrix detection.

• Switch to more recent YOLO implementation.

The decision for YOLOv2 and not the more recent version was based among other
reasons on the maturity of the support of YOLOv2 in the Matlab environment. If
one switched to a other environment, the newer versions of YOLO, such as YOLOv3
could yield great improvements. These imporvements include for example that the
YOLOv3 handles scaling much better compared to YOLOv2, which is very useful in
this application.

• Generate more training data automatically.

Since the local detectors became adept at estimating correct bounding boxes, all be it
slowly, these could be used to automatically expand the training data base. It would
be advisable to check all generated images for false positives or negatives, wrongfully
estimated borders and other causes for bad data. Implementing such methods might
allow for faster deployment or higher performance of global detectors without having to
label vast amounts of images.

• Determine LED matrix message.

The readout of the actual LED matrix message was outside the scope of the current
research, but yields a possibility for follow up research. A basic communication protocol
was developed, but a more sophisticated approach should be required in further research.
This could either developing a more elaborate communication protocol or switching to
a LED matrix type with a higher resolution, allowing for standard QR code protocols.

• Rescan only Part of Image.

Using the local detectors, using a sliding window over the entire image is computa-
tionally demanding. Only applying the detector on a few image frames, where the
LED matrix is expected based on previous frames, might prove an approach to cut
computation time to just a fraction of the current computation times.

8-2-3 Distance Estimation
• Investigate estimate depth based on focusing on LED.

There is recent research in high speed high accuracy depth estimation on a light source
by adjusting the focus[33], [34]. In the context of this research this may be a more
suited solution for depth estimation compared to the currently proposed one.

• Investigate the source of biases in depth estimation.
Since in all tested situations biases occurred, research into the source of these may
prove valuable. However, due to the closed source nature of the toolbox, this may prove
difficult.
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List of Acronyms

A/D Analog to Digital
ADAM Adaptive Moment Estimation
ANN Artificial Neural Network
CCD Charge-Coupled Device
CFA Color Filter Array
CMOS Complementary Metal-Oxide-Semiconductor
DNN Deep Neural Network
ESC Electronic Speed Controller
FoV Field of View
IoU Intersection over Union
PDB Power Distribution Board
RMSprop Root Mean Square Propagation
ROI Region-of-Interest
SDK Software Development Kit
SoM System on Module
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