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Abstract. Save for some special cases, current training methods for
Generative Adversarial Networks (GANs) are at best guaranteed to con-
verge to a ‘local Nash equilibrium’ (LNE). Such LNEs, however, can be
arbitrarily far from an actual Nash equilibrium (NE), which implies that
there are no guarantees on the quality of the found generator or clas-
sifier. This paper proposes to model GANs explicitly as finite games in
mixed strategies, thereby ensuring that every LNE is an NE. We use the
Parallel Nash Memory as a solution method, which is proven to monoton-
ically converge to a resource-bounded Nash equilibrium. We empirically
demonstrate that our method is less prone to typical GAN problems such
as mode collapse and produces solutions that are less exploitable than
those produced by GANs and MGANs.

1 Introduction

Generative Adversarial Networks (GANs) [14] are a framework in which two
neural networks compete with each other: the generator (G) tries to trick the
classifier (C) into classifying its generated fake data as true. GANs hold great
promise for the development of accurate generative models for complex distri-
butions without relying on distance metrics [21]. However, GANs are difficult
to train [36, 1, 2]. A typical problem is mode collapse, which can take the form
of mode omission, where G does not produce any points from certain modes,
or mode degeneration, in which G only partially covers some of the modes. In
fact, except for special cases (cf. Section 6), current training methods [16, 36] can
only guarantee to converge to a local Nash equilibrium (LNE) [31]. However, an
LNE can be arbitrarily far from an NE, and the corresponding generator might
be exploitable by an opponent. due to suffering from problems such as mode
collapse. Moreover, adding computational resources alone may not offer a way
to escape these local equilibria: the problem does not lie in the lack of compu-
tational resources, but is inherently the result of only allowing small steps in
strategy space using gradient-based training.
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We introduce an approach that does not get trapped in LNEs by formulating
adversarial networks as finite zero-sum games. The solutions that we try to
find are saddle points in mixed strategies. This approach is motivated by the
observation that, in the space of mixed strategies, any LNE is an NE. We employ
Parallel Nash Memory (PNM) [26], to search for approximate mixed equilibria
with small support.

PNM has been shown to monotonically converge to a NE, provided that in
its iterations it has non-zero probability to find better responses [26]. However,
due to the extremely large number of pure strategies that result for sensible
choices of neural network classes, we cannot expect to find exact best responses.
Therefore, we introduce resource-bounded best-responses (RBBRs), and show
that our PNM approach monotonically converges to the corresponding resource-
bounded Nash equilibrium (RB-NE).

Key features of our approach are that: 1) It is based on finite zero-sum
games, and as such it enables the use of existing game-theoretic methods. In
this paper we focus on one such method, Parallel Nash Memory (PNM) [26]. 2)
It will not get trapped in LNEs: we prove that it monotonically converges to
an RB-NE, which means that more computation can improve solution quality.
3) It works for any network architecture In particular, future improvements in
classifiers/generator networks can be exploited directly.

We investigate empirically the effectiveness of PNM and show that it can
indeed deal well with typical GAN problems. We show that the found solutions
closely match the theoretical predictions made by [14] about the conditions at
a Nash equilibrium, and are much less susceptible to being exploited by an
adversary than those produced by GANs and MGANs [17].

2 Background

We defer a more detailed treatment of related work until Section 6. Here, we
introduce some basic game theory.

A two-player strategic game, which we will simply call ‘game’, is a tuple〈
D, {Si}i∈D , {ui}i∈D

〉
, where D = {1, 2} is the set of players, Si is the set of

pure strategies (actions) for player i, and ui : S → R is i′s payoff function
defined on the set of pure strategy profiles S := S1 × S2. When the action sets
are finite, the game is finite. We also write si and s−i for the strategy of agent
i and its opponent respectively. A fundamental concept is the Nash equilibrium
(NE), which is a strategy profile s = 〈si, s−i〉 such that no player can unilaterally
deviate and improve his payoff: ui(s) ≥ ui(〈s′i, s−i〉) for all players i and s′i ∈ Si.

A finite game may not possess a pure NE. A mixed strategy µi of player i
is a probability distribution over i’s pure strategies Si. The payoff of a player
under a profile of mixed strategies µ = 〈µ1, µ2〉 is defined as the expectation:
ui(µ) :=

∑
s∈S [

∏
j∈D µj(sj)] · ui(s). Then an NE in mixed strategies is defined

as follows. A µ = 〈µi, µ−i〉 is an NE if and only if ui(µ) ≥ ui(〈s′i, µ−i〉) for
all players i and potential unilateral deviations s′i ∈ Si. Every finite game has
at least one NE in mixed strategies [23]. In this paper we deal with two-player
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zero-sum games, where u1(s1, s2) = −u2(s1, s2) for all s1 ∈ S1, s2 ∈ S2. The
equilibria of zero-sum games, also called saddle points, 5 have several important
properties, as stated in Von Neuman’s Minmax theorem [24]:

Theorem 1 In a finite zero-sum game, v∗ is the value of the game that satisfies:
minµ2

maxµ1
u1(µ) = maxµ1

minµ2
u1(µ) = v∗.

All equilibria have payoff v∗ and equilibrium strategies are interchangeable: if
〈µ1, µ2〉 and 〈µ′1, µ′2〉 are equilibria, then so are 〈µ′1, µ2〉 and 〈µ1, µ

′
2〉 [28]. This

means that in zero-sum games we do not need to worry about equilibrium selec-
tion. Moreover, the convex combination of two equilibria is an equilibrium, mean-
ing that the game either has one or infinitely many equilibria. We also employ
the standard, additive notion of approximate equilibrium: A pair of strategies
(µi, µ−i) is an ε-NE if ∀i ui(µi, µ−i) ≥ maxµ′

i
ui(µ

′
i, µ−i)− ε.

In the literature, GANs have not typically been considered as finite games.
The natural interpretation of the standard setup of GANs is of an infinite game
where payoffs are defined over all possible weight parameters for the respective
neural networks. With this view we do not obtain existence of saddle points in the
space of parameters, nor the desirable properties that follow from Theorem 1.6

This is why the notion of local Nash equilibrium (LNE) has arisen in the literature
[31, 36]. Roughly, an LNE is a strategy profile where neither player can improve
in a small neighborhood of the profile. In finite games every LNE is an NE, as,
whenever there is a global deviation (i.e., a better response), one can always
deviate locally in the space of mixed strategies towards a pure best response (by
playing that better response with ε higher probability).

3 GANGs

In order to capitalize on the insight that we can escape local equilibria by switch-
ing to mixed strategy space for a finite game, we formalize adversarial networks
in a finite games setting.

We consider a standard adversarial network setup: M = 〈pd, 〈G, pz〉 , C, φ〉
where pd(x) is the distribution over (‘true’ or ‘real’) data points x ∈ Rd. G
is a neural network class with d outputs, parametrized by a parameter vector
θG ∈ ΘG, such that G(z; θG) ∈ Rd denotes the (‘fake’ or ‘generated’) output of
G on a random vector z drawn from some distribution z ∼ pz. C is a neural
network class with a single output, parametrized by a parameter vector θC ∈ ΘC ,
such that the output C(x; θC) ∈ [0, 1] indicates the ‘realness’ of x according to

5 Note that in game theory the term ‘saddle point’ is used to denote a ‘global’ saddle
point which corresponds to a Nash equilibrium: there is no profitable deviation near
or far away from the current point. In contrast, in machine learning, the term ’saddle
point’ typically denotes a ‘local’ saddle point: no player can improve its payoff by
making a small step from the current joint strategy.

6 Some results on the existence of saddle points in infinite action games are known, but
they require properties like convexity and concavity of utility functions [5], which
we cannot apply as they would need to hold w.r.t. the neural network parameters.
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C. φ : [0, 1]→ R is a measuring function [4]—e.g., log for GANs, the identity
mapping for WGANs—used to specify game payoffs, explained next.

We callM a Generative Adversarial Network Game (GANG), since it induces
a zero-sum game 〈D = {G,C}, {SG,SC} , {uG, uC}〉 with: SG = {G(·; θG) | θG ∈
ΘG} the set of strategies sG; SC = {C(·; θC) | θC ∈ ΘC} the set of strategies
sC ; uC(sG, sC) = Ex∼pd [φ(sC(x))]−Ez∼pz [φ(sC(sG(z)))]. I.e., the score of C is
the expected ‘measured realness’ of the real data minus that of the fake data;
uG(sG, sC) = −uC(sG, sC). As such, when using φ = log, GANGs employ a
payoff function for G that use [14]’s trick to enforce strong gradients early in the
training process (but it applies this transformation to uC too, in order to retain
the zero-sum property). Correctness of these transformations is shown in [27].

In practice, GANs are represented using floating point numbers, of which,
for a given setup, there is only a finite (albeit large) number. From now on, we
will focus on finite GANGs, which have finite parameter sets and a finite set of
neural network architectures.

We emphasize this finiteness, because this is exactly what enables us to ob-
tain the desirable properties mentioned in Section 2: existence of (one or in-
finitely many) mixed NEs with the same value, as well as the guarantee that
any LNE is an NE. Moreover, these properties hold for the GANG in its origi-
nal formulation—not for a theoretical abstraction in terms of (infinite capacity)
densities—which means that we can truly expect solution methods (that oper-
ate in the parametric domain [34]) to exploit these properties. However, since
we do not impose any additional constraints or discretization7, the number of
strategies (all possible unique instantiations of the network class with floating
point numbers) is huge. Therefore, we think that finding (near-) equilibria with
small supports is one of the most important challenges for making principled
advances in the field of adversarial networks. As a first step towards addressing
this challenge, we propose to make use of the Parallel Nash Memory (PNM) [26],
which can be seen as a generalization (to non-exact best responses) of the double
oracle method [22, 6].

4 Solving GANGs

Treating GANGs as finite games in mixed strategies permits building on exist-
ing tools and algorithms for these classes of games [11, 29, 10]. In this section,
we describe how to use Parallel Nash Memory (PNM) [26], which is particu-
larly tailored to find approximate NEs with small support, and monotonically8

converges to such an equilibrium.

7 Therefore, our finite GANGs have the same representational capacity as normal
GANs that are implemented using floating point arithmetic.

8 For an explanation of the precise meaning of monotonic here, we refer to [26].
Roughly, we will be ‘secure’ against more strategies of the other agent with each
iteration. This does not imply that the worst case payoff for an agent also improves
monotonically. The latter property, while desirable, is not possible with an approach
that incrementally constructs sub-games of the full game, as considered here: there
might always be a part of the game we have not seen yet, but which we might dis-
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Algorithm 1 Parallel Nash Memory with deterministic RBBRs

1: 〈sG, sC〉 ← InitialStrategies()
2: 〈µG, µC〉 ← 〈{sG}, {sC}〉 . set initial mixtures
3: while True do
4: sG ← RBBR(µC) . get new bounded best resp.
5: sC ← RBBR(µG)
6: // Expected payoffs of these ‘tests’ against mixture:
7: uBRs ← uG(sG, µC) + uC(µG, sC)
8: if uBRs ≤ 0 then
9: break

10: end if
11: SG← AugmentGame(SG, sG, sC)
12: 〈µG, µC〉 ← SolveGame(SG)
13: end while
14: return 〈µG, µC〉 . found an RB-NE

Parallel Nash Memory for GANGs The basic idea of PNM is that we iter-
atively find new strategies which are good candidates for improvement of an
approximate mixed strategy NE 〈µG, µC〉. Previous works (such as the original
PNM paper [26], and before that the double-oracle method [22]) have considered
the use of exact best response (BR) functions to deliver such new candidates.
In GANGs, however, computing such an exact BR is intractable, and we typ-
ically use gradient descent, or another way to compute an approximate best
response. In phrasing our algorithm, we abstract away from the actual imple-
mentation of how it is computed, but we acknowledge the fact that the quality
we can expect is bounded by computational resources. As such we will use the
term ‘resource-bounded best response’ (RBBR) to denote an approximate best
response function which computes the best possible answer it can given some
amount of computational resources. For ease of explanation, we focus on the set-
ting with deterministic best responses, but the approach can easily be extended
to non-deterministic RBBR functions9 and our empirical evaluation makes use
of such non-deterministic RBBR functions (due to random initializations).

Algorithm 1 details our approach. PNM incrementally grows a strategic game
SG over a number of iterations using the AugmentGame function. It uses
SolveGame to compute (via linear programming, see, e.g., [33]) a mixed strat-
egy NE 〈µG, µC〉 of this smaller game at the end of each iteration. At the be-
ginning of each iteration the algorithm uses the RBBR functions to deliver new
promising strategies (sG, sC). Then we test if they ‘beat’ the current 〈µG, µC〉.
If they do, uBRs > 0, and the game is augmented with these and solved again to
find a new NE of the sub-game SG. If they do not, uBRs ≤ 0, and the algorithm
stops.

cover in the future that will lead to a very poor worst case payoff for one of the
agents.

9 By changing the termination criterion of line 8 in Algorithm 1 into a criterion for
including the newly found strategies. See the formulation in [26] for more details.
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AugmentGame evaluates (by simulation) each newly found strategy for
each player against all of the existing strategies of the other player, thus con-
structing a new row and column for the maintained payoff matrix. In order to
implement the best response functions, we have used standard stochastic gra-
dient descent, which means that any existing neural network architectures can
be used. However, we need to compute RBBRs against mixtures of networks of
the other player. For C this is trivial: we can simply generate a batch of fake
data from the mixture µG. Implementing an RBBR for G against µC is slightly
more involved, as we need to back-propagate the gradient from all the different
sC ∈ µC to G. Intuitively, one can think of a combined network consisting of
the G network with its outputs connected to every sC ∈ µC . The predictions
ŷsC of these components sC ∈ µC are combined in a single linear output node
ŷ =

∑
sC∈µC

µC(sC) · ŷsC . This allows us to evaluate and backpropagate through
the entire network. A practical implementation loops through each component
sC ∈ µC and does the evaluation of the weighted prediction µC(sC) · ŷsC and
subsequent backpropagation per component.

Analysis Given that we do not compute exact BRs, we cannot get convergence
to an NE. Instead, using RBBRs, we define an intuitive specialization of NE:

Definition 1. µ = 〈µi, µj〉 is a resource-bounded NE (RB-NE) if and only if
∀i ui(µi, µj) ≥ ui(RBBRi(µj), µj).

That is, an RB-NE can be thought of as follows: we present µ to each player i
and it gets the chance to switch to another strategy, for which it can apply its
bounded resources (i.e., use RBBRi) exactly once. After this application, the
player’s resources are exhausted and if the found RBBRi(µj) does not lead to
a higher payoff it will not have an incentive to deviate.10

Intuitively, it is clear that PNM converges to an RB-NE, which we now state
formally. All proofs can be found in [27].

Theorem 2 If PNM terminates, it has found an RB-NE.

Moroever, making use of the finiteness of the game, it can be easily shown that
Algorithm 1 terminates and monotonically converges to an equilibrium. Finally,
an RB-NE can be linked to the familiar notion of ε-NE by making assumptions
on the power of the best response computation.

Theorem 3 If both players are powerful enough to compute ε-best responses,
then an RB-NE is an ε-NE.

The PNM algorithm for GANGs is parameter free, but we mention two adap-
tations that are helpful: Interleaved training of best responses and regularization
of classifier best responses. Details can be found in [27].

10 During training the RBBR functions will be used many times. However, the goal of
the RB-NE is to provide a characterization of the end point of training.



Beyond Local Nash Equilibria for Adversarial Networks 7

5 Experiments

Here we report on experiments that aim to test if searching in mixed strategies
with PNM-GANG can help in reducing problems with training GANs, and if
the found solutions (near-RB-NEs) provide better generative models and are
potentially closer to true Nash equilibria than those found by GANs (near-
LNEs). Since our goal is to produce better generative models, we refrain from
evaluating these methods on complex data like images: image quality and log
likelihood are not aligned as for instance shown by [35]. Moreover there is debate
about whether GANs are overfitting and assessing this from samples is difficult;
some methods have been proposed e.g., [3, 32, 25, 20], but most provide merely a
measure of variability, not over-fitting. As such, we choose to focus on irrefutable
results on mixture of Gaussian (MoG) tasks, for which the distributions can
readily be visualized.

Experimental setup. We compare our PNM approach (‘PNM-GANG’) to a
vanilla GAN implementation and state-of-the-art MGAN [17]. Table 1 summa-
rizes the settings for GAN and PNM training. RBBR models were taken to be
as small as possible while still achieving good results. As suggested by [8], we
use leaky ReLU as inner activation for our GAN implementation to avoid sparse
gradients. Generators have linear output layers. Classifiers use sigmoids for the
final layer. Both classifiers and generators are multi-layer perceptrons with 3 hid-
den layers. We do not use techniques such as Dropout or Batch Normalization,
as they did not yield significant improvements in the quality of our experimental
results. The MGAN configuration is identical to that of Table 3 in Appendix C1
of [17].

GAN RBBR

Learning Rate 3 · 10−4 5 · 10−3

Batch Size 128 128

Dimension of z 40 5

Hidden nodes 50 5

Iterations 20000 750

Generator Parameters 4902 92

Classifier Parameters 2751 61

Inner Activation Leaky ReLU Leaky ReLU

Measuring Function log 10−5-bounded log

Table 1: Settings used to train GANs and RBBRs.

We test on 3 MoG tasks: ‘round’, ‘grid’ and ‘random’ (cf. Figure 1). For each
we create test cases with 9 and 16 components. In our plots, black points are real
data, green points are generated data. Blue indicates areas that are classified as
‘realistic’ while red indicates a ‘fake’ classification by C.
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Fig. 1: Results for mixtures of Gaussians with 9 and 16 modes. Odd rows: PNM-
GANG, Even rows: GAN. The histograms represent the probabilities in the
mixed strategy of each player. True data is shown in black, while fake data is
green. The classification boundary (where the classifier outputs 0.5) is indicated
with a red line. Best seen in color.
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Found solutions compared to normal GANs. The results produced by regular
GANs and PNM-GANGs are shown in Figure 1 and clearly convey three main
points: 1) The PNM-GANG mixed classifier has a much flatter surface than
the classifier found by the GAN. Around the true data, it outputs around 0.5
indicating indifference, which is in line with the theoretical predictions about the
equilibrium [14]. 2) This flatter surface is not coming at the cost of inaccurate
samples. In contrast: nearly all samples shown are hitting one of the modes and
thus the PNM-GANG solutions are highly accurate, much more so than the GAN
solutions. 3) Finally, the PNM-GANGs, unlike GANs, do not suffer from mode
omission.We also note that PNM-GANG typically uses fewer total parameters
than the regular GAN, e.g., 1463 vs. 7653 for the random 9 task in Figure 1.
This shows that, qualitatively, the use of multiple generators seems to lead to
good results. However, not all modes are fully covered. This can be controlled
by varying the learning rate [27].

Found solutions compared to MGANs. Here we compare the solutions found
above for PNM-GANGs to a state-of-the-art GAN variant: MGAN [17] pro-
poses a setup with a mixture of k generators, a classifier, and a discriminator. In
an MGAN, the generator mixture aims to create samples which match the train-
ing data distribution, while the discriminator distinguishes real and generated
samples, and the classifier tries to determine which generator a sample comes
from. We use MGAN as a state-of-the art baseline that was explicitly designed
to overcome the problem of mode collapse.

Figure 2 shows the results of MGAN on the mixture of Gaussian tasks. We
see that MGAN results do seem qualitatively quite good. Comparing them to
the PNG-GANG results from Figure 1, we see that MGAN may even have less
mode degeneration. However, we also see that in the MGAN results there is one
missed mode (and thus also one mode covered by 2 generators) on the randomly
located components task (right column). In contrast, the PNM-GANGs results
did not fail to capture any mode.

We point out that MGAN results were obtained with an architecture and
hyperparameters which exactly match those proposed by [17] for a similar task.
This means that the MGAN models shown use many more parameters (approx.
310,000) than the GAN and GANG models (approx. 2,000). MGAN requires the
number of generators to be chosen upfront as a hyperparameter of the method.
We chose this to be equal to the number of mixture components, so that MGAN
could cover all modes with one generator per mode. We note that PNM does
not require such a hyperparameter to be set, nor does PNM require the re-
lated “diversity” hyperparameter of the MGAN method (called β in the MGAN
paper).

Overall, these results show that the quality of the solutions found by PNM-
GANGs is competitive to that of the state-of-the-art MGAN, while using much
fewer parameters.

Exploitability of solutions. Finally, to complement the above qualitative anal-
ysis, we also provide a quantitative analysis of the solutions found by GANs,
MGANs and PNM-GANGs. We investigate to what extent they are exploitable
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Fig. 2: Results for MGAN on several mixture of Gaussian tasks with 9 modes.
Markers correspond to samples created by each generator.

by newly introduced adversaries with some fixed computational power (as mod-
eled by the complexity of the networks we use to attack the found solution).
Intuitively, since PNM-GANGs are trained by (against) more powerful attack
than GANs, we expect them to be more robust against new attacks of any kind.
Specifically, for a given solution µ̃ = (µ̃G, µ̃C) we use the following measure of
exploitability:

explRB(µ̃G, µ̃C) , RBmaxµG
uG(µG, µ̃C) + RBmaxµC

uC(µ̃G, µC),

where ‘RBmax’ denotes an approximate maximization performed by an adver-
sary of some fixed complexity.11

Figure 3 shows our exploitability results for all three tasks with nine modes.
We observe roughly the same trend across the three tasks. First, we investigate
the exploitability of solutions delivered by GANs, MGANs and GANGs of dif-
ferent complexities (in terms of total number of parameters used). For this, we
compute ‘attacks’ to these solutions using attackers of fixed complexity (a total
of 453 parameters for the attacking G and C together). These results are shown
in Figure 3 (left and middle column). The left column shows the exploitability
of PNM-GANG after different numbers of iterations, as well as the number of
parameters used in the solutions found in those iterations (a sum over all the
networks in the support of the mixture). Error bars indicate standard deviation
over 15 trials. It is apparent that PNM-GANG solutions with more parameters
typically are less exploitable. Also shown is that the variance of exploitability
depends heavily on the solution that we happen to attack.

The middle column shows how exploitable GAN, MGAN and PNM-GANG
models of different complexities are: the x-axis indicates the total number of
parameters, while the y-axis shows the exploitability. The PNM results are the

11 That is, the ‘RBmax’ functions are analogous to the RBBR functions employed
in PNM, but the computational resources of ‘RBmax’ could be different. Our ex-
ploitability is closely related to the use of GAN training metrics [18], but additionally
includes the exploitability of the classifier. This is important: when only testing the
exploitability of the generator, this does give a way to compare generators, but it
does not give a way to assess how far from equilibirum we might be. For a further
motivation of this measure of exploitability, please see [27].



Beyond Local Nash Equilibria for Adversarial Networks 11

Fig. 3: Exploitability results all 9 mode tasks. Top to bottom: round, grid, ran-
dom.

same points also shown in the left column, but repositioned at the appropriate
place on the x-axis. All data points are exploitability of models that were trained
until convergence. Note that here the x-axis shows the complexity in terms of
total parameters. The figure shows an approximately monotonic decrease in ex-
ploitability for GANGs, while GANs and MGANs with higher complexity are
still very exploitable in many cases. In contrast to GANGs, more complex ar-
chitectures for GANs or MGANs are thus not necessarily a way to guarantee a
better solution.

We also we investigate what happens for the converged GAN / PNM-GANG
solution of Figure 1, which have comparable complexities, when attacked with
varying complexity attackers. We also employ an MGAN which has a signifi-
cantly larger number of parameters (approx. 310,000) than the GAN and GANG
models (approx. 2,000). These results are shown in Figure 3 (right). Clearly
shown is that the PNM-GANG is robust with near-zero exploitability even when
attacked with high complexity attackers. The MGAN solution has a non-zero
level of exploitability, roughly constant for several attacker complexities. In stark
contrast, we see that the converged GAN solution is exploitable already for low-
complexity attackers, again suggesting that the GAN was stuck in an LNE far
away from a NE.

Additionally, we investigate the exploitability of the trained models presented
in Figure 1 and Figure 2 when attacked by neural networks of varying complex-
ity. These results are shown in the right column of Figure 3. Clearly shown is
that the PNM-GANG is robust with near-zero exploitability even when attacked
with high-complexity attackers. The MGAN models also have low exploitability,
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but recall that these models are much more complex (GANG and GAN models
have approximately 2,000 parameters, while the MGAN model involves approx-
imately 310,000 parameters). Even with such a complex model, in the ‘random’
task, the MGAN solution has a non-zero level of exploitability, roughly constant
for several attacker complexities. This is related to the missed mode and the
fact that two of the MGAN generators collapsed to the same lower-right mode
in Figure 1. In stark contrast to both PNM-GANGs and MGAN, we see that
the converged GAN solution is exploitable already for low-complexity attackers,
again suggesting that the GAN was stuck in an Local Nash Equilibrium far away
from a (global) Nash Equilibrium.

Overall, these results demonstrate that GANGs can provide more robust
solutions than GANs/MGANs with the same number of parameters, suggesting
that they are closer to a Nash equilibrium and provide better generative models.

6 Related work

Due to limited space, we only describe the most relevant related papers here.
For a discussion of recent progress on solving in zero-sum games, more general
GAN improvements, and bounded rationality, please see [27].

Recently, more researchers have investigated the idea of (more or less) explic-
itly representing a set or mixture of strategies for the players. For instance, [19]
retains sets of networks that are trained by randomly pairing up with a network
for the other player thus forming a GAN. This, like PNM, can be interpreted as
a coevolutionary approach, but unlike PNM, it does not have any convergence
guarantees. MAD-GAN [13] uses k generators, but one discriminator. MGAN [17]
proposes mixtures of k generators, a classifier and a discriminator with weight
sharing; and presents a theoretical analysis similar to [14] assuming infinite ca-
pacity densities. None of these approaches have convergence guarantees.

Generally, explicit mixtures can bring advantages in two ways: (1) Repre-
sentation: intuitively, a mixture of k neural networks could better represent a
complex distribution than a single neural network of the same size, and would
be roughly on par with a single network that is k times as big. [4] show how to
create such a bigger network that is particularly suitable for dealing with multi-
ple modes using a ‘multi-way selector’. In our experiments we observed mixtures
of simpler networks leading to better performance than a single larger network
of the same total complexity (in terms of number of parameters). (2) Training :
Arora et al. [4] use an architecture that is tailored to representing a mixture of
components and train a single such network. We, in contrast, explicitly repre-
sent the mixture; given the observation that good solutions will take the form
of a mixture. This is a form of domain knowledge that facilitates learning and
convergence guarantees.

A closely related paper is the work by [15], which also builds upon game-
theoretic tools to give certain convergence guarantees. The main differences are
as follows: 1) We provide a more general form of convergence (to an RB-NE) that
is applicable to all architectures, that only depends on the power to compute best
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responses, and show that PNM-GANG converges in this sense. We also show that
if agents can compute an ε-best response, then the procedure converges to an
ε-NE. 2) [15] show that for a quite specific GAN architecture their first algorithm
converges to an ε-NE. On the one hand, this result is an instantiation of our more
general theory: they assume they can compute exact (for G) and ε-approximate
(for C) best responses; for such powerful players our Theorem 3 provides that
guarantee. On the other hand, their formulation works without discretizing the
spaces of strategies. 3) The practical implementation of the algorithm in [15]
does not provide guarantees.

Finally, [12] propose a method similar to ours that uses fictitious play [7,
11] rather than PNM. Fictitious play does not explicitly model mixed strate-
gies for the agents, but interprets the opponent’s historical behavior as such a
mixed strategy. The average strategy played by the ‘Fictitious GAN’ approach
converges to a Nash equilibrium assuming that “the discriminator and the gener-
ator are updated according to the best-response strategy at each iteration”, which
follow from the result by [9] which states that fictitious play converges in con-
tinuous zero-sum games. Intuitively, fictitious play, like PNM, in each iteration
only ever touches a finite subset of strategies, and one can show that the value of
such subgames converges. While this result gives some theoretical underpinning
to Fictitious GAN, of course in practice the assumption is hard to satisfy and
the notion of RB-NE that we propose may apply to analyze their approach too.
Also, in their empirical results they limit the history of actions (played neural
networks in previous iterations) to 5 to improve scalability at the cost of conver-
gence guarantees. The Fictitious GAN is not explicitly shown to be more robust
than normal GANs, as we show in this paper, but it is demonstrated to produce
high quality images, thus showing the potential of game theoretical approaches
to GANs to scale.

7 Conclusions

We introduce finite GANGs—Generative Adversarial Network Games—a novel
framework for representing adversarial networks by formulating them as finite
zero-sum games. By tackling them with techniques working in mixed strategies
we can avoid getting stuck in local Nash equilibria (LNE). As finite GANGs have
extremely large strategy spaces we cannot expect to exactly (or ε-approximately)
solve them. Therefore, we introduced the resource-bounded Nash equilibrium
(RB-NE). This notion is richer than LNE in that it captures not only failures of
escaping local optima of gradient descent, but applies to any approximate best-
response computations, including methods with random restarts. Additionally,
GANGs can draw on a rich set of methods for solving zero-sum games [11, 30,
10, 26]. In this paper, we build on PNM and prove that the resulting method
monotonically converges to an RB-NE. We empirically demonstrate that the
resulting method does not suffer from typical GAN problems such as mode
collapse and forgetting. We also show that the GANG-PNM solutions are closer
to theoretical predictions, and are less exploitable than normal GANs: by using
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PNM we can train models that are more robust than GANs of the same total
complexity, indicating they are closer to a Nash equilibrium and yield better
generative performance.

We presented a framework that can have many instantiations and modifi-
cations. For example, one direction is to employ different learning algorithms.
Another direction could focus on modifications of PNM, such as to allow dis-
carding “stale” pure strategies, which would allow the process to run for longer
without being inhibited by the size of the resulting zero-sum “subgame” that
must be maintained and repeatedly solved.
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