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a b s t r a c t

Approximations made in traditional day-ahead unit commitment model formulations can result in sub-
optimal or even infeasible schedules for slow-start units and inaccurate predictions of actual costs and
wind curtailment. With increasing wind penetration, these errors will become economically more signif-
icant. Here, we consider inaccuracies from three approximations: the use of hourly intervals in which
energy production from each generator is modeled as being constant; the disregarding of startup and
shutdown energy trajectories; and optimization based on expected wind profiles. The results of unit com-
mitment formulations with those assumptions are compared to models that: (1) use a piecewise-linear
power profiles of generation, load and wind, instead of the traditional stepwise energy profiles; (2) con-
sider startup/shutdown trajectories; and (3) include many possible wind trajectories in a stochastic
framework. The day-ahead hourly schedules of slow-start generators are then evaluated against actual
wind and load profiles using a model real-time dispatch and quick-start unit commitment with a
5 min time step. We find that each simplification usually causes expected generation costs to increase
by several percentage points, and results in significant understatement of expected wind curtailment
and, in some cases, load interruptions. The inclusion of startup and shutdown trajectories often yielded
the largest improvements in schedule performance.

� 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction minimum cost, while operating the system and units within secure
Many power systems worldwide now face a sustained and sig-
nificant growth of variable and uncertain generation, such as wind
and solar, driven by concerns for the environment, energy security
and rising fuel prices. To maintain the supply-demand balance,
enough system resources (reserves) must be scheduled in advance
to compensate for possible variations in load and renewable out-
put. The day-ahead Unit Commitment (UC) is the short-term plan-
ning process that is commonly used to schedule these resources at
technical limits [1–4].
Increasing levels of variable generation demand higher flexibil-

ity from the power system. Flexibility is defined in Lannoye et al.
[5] as ‘‘the ability of a system to deploy its resources to respond
to changes in net load, which is defined as the remaining system
load not served by variable generation”. Other definitions of flexi-
bility can be found in Nosair and Bouffard [6]. There are different
ways to measure flexibility of a power system, and most of them
are quantified by running UC models [3,5–9]. In deterministic UC
models, the required amount of flexibility from the system is
defined by specifying a required amount of reserves, including
spinning, replacement, and regulation reserves, and, in some
markets, flexible ramping products [10]. The key question is then
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to define the optimal amount of reserves to the net load uncer-
tainty. Assuming instead that we can solve a stochastic UC that
fully describes net load uncertainties, the model can balance the
benefits and costs of providing flexibility by balancing expense cost
of reserving more capacity against the reduction in expected load
curtailment [11].

In short, UC formulations are used to guarantee a given level of
flexibility for system operations, where the underlying assumption
is that the UC generation schedule can always deliver what it
apparently promises [12–14]. However, conventional day-ahead
UC formulations make coarse approximations of system ramp
capabilities by modeling output and loads as averaged energy
levels within a large (usually 1 h) scheduling interval and imposing
ramp-constraints on these average hourly levels. Consequently,
energy schedules may be infeasible, as widely reported [15–19].
In addition, traditional UC models assume that units start and
end their energy production at their minimum output (or above).
That is, the intrinsic units’ startup and shutdown power trajecto-
ries are ignored. As a consequence, there may be a high amount
of energy that is not allocated by the UC but which is nevertheless
present in real time operations, thus affecting the total load bal-
ance. Disregarding these trajectories can result in inefficient real-
time operations, and even endanger power system security
[19,20]. Although all these drawbacks suggest that traditional UC
formulations may lead to unfeasible real-time operation and incor-
rectly characterize system flexibility, they are hidden within the
UC formulations and hence are difficult to assess.

To overcome these drawbacks the power-based UC formulation
proposed in Morales-Espana et al. [21], Morales-España et al. [22],
and presented in Section 2.2, includes the units’ startup and shut-
down power trajectories, and also draws a clear distinction
between power and energy, thus guaranteeing feasible energy
delivery. Yang et al. [17] proposes a sub-hourly UC model guaran-
teeing feasible energy schedules; and although finer granularity of
UC models also helps to reduce operational costs [23], their solving
times increase significantly even for relatively small systems [24].
None of these works, however, quantify the impact of the afore-
mentioned drawbacks.

The goal of this paper is to reveal and quantify the impact of the
above theoretical drawbacks of traditional UC formulations. This is
done by following the day-ahead UC with a simulated real-time dis-
patch stage to check if UC solutions are actually able to supply
demand in every real-time interval. For this purpose, a 5-min optimal
dispatch is used to mimic actual real-time system operations. As
shown in our numerical results, this 5-min real-time dispatch stage
reveals that traditional energy-based UCs perform very different
than expected and can even lead to infeasible real-time operation.

We show that as a direct result of using hourly-averages for
energy, traditional stochastic UC is unable to manage real-time
uncertainty, even if the stochastic UC considers the full range
and correct probability distributions of the net load. To evaluate
the performance of a ‘‘perfect” stochastic UC, the real-time
(a) Traditional Energy Schedule

Fig. 1. Energy-based UC: Sc
(5-min) dispatch stage uses the same net load scenarios that are
considered when solving the stochastic UC. Our results demon-
strate that even such an ‘‘ideal” stochastic UC formulation imposes
a hidden system inflexibility by incorrectly representing ramp
capabilities and by ignoring the units’ startup and shutdown tra-
jectories. This leads to a failing to optimally exploit the actual sys-
tem flexibility and consequently inefficiencies in dispatch. This
demonstration is accomplished by a range of experiments. The
experiments include comparisons of the results of traditional
energy-based UC with power-based UC, with and without startup
and shutdown trajectories. This is done for both deterministic
and stochastic network-constrained UC formulations. Additional
sets of experiments presented below consider the impact of alter-
native assumptions about wind and load flexibilities. One set of
experiments analyze how negative wind bids (i.e., curtailment
penalties) affect system flexibility. Another set analyzes different
degrees (standard deviations) of load variation.

The remainder of this paper is organized as follows. Section 2
conceptually describes the drawbacks of energy-based UC
approaches that distort the actual flexibility of the system, and
summarizes an alternative, more accurate power-based UC model.
Section 3 present the different UC formulations that were imple-
mented. Section 4 presents the case studies, also provides and dis-
cusses results from the numerical experiments. Finally,
conclusions are presented in Section 5.
2. Inherent system inflexibility imposed by UC formulations

This section summarizes the main drawbacks of energy-based
and power-based UCs, and shows how these drawbacks incorrectly
characterize system flexibility.
2.1. Traditional energy-based UC

Traditional UC formulations fail to deal with ramp capabilities
appropriately. Inefficient ramp management arises from applying
ramp-constraints to energy levels or (hourly) averaged generation
levels, which is the standard practice in traditional UC models
[1,25]. Representing generation in a stepwise fashion (energy
blocks) may lead to misleading estimates of a system’s ramp avail-
ability. This in turn could leave the system unprepared to face real-
time uncertainties.

As we noted above, infeasible energy generation schedules may
result from energy-based scheduling [15–19,21]. To illustrate this
problem, consider the following scheduling example, modified
from Morales-España et al. [22], for one generating unit. This
example assumes that the minimum and maximum generation
outputs of the unit are 100 MW and 300 MW, respectively, with
a maximum ramp rate of 200 MW/h. It is also assumed that the
unit is committed all the time, i.e., the unit is always producing
at least 100 MW. Fig. 1a shows a typical result that can be expected
(b) Actual Operation

heduling vs. operation.
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from an energy-based UC: if the unit produces 100 MWh for the
first hour then the unit can deliver 300 MWh for the next hour.
To produce an energy output of 100 MWh for the first hour, the
unit must have a constant power output of 100 MW for the com-
plete first hour (there is no other way to produce this energy out-
put due to the maximum andminimum output of the unit, and also
because the unit cannot produce below its minimum output when
committed); similarly, the unit must have a constant power output
of 300 MW during the complete second hour to produce 300 MWh.
However, once the unit has been producing 100 MW for the first
hour, the unit is just physically capable to reach its maximum out-
put before the end of the second hour due to its limited ramp rate,
as shown in Fig. 1b. Consequently, the solution obtained in Fig. 1a
by the energy-based UC is not feasible. In fact, the unit requires an
infinite ramping capability to be able to reproduce the energy
schedule presented in Fig. 1a. More examples of this energy infea-
sibility problem can be found in Guan et al. [15,16], Morales-
Espana et al. [19], Morales-España [26], Philipsen et al. [27], and
references therein.

In addition, assuming that the previous drawback could be
addressed under the energy-based scheduling approach, this
approach cannot guarantee that a given power demand profile
can be supplied. To illustrate this problem consider the following
example. Fig. 2 shows two power demand profiles that present
the same energy profile. Notice that the two power profiles present
distinctly different ramp requirements, even though the hourly
energy requirements are identical. One energy profile has an infi-
nite number of potential power profiles. Not all of the possible
power profiles are necessarily feasible, even if the energy-based
UC model shows the energy profile to be feasible. Thus, even
though the energy-based UC could in theory provide a given
energy profile, this approach cannot guarantee that the final result-
ing power profile can be supplied [21,26].

Another drawback is that conventional UC formulations assume
that units start/end their production at their minimum output or
above, see for example Hobbs et al. [1], Morales-Espana et al.
[25]. That is, traditional UCs ignore the production below the units’
minimum output caused by their intrinsic startup and shutdown
power trajectories, which are inevitably present in the real-time
operation. Consequently, there is energy that is not allocated by
day-ahead scheduling approaches that will affect the total load
balance during real-time operation. Considering these power tra-
jectories in the scheduling stage can significantly change commit-
ment decisions and also decrease operating costs [20].

2.2. Power-based UC

To overcome the drawbacks of conventional energy-based UC
formulations, the power-based UC formulation was proposed in
Morales-Espana et al. [21], Morales-España et al. [22]. The
power-based model draws a clear distinction between power and
Fig. 2. Two power profiles with identical energy profile.
energy, and it also takes into account the often neglected power
trajectories that occur during the startup and shutdown processes.
Although the power-based UC seeks to adequately represent the
operation of generating units to efficiently exploit their flexibility
and avoid infeasible energy delivery, it also imposes a level of
inflexibility on the system through its approximation of net load
ramps.

In particular, the power-based UC [21,22] assumes that power
varies linearly from the beginning to the end of each hour. Let us
consider a thermal unit that is required to increase its production
from 100 MW to its maximum output (see Fig. 3). In practice, the
unit would operate at its maximum ramp and therefore reach its
maximum output before the end of the hour (Fig. 3b). Neverthe-
less, if an hourly linear power profile is considered, the model
assumes that the maximum generation will be attained only at
the end of the hour (Fig. 3a), leading to a deviation from the solu-
tion. This can be avoided by dividing each hour into shorter time
intervals.

If startup and shutdown trajectories are ignored in a power-
based UC, the same problems described for the energy-based UC
can arise. However, the power-based UC proposed in Morales-
Espana et al. [21], Morales-España et al. [22] models startup and
shutdown power generation in a piecewise-linear fashion, avoiding
any power discontinuity during the unit’s startup and shutdown
processes, thus lessening the distortion.

Maximum ramp-up and ramp-down capabilities can be under-
estimated for fast-ramping units in the power-based UC model.
This is because the maximum ramping up/down capabilities that
can be modeled in one period equal the difference between Pmax
and Pmin (Fig. 3). As a result, the maximum flexibility of high
ramping units will not be fully exploited in power-based UC.
Therefore, although power-based UC ensure feasibility over
energy-based UC, it may sacrifice some optimality. In the case of
energy-based UC, however, the solution cannot even guarantee
feasibility, because unit ramping capabilities are generally overes-
timated, as explained in the previous subsection.

3. Unit commitment formulations

This section presents the set of constraints for the energy-based
and the power-based UC formulations. The energy-based UC is the
commonly used UC approach, in which the energy demand is rep-
resented using energy levels (hourly-averaged generation) in a
stepwise fashion over time. All constraints involving generation
levels are applied to these energy levels.

On the other hand, the power-based UC proposed in Morales-
Espana et al. [21], Morales-España et al. [22] draws a clear distinc-
tion between power and energy. Demand and generation are mod-
eled as hourly piecewise-linear functions representing their
instantaneous power trajectories. The schedule of generating unit
output is no longer an energy stepwise function, but a smoother
piece-wise power function.

3.1. Nomenclature

Upper-case letters are used for denoting parameters and sets.
Lower-case letters denote variables and indexes.

3.1.1. Definitions
In this paper, we use the terminology introduced in Morales-

Espana et al. [20] to refer to the different unit operation states;
see Fig. 5.
Online the unit is synchronized with the system
Offline the unit is not synchronized with the system
Up the unit is producing above its minimum output. During

the up state, the unit output is controllable
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Fig. 3. Power-based UC: Max ramp and energy delivered.

Fig. 4. Unit’s operation under the traditional energy-based scheduling approach.
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Down the unit is producing below its minimum output: when
offline, starting up or shutting down

3.1.2. Indexes and sets

g 2 G generating units
b 2 B buses
BD #B subset of buses b with demand consumption
BW #B subset of buses b with wind power injection
l 2 L transmission lines
x 2 X wind scenarios
s 2 Sg startup segments, running from 1 (the hottest) to Sg (the

coldest)
t 2 T hourly periods

3.1.3. Parameters

CLV
g linear variable production cost [$/MWh].

CNL
g no-load cost [$/h]

CSD
g shutdown cost [$]

CSU
gst startup cost for segment s [$]

CVW
b variable production cost (bid) of wind [$/MWh].

DE
bt energy demand on bus b for hour t [MWh].

DP
bt power demand on bus b at the end of hour t [MW]

Fl power flow limit on transmission line l [MW]
Pg maximum power output [MW]
Pg minimum power output [MW]

ESDgi energy output during the ith interval of the shutdown
ramp process [MWh], see Fig. 5

ESUgsi energy output during the ith interval of the startup ramp
process type s [MWh], see Fig. 5

PSD
gi power output at the beginning of the ith interval of the

shutdown ramp process [MW], see Fig. 7
PSU
gsi power output at the beginning of the ith interval of the

startup ramp process type s [MW], see Fig. 7
RDg ramp-down capability [MW/h]
RUg ramp-up capability [MW/h]
SDg shutdown ramping capability [MW/h]
SUg startup ramping capability [MW/h]
SDD

g duration of the shutdown process [h], see Figs. 5 and 7

SUU
gs duration of the startup process type s [h], see Figs. 5 and 7

TSU
gs time defining the interval limits of the startup segment

s; TSU
gs ; T

SU
g;sþ1

h �
[h]

TDg minimum down time [h]
TUg minimum up time [h]
Clb shift factor for line l associated with bus b [p.u.]

CG
lg shift factor for line l associated with unit g [p.u.]

WE
bxt available wind energy scenario for hour t [MWh].

WP
bxt available wind power scenario at end of hour t [MW]

px probability of scenario x
3.1.4. Continuous non-negative variables

wE
bxt wind energy output for hour t [MWh].
wP
bxt wind power output at the end of hour t [MW]

egxt energy output above minimum output for hour t [MWh].begxt total energy output at the end of hour t, including startup
and shutdown trajectories [MWh].

pgxt power output above minimum output at the end of hour t
[MW]bpgxt total power output at the end of hour t, including startup
and shutdown trajectories [MW]

r�gt down capacity reserve [MW]
rþgt up capacity reserve [MW]

3.1.5. Binary variables
ugt binary variable which is equal to 1 if the unit is producing

above minimum outputand 0 otherwise
ygt binary variable which takes the value of 1 if the unit starts

up and 0 otherwise
zgt binary variable which takes the value of 1 if the unit shuts

down and 0 otherwise
dgst startup type s. Binary variable which takes the value of 1 if

the unit starts up and has been previously down within
TSU
gs ; T

SU
g;sþ1

h �
hours

3.2. E-UC: traditional stochastic energy-based UC

In the traditional energy-based UC, energy is considered to be
the direct output of generating units, as shown in Fig. 4. Also, all
generating units are considered to produce either zero (when being
offline) or above their Pg (when being online). What is usually con-
sidered in traditional UC formulations is that units have a startup
and shutdown capabilities (e.g., [25,28–30]); that is, when the unit
starts up (shuts down) its generating output is above its minimum
output Pg and below its startup (shutdown) capability SUg (SDg), as
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Fig. 5. Unit’s operation under the energy-based scheduling approach, including
startup and shutdown trajectories.

G. Morales-España et al. / Applied Energy 191 (2017) 223–238 227
shown in Fig. 4. Although these startup and shutdown capabilities
could be valid models for quick-start units, they are not valid for
slow-start units which startup and shutdown power production
is below Pg (see Fig. 5). That is, traditional Energy-based UC com-
pletely disregard the units’ startup and shutdown power trajecto-
ries, although they are intrinsically present during actual
operation [20].

The UC seeks to minimize all production costs:

min
X
t2T

X
g2G

CNL
g ugt þ

X
s2Sg

CSU
gs dgst þ CSD

g zgt

" # 

þ
X
x2X

ps

X
g2G

CLV
g
begxt þ

X
b2BW

CVW
b wE

bxt

" #!
ð1Þ
3.2.1. System-wide constraints
Energy demand balance for hour t is guaranteed as follows:X

g2G

begxt ¼
X
b2BD

DE
bt �

X
b2BW

wE
bxt 8x; t ð2Þ

and power-flow transmission limits are ensured with

�Fl 6
X
g2G

CG
lgbegxt þ

X
b2BW

ClbwE
bxt �

X
b2BD

ClbD
E
bt 6 Fl 8l;x; t ð3Þ
3.2.2. Individual unit constraints
The commitment, startup/shutdown logic and the minimum

up/down times are guaranteed with

ugt � ug;t�1 ¼ ygt � zgt 8g; t ð4ÞXt
i¼t�TUgþ1

ygi 6 ugt 8g; t 2 TUg ; T
� �

ð5Þ

Xt
i¼t�TDgþ1

zgi � 1� ugt 8g; t 2 TDg ; T
� �

ð6Þ

Different startup costs are modeled depending on how long the
units have been off-line. The startup type is selected with

dgst 6
XTSUg;sþ1�1

i¼TSUgs

zg;t�i 8g; s 2 1; Sg
� �

; t ð7Þ

X
s2Sg

dgst ¼ ygt 8g; t ð8Þ

where (7) allows that the startup segment s can be selected

(dgst 6 1) if the unit has been previously down within TSU
gs ; T

SU
g;sþ1

h �
hours. Constraint (8) selects a unique startup type if the unit actu-
ally starts up.
As discussed in Morales-Espana et al. [20,25], the variables dgst
take binary values even if they are defined as continuous. This is
due to the tightness characteristic of the startup-cost formulation.
See Morales-Espana et al. [20] for details on how the initial condi-
tions define dgst for the first periods.

Energy production must be within the power capacity limits:

egxt 6 Pg � Pg
� �

ugt � Pg � SDg
� �

zg;tþ1 �max SDg � SUg ;0
� �

yg;t
8g 2 G1;x; t ð9Þ

egxt 6 Pg � Pg
� �

ugt � Pg � SUg
� �

ygt �max SUg � SDg ;0
� �

zg;tþ1

8g 2 G1;x; t ð10Þ

egxt 6 Pg � Pg
� �

ugt � Pg � SUg
� �

ygt � Pg � SDg
� �

zg;tþ1

8g R G1;x; t ð11Þ

where G1 is defined as the units in G with TUg ¼ 1.
Ramping-capability limits are ensured with

�RDg 6 egxt � egx;t�1 6 RUg 8g;x; t ð12Þ

The total energy production for thermal and wind units are
obtained as follows:

begxt ¼ Pgugt þ egxt 8g;x; t ð13Þ
wE

bxt 6 WE
bxt 8b 2 BW;x; t ð14Þ

It is important to highlight that the set of constraints (4)–(6)
together with (9)–(11) and (13) is the tightest possible representa-
tion (convex hull) for a unit operation under the energy-based
scheduling approach, as proven in Gentile et al. [30].

3.3. Es-UC: stochastic energy-based UC, including startup and
shutdown trajectories

The slow-start and quick-start units are now distinguished in
the Es-UC formulation. The quick-start units are defined as those
that can ramp up from 0 to any value between Pg and SUg within
one period (typically 1 h) as shown in Fig. 4 and modeled in the
previous Section 3.2. They can also ramp down from any value
between SDg and Pg to 0 within one period. On the other hand,
the slow-start units are defined as those units that require more
than one period to ramp up (down) from 0 (Pg) to Pg (0), see
Fig. 5. For slow-start units, the power output follows a predefined
power trajectory when the unit is starting up or shutting down
[20].

The objective function and all the constraints for Es-UC are
modeled as in the E-UC formulation in Section 3.2, except for the
total energy production for slow-start thermal units (13), which
is now replaced by

begxt ¼
XSg

s¼1

XSUD
gs

i¼1
ESU
gsidgs; t�iþSUD

gsþ1ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Startup trajectory

þ
XSDD

g

i¼1
ESD
gi zg; t�iþ1ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Shutdown trajectory

þ Pgugt þ egxt|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Output when being up

8g 2 GS;x; t ð15Þ

where GS is the set of units in G which are slow-start units.
Notice that (15) also models different startup power trajectories

for Es depending on how long the unit has been off-line.
The minimum down time TDg is a function of the minimum off-

line time, i.e., TDg is equal to the (hottest) startup and shutdown

duration processes (SUD
g1 þ SDD

g ) plus the minimum offline time of
the unit. Thus avoiding the possible overlapping between the star-
tup and shutdown trajectories. That is, constraint (6) ensures that



Fig. 6. Unit’s operation under the power-based scheduling approach.
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the unit is down (ugt ¼ 0) for enough time to fit the unit’s startup
and shutdown power trajectories.

Similarly to quick-start units, constraints (4)–(12) describe the
operation of slow-start units during the up state (where usually
SUg ; SUg ¼ Pg). For a better understanding of the modeling of
slow-start units, the reader is referred to Morales-Espana et al.
[20], Morales-España et al. [22].

Note that the no-load cost CNL
g

� �
in (1) ignores the startup and

shutdown periods. This is because the CNL
g only multiplies the com-

mitment during the up state ugt , see Fig. 5. In order to take into
account the no-load cost during the startup and shutdown periods,
CSU0
gs and CSD0

g are used in (1) instead of CSU
gs and CSD

g , respectively, and
defined as

CSU0
gs ¼ CSU

gs þ CNL
g SUD

gs 8g; s ð16aÞ

CSD0
g ¼ CSD

g þ CNL
g SDD

g 8g ð16bÞ

This only applies for slow-start units (since the startup and
shutdown duration for quick-start units is zero in the energy-
based approach).

3.4. Traditional deterministic energy-based UC

The previous Sections 3.2 and 3.3 presented stochastic energy-
based UC formulations. For the deterministic formulation, just one
scenario is modeled for wind: the nominal wind energy output ewE

bt

which is now defined as

0 6 ewE
bt 6 fW E

bt 8b 2 BW; t ð17Þ

where fW E
bt is the average wind energy available obtained from the

available wind scenarios:

fW E
bt ¼

X
x2X

pxW
E
bxt 8b 2 BW; t ð18Þ

For the deterministic case, demand is satisfied for the nominal
wind scenario, replacing (2) byX
g2G

begt ¼ X
b2BD

DE
bt �

X
b2BW

ewE
bt 8t ð19Þ

and to deal with uncertainty, the deterministic formulation guaran-
tees a level of reserves requirements:X
g2G

rþgt P fW E
bt � inf

x
WE

bxt 8t ð20ÞX
g2G

r�gt P sup
x

WE
bxt � fW E

bt 8t ð21Þ

where sup �ð Þ and inf �ð Þ are the supremum and infimum functions,
respectively.

Now, the energy output and reserves must be within the unit’s
technical limits, replacing (9)–(11) by

egt þ rþgt 6 Pg � Pg
� �

ugt � Pg � SDg
� �

zg;tþ1 �max SDg � SUg ;0
� �

yg;t
8g 2 G1; t ð22Þ

egt þ rþgt 6 Pg � Pg
� �

ugt � Pg � SUg
� �

ygt �max SUg � SDg ;0
� �

zg;tþ1

8g 2 G1; t ð23Þ

egt þ rþgt 6 Pg � Pg
� �

ugt � Pg � SUg
� �

ygt � Pg � SDg
� �

zg;tþ1

8g R G1; t ð24Þ

egt � r�gt P 0 8g; t ð25Þ
where G1 is defined as the units in G with TUg ¼ 1. Finally, ramping
constraints must also guarantee that reserves can be deployed,
replacing (12) by

egt þ rþgt
� �

� eg;t�1 6 RUg 8g; t ð26Þ

� egt � r�gt
� �

þ eg;t�1 6 RDg 8g; t ð27Þ
3.5. P-UC: stochastic power-based UC

The power-based UC draws a clear distinction between power
and energy, where power is the direct output of generating units
and the energy is then obtained from the power profile, as shown
in Fig. 6.

The UC seeks to minimize all production costs:

min
X
t2T

X
g2G

CNL
g ugt þ

X
s2Sg

CSU
gs dgst þ CSD

g zgt

" # 

þ
X
x2X

ps

X
g2G

CLV
g
begxt þ

X
b2BW

CVW
b wE

bxt

" #!
ð28Þ

Note that the no-load cost CNL
g

� �
in (28) ignores the startup and

shutdown periods, see Fig. 6. In order to take into account the no-
load cost during the startup and shutdown periods, CSU0

gs and CSD0
g

are introduced in (28) and defined as

CSU0
gs ¼ CSU

gs þ CNL
g 8g; s ð28aÞ

CSD0
g ¼ CSD

g þ CNL
g 8g ð28bÞ
3.5.1. System-wide constraints
Power demand balance at the end of hour t is guaranteed as

follows:X
g2G

bpgxt ¼
X
b2BD

DP
bt �

X
b2BW

wP
bxt 8x; t ð29Þ

where (29) is a power balance at the end of hour t. Be aware that the
energy balance for the whole hour is automatically achieved by sat-
isfying the power demand at the beginning and end of each hour,
and by considering a piecewise-linear power profile for demand
and generation [21].

The power-flow transmission limits are ensured with:

�Fl 6
X
g2G

CG
lg
bpgxt þ

X
b2BW

ClbwP
bxt �

X
b2BD

ClbD
P
bt 6 Fl 8l;x; t ð30Þ
3.5.2. Individual unit constraints
The commitment, startup/shutdown logic, the minimum up/-

down times, and the variable startup-type logic constraints are
guaranteed with (4)–(8).
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Power production must be within the power capacity limits:

pgxt 6 Pg � Pg
� �

ugt � Pg � SDg
� �

zg;tþ1

þ SUg � Pg
� �

yg;tþ1 8g;x; t ð31Þ

and ramping-capability limits are ensured with

�RDg 6 pgxt � pgx;t�1 6 RUg 8g;x; t ð32Þ

The total power and energy production for thermal and wind
units are obtained as follows:bpgxt ¼ Pg ugt þ vg;tþ1

� �
þ pgxt 8g;x; t ð33Þ

begxt ¼
bpgx;t�1 þ bpgxt

2
8g;x; t ð34Þ

wP
bxt 6 WP

bxt 8b 2 BW;x; t ð35Þ

wE
bxt ¼

wP
bx;t�1 þwP

bxt

2
8b 2 BW;x; t ð36Þ

It is interesting to note that even though SUg ; SDg P Pg (by def-
inition), the resulting energy from (34) for the power-based UC
may take values below Pg during the startup and shutdown pro-
cesses, see Fig. 6, unlike the traditional energy-based UC.

It is important to highlight that the set of constraints (4)–(6)
together with (31) and (33) and (34) is the tightest possible repre-
sentation (convex hull) for a unit operation under the power-based
scheduling approach, as proven in Morales-España et al. [22].

3.6. Ps-UC: stochastic power-based UC, including startup and
shutdown trajectories

All constraints presented in the previous (3.5), apply for both
quick- and slow-start units, except for the total power output for
slow-start thermal units (33), which is now replaced by

bpgxt ¼
XSg

s¼1

XSUD
gs

i¼1
PSU
gsidgs; t�iþSUD

gsþ2ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Startup trajectory

þ
XSDD

g þ1

i¼2
PSD
gi zg; t�iþ2ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Shutdown trajectory

þ Pg ugt þ yg;tþ1

� �
þ pgxt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Output when being up

8g 2 GS;x; t ð37Þ

where GS is the set of units in G which are slow-start units. Also, for
slow-start units, SUg and SDg are defined to be equal to Pg , for a
seamless transition between the down and up states, as shown in
Fig. 7. For a better understanding of the modeling of slow-start units
under the power-based scheduling approach, the reader is referred
to Morales-España et al. [22].

The set of constraints (4)–(6) together with (31), (34) and (37) is
the tightest possible representation (convex hull) for a slow-start
t

t
t
t

t

Fig. 7. Unit’s operation under the power-based scheduling approach, including
startup and shutdown trajectories.
unit operation (for one startup type) under the power-based
scheduling approach, as proven in Morales-España et al. [22].

Similarly to the power-based quick-start units, the no-load cost

CNL
g

� �
in (28) ignores the startup and shutdown periods. In order to

take this no-load cost into account, CSU0 and CSD0 are defined as

CSU0
gs ¼ CSU

gs þ CNL
g SUD

gs 8g; s ð38aÞ
CSD0
g ¼ CSD

g þ CNL
g SDD

g 8g ð38bÞ

and they apply for both slow- and quick-start units. For quick-start
units, SUD

gs ¼ SDD
g ¼ 1 by definition, see Fig. 6.

3.7. Deterministic power-based UC

The previous Sections 3.5 and 3.6 presented stochastic power-
based UC formulations. For the deterministic formulation just
one nominal scenario is modeled for wind. This nominal wind
power output ewP

bt is now defined as

0 6 ewP
bt 6 fW P

bt 8b 2 BW; t ð39Þ

where fW P
bt is the average wind power available obtained from all

wind scenarios:

fW P
bt ¼

X
x2X

pxW
P
bxt 8b 2 BW; t ð40Þ

For the deterministic case, demand is satisfied for the nominal
wind scenario, replacing (29) byX
g2G

bpgt ¼
X
b2BD

DP
bt �

X
b2BW

ewP
bt 8t ð41Þ

and to deal with uncertainty, the deterministic formulation guaran-
tees a level of reserves requirements:X
g2G

rþgt P fW P
bt � inf

x
WP

bxt 8t ð42ÞX
g2G

r�gt P sup
x

WP
bxt � fW P

bt 8t ð43Þ

Now, the power output and reserves must be within the unit’s
technical limits, replacing (31) by

pgt þ rþgt 6 Pg � Pg
� �

ugt � Pg � SDg
� �

zg;tþ1 þ SUg � Pg
� �

yg;tþ1 8g; t
ð44Þ

pgt � r�gt P 0 8g; t ð45Þ

Finally, ramping constraints must also guarantee that reserves can
be deployed, replacing (32) by

pgt þ rþgt
� �

� pg;t�1 6 RUg 8g; t ð46Þ

� pgt � r�gt
� �

þ pg;t�1 6 RDg 8g; t ð47Þ
4. Numerical results and discussion

This section presents the case studies. After describing the dif-
ferent case studies, a nominal case is discussed. Next, additional
sets of experiments are presented, considering the impact of alter-
native assumptions about wind and load flexibilities. One set of
experiments analyze how negative wind bids (i.e., curtailment
penalties) affect system flexibility. Another set analyzes different
degrees (standard deviations) of load variation. Finally, we com-
pare the performance of stochastic with deterministic UCs.



230 G. Morales-España et al. / Applied Energy 191 (2017) 223–238
4.1. Case studies

To evaluate the performance of different UC scheduling
approaches, we use the modified IEEE 118-bus test system
described in Morales-España [26] for a time span of 24 h. The sys-
tem has 118 buses, 186 transmission lines, 91 loads, 54 slow-start
thermal units, and three buses with wind production. To this sys-
tem we added 10 quick-start units that can be committed during
real-time operation, unlike slow-start units. The quick-start units
can produce from 0 to above the minimum output in 5 min. In
short, the system has 64 thermal units in total. Load is assumed
to be known, so that forecast uncertainty is entirely in wind. The
total (5-min) load averages 3578.6 MW, and has a peak of
5117.5 MW and a minimum of 1435.4 MW. Fig. 8 shows the 20
scenarios of wind production for one of the three buses. All system
data, including the 5-min and hourly demand and wind profiles,
are available online at www.iit.upcomillas.es/aramos/IEEE118-
bus_10fastGen.xls.

Two different UC approaches are implemented, along several
variations: the traditional energy-based UC and the power-based
UC. As presented in (3), the variations include with and without
startup and shutdown power trajectories, as well as deterministic
and stochastic versions. Thus, there are eight UC formulations in
total, one stochastic and one deterministic for each of the following
cases:

� E-UC: traditional energy-based UC, in which startup and shut-
down trajectories are not included (see Section 3.2) in the
day-ahead scheduling stage, although they actually do occur
in real time.

� Es-UC: traditional energy-based UC, including startup and shut-
down trajectories (see Section 3.3) in both day-ahead schedul-
ing and real-time operations.

� P-UC: power-based UC, excluding startup and shutdown trajec-
tories (see Section 3.5) from the day-ahead, but they occur in
real-time.

� Ps-UC: power-based UC, including startup and shutdown trajec-
tories (see Section 3.6) in both day-ahead and real-time models.

This experimental design allows us to test for the relative cost
of errors stemming from three sets of approximations: energy-
vs. power-based UC; exclusion vs. inclusion of startup and shut-
down power trajectories; and deterministic vs. stochastic UC. In
addition, sensitivity analyses explore the effect of different levels
of load variability and wind curtailment penalties. This section
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Fig. 8. Representation of wind uncertainty over time (wind production on bus 69).
starts comparing the stochastic versions of the above four cases
(E-UC, Es-UC, P-UC, Ps-UC). Subsequent subsections compare the
performance of the stochastic and deterministic UC formulations,
as well as the sensitivity analyses.

All optimizations were carried out using CPLEX 12.6.1 on an
Intel-Xeon (64-bit) 3.7-GHz personal computer with 16 GB of
RAM memory. The problems are solved until they hit a time limit
of 2 h or until they reach an optimality tolerance of 0.05% (none of
the UC problems exceeded the time limit).

To observe that hidden inflexibilities imposed by the different
UC formulations, we carry out an in-sample evaluation of the UC
policies. That is, in the stochastic UC case, the ideal stochastic UC
formulations are mimicked by evaluating their performance in
real-time (5 min) dispatch using the same scenarios used in the
scheduling stage. By doing this, we can show the problems that
are related with the formulations rather than with the representa-
tion of the uncertainty itself, because in the in-sample evaluation,
the stochastic UC formulations have perfect information about the
uncertainty distributions.1

To assess the performance of the different network-constrained
UC approaches, we differentiate between the scheduling stage and
the real-time dispatch stage. In the scheduling stage, the 20 wind
scenarios in Fig. 8 are used to solve the stochastic UC problems
and to obtain a single commitment schedule for the 54 slow-
start units for a time span of 24 h. On average, the 20 scenarios rep-
resent 24.4% of the energy demand, with the individual scenarios
providing 21–29% of the demand. In the real-time dispatch stage,
the single slow-start unit commitment result from the scheduling
stage is fixed (i.e., taken as a constraint), and the real-time (5 min)
dispatch as well as commitment decisions for 10 quick-start units
are optimized for each of the 20 individual wind scenarios using a
network-constrained economic dispatch/quick-start commitment
problem. The dispatch stage mimics the actual real-time system
operation in which generating units are dispatched to supply the
demand every 5 min, while commitment decisions are allowed to
be taken for the quick-start units every 15 min. This is an approx-
imation of the California ISO market design, in which the fifteen
minute market includes both dispatch and quick-start commit-
ment decisions, and a 5 min market is dispatch-only. To represent
the high costs due to corrective actions in real-time operations, we
introduce penalty costs of 10000 $/MWh and 5000 $/MWh for vio-
lations of supply-demand balances and transmission-limits,
respectively [32].
4.2. Nominal case

The nominal case consists of the stochastic UC formulation
using the 20 wind scenarios presented in Fig. 8 under the nominal
assumptions about demand variability and wind bidding. Equal
probabilities are assumed for all the scenarios. We assume that
the wind units submit negative bids of �50 $/MWh. In this paper,
negative bids are used to solve the UC scheduling and dispatch
problems, but the resulting negative costs are excluded from the
total costs (see TC in Table 1) to separate the effect of the quantity
of curtailment from the total costs, thus providing an insight of the
actual fuel costs that were incurred during the operation. Certain
subsidies, such as feed-in-tariffs, motivate renewable energy gen-
erators to submit negative price offers. This practice may increase
system operation costs and even emissions due to lessened flexi-
bility. In particular, larger negative bids for wind increases that
1 Powell and Meisel [31] point out that all practical stochastic programming
models in power systems make simplifications, such as Markov assumptions, finite
time horizons, or discrete distributions. As a result, no real models find the truly
optimal stochastic solution, and all should have their solutions tested using
simulations such in this paper.

http://www.iit.upcomillas.es/aramos/IEEE118bus_10fastGen.xls
http://www.iit.upcomillas.es/aramos/IEEE118bus_10fastGen.xls


Table 1
Performance of different stochastic UC policies.

Stochastic UC Scheduling (hourly) Real-time dispatch (5-min) Sch vs. Rtda

TC FxdCost Curt TCW TC Curt TC Curt
[k$] [k$] [%] [k$] [k$] [%] rtd/sch rtd/sch

E-UC 733.19 56.01 1.33 804.19 719.78 8.06 0.983 6.044
Es-UC 713.06 66.05 2.53 774.41 720.88 5.11 1.009 2.018

P-UC 730.55 59.83 2.77 793.05 719.20 7.05 0.984 2.542
Ps-UC 708.45 61.38 4.98 766.10 709.83 5.38 1.002 1.08

a ‘Sch’ denotes the scheduling stage, ‘Rdt’ denotes the real-time dispatch stage.
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resource’s dispatch priority, which may in turn produce more star-
tups of conventional plants, higher costs and higher emissions than
in the case of having a more flexible system [33]. The reason for
excluding negative bids from reported total cost is that, at least
in the short-run, renewable subsidies represent income transfers
from taxpayers or ratepayers to renewable producers, and are
not an actual social cost.

Table 1 shows the performance of the different stochastic UC
formulations in terms of eight metrics, three related to the day-
ahead scheduling stage, three to real-time dispatch, and two com-
paring the day-ahead schedules with the actual dispatch. The three
scheduling stage metrics: (1) Total (scenario-averaged) production
costs (TC); excluding negative wind bids, obtained from the opti-
mal UC solution; (2) the fixed commitment costs (FxdCost) for
the 54 long-start units, including non-load, startup and shutdown
costs; and (3) percentage of potential wind production curtailed
(Curt). In the real-time dispatch/quick-start commitment stage,
the metrics include: (4) the average of the total production costs
including wind curtailment penalties (negative bids) (TCW); (5)
average total costs excluding curtailment penalties (TC); and (6)
percentage of wind production curtailed (Curt). The final two met-
rics compare the outcomes predicted by the scheduling model vs.
what was actually realized in the real-time dispatch stage (Sch vs
Rtd): (7) the ratio of the TC obtained from the dispatch stage to
that predicted in the scheduling stage, excluding wind penalties
(TC rtd/sch); and (8) the ratio of the dispatch stage (actual) curtail-
ment to that predicted by the scheduling stage (Curt rtd/sch).

In terms of overall economic efficiency, we should not be sur-
prised that Ps-UC (the scheduling model with the fewest approxi-
mations) has the lowest actually realized value of the objective
function ($766,100 for TCW). Considering startup and shutdown
trajectories improved the day-ahead UC schedule more than con-
sidering power rather than energy (For instance, Ps-UC reduces
TCW by $26.95k compared to P-UC, and by $8.31k compared to
Es-UC). When wind penalties are excluded, the Ps-UC solutions
remain the best, although the margins are generally shrunk.

We now take a more detailed look at the solutions. From the
scheduling stage in Table 1, it can be observed that the Es-UC
and Ps-UC (UC formulations including startup and shutdown tra-
jectories) calculate higher fixed costs day-ahead than the E-UC
and P-UC (UC formulations without startup and shutdown trajec-
tories). This is because Es-UC and Ps-UC commit more resources
to accommodate the (inflexible) startup and shutdown trajectories
of the committed units. Conversely, the total costs (TC) that are
anticipated day-ahead are lower for the case of Es-UC and Ps-UC
because these UCs optimally allocate the startup and shutdown
trajectories to also meet part of the demand.

From the scheduling stage, one can also observe that UCs with-
out startup and shutdown trajectories are expected to accommo-
date more (curtail less) wind than UCs with startup and
shutdown trajectories. The reasoning behind this is that units are
not flexible when starting up and shutting down and this adds a
level of inflexibility to the problem. Additionally, when startup
and shutdown trajectories are not included, units are assumed to
produce from 0 to an output equal or above their minimum capac-
ity within one hour, which seemingly (but not actually) makes the
system more flexible to accommodate large changes in wind or
load.

In the results of the real-time dispatch stage in Table 1, it can be
observed that the TC difference between Es-UC and E-UC is less sig-
nificant than what was expected from the scheduling stage. The
same happens with the difference between Ps-UC and P-UC.
Although E-UC and P-UC were expected to present less curtailment
than Es and Ps, thanks to their presumed higher level of flexibility,
the opposite was encountered in the real-time dispatch. Notice
that the level of curtailment of E-UC in the real-time dispatch stage
(8.06%) is more than 6 times higher than in the scheduling stage
(1.33%). Less curtailment was found in Es-UC, where the level of
curtailment of Es-UC in the real-time dispatch stage (5.11%) was
twice that in the scheduling stage (2.53%). Both in the energy-
based and in the power-based formulations, this paradoxical result
derives from the fact that when the startup and shutdown trajec-
tories are ignored in the scheduling stage, reserves that were sup-
posed to be used to manage wind are used instead to
accommodate the startup and shutdown trajectories. Furthermore,
TC increased in the case of Es-UC and Ps-UC for the real-time dis-
patch when compared to the scheduling stage (ratios greater than
1), whereas the TC for E-UC and P-UC decreased because the latter
did not recognize that startup and shutdown energy would dis-
place other sources. However, curtailment levels increased by lar-
ger proportions for E-UC and P-UC than in the case of Es-UC and Ps-
UC. Bear in mind that the TC values in Table 1 do not include the
negative bid of the wind production (but the negative bid is
included to solve the UC problem), otherwise E-UC and P-UC would
show higher values than in the scheduling stage.

It should be noted that curtailment was much greater in the
real-time dispatch stage than in the UC stage, especially for UCs
without startup and shutdown trajectories. As shown in the last
column of Table 1, all the curtailment ratios between the results
of the real-time dispatch and the scheduling stage were higher
than 1. The degree of unexpected curtailment in the dispatch stage
indicates how well the UCs scheduled the extra resources
(reserves) to provide flexibility to the system. A value of one means
that the hourly scheduling day-head perfectly predicted the 5 min
dispatch curtailment. A value greater than one means that the
resources/reserves that were scheduled to deal with wind are in
the end used to deal with other inflexibilities of the system that
were not considered in the UC scheduling stage (hidden inflexibil-
ity). A value lower than one means that the system had actually
over-scheduled resources to deal with the planned level of
uncertainty.

Based on this comparison of results from the scheduling and
real-time dispatch stages for the four different UC formulations
of the nominal case, we can conclude the following:

(1) Stochastic UCs: Bear in mind that the real-time dispatch
stage uses the same scenarios that were used in the schedul-
ing stage. Therefore, the stochastic formulations might be
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expected to present an optimal performance since they are
being evaluated using the same in-sample scenarios. That
is, the curtailment and total cost during in the real-time dis-
patch stage is expected to be the same as in the scheduling
stage. However, these stochastic UCs are not able to face
the perfectly known conditions (excluding within-hour
power variability), leading to unplanned and inefficient use
of resources to manage deterministic events that were
ignored in the scheduling stage.

(2) Startup and shutdown power trajectories: UCs ignoring
these trajectories presume that there is a level of flexibility
that the units actually do not have. This inevitable leads to
higher curtailment in real-time operation than anticipated
in the scheduling stage.

(3) Energy-based UC: once startup and shutdown trajectories
are included in the energy-based UC (Es-UC), a curtailment
ratio above 1 still occurs, indicating that there is some
inflexibility (not related to the startup and shutdown trajec-
tories) that is hidden in the energy-based scheduling formu-
lation. As discussed in Section 2, the traditional energy-
based UC over-estimates the units’ ramping capabilities
and cannot guarantee that the commitment decisions can
actually provide the resulting energy schedule, hence extra
resources are needed in real-time operation to compensate
this ramping over-estimation. This was not reflected in load
curtailment or transmission violation penalties, as all real-
time dispatches were feasible; instead, additional quick-
start units were started up or wind was curtailed, increasing
costs.

(4) Power-based UC: Ps-UC results in the most accurate
scheduling-stage estimate of wind curtailment in the
scheduling compared to real-time dispatch (rtd/sch = 1.08).
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Fig. 9. Performance of different UCs under different ne
It is important to acknowledge that the curtailment ratio
increases due to any intra-hour variation that could not be
taken into account into the hourly UC model. However, this
ratio could also decrease because the hourly Ps-UC underes-
timates ramp capabilities for faster ramping units (Sec-
tion 2), which are fully exploited during real-time system
operation.

4.3. Different bids by wind

We now consider the sensitivity cases (wind bids, demand vari-
ation, and deterministic UC models).

This section shows the wind curtailment and operational costs
that are obtained from the UC formulations under alternative wind
bids. The results are shown by means of boxplots. A boxplot should
be interpreted as follows. The central mark inside each box repre-
sents the median, while the black dot is the average. The edges of
the box provide the 25th and 75th percentiles. The whiskers indi-
cate the most extreme data points (that are not considered to be
outliers). Finally, outliers are plotted individually.

Fig. 9 shows the results for each UC formulation. Note that each
column in the graph (white or gray) represents a different negative
wind bid. As mentioned previously, negative bidding diminishes
system flexibility as a result of conferring wind a higher dispatch
priority, which makes thermal generation vary more in compensa-
tion [33].

From Fig. 9 it can be observed that for all UC formulations, the
operating costs generally increase as the negative wind bids
increase in magnitude. Moreover, the differences in curtailment
percentages between the formulations that include startup and
shutdown trajectories and those that exclude them becomes more
significant as the wind bid decreases.
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gative wind bids: Total cost and wind curtailment.
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Ps-UC tends to present the lowest operating costs with excep-
tion of the case when the wind bid is equal to �500 $/MWh, in
which E-UC and P-UC present lower total costs. However, as shown
in Fig. 10, when combining the operation costs and the curtailment
penalization in the total costs (TCW), Ps-UC performs the best fol-
lowed by Es-UC, while E-UC performs the worst, followed by P-UC.

In short, the more inflexible the system becomes (lower wind
bids), the better the performance of Ps-UC and Es-UC become with
respect to P-UC and E-UC, respectively. Furthermore, Ps-UC also
gains an additional advantage over Es-UC when more flexibility
is demanded. This can also be observed in Table 2, where the TC
and Curt ratios between real-time dispatch and scheduling stages
are shown. Notice that Ps-UC shows the most accuracy overall
(i.e., ratios closest to 1). Ps even shows its best Curt ratio perfor-
mance for the lowest wind bid (�500) whereas the performance
of the others deteriorated under larger bids. This means that Ps
better exploits the flexibility of the system to face wind uncer-
tainty under different levels of the wind bid.

4.4. Different standard deviations of demand

This subsection shows the performance of the UC formulations
under different variations of load over the day. For the nominal
case, the difference between the peak, and offpeak of the demand
is 3682.1 MW; this range is varied by factors between 0.5 and 1.5.
The results can be observed in Fig. 11. As expected, Ps-UC and Es-
UC present lower curtailment, consistent with results discussed
above. Ps-UC and Es-UC also tend to show lower TC. This is even
clearer when adding the curtailment penalization to the total costs
(TCW), as shown in Fig. 12.

Demand-balance violations are experienced for the first time in
the E-UC solutions, which are infeasible for cases in which the
demand is more variable (ratios of 1.25 and 1.50), while P-UC is
Table 2
Ratios of total cost and wind curtailment under different wind bids (WB).

WB [$/MW h] TC
rtd/sch

E Es P P

0 0.997 1.008 0.986 1.0
�25 0.993 1.010 0.988 1.0
�50 0.982 1.011 0.984 1.0
�75 0.982 1.012 0.985 1.0
�100 0.982 1.018 0.983 1.0
�500 0.977 1.094 0.978 1.0
infeasible for the highest ratio case (1.50). This is due to the steep
demand profile that results from having a higher difference
between the peak and off-peak of the demand. During the off-
peak period most generators were offline, but should have rapidly
come on-line to supply the steep demand ramp. In the real-time
operation, the startup and shutdown trajectories of the 54 slow-
start units add up in a way that the startup, shutdown and the min-
imum output of the online units are greater than the demand,
causing negative demand-balance violations. This is a consequence
of ignoring the startup and shutdown trajectories in the scheduling
stage. Meanwhile, Es-UC and Ps-UC optimally schedule the units
and their startup (and shutdown) trajectories to supply the steep
demand. A similar phenomenon might be expected when the
demand is at peak values and rapidly decreases; however, during
the peak demands the deficit of generation can in fact be supplied
by quick-start units.

Es-UC was also infeasible for the steepest demand case, in
which the peak/off-peak demand difference equaled 1.5 times
the nominal difference. In this case, the infeasibility is not caused
by the startup and shutdown trajectories, because Es-UC takes
them into account. Instead, the infeasibility results from overesti-
mating the ramp-up capability of the units, which is one of the
drawbacks of the traditional energy-based scheduling approaches,
as discussed in Section 2.1. In other words, the energy approach
schedules a steeply ramping energy profile that cannot be deliv-
ered in real-time operation.

The results can also be observed in Table 3. Ps-UC shows the
best results overall. Not only there are no infeasibilities in this case,
but the cost ratio remains close to 1 for the different variations of
demands. Moreover, the curtailment ratio is the best for most of all
cases. As already mentioned, the curtailment ratio gives an indica-
tion of how optimally the flexibility of the system is scheduled. A
value of one means that everything went as optimally as planned
Curt
rtd/sch

s E Es P Ps

02 1.582 1.344 1.094 1.078
02 3.461 1.646 1.656 1.059
02 6.044 2.018 2.542 1.080
02 9.078 2.403 2.643 1.119
02 10.099 2.340 3.812 1.139
31 38.146 2.281 10.906 1.041
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Table 3
Ratios of total cost and wind curtailment under different demand variabilities (R, ratio of max-min load relative to nominal case).

R TC Curt
rtd/sch rtd/sch

E Es P Ps E Es P Ps

0.50 0.992 1.007 0.993 1.001 2.271 9.625 1.215 1.967
0.75 0.989 1.009 0.991 1.002 18.266 7.434 6.156 1.273
1.00 0.982 1.011 0.984 1.002 6.044 2.018 2.542 1.080
1.25 1.984 1.012 0.986 1.003 3.21 1.389 1.74 1.064
1.50 9.786 1.288 5.555 1.008 1.918 1.187 1.319 1.045
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for the day-ahead UC, and this is the case for Ps-UC, all values are
close to 1.

4.5. Stochastic vs. deterministic UC

This section compares the real-time dispatch performance of
deterministic UCs with stochastic UCs. The deterministic paradigm
uses the mean wind production (averaged over the 20 scenarios in
Fig. 8) in the scheduling model, but still uses the actual 20 realiza-
tions in the dispatch stage to evaluate the performance of the day-
ahead commitment. Unlike the stochastic model, the deterministic
energy-based (Section 3.4) and power-based (Section 3.7) UC
include two hourly reserves constraints, upwards and downwards,
which are defined as, respectively, the mean wind production
minus the minimum wind envelope, and the maximum wind
envelope minus the nominal wind production, respectively (as
modeled in (20) and (21) for E-UC and Es-UC, and in (42) and
(43) for P-UC and Ps-UC). It is assumed that reserved capacity
can be used to generate energy in the real-time market based on
their costs, similar to the California ISO and MISO flexible ramping
products [10].

In the nominal case, Fig. 13 shows that for a given UC, the
stochastic formulation performs better during real-time operation
than the deterministic formulation in terms of both costs. This is as
expected, since the stochastic model optimizes the reserves con-
sidering all 20 possible wind scenarios. However, he following
two extreme cases, in demand variability and wind bid, did not
perform as expected and hence we discuss them in more detail
as follows.

4.5.1. Maximum wind inflexibility
Fig. 14 compares the deterministic and stochastic UC models

with the lowest negative bid (WB = �500 $/MWh) which demands
more flexibility from the system. One can observe that the deter-
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Fig. 13. Stochastic vs. determ
ministic Ps-UC formulation provides a better result than the
stochastic Es-UC formulation. This means that even though a
stochastic approach outperforms a deterministic approach in gen-
eral, the fact that the stochastic Es-UC formulation doesn’t account
for the hidden inflexibility discussed in Section 2, makes the Ps-UC
deterministic approach to outperform the Es-UC stochastic
approach. Not only the costs are lower for the Ps-UC deterministic
approach, but the curtailment is also lower, which again is a result
of a UC formulation that better represents the flexibility of the
power system.

4.5.2. Maximum demand variation
Fig. 15 portrays the deterministic and stochastic UC results in

the case of the highest demand variation (1.5 times the
maximum-minimum load difference over the day). Noteworthy is
that the deterministic Es-UC formulation provided better results
than the stochastic Es-UC. The reason for this is that the Es-UC
stochastic formulation had supply-demand balance infeasibilities
that were not present in the Es-UC deterministic formulation. In
the deterministic formulation a higher amount of reserves was
imposed, whereas in the stochastic approach the level of reserves
was lower because they are optimized in the UC stage. Because
of the infeasibilities that were actually encountered in real time
due to a shortage of reserves, the overall costs were higher for
the Es-UC stochastic formulation. The deterministic formulation
is usually less optimal in this paper, but in this particular case,
thanks to having more reserves that provide flexibility, the deter-
ministic formulation was able to cope with the higher demand
variability, and in this way outperform the stochastic formulation.
Similar phenomena were encountered for E and P, as shown in
Fig. 16.

In short, if the UC formulation is not properly defined, it is even
better to choose a deterministic approach that considers enough
reserves to deal with the formulation’s hidden inflexibilities, than
E Es P Ps

Stochastic UCs

E Es P Ps

inistic UC: Nominal case.
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Fig. 14. Stochastic vs. deterministic UC: Wind bid �500 $/MW h.
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to choose a stochastic approach that could present infeasibilities
due to flaws in the formulation.
5. Conclusions

We have shown how the performance of traditional energy-
based UC formulations could be more affected by inaccurate sys-
tem representations than by wind uncertainty itself. This was
demonstrated by comparing alternative formulations of the day-
ahead hourly commitment problem (energy- vs. power-based;
excluding or including startup and shutdown trajectories; and
deterministic vs. stochastic), and evaluating the quality and accu-
racy of their schedules through simulation of real-time dispatch
and quick-start unit commitment in response to wind and load
variations with a 5 min granularity. In the real-time (5-min) dis-
patch stage, the commitment decisions of stochastic day-ahead
UC models were evaluated using the same net load scenarios that
were considered when solving the stochastic UC, thus simulating
the case of ‘‘perfect” stochastic UCs, which accurately represent
the probabilities of net load.

The results demonstrate that even such an ‘‘ideal” energy-based
stochastic UC formulation imposes a hidden system inflexibility,
because the traditional energy-based UC formulation incorrectly
represents ramp capabilities and also disregards the intrinsic units’
startup and shutdown trajectories. In fact, if the formulation is not
properly defined, it can be better to choose a deterministic
approach that requires enough reserves than to use a stochastic
approach that could present infeasibilities due to flaws in the for-
mulation. Results also showed that a power-based deterministic
formulation, including startup and shutdown trajectories, can out-
perform an energy-based stochastic formulation, if sufficient
reserves are procured in the deterministic run. In general, a
power-based UC formulation with startup and shutdown trajecto-
ries resulted in the schedules with the least expected actual cost
and wind curtailments than energy-based UC. This is especially
the case when more flexibility is demanded by the system, for
instance due to high demand variability and larger negative wind
bids.

There are many interesting directions for future research. For
example, it would be interesting to carry out analyses, similar to
those presented in this paper, on real electric systems, thus quan-
tifying the impact of these hidden inflexibilities on current electric
systems. It would be interesting to model a robust power-based UC
and compare it against traditional robust energy-based UCs.
Although the natural conservatives of the robust approach could
help to protect the schedule against the imposed energy-based
infeasibilities, it would be expected that the robust power-based
UC will avoid these hidden inflexibilities since the beginning. It
would also be interesting to compare the power-based and the
energy-based approaches under sub-hourly schedules, what period
duration would make them similar? what period duration would
make the energy-based match the performance of the power-
based approach? Another interesting research direction would be
to create a market based on power products instead of energy
products, thus avoiding the hidden system inflexibility imposed
by the energy-based scheduling approach. That is, the power-
based approach has been proposed to produce optimal schedules
for (power) quantities, but it remains unknown how to price these
obtained quantities.
Acknowledgments

The work presented in this paper is funded by the Netherlands
Organisation for Scientific Research (NWO), as part of the Uncer-
tainty Reduction in Smart Energy Systems program. NWO had no
direct involvement in the process leading to this paper
References

[1] Hobbs BF, Rothkopf MH, O’Neill RP, Chao H-P, editors. The next generation of
electric power unit commitment models. Springer; 2001.

[2] Shahidehpour M, Yamin H, Li Z. Market operations in electric power systems:
forecasting, scheduling, and risk management. 1st ed. Wiley-IEEE Press; 2002.

[3] Ma J, Silva V, Belhomme R, Kirschen D, Ochoa L. Evaluating and planning
flexibility in sustainable power systems. IEEE Trans Sustain Energy 2013;4
(1):200–9.

[4] Quan H, Srinivasan D, Khambadkone AM, Khosravi A. A computational
framework for uncertainty integration in stochastic unit commitment with
intermittent renewable energy sources. Appl Energy 2015;152:71–82. URL
<http://www.sciencedirect.com/science/article/pii/S0306261915005668>.

[5] Lannoye E, Flynn D, O’Malley M. Evaluation of power system flexibility. IEEE
Trans Power Syst 2012;27(2):922–31.

[6] Nosair H, Bouffard F. Flexibility envelopes for power system operational
planning. IEEE Trans Sustain Energy 2015;6(3):800–9.

[7] Menemenlis N, Huneault M, Robitaille A. Thoughts on power system flexibility
quantification for the short-term horizon. In: 2011 IEEE power and energy
society general meeting. p. 1–8.

[8] Oree V, Hassen SZ Sayed. A composite metric for assessing flexibility available
in conventional generators of power systems. Appl Energy 2016;177:683–91.
URL <http://www.sciencedirect.com/science/article/pii/
S0306261916307437>.

[9] Kubik ML, Coker PJ, Barlow JF. Increasing thermal plant flexibility in a high
renewables power system. Appl Energy 2015;154:102–11. URL <http://
www.sciencedirect.com/science/article/pii/S0306261915005267>.

[10] Wang B, Hobbs BF. Real-time markets for flexiramp: a stochastic unit
commitment-based analysis. IEEE Trans Power Syst 2016;31(2):846–60.

[11] Kiviluoma J, Meibom P, Tuohy A, Troy N, Milligan M, Lange B, et al. Short-term
energy balancing with increasing levels of wind energy. IEEE Trans Sustain
Energy 2012;3(4):769–76.

http://refhub.elsevier.com/S0306-2619(17)30100-9/h0005
http://refhub.elsevier.com/S0306-2619(17)30100-9/h0005
http://refhub.elsevier.com/S0306-2619(17)30100-9/h0010
http://refhub.elsevier.com/S0306-2619(17)30100-9/h0010
http://refhub.elsevier.com/S0306-2619(17)30100-9/h0015
http://refhub.elsevier.com/S0306-2619(17)30100-9/h0015
http://refhub.elsevier.com/S0306-2619(17)30100-9/h0015
http://www.sciencedirect.com/science/article/pii/S0306261915005668
http://refhub.elsevier.com/S0306-2619(17)30100-9/h0025
http://refhub.elsevier.com/S0306-2619(17)30100-9/h0025
http://refhub.elsevier.com/S0306-2619(17)30100-9/h0030
http://refhub.elsevier.com/S0306-2619(17)30100-9/h0030
http://refhub.elsevier.com/S0306-2619(17)30100-9/h0035
http://refhub.elsevier.com/S0306-2619(17)30100-9/h0035
http://refhub.elsevier.com/S0306-2619(17)30100-9/h0035
http://www.sciencedirect.com/science/article/pii/S0306261916307437
http://www.sciencedirect.com/science/article/pii/S0306261916307437
http://www.sciencedirect.com/science/article/pii/S0306261915005267
http://www.sciencedirect.com/science/article/pii/S0306261915005267
http://refhub.elsevier.com/S0306-2619(17)30100-9/h0050
http://refhub.elsevier.com/S0306-2619(17)30100-9/h0050
http://refhub.elsevier.com/S0306-2619(17)30100-9/h0055
http://refhub.elsevier.com/S0306-2619(17)30100-9/h0055
http://refhub.elsevier.com/S0306-2619(17)30100-9/h0055


238 G. Morales-España et al. / Applied Energy 191 (2017) 223–238
[12] Pereira S, Ferreira P, Vaz AIF. A simplified optimization model to short-term
electricity planning. Energy 2015;93(Part 2):2126–35. URL <http://
www.sciencedirect.com/science/article/pii/S0360544215014085>.

[13] Feng Y, Ryan SM. Day-ahead hourly electricity load modeling by functional
regression. Appl Energy 2016;170:455–65. URL <http://
www.sciencedirect.com/science/article/pii/S0306261916302744>.

[14] Cui H, Li F, Hu Q, Bai L, Fang X. Day-ahead coordinated operation of utility-
scale electricity and natural gas networks considering demand response based
virtual power plants. Appl Energy 2016;176:183–95. URL <http://
www.sciencedirect.com/science/article/pii/S030626191630589X>.

[15] Guan X, Gao F, Svoboda A. Energy delivery capacity and generation scheduling
in the deregulated electric power market. IEEE Trans Power Syst 2000;15
(4):1275–80. URL <http://dx.doi.org/10.1109/59.898101>.

[16] Guan X, Zhai Q, Feng Y, Gao F. Optimization based scheduling for a class of
production systems with integral constraints. Sci China Ser E: Technol Sci
2009;52(12):3533–44.

[17] Yang Y, Wang J, Guan X, Zhai Q. Subhourly unit commitment with feasible
energy delivery constraints. Appl Energy 2012;96:245–52. URL <http://
www.sciencedirect.com/science/article/pii/S0306261911007057>.

[18] Wu H, Zhai Q, Guan X, Gao F, Ye H. Security-constrained unit commitment
based on a realizable energy delivery formulation. Math Prob Eng
2012;2012:1–22.

[19] Morales-Espana G, Garcia-Gonzalez J, Ramos A. Impact on reserves and energy
delivery of current UC-based market-clearing formulations. In: European
energy market (EEM), 2012 9th international conference on the, Florence,
Italy. p. 1–7.

[20] Morales-Espana G, Latorre JM, Ramos A. Tight and compact MILP formulation
of start-up and shut-down ramping in unit commitment. IEEE Trans Power
Syst 2013;28(2):1288–96.

[21] Morales-Espana G, Ramos A, Garcia-Gonzalez J. An MIP formulation for joint
market-clearing of energy and reserves based on ramp scheduling. IEEE Trans
Power Syst 2014;29(1):476–88.

[22] Morales-España G, Gentile C, Ramos A. Tight MIP formulations of the power-
based unit commitment problem. OR Spectrum 2015;37(4):929–50.

[23] Wang J, Wang J, Liu C, Ruiz JP. Stochastic unit commitment with sub-hourly
dispatch constraints. Appl Energy 2013;105:418–22. URL <http://
www.sciencedirect.com/science/article/pii/S0306261913000160>.
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