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Summary

The root zone storage capacity is a critical determinant in hydrology, playing a major role in the partitioning
of precipitation into evaporation and runoff. Besides, it is an important parameter in climatological and hy-
drological models. Understanding of the root zone storage capacity and its major determining processes is
therefore fundamental in environmental sciences. Several studies have investigated root zone storage capac-
ity magnitude and its descriptor variables, but mainly in snow absent regions. Computation and analysis of
root zone storage capacities in snow dominant regions is therefore underexposed. The studies that do con-
sider snow dynamics are limited to a small number of catchments or a region with few spatial variation and
therefore narrow spread in climate, topography and land-use parameters. This may complicate visualisation
of the relationship of some potential descriptors with the root zone storage capacity. As such, additional un-
derstanding of the major descriptor variables of the root zone storage capacity in boreal regions with large
spatial variation and in particular the influence of snow on the root zone storage capacity is desired.

The aim of this study is therefore to quantify catchment average root zone storage capacities, identify its
main descriptor variables and their regional variability and determine the influence of snow on root zone
storage capacities in a boreal region. To achieve this, an area with large variety in climate and landscape is
required, with additional variation in snow dynamics. Due to its large spatial extent, Canada matches these
requirements and is therefore used as study area.

Catchment average root zone storage capacities were computed for 230 Canadian catchments using a sim-
ple water balance approach with additional snow module and were found to be normally distributed with
mean magnitude of 183 mm and a standard deviation of 70 mm. Individual correlation of climate, discharge
and landscape variables showed most relevant relationship between root zone storage capacities and yearly
potential evaporation, runoff coefficient and seasonality index, although with considerable variance.

Subsequent investigation on the mutual effect of several variables showed that the aridity index, runoff coef-
ficient and seasonality timing index are major descriptor variables of the root zone storage capacity, by how
they indicate the allocation of water for transpiration in a catchment and describe the degree of synchronisa-
tion between liquid input and atmospheric water demand. The earlier derived individual descriptors of the
root zone storage capacity are encapsulated in these three main descriptor variables. Application of a mul-
tiple linear regression model using the aridity index, runoff coefficient and seasonality timing index showed
these variables can be used to predict root zone storage capacities in Canada with an R2 of 0.72. Subsequent
tests of the predictive capability of this model in distinct boreal region Finland resulted in an R2 of 0.62.

The influence of snow on the root zone storage capacity in Canada was identified by comparing its magnitude
computed with and without a snow module. This analysis showed that whenever significantly present, snow
effects lead to a decrease in root zone storage capacity magnitude, caused by increased overlap between liq-
uid input and transpiration output in a catchment. These effects are encapsulated by the seasonality timing
index.

To determine the regional variability of root zone storage capacity descriptors in Canada, catchments were
clustered based on similar functioning. The results indicated that different variables have an effect on the
root zone storage capacity in different functionally comparable regions and that a large part of the functional
behaviour of the clusters can be explained by the geographical location of their catchments. The influence of
these regionally dependent variables on the root zone storage capacity is encapsulated in the earlier defined
main descriptor variables aridity index, runoff coefficient and seasonality timing index.
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1
Introduction

Vegetation has shown to be a critical determinant in the hydrological cycle. It is an important steering fac-
tor in the partitioning of precipitation into evaporation and runoff (e.g. Milly, 1994), due its ability to extract
water stored in the unsaturated zone between field capacity and wilting point with its root system. The total
volume of water per unit area that is stored in range of the root structure, therefore available for transpiration,
is called the root zone storage capacity (Sr ). This root zone storage capacity is thus an important descriptor of
hydrological functioning in catchments, directly affecting transpiration (Milly and Dunne, 1994) and runoff
fluxes (Donohue et al., 2012) and therefore an important component in hydrological models (e.g. Fenicia
et al., 2011). Besides, Sr directly influences land surface temperatures (e.g. Kleidon and Heimann, 1998b) as
transpiration largely contributes to latent heat fluxes and is therefore also a key parameter in climate mod-
elling (Kleidon and Heimann, 2000). Understanding of the root zone storage capacity is therefore critical in
environmental studies. Such better insight can be achieved by identification of the main processes that de-
scribe Sr . Moreover, comprehension of these determining processes can lead to better understanding on the
response of the root zone storage capacity in a system of constant change due to e.g. climate change and
anthropogenic influences on land-use.

Theoretically, root zone storage capacities can be obtained from multiplication of root depth with subsurface
pore volumes. However, both root depth observations (e.g Schenk and Jackson, 2002) and soil data are very
scarcely available, complicating Sr computation using this approach. Besides, observations on the local scale
are difficult to integrate to the catchment scale due to the heterogeneous nature of catchments (Crow et al.,
2012) and therefore prone to location bias. As such, alternative methods for determining catchment average
root zone storage capacities are required. In hydrological modelling, root zone storage capacities are often
calibrated. However, calibration does not always provide a physical representation of Sr due to its subjectiv-
ity to parameter equifinality (Beven, 2006). Another approach that is commonly applied in literature is the
estimation of root zone storage capacities based on a look-up table (Wang-Erlandsson et al., 2014), where Sr

is estimated based on mean biome rooting depth and soil texture data derived from literature. However, this
method fails to account for climatic conditions, although identical vegetation types have shown to develop
different root zone storage capacities in regions with varying climates and landscapes (e.g. Collins and Bras,
2007). There is evidence that trees invest in root growth to reduce negative carbon assimilation effects during
periods of water stress (Porporato et al., 2004). They do this by evolutionarily optimising their root system
to environmental conditions in such a way that there is enough moisture to meet the evaporative water de-
mand for above-ground growth, while minimising the total carbon invested in root growth and maintenance
(Guswa, 2008, Kleidon, 2004). Therefore it is important to consider climatic conditions when determining the
root zone storage capacity (Gentine et al., 2012, Kleidon and Heimann, 1998a).

This theory of optimisation was used by Gao et al. (2014) to design a Mass Curve Technique (MCT) allowing
computation of Sr based on merely climate parameters. It was used to estimate root zone storage capacities
in 300 U.S. catchments, after which the findings were compared with their hydrological model equivalent.
The results indicated that ecosystems indeed develop root zone storage capacity by optimising to environ-
mental conditions and they do so by developing a root system to overcome droughts with an explicit return
period. Building on this approach, Wang-Erlandsson et al. (2016) derived a global estimate for Sr based on
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2 1. Introduction

remote sensing climate data and subsequently linked land cover types to the corresponding drought return
periods their root zones adjust to. Furthermore, Nijzink et al. (2016) and De Boer-Euser et al. (2016) used
a slightly different water balance approach based on annual storage deficits derived by accumulating daily
differences between precipitation and evaporation to respectively test Sr dynamics in deforested catchments
and prove climate-derived Sr on balance outperform soil-derived values.

Although the technique to derive Sr based on climatic conditions has thus proven to be a rather effective
way to estimate root zone storage capacities in the previously mentioned studies, its use in climates with
significant snow influence is underexposed. This whilst snow cover, by its delaying effect on liquid input, has
large potential of influencing annual storage deficits and therefore Sr . Zhao et al. (2016) introduced a snow
module to the MCT approach based on an estimation of snow water equivalent from snow depth and carried
out a sensitivity analysis for Sr dynamics in snowfall-dominated climates, proving it to be a powerful tool for
estimation of root zone storage capacities in different climates in China. de Boer-Euser et al. (2019) later used
a comparable snow procedure to compute Sr in different boreal regions in Finland and analysed its controls,
proving snow dynamics is important to consider for analysis of Sr in these regions. Both, de Boer-Euser et al.
(2019) and Zhao et al. (2016) advise to extend research on Sr descriptors in boreal and temperate regions.

1.1. Problem statement
Sr has proven to be a critical determinant in hydrology and climatology and has major influence on mod-
elling studies. Additional knowledge on its major descriptor variables is therefore desired and can be used to
increase understanding of root zone storage capacity response to a changing system. Estimation of Sr based
on scarcely available field observations and calibration has shown to be difficult for different reasons, which
has led to the development of a simple water balance approach for Sr computation. Several studies have
applied different alternatives of this approach to compute root zone storage capacities and identify climatic
descriptor variables, but mainly in snow absent regions. Computation and analysis of Sr in snow dominant
regions is therefore underexposed. The existing studies that do consider snow are either limited to a small re-
gion with few variation in climate, topography and land use or only consider a small number of catchments.
This may complicate visualisation of the relationship of some potential descriptors with the root zone stor-
age capacity. As such, additional understanding of the major descriptor variables of the root zone storage
capacity in boreal regions with large spatial variation and in particular the influence of snow on the root zone
storage capacity is desired.

1.2. Research objective
Tackling this problem requires a boreal area with large variety in climate and landscape variables and vary-
ing snow dynamics, to accentuate their relevance in describing Sr . Due to its large spatial extent, Canada
matches these requirements and is therefore used as study area. As such, this exploratory study aims to
quantify catchment average root zone storage capacities, identify its main descriptor variables and their re-
gional variability and determine the influence of snow on root zone storage capacities in Canada. This results
in the following research question:

What are the major descriptor variables of Canadian catchment average root zone storage capacity, do they
vary between different functionally comparable regions and how does the root zone storage capacity depend on
snow in Canada?

Answering this question is based on comparison of catchment average, water balance derived Sr with its
potential descriptor variables, existing of climate, landscape and discharge parameters. Both the individual
as well as the combined effect of these variables on the root zone storage capacity will be investigated. The
individual influence of snow on the root zone storage capacity will subsequently be analysed by comparing
water balance derived Sr computed with and without snow module. The main determining parameters that
are found using this approach are lastly distributed in clusters of similar functioning, which will be used to
identify how distinct combinations of variables describe Sr in different functional catchment clusters and
how they vary spatially in Canada.
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1.3. Relevance
The main objective of this research is thus to find several main descriptors of Sr . Whenever the descriptive
capability of these variables is significant they may have the potential to be used as predictors towards a sim-
plified estimation of Sr . This may possibly lead to increased applicability in ungauged basins, or basins with
limited data availability. Furthermore, such estimations increase the potential of simplified Sr application in
climate- and hydrological models, or could help in constraining the Sr parameter in calibration of hydrolog-
ical models.





2
Methodology

This chapter provides a description of the resources and strategies used to find the major descriptor variables
of the root zone storage capacity in Canada and to test the influence snow has on Sr magnitude. First, the
main characteristics of the study catchments are provided in Section 2.1, succeeded by an explanation of the
data sources and corrections in Section 2.2. Subsequently, Section 2.3 describes the method used to compute
Sr . Finally, Section 2.4 summarises and explains the main variables considered in this study and Section 2.5
gives an overview of the assessment strategies that are used to determine which of these parameters describes
the root zone storage capacity best and identify the influence snow has on Sr .

2.1. Study area
This study uses 230 drainage basins located in Canada, well distributed over the Southern half of the country
as shown in Figure 2.1. These catchments were all selected from a larger dataset based on data availability and
reliability, as explained in Section 2.2. Like shown in Figure 2.1, computed by data derived from a Canadian
hydrometeorological watershed database CANOPEX (Arsenault et al., 2016), the spatial variability of annual
precipitation totals is large in Canada (460-2700 mm/year). Besides, temperature signals (mean annual av-
erages between -5 and 8.5 °C) also differ greatly in different regions in the country. The large spatial climatic
variability induces diversity in climate parameters that are considered in this study, leading to a greater dis-
tinction in their potential influence on Sr . This way, the large climatic variability in Canada helps accentuate
the main climate parameters that describe the root zone storage capacity.

Figure 2.1: Geospatial variation of the study catchments and annual precipitation in Canada.
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Furthermore, the large spatial extent of river catchments in Canada leads to a significant spread in land-
scape parameters. Catchments located in the Rocky Mountains and its foothills in Western Canada have
topographic variables contrasting with the flatter Eastern catchments. In general, catchment average eleva-
tion ranges between 50 and 2000 m, whereas the elevation difference in a catchment varies between 60 and
3200 m. Besides, although being predominantly forested (with an average cover of 70%), catchment land
cover exists of agricultural cropland, shrubs and herbaceous vegetation and bare soil, providing potential of
analysing variance in Sr with land cover. As such, there is also adequate variance in landscape parameters
between Canadian catchments to test their potential influence on root zone storage capacity magnitude.

Lastly, the Northern geographical location of Canada causes presence of snow during winter. However,
the spatial variation in precipitation timing and winter temperature leads to distinct snow dynamics in many
catchments, making this region an excellent study site for analysing the influence of snow dynamics on Sr .

2.2. Data sources and correction
The datasets used in this study are collected for two different purposes. Firstly, hydrometric, meteorological,
snow cover and elevation data are required to compute root zone storage capacities with a water balance
method and to define several climate and discharge descriptor variables. Secondly, elevation data and land
cover data are used to determine landscape descriptor variables. In this section the origin of all datasets that
are used in this study is discussed and the required processing and correction steps are explained.

2.2.1. Hydrometric data
The hydrometric dataset that is used in this study consists of discharge records for 698 river catchments in
Canada, derived by the Canadian Model Parameter Experiment (CANOPEX) (Arsenault et al., 2016). These
records were collected from Environment Canada’s hydrometric data portal (HYDAT) (Government of Canada,
2018). The available time period of the discharge observations differs per catchment. A large number of
catchment records contain missing data, which complicates use of a large number of catchments in this
study. In general, any data gaps of 2 days or less have been linearly interpolated. For the many records
that contain larger data voids (varying from several weeks to years), such simple interpolation is not possi-
ble. However, in this study it is essential that Sr is computed for a considerable number of catchments, to
have enough possibilities of comparing Sr between catchments. To do this, at least several years of discharge
records without data voids is required to determine a long term average discharge component, which is used
to compute root zone storage capacities as described in section 2.3.3. Therefore, to increase the number of
catchments available for analysis, a physically based interpolation method is applied in this study to fill data
voids in several discharge records, as explained below.

A large number of streamflow records with data voids particularly miss data during winter months (November
to February), which is caused by budget limitations for provincial gauge operators. In general, most precipi-
tation during this period will fall in solid state and will therefore not have a large contribution on streamflow
until the start of the melting period, which starts after February in the vast majority of the catchments. This
means that the fast hydrological processes will cease and the hydrograph is particularly dominated by deple-
tion of the groundwater reservoir during this period of the year. As previous studies have shown (e.g. Fenicia
et al., 2006, Savenije, 2018), during such period of water recession, the groundwater reservoir will contribute
to catchment drainage following the theory of a linear reservoir, which results in an exponential decrease of
streamflow. Therefore, in this study, data voids during the winter period are filled by using an exponentially
decaying function between the last and the first recorded measurement before and after the period of missing
data (Figure 2.2a).

To keep the analysis as physically-based as possible, such interpolation was only carried out whenever the
recorded temperatures in the data void periods were below zero, to increase the likeliness that reservoirs are
indeed dominated by groundwater reservoir depletion. Additionally, to prevent the interpolation to have too
much influence on the total discharge, it was only applied when contribution of the interpolated discharge
was smaller than 10% of the total discharge.

A considerable number of catchment discharge records also contains missing data outside the winter peri-
ods. In many cases, this can be resolved by taking the hydrological years which contains data voids from
the analysis and as such not considering these years in the determination of catchment long term average
discharge. Note that in this study, hydrological years are split after October, as snow starts accumulating
during this period and thus all snow dynamics is approximately caught within a single hydrological year. To
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Figure 2.2: (a) Example of the linear reservoir interpolation technique during winter recession periods with no data and (b) example of
the linking year procedure before and after a period of no data. Note that only years with approximately the same discharge threshold
are linked (0.2 mm/day difference)

secure a certain continuity between precipitation and discharge response when skipping a hydrological year,
it is important that the hydrological years before and after a skipped year show approximately identical be-
haviour. This means that the streamflow just before the skipped period must be approximately equal to the
streamflow just after (Figure 2.2b). To account for this, all years before and after a skipped hydrological year
are checked on their matching discharge. The years before and after a skipped year that have the least time
between them and have a smaller difference in discharge than 0.2 mm/day were linked to each other. All
years in between are not considered in the analysis and therefore not used to determine catchment long term
average discharge.

Although the number of useful catchments significantly improves after the corrections, not all catchments
have a data record with enough full years to construct a long term average discharge value. Therefore, not all
of the CANOPEX catchments can be used in this study. Elaboration on the selection of catchments is given in
Section 2.2.6.

2.2.2. Meteorological data
The meteorological quantities used in this study are precipitation, potential evaporation and temperature.
This subsection describes the type of data used, the processing and corrections steps required and the origin
of the datasets.

Potential evaporation and temperature
Direct potential evaporation (Ep ) data are scarce and not available for the Canadian catchments. However,
CANOPEX (Arsenault et al., 2016) provides temperature data for all 698 considered Canadian catchments
which can be used to estimate Ep . For the CANOPEX dataset, a 300 arc second gridded data climate prod-
uct, provided by Natural Resources of Canada (NRCan), was averaged for every catchment to retrieve daily
maximum and minimum temperature data (Hutchinson et al., 2009). The NRCan product was created by ap-
plication of thin-plate smoothing splines to interpolate between raw meteorological data from observation
stations across Canada as a function of longitude, latitude and elevation. Any missing temperature obser-
vations were estimated using interpolation, resulting in a dataset without missing data over the period of
1950-2010.
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In this study, the average of daily maximum and minimum temperature data derived from the CANOPEX
dataset are used to obtain catchment average daily temperatures. All three of these temperature variables are
subsequently used to obtain an estimate of the daily potential evaporation, using the Hargreaves and Samani
equation as described in Equation 2.1 (Hargreaves and Samani, 1985).

λEp =αRe (Ta v +17.8)
√

Tmax −Tmi n (2.1)

where:

λ = Latent heat of evaporation
Ep = Potential evaporation
Re = Top of atmosphere radiation
Ta v = Average temperature
Tmax = Maximum temperature
Tmi n = Minimum temperature

The constant α is generally set at 0.0023 (Maes et al., 2019), whereas λ is set equal to 2.26 kJ/kg. Furthermore,
daily catchment average Re data were obtained from global data series on 30 arc-second resolution provided
by Mines Paris Tech (Mines ParisTech, 2014). Due to the cold winters in Canada, application of Equation 2.1
can lead to negative daily Ep . Whenever this occurs, Ep is set to 0 mm/day.

Precipitation
The catchment average precipitation data used in this study are also obtained from the Canadian Model Pa-
rameter Experiment (CANOPEX) database (Arsenault et al., 2016). Like the temperature data, daily catchment
average precipitation data were derived from the NRCan gridded product, which is based on the same inter-
polation technique (Hutchinson et al., 2009). As for temperature, the daily catchment average dataset from
CANOPEX consists of no missing precipitation data for the period 1950-2010.

Canadian winter precipitation is generally dominated by snowfall, which complicates precipitation observa-
tions. Conversion of snow records to their snow water equivalent (SWE) for all Canadian gauges operated by
Environment and Climate Change Canada happens by either using gauges filled with antifreeze or by assum-
ing 1 cm of snow is equivalent to 1 mm of rain (B. Duguay, personal communication, October 10, 2019).

Additionally, winter precipitation may affect catch accuracy. In general, precipitation can be underesti-
mated due to wind induced turbulence around rain gauges (Sevruk, 1982). This underestimation is signif-
icantly larger in snow-dominant regions like Canada with a large fraction of solid precipitation (e.g. Wolff
et al., 2015), and is therefore expectedly also present in the precipitation dataset from CANOPEX. However,
there are several ways to account for this underestimation by scaling the original data with a correction factor
that describes precipitation catch efficiency (CE). Functions that determine such a catch efficiency are called
transfer functions and they depend on the combined effect of wind speed (e.g. Yang et al., 1999) and temper-
ature (e.g. Wolff et al., 2015). The transfer function used in this study to account for precipitation undercatch
has been defined by Kochendorfer et al. (2017) and is provided in Equation 2.2.

C E = exp(−aU (1−arctan(bTa)+ c)) (2.2)

where:

C E = Catch efficiency
U = 10-Meter wind speed
Ta = Air temperature

Furthermore, parameters a, b and c are coefficients that have been fitted based on a comparison between
precipitation data from a reference gauge in Norway and the USA and normal gauges with different types of
gauge shields.

It should be noted that the transfer function is originally intended for application on the point scale,
whereas the data used in this study are based on an interpolated gridded product, with no information on
the location of the observation stations used to create this product. As a result, the only opportunity is to
use catchment average wind and temperature data to determine a daily catch efficiency per catchment (note
that it is likely that these data are based on the same weather stations as used in the interpolated, gridded
precipitation product). The daily catchment average air temperature data that are applied in equation 2.2
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are obtained from CANOPEX (Arsenault et al., 2016). The daily catchment average wind data that are used as
input in this equation are computed using a vector combination of the 0.75 degree gridded average U10 and
V10 components obtained from the global reanalysis ERA-Interim (Dee et al., 2011).

Parameters a, b and c from Equation 2.2 are taken from Kochendorfer et al. (2017), where they are fitted
based on data from the USA and Norway, in which CE has been defined by comparing a reference gauge
with several different other gauges (amongst others a Single Alter shielded gauge). Because the Single Alter
shielded rain gauge is the most frequently used gauge in Canada (A. Cyr, personal communication, November
6, 2019), the fitted parameter values belonging to this gauge are expected to compute the most accurate catch
efficiency, which is why they are used in this study. Lastly, the maximum wind speed that can be used to
determine the catch efficiency by application of Equation 2.2 is 12 m/s. An overview of the parameters to
determine a catchment average daily CE is presented in Table 2.1.

Table 2.1: Fit parameters and max wind speed used for precipitation correction

a b c Max U [m/s]
0.03 1.04 0.66 12

After computing CE for every catchment, the corrected daily precipitation was obtained by division of the
original CANOPEX precipitation value by CE. The corrected precipitation values have been used as descrip-
tion of precipitation throughout this study.

The effect of the undercatch correction for precipitation in the Canadian catchments can be tested by us-
ing the Budyko framework (Budyko et al., 1974). This is a commonly used framework in hydrology which
describes the catchment long term average water balance. The position of a catchment in this framework
describes the long term average distribution of water between runoff and actual evaporation, as a function of
the atmospheric conditions in a catchment. Two examples of the Budyko framework are shown in Figure 2.3.
The aridity index (AI) occupies the horizontal axis of the framework and gives a description of the dryness of
a catchment by relating the catchment average liquid input (P) and atmospheric demand (Ep ). The evapo-
rative index (EI) covers the horizontal axis and determines what part of the total liquid input is evaporated
(Ea/P). Theoretically, the framework is limited by a water limit for Ep > P (or AI > 1), where evaporation is
bound by the liquid input in a catchment, and an energy limit for Ep < P (or AI < 1), where evaporation is
bound by atmospheric energy demands. Budyko et al. (1974) defined a curve for the expected catchment EI
for a given AI, which has proven to be followed rather accurately by catchments worldwide (e.g. Budyko et al.,
1974, Gentine et al., 2012, Ye et al., 2015).

Since precipitation is describing both AI and EI, a change in precipitation will lead to a change in the
position of a catchment on the Budyko framework. This is why the correction of precipitation has led to a
changed position of the catchments (see Figure 2.3a and b). After the correction, the catchments plot signif-
icantly closer to the Budyko curve, which suggests a better reliability of the data. As such, it seems that the
application of the local catch efficiency function by Kochendorfer et al. (2017) on a global dataset works well
and it is likely that correction of the precipitation dataset has led to a better representation of reality.

2.2.3. Snow cover data
As snow dynamics plays an important role in the hydrological system in Canada and since it is a goal of this
study to investigate the influence of snowfall on Sr , computation of Sr requires a description of snow melt.
In general, snow depth or snow water equivalent (SWE) data are only provided on the point scale and are
unreliable to determine a catchment average snow description. Besides, no snow depth or SWE data are
available for all study catchments. Therefore, snow melt is modelled using a snow module in this study (see
Section 2.3.1). This snow module consists of two model parameters, which are calibrated by comparing the
presence of snow in a certain elevation zone of a catchment with satellite snow cover data for this particular
area. For this, MODIS/Terra snow cover data are used (Hall and Riggs, 2016b), which is a gridded dataset
providing Normalised Difference Snow Index (NDSI) with a 500 m resolution from the year 2000 onwards.
Commonly, an NDSI threshold of 0.4 is used to indicate presence of snow cover (e.g. Dozier, 1989, Hall and
Riggs, 2007, Sankey et al., 2015) and Härer et al. (2018) showed that this is indeed a valid threshold for products
with a resolution of 500 m and more. Consistent with other studies, the NDSI threshold of 0.4 is also used in
this study.
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Figure 2.3: (a) The corrected dataset presented in the Budyko framework and (b) the dataset presented in the Budyko framework before
correction. The dataset after correction shows a better fit. Catchments within the interval of (a) are used in this study.

2.2.4. Elevation data
Like mentioned earlier, calibration of the snow module parameters requires distribution of catchments in
different elevation zones. These elevation zones are derived from HydroSHEDS (Lehner et al., 2008), which
provides void-filled digital elevation data with 3 arc-seconds resolution up to 60 degrees latitude. Elevation
data from catchments that are (partly) located more northerly are derived by the 30 arc-seconds resolution
GTOPO30 DEM dataset (USGS, 1997). Apart from their function in defining elevation zones, the elevation
data are also used to define several different landscape variables that may influence Sr .

2.2.5. Land cover data
Land cover data have two functions in this study. They are used to define land cover dependent parameters
during the computation of Sr (see Section 2.3.2 and Section 2.3.4) and they are applied to define several
landscape parameters that may describe Sr . The land cover data used in this study are obtained from ESA
CCI (ESA, 2017), which provides yearly global land coverage with a 300 m resolution from 1992 to 2015. In this
study, parameters that are derived from land cover maps are determined using a different land cover map for
every year. Any required land cover information before 1992 has been obtained from the 1992 dataset. All
types of land cover defined in this the ESA CCI dataset are redistributed over 5 classes, like shown in Appendix
A. The 5 land cover classes used in this study are:

• Bare cover

• Grassland cover

• Cropland cover

• Shrubland & Herbaceous cover

• Forest cover

2.2.6. Catchment selection
Like already stated in Section 2.2.1, not all catchments from CANOPEX can be used in this study due to several
restrictions regarding Sr computation. Firstly, in order to compute catchment average Sr , at least 20 years of
daily precipitation and potential evaporation records are required. Furthermore, because the long term av-
erage water balance is used to estimate transpiration (see Section 2.3.4), at least 10 years of discharge data
(albeit modified) without missing values are required to have a description of long term average discharge.
Besides, the application of a snow module (Section 2.3.1) in the procedure of Sr computation requires cal-
ibration with MODIS Snow Cover data. These data are only available from 2000 onwards and with a 5 year
period for calibration and testing, catchment records are required until at least 2006. Additionally, catch-
ments before 1985 are not considered to avoid too large variation in climate and land-use within catchments.
As such, only catchments with sufficient data between 1985 and 2012 that meet predefined conditions are
used in this study.
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Furthermore, catchments are also selected based on their data reliability. The position of the CANOPEX
catchments in this framework is shown in Figure 2.3a, where a simple parametric formulation defined by
Fu (1981) is used to approximate the Budyko curve (Zhang et al., 2004). As stated earlier (Section 2.2.2),
catchments generally plot around this Budyko curve. This theory has been used as a proxy for data reliability
in this study. Only the catchments that are located within a 30% range around the Budyko curve and that fall
inside the physical limits of the framework are therefore used.

2.3. Approach for root zone storage capacity computation
This section provides a description of the method that is used to compute Sr in the selected Canadian catch-
ments. The method is based on the theory that vegetation evolutionarily optimises its root system based on
climatic conditions with a certain return period, in order to avoid water shortage as well as over-investment
in below-ground carbon expenses (Guswa, 2008, Kleidon, 2004). This has led to a way of describing Sr with
merely climate variables (Gao et al., 2014), which has been adjusted by i.e. De Boer-Euser et al. (2016) and
Nijzink et al. (2016). Their approach of computing Sr based on the yearly maximum water deficit for transpi-
ration with a vegetation-specific return period will also be used in this study and is explained in this section.

In the conventional approaches, direct daily precipitation and transpiration estimates are used to deter-
mine the daily water shortage for transpiration, also called the daily storage deficit. However, in catchments
where snow dynamics plays an important role, infiltration of water is delayed by the accumulation of solid
precipitation to the snow pack and liquid infiltration into the soil will happen during the melt phase. Direct
daily precipitation inputs are therefore not representative to determine daily storage deficits. Instead, the
daily liquid input in this study is described as a combination of snow melt and direct liquid precipitation.
To estimate the snow melt input, a snow module is used, which is described in Section 2.3.1. Subsequently,
the other fluxes that are used to determine storage deficits, being effective precipitation and transpiration,
are described in respectively Section 2.3.2 and 2.3.3. Lastly, the procedure of computing root zone storage
capacities from storage deficits is described in Section 2.3.4. A schematic overview of the entire procedure
used to determine the root zone storage capacity is provided in Figure2.4. Note that the entire approach has
been applied using a temporal resolution of 1 day.

Figure 2.4: A schematic overview of the procedure applied to determine root zone storage capacities. Precipitation is distributed into
solid or liquid precipitation per elevation zone. Solid precipitation is stored in the snow storage reservoir of an elevation zone and
released whenever a melt threshold is exceeded. The total liquid precipitation is passed through an interception reservoir, which releases
effective precipitation. The storage deficits are then defined using fluxes of snow melt, effective precipitation and transpiration. Root
zone storage capacities are obtained from these storage deficits.
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2.3.1. Snow module
As stated before and as can be derived from Figure 2.4, the daily liquid input from snow melt plays an impor-
tant role in the determination of storage deficits, which are used to determine Sr . However, the lack of snow
water equivalent observations and the large heterogeneity in elevation in the study catchments complicate
the use of point observations for snow melt estimation. Therefore, snow behaviour is simulated using a semi-
distributed version of the HBV snow routine (Bergstroem, 1975) in this study. In this subsection the structure
of the snow module is explained and the calibration procedure that is required to define snow parameters is
described. Note that sublimation is neglected in this study, as it is likely that the effect of sublimation during
winter time is small because potential evaporation rates are small.

Module setup
As shown in Figure 2.4, the snow module used in this study consists of several snow storage reservoirs that
are filled during a snow event and emptied due to snow melt. For simplicity, the procedure within one snow
storage reservoir is explained first. Both the solid precipitation input and the melt output from a reservoir are
temperature dependent. Firstly, precipitation will only be in solid state whenever temperatures are below a
certain threshold. Generally, this threshold is best described using a temperature dependent transition phase
between liquid and solid precipitation(Bergstroem, 1975), however for simplicity a sharp temperature limit is
defined in this study. Secondly, snow melt from the snow storage reservoir will only occur when temperatures
are below a certain threshold and will likely increase in magnitude whenever temperatures increase.

To be able to describe these fluxes, two parameters are used in this version of the HBV snow routine. Firstly
a temperature threshold (TT) describes whether precipitation is solid or liquid (equation 2.3) and whenever
melt can occur. Secondly, the degree day factor (MF) relates the rate of melt to a certain temperature above
TT (equation 2.4). Obviously, snow melt will not occur when the snow storage reservoirs are empty (Ss = 0).

Ps =
{

P, if Ta(t ) > T T

0, if Ta(t ) < T T
(2.3)

Qm =
{

MF (Ta −T T ), if Ta(t ) > T T

0, if Ta(t ) < T T
(2.4)

where:

Ps = Solid precipitation
P = Total precipitation
Qm = Snow melt
MF = Degree day factor
T T = Threshold temperature
Ta = Air temperature

MF and TT are the only two parameters used in this model to avoid over-parametrisation. Whenever these
two parameters are known, precipitation and temperature data are sufficient to provide an estimate of the
snow melt and the solid precipitation input. However, since temperature largely varies with elevation, catch-
ment average values of Ta are not representative for all elevations in catchments with large elevation differ-
ence, which will also complicate Ps and Qm estimation. Therefore, a distribution of the catchment in different
elevation zones is required for determining Ps and Qm .

Catchments are distributed using data from the digital elevation models described in Section 2.2.4. A new
zone is assigned for every 250 meters and every elevation zone has its own snow storage reservoir (see Figure
2.4). Equations 2.3 and 2.4 are applied for every elevation zone. The average temperature of an elevation zone
has been estimated using a simple lapse rate formulation as described in Equation 2.5.

Ta = Tav − ∆H

LR
(2.5)

where:

Ta = Air temperature in elevation zone
Tav = Average catchment temperature
∆H = Elevation difference between elevation zone and mean elevation
LR = Lapse rate
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Lapse rates differ with latitude and are location dependent. However there is insufficient information on the
regional lapse rates that apply in the study catchments. Therefore, an average value of 6.4 °C/km is used for
LR (e.g. Muralikrishna and Manickam, 2017). It is important to note that the catchment mean temperature
has been linked to the catchment average elevation in this study (see Figure 2.4). This can be done because
the temperature data are derived from a gridded product were temperatures between gauges are interpolated
based on elevation, which means the average temperature in the catchment is representative for the average
elevation in the catchment.

Equations 2.3, 2.4 and 2.5 are applied to all snow reservoirs in every elevation zone (with MF and TT
being equal in every elevation zone). This leads to a description of Qm and Ps per elevation zone. The total
catchment average daily melt output is then derived by taking the sum of the melt output from every elevation
zone, after this has been scaled by multiplication with the relative area of every elevation zone, as shown in
equation 2.6.

Qm,t =
N∑

i=1

Ai

At
Qm,i (2.6)

where:

Qm,t = Total catchment melt
Qm,i = Elevation zone melt
Ai = Elevation zone area
At = Total catchment area
N = Total number of elevation zones

As such, whenever catchment average parameters TT and MF are known, equations 2.3, 2.4, 2.5 and 2.6 can
be used to estimate the daily liquid input by snow melt, which is one of the important fluxes to determine
storage deficits.

Parameter calibration
The two catchment average model parameters MF and TT require calibration. This is done by comparing
the presence of snow in the MODIS snow cover dataset (Section 2.2.3) with the presence of snow in the snow
storage reservoir of the snow module per elevation zone as shown in Figure 2.5. Every pixel of the MODIS
data can consist of snow, no snow or NaN values related to cloud cover. An elevation zone is defined as snow-
covered when the majority of the MODIS pixels in the zone show snow coverage. Similarly, when the majority
of the pixels in an elevation zone consists of NaN values, the elevation zone is defined as NaN for this day.

Figure 2.5: Comparison of the presence of snow between (a) elevation zones and (b) MODIS snow cover data in catchment 22. Clear
distinction in snow cover between different elevation zones can be identified.
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During calibration, 2000 randomly chosen parameter sets with varying combinations of MF and TT are
applied to the snow module. The parameter performance is judged based on a comparison of the total num-
ber of matching days between the MODIS data and the snow reservoir content in each elevation zone for the
period between 2002 and 2004. On days where the majority of the pixels in an elevation zone consisted of
NaN values, comparison was not applied. The five parameter sets with the best performance were subse-
quently tested over the year 2005, after which a value for TT and MF was chosen for every catchment based
on the combined performance of the calibration and testing phase. An overview of TT and MF per catch-
ment is given in Appendix B, along with the calibration and validation performance of the final parameter
combination for every catchment.

The advantage of parameter calibration is that any mistakes in the temperature estimations of the eleva-
tion zones (e.g. due to use of an average lapse rate or due to wrong catchment average temperature descrip-
tions), are likely buffered by the model parameters.

2.3.2. Effective precipitation
The precipitation that does not fall in solid state, will enter the system directly in liquid state. This may differ
per elevation zone. The total amount of precipitation falling in a catchment is derived in the same way as
the total amount of snow melt (Equation 2.6), by taking the sum of every elevation zone after this has been
scaled by multiplication with the relative area of every elevation zone. The liquid precipitation is generally
first intercepted by vegetation before it can infiltrate or run off. The procedure of interception evaporation is
simulated by the interception reservoir (Si ), with a water balance as described in equation 2.7. Note that this
interception reservoir is applied on the catchment scale, with the catchment total precipitation input and not
for every different elevation zone. Soil evaporation is included in the interception flux.

dSi

d t
= Pl ,t −Ei −Pe (2.7)

where:

Si = Interception storage
Pl ,t = Total liquid precipitation
Ei = Interception evaporation
Pe = Effective precipitation

Moisture in the interception reservoir will evaporate following potential evaporation rates for the time mois-
ture is available and the maximum interception capacity (Imax ) is not reached, as described in equation 2.8.
All water that exceeds Imax is available for infiltration or runoff and is defined as the effective precipitation
(Pe ), which is described in equation 2.9. Pe is the second flux that is required to determine storage deficits.

Ei =
{

Ep , if Ep d t < Si
Si
d t , if Ep d t ≥ Si

(2.8)

Pe =
{

0, if Si ≤ Imax
Si−Imax

d t , if Si > Imax
(2.9)

where:

Imax = Maximum interception capacity
Ep = Potential evaporation

Imax is a measure for the total amount of water that can be intercepted by leaves and is therefore dependent
on the distribution of land use in a catchment. Evidently, catchments with a larger leaf cover have a high
maximum interception capacity compared to catchments with lower leaf cover. To account for this effect, the
land classes defined in Section 2.2.5 are distributed into 4 interception classes, being bare cover, grassland
(for both grassland and cropland), shrubland and forest. Their corresponding Imax values as assumed in this
study are respectively 0, 1, 2 and 3 mm. The actual value of Imax assigned to a catchment is then described
by an addition of these land cover representative Imax values scaled by the appearance percentage of the
corresponding land cover type in a catchment. Note that since land cover may change annually, so may the
maximum interception capacity.
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2.3.3. Transpiration
Apart from the liquid input, storage deficit computation also requires a description of the transpiration out-
put in a catchment, as this describes the water flux from the root zone into the atmosphere. Currently, no
approaches of measuring daily transpiration on the catchment scale exist. The long term average transpi-
ration can however be estimated from the long term catchment water balance, assuming negligible storage
change, deep percolation and groundwater recharge, as shown in equation 2.10.

Et = Pl i q −Q (2.10)

where:

Et = Transpiration
Pl i q = Combined liquid input by snow melt and effective precipitation
Q = Discharge

Note that the long term average values in this study are only taken from years without missing discharge data
(see Section 2.2.1). Daily transpiration rates can now be estimated by scaling the long term average transpi-
ration with the ratio between the remaining daily potential evaporation after interception has occurred and
long term average potential evaporation subtracted with the long term average interception (Nijzink et al.,
2016), like shown in Equation 2.11. Using this method, the seasonal signal of transpiration is described with-
out violating long term average transpiration.

Et (t ) = Et
Ep −Ei

Ep −Ei
(2.11)

2.3.4. Storage Deficits
The main principle used in the approach of this study is the assumption that vegetation evolutionarily opti-
mises its root system based on a yearly maximum storage deficit with a certain return period. Storage deficits
are defined as the outgoing flux of transpiration that is not immediately covered by incoming liquid input.
Or in other words, the transpiration that occurs for which storage of water in the root zone is required. Dur-
ing dry periods with large transpiration output and relatively few liquid input, the cumulative daily storage
deficit will increase towards a yearly maximum direct moisture shortage, after which a period of large liquid
input and few transpiration will lead to a decrease in storage deficits again. This procedure is described with
equation 2.12 and the yearly signal of cumulative storage deficits is shown in Figure 2.6. Note that storage
deficits do not become negative and that the moisture deficit is assumed to be 0 at the start of time series.

SD(t ) =
∫ t1

t0

(Et −Pe )d t (2.12)

where:

SD(t ) = Cumulative storage deficit at time t

The yearly moisture shortage (SD y ) that needs to be bridged by the use of water from the root zone is deter-
mined by subtracting the maximum storage deficit in a representative year by the minimum storage deficit
that occurs in the period before in that same year, as described in Equation 2.13. Note that the years are split
at the start of the month with averagely the lowest storage deficit. The exact splitting month therefore differs
per catchment.

SD y = max(SD(t2))−mi n(SD(t1)), with t2 > t1 (2.13)

According to Gao et al. (2014), vegetation root zone storage capacities are optimised based on a drought re-
turn period of 20 years. Wang-Erlandsson et al. (2016) subsequently showed that these return periods likely
depend on the type of vegetation and its survival strategy. Grasses for example are likely to go dormant during
dry periods and are therefore expected to design root systems based on a very low return period of approxi-
mately 2 years (Wang-Erlandsson et al., 2016). Trees on the other hand are a lot more likely to invest in root
growth and are therefore usually modelled using a return period of 20 years. In this study, shrubland and
herbaceous cover is assumed to have a return period somewhere in between (5 years). Besides bare land



16 2. Methodology

Table 2.2: Land cover classes used in this study and their corresponding return periods.

Land cover Return period [years]
Bare area Undefined
Grassland & Cropland 2
Shrubland & Herbaceous cover 5
Forest cover 20

cover likely has no root growth at all, which is why the return period of this land cover class is undefined. The
land cover classes used in this study and their corresponding return periods are summarised in Table 2.2.
Because land cover may change through the years, the return period may differ per year. For every year, the
actual catchment return period is described by an addition of the land cover specific return period values
scaled by the appearance percentage of the corresponding land cover in a catchment. Since no roots grow in
bare area, this type of land cover will not contribute the addition of return periods, but does contribute to the
total catchment area and therefore to the scaling of the other types of land cover. The actual drought return
period in a catchment is then the average value of these yearly return periods.

Figure 2.6: Graphical representation of the cumulative storage deficits for catchment 22.

Finally, a Gumbel extreme value distribution (Gumbel et al., 1941), was used to link Sr with storage deficits
that have a land cover specific return period. This was done by fitting the extreme value distribution through
the yearly storage deficits as defined by Equation 2.13 and subsequently linking Sr to the storage deficit in
this distribution with corresponding catchment specific return period.

2.3.5. Catchment selection
In most cases, storage deficits return to zero after a few years, as presented in Figure 2.6. However, there are
some outlying catchments in which this does not happen. For these catchments it is likely that the total tran-
spiration is overestimated, mostly due to unrealistically low representation of discharge. The few catchments
for which this happened were not considered in the analysis and therefore manually removed from the study
catchment set. The final dataset consists of 230 catchments, like shown in Figure 2.1.

2.4. Descriptor variables
After computation of Sr , a set of catchment characteristics must be computed to test whether they can be
considered descriptor variables of Sr . The parameters that are examined in this study can be subdivided
into climate, landscape and discharge variables, or are a combination of these three. The variables that are
frequently considered in this study and require some additional explanation are described in this section. An
overview of all parameters that are analysed is presented in Appendix C.

2.4.1. Climate variables
A description of the climate variables that have been frequently considered in this study and require some
additional explanation is provided in this subsection.
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Aridity index
The aridity index (AI) is a parameter that is often used in hydrology. It describes the dryness of a catchment.
As shown in equation 2.14, it relates the long term average evaporation and precipitation. AI is an important
parameter in the Budyko framework, as shown in Section 2.2.2. A high aridity index indicates an arid area
with relatively few liquid input compared to the atmospheric water demand. Vice versa, a low aridity index
means that the water input is dominant over potential evaporation.

AI = Ep

P
(2.14)

Seasonality index
The seasonality index (SI) generally describes the yearly spread of precipitation. However, because this study
considers snow dynamics, the seasonality of liquid input (liquid precipitation and snow melt) is used. A de-
scription for SI is given with Equation 2.15 (Gao et al., 2014). SI can vary between 0 and 11

6 . A high seasonality
index means most precipitation is falling in a relatively small time period (e.g. a few months), whereas a low
seasonality index indicates precipitation falls relatively well distributed throughout the year.

SI = 1

Pa

m=12∑
m=1

∣∣∣∣∣Pm − Pa

12

∣∣∣∣∣ (2.15)

where:

Pa = Average annual liquid Input
Pm = Average monthly liquid input of month m

Phase lag liquid and energy input
Another important climate parameter that may have a significant effect on Sr is the phase lag (φ) between
liquid input and the energy input in a catchment. Expectedly, transpiration rates largely follow potential
evaporation rates and it is likely that the largest liquid output happens whenever the atmospheric energy
input is highest. Therefore, the average phase lag between the maximum monthly Liquid Input and Potential
Evaporation is considered in this study (φl i q,E p ). Additionally, the phase lag between maximum monthly
snow melt and Potential Evaporation (φmel t ,E p ) is considered, because snow dynamics plays an important
role in many of the study catchments.

Seasonality timing index
The combined effect between Seasonality and Timing is also examined in this study. This effect can be tested
using the seasonality timing index (ST) as described in Berghuijs et al. (2014) and Woods (2009), where it is
assumed that climatic variability can be modelled using simple sine curves. The amplitude and phase of these
curves are measures for the seasonality and timing of the seasonal variability. This way, the precipitation
and evaporative signals of all study catchments can be approximated by fitting the formulations given in
respectively equation 2.16 and 2.17, where the evaporative signal is described by temperature variations.

P (t ) = P
[
1+δp sin

(
2π

(
t − sp

))
/τp

]
(2.16)

T (t ) = T +∆T [sin(2π (t − sT ))/τT ] (2.17)

where:

t = Time (days)
P (t ) = Liquid input as a function of t (mm/d)
T (t ) = Temperature as a function of t(mm/d)
P = Yearly average precipitation (mm)
T = Yearly mean temperature (°C)
τ = Seasonal cycle duration (365 days)
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Furthermore, δp and ∆T are parameters describing the seasonal cycle and sp and sT are parameters describ-
ing phase shift. Application of a least squares optimisation leads to a best fit of these equation parameters for
the precipitation and temperature time series in all study catchments. These parameters are subsequently
passed to Equation 2.18.

ST = δp sgn(∆T )cos
(
2π

(
sp − sT

)
/τ

)
(2.18)

The dimensionless variable ST describes the combined effect of liquid input seasonality and the timing dif-
ference between liquid input and potential evaporation signals. The index ranges between -1 and 1, where
a negative value represents a seasonal, out of phase signal and a positive value shows a seasonal, in phase
signal. An ST value around zero shows that the seasonality of a study catchment is low.

Interstorm duration
Another climate variable that is used in this study is the mean interstorm duration (ID). This variable de-
scribes the average time period between liquid input events (defined with a threshold of 1 mm in this study).
Snow dynamics may complicate providing a good description of the Mean interstorm duration, because no
liquid will enter the root zone in winter time leading to unrealistically large values of ID. Therefore, in this
study, the mean interstorm duration is only computed in non-winter months.

Snow parameters
The influence of snow on the root zone storage capacity is an important investigation topic in this study.
Therefore, different snow parameters have been analysed in this study, ranging from average yearly maximum
snow water equivalent to the total number of snow days in a catchment (both determined from the snow
module). However, the parameter that is used most in this study and is generally considered representative
for the influence of snow in a catchment, is the relative amount of precipitation falling as snow (Ps,r el ). This
parameter is determined with equation 2.19.

Ps,r el =
Ps

Ptot
(2.19)

where:

Ps = Solid precipitation input
Ptot = Total liquid input

The solid precipitation input is obtained from the snow module. An overview of the other snow parameters
that have been considered in this study can be found with the other climate parameters in Appendix C.1.

2.4.2. Landscape variables
The landscape variables that are used in this study either define topographical variation or land cover differ-
ences. The parameters that are used most frequently and require explanation are discussed in this subsection.
Other landscape parameters can be found in Appendix C.2.

Land cover
The types of land cover that have been considered in this study are bare soil, grassland, cropland, shrubland
or herbaceous cover and forest. Their influence on Sr is checked by determining the percentage catchment
coverage of each land cover type. The dataset used to define this coverage is given in Section 2.2.5. In this
study, the land cover dataset from 2002 is used to represent cover percentage over the entire study period,
being the middle year of the land cover dataset extraction period.

Topographical descriptors
A few of the topographical parameters that are considered in this study are the percentages northerly, southerly,
westerly and easterly aspect, catchment average and maximum slope and ruggedness and mean elevation of
a catchment. However, the parameter that is used most in this study and is generally considered representa-
tive for the influence of topography in a catchment, is the elevation difference in a catchment (∆H). Note that
all topographical variables that are used in this study are derived from the Digital Elevation Models described
in Section 2.2.4.
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2.4.3. Discharge variables
Lastly, a variety of discharge signatures was tested to see whether these could be used to describe Sr . An
overview of all parameters is provided in Appendix C.3. Only the parameters that are discussed in the results
section of this study are explained in this subsection.

Phase lag discharge and potential evaporation
The phase lag between discharge and potential evaporation (φEt ,Q ) describes the amount of time that expect-
edly exists between the two largest fluxes of water from a catchment. It is defined as the average number of
months between the discharge peak and the potential evaporation peak in a catchment.

2.4.4. Runoff coefficient or evaporative index
The runoff coefficient (RC) is a parameter that can not be subdivided in one of the parameter classes. It de-
scribes how the liquid input in a catchment is distributed between evaporation and discharge, as presented by
equation 2.20. This distribution of water may depend on a lot of different parameters, amongst others land-
scape variables such as vegetation or land cover (e.g. Donohue et al., 2007, Zhang et al., 2001), topographical
influences (e.g. Shao et al., 2012) and climatic variables (e.g. Chen et al., 2007). A high runoff coefficient in-
dicates most of the water in a catchment runs off, whereas a low RC means more water is evaporated in a
catchment. The runoff coefficient is directly related to the evaporative index (RC = 1 - EI) and is therefore
an important parameter in the Budyko framework. Like the evaporative index, the runoff coefficient in the
Budyko framework is bound by the energy limit and the water limit as explained in Section 2.2.2. In this study,
both RC and EI are used interchangeably.

RC = Q

P
(2.20)

where:

Q = Long term average discharge (mm/d)
P = Long term average liquid input (mm/d)

2.5. Assessment strategies
To achieve the main goal of this research, the relationship between Sr and all the climate, landscape and
discharge variables has to be identified. The techniques that have been applied to do this are explained in
this section. Besides, the approach used to identify the influence of snow on the root zone storage capacity
and the approach to determine the regional difference of several descriptor variables are discussed.

2.5.1. Individual relationships
All parameters considered in this study are individually compared with Sr to identify strong individual rela-
tionships. This has been done by making scatter plots in which the root zone storage capacity of a catchment
is plotted against the potential descriptor variable for all catchments. If a relationship between the catchment
parameter and Sr exists, a certain plotting pattern is expected. Furthermore, the correlation between all study
parameters and Sr is analysed using Pearson’s correlation coefficient, where the statistical significance of the
results is provided with the p-value.

2.5.2. Combined relationships
It is expected that Sr can not purely be explained by individual catchment parameters only, but rather by a
combination of descriptor variables. This has been tested in several ways. Firstly, different combinations of
potential descriptor variables are analysed using multi-dimensional plots, in which colour variation is used
to increase dimensionality.

Furthermore, several multiple linear regression techniques are used to identify the combined effect of several
key parameters on Sr . To start with, parameters that show too much multicollinearity are excluded from
the analysis. After this, two sequential feature selection techniques are applied. Although often used to find
an optimal subset of variables, in this study the sequential feature selection techniques are used to identify
which variables have the largest influence on the performance of a multiple linear regression model for Sr .
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A sequential forward selection (SFS) is an algorithm that adds features of a dataset to a certain evalua-
tion model and presents the model performance for every iteration. During every iteration, the parameter
that improves model performance the most is added to the model and the model performance is presented
graphically (e.g. Marcano-Cedeno et al., 2010). The other sequential feature selection method applied in this
study is the sequential backward elimination (SBE). In this algorithm, all parameters are part of the model
and the least significant parameter to model performance is removed from the model during every iteration.

Using the most important parameters that are identified in the preceding analyses, subsequently a multiple
linear regression model is applied and used to predict Sr in Canada using cross-validation, this way check-
ing whether these parameters are indeed controlling the root zone storage capacity in Canada and what the
predictive capability of these controls is. Besides, the multiple linear regression model derived for Canada is
used to estimate Sr in Finland, using data from de Boer-Euser et al. (2019), to check whether the descriptor
variables of Sr in Canada can also be used to predict root zone storage capacities in other boreal regions.

The two performance metrics that are used to analyse multiple linear regressions are the coefficient of de-
termination (R2) (e.g. Maddala, 1986, Menard, 2000) and R2-adjusted (e.g. Diez et al., 2012), like defined in
respectively Equation 2.21 and 2.22.

R2 = 1−
∑

i
(
yi − ŷ

)2∑
i
(
yi − y

)2 (2.21)

R2
ad j = 1−

∑
i
(
yi − ŷ

)2∑
i
(
yi − y

)2 ∗ n −1

n −k −1
(2.22)

where:

yi = Observed value of dependent variable
ŷ = Predicted value of dependent variable
y = Mean value of dependent variable
n = Number of cases used to fit the model
k = Number of predictor variables in the model

In a regression, the coefficient of determination is equal to the square of the Pearson correlation coefficient.
However, when such a regression is used in a prediction which is subsequently compared to data that are not
used in the model-fitting procedure, R2 can become negative. This will happen when the fitted regression
model performs worse than the mean of the data (when the numerator is larger than the denominator in
Equation 2.21). Furthermore, R2-adjusted penalises the performance of the regression model whenever it is
using too many variables.

2.5.3. Snow influence
As stated before, the study catchments experience snow dynamics during winter time. The influence of such
snow dynamics on the root zone storage capacity is tested by comparison of two different Sr computations,
derived with (Ms ) and without snow module (Mn). The difference in Sr (Equation 2.23) and the relative
difference in Sr (Equation 2.24) will give information about the importance of snow on the root zone storage
capacity and can be compared to other snow related variables.

∆Sr = Sr,n −Sr,s (2.23)

∆Sr

Sr
= Sr,n −Sr,s

Sr,s
(2.24)

where:

Sr,s = Root zone storage capacity computed with snow module
Sr,n = Root zone storage capacity computed without snow module
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It has to be noted that in both model runs, interception is not taken into account. This is because the differ-
ence in total interception between Ms and Mn (caused by the fact that no interception occurs during the snow
period in the model run with snow module), causes a difference in total estimated transpiration to occur from
the catchment long term water balance (equation 2.25).

Et = (P −Ei )−Q (2.25)

As such, the total transpiration would be larger for Ms , which has an effect on computed storage deficits and
as such computed Sr . Because the only parameter of interest in this comparison is the influence of snow, the
maximum interception capacity is set to 0 in both model runs, so no transpiration differences between the
two model runs occur.

As stated before, the difference in Sr is compared to different earlier defined snow parameters, to better iden-
tify the influence of snow on the root zone storage capacity. However, because snow is expected to play a role
in the seasonality and timing of the liquid input into the root zone, it is likely that parameters such as the
difference in seasonality, timing and ST will change between the different model runs. The difference in Sr

between Ms and Mn is therefore also compared with the difference of these seasonality and timing parame-
ters between the two model runs.

2.5.4. Regional variability of descriptor variables
To test whether different variables may have a distinct effect on the root zone storage capacity in catchments
with different climatic and geographical functionality, catchments are clustered based on similar functioning.
Besides, to test whether such difference in functionality is caused by the geospatial spread of catchments, the
distribution of the functional clusters in Canada is mapped. Clusters of similar functioning are obtained by
application of a principal component analysis (PCA) in comination with a k-means clustering approach, both
of which are explained in this section.

A PCA is an example of a dimensionality reduction procedure that increases the readability of a dataset with-
out losing much information (Smith, 2002). In a PCA, the dataset is first standardised after which a set of
orthogonal vectors is used to describe the variance in a dataset with multiple dimensions. The eigenvector
through the origin that explains most of the variance (has the largest eigenvalue) is called principal com-
ponent 1 (PC1). This eigenvector is a linear combination of all dimensions in the dataset. An orthogonal
eigenvector to the PC1 vector that explains the second most variance is then called PC2. This is repeated
until there are equally as many vectors as dimensions in the dataset. In the PCA-plot the first two principal
components are used as axes. The original data can then be mapped in the principal component plot using
the linear combination of all dimensions as described by the two eigenvectors of the principal components.
Because not all principal components can be used in this PCA-plot, some of the information of the dataset is
lost, but it gives a good overview of the largest spread of the data. This way, data points that plot close to each
other in a PCA plot show largely similar behaviour for most of the variables that are considered.

The main variables of a dataset can also be plotted in a principal component analysis. The importance
of a variable on a principal component can be obtained from the eigenvector. This way, from the first two
eigenvectors, every variable can be plotted as a vector on the PCA-plot. The direction and magnitude of
a variable then tell something about its influence on the principal components of the plot. Variables that
plot in the same direction are therefore largely correlated, while variables that plot in different directions are
negatively correlated. In the same way, whenever a variable vector plots in the same direction as several data
points, this variable exerts a large influence on these data points. Likewise, an opposite pointing vector shows
a negative relationship between the data points and the variable. Lastly, whenever variables and data points
are orthogonal to each other, they are not largely related.

Because a PCA-plot can show data points that have similar behaviour and shows the main variables that
influence these data points, the principal component analysis can be used to identify data clusters of similar
functioning. Clustering is performed by application of k-means clustering (MacQueen et al., 1967). In this
procedure, k clusters are identified in an iterative process of finding centroids of the clusters. Starting with a
group of randomly selected centroids, every iteration optimises the position of the centroids by moving them
closer to the nearest data group. Once the centroids are indeed in the centre of every cluster they are stabilised
and no change will occur in further iterations. This way, k clusters are identified. Note that the number of
clusters is an arbitrary choice in this clustering procedure. In this study, the number of clusters has been
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derived by trial and error. Application of k-means clustering in the principal component analysis leads to
identification of groups that are defined by the same variables and therefore show similar functioning. In
this study, the PCA clustering leads to catchment clusters of similar functioning, which are plotted on a map
to see whether their geographical spread influences their behaviour. Using a comparison of the root zone
storage capacity within each cluster, the influence of certain variables on Sr in different functional clusters is
analysed.

Lastly, the entire approach of this study has been coded in Python. An overview of the most relevant scripts
that have been used is provided in Appendix D.
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Results

In this chapter, the results are presented and discussed. Firstly, the root zone storage capacities that have
been obtained using the water balance approach are described in Section 3.1. Subsequently, the individual
relationships between climate, landscape and discharge variables and Sr are presented in Section 3.2, after
which the combined effect of several descriptor variables on Sr and their predictive capability is discussed in
Section 3.3. In Section 3.4, the influence of snow on the root zone storage capacity is analysed, after which the
catchments are clustered based on similar functioning in Section 3.5 to identify how Sr behaves differently in
different types of catchments and how this is influenced by their geographical location in Canada.

3.1. Root zone storage capacity magnitudes
Figure 3.1 presents the distribution of root zone storage capacities in 230 Canadian catchments, computed
using the water balance approach as described in Section 2.3. The precise magnitudes of Sr per catchment
can be found in Appendix E.

Figure 3.1: Distribution of root zone storage capacities in the study catchments. High magnitudes occur in the south east and centre of
Canada. Low magnitudes are found in the north western regions.

Sr is normally distributed over the Canadian catchments with a mean magnitude of 183 mm and a standard
deviation of 70 mm. The minimum and maximum magnitudes found in this study are respectively 7 mm and
389 mm. The range of storage capacities in Canada coincides with results found in earlier climate-derived Sr

studies (e.g de Boer-Euser et al., 2019, Gao et al., 2014). The geospatial spread as shown in Figure 3.1 shows
some distinct clusters in different regions, suggesting that the descriptor variables of the root zone storage
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capacity may vary in different regions. This is further investigated in Section 3.5. In general it seems that
larger values for Sr occur in the south-east of Canada, while lower values are found in the north west of the
country.

3.2. Individual effects of descriptor variables
To understand why the root zone storage capacities spread out over Canada like shown in Figure 3.1, it is
important to identify its main descriptor variables. This is attempted by comparing different climate, land-
scape and discharge parameters and their corresponding root zone storage capacity between all catchments
in several scatter plots and by testing their linear correlation using the Pearson correlation coefficient. Only a
selection of parameters is presented in this section. The parameters that are displayed either show a relatively
high correlation with Sr or are expected to show a good correlation based on earlier studies. An overview of
all scatterplots is given in Appendix F.

3.2.1. Climate variables
Figure 3.2 shows the relationship between a selection of climate parameters and Sr . The Pearson correlation
coefficient (r) is shown in the title as a measure of the linear regression performance, together with the p-value
that defines the statistical relevance of the relationship. Colours indicate the fraction of solid precipitation in
a catchment (Ps,r el ).

Figure 3.2: Relationships between Sr and climate indices (a) aridity index, (b) yearly potential evaporation, (c) seasonality index and (d)
phase lag between maximum melt input and potential evaporation output. Colours indicate percentage solid precipitation. Titles show
Pearson’s r and statistical p-values.
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Aridity index
The aridity index (AI) that is presented in Figure 3.2a individually has no significant relationship with Sr in
Canadian catchments (r = 0.03, p = 0.65). Although different studies (e.g Gentine et al., 2012, Yang et al.,
2016) have shown that variation in AI may affect the magnitude of Sr , these studies considered different
climatic regions with other atmospheric demands and precipitation inputs compared to Canada. Apparently
in Canadian climates, Sr is fairly well distributed for different catchment aridities, which is consistent with
root depth observations in boreal temperate regions done by (Schenk and Jackson, 2002). However, this does
not mean that AI does not effect Sr at all. In fact, catchment aridity has shown to be an important descriptor
in combination with other variables, as presented in Section 3.3 and further.

Annual potential evaporation
A parameter that shows a significantly better relationship with Sr (r = 0.5186) is the yearly average potential
evaporation (Ep ), as shown in Figure 3.2b. The root zone storage capacity increases with rising annual average
potential evaporation. A large Ep means there is a high atmospheric water demand. As such, Ep gives an
upper bound for the total amount of yearly transpiration that can possibly occur. This means that higher
Ep increases the potential of a larger outgoing evaporative water flux from a catchment which, depending
on several other conditions also increases the requirement a larger storage capacity. However, it should be
noted that the amount of water that enters the system (yearly precipitation) and the way in which this water is
allocated to transpiration due to different catchment characteristics also play a significant role in determining
total transpiration flux, which is further explained in Section 3.3.

Seasonality index
The relationship between the seasonality index of the liquid input (SI) and the root zone storage capacity is
shown in Figure 3.2c. SI shows a slight negative correlation with Sr (r = -0.324). This is a rather unexpected
result compared to conventional studies (e.g Gao et al., 2014), where a clearer, positive relationship between
seasonality and root zone storage capacity generally occurs. The main difference between these earlier stud-
ies and this study is the influence of snow. Presumably, therefore, the occurrence of snow in Canadian catch-
ments and its influence on the timing of liquid input causes the correlation between Sr and SI to be negative
as opposed to conventional studies. Further elaboration on how snow dynamics influences timing and how
this may affect the effect of SI on Sr is provided in Section 3.3.2 and Section 3.4.

It should be noted that snow dynamics generally increases the seasonality of liquid input in most Cana-
dian catchments, which is confirmed by the higher values for liquid input SI compared to SI based on pre-
cipitation (shown in Figure F.2 number 26 in Appendix F). In regions with snow dynamics, liquid can only
enter the system during the time of year in which temperatures are above a certain threshold. Therefore, the
total period in which liquid can enter the system in catchments with a long winter period is limited, leading
to an increase of seasonality. Besides, all precipitation that falls spread out during the winter period enters
the system as snow melt, which has a very seasonal character. Thus, like shown in Figure 3.2c, the seasonality
index increases for increasing fractions of solid precipitation (Ps,r el ).

Phase difference snow melt and potential evaporation
The last climate variable that is presented in 3.2d is the phase difference between the peak input of snow
melt and the peak input of atmospheric energy demand (φmel t ,E p ), which shows a relatively large individual
correlation with Sr (r = 0.4812). Snow melt potentially has a large share in the liquid input into the system.
As such, whenever the peaks of the snow input and energy input are further away from each other, this leads
to fewer direct overlap between the liquid input due to snow melt and output due to transpiration, which
generally follows atmospheric energy demand patterns. In such case, the yearly water deficit is larger and
more water needs to be stored to account for the evaporative demand. Therefore, decreasing φmel t ,E p leads
to an increase in Sr .

It is important to note that the influence of snow melt on the root zone storage capacity decreases when-
ever the liquid input is dominated by liquid precipitation rather than snow melt (i.e. when Ps,r el is low). This
means that for catchments with low Ps,r el , the liquid input of snow melt will be relatively low and the influ-
ence of φmel t ,E p on Sr is expected to be smaller. In these cases, the peak of the liquid input is not equal to the
peak of the melt input, which becomes clear by comparing Figure 3.2d with Figure F.1 number 12 in Appendix
F, where the phase lag between the peak input of total liquid input and the peak energy input is compared
with Sr . φmel t ,E p is thus not representative for all catchments due to their large variation in Ps,r el and is
therefore not considered a fair descriptor variable of Sr . It is interesting, however, that catchments with small
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Ps,r el still correlate well in Figure 3.2d, although not being largely melt dependent. In general, catchments
with early snow melt also have an early onset of evaporation as both variables are temperature dependent.
Therefore, catchments with large φmel t ,E p are likely to have a higher yearly Ep , which increases the chances
of having a higher root zone storage capacity. This explains the ongoing relationship between φmel t ,E p and
Sr in 3.2b for catchments with low Ps,r el .

3.2.2. Runoff coefficient
Figure 3.3a shows the relationship between the runoff coefficient (RC) and Sr (r = -0.35). RC defines how
the long term average water input in a catchment is distributed between runoff (Q) and actual evaporation
(Ea). The magnitude of the runoff coefficient depends on both landscape and climate characteristics, like
stated in Section 2.4.4. A relatively low RC indicates that a catchment allocates most of the water towards
actual evaporation. As a result, the outgoing transpiration flux is large and it is likely that large storages
are required, which explains the negative correlation between RC and Sr . It is important to note that the
relationship between Sr and RC is also dependent on atmospheric conditions, e.g. the amount of water that
can actually be distributed over the catchment. Therefore, it’s expected that the variance visible in Figure
3.3a can be explained by other indices that describe these atmospheric conditions. Further elaboration on
this combined effect of RC and atmospheric conditions can be found in section 3.3.

3.2.3. Landscape variables
Figure 3.3b-f shows a collection of landscape parameters that are expected to influence Sr . Again, the Pear-
son correlation coefficient and the statistical p-value are shown in the title of the Figures. Fractional grassland
cover is not considered in this section, because this type of land cover is underexposed in the study catch-
ments.

Land cover
Many different studies have shown that the total amount of transpiration in a catchment depends on the
type of land cover that is present in the catchment. Following their results, it is expected that catchments
with a large forest cover require a larger storage compared to catchments with few forest cover (e.g. Zhang
et al., 2001). Figure 3.3b shows how Sr varies for different catchment fractional forest cover (P f ). No clear
correlation between the total percentage of forest in a catchment and Sr is shown, which deviates from earlier
stated expectations. The lack of correlation between P f and Sr could have several causes. Firstly, the total
forest fraction is high in most catchments considered in this study, leading to few variation in land cover.
Comparison of the influence of forest cover on the root zone storage capacity is therefore complicated and
differences in Sr are likely caused by variation in other controls (e.g. climate controls). Secondly, water uptake
for transpiration may vary largely per tree type. Differences in tree types were not considered in this study,
potentially contributing to the large spread in Sr for high forest cover. Lastly, forest cover density, a variable
that was not considered in this study either, may also be a complicating factor in relating Sr with P f . The
density of forests can have large influence on the total catchment average transpiration and therefore on Sr .
Variety in forest density could therefore cause spread in Sr for high forest cover percentages.

Although there are several possible explanations for the scatter shown for large fractional forest cover, an-
other striking observation is that Sr does not show a decreasing trend for smaller forest cover percentages. A
possible explanation for this is that catchments with small forest cover fraction and large Sr are generally cov-
ered with a large fraction of cropland (Pc ) in the study catchments (Figure 3.3c). According to computations
of Sr in this study, crops require a relatively high root zone storage capacity. This is not conform expectations,
considering forest covered catchments are expected to transpire more than agricultural catchments in rain-
fed conditions. A potential reason for these unexpected results is irrigation. Whenever rain water is stored
and later used for irrigation this water will end up in the evaporative flux, whereas it would normally end up
in the discharge flux. Using this water for irrigation causes the liquid to enter the system during an entire
different period then accounted for in this study. This could potentially lead to overestimated storage deficits
in this study and therefore larger root zone storage capacities. However, land cover maps suggest that most
agricultural catchments are rain fed and not irrigated, so whether the high Sr for crop cover is really related
to irrigation is questionable. Another possible explanation is that crops may design their root zone storage
capacity based on short term dynamics, as they are generally harvested within a few years. This may compli-
cate application of the approach used in this study in agricultural areas and lead to unexpected results (see
also Section 4.3.5).
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Figure 3.3: Relationships between Sr and landscape indices (a) runoff coefficient, (b) fractional forest cover, (c) fractional crop cover, (d)
fractional shrub/herbaceous cover, (e) fractional bare cover and (f) maximum elevation difference. Titles show Pearson’s r and statistical
p-values.

The other land cover types that are considered in this study (a combination of shrublands and herbaceous
cover (Ps ) and bare soil (Pb)) do show a slight decrease in Sr for increasing land cover percentage, although
also showing considerable variance (Figure 3.3d and 3.3e). Particularly the increase of bare land cover per-
centage in a catchment shows a significant influence on Sr (r = -0.28), which can be rationalised by the fact
that no water can be stored in soil without vegetation and as such a lower Sr is evident. The large scatter for
percentages close to zero is probably related to other descriptors (since Pb has no influence here). It should
be noted that the decrease in Sr for larger percentages of bare land cover may be partly related the undefined
return periods that are applied in these catchments.

In this study, all different land cover types that are present in Canada have been merged into 4 categories for
simplicity. It is possible that variance in land use types within a chosen category complicates interpretation
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of its relationship with Sr , which may explain why landscape parameters do not behave as expected and
show weak correlations with Sr . It is therefore interesting to consider larger variety in land cover categories
in future studies on Sr descriptor variables.

Topographical influence
Lastly, the influence of topographical indicators on Sr is tested by using the maximum elevation difference
(∆H) in a catchment as a proxy for its ruggedness, slope and total elevation, which are also considered in-
dividually in Appendix F.2. Figure 3.3f shows the relationship between ∆H and Sr (r = -0.23) and indicates
that Sr is generally slightly lower for larger elevation difference in catchments. A potential reason for this is
that catchments with large elevation differences generally have shallower soils at higher elevation and there-
fore limited room for water storage. Besides, sloped areas may increase the runoff capacity of preferential
pathways that are particularly present in forested slopes, leading to larger runoff and fewer storage of water.
Lastly, catchments with large elevation difference are likely to have large snow dynamics. This means that
the effects of snow melt (see section 3.4), may also reduce root zone storage capacities in regions with large
elevation difference.

3.2.4. Discharge variables
Lastly, the relationship between a discharge variable and the root zone storage capacity is shown in Figure
3.4. Again, the Pearson correlation coefficient and the statistical p-value are shown in the title of the Figure.

Figure 3.4: Relationships between Sr and the phase lag between discharge and potential evaporation. The title shows Pearson’s r and
statistical p-value.

Phase difference potential evaporation and discharge
The discharge parameter that shows highest correlation (r = -0.42) with Sr is the phase difference between the
peaks in Ep and Q (φQ,Ep ), as presented in Figure 3.4a. The figure shows that whenever the phase lag between
both peaks decreases, Sr becomes smaller. It is likely that the timing of the discharge peak is related to the
timing of the liquid input peak. A small φQ,Ep would then indicate large overlap between maximum liquid
input and output from the root zone, reducing the need for large storages.

Other discharge variables were also considered in this study, but they generally showed poor correlation with
the root zone storage capacity. Besides, due to their relationship with many climate variables, discharge
variables are difficult to directly relate to Sr .

To conclude this section, analysis of scatter plots and linear regression has shown that yearly Ep , RC and SI
have the most relevant individual relationship with Sr , whereas land cover variables generally show poorer
correlations. Particularly the relationship between SI and Sr is different from conventional studies. Discharge
variables have shown to be related to climate variables and are difficult to directly relate to Sr . The relatively
large variance for all individual relationships between catchment variables and Sr suggests that the root zone
storage capacity is better explained by a combination of descriptor variables, which will be investigated in
the following section.
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3.3. Combined effects of descriptor variables
The analysis of the individual relationship between Sr and several variables has shown that although some
parameters show decent correlation with Sr , there is still considerable variance in all of these relationships.
This likely indicates that the root zone storage capacity is rather controlled by a combination of parameters
instead. Therefore, this section describes how a combination of several parameters may influence root zone
storage capacities in Canada.

3.3.1. Budyko framework
Firstly, the spread of Sr on the Budyko framework as shown in Figure 3.5 is considered. As stated before, this
framework is a graphical description of the expected separation of water between runoff and actual evapora-
tion for a given atmospheric situation. The aridity index describes how arid a climate is by relating the long
term average atmospheric water demand (Ep ) to the long term average liquid input (P). The evaporative in-
dex on the other hand describes distribution of the long term average liquid input into discharge and actual
evaporation (note that the evaporative index equals 1 - RC). The curve represents the expected separation of P
for a given climate and has been tested with catchments from all over the world (e.g. Budyko et al., 1974, Gen-
tine et al., 2012, Ye et al., 2015). More of the total water is generally expected to evaporate in dry catchments
with a relatively high atmospheric demand and low liquid input (water limited). Vice versa, a wet catchment
with low potential evaporation can not evaporate a lot due to limited atmospheric demand (energy limited),
which leads to a predominant separation of the total liquid input towards streamflow. Although most catch-
ments plot approximately along the Budyko curve, variations from the curve are possible and predominantly
caused by catchment characteristics such as soil structure, vegetation type and topographic controls (Greve
et al., 2015), as well as climate parameters. However, a clear description of the combined effect of these pa-
rameters on deviations from the Budyko framework still lacks in hydrology.

Figure 3.5: Variation of Sr in the Budyko framework. A strong relationship of AI and EI on Sr can be observed. Colours indicate the
magnitude of Sr .

Figure 3.5 shows how the Canadian catchments locate on the Budyko framework. Note that outlying catch-
ments were removed based on their distance towards the framework, which explains why all catchments in
Figure 3.5 plot relatively close to the Budyko curve. The colours in 3.5 indicate Sr magnitude. The distribution
of the root zone storage capacity in the Budyko framework shows large dependency on the combined effect
of the evaporative index and the aridity index.
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Like mentioned before, the aridity index is a descriptor of the long term atmospheric conditions in a
catchment and therefore describes the boundaries of water and evaporative energy availability in a catch-
ment. With these given atmospheric conditions, the evaporative index indicates how the total amount of
water is distributed between runoff and actual evaporation due to a combination of landscape and climate
characteristics. A larger EI relates to a larger flux of actual evaporation, for which generally a larger root zone
storage capacity is required, which explains the vertical distribution of Sr in Figure 3.5 for a given AI.

Variation in AI can theoretically be caused by a change in potential evaporation but in Canada is generally
dominated by change in precipitation as shown by the correlations between AI and its determining param-
eters in Figure 3.6. This means that an increase in aridity index in the study catchments leads to a decrease
in total amount of water that can be distributed. Such a shift in AI for an equal ratio between Et and P (or
equal EI) leads to a lower amount of actual evaporation and thus generally lower required Sr . As such, it
seems that long term average properties that describe landscape and climate (EI and AI) work together as
good indicators of Sr in the study catchments in the way they describe its total actual evaporation.

Figure 3.6: Correlation between AI and (a) yearly average precipitation and (b) yearly average potential evaporation. The figures indicate
that change in AI is largely dominated by yearly average precipitation.

It is striking that relative components such as AI and EI give an indication of the absolute magnitude of Sr .
In theory, AI and EI can plot on the same location in the Budyko framework with a complete different mag-
nitude of precipitation, which will in turn lead to a different absolute magnitude of actual evaporation and
as such another Sr . However, in Canada, precipitation highly dominates variation in AI (compared to po-
tential evaporation), which means that the total amount of P is approximately equal for a certain AI value
(see Figure 3.6a). Therefore, the relative indices AI and EI give a good indication of an absolute value of Sr
in Canada. In regions where the P and Ep are both largely variable, relative components AI and RC may not
indicate absolute Sr magnitude as good as in the Canadian study catchments.

The representation of Sr in the Budyko framework helps understand the global distribution of Sr for different
catchment aridities as shown in e.g. Yang et al. (2016). Generally, the largest root zone storage capacities are
found for average AI between approximately 0.7 and 1.5. This is also the range where the curve is not partic-
ularly close to the framework limits (water and energy limit), allowing for more variation between the curve
and the limits, as shown in Figure 3.5. For a changing AI in positive or negative direction, the catchments
will generally plot closer to either the water limit or the energy limit, meaning that either Ep (for the case AI
< 1) or P (for AI > 1) are ceiling actual evaporation rates. For AI close to 1, P and Ep are fairly close to each
other, allowing for larger actual evaporation rates and thus increasing the need for larger root zone storage
capacities. This is consistent with results found in e.g. Guswa (2008).

In order to help visualisation of the combined correlation between AI, EI and other control parameters with
Sr , the combined effect of AI and EI on Sr is encapsulated in a one dimensional indicator in this study, be-
ing the relative evaporative index (REI). This new parameter describes the vertical position of a catchment
compared to the Budyko curve. Since the Budyko framework relates AI with EI, the relative position of a
point compared to the curve indicates how water is distributed for given climatic conditions. As such the REI
component is a measure for the position of a catchment on the Budyko framework, which is an important
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indicator of Sr like explained previously. In Figure 3.7a, the relationship between REI and Sr is presented. The
large correlation (r = 0.7181) emphasises again the combined effect AI and EI have on the root zone storage
capacity.

Figure 3.7: Relationship between Sr and (a) the relative evaporative index and (b the seasonality timing index, where colours indicate
REI. The titles show Pearson’s r and statistical p-values.

Concluding, this section has shown that root zone storage capacities in Canada have a very strong relation-
ship with the combined effect of long term average catchment parameters AI and EI, in the way they indicate
how much of the total water is allocated to transpiration. This makes the Budyko framework an excellent indi-
cation tool of Sr behaviour in Canada. The combined effect of AI and RC in this study has been encapsulated
in a one dimensional indicator (REI) to facilitate visualisation in combination with other indicators.

3.3.2. Seasonality and timing effects
Earlier results have shown that the seasonality and timing of the liquid input relate with the influence of snow
in the Canadian catchments (Section 3.2.1). Whenever the relative amount of precipitation largely consists of
snow, seasonality on average becomes larger and the timing difference between the peaks of liquid and energy
input decreases. Snow may therefore play a role in how a combination of seasonality and timing effects have
influence on the root zone storage capacity. In a country like Canada, where the influence of snow dynamics
largely differs between catchments and where large variation in seasonality and timing exists, it is therefore
interesting to see how the combined effect of seasonality and timing affects Sr .

Figure 3.7b shows the relationship between a combined index for seasonality and timing (ST) and the root
zone storage capacity, where colours indicate the value of REI. A large negative value for ST relates to a sea-
sonal liquid input that is out of phase with the atmospheric energy demand. Vice versa, a large positive value
for ST means the liquid input is seasonal, but in phase with the expected liquid output. Whenever ST lo-
cates around 0, the liquid input signal is unseasonal. The Figure shows that seasonal, out of phase behaviour
generally leads to high root zone storage capacities, whereas seasonal, in phase behaviour leads to much
lower root zone storage capacities, with average values for non-seasonal situations. As such it seems that
seasonality in phase with the atmospheric energy demand may indeed reduce root zone storage capacities,
whereas out of phase seasonality induces large Sr . Clearly, seasonality and timing have a combined influence
on the magnitude of the root zone storage capacity. The cooperative effect of these two climate variables is
related to the total amount water that enters the root zone during the transpiration period. The more direct
input of liquid during the transpiration phase, the fewer storage of water is required. Figure 3.8 shows with
a simplified schematisation of seasonal and timing components that different combinations of seasonality
and timing have another impact on the overlap of liquid input and output during the transpiration phase. In
general, whenever the signal of liquid input is unseasonal, timing does not have a large influence on the total
overlap of liquid input and output in the transpiration phase. For a seasonal signal however, timing clearly
has a large effect on the total overlap of liquid input and transpiration output. Besides, in phase seasonal
liquid input will generally provide a larger overlap than non seasonal input, which explains the trend shown
in Figure 3.7b.
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Figure 3.8: How the combined effect of seasonality and timing may influence the period of overlap between liquid input due to precipi-
tation or snow melt and the liquid output due to evaporation.

Generally, the larger the influence of snow in a catchment, the more seasonal the liquid input will be. Besides,
the extent of the winter period determines the period of the year during which liquid can enter the root zone
and this way snow dynamics influences timing as well. There is large variety in snow influence in the con-
sidered study catchments, which explains why such a large variety in the ST parameter exists. This indicates
that the combined effect of seasonality and timing may vary greatly between different Canadian catchments.
Therefore, in the study catchments and expectedly also in other northern regions, use of a combined index
for seasonality and timing presents the behaviour of Sr regarding seasonal dynamics better than solely a sea-
sonality or timing descriptor. This is also shown by the fact that ST has a larger Pearson correlation coefficient
compared to e.g. SI or φl i q,Ep . Note that φmel t ,Ep has a higher Pearson correlation coefficient, but this pa-
rameter is not representative for the liquid input in catchments that are not melt dominated and is therefore
not entirely trustworthy as descriptor variable for Sr .

Figure 3.7b also shows that the variance in the relationship between ST and Sr can largely be explained by
the earlier identified REI parameter. A large REI indicates more water transpires in a catchment, whereas a
small REI shows the opposite. Logically, larger root zones occur whenever the transpiration in a catchment is
higher, which is the main source for the variance in the relationship between Sr and ST. For a given REI, ST
has a very clear negative correlation with Sr . As such it seems that Sr magnitude can be largely explained by
how long term average components AI and EI allocate the water for transpiration in a catchment and by how
this water is distributed seasonally relative to the atmospheric energy demand.

Concluding, it seems that particularly in regions with large variety in snow dynamics, a combined index of
seasonality and timing explains the Sr magnitude better compared to individual seasonality or timing in-
dicators, due to the different possibilities in which seasonality and timing can cooperate. Furthermore, the
combined effect of how AI and EI describe allocation of water for transpiration and how ST describes seasonal
distribution of this water and therefore the overlap between liquid input and atmospheric demand largely de-
scribe Sr magnitude in the study catchments. Note that the individual relationships that were found earlier
in Section 3.2 are encapsulated in the descriptor variables found in this section.

3.3.3. Multiple linear regression
The combined influence of EI, AI and ST has shown that a description of the root zone storage capacity re-
quires multiple dimensions. In this subsection, the cooperate effect of the earlier mentioned variables on
Sr is therefore tested using a multiple linear regression and two feature selection techniques. Besides, us-
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ing these techniques, it is tested whether any other controls potentially affect the root zone storage capacity.
Furthermore, the predictive capability of a multiple linear description of Sr using parameters that show the
largest correlation is tested using both cross-validation in Canada and validation in a distinct boreal area.

Before testing the control parameters in a multiple linear regression analysis it is important to remove the
predictor variables that show too much collinearity. This has been done using a correlation matrix and by
manual selection. Additionally, parameters describing the timing of purely precipitation instead of liquid
input were excluded from the parameter set. Furthermore, REI, SI and timing indices were left out as they are
presented by respectively AI and RC and ST. An overview of the full parameter set that has been used in the
multiple linear regression analysis is provided in Appendix G.

Figure 3.9: The results of (a) sequential forward selection and (b) sequential backwards elimination based on a linear regression model.
Variables that are not defined in the text are Li qnor m and SImel t , which respectively are the ratio between the 90 percentile liquid
input and the mean liquid input and the seasonality index of snow melt. Note that R2 can become negative for the cross-validated
model performance, whenever prediction by the regression model is worse than the mean of the cross-validation sets. A more detailed
description of the coefficient of determination (R2) is provided in Section 2.5.2.

Sequential Feature Selection
Figure 3.9 shows the results of respectively a sequential forward selection (SFS) and a sequential backward
elimination (SBE) procedure. The horizontal axis shows variables that were added to the linear regression in
SFS or subtracted in SBE for every iteration. The vertical axis shows the performance of the linear regression
model in R2 after respectively an addition or a subtraction of the parameter on the horizontal axis. Note that
R2 is based on the combined performance of a 10-fold cross validation and on R2-adjusted which are both
measures that compensate for over-fitting of the model. The cross-validated R2 can become negative when
the performance of the regression in the cross-validation sets is worse than the mean (as explained in more
detail in Equation 2.21 of Section 2.5.2). Only addition and subtraction of the first 10 parameters is shown in
the figures, because the linear model did not improve significantly for the rest of the parameter set. Please
note that RC used as parameter in the multiple linear regression analyses of this section describes the same
as EI (RC = 1 - EI).

Both SFS and SBE confirm that the combined effect of RC (or EI) and AI significantly describes Sr magni-
tude. Once AI is added in SFS or subtracted in SBE, with RC still in the multiple regression set, the model
performance changes significantly. This is consistent with the results found earlier in this study. Further-
more, particularly SBE shows the significance of ST, by showing a considerable decrease in R2 performance
when left out of the linear regression model. Surprisingly, the model performance in SFS increases by a much
smaller rate when ST is added to the model, which is not expected considering earlier results. This offset is
probably caused by the correlation between ST and yearly Ep as shown in Figure 3.10. Due to the fact that Ep

has the strongest individual correlation with response variable Sr (see Section 3.2.1), it is added to the linear
regression model in the first iteration of SFS. However, since ST and Ep have a certain correlation, the influ-
ence ST has on Sr is already partly explained by the Ep variable. Therefore, an addition of ST to the linear
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Figure 3.10: Relationship between yearly potential evaporation and seasonality timing index.

model will lead to less improvement of the model performance (R2) whenever Ep is already in the model,
compared to when this is not the case (e.g. in the SBS).

The correlation between ST and Ep as presented in Figure 3.10 is presumably caused by the snow-dynamics
in Canada. Both Ep and the timing of liquid input are related to temperature. The rise of temperature after
the winter period will lead to an onset of evaporation as well as the possibility of liquid to enter the system
(which is not happening during winter due to the accumulation of snow). Late onset of potential evaporation
generally leads to smaller annual Ep , while a late entrance of liquid into the system leads to more in phase
behaviour of the input and output of liquid and as such a larger ST value.

A variable that has not shown a dominant relationship with the root zone storage capacity by itself but does
show a significant increase in performance for both the forward and backward feature selection is the Inter-
storm Duration of the non-winter months (ID). Particularly for the forward feature selection the addition of
this variable led to a major performance improvement. The coefficient of ID in the linear regression model is
positive, which means that it is positively correlated with the root zone storage capacity, which is consistent
with previous studies (Gao et al., 2014). A large Inter-storm Duration corresponds to a high number of dry
days and few days of precipitation. It is possible that the addition of ID to the regression model accounts
for daily variation within the seasonal signal as presented by ST, or that it is an extra description of season-
ality that may not be entirely captured by the seasonality timing index. However, the exact reason for model
improvement with addition of this parameter is difficult to understand from solely the sequential feature
selection analysis.

Other parameters that showed to be relatively important in both feature selection methods are the drought re-
turn period catchments optimise their root system to (RP), the inter-annual variability of discharge (Qvar,i nter )
and the number of days with snow cover. The effect of the return period may be directly related to the method,
where higher drought return periods are linked with larger Sr by fitting a Gumbel distribution over yearly
maxima. Qvar,i nter is largely dependent on precipitation, but as root zone storages describe partitioning of
water between evaporation and discharge it is possible that the inter-annual variability of discharge is influ-
enced by the root zone storage capacity. Lastly, the number of days with snow cover describes snow dynam-
ics and additionally indicates seasonal behaviour and the period of possible liquid input. A more thorough
analysis of the influence of snow dynamics on Sr is provided in Section 3.4. It should be noted that since
multiple linear regressions are difficult to visualise, it is hard to interpret why addition or subtraction of a
certain parameter in the feature selection methods leads to model improvement and therefore the influence
of the earlier mentioned parameters on Sr can only be presumed. Besides, the effects of these parameters
on model performance are quite small and may therefore rather be a mathematical artefact of the feature
selection procedure rather than actually explaining a physical contribution to Sr .

Lastly, it should be noted that the best combination of parameters has most likely not been found during
the forward and backward sequential feature selection. Ideally, the best parameter set would be selected by
comparing all possible combinations of variable sets, however this requires too much computational time
for the large parameter set used in this study. Additionally, the feature selection results are dependent on the
choice of parameters in the first place. Addition of one variable in both SFS and SBE may lead to an entirely
different, potentially better subset description. Some parameters that could lead to such change in the SFS
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or SBE subset description may not have been considered at all in this analysis (e.g. soil characteristics), or
may have been excluded from the feature selection in order to reduce collinearity. This is another reason why
it is difficult to interpret the results of the sequential feature selections. Furthermore, it is important to note
that all the descriptions considered in this section are based on a linear combination of variables. In practice,
the effect of certain parameters on Sr may be non-linear. Whether this is the case and how this would give a
different representation of the controls on Sr is not considered in this study.

Predictive capability of main descriptor variables
The good performance of cross-validated R2 in the Sr description using SFS and SBE has led to the theory
that Sr can be predicted using a multiple linear regression with its most descriptive variables. This has been
tested by applying 10-fold cross-validation to several multiple linear regression models with different param-
eter combinations. During such cross-validation, the total dataset is distributed in 10 subsets, which are all
individually predicted with a linear regression of the 9 other sets, leading to a predicted Sr value (Sr,p ) for
every catchment. These predicted Sr values can subsequently be compared to the modelled Sr value (Sr,m)
from this study.

Many different parameter combinations with variables that showed good performance in the SFS and SBE
were tested. The best linear regression model consisted of the parameters AI, RC and ST (R2-predicted of
0.72), which is consistent with earlier results. A comparison of Sr,p and Sr,m for this parameter set is shown
in Figure 3.11a. Addition of several other parameters that were found in the sequential feature selection
methods to this linear regression model did not lead to significant improvement of the prediction.

Figure 3.11: Relationship between modelled Sr and predicted Sr using a linear regression model with parameters AI, RC and ST in (a)
Canada and (b) Finland. R2-predicted is provided in the title as a measure for the performance of the prediction.

Figure 3.11 shows that the multiple linear regression model based on parameters AI, RC and ST is an unbiased
estimator of Sr . The mean difference between modelled and computed Sr is approximately 0 mm, whereas
the standard deviation is 32.8 mm. As such, a linear regression model with variables AI, RC and ST is capable
of predicting Sr in Canada with a standard deviation of approximately 32.8 mm.

Note that AI and RC are actually derived from long term average precipitation, potential evaporation and
discharge data.It is therefore striking that a multiple linear regression model with variables P, Ep , Q and ST
performed significantly worse (R2-predicted = 0.53) than the earlier discussed model with variables AI, RC
and ST. Presumably, this is related to the fact that the precipitation input is not linear (see Figure 3.6) and
therefore not well captured by a linear regression model. AI gives a more linearised description of the liquid
input (because AI = Ep /P), which could lead to a better representation of the set with relative parameter AI
and RC rather than the set containing P, Ep and Q.

Using different approaches, this study has shown that Canadian root zone storage capacities are well de-
scribed and predicted using long term average catchment variables (AI and RC) and a long term average rep-
resentation of seasonality and timing (ST). Apparently the daily time scale applied in the approach to derive
Sr used in this study is not necessarily required in order to obtain climate derived root zone storage capac-
ity estimates. In fact, weekly or monthly data of P, Ep and Q are frequent enough to provide a description
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of long term average AI and RC and to provide an estimate of ST. This increases the potential of estimating
Sr in Canadian regions with a lower data sampling frequency and this way extending the overall database
of climate derived Sr . Besides, such estimation of Sr using long term average parameters increases the po-
tential of simplified application of Sr in climate models and hydrological models in Canada, or can help in
constraining the Sr parameter in calibration of hydrological models.

In this study, several parameters have proven to be significant descriptors and predictors of Sr . However,
since this study was only applied for Canadian catchments, the results may be biased to Canada-specific cir-
cumstances. To test this, and to see whether the predictability of the results in this study go beyond the bor-
ders of Canada, the linear regression model resulting from this study is also applied to predict Sr in Finland.
Finland is also a boreal region with considerable snow dynamics and is therefore expected to show similar be-
haviour to Canada. Besides, data were readily available in Finland from a study performed by de Boer-Euser
et al. (2019), thus computation of Sr is not necessary for these catchments. However, the disadvantage of us-
ing this dataset is that it is computed using a slightly different modelling approach. Firstly, the Finnish dataset
consists of root zone storage capacities based on a return period of 20 years, whereas in this study return pe-
riods were considered variable over catchment land cover. Besides the snow-modelling approach in Finland
was based on snow water equivalent measurements, whereas a snow module is used in this study. Another
difference between the two modelling approaches is the estimate of the interception threshold. Nevertheless,
the multiple linear regression model fitted on the Canadian dataset using the parameters AI, RC and ST seems
to perform relatively well when applied to the Finnish dataset as shown in Figure 3.11b, with predicted R2 of
0.62. On average, the predictive model slightly overestimates Sr , with a mean difference between modelled
and predicted Sr of 11 mm. The standard deviation of the difference between Sr,m and Sr,p is 52 mm.

Figure 3.11b shows better prediction performance of Sr for higher magnitudes. This may be related to
the fact that low root zone storage capacities do not occur extensively in the Canadian dataset. Besides, the
Finnish climate differs from the Canadian climate, with substantially lower potential evaporation rates and a
more uniform distribution of precipitation, which could result in different dynamics between AI and RC com-
pared to Canada. Furthermore it is possible that there are other variables that determine root zone storage
capacities in Finland, which are not considered to be significant in Canada. For this reason, it is not advised
to apply the results from this study on other regions without testing whether the main descriptor variables of
Sr are the same and whether no other variables play a role in determining Sr magnitude. In general, the case-
specificness of this study, and with it many other root zone storage capacity studies, complicates acquisition
of the main descriptor variables of Sr on the global scale. Therefore it is recommended to test and compare
root zone storage capacity descriptors in a combined study using catchments from different regions in the
world.

In conclusion, using two sequential feature selection methods, earlier found descriptors of Sr , being AI, RC
(EI) and ST were again found to be important indicators. Several attempts to find any other parameters of
influence did not lead to significant new results. A multiple linear regression model of the key parameters
subsequently showed that Sr can be predicted without bias in the Canadian catchments, potentially provid-
ing a way of estimating Sr in Canadian regions with a lower data sampling frequency and increasing applica-
bility of Sr in climate and hydrological models. Application of the same regression model in Finland led to a
fairly good prediction of Sr but also showed that the model parameters may cooperate differently in other re-
gions or that other parameters may have influence on root zone storage capacities in regions outside Canada.
To obtain a global overview of parameters that influence Sr it is therefore recommended to investigate and
compare root zone storage capacity descriptors in a combined study of different areas in the world.

3.4. Influence of snow on root zone storage capacity
As mentioned several times before, snow dynamics is expected to have an effect on the root zone storage ca-
pacity, potentially by its influence on seasonality and timing of liquid input. The precise influence of snow on
the root zone storage capacity has however not been tested yet. Since snow dynamics is not equally important
in all Canadian catchments and there are multiple different other processes that influence Sr , a comparison
between several snow parameters and the root zone storage capacity will not provide a clear representation of
merely the influence of snow on Sr . Instead, the effect of snow on Sr in Canadian catchments has been tested
by a sensitivity analysis between root zone storage capacities that are computed with snow module (Ms ) and
without a snow module (Mn). Figure 3.12 shows two histograms with the relative and total difference in root
zone storage capacity between these two different computations of Sr .
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Figure 3.12: Histogram of the change in Sr between a model run with and without snow module where (a) shows the relative difference
and (b) shows the total difference. An increase in ∆Sr indicates a larger root zone storage capacity occurs in Mn .

As shown in Figure 3.12, the root zone storage capacity increases or remains approximately equal for generally
all catchments whenever the snow module is not used. There are 6 catchments that have a minor decrease in
Sr for Mn . However, manual inspection of these catchments showed that the storage deficits of both model
runs were almost equal, so the slight increase may have been an artefact of e.g. Gumbel fitting. In general,
the increasing behaviour of Sr without snow module indicates that snow dynamics either decreases the mag-
nitude of Sr , or has no particular influence at all. The differences between catchments are large, which is
likely related to the large difference in snow importance between the study catchments. In this study, the
importance of snow in a catchment is described by the percentage of solid precipitation (Ps,r el ). Figure 3.13a
therefore relates the relative difference in Sr between the two model runs and Ps,r el . Furthermore, the re-
lationship between several other snow related parameters (which have large correlation with Ps,r el ) and the
relative difference in Sr is given in Appendix H.

Figure 3.13: The relationship between the relative difference in Sr computed by the two different models and (a) the percentage of solid
precipitation and (b) the difference in onset of storage deficit between the two models. The titles show Pearson’s r and statistical p-values.

Figure 3.13a indeed shows that whenever snow is more important in a catchment, its influence on Sr (shown
by the increase in the relative difference between the two model runs) is larger. In general, removal of the
snow module leads to a total different timing input of winter precipitation. In this case, precipitation falling
during winter, when evaporation rates are low, enters the root zone immediately when falling and therefore
the overlap of liquid input and output decreases, leading to higher root zone storages. However, the mag-
nitude of this decrease is highly dependent on the amount of solid precipitation that is stored in Ms . For
example, whenever a large percentage of the total precipitation falls in solid state, the buffering effect of the
snow pack has large influence on the magnitude of Sr , because the melt input then has significant overlap
with outgoing transpiration for a long time and thus for increasing transpiration magnitudes. However, when
the solid precipitation fraction is low, the buffering effect of a snowpack is limited, leading to small additional
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liquid input and mainly in the period when evaporation rates are still small. This would lead to fewer change
between Ms and Mn . For the study catchments, it appears that a relative snow fraction of approximately 0.4
is generally required before snow influence has a significant effect on Sr magnitude. In further research it is
interesting to see whether this percentage solid precipitation also applies in other boreal areas.

The theory of fewer overlap between liquid fluxes towards and from the root zone when snow is not consid-
ered is also represented in the computed storage deficits. In fact, snow melt provides extra liquid during the
start of the evaporation period, which means that the deficit of water likely occurs later. A delayed onset of
storage deficit leads to lower cumulative storage deficit magnitudes, which is what causes the different rep-
resentation of Sr between the two models. This relationship between the change in Sr and the difference in
onset between the two models is shown in Figure 3.13b, which indeed shows a strong correlation (r = 0.80).

Figure 3.14: The relationship between the relative difference in Sr computed by the two different models and the difference in the
seasonality timing index between the two models. A negative ST difference indicates a decrease in the ST component for Mn .

Since snow dynamics delays the liquid input into the root zone, it is likely that its effect on Sr is partly de-
scribed by the seasonality timing index used in this study. Figure 3.14 shows the difference in ST between the
two model runs compared to the difference in Sr between the two model runs. Clearly (r = -0.66) a change
towards fewer overlap between the liquid input signal and the atmospheric energy demand due to removal of
the snow module (negative change in ST) leads to a large increase in root zone storage capacity. As such, the
snow influence on Sr in this study is expectedly encapsulated in the seasonality timing index. The variance in
Figure 3.14 may be related to the non-linearity of ST. A change of -0.5 could for example indicate an ST change
from non-seasonal to seasonal out of phase, or a change from seasonal in phase situation to a non-seasonal
signal. Both of these changes may lead to a different change in Sr between the model runs. Besides, ST is a
measure of the total liquid input and not just snow melt. The way in which winter precipitation is distributed
in Mn can therefore have influence on the change in ST, which may be a potential cause of the variance in
Figure 3.14 too.

Note that Mn as used in this study only represents a theoretical situation and does not accurately portray re-
ality. In fact, whenever snow dynamics does not occur, temperatures are expected to be higher, which would
also lead to a different representation of e.g. potential evaporation and would likely increase outgoing tran-
spiration. This has however not been taken into account in this model comparison, which purely compares
the effect of snow on Sr based on its influence on the seasonal signal of liquid input.

Furthermore, additional climate components may influence the model comparison. For example, when
there is additional precipitation input during melt phase, the influence of snow on storage deficits is smaller.
Besides, differences in atmospheric water demand can also influence the relative difference of Sr between
the two model runs. These climatic effects can potentially explain some of the variance in e.g. Figures 3.13
and 3.14. Due to such additional effects it is complicated to study purely the effect of snow on the root zone
storage capacity, but it is expected that the results from this study provide a good estimation.
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In conclusion, snow dynamics will generally lead to lower Sr , depending on the relative importance of snow
in a catchment. In catchments with large snow dynamics, a delayed liquid input increases overlap between
the ingoing and outgoing fluxes in the root zone storage capacity. In the model this leads to a later onset of
storage deficits. It is likely that the snow influence is partly portrayed by the ST component in this study.

3.5. Regional variability of descriptor variables
In this section, an overview is provided of how the main descriptor variables of Sr vary for different func-
tional clusters and how these clusters are spatially distributed throughout Canada. This way, the spread of
Sr between different types of catchments is analysed and the geospatial variation of these catchments of
similar functionality is presented to see whether any differences are caused by the geographical location of
the catchments. Using this approach, it can be tested whether different variables exert influence on Sr in
different types of catchments.

Clustering of catchments was done using a principal component analysis (PCA), as shown in Figure 3.15a.
The variables that are used in the PCA all showed to have some relationship with Sr in earlier parts of this
study, during the regression analyses or as snow parameter. Note that the combined effect of the aridity index
and the runoff coefficient (or evaporative index) is presented by the REI parameter as defined in Section
3.3.1. Furthermore, several variables are added to the PCA to explain the spatial spread of several clusters.
The variance explained by principal components 1 and 2 is respectively 31.1% and 26.5%. The vectors in the
principal component analysis represent how a certain variable is described by principal components 1 and 2.
The length of a vector describes how significant the influence of the parameter is in describing the variance
of the dataset. In the principal component analysis, catchments with approximately the same functional
behaviour are plotted close to each other. If the location of a catchment corresponds with the direction of a
vector, this indicates a strong positive influence of this variable on the catchment. Likewise, a strong negative
influence of a variable on a catchment is presented if the vector plots in opposite direction. Limited influence
of a variable is described by vectors that plot perpendicular to the plotting location of a catchment.

Figure 3.15: (a) 5 catchment clusters of similar functioning shown in a principal component analysis. (b) Boxplot showing the distribu-
tion of Sr within each cluster.

As catchments that plot around the same location in the PCA have shared descriptor variables, a k-means
clustering approach in the PCA can be used to identify catchment clusters of similar functioning, which led to
5 different catchment classes in this study, all described by a different combination of variables. The variation
of root zone storage capacities within a class is presented in the box plot in Figure 3.15b. Note that in general,
Sr varies between the classes, but is approximately the same for classes 1 and 4. The geographical spread of
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the 5 clusters is shown in Figure 3.16, which shows that the functional clusters defined in the PCA are largely
gathered around the same geographical locations in Canada. The main influence of the most important
descriptor variables for every class and the approximate magnitude of their root zone storage capacity is
added to the legend of Figure 3.16.

Figure 3.16: Geospatial distribution of functional catchment clusters in Canada.

The spatial spread of the clusters in Figure 3.16 shows that cluster 4 and cluster 5 share approximately the
same geographical location. These catchments are located in the centre of Canada and therefore have a
slightly different climate than the other catchments. Not only is there generally fewer precipitation in these
areas, but the temperature difference between summer and winter time is also larger, predominantly caused
by lower winter temperatures. The result is that the time period in which liquid can enter the root zone is
smaller compared to the other clusters, likely leading to more in phase behaviour between the atmospheric
demand and the liquid input in these catchments. Besides, particularly for cluster 4, the bulk of precipitation
is falling in the summer period. As such, the seasonality timing index is large in cluster 4 and 5, whereas this
value is generally smaller or negative in the other clusters (see Figure 3.15a). The low total precipitation input
in these clusters additionally causes the catchments to have limited water available for transpiration relative
to the other clusters. The seasonality timing components and total precipitation input are the main variables
that cause difference in functional behaviour between cluster 4 and cluster 3 as well as cluster 5 and cluster 1
and are expectedly the reason for differences in Sr between these clusters.

Although sharing the same geographical location, cluster 4 and 5 do have differences. One of them is the
influence of snow (Ps,r el or snow days in Figure 3.15) in the catchments, potentially caused by variation in
elevation and latitude (cluster 4 generally has lower elevation difference and is located more southwards).
The result is that the effect of seasonality and timing is particularly larger for cluster 5 compared to cluster 4.
Besides, elevation and latitude also affect total yearly potential evaporation values, which are generally higher
for cluster 4 compared to cluster 5 (which likely causes the large REI values for cluster 4). These differences
generally cause a higher root zone to occur in cluster 4 relative to cluster 5.

Clusters 1 and 2 also share approximately the same geographical location, covering the western mountainous
region and some catchments in the east. Cluster 1 plots in the centre of the PCA, with average elevation
difference. Cluster 2 has more extreme influence of altitude and additionally shows larger influence of snow
components. An additional effect of large elevation is that these catchments generally allocate more water
to runoff (shown by e.g. the low REI). Potential reasons of why elevation difference can cause more runoff
to occur are given in Section 3.2.3. The more average elevation of cluster 1 causes slightly higher potential
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evaporation rates to occur in these catchments and additionally a relatively higher REI. Therefore, the root
zone storage capacities in cluster 1 are averagely higher than in cluster 2.

Cluster 3 consists of the catchments that generally have the largest root zone storage capacity. These catch-
ments both have high yearly potential evaporation and precipitation values due to their geographical location
(in the south-east, near the coast, with low altitude), allowing for large amounts of total transpiration, which
is also represented by the high REI for most of its catchments. Additionally, the precipitation generally falls
out of phase with the atmospheric water demand considering the catchments plot in opposite direction of the
seasonality timing index as shown in Figure 3.15a. These effects cause that generally a large root zone storage
capacity is required for cluster 3. Note that there is a relatively large spread in Sr for this cluster, which is
potentially caused by the somewhat more limited potential evaporation of several catchments in this cluster
(which could be the catchments that are located at slightly higher latitudes, e.g. on the islands in the east
and west of Canada). Lastly, note that the cropland percentage has large correlation with the yearly potential
evaporation, because the agricultural fields are located entirely south in both clusters 3 and 4. The high Sr

values for cropland as found in Section 3.2.3 could therefore be related to the high potential evaporation rates
that are found in these areas.

As stated before, cluster 1 and 4 have approximately the same distribution of root zone storage capacity.
However, the functional clusters of these two catchments vary. The main differences between the two clusters
are the elevation difference and seasonal influences. Cluster 1 has more out of phase seasonal behaviour
than cluster 4, which would indicate a larger required root zone storage capacity in this catchment cluster.
However, the larger topographical difference in cluster 1 may lead to relatively more runoff and slightly fewer
potential evaporation and consequently relatively fewer transpiration compared to cluster 4, which would
suggest a larger Sr is required in cluster 4. As such, there are different descriptor variables in clusters 1 and 4
that balance out each others behaviour and lead to approximately the same root zone storage capacity.

In earlier sections, AI, RC and ST were identified as important descriptor variables of Sr magnitude. In this
section it has been shown that there are other variables that exert influence on the root zone storage capacity
in different functional and geospatial clusters. It should be noted that the influence of these different param-
eters is indirectly described in the variables RC, AI and ST, in the way they describe either climatic processes
or water distribution in a catchment due to landscape effects.

To conclude, catchments were clustered based on similar functioning, after which their spatial spread was
presented. In many cases, the functional behaviour of a cluster could be explained by the geographical loca-
tion of the cluster. There is clear distinction between relevant descriptor variables of Sr in different functional
and spatial clusters, which means that Sr is indeed described by different variables in contrasting regions in
Canada. In general, however, these variables all exert influence on AI, RC or ST and the way they describe Sr .
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Discussion

The results that are presented in this study come with several uncertainties of different nature. This chapter
therefore discusses the main uncertainties and limitations that are caused by the choice of study area, data
and approach in respectively Section 4.1, 4.2 and 4.3. Lastly, some comments on wider application of the
results from this study in other regions are provided in Section 4.4.

4.1. Study area
This study considers 230 catchments that are spread out over Canada, with different climate, land cover and
elevation. Catchment selection based on several different criteria has led to a major reduction of used catch-
ments compared to the original dataset of 698 catchments. Particularly in the north-east of Canada and in
the mountain range in the west, a lot of catchments were not considered in this study, presumably largely
caused by troubled discharge measurements. As such it is uncertain whether the results are representative
for Canada in its entirety or whether application is limited to the study catchments.

Besides, the removed catchments are likely to have a large snow influence as they are located in relatively
northern or mountainous areas. Therefore, although there are still enough catchments with snow dynamics
in this study to comment on the relationship between snow dynamics and the root zone storage capacity,
many of the existing Canadian catchments with large snow dynamics were not considered in this study. If
future approaches on determining the root zone storage capacity or improvements of the CANOPEX datasets
allow inclusion of these study catchments in investigation of Sr , it is recommended to test the results of this
study with these additional catchments.

Additional comments must be made on the size of several catchments used in this study. In general, the
catchments provided by CANOPEX are relatively large compared to the majority of the catchments used in
other hydrological studies. The main disadvantage is that the study catchments are therefore prone to het-
erogeneity of e.g. land cover and climatological aspects, potentially troubling visualisation of the relationship
between these parameters and Sr . Furthermore, particularly the hydrological response may vary largely be-
tween catchments with various sizes (de Wit, 2001, Pilgrim et al., 1982). However, the effect of catchment
size on the results in this study is expected to be limited, because the most important descriptor variables
mainly consist of long-term average catchment characteristics such as EI and AI, which are not necessar-
ily influenced by heterogeneity or timing effects. Besides, the larger catchments are predominantly found
in the central plains of Canada, where spatial variation of annual precipitation is limited. Additionally, tim-
ing differences within a catchment are decreased due to snow dynamics, because a large part of the winter
precipitation enters simultaneously throughout the entire catchment in the melt phase. As such, the results
found in this study are expected not to be troubled too much by the large catchment sizes. Note that catch-
ments considered in this study are not smaller than 300 km2 and that the results found in this study may
therefore not be applicable to smaller catchments. Additional research on this matter is required.
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4.2. Data
The meteorological dataset that is used in this study is retrieved from a gridded data product, in which an
interpolation technique was used to model precipitation in areas between gauges (Section 2.2.2). The total
number of gauges per area is therefore an important proxy for the reliability of the dataset. The spatial dis-
tribution of rain gauges in Canada is a lot denser in the south of Canada compared to the north (Hutchinson
et al., 2009), which is why the precipitation and temperature data (and as such potential evaporation data)
are expected to be more reliable for southern catchments.

An additional problem of the precipitation dataset its proneness to undercatch, particularly in areas with
much solid precipitation. It is important to note that the results in this study have been computed with a
catchment average correction of the precipitation catch efficiency, using a formula that is generally used for
local application (using local gauge data instead of catchment average data). In some cases, this application
may have led to a wrong representation of precipitation, which could lead to a false representation of Sr .
However, generally speaking the applied correction moved catchments closer to the Budyko curve in the
Budyko framework (see Figure 2.3), which means that it is likely that the undercatch correction led to an
increase of data reliability.

Furthermore, the hydrometric dataset that is used in this study is expected to be a source of uncertainty.
Particularly catchments with a large number of data voids for discharge observations may have largely con-
tributed to data uncertainty. Firstly, the linear reservoir based interpolation technique that has been applied
to some catchments as described in Section 2.2.1 may not have been an accurate representation of the win-
ter discharge in all catchments, because in some cases additional precipitation input during these periods
without data may have led to fast, unregistered flows. This could potentially lead to an underestimation of
catchment discharge and therefore an overestimation of transpiration and Sr . However, considering the large
winter period in Canada during which no additional precipitation will contribute to discharge, this error is
expected to be small for most catchments. Secondly, the approach to skip years with too many data voids
for discharge (Section 2.2.1) and base the long term average discharge on the remaining years with data, may
have led to a wrong representation of the catchment average discharge over the entire time period. If the
actual discharge in these skipped years deviates a lot from the mean computed discharge in the remaining
years, this could lead to a wrong representation of long term average discharge in this study, which could
influence transpiration estimates and thus Sr computation.

In general, data uncertainties caused by wrong representation of either precipitation, discharge or potential
evaporation are expected to be filtered out by the different catchment selection procedures (see Section 2.2.6
and Section 2.3.5). However, leaving out catchments has the risk of obtaining biased results towards catch-
ments that fall within the selection criteria (e.g. only catchments within 30% of the Budyko framework were
used). To test whether the results of this study are also applicable for unconsidered catchments, these are
tested by comparing their predicted Sr using the linear regression model found in Section 3.3.3 with their
modelled Sr from water-balance the approach used in this study. The results of this comparison are shown
in Figure 4.1.

Figure 4.1: Comparison between modelled Sr and predicted Sr for catchments that were not considered in this study for falling outside
several selection criteria.
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Figure 4.1 indicates that the catchments that were not used in this study show approximately the same rela-
tionship between modelled and predicted Sr as the study catchments. It therefore seems that the results of
this study are not biased towards the selected catchments. Note that some of the catchments have a negative
predicted root zone storage capacity for a modelled Sr of zero. This is caused by the fact that Sr is limited to
zero in the water balance method and in reality, but not in the linear regression model. As such, in extreme
situations (e.g. very low RC), the regression model can predict negative Sr , which is what causes the offset
in Figure 4.1. Potentially, the regression model can therefore be improved by setting a the minimum value
for Sr to zero. Lastly, note that the data of catchments that are not used in this study is still expected to be
less reliable, which means that the root zones computed using the water balance approach may deviate from
reality in these cases.

The MODIS Snow Cover dataset used in this study (Section 2.2.3) contains many data voids due to cloud cover.
The cloud cover in Canada is generally large, which troubles identification of snow presence on many days.
Parameter calibration was applied to 3 years of data in order to have enough valid data points and additionally
a test of 1 year was applied to check on the best performing parameters. However, some catchments with
very frequent cloud cover were calibrated with fewer valid days than others (see Appendix B), which may
have led to a larger uncertainty in the calibration parameters. How this is manifested in the computed root
zone storage capacity is difficult to predict, but depends on the influence of snow cover in a catchment. On
average, however, the impact of cloud cover in the MODIS data is expected to be small in this study.

For future studies that consider snow, there are several possible ways to avoid too much cloud cover in
data. One opportunity is to use the 8-day MODIS Snow Cover product, which reports maximum snow cover
extent during an eight-day period (Hall and Riggs, 2016a). Although expectedly resulting in a lot less data
voids, the disadvantage of this approach is that it will lead to a large reduction of the temporal resolution of
the data. Another possibility is to combine data from the Terra and Aqua satellite, which are two satellites
both mapping snow cover with a 3 hour time lag (Xie et al., 2009). Since clouds are likely to have a different
position in these three hours, there is a higher chance of measuring daily snow cover with fewer data voids
in this combined product. The large amount of data that is required to apply this approach in Canada is the
main reason why it was not applied in this study.

The land cover dataset used in this study is provided by ESA CCI (see Section 2.2.5). It is important to note
that several parameters in this study (e.g. RP and Imax ) depend largely on land cover, which makes that the
results are partly dependent on the accuracy of land cover maps. Due to the use of different, renewed land
cover maps for every study year, the influence of anomalies in the land cover dataset on Sr is expected to be
small.

It should also be noted that the estimates of land cover percentages that are used as landscape variables
in this study are based on the land cover dataset of 2002. In hindsight, it may have been better to use yearly
varying land cover for these variables, because land cover can be variable over the study period due to e.g.
climatic or human influence. However, Figure 4.2 shows that the standard deviation of the land cover per-
centages over the study period is small, which indicates that the inter-annual land cover change in the study
catchments is relatively small. Besides, inter-annual climate variability in Canada is not large either (see Sec-
tion 4.4). As such the 2002 dataset for land cover is expected to be largely representative for the entire study
period.

The elevation data (section 2.2.4) used in this study are primarily used to identify elevation zones that are
required in the snow model of this study and are additionally used to identify topographical variables. The
vertical accuracy of the source dataset for HydroSHEDS is 16 m (e.g. Rabus et al., 2003), which seems accurate
enough for a distribution of catchments in elevation zones of 250 m and for representative catchment average
topographical indices. As such, the elevation datasets in general are not expected to be a large source of
uncertainty in this study.

4.3. Approach
The approach that has been used in this study requires some assumptions and choices. Therefore, the po-
tential insecurities resulting from the method applied in this study and their expected effect on the results is
discussed in this section.
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Figure 4.2: Standard deviation of coverage percentage to show land cover change over time for (a) bare cover, (b) grass or crop cover, (c)
shrubland or herbaceous cover (d) forest cover. The results indicate that there is little land cover change throughout the study period.

4.3.1. Uncertainties in transpiration estimate
Transpiration is one of the two fluxes determining storage deficits in this study. The estimate of transpiration
is therefore an important determinant in root zone storage capacity computation. In the applied method,
transpiration is estimated from the long term average water balance and successively scaled with daily po-
tential evaporation rates. Potential inter-annual variability of transpiration is therefore not included in the
model approach, while water limitation or abundance may cause different transpiration signals to occur in
varying years. The computed storage deficits in this study may therefore deviate from reality, potentially
leading to a different representation of root zone storage capacities.

Besides, the validity of the transpiration estimate depends on vegetation type and survival strategy. Trees
are likely to increase their root biomass to survive dry periods (Brunner et al., 2015), whereas grasses and other
low vegetation generally go dormant in dry periods when their root zones are depleted (Wang-Erlandsson
et al., 2016). As such, forests are likely to transpire all-year round, whereas grasses do not show any transpi-
ration signal for some periods during relatively dry years. The assumptions used to derive an estimate for
transpiration therefore do not hold for low vegetation. In future studies on the root zone storage capacity,
it might be better to identify the transpiration period of grasslands and other low vegetation based on Nor-
malised Difference Vegetation Index data (NDVI), to have a better idea on the timing of transpiration output
and produce better results of storage deficits in grasslands. Note that forest is the main vegetation type in this
study, which means that the transpiration estimate is valid for the majority of the study catchments.

Lastly, inaccuracies in computed potential evaporation rates may provide inaccurate representation of
transpiration in this study. Potential evaporation is exclusively determined with temperature and top of at-
mosphere radiation data. In reality wind, relative humidity and other factors may also play a role.

4.3.2. Static root zone
In this study, the root zone storage capacity is treated as a static component, whereas it is expected that
the actual value of Sr differs over time due to inter-annual climatic variation or landscape changes (Gao
et al., 2014). Nijzink et al. (2016) for example showed that Sr indeed changes after deforestation. However, as
presented in Figure 4.2, changes of landscape variables in the study catchments are generally small, meaning
that based on these landscape variables, Sr is not expected to show large variability throughout the study
period. Similarly, climatic variation is not limited in the study catchments over the considered time periods
and is therefore also not expected to lead to large variability in Sr .
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4.3.3. Alternative water sources for vegetation
It is important to note that the method used in this study is based on the assumption that all of the water used
for transpiration is retrieved from the root zone storage capacity and there are no additional sources of water
for vegetation. In regions with high water tables, trees can extract liquid from ground water, leading to larger
transpiration fluxes than derived in this study. This is particularly true for catchments with large percentage
of wetlands, which are located south of the Hudson Bay and in the central plains of Canada (Government of
Canada, 2016). Application of the approach in these areas therefore requires more caution. Similarly, crop
irrigation could act as additional water source in agricultural areas. However, according to the ESA-CCI land-
cover maps agricultural croplands used in this study are primarily rainfed and not irrigated.

4.3.4. Direct infiltration estimate
The method used in this study implicitly assumes that effective precipitation or snow melt immediately in-
filtrates into the root zone. Theoretically, other processes such as infiltration-excess overland flow (IOF),
saturation-excess overland (SOF) flow or preferential subsurface flow (PSF) can also occur. In temperate re-
gions, the infiltration capacity of the soil is generally too high for IOF to occur, which is why this type of
overland flow is not expected in Canada (Holden, 2005). However, several parts of Canada experience soil
freezing, which may largely reduce infiltration capacities. Particularly in regions of permafrost this could lead
to overland flow (although this is implicitly accounted for by the estimate of transpiration from the long term
water balance). The influence of snow on Sr as described in this section is therefore only valid if the snow
melt can indeed infiltrate into the soil, thus when the effect soil frost is limited. If snow melt starts before
soil thawing, part of the snow melt can not infiltrate in the root zone while it does reduce the storage capac-
ity in the model used in this study, causing an underestimation of the storage deficit and potentially also of
Sr . However, since most catchments are located relatively south in Canada and the regions of large soil frost
are located in the north of Canada (Vincent et al., 2017), this effect is expected to be limited for most catch-
ments. Secondly, SOF could potentially occur during very wet periods in areas with high groundwater tables.
In times of deficit, which is the main period of interest of this study, SOF is therefore not expected to happen,
which means the infiltration assumption is generally valid in this study. For PSF to occur, location specific
soil moisture thresholds must expectedly be exceeded (Huggett, 2007). Therefore, during periods of deficit,
PSF is not expected to have large effect either. As such, the assumption that all available water immediately
infiltrates in the root zones seems to be reasonably valid in most study catchments.

4.3.5. Choice of return period
The method used in this study is based on the theory that vegetation designs its root system based on a
droughts with a certain return period. Using this approach, the root zone storage capacity is rather dependent
on the return period in a catchment. Therefore it is important that return periods are correctly linked to
vegetation type. In this study it is assumed that lower vegetation such as grasses and crops design roots for a
smaller drought return period and vegetation consisting of more biomass invests into overcoming droughts
with a larger return period, based on findings in earlier studies such as Wang-Erlandsson et al. (2016) and Gao
et al. (2014). However, the exact magnitudes of return period used in this study are rather rough estimates,
which may have influence on the eventual magnitude of Sr . To test the impact of return period choice on the
end result, a comparison between the studied Sr and Sr computed using different return periods is performed
in Figure 4.3a.

Figure 4.3a shows how root zone storages computed using a different return period set deviate from Sr used in
this study. The return periods sets (high and low) that are used in this sensitivity analysis are presented in Ta-
ble 4.1. The results suggest that the magnitude of Sr indeed depends on the choice of return period, because
Sr computed for different RP sets deviates from Sr computed with main set. However, the relative change
between catchments seems to be rather identical, as they follow approximately the same line. Therefore it
appears that although the absolute magnitude of Sr changes for all catchments, their mutual relationship
does not depend on return period choice. In this study, the relative behaviour of Sr between catchments is
more important than the actual magnitude of Sr , which means that the main results are not likely to change
if a different return period is used.

Interestingly, Figure 4.3 shows that some catchments deviate a little from the general linear trend. These
catchments all have a low percentage of forest cover. It therefore seems that whenever there is a lot of differ-
ence in land cover between catchments, the choice of return period is more important than whenever this
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Figure 4.3: Sensitivity analysis on the influence of choosing a parameter set for (a) Return Period and (b) Maximum Interception Capacity.
Deviation from the diagonal line indicates a larger difference between Sr for the set used in this study and the comparison set. Parameter
sets for the model set are RP[undefined,2,5,20] and Imax [0,1,2,3]. High parameter sets are RP[undefined,5,10,40] and Imax [0,2,3,4]. Low
parameter sets are RP[undefined,2,5,20] and Imax [0,0,1,2]. All for respectively bare cover, grass or crop cover, shrubland or herbaceous
cover and forest cover.

Table 4.1: Overview of the different return periods and maximum interception capacities used in the sensitivity analysis of their influence
on Sr .

Low RP [years] High RP [years] Low Imax [mm] High Imax [mm]
Bare cover Undefined Undefined 0 0
Grass or crop cover 1 5 0 2
Shrub or herbaceous cover 2 10 1 3
Forest cover 10 40 2 4

is not the case (the latter is particularly true in Canada). Therefore, in case that the absolute magnitude of
Sr is important, or whenever there is large difference in land cover between catchments, the influence of RP
choice on the Sr must always be considered. In fact it is recommended to further investigate the relationship
between vegetation type and drought return period, in order to reduce the uncertainty caused by choice of
return period.

Lastly, it is questionable whether the return period approach in general is applicable to all kinds of catch-
ments. The study approach is based on the fact that vegetation designs its root zone storage capacity by long-
term evolutionary optimisation. However, crops are generally harvested within a few years, which means
they can not optimise their root zone storage capacity on long term conditions. Presumably, the root zone of
agricultural crops may therefore be dependent on short term dynamics. This could be one of the reasons of
the unexpectedly high root zone storage capacity magnitude for catchments with high cropland percentage
in this study (see Section 3.2.3). Furthermore, the fact that grasses generally go dormant when in water stress
may indicate that the survival strategy used by this vegetation type is not to invest in root growth, making
use of the evolutionary optimisation approach based on drought return periods debatable for this vegetation
type. In general, it is therefore recommended to further investigate whether the theory used to determine Sr

in this study is applicable to both agricultural cropland and grasslands, or whether other, more short term
effects may play a significant role here. However, considering most of the catchments used in this study have
a relatively high forest cover and few short vegetation, application of the return period method in this study
will generally lead to acceptable results.

4.3.6. Choice of maximum interception capacity
Like the return period, the maximum interception capacity is another estimated quantity that plays an im-
portant role in this study. Imax is assumed to decrease with canopy size of different types of vegetation. This
by itself is not unlikely, but the absolute magnitude of the interception capacity for each type of vegetation
has also been assumed, which may affect the results. Therefore, the influence of interception capacity choice
on Sr is evaluated by computing Sr for two extremer cases and comparing them with the root zone storage
capacities used in this study. The results are shown in Figure 4.3b. The Figure shows that the interception
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capacity has little influence on the magnitude of Sr , which means that the choice of Imax does not appear to
have significant influence on the results in this study.

4.3.7. Snow module assumptions
The snow module applied in this study is based on several assumptions. Firstly, sublimation has not been
considered. Since potential evaporation rates are very low during Canadian winter time, it is expected that
sublimation rates are also low mid-winter. However, whenever temperatures start increasing, the snow pro-
cedure could actually be affected by sublimation. The impact of sublimation on storage deficits is difficult to
predict. On the one hand it may decrease total snow melt which could e.g. cause an earlier onset of storage
deficits (due to the fact that there is fewer liquid flux into the system). On the other hand energy used for
sublimation can not be used for transpiration, which leads to a reduction of the total transpiration and as
such also a decrease in daily transpiration rates, which would decrease storage deficits. In this study, the total
time period over which sublimation plays a significant role is assumed to be small.

Secondly, no interception reservoir is used in the snow module, indicating that no interception evapora-
tion of solid precipitation occurs. In theory, snow is stored in the snow reservoir and will remain there until
snow melt starts. Whether snow is stored on the ground or in the tree canopy is unimportant, making use
of a separate interception reservoir unnecessary. Only during the melt phase, whenever snow melt occurs,
part of the snow gathered on the leaves may be stored in the tree canopy for interception evaporation, but
this amount is assumed to be small compared to the rest of the snow pack (considering most of the snow has
generally fallen of the leaves before snow melt starts).

Lastly, the mean catchment elevation in this study has been linked with the mean catchment tempera-
ture, like described in Section 2.3.1. Any insecurities in the representation of snow dynamics caused by this
assumption are expected to be largely filtered out by calibration of the snow module (and thus represented
in the calibration parameters).

4.3.8. Other methods that describe correlation
The individual correlations in this study have all been determined using Pearson’s correlation coefficient.
This correlation coefficient describes the statistical (linear) dependence between two variables. The Pearson
correlation coefficient generally gives an adequate description of the correlation whenever the variables have
a normal distribution.

However, there can be numerous combinations of variables in which the Pearson correlation coefficient
may not describe the dependence of two variables adequately. Whenever one or both of the variables have a
more skewed relationship (which occurs for example for several descriptor variables in Figure 3.3) and there-
fore show a non-linear relationship (e.g. Figure 3.13), ranked methods will give a better description of the
correlation between two variables. Ranked methods such as Spearman’s or Kendall’s correlation coefficients
describe the concept of monotonic dependence rather than linear dependence (Jonkman et al., 2015). In
other words, correlation is computed using the ranks of the variables, rather than their absolute values. For
consistency, this study has only used Pearson’s correlation coefficient, but it must be taken into account that
some variables may provide a higher correlation when one of these two ranked methods is applied.

A more formal and precise way of describing the ranked correlation between two variables is by using
copulas. Copulas describe the dependence of two marginal distributions in a joint distribution, using a dis-
tribution corresponding to the ranks of the original variables (Jonkman et al., 2015). One of the main advan-
tages of copulas is that they offer a more flexible way to model probabilistic dependence. In other words,
they can specify the correlation of different parts of the marginal distributions and thus identify difference
in correlation between different parts of the distributions. This is particularly useful in situations where the
extremes of a distribution are of interest, which is the case for e.g. some of the landscape variables in this
study. In further research, it may therefore be interesting to analyse the relationship between the root zone
storage capacity and several descriptor variables using copulas.

4.3.9. Model bias
In this study it is very important to note that the climate variables and RC are not independent from the
method. As a matter of fact, climate parameters such as precipitation and temperature are a direct model in-
put. Besides, the long term average water balance is used to compute long term average transpiration output,
making the found distribution of Sr on the Budyko framework (Section 3.3.1) somewhat trivial. On the other
hand, the method uses a daily time step, whereas catchment parameters like AI and RC are computed based
on long term averages. The implication that Sr can be estimated using data obtained with lower sampling
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frequency in Canada is therefore still significant. Besides, the result that Sr can be estimated using long term
average variables may contribute to more straightforward and less computationally expensive implementa-
tion of water-balance derived root zone storage capacities in hydrological and climate models, or can help in
constraining the Sr parameter in calibration of hydrological models in Canada.

4.4. Wider application
The main descriptor variables of Sr that follow from this study are AI, RC and ST. The aridity index and runoff
coefficient are both relative variables that are described by long term average components of precipitation,
discharge an potential evaporation. Due to the relative character of AI and RC, it is possible that catchments
have the same location on the Budyko framework with an entirely different description of P, Q and Ep . Since
the root zone storage capacity depends on how much water is allocated for transpiration, this value is expect-
edly related to the absolute input of P, Q and Ep . In Canada, the distribution of precipitation and evaporation
causes the relative components AI and RC to describe this absolute effect rather accurately, but this may not
necessarily work in other regions in the world. Therefore it is not recommended to apply the results of this
study in other regions without further consideration. Besides, it may be interesting to investigate the possi-
bility of describing root zone storage capacities based on a long term average description of P, Q and Ep and
a rough description of their seasonal behaviour in further research. Furthermore, to limit the relative effect
of variables AI and RC in the multiple linear regression of Section 3.3.3, it is interesting to further investigate
the potential of using Sr /P instead of Sr in a multiple linear regression as well (since AI and RC respectively
describe Ep /P and Q/P). Particularly with the intention of applying such a multiple linear regression on the
global scale it is important that catchments from different regions with varying climates are used to fit this
regression, so that it is not location specific.

Furthermore, wider application of the results in this study may be complicated by effects of inter-annual vari-
ability within catchments. In theory, vegetation optimises its root system based on droughts that occur with
a certain return period. This means that extreme years are important in derivation of the root zone storage
capacity. Whenever inter-annual variability is large, it is likely that climate variables in extreme years deviate
more from the long term average climate variables. In an estimation of Sr using long term average variables
and a long term average seasonal signal, the effects of extreme years are likely to be lost. In Canada, inter-
annual variability of rainfall is small (with a coefficient of variation ranging between 0.1 and 0.24), which is
expectedly why such a simplified estimation of Sr works. However, whenever inter-annual variability is large,
it is questionable whether estimation of Sr based on long term average variables with a seasonal description
as proposed in this study is accurate. It would therefore be interesting to analyse the effect of inter-annual
variation on Sr in regions with significant difference in inter-annual variability.
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Conclusion

The goal of this exploratory study was to quantify catchment average root zone storage capacities, identify
its main descriptor variables and their regional variability and determine the influence of snow on root zone
storage capacities in Canada.

Catchment average root zone storage capacities were computed using a water-balance approach and were
found to be normally distributed over 230 catchments in Canada with a mean magnitude of 183 mm and a
standard deviation of 70 mm. Individual correlation of climate, landscape and discharge variables with Sr

showed the most relevant individual relationships between Sr and yearly potential evaporation, seasonality
index and runoff coefficient with Pearson’s r values of respectively 0.52, -0.32 and -0.35. However, variance in
these individual relationships was considerable.

Analysis of the combined relationship of parameters with Sr has shown that the variance in root zone stor-
age capacities between catchments in Canada is mainly described by a combination of long term average
variables (aridity index and runoff coefficient) and by the coherence of seasonal and timing effects (season-
ality timing index). The aridity index and runoff coefficient describe allocation of water for transpiration in
a catchment, whereas the seasonality timing index explains seasonal distribution of this water and therefore
the synchronisation of liquid input and atmospheric water demand. Earlier derived individual descriptors
of Sr are encapsulated in these main descriptor variables. Application of a multiple linear regression model
using the aridity index, runoff coefficient and seasonality timing index showed that the root zone storage ca-
pacity can be predicted without bias and a standard deviation of 32 mm for all Canadian catchments with
an R2 of 0.72. Subsequent application in Finland resulted in an R2 of 0.62, showing that the main descriptor
variables found in Canada likely play a role in this boreal region too, but that application of the study results
outside Canada without further investigation is not recommended.

The influence of snow on the root zone storage capacity in Canada was identified by comparing Sr magni-
tudes computed with and without a snow module. This analysis showed that for large enough percentages
of solid precipitation, snow effects lead to a decrease in Sr magnitude. This is caused by an increase of the
overlap between liquid input and transpiration output in a catchment. Such effects are portrayed by the
seasonality timing index.

An analysis of the distribution of Sr in catchment clusters of similar functioning showed that different vari-
ables have an effect on Sr in different functionally comparable regions in Canada. A large part of the func-
tional behaviour of these clusters can be recognised and explained by the geographical location of their catch-
ments. The influence of these regionally dependent variables on the root zone storage capacity is encap-
sulated in earlier defined main descriptor variables aridity index, runoff coefficient and seasonality timing
index.
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A
Land cover distribution in classes

Table A.1: Distribution of the ESA-CCI land cover classes into 5 classes of approximately equal behaviour regarding Imax and RP.

Code Label Type
0 No Data
10 Cropland, rainfed Cropland
20 Cropland, irrigated or post-flooding Cropland
30 Mosaic cropland (\50%) / natural vegetation (tree, shrub, herbaceous cover) (50%) Cropland
40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (50%) / cropland (50%) Shrubland
50 Tree cover, broadleaved, evergreen, closed to open (15%) Forest
60 Tree cover, broadleaved, deciduous, closed to open (15%) Forest
70 Tree cover, needleleaved, evergreen, closed to open (15%) Forest
80 Tree cover, needleleaved, deciduous, closed to open (\15%) Forest
90 Tree cover, mixed leaf type (broadleaved and needleleaved) Forest
100 Mosaic tree and shrub (50%) / herbaceous cover (50%) Shrubland
110 Mosaic herbaceous cover (\50%) / tree and shrub (50%) Grassland
120 Shrubland Shrubland
130 Grassland Grassland
140 Lichens and mosses Bare cover
150 Sparse vegetation (tree, shrub, herbaceous cover) (15%) Grassland
160 Tree cover, flooded, fresh or brakish water Forest
170 Tree cover, flooded, saline water Forest
180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water Shrubland
190 Urban areas Bare cover
200 Bare areas Bare cover
210 Water bodies Bare cover
220 Permanent snow and ice Bare cover
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B
Calibration and validation overview

Catchment MF[ mm
d°C ] TT [°C ] {Performance calibration [-] Performance validation [-]

1 1.192 -5.08 0.983 0.984
2 6.654 -2.338 0.991 0.997
5 7.637 1.745 0.988 0.986
6 2.584 -0.934 0.993 0.989
14 2.812 -0.002 0.991 0.99
16 2.539 -2.126 0.992 0.985
19 4.786 0.793 0.988 0.985
22 9.875 1.235 0.99 0.993
23 1.845 -3.226 0.998 0.989
26 7.46 -10.64 0.951 0.954
27 2.999 -3.388 0.994 0.985
28 2.338 -2.894 0.99 0.989
31 2.581 -3.28 0.944 0.934
32 6.57 -2.679 0.997 0.981
33 3.337 -2.296 0.982 0.982
36 9.991 -1.72 0.996 0.981
37 5.747 1.501 0.995 0.979
40 8.439 0.823 0.995 0.992
42 1.488 -4.812 0.966 0.981
43 1.912 -2.364 0.989 0.985
46 6.573 -2.409 0.997 0.981
48 5.425 0.027 0.991 0.985
49 0.561 -8.127 0.967 0.969
50 2.539 -0.449 0.995 0.984
51 9.212 -2.96 0.991 0.986
52 2.92 -1.715 0.991 0.985
53 1.622 -6.702 0.994 0.985
54 2.711 -1.318 0.989 0.992
55 7.923 -4.482 0.808 0.863
57 0.956 -4.995 0.957 0.973
58 3.255 -1.033 0.991 0.986
62 5.598 -2.028 0.995 0.996
63 1.967 -4.73 0.999 0.992
64 6.58 -1.374 0.994 0.986
65 2.511 -0.328 0.995 0.992
66 1.73 -3.169 0.986 0.985
68 8.783 1.27 0.996 0.997
69 5.282 -0.278 0.992 0.978
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Catchment MF[ mm
d°C ] TT [°C ] {Performance calibration [-] Performance validation [-]

70 5.184 2.323 0.988 0.99
71 1.638 -4.145 0.982 0.974
72 2.609 -1.157 0.992 0.988
73 4.27 -4.388 0.966 0.977
74 1.278 -3.054 0.949 0.974
75 2.95 -0.396 0.993 0.993
76 2.043 -3.487 0.948 0.95
77 0.942 -3.309 0.983 0.988
78 2.432 -4.466 0.975 0.988
79 4.971 1.724 0.995 0.996
80 4.135 0.235 0.976 0.969
82 7.256 -0.076 0.97 0.972
84 1.898 -2.109 0.994 0.981
85 1.854 -4.072 0.988 0.995
86 0.983 -6.738 0.971 0.973
88 7.261 -0.393 0.997 0.992
90 5.313 -0.796 0.997 0.994
93 1.784 -1.564 0.991 0.984
95 1.42 -0.613 0.993 0.991
96 5.441 -0.277 0.956 0.957
98 1.246 -5.661 0.97 0.985
99 8.972 1.868 0.992 0.964
100 3.438 -0.441 0.97 0.979
101 1.563 -3.118 0.982 0.986
102 3.895 0.166 0.99 0.982
104 1.503 -3.139 0.972 0.974
105 3.286 -1.262 0.994 0.987
106 5.452 0.724 0.988 0.966
107 2.416 -1.227 0.98 0.965
108 3.086 1.488 0.993 0.995
110 6.946 2.232 0.995 0.995
111 9.151 0.923 0.997 0.995
112 3.699 -8.971 0.95 0.948
113 2.498 -4.793 0.996 0.995
114 2.776 -2.148 0.993 0.98
115 3.987 3.015 0.993 0.995
116 1.497 -3.963 0.959 0.971
117 8.036 1.994 0.987 0.98
118 9.775 3.9 0.994 0.994
119 1.489 -4.046 0.989 0.997
120 0.16 -14.233 0.957 0.969
125 7.701 -0.351 1.0 0.997
126 1.278 -3.463 0.985 0.99
127 3.551 -1.77 0.984 0.974
129 2.55 -4.338 0.996 0.996
132 6.621 0.367 0.991 0.986
134 3.099 1.441 0.981 0.974
135 1.706 -3.299 0.994 0.992
137 0.779 -2.11 0.984 0.986
138 4.869 0.021 0.986 0.978
139 1.554 -2.887 0.982 0.99
140 8.385 0.672 0.992 0.992
142 2.133 -3.727 0.995 0.981
143 8.786 -0.849 0.994 0.99
144 2.901 -1.379 0.991 0.988
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Catchment MF[ mm
d°C ] TT [°C ] {Performance calibration [-] Performance validation [-]

145 1.059 -7.028 0.96 0.969
150 2.129 -2.742 0.976 0.96
151 0.782 -4.034 0.961 0.977
153 3.832 0.701 0.994 0.996
155 2.031 -4.517 0.979 0.986
157 2.37 -4.06 0.991 0.992
158 5.683 -1.049 0.997 0.986
162 7.181 -0.812 0.996 0.976
163 6.713 -1.032 0.989 0.988
164 5.041 -1.688 0.993 0.992
167 6.287 -0.735 0.998 0.993
169 5.987 -0.202 0.984 0.977
170 2.953 0.041 0.994 0.992
171 6.379 0.228 0.984 0.968
173 4.277 -1.529 0.998 0.997
174 3.576 -2.042 0.992 0.987
175 2.154 -2.98 0.991 0.992
178 1.723 -2.682 0.987 0.988
179 3.293 -2.141 0.995 0.995
180 3.444 -1.495 0.995 0.988
181 2.351 -2.824 0.983 0.984
183 4.097 -1.814 0.996 1.0
186 4.555 -1.107 0.998 0.993
188 3.756 1.416 0.992 0.997
189 4.418 0.863 0.993 0.994
191 5.664 0.278 0.99 0.992
194 4.181 -1.949 0.975 0.977
195 3.702 -2.419 0.992 0.995
197 7.512 -0.867 0.99 0.993
198 8.572 0.599 0.99 0.992
199 1.723 -3.003 0.991 0.995
200 1.988 -0.51 0.992 0.994
202 3.635 -1.411 0.992 1.0
203 2.493 0.461 0.989 0.992
204 5.525 0.355 0.997 0.997
206 3.978 -2.887 0.979 0.97
207 4.784 0.592 0.994 0.997
208 8.302 -0.355 0.991 0.99
210 9.868 -1.043 0.994 0.989
211 4.771 0.047 0.995 0.996
212 0.859 -3.74 0.994 0.995
213 4.595 -3.555 0.966 0.976
214 1.712 -2.978 0.984 0.988
215 2.61 -4.896 0.989 0.99
216 2.241 -0.36 0.991 0.994
217 5.767 1.787 0.986 0.988
218 5.959 0.32 0.981 0.981
219 1.407 -3.943 0.983 0.993
221 3.441 -2.591 0.994 0.988
223 8.312 -0.841 0.995 0.992
226 0.405 -9.514 0.986 0.989
227 2.045 -3.379 0.985 0.997
228 4.93 1.466 0.994 0.994
229 4.213 -2.593 0.981 0.99
230 3.845 -2.328 0.996 0.997
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Catchment MF[ mm
d°C ] TT [°C ] {Performance calibration [-] Performance validation [-]

232 6.071 -0.698 0.995 0.99
233 4.229 -0.363 0.998 0.998
236 4.954 -2.506 0.991 0.996
237 1.547 -4.087 0.987 0.995
238 1.356 -6.772 0.985 0.992
241 0.859 -6.194 0.992 0.997
242 2.906 3.044 0.981 0.987
243 9.666 0.329 0.988 0.995
245 3.251 -3.085 0.999 0.993
246 5.228 -0.805 0.995 0.99
249 6.887 -0.866 0.997 0.997
251 2.568 -2.993 0.988 0.992
253 9.219 -0.393 0.994 0.996
254 2.959 2.613 0.985 0.985
255 2.395 -2.388 0.99 0.995
258 4.811 -0.49 0.994 0.992
259 9.547 -0.611 0.986 0.99
260 8.751 -1.937 0.986 0.985
262 9.633 0.778 0.995 0.99
263 3.745 1.094 0.988 0.984
267 4.266 -2.786 0.993 0.993
268 5.297 0.933 0.989 0.983
270 5.588 -0.031 0.999 0.997
271 7.097 -2.242 0.992 0.979
272 4.512 -3.349 0.991 0.995
274 3.494 -3.445 0.994 0.992
276 7.317 -1.517 0.991 0.997
277 8.185 -0.945 0.994 0.99
283 2.138 -4.861 0.986 0.995
285 2.958 -0.739 0.995 0.992
286 2.525 0.167 0.988 0.987
288 8.757 -2.243 0.985 0.995
290 8.26 1.166 0.998 0.997
291 6.313 -2.222 0.998 0.995
292 9.913 0.206 0.989 0.999
293 3.288 -3.551 0.983 0.995
294 2.553 -5.323 0.988 0.995
295 5.67 -1.093 0.994 0.967
296 3.097 -3.434 0.991 0.997
297 4.055 -3.036 0.979 0.992
298 2.185 -1.919 0.985 0.986
301 9.019 -0.36 0.989 0.978
303 9.834 -2.477 0.987 0.975
306 8.246 0.435 0.997 0.994
311 5.26 -0.445 0.998 0.991
319 8.696 0.793 0.994 0.995
320 9.498 -0.198 0.993 0.99
321 8.995 -0.942 0.993 0.997
324 9.903 -0.965 0.989 0.982
325 7.99 -0.726 0.994 0.993
326 4.154 -2.283 0.982 0.966
328 7.248 -1.547 0.995 0.989
331 3.895 -4.659 0.97 0.973
335 2.457 -6.541 0.984 0.981
338 9.946 -1.216 0.995 0.996
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Catchment MF[ mm
d°C ] TT [°C ] {Performance calibration [-] Performance validation [-]

342 9.007 -0.234 0.995 0.996
343 8.301 -1.31 0.997 0.993
344 5.648 -2.297 0.963 0.934
345 6.823 -1.304 0.987 0.984
347 4.644 -3.728 0.958 0.957
348 7.437 -1.353 0.991 0.986
350 4.021 -2.199 0.982 0.982
352 7.463 -1.722 0.969 0.974
353 3.648 -3.183 0.983 0.98
354 2.027 -3.763 0.975 0.977
355 2.828 -3.74 0.984 0.968
356 9.786 -9.268 0.972 0.947
357 9.939 -19.941 0.923 0.932
362 8.77 -2.35 0.966 0.957
364 2.316 -4.953 0.984 0.982
365 2.24 -3.619 0.979 0.964
366 2.436 -4.325 0.983 0.978
367 2.211 -4.557 0.985 0.989
368 0.426 -9.39 0.973 0.963
369 0.592 -6.676 0.985 0.978
373 2.343 -3.76 0.981 0.974
374 0.861 -7.956 0.984 0.989
375 1.842 -3.158 0.979 0.986
377 7.577 -1.724 0.981 0.997
378 3.616 -2.832 0.981 0.99
379 3.512 -19.648 0.988 0.99
381 1.682 0.951 0.98 0.986
383 9.199 -0.803 0.996 0.99
384 1.945 -1.257 0.977 0.977
385 2.017 -1.993 0.987 0.991
386 1.058 -4.704 0.969 0.971
387 3.287 -0.211 0.977 0.972
388 2.876 -0.888 0.991 0.982
390 0.335 -9.494 0.967 0.982
392 1.481 -3.161 0.99 0.987
393 2.27 -3.077 0.983 0.989
394 1.774 -4.14 0.983 0.987
395 2.3 -0.054 0.993 0.985
396 3.571 0.194 0.987 0.974
397 4.066 -0.88 0.992 0.979
398 7.352 1.892 0.993 0.993
399 0.447 -9.799 0.96 0.971
402 2.032 -2.565 0.982 0.987
406 1.952 -0.353 0.994 0.995
408 2.128 -4.057 0.993 0.995
412 0.932 -3.419 0.988 0.989
416 4.132 -1.517 0.996 0.997
417 1.939 -1.887 0.991 0.995
418 2.362 -4.1 0.985 0.983
420 6.174 -2.072 0.993 0.996
422 3.223 -0.723 0.994 0.99
426 9.724 -0.85 0.991 0.987
428 2.644 -1.125 0.993 0.998
430 7.724 -1.883 0.984 0.994
432 2.196 -4.958 0.957 0.989
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Catchment MF[ mm
d°C ] TT [°C ] {Performance calibration [-] Performance validation [-]

435 2.235 -3.236 0.996 1.0
436 5.028 -1.157 0.991 0.995
438 6.398 -1.434 0.996 0.99
441 2.207 -3.056 0.984 0.984
446 9.731 -0.378 0.993 0.993
448 5.708 1.331 0.992 0.992
449 8.792 -0.577 0.99 0.974
452 7.211 -0.86 0.998 0.997
454 1.45 -1.323 0.984 0.985
455 1.636 -2.623 0.974 0.977
457 4.42 -4.451 0.989 0.99
458 3.86 -1.174 0.978 0.971
459 3.141 -2.963 0.979 0.981
460 1.991 -3.675 0.984 0.975
461 1.725 0.489 0.993 0.991
462 1.816 -3.453 0.986 0.988
463 5.007 -1.201 0.997 0.995
465 2.995 -3.19 0.991 0.993
466 3.236 -1.69 0.993 0.991
469 2.141 -1.408 0.984 0.981
470 4.107 -2.153 0.992 0.993
472 4.727 -2.339 0.976 0.993
473 5.678 0.073 0.988 0.983
474 3.064 -3.499 0.975 0.977
475 9.438 1.297 0.988 0.993
476 2.277 -1.513 0.993 0.989
477 1.531 -3.653 0.983 0.99
480 6.565 0.655 0.988 0.988
481 2.001 -0.457 0.991 0.995
482 0.955 -4.375 0.993 0.994
484 9.876 0.015 0.99 0.989
485 2.309 0.782 0.994 0.994
486 2.606 -2.471 0.996 0.995
490 2.524 -0.02 0.993 0.988
491 4.583 -4.232 0.99 0.989
492 3.328 -0.322 0.994 0.995
494 1.613 0.378 0.994 0.992
496 0.795 -2.647 0.991 0.994
497 1.904 -2.367 0.986 0.996
498 1.797 -1.821 0.979 0.97
500 1.54 -1.513 0.988 0.989
502 4.099 -0.794 0.993 0.993
504 1.708 -1.643 0.988 0.987
506 6.309 -1.43 0.992 0.991
507 2.163 -3.731 0.985 0.984
510 2.342 -0.078 0.994 0.995
511 0.836 -2.893 0.991 0.996
512 4.502 -0.898 0.991 0.989
514 2.278 -3.559 0.981 0.988
515 2.646 -1.949 0.994 0.994
516 0.766 -4.879 0.982 0.979
518 0.254 -6.638 0.991 0.994
521 9.919 -3.901 0.96 0.968
523 1.112 -7.038 0.956 0.95
525 1.668 -3.552 0.967 0.967
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Catchment MF[ mm
d°C ] TT [°C ] {Performance calibration [-] Performance validation [-]

527 4.145 -0.259 0.992 0.982
528 2.22 -3.4 0.989 0.989
529 1.221 -5.064 0.97 0.973
530 9.218 -0.343 1.0 0.999
531 4.38 -1.582 0.999 0.999
532 1.31 -3.617 0.958 0.966
533 6.185 -0.853 0.982 0.985
534 9.618 -7.532 0.971 0.99
535 1.402 -3.336 0.978 0.979
538 1.985 -0.779 0.985 0.972
539 4.113 3.139 0.994 0.99
540 0.741 -4.702 0.974 0.981
541 9.964 4.85 0.985 0.99
542 1.12 -3.326 0.971 0.975
543 8.565 1.053 0.993 0.975
544 8.666 1.625 0.994 0.962
545 6.801 1.691 0.992 0.996
546 3.249 -0.557 0.975 0.977
547 5.341 0.655 0.995 0.97
549 3.173 -14.045 0.962 0.942
550 5.505 -0.463 0.993 0.995
551 7.169 0.142 0.99 0.986
552 6.353 1.434 0.992 0.989
553 1.342 -4.021 0.987 0.984
554 3.395 -1.18 0.979 0.961
558 0.6 -8.6 0.957 0.978
560 2.367 -1.881 0.983 0.97
562 0.523 -4.406 0.984 0.99
563 3.458 2.106 0.993 0.996
564 4.751 -0.917 0.993 0.992
565 7.483 -0.444 0.992 0.989
567 5.354 -2.105 0.997 0.996
569 2.188 -4.908 0.979 0.979
570 3.543 -1.542 0.998 0.995
571 4.567 -0.178 0.992 0.984
572 7.365 -0.89 0.996 0.989
573 2.309 -3.258 0.979 0.974
574 1.673 -6.19 0.963 0.963
575 4.985 -2.473 0.995 1.0
576 6.465 2.707 0.993 0.993
577 3.803 -1.169 0.959 0.964
578 5.369 0.387 0.99 0.992
579 3.242 -2.947 0.959 0.972
580 1.669 -6.507 0.966 0.959
582 9.363 0.124 0.994 0.99
583 9.458 0.964 0.993 0.977
586 4.623 -0.136 0.993 0.989
587 9.646 0.492 0.995 0.992
588 2.937 -2.537 0.983 0.992
589 2.292 -3.79 0.995 0.997
591 5.591 -1.571 0.991 0.988
596 9.935 -0.227 0.995 0.988
600 2.72 -0.853 0.98 0.989
601 4.315 -2.815 0.994 0.997
602 3.327 -0.172 0.995 0.992
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Catchment MF[ mm
d°C ] TT [°C ] {Performance calibration [-] Performance validation [-]

603 9.65 0.405 0.988 0.99
604 5.733 -1.091 0.993 0.99
605 4.707 -1.755 0.971 0.976
606 4.459 -1.901 0.995 0.995
607 8.996 -0.062 0.988 0.99
608 3.611 -0.679 0.979 0.98
609 2.778 -3.879 0.992 0.995
610 9.7 1.333 0.982 0.986
611 1.872 -0.944 0.991 0.988
613 5.96 -3.0 0.993 0.995
614 6.286 1.867 0.999 0.999
615 7.08 -2.51 0.988 0.988
616 5.901 0.243 0.99 0.98
617 5.151 -2.124 0.994 0.985
619 3.124 -0.537 0.987 0.974
620 7.616 -0.377 0.989 0.993
621 9.738 0.095 0.992 0.993
622 4.014 -0.327 0.993 0.97
623 6.642 -1.709 0.997 0.984
624 9.765 0.611 0.908 0.915
625 5.311 -1.491 0.99 0.993
626 7.964 -1.993 0.99 0.993
627 7.171 -0.439 0.989 0.986
628 7.421 -11.199 0.97 0.953
630 9.925 0.455 0.979 0.971
631 9.26 0.543 0.995 0.995
634 2.222 -2.333 0.987 0.987
639 1.516 -13.493 0.981 0.984
641 8.894 -1.419 0.99 0.996
643 0.631 -9.547 0.963 0.984
644 1.077 -6.287 0.97 0.99
646 9.117 0.175 0.994 0.996
647 3.916 -2.026 0.994 0.986
648 2.312 -3.556 0.995 0.985
651 5.435 -1.823 0.991 0.983
652 9.56 0.192 0.997 0.999
653 5.656 -0.91 0.993 0.988
654 4.029 -2.423 0.989 0.977
655 9.198 -0.702 0.984 0.986
657 1.039 -4.343 0.988 0.975
658 5.252 -0.7 0.985 0.984
659 4.725 -4.295 0.975 0.973
662 9.342 -2.646 0.979 0.975
663 2.226 -3.465 0.978 0.976
664 6.712 -0.882 0.994 0.993
666 9.561 -18.727 0.962 0.972
667 9.968 -0.904 0.994 0.99
668 2.785 -2.153 0.997 0.994
669 0.88 -7.489 0.974 0.975
670 1.339 -4.851 0.995 1.0
671 1.423 -4.427 0.972 0.962
674 5.521 -2.659 0.978 0.984
675 2.387 -4.032 0.987 0.977
676 8.613 0.181 0.99 1.0
677 4.608 -4.983 0.986 0.982
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Catchment MF[ mm
d°C ] TT [°C ] {Performance calibration [-] Performance validation [-]

678 1.255 -4.156 0.996 0.992
680 2.991 -2.057 0.993 0.997
681 2.126 -3.993 0.974 0.97
684 9.388 -2.052 0.996 1.0
685 9.831 -1.808 0.997 0.997
686 1.978 -2.842 0.992 0.99
687 6.562 -1.881 0.993 0.995
688 3.507 -3.002 0.987 0.995
690 8.873 -0.716 0.999 1.0
691 8.594 -0.82 0.996 0.997
692 8.023 -0.546 0.998 0.997
693 9.873 0.658 0.994 0.999
694 8.751 -1.508 0.993 0.997
695 9.744 0.347 0.995 0.992
697 9.626 0.794 0.994 0.989
698 9.305 0.64 0.995 0.993

Table B.1: Overview of the values used for the calibration parameters and the calibration and validation performance per catchment.
The performance of the calibration and validation is based on the percentage of matches between the MODIS snow cover dataset and
the snow reservoir in all elevation zones in a catchment for all days on which the MODIS dataset does not provide NAN-data.





C
Overview of descriptor variables

This appendix provides an overview of all climate, landscape and discharge parameters that were considered
in this study. The abbreviations used in this appendix will also be used in the plots presented in Appendix F.

C.1. Climate variables
The climate variables considered in this study are summarised in this section. Whenever needed, a short
parameter explanation is provided. No parameter description is given for variables that are explained in the
main body of this study.

• Aridity Index (AI)

• Offset of potential evaporation (Ep,o f f )

– Describes the end of the potential evaporation period

• Onset of potential evaporation (Ep,on)

– Describes the start of the potential evaporation period

• Yearly average potential evaporation (Ep )

• Interstorm duration liquit input (ID)

• Interstorm duration precipitation (I Dp )

• Yearly average precipitation (P)

• 90-percentile liquid input (Li qper c )

• Normalised 90-percentile liquid input (Li qnor m)

– The 90-percentile liquid input has been normalised using the mean liquid input to identify how
much high input deviates from mean input.

• 90-percentile precipitation (Pper c )

• Normalised 90-percentile precipitation(Pnor m)

– The 90-percentile precipitation has been normalised using the mean liquid input to identify how
much high precipitation deviates from mean precipitation.

• Phase difference maximum liquid input and potential evaporation (φl i q,Ep )

• Phase difference maximum melt input and potential evaporation (φmel t ,Ep )

• Phase difference precipitation and potential evaporation (φP,Ep )
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• Phase difference potential evaporation offset and snow onset (φo f f ,on)

• Phase difference potential evaporation onset and snow offset (φon,o f f )

• Percentage of solid precipitation (Ps,r el )

• Duration melt period (Qm,d ay s )

• Runoff Coefficient (RC)

– Combines climate and landscape influences

• Yearly average maximum snow water equivalent (Scov )

• Total number of snow cover days (Sd ay s )

• Day with maximum snow cover (Si d x,max )

• Snow-off day (So f f )

– Describes the end of the snow cover period

• Snow-on day (Son)

– Describes the start of the snow cover period

• Seasonality index liquid input (SI)

• Seasonality index precipitation (SIp )

• Seasonality index melt input (SImel t )

• Seasonality timing index liquid input (ST)

• Seasonality timing index precipitation (STp )

• Average catchment temperature (Tav )

• Yearly temperature difference (Tdi f f )

• Maximum catchment temperature (Tmax )

• Minimum catchment temperature (Tmi n)

• Interannual variability of liquid input (Pi nter )

– Coefficient of variation of yearly precipitation totals

C.2. Landscape variables
The landscape variables considered in this study are summarised in this section. Whenever needed, a short
parameter explanation is provided. No parameter description is given for variables that are explained in the
main body of this study.

• Eastern facing slopes percentage (aspect) (Aseast )

• Northern facing slopes percentage (aspect) (Asnor th)

• Southern facing slopes percentage (aspect) (Assouth)

• Western facing slopes percentage (aspect) (Aswest )

• Direction of majority of slopes (Asma j )

– The direction is indicated in degrees, with 0 and 360°being north.

• Relative evaporative index (REI)
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• Average catchment elevation (Hav )

• Elevation difference in a catchment (∆H)

• Maximum interception capacity (Imax )

• Percentage bare cover (Pb)

• Percentage cropland (Pc )

• Percentage grassland (Pg )

• Percentage shrubland or herbaceous cover (Ps )

• Percentage forest cover (P f )

• Return period (RP)

• Average ruggedness (Rug gav )

– Total difference between a cell from the DEM and its surrounding cells, averaged over the catch-
ment

• Maximum ruggedness (Rug gmax )

• Average catchment slope percentage (Sl opeav )

• Maximum catchment slope percentage (Sl opemax )

C.3. Discharge variables
The discharge variables considered in this study are summarised in this section. Whenever needed, a short
parameter explanation is provided. No parameter description is given for variables that are explained in the
main body of this study.

• Base Flow Index (BFI)

– Ratio of base flow to total stream flow. Base flow was defined as the minimum flow using a 7-days
rolling mean.

• Total number of days without flow (CZ)

• Duration of high flow event (Dhi g h)

– Average duration of flow events that are larger than 3 times median flow

• Frequency of occurrence of high flow event ( fhi g h)

• Duration of low flow event (Dl ow )

– Average duration of flow events that are smaller than 1
3 of the median flow

• Frequency of occurrence of low flow event ( flow )

• Rising limb density (RLD)

– Ratio between the number of peaks and the cumulative time of the rising limbs

• Falling limb density (DLD)

– Ratio between the number of peaks and the cumulative time of the falling limbs

• Average rising rate of the discharge signal (RR)

• Average rising rate of the discharge signal (FR)

• 90-percentile discharge (Qper c )
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• Normalised 90-percentile discharge (Qnor m)

– The 90-percentile discharge has been normalised using the mean liquid input to identify how
much high flow deviates from mean flow.

• Peak distribution (PD)

– Ratio between high peaks (90-percentile peaks) and median peaks (50-percentile peak flows)

• Phase difference maximum liquid input and discharge (φl i q,Q )

• Phase difference maximum melt input and discharge (φmel t ,Q )

• Phase difference maximum precipitation and discharge (φP,Q )

• Phase difference maximum potential evaporation and discharge (φEp ,Q )

• Yearly average discharge (Q)

• Average yearly maximum discharge (Qmax )

• Average yearly minimum discharge (Qmi n)

• Interannual variability discharge (Qi nter )

– Coefficient of variation of yearly discharge totals

• Interannual variability maximum flow (Qi nter,max )

– Coefficient of variation of yearly discharge maxima

• Interannual variability minimum flow (Qi nter,mi n)

– Coefficient of variation of yearly discharge minima

• Seasonality index discharge (SIQ )



D
Python code

The most relevant code that has been used in this study is published in an online repository, to enable re-
producibility. The Python scripts can be acquired on https://github.com/lvanvoorst/Thesis or can be
accessed using the following QR-code:
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Overview root zone storage capacities
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Table E.1: Root zone storage capacity magnitude for every study catchment

catch. Sr [mm] catch. Sr [mm] catch. Sr [mm] catch. Sr [mm] catch. Sr [mm]
1 142 138 90 298 129 422 7 575 110
22 128 143 127 301 109 426 193 579 132
23 87 145 203 306 105 432 225 580 130
27 141 150 226 311 94 435 196 586 263
28 89 151 150 319 118 436 118 588 185
31 105 155 235 325 190 438 252 596 166
32 236 164 39 328 273 441 141 610 335
36 127 167 159 335 324 449 171 615 228
40 137 169 294 338 132 454 74 619 349
42 141 171 188 343 207 455 145 628 264
46 185 173 130 344 214 458 121 630 290
49 193 174 264 345 202 459 176 631 202
51 186 175 280 347 333 460 230 634 191
52 109 178 165 348 204 462 235 643 202
54 47 179 122 350 200 463 134 644 215
57 136 181 219 352 225 465 129 646 68
62 143 183 108 353 173 466 257 651 217
63 166 195 122 354 219 469 96 652 112
66 170 204 122 355 177 470 178 653 234
68 56 208 72 356 161 472 261 654 170
69 164 210 295 357 182 473 134 655 115
71 114 213 222 362 271 474 235 657 177
73 145 215 181 365 258 475 59 658 148
74 227 217 102 366 233 477 195 662 180
76 122 218 302 367 192 484 143 663 389
77 241 219 147 368 151 486 139 664 234
78 172 226 153 369 288 490 80 666 208
80 263 227 200 373 238 497 102 667 293
82 241 229 257 374 360 498 163 668 164
85 187 230 178 375 205 502 155 669 363
86 164 232 281 377 256 504 81 670 170
96 197 233 70 378 309 506 122 671 192
98 206 238 232 383 143 507 166 674 342
99 233 241 174 384 143 514 224 675 189
100 148 243 261 385 75 516 60 676 224
101 130 255 169 386 166 521 44 677 188
104 173 259 73 387 250 525 301 678 215
105 71 260 227 390 143 533 140 680 238
106 246 274 106 393 194 534 206 681 277
107 216 283 216 394 163 535 161 686 317
113 145 286 180 395 162 542 226 688 113
114 335 290 87 397 291 546 215 692 266
116 207 293 199 416 148 554 120 694 269
129 168 294 133 417 139 560 61 695 231
134 97 296 146 418 235 562 144 697 255
137 155 297 202 420 271 573 251 698 248



F
Correlation of all test variables and Sr

F.1. Climate variables
This section provides an overview of climate variables in respectively Figure F.1, F.2 and F.3. The numbers in
the figure refer back to Appendix C.1, where the variables are explained.
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Figure F.1: Relationship between Sr and the first 15 climate variables. The numbers in the plot refer to the numbers in Appendix C.1.
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Figure F.2: Relationship between Sr and the second 15 climate variables. The numbers in the plot refer to the numbers in Appendix C.1.
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Figure F.3: Relationship between Sr and the last climate variables. The numbers in the plot refer to the numbers in Appendix C.1.
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F.2. Landscape variables
This section provides an overview of climate variables in respectively Figure F.4 and F.5. The numbers in the
figure refer back to Appendix C.2, where the variables are explained.

Figure F.4: Relationship between Sr and the first 15 landscape variables. The numbers in the plot refer to the numbers in Appendix C.2.
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Figure F.5: Relationship between Sr and the last landscape variables. The numbers in the plot refer to the numbers in Appendix C.2.

F.3. Discharge variables
This section provides an overview of climate variables in respectively Figure F.6 and F.7. The numbers in the
figure refer back to Appendix C.3, where the variables are explained.
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Figure F.6: Relationship between Sr and the first 15 discharge variables. The numbers in the plot refer to the numbers in Appendix C.3.
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Figure F.7: Relationship between Sr and the last discharge variables.The numbers in the plot refer to the numbers in Appendix C.3.



G
Feature selection parameter set

The forward and backward feature selection in this study are applied using the following parameter set. All
individual parameters are also stated in Appendix C.

[Aridity index, Runoff coefficient, Average yearly precipitation, Average temperature, Minimum temperature,
Maximum temperature, Temperature difference, Average maximum snow water equivalent, Fractional for-
est cover, Fractional shrubland/herbaceous cover, Fractional crop cover, Fractional bare cover, Fractional solid
precipitation input, Inter-annual variability of precipitation, Number of snow days, Duration of snow melt,
Seasonality of snow melt, Average catchment elevation, Elevation difference in a catchment, Interstorm dura-
tion, Average yearly potential evaporation, Seasonality timing index, Normalised 90-percentile liquid input,
Slope direction (majority), Northern aspect, Eastern aspect, Southern aspect, Western aspect, Return period,
Seasonality index discharge, Normalised 90-percentile discharge, Phase difference precipitation and discharge,
Phase difference liquid input and discharge, Phase difference melt input and discharge, PHase difference po-
tential evaporation and discharge, Inter-annual variability discharge, Yearly average discharge, Frequency of
occurrence of high flow event, Duration of high flow event, Frequency of occurrence of low flow event, Duration
of low flow event, Rising limb density, Peak distribution, Base Flow Index, Inter-annual variability maximum
flow, Inter-annual variability minimum flow, Average yearly maximum discharge, Average yearly minimum
discharge, Total number of days without flow, Average rising rate of discharge signal]
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Snow influence on change in Sr

The influence of all tested snow parameters on change in Sr between the two model runs is shown in Figure
H.1. The numbers in the plot refer to the numbers that are used in Appendix C to explain the climate variables.

Figure H.1: Relationship between several snow parameters and the change in Sr . The numbers in the plot refer to the numbers in
Appendix C.
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