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Abstract

Migraine is a prevalent, complex neurovascular disorder that mainly affects women. The exact pathophysi-
ology of migraine is unclear, but research indicates that activation of the trigeminal nerve in the trigemino-
vascular system causes release of calcitonin gene-related peptide (CGRP), which triggers migraine attacks.
Additionally, nitric oxide (NO) contributes to the pathophysiology of migraine headaches. Research suggests
that migraine patients have an increased risk of cardiovascular disease. Over the past decades, non-invasive
techniques, like Laser Doppler imaging (LDI) and Laser speckle contrast imaging (LSCI) have been devel-
oped for imaging tissue perfusion, which are valuable tools for investigating the underlying causes for this
increased risk and facilitates the study of blood perfusion. The Erasmus Medical Center (Erasmus MC) used
these techniques to perform measurements of the microvascular blood flow in the forearm as a measure
of the microvasculature of women with and without migraine. This study, also known as the VASCULAR-
study, focused on three regions of interest (ROIs), where NO was inhibited using iontophoresis with L-NMMA
and neuropeptides were blocked using EMLA cream. The last ROI served as the control region. The mea-
surements also consisted of three different phases: baseline, peak and plateau phase. Studies have shown
that distinct biological mechanisms in the body can be linked to different frequency intervals and therefore,
Fourier analysis (FA) and wavelet analysis (WA) were used to transform the VASCULAR-study data into the
frequency domain. Two preliminary studies used FA to perform the transformation. This study primarily
focused on WA. The research question is as follows: Does wavelet analysis (WA) of the VASCULAR-study data
yield more insights than Fourier analysis (FA) into blood flow measurements in women, particularly in exam-
ining the role of nitric oxide (NO) and calcitonin gene-related peptide (CGRP) in the microvasculature among
women with and without migraine? To address the research question, WA was conducted using the complex
Morlet wavelet. Relative energy density was used as a quantitative metric to compare the group of women
with migraine with the group of women without migraine. Relative energy density was also calculated for the
results using FA. Statistical significance was assessed using p-values, where p-values below 0.05 were consid-
ered significant. The Mann-Whitney U-Test and the Wilcoxon Signed Rank Test were used to calculate the
p-values. Significant differences between women without migraine and women with migraine were primar-
ily found in respiratory and endothelial activity for both WA and FA. Women with migraine showed higher
respiratory activity in regions where NO was inhibited, for both WA and FA. Although WA and FA revealed
many similar results in the VASCULAR-study dataset, there were also some differences. These differences
were mainly observed in endothelial activity, in the ROI where NO was inhibited. FA revealed significantly
higher values in activity for women without migraine in both NO-independent and NO-dependent endothe-
lial activity. Furthermore, using the time-frequency localization capability of the WA, it showed significantly
higher activity in women with migraine between the peak and plateau phase.
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1
Introduction

Migraine is a prevalent, complex neurovascular disorder affecting over one billion people worldwide. Approx-
imately 14% of the global population experience this condition every year. Consequently, it makes migraine
the second leading contribution to the global burden of neurological diseases. Therefore, researchers have
performed comprehensive research to gain more insights on this neurological disorder [1]. Over the last
two decades, our knowledge of the underlying pathophysiology of migraine has improved remarkably [2].
However, the exact pathophysiology of migraine is still unsolved and seems to be a complex combination of
genetic predisposition, hormonal influences and neurovascular interactions. [3].

Research also shows that migraine is more prevalent in women compared to men; migraine is three times
more common in women than in men. This difference is caused by fluctuations in estrogen and progesterone,
which becomes more apparent during puberty, menstruation and pregnancy [4]. Migraine poses a risk factor
for cardiovascular diseases. Atherosclerosis is a traditional risk factor of cardiovascular diseases [5]. How-
ever, research shows that atherosclerosis is less prevalent among migraine patients [6]. Consequently, the
higher risk for cardiovascular diseases observed in migraine patients can not be fully explained by traditional
risk factors such as atherosclerosis. This is a paradoxical relationship between migraine and cardiovascu-
lar diseases [7]. Since there is no evidence supporting the link between migraine and atherosclerosis in the
macrovasculature [8], dysfunction of microvascular function is suggested to be an underlying factor for the
risk of cardiovascular diseases [9][10].

Multiple non-invasive techniques have been developed for imaging tissue perfusion, like Laser Doppler
imaging (LDI) and Laser speckle contrast imaging (LSCI) [11], which are valuable tools for investigating the
underlying causes for this risk of cardiovascular diseases. Over the past decades, wavelet analysis (WA)
emerged as an effective tool to characterize blood perfusion in human skin [12][13][14][15][16]. Using LDI
and LSCI, speckle patterns are generated and analyzed with WA. The ability of wavelets to provide time as
well as frequency information at the same time makes it the ideal tool for analyzing non-stationary and os-
cillating mechanisms, like blood flow. Using these techniques, researchers from the Erasmus Medical Cen-
ter (Erasmus MC) conducted measurements of the microvascular blood flow in the forearm of women with
and without migraine, also known as the VASCULAR-study. The measurements are recorded in the time do-
main. Studies have shown that different frequency intervals correspond to distinct biological mechanisms
[17]. Transforming data to the frequency domain using Fourier transforms (FT) and wavelet transforms (WT)
reveals different information from those obtained in the time domain.

Prior frequency analyses of the VASCULAR-study data have been conducted in two preliminary studies [18][19].
Both studies used Fourier analysis (FA) to transition the data from a temporal to a frequency domain in order
to investigate the differences between women with and without migraine. Both investigations successfully
transformed the data into the frequency domain. However, no significant differences between women with
migraine and women without migraine were observed. WA is introduced aiming to provide additional in-
sight into the difference between the two groups. This yields in the following research question: Does WA of
the VASCULAR-study data yield more insights than FA into blood flow measurements in women, particularly
in examining the role of nitric oxide (NO) and calcitonin gene-related peptide (CGRP) in the microvasculature
among women with and without migraine?
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As the research question indicates, WA will be used to characterize the frequency components of the VASCULAR-
study data. While FT produces a one-dimensional amplitude spectrum representing the different frequencies
and their corresponding amplitude, WA provides a two-dimensional time-frequency representation, since it
includes time and frequency information. Instead of using amplitude spectra, spectograms are used to visu-
alize the results. Consequently, the frequency bands can be tracked over time, offering huge advantages for
analyzing non-stationary signals.

To extract physiologically information from the time-frequency analysis, frequency bands corresponding
to different biological mechanisms (e.g., respiratory activity, neurogenic activity and endothelium activity)
influencing blood flow are defined. Predefining the frequency bands makes it possible to compare the mi-
crovasculature of women with and without migraine.

In order to address the research question, Chapter 2 first introduces all key definitions and concepts. Af-
ter establishing all necessary theoretical framework, Chapter 3 includes all used methods. First, the chapter
presents a description of the experimental design of the VASCULAR-study. Subsequently, the frequency anal-
ysis is introduced. The associated results and findings will be presented in Chapter 4. In Chapter 5 and
Chapter 6, the discussion and conclusion will be represented respectively.



2
Background

Prior to addressing the research question, the fundamental concepts relevant for this study are first discussed.
First, an overview of the medical background of migraine is presented. Accordingly, in Section 2.2, the tech-
niques available for laser speckle contrast are discussed. In the last section (Section 2.3) of this chapter, all
concepts about frequency analysis are explained, including FA and WA.

2.1. Migraine
Although the underlying pathophysiology of migraine remains unclear, numerous studies have associated
the condition with microvascular dysfunction [9][20][21][22], involving both the endothelial function and the
smooth muscle cell function. The endothelium refers to the cells that form the inner lining of blood ves-
sels and the lymphatic system. It plays a huge role in the control of blood flow, by producing and releasing
factors that either relax or contract blood vessels, such as NO [23]. Dysfunction of the endothelial causes
imbalance in the width of the blood vessels, deficiency of NO bioavailability and inflammatory responses,
which lead to the development of cardiovascular diseases [24]. Smooth muscle cells are present all over the
body and their major role is to control the diameter and wall movement of internal organs, such as blood
vessels. Impairment of smooth muscle cells contributes to the development of cardiovascular diseases, in-
cluding atherosclerosis, hypertension and myocardial infarction [25]. Since both endothelial and smooth
muscle cell functions play key roles in cardiovascular disease, it is essential to first clarify the roles of CGRP
and NO, especially in the biology of migraine [9].

2.1.1. Calcitonin gene-related peptide
Until recently, patients of migraine were treated with preventive medications for headaches from other dis-
ciplines in medicine. A new promising prospect emerged when an increase in CGRP during a migraine at-
tack was discovered. Researchers found that blocking the CGRP is a promising therapeutic opportunity for
the treatment of migraine [26]. CGRP is a neuropeptide which is the body’s most potent vasodilator and a
transmitter that can be found in both the peripheral and central nervous systems [27]. Neuropeptides are a
class of signaling molecules released by neurons in the brain to communicate with each other and with other
cells [28]. Vasodilators are substances that dilate blood vessels, which lead to greater blood flow [29]. CGRP
is crucial for expanding blood vessels and managing blood pressure [27]. The activation of the trigeminal
nerve in the trigeminovascular system causes CGRP release [30]. The trigeminovascular system serves as a
bridge between the trigeminal neurons and the blood vessels [31]. During a migraine attack, the release of
neuropeptides like CGRP triggers vasodilation, which leads to neurogenic inflammation [32]. Neurogenic
inflammation refers to an inflammation that causes redness, heat and pain, which is directly triggered by
neurons, unlike immune-mediated inflammation [33].

2.1.2. Nitric oxide
NO is a signaling molecule that is involved in numerous neurophysiological processes and is a potent va-
sodilator. Migraine headaches are commonly connected with NO [34]. Evidence indicates a relationship
between NO and CGRP: NO directly stimulates CGRP release and CGRP can cause vasolidation via NO mech-
anisms. This is a positive feedback loop, since studies show that NO increases CGRP release, but CGRP also

3
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increases NO production. This loop conserves migraine attacks [35].

2.2. Laser speckle contrast techniques
In this section, different imaging techniques are introduced, including LSCI and LDI. In the last subsection, a
comparison between these two techniques is provided.

2.2.1. Laser speckle contrast imaging
LSCI operates on basis of multiple light scattering. When an opaque material, for example the skin, is illu-
minated with a coherent light source, the backscattered light will create an interference pattern. These in-
terference patterns are also called speckles and consists of bright and dark areas. Analyzing how the speckle
pattern changes over time for different pixel values gives insights into the motion within the medium. The
quantification of the change over time of the speckle pattern is by speckle contrast. The speckle contrast is the
ratio of the standard deviation of the intensity of a pixel to the mean intensity of a pixel. Fast moving particles
have a low speckle contrast, since the standard deviation of the intensity of such a pixel is lower compared to
slow moving particles. There are different ways to define the speckle contrast. LSCI calculates the contrast in
a time sequence. The spatial equivalent of LSCI is Laser speckle contrast analysis (LASCA) [11] [36].

2.2.2. Laser Doppler imaging
Within Laser Doppler Imaging (LDI), two distinct measurement approaches are utilized: Laser Doppler flowme-
try (LDF) and Laser Doppler perfusion imaging (LDPI).
LDF makes use of the same techniques as LSCI. However, instead of using one coherent light source, it uses
two light sources. One of the two is the light-emitting probe (laser) and the other one is the receiving probe
(detector) [37]. Additionally, LDF utilizes the Doppler effect, which “refers to the phenomenon whereby an
apparent change in frequency is perceived when relative motion exists between the wave source and the re-
ceiver” [38]. In more simple terms, if the red blood cells move toward the detector, the frequency will increase.
The reverse will happen if the red blood cells move away from the detector. The change in frequency is only
relative to the receiver; the perceived frequency changes, but the emitted frequency does not. Analyzing the
shifts in frequencies give more insights in the blood perfusion [38].
The difference between LDF and LDPI lies in the fact that LDPI is a non-contact technique, while LDF uses
probes to contact the issue. In addition, LDPI assesses much larger areas compared to LDF. However, the
scanning procedure of LDPI is relatively slow compared to LDF, which results in a low temporal resolution
[39].

2.2.3. LSCI versus LDI
LSCI is more sensitive to movement and assesses smaller surfaces compared to LDI. On the other hand, LSCI
has a higher spatial and temporal resolution [39]. LDI uses a separate light source and detector, which allows
this technique to measure perfusion at greater depths compared to LSCI. LSCI illuminates and detects the
same area; it looks straight down from a spot [40].

2.3. Frequency analysis
This section is dedicated to the fundamentals of frequency analysis. The first subsection explains the sam-
pling frequency. After that, the FA, discrete Fourier transform (DFT), continuous wavelet transform (CWT)
and the discrete wavelet transform (DWT) are introduced. The last subsection gives an overview of the fre-
quency bands corresponding to the biological mechanisms in the body.

2.3.1. Sampling frequency
The sampling frequency ( fs ) is a critical parameter in the frequency analysis of both LSCI and LDPI measure-
ments. The sampling frequency plays an important role due to the Nyquist-Shannon Sampling Theorem. It
states that the maximal resolvable frequency ( fmax ) in the discrete setting must satisfy:

fmax ≤ fs

2
. (2.1)

Violation of the theorem leads to a concept called aliasing [37]. Aliasing is a false, distorted feature in signals
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that occurs when higher frequencies are observed as lower frequencies [41]. This will become particularly
important when FT and WT are introduced.

2.3.2. Fourier analysis
FA is widely used for simplifying data for data analysis. At the foundation of FA lies Fourier’s theorem: any
(reasonably well-behaved) function can be completely written in terms of the sum of sines and cosines of var-
ious amplitudes and frequencies. There are two types of Fourier expansions: Fourier series and FTs. Fourier
series is applicable for periodic functions and the Fourier series allow this periodic function to be written into
a sum of trigonometric functions:

f (x) = a0 +
∞∑

n=1
(ancos(

nπx

L
)+bn si n(

nπx

L
)). (2.2)

However, most real-world physical phenomena are non-periodic, as this would imply an infinite amount of
energy. Therefore, the extension of the Fourier series is introduced: the FTs. The FTs decomposes a general
function, not necessarily periodic, as an integral of trigonometric functions. It transforms the function from
the time domain into the frequency domain using [42]:

F (ω) =
∫ +∞

−∞
f (t )e−2πiωt d t . (2.3)

2.3.3. Discrete Fourier transform
The DFT is defined as follows:

F [k] =
N−1∑
n=0

f [n]e−
2πi nk

N ,k = 0, ..., N −1,n = 0, ...N −1. (2.4)

N denotes the sample size and f [n] is the truncated N-point discrete signal with period N [43].

As mentioned in Section 2.3.1, the Nyquist–Shannon Theorem states that the highest frequency that can be
reconstructed is half the sampling frequency. Also interesting to note is the following identity:

F [N −k] =
N−1∑
n=0

f [n]e−
2πi n(N−k)

N =
N−1∑
n=0

f [n]e−
2πi nN

N e
2πi nk

N =
N−1∑
n=0

f [n]e
2πi nk

N = F [−k]. (2.5)

This indicates that the negative frequencies are simply the mirrored versions of the positive frequencies.
Therefore, it is only necessary to look at either the positive or negative frequencies, since they provide the
same information. A fast way to compute the DFT is by using the Fast Fourier Transforms (FFT). This is not a
new transformation, but a fast algorithm to compute the DFT. Using this algorithm reduces the computation
from O(N 2) to O(N log N ) [44].

2.3.4. Continuous Wavelet transform
Traditional FA is limited to interpreting the signal exclusively in terms of the time or frequency domain. How-
ever, biological systems often generate non-stationary signals, requiring dynamic methods for accurate anal-
ysis. Heisenberg’s uncertainty principle states that it is fundamentally impossible to have both perfect time
and frequency resolution simultaneously [45]. WA addresses this constraint by finding a compromise be-
tween time and frequency resolution. By accepting minor sacrifices in the resolution in both domains, WT
preserves temporal information, while also effectively characterizing frequency information, making it ideal
for analyzing non-stationary signals [46].

A technique analogous to WA is the short time Fourier transform (STFT). The STFT is also able to retrieve
both frequency and time information from a signal. The idea is to use a finite fixed length window function
g (t ) and move it along the signal. For every step, FT is performed locally in that segment. Box-shaped win-
dows introduce unwanted high-frequency content in the FT. Instead, the original signal x(t ) is multiplied
by a smooth window (e.g., Gaussian), centered at time s. This process is called apodization. The STFT is as
following:

FST F T (s,ω) =
∫ +∞

−∞
x(t )g (t − s)e−2πiωt d t . (2.6)
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The performance of the STFT analysis is influenced by the selection of the window function g (t ). This choice
inherently involves a trade-off between time resolution and frequency resolution. Shorter windows ensure
more accurate temporal localization, but localize poorly in frequency. Longer windows on the other hand
yield more precise frequency resolution at the expense of temporal precision. WT builds upon the fun-
damental concepts of the STFT. It also uses window functions, but instead of using fixed-length windows,
WT introduces parameters that enable variable window sizing, allowing flexible time-frequency resolution
[46][47][48].

Due to the fixed window function g (t ) for the STFT, all resolution cell sizes are equally sized (see Figure 2.1a).
Low frequencies (equivalent to long wavelengths) tend to go on for a long time. Consequently, high tem-
poral resolution becomes less important, while high frequency resolution is essential. Alternatively, higher
frequencies (equivalent to short wavelengths) are transient and localized in time. Therefore, it is desirable to
have a high time resolution, while not knowing the exact frequency value. This behavior is depicted in Figure
2.1b [49].

(a) (b)

Figure 2.1: The tiles represent the concentration of the resolution in the time-frequency plane. (a) Represents the distribution of the
resolution for the STFT. (b) Represents the distribution of the resolution for the CWT. Reprinted from [47].

The CWT Wx (a,b) of a time signal x(t ) is defined as follows [50]:

Wx (a,b) = |a|− 1
2

∫ +∞

−∞
x(t ) ψ∗

(
t −b

a

)
d t . (2.7)

The preceding equation can also be approximated and used for discrete time series [51]. The CWT is the
inner product of the signal x(t ) and the complex conjugate of the translated and scaled versions of a function
ψ(t ), also called the mother wavelet. The CWT decomposes the signal onto a set of basis functions, which are
defined as the scaled and translated versions of the mother wavelet. Unlike the FT, which only uses sine and
cosine functions as the basis functions, WT offers many choices. The mother wavelet has to satisfy the two
conditions [47] [52]:

1. Admissibility condition: ∫ +∞

−∞
ψ(t ) d t = 0.

This implies that the function does not contain a zero frequency component, which is equal to the
average value of the function.

2. Finite energy: ∫ +∞

−∞
|ψ(t )|2 d t <∞.

A wavelet means a small wave. This condition is exactly what makes the function localized in time.

Parameter b is denoted as the translation parameter and a is the scale parameter. For large values of a, the
wavelet is stretched and corresponds to low-frequency components. On the other hand, for small values of
a, the wavelet is made narrower, which captures high-frequency components. The center frequency ( fc ) is a
property of the mother wavelet and does not change. It describes the general behavior of the mother wavelet
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by approximating the mother wavelet with a sine wave. The associated frequency is the center frequency [53].
The center frequency of the mother wavelet and the parameter a determines the frequency ( f ) the wavelet
analyzes:

f = fc

a
. (2.8)

This frequency changes for all different scaled wavelets. The translation parameter b slides the wavelet along

the time axis to analyze different segments, similar to the STFT. The factor |a|− 1
2 is a normalization term and

ensures that all scaled functions contribute equally to the transform and all have the same energy. Without
this normalization factor, large-scale wavelets would always dominate, since those waves are more stretched
out over time compared to low-scale wavelets. [47] [50].

Examples of mother wavelets for the CWT: complex Morlet (complex valued), Mexican Hat and Gaussian
wavelets [54]. Among these, the complex Morlet wavelet is the most commonly used in signal analysis. The
complex Morlet wavelet is a Gaussian function, combined with a complex sinusoid and is defined as follows
(for ω0 > 5) [51]:

ψ(t ) = 1

π
1
4

e−iω0t e
−1
2 t 2

, (2.9)

where ω0 denotes the angular frequency. By choosing ω0 = 2π, the frequency and the scale are inversely
proportional: f = 1

a . The formula for the center frequency is [55]:

fc = ω0

2π
fs . (2.10)

The complex Morlet wavelet is one of the most used wavelets, particularly in the biological nature. The for-
mula for time and frequency localization (defined as ∆t and ∆ f respectively) of the complex Morlet wavelet
is defined as follows (where fc is the center frequency and fb is the bandwidth (see Subsection 3.2.1)):

∆t = fc
√

fb

2
, ∆ f = 1

2π fc
√

fb

. (2.11)

Note that the product∆t ·∆ f = 1
4π only holds for wavelets close to the shape of a Gaussian. This bound serves

as a lower bound for the time and frequency resolution. For wavelets not similar to the shape of a Gaussian,
the product ∆t ·∆ f is strictly larger than 1

4π . This phenomenon is also known as the Heisenberg uncertainty
principle [17][56]. The complex Morlet wavelet allows for the best time-frequency localization according to
the Heisenberg uncertainty principle [14].

The results using CWT are often visualized using a scalogram. Examples of scalograms can be found in
Subsection 3.2.1. A scalogram is the squared magnitude of the WT and gives the intensity of the wavelet
coefficients in relation to time. Physiologically speaking, it can also be interpreted as the energy density and
is given by [17][50]:

|Wx (a,b)|2 =
∣∣∣|a|− 1

2

∫ +∞

−∞
x(t ) ψ∗

(
t −b

a

)
d t

∣∣∣2
. (2.12)

2.3.5. Discrete Wavelet transform
The main difference between the CWT and the DWT is the choice for the scale and translation parameters a

and b. In the discrete case, the values are limited and in the form: a = a j
0 , b = kb0a j

0 , k, j ∈ Z (dyadic scale
is often used, where a = 2) [46]. The DWT is obtained by discretizing the scale and translation parameters
of the continuous wavelet transform [54]. Examples of mother wavelets are: Haar, Daubechies, Coiflets and
Symflets [54]. The basis functions of the DWT are of the form:

ψ(
n −kb0am

0

am
0

). (2.13)

The terms continuous and discrete in WT can be misleading. They do not describe the signal that is contin-
uous or discrete, but rather refer to how the parameters are being handled in the WT. To use the DWT on
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discrete-time signals x[n], the integral in Equation 2.7 is discretized [50] (the CWT can also be discretized and
applied to discrete signals in a similar way):

DDWx (m,n) = 1√
am

0

∑
k

x[k]ψ(
n −kb0am

0

am
0

). (2.14)

DWT is often implemented with a fast Discrete Wavelet Transform algorithm proposed by Mallat [57], using
a two-channel filter bank with different levels. A filter bank is a set of filters that can be divided into two
subtypes: analysis bank and synthesis bank. The analysis bank decomposes the signal; it separates the signal
into different frequency bands. The synthesis bank reverses the process of the analysis bank; it recombines
the separated frequency bands to reconstruct the original signal. In digital signal processing, a conventional
way to work is by normalizing the frequencies so that they are all in the range of 0 to π (such that 0 represents
the lowest frequency in the signal and π represents the highest).

The analysis part consists of two steps:

1. Filtering.
The analysis bank of DWT often has two filters, also known as the low-pass filter (LPF) and high-pass
filter (HPF). Both filters contain half of the frequency interval (so in the normalized case, LPF con-
tains frequencies in the range of [0, π2 ] and HPF contains frequencies in the range of [π2 ,π]). The LPF is
defined such that it gives an approximation of the signal. The filter smoothens the signal such that low-
frequency components are preserved, while high-frequency components are suppressed. The HPF on
the other hand, smoothens the low-frequency components, while keeping the high-frequency compo-
nents. The HPF operates as a difference operator. In conclusion, the LPF retrieves the approximations
and the HPF retrieves the details of a signal. After completion of the filtering part, downsampling will
be applied.

2. Downsampling.
After filtering, both the LPF and HPF maintain the original signal length, doubling the total amount
of data. Downsampling resolves this redundancy, while preserving all the information. Since every
filtered subband contains half of the frequency interval, according to the Nyguist-Shannon sampling
Theorem (Subsection 2.3.1), the signal in such a filtering can be fully represented using half the sam-
pling rate. Thus, the amount of data can be reduced in both filtering processes by retaining only the
even-numbered components from the LPF and HPF outputs [47][58].

These two steps can be repeated for an arbitrarily amount, each step creating another level. Each level
splits the low-frequency subband into two new subbands and the LPF and HPF are applied recursively. Level
1 separates the normalized frequency interval [0,π] into [0, π2 ] (while applying the LPF) and [π2 ,π] (while ap-
plying the HPF). Level 2 separates the interval [0, π2 ] into [0, π4 ] and [π4 , π2 ], while applying the HPF on the
subband [π4 , π2 ], resulting in more detailed results. A graphical representation of the described process can be
found in Figure 2.2.

The i th level coefficients can be calculated as follows:

xi ,H =
K−1∑
k=0

xi−1,H [2n −k]H [k], (2.15)

xi ,L =
K−1∑
k=0

xi−1,L[2n −k]L[k]. (2.16)

where H [k] and L[k] denote the HPF and LPF respectively. K is the length of the filters. xi ,H is the high-
frequency coefficient at level i and xi ,L is the low-frequency coefficient at level i . These coefficients are ob-
tained by convolving the filters with the coefficients xi−1,H [2n − k] from level i − 1. Using 2n instead of n
ensures that only the even-numbered components are kept. [54]

When using DWT with filter banks, representing the wavelet coefficients as depicted in Figure 2.3 is more
conventional. Following the methodology for the DWT described earlier, the original signal, x(t ), is decom-
posed. This results in Figure 2.3, where cl l l represents the frequency range [0, π8 ], cl lh represents [π8 , π4 ], cl h

represents [π4 , π2 ] and ch represents [π2 ,π]. Figure 2.2 provides additional clarity [47].
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Figure 2.2: Three level filter bank. x(k) is the signal, H(z) represents the HPF and L(z) represents the LPF. ↓ 2 represents the process of
downsampling with factor two. ci (k) are the coefficients at every level. Reprinted from [47].

Figure 2.3: Subband representation of the DWT, using a three level filter bank (Figure 2.2 and a Daubechies 4 wavelet. The x-axis repre-
sents the time and the y-axis represents the wavelet coefficient. Reprinted from [47].

2.3.6. Frequency bands of biological mechanisms
In the previous subsections, various methods were described to perform a data transformation from the time
to frequency domain. Here, these frequencies are interpreted in a physiological context with respect to blood
perfusion by linking biological processes to specific frequency bands [13][15][16][17][59]:

1. Frequency band from 0.4 to 2.0 Hz: This is the frequency interval of the heartbeat. Under physiological
steady state conditions, the heartbeat frequency of a human is approximately 1 Hz; the heart beats once
per one second.

2. Frequency band from 0.15 to 0.4 Hz: This is the frequency interval of the respiratory function.

3. Frequency band from 0.06 to 0.15 Hz: This is the frequency interval attributed with the smooth muscle
cells. The peak is around 0.1 Hz.

4. Frequency band from 0.02 to 0.06 Hz: This frequency interval is associated with neurogenic activity.
Neurogenic activity is important in the regulation of blood pressure, by regulating the radius of the
blood vessels. The peak is around 0.04 Hz.
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5. Frequency band from 0.0095 to 0.02 Hz: This is the frequency interval of the endothelial activity and
it is NO-dependent in this frequency domain.

6. Frequency band from 0.005 to 0.0095 Hz: This is the frequency interval of the endothelial activity, but
now NO-independent.

As discussed in Section 2.1, endothelial activity modulates blood flow through release of substances like NO.
To investigate vascular regulation with respect to NO, the frequency domain of 0.0095-0.02 Hz can be exam-
ined, as this interval looks at the NO-dependent endothelial activity.

Unlike NO, CGRP does not yet have a clearly defined frequency band. However, since NO can lead to an
increase in CGRP release (see Section 2.1), the frequency domain 0.095-0.02 Hz may also indirectly reflect
influences on the blood flow mediated by CGRP. Furthermore, Section 2.1 also discussed about the effect of
neuropeptides on the smooth muscle cell function. This suggests that the frequency interval of 0.06-0.15 Hz
may also reflect effects of CGRP. Lastly, the frequency band 0.02-0.06 Hz corresponding to neurogenic ac-
tivity could also be relevant, as studies show that CGRP is the most potent vasodilaroty neuropeptide in the
migrane pathophysiology [60].



3
Methods

3.1. The VASCULAR-study
The main objective of the VASCULAR-study, conducted by Erasmus MC, was to assess and compare the mi-
crovascular function of women with and without migraine. The research population consisted of healthy
women, aged 40-60 years. Participants had no prior medical history of vascular or cardiovascular diseases.
Measurements were performed on the forearm using LSCI and LDPI (see Section 2.2). The measurements
can be divided into three phases. The first five minutes are called the baseline phase. Subsequently, the fore-
arm was heated to 40°C, initiating the peak phase. Local heating of the skin increases the dermal blood flow,
leading to an increase in the blood perfusion in this peak phase. After approximately 30 minutes, the blood
perfusion stabilizes. This also marks the beginning of the plateau phase, where the blood perfusion remains
stable. An example of the data including the different phases is shown in Figure 3.1.

Three areas of the forearm, also called the Region of Interest (ROI), were isolated for the application of differ-
ent experimental techniques.

1. In ROI 1, NG-monomehtyl-L-arginine (L-NMMA), a NO inhibitor [61], was administered to the skin
via iontophoresis. Iontophoresis a non-invasive method used to facilitate the transdermal delivery via
low-intensity electric current [62]. Iontophoresis ensures that the L-NMMA is properly delivered in the
parts of the skin where the blood perfusion is measured, blocking the production of NO.

2. In ROI 2, eutectic mixture of local anesthetics (EMLA) cream was applied on the skin. EMLA cream acts
as a local anesthetic, thereby preventing release of neuropeptides.

3. In ROI 3, nothing was applied to the skin. This region served as a control region.

Figure 3.1: Example of data of VASCULAR-study. The first five minutes indicate the baseline. The pink region illustrates the peak phase.
The blue region represents the plateau phase. ROI1 is shown in blue, ROI2 in red and ROI3 in green. Reprinted from [9].

11
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3.2. Frequency analysis
This section explains how the frequency analysis was performed. Subsection 3.2.1 describes the implemen-
tation details of the WT. Subsection 3.2.2 provides an explanation of how WT was used to extract quantitative
information. Finally, Subsection 3.2.3 outlines how this quantitative information was compared using statis-
tical analysis.

3.2.1. Implementation details of the WT
All computations were done using Python. To perform the WT, the PyWavelets library was used. The function
pywt.cwt takes three arguments:

1. data
The input signal to use.

2. scales
The scales to use. In theory, the CWT uses infinitely many scales and translation parameters. In prac-
tice, this is not realizable due to memory and time restrictions. The difference between CWT and DWT
is how the scales are discretized. The CWT discretizes the scale much more refined compared to the
DWT. The translation parameters are taken care of by the function itself. Wavelet scales and frequen-
cies are not the same. The function pywt.scale2frequency was used to convert the scales to the physical
frequencies.

3. wavelet
Mother wavelet to use. Examples: Mexican hat wavelet (mexh), Gaussian wavelets (gaus), Morlet wavelets
(morl) and complex Morlet wavelets (cmor fb- fc , where fb is the bandwidth and fc is the center fre-
quency). In Figure 3.2, different values for fc and fb are plotted as examples. It demonstrates the im-
portance of choosing appropriate values. The choice for fb and fc are highly dependent on the signal
itself. An increase in the center frequency parameter fc results in more oscillations in the Gaussian
window of the wavelet. Figure 3.2a illustrates that increasing the value of fc leads to an increase in the
number of oscillations. The bandwidth parameter fb is also known as the time-decay parameter and
controls the decay in the time domain. A smaller value of fb causes the wavelet to decay more rapidly
in time. On the other hand, increasing the value of fb results in slower decay of the wavelet in the time
domain [63]. Consequently, a smaller value for fb results in better time resolution, while a larger value
for fb results in better frequency resolution. All described behavior can be observed in Figure 3.2 (by
comparing the columns for the center frequency values fc and the rows for the bandwidth parameter
fb).

The function returns two results:

1. coefs
This is a 2D array. The rows correspond to specific scales and the columns correspond to the time step.
Then coefs[i , j ] corresponds to the scale on the i th position of the given argument scales at time step j .

2. frequencies
An array with the scales converted to the physical frequencies.

For the choice of mother wavelet, the complex Morlet wavelet was selected to use in this study. In numerous
studies [12][13][14][16][59][65] measuring blood flow via LDF and LSCI, the complex Morlet wavelet is the
commonly used mother wavelet. The complex Morlet wavelet in Python is given by:

ψ(t ) = 1√
π fb

e
− t2

fb e i 2π fc t . (3.1)

For the Morlet wavelet to be admissible, the wavelet must satisfy 2π fc ≥ 5. In other words, fc should be greater
than approximately 1 Hz [66]. Since higher values analyze higher frequency components, fc = 1 was chosen,
as the frequencies of interest are relatively low. The choice of fb directly influences the balance between the
time and frequency resolution. This is visualized in Figure 3.3. For fb = 0.3, Figure 3.3a shows high temporal
resolution, but the frequencies appear spread out. On the other hand, for fb = 5.0, Figure 3.3b is blurred
around the time axis. The commonly used function for the complex Morlet wavelet is defined by Equation 2.9.
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(a) (b)

Figure 3.2: Example of different values for fb and fc (cmor fb - fc ). (a) Represents the complex Morlet wavelets with different values for
fb and fc . (b) Represents the scalograms of complex Morlet wavelets applied to the same signal. Reprinted from [64].

To align the coefficients in the exponential term, fb = 2 was chosen. Note that this changes the normalization
factor. However, this choice was made since the coefficients in the exponential term were considered more
critical than maintaining the original normalization term. Equation 3.1 becomes:

ψ(t ) = 1p
2π

e−
t2
2 e i 2πt . (3.2)

Combining Equation 2.8 and 2.10 with ω0 = 2π, fs = 1 and using the Nguist-Shannon Sampling Theorem
results in:

fmax =
2π
2π fs

a
= 1

a
≤ 0.5 ⇒ a = 1

fmax
≥ 2. (3.3)

Low frequencies require long wavelets for reliable detection. The maximum usable scale depends on the
total length of the signal. Conventionally, it is limited to one-sixth of the entire signal. In this study, the signal
is approximately 45 minutes, or equivalently, 2.700 seconds. The longest usable wavelet corresponds to 450
seconds. This translates to to 0.0022 Hz in the frequency domain. The lowest frequency of interest is set 0.005
Hz. Thus, there is no limitation on the maximum value of the scale [67].

WA was performed on the dataset from the VASCULAR-study to assess the potential differences between
women with and without migraine. The frequency band between 0.005 Hz and 0.5 Hz was studied. The
frequency bands associated with different biological mechanisms, defined in Subsection 2.3.6, was spanned
from 0.05 Hz to 2 Hz. However, since the sampling frequency is 1 Hz, the Nyguist-Shannon Sampling The-
orem justified the use of the range 0.005 Hz and 0.5 Hz. The associated scales of interest were smi n = 2 and
smax = 200. The high values for the scales correspond to low frequencies and the low values for the scale
correspond to high frequencies. The scales were discretized exponentially [68]:

ai = a0 ·2
i
v , i = 1,2,3, ... and v > 1 (common val ues ar e v = 10,12,14,16,32). (3.4)

This prevented oversampling of high-frequencies or undersampling of low frequencies. In Equation 3.4, v
refers to the number of voices per octave. An octave is a doubling of the scale (e.g. start at 0.5 Hz to 1.0 Hz,
then the next octave is from 1.0 Hz to 2.0 Hz). The voices v determine the intermediate steps between the
octaves. In this study, v was set to 10 [68][69].

For infinite-length signals, edge effects do not occur when applying the CWT or DWT. However, for finite-
length signals, distortions can appear near the edges. The boundary that separates the artifact coefficients
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(a) (b)

Figure 3.3: Scalograms of the complex Morlet wavelet for different values. (a) Scalogram for cmor0.3-1.0. (b) Scalogram for cmor5.0-1.0.

from the accurately computed coefficients is known as the cone of influence (COI). The artifacts at the edges
appear when convolving the signal and the wavelet function at the beginning and end of the signal. The arti-
fact coefficients depend on the wavelet scales. Larger scales result in more artifacts; therefore, the boundary
is a cone shape [70].

To delineate the COI, an approximation based on the 1
e2 rule was used. The threshold 1

e2 ≈ 0.135 corresponds
to the point where the wavelet energy has decreased to around 13.5% of the maximum value, which is the
energy at the center. Regions where the wavelet energy is below this threshold are considered unreliable and
cause edge effects. The e-folding time is the time that it takes for the wavelet energy to decrease to 1

e2 . For

Morlet wavelets, this is equal to
p

2a, where a denotes the scale parameter [71][72]. An example can be found
in Figure 3.4. Note that because of the edge effect, the accurate coefficients were no longer visible in Figure
3.4a. After removing the COI in Figure 3.4b, the accurately computed coefficients were more visible.

(a) (b)

Figure 3.4: Scalograms of the complex Morlet wavelet with COI and without COI. (a) Scalogram for cmor1.5-1.0 with COI and without
applying 1

e2 rule. (b) Scalogram for cmor1.5-1.0 without COI and with applying 1
e2 rule.

This technique is most effective when the total measured signal is longer than the portion of the signal that
is being analyzed. However, that was not the case in the VASCULAR-study data. Removing the COI would
result in significant data loss. Therefore, an alternative approach was necessary. To avoid cutting parts of the
results, the signal was extended at the start and the end. While several extension techniques were available,
this research achieved it using reflection [73]. This was done by reversing the signal and concatenate this to
the start and end of the signal. Figure 3.5 shows an example after applying reflecting.

3.2.2. From WT to quantitative information
In order to make a comparison between the different ROIs (defined in Section 3.1) and between blood flow
measurements of distinct participants, quantitative measures were needed. The scalogram was introduced
in Subsection 2.3.4 as a visualization of the energy density. An alternative visualization approach involved
plotting the coefficients in three-dimensional space. Although Figure 3.5 offered valuable insights, it was not
enough to extract quantitative information to compare the two groups. Therefore, the following parameters
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Figure 3.5: Scalogram using the complex Morlet wavelet with center frequency equal to 1.0 and bandwidth equal to 1.5 after applying
reflection.

were calculated to perform quantitative analysis on the data: absolute and relative energy density of the
total spectrum; relative energy density of each interval corresponding to different biological mechanisms
(Subsection 2.3.6). The energy density is the energy per unit length, area or volume [74].

The frequency intervals were analyzed separately and divided as follows (note that the frequency interval
related to cardiac activity was not used):

• f11 = 0.4, f12 = 2.0 for cardiac activity,

• f21 = 0.15, f22 = 0.4 for respiratory activity,

• f31 = 0.06, f32 = 0.15 for smooth muscle cells activity,

• f41 = 0.02, f42 = 0.06 for neurogenic activity,

• f51 = 0.0095, f52 = 0.02 for endothelium activity (NO-dependent),

• f61 = 0.005, f62 = 0.0095 for endothelium activity (NO-independent).

The physical quantity behind the scalogram is the energy density. The average energy density (over time) on
a given frequency interval Ei ( fi 1,i 2) is given by:

Ei ( fi 1, fi 2) = 1

t

∫ t

0

∫ 1
fi 1

1
fi 2

1

a2 |Wx (a,b)|2 d a d t . (3.5)

Since the wavelet coefficients are discrete data points, the integral was approximated using the trapezoidal
rule (implemented using the np.tr apz function in Python).

The relative average energy density is defined as follows:

ei ( fi 1, fi 2) = Ei ( fi 1,i 2)

Etot al
, (3.6)

where Etot al is the energy of the signal contained in the total frequency interval, between 0.005 and 0.5 Hz.

An useful tool for comparing and visualizing the calculated energy densities are box plots. A box plot shows
the median, which is a horizontal line that indicates the center of the data: 50% of all data lie below and 50%
lie above. A box is drawn from the first quartile (Q1) to the third quartile (Q3). A quartile marks 25% of the
data. One vertical line goes from the minimum value to Q1 and the other vertical line goes from Q3 to the
maximum value. These vertical lines are often called whiskers. However, if the minimum or maximum value
exceeds 1.5 times the interquartile range (IQR), which is the range from the third quartile to the first quar-
tile (Q3-Q1), the whiskers stop at the last value within that range. Data values that exceed the IQR are called
outliers and are frequently shown as individual dots.
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3.2.3. Statistical analysis
A tool was still needed to compare the different values from different measurements of the group of women
with migraine and the group of women without migraine. This was done using p-values. The p-value repre-
sents the probability of observing results that would have occurred by chance, assuming the null hypothesis
is true [75]. A p-value less than 0.05 was considered statistically significant. In this study, two different statis-
tical tests were used to obtain the p-values: the Mann-Whitney U-Test and the Wilcoxon Signed Rank Test.

The Mann-Whitney U-Test is a non-parametric test that compares two independent groups. The test is the
non-parametric counterpart of the t-test. The null hypothesis from this test is that the two groups come from
the same population, the alternative hypothesis is that the two groups are not from the same population. The
test does not assume a normal distribution of the data. Rather than comparing the difference in mean val-
ues, the Mann-Whitney U-Test compares the rank sum. All data from both groups are combined and ranked.
Then for each group, the ranks are summed. These rank sums are subsequently used to calculate a U statis-
tic, which is used to determine the p-value. This test was used to determine whether there were significant
differences between the group of women with migraine and the group of women without migraine [76].

To determine the significance of results within the same group— whether among participants with migraine
or those without—the Wilcoxon Signed Rank Test was used. The Wilcoxon Signed Rank Test is a non-parametric
equivalent of the paired t-test and also does not assume normality of the distribution of the data. The differ-
ence with the Mann-Whitney U-Test is that the Wilcoxon Signed Rank Test compared dependent groups. It
calculates the difference between the paired values and ranks them accordingly. Then, the rank sums are
computed for the positive and negative differences. The test statistic W is calculated and used to determine
the p-value [77].

3.3. Method overview
In the following chapter, the results of the study are presented. In this section, a systematic overview of how
the results were interpreted and compared will be given. This study comprised a wide range of different
combinations to study, resulting from the comparison of two groups across three phases (baseline, peak and
plateau) and three ROIs (ROI1, ROI2 and ROI3).

In this study, the respiratory activity, smooth muscle cells activity, neurogenic activity and endothelium activ-
ity (both NO-dependent and NO-independent) were studied in women with and without migraine. This was
done by calculating the relative energy density for each group individually. Using the p-value, the differences
between the two groups were examined. A p-value smaller than 0.05 was considered statistically significant.
This method was applied to examine the following:

1. Analysis of differences of absolute energy density between women with migraine and without migraine
across the entire measurement region using WT.

2. Analysis of differences between women with migraine and without migraine across the entire measure-
ment region using the WT and DFT.

3. Analysis of differences between women with migraine and without migraine using WT, looking at the
baseline, peak and plateau phase individually and DFT.

4. Analysis of differences in the DFT and WT method.



4
Results

In this chapter, the results will be presented and interpreted, integrating all the information gathered through-
out the study, by building on the foundation of all fundamental concepts introduced in Chapter 2 and the
methods described in Chapter 3. In Section 4.1, examples of scalograms and three-dimensional plots us-
ing the VASCULAR-study data are shown. Section 4.2 shows and compares the absolute energy density of
the women without migraine and the women with migraine. Section 4.3 and 4.4 show the results using WT.
Section 4.5 and 4.6 show the results using DFT.

4.1. Examples of resulting plots
In the previous chapters, visualization tools were introduced as useful tools for displaying wavelet coeffi-
cients. This section is dedicated to introduce these visualization tools for illustrative purposes. However, for
quantitative analysis, these illustrative tools are not used in this research.

4.1.1. Scalogram
Scalograms were introduced in Subsection 2.3.4 and show the squared wavelet coefficients. The physiolog-
ical interpretation is the energy density, which will be used as a quantitative measurement for the wavelet
coefficients. Examples can be found in Figure 4.1, Figure 4.2 and Figure 4.3. The colors indicate the intensi-
ties. Not all scalograms had similar shapes and color intensities. The scalograms in Figure 4.1, Figure 4.2 and
Figure 4.3 show a notable increase in color intensity around 1500 seconds. This time point fell outside the
defined baseline, peak and plateau phase and was right between the peak and plateau phases. Capturing this
pattern required analysis of the entire measurement period (from the start of the baseline phase to the end
of the plateau phase). An explanation of this behavior at approximately 1500 seconds is currently not known,
since this period in the measurements does not correspond to a well-defined phase like the baseline, peak or
plateau phase and thus requires further investigation. This topic is further discussed in Section 4.2.

Figure 4.1: Example of scalogram of the WT coefficients for ROI1 and women without migraine. The axes represent frequency (Hz) in log
scale, time (s) and the color indicates the intensity (magnitude) of the coefficient, in arbitrary units (AU).

17
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Figure 4.2: Example of scalogram of the WT coefficients for ROI2 and women without migraine. The axes represent frequency (Hz) in log
scale, time (s) and the color indicates the intensity (magnitude) of the coefficient, in arbitrary units (AU).

Figure 4.3: Example of scalogram of the WT coefficients for ROI3 and women without migraine. The axes represent frequency (Hz) in log
scale, time (s) and the color indicates the intensity (magnitude) of the coefficient, in arbitrary units (AU).

4.1.2. Absolute values of wavelet coefficients
The scalogram displays the squared wavelet. Therefore, the visibility of high-magnitude values was more
enhanced compared to the lower values. Alternatively, it is possible to plot the absolute values of the wavelet
coefficients of the same data used for the scalograms in Figure 4.1, Figure 4.2 and Figure 4.3. These can be
found in Figure 4.4, Figure 4.5 and Figure 4.6.

Figure 4.4: Example plot of absolute values of the WT coefficients for ROI1 and women without migraine. The axes represent frequency
(Hz) in log scale, time (s) and the color indicates the intensity (magnitude) of the coefficient, in arbitrary units (AU).
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Figure 4.5: Example plot of absolute values of the WT coefficients for ROI2 and women without migraine. The axes represent frequency
(Hz) in log scale, time (s) and the color indicates the intensity (magnitude) of the coefficient, in arbitrary units (AU).

Figure 4.6: Example plot of absolute values of the WT coefficients for ROI3 and women without migraine. The axes represent frequency
(Hz) in log scale, time (s) and the color indicates the intensity (magnitude) of the coefficient, in arbitrary units (AU).

4.1.3. Three-dimensional plot
In Subsection 3.2.2, an example three-dimensional plot has already been shown. Figure 4.7, Figure 4.8 and
Figure 4.9 illustrate the three-dimensional plots, generated using the same data that was used to create the
scalograms. The figures show the absolute value of the wavelet coefficients.

Figure 4.7: Example of three-dimensional plot of the absolute values of the WT coefficients for ROI1 and women without migraine. The
axes represent frequency (Hz) in log scale, time (s) and WT coefficients, in arbitrary units (AU).
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Figure 4.8: Example of three-dimensional plot of the absolute values of the WT coefficients for ROI2 and women without migraine. The
axes represent frequency (Hz) in log scale, time (s) and WT coefficients, in arbitrary units (AU).

Figure 4.9: Example of three-dimensional plot of the absolute values of the WT coefficients for ROI3 and women without migraine. The
axes represent frequency (Hz) in log scale, time (s) and WT coefficients, in arbitrary units (AU).

4.2. Average energy density
To determine the average energy density for each group, the individual energy densities were summed and
divided by the number of women in that group. Figure 4.10 presents the resulting average energy density
plots for women without migraine and women with migraine in the different ROIs. Notably, an significant
increase in color intensity was observed around 1500 seconds for women with migraine. This phenomenon
was previously noticed in Subsection 4.1.1 for a woman without migraine, where the underlying cause was
found to be unclear. Figure 4.10 shows that, on average, the color intensity around 1500 was much higher
for women with migraine compared to women without migraine. Figures 4.11, 4.12 and 4.13 illustrate the
differences in energy density between the two groups in the different ROIs. These plots further support the
observation that women with migraine exhibited increased color intensity around 1500 seconds.

Using Equation 3.5, the average energy density (over time) was calculated for the different ROIs for each
women in both groups. The p-values comparing the two groups across the ROIs indicated no significant
differences (p = 0.22, p = 0.26 and p = 0.11 respectively).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Plots of average values for energy density for (a) women without migraine in ROI1 (b) women with migraine in ROI1 (c)
women without migraine in ROI2 (d) women with migraine in ROI2 (e) women without migraine in ROI3 (f) women without migraine
in ROI3.

Figure 4.11: Plot of difference between the average values of women without migraine and women with migraine in ROI1 (no migraine -
migraine). Negative values indicate larger values for women with migraine.
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Figure 4.12: Plot of difference between the average values of women without migraine and women with migraine in ROI2 (no migraine -
migraine). Negative values indicate larger values for women with migraine.

Figure 4.13: Plot of difference between the average values of women without migraine and women with migraine in ROI3 (no migraine -
migraine). Negative values indicate larger values for women with migraine.

4.3. Entire measurement region evaluation using WT
In this section, before looking at the different phases (baseline, peak and plateau), the entire measurement re-
gion was evaluated for ROI1, ROI2 and ROI3 individually. A statistical analysis, as outlined in Subsection 3.2.3,
was conducted to determine the significance of the results. P-values below 0.05 were considered significant.
Only tables with statistically significant results are shown. The remaining tables can be found in Appendix
A.1. For the evaluation of the entire measurement region using WT, there were only significant results for the
respiratory activity.

4.3.1. Respiratory activity
Table 4.1 shows a significant difference in ROI1 (p = 0.02). The boxplot in Figure 4.14 shows higher values for
the group of women with migraine. When comparing the values for ROI1 and ROI3 (control region) within
the group of women without migraine and the group of women with migraine separately, no significant dif-
ferences were found (p = 0.86 and p = 0.22 respectively). This suggested that the significantly higher values in
women with migraine were not due to a process occurring specifically in ROI1. Table 4.1 supports this claim:
the p-value for ROI3 may not be significant (p = 0.09).
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Figure 4.14: Boxplot of relative energy density of women without (left) and with migraine (right) for ROI1, across the entire measurement
region.

Relative energy density respiratory activity
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 0.18 (0.10-0.33) 0.21 (0.12-0.46) Yes (p = 0.02493)
ROI2 0.19 (0.12-0.32) 0.19 (0.12-0.37) No (p = 0.52586)
ROI3 0.17 (0.11-0.31) 0.20 (0.14-0.44) No (p = 0.09478)

Table 4.1: Table of p-values for the relative energy density, evaluated across the entire measurement region of the respiratory activity of
women with and without migraine, for all different ROIs. Mean values and ranges are given in each case.

4.4. Evaluation of phase characteristics using WT
In this section, the results obtained using the WT and the method described in Section 3.3 are presented.
An evaluation of the whole measurement region using WT (see Section 4.3) only showed significant results
in respiratory activity. A statistical analysis, as outlined in Subsection 3.2.3, was conducted to determine the
significance of the results. P-values below 0.05 were considered significant. This was done for all different
frequency domains, each corresponding to a distinct biological mechanism. Only tables with statistically
significant results are shown. The remaining tables can be found in Appendix A.2. For the evaluation of
phase characteristics using WT, there were only significant results for respiratory activity and endothelial
activity (NO-dependent).

4.4.1. Respiratory activity
Table 4.2 shows a significant difference (p = 0.01) in respiratory activity between the group of women without
migraine and women with migraine in the peak phase of ROI1. Figure 4.15 displays the boxplot of the relative
energy density of women without migraine and women with migraine. It shows that the values of women with
migraine are higher compared to women without migraine. Together, these findings indicated that women
with migraine had a significantly higher relative energy density in the peak phase of ROI1. The observed
difference was not due to a general increase across all three regions, but especially for the peak phase in
ROI1. The p-values for women without migraine and women with migraine individually of ROI1 and ROI3
were p = 0.94 and p = 0.01 respectively, which indicated that for women with migraine there was a significant
difference between ROI1 and the control region. The values for women with migraine were higher in ROI1
compared to ROI3. This result suggests that there was a difference in respiratory activity between women with
and without migraine in the peak phase of ROI1. Studies [78][79] suggest that there is an association between
migraine and respiratory disorders, such as asthma and bronchitis. However, since the relative energy density
appeared to be higher in women with migraine compared to women without migraine, and the difference was
only significant during the peak phase of ROI1, the biological interpretation of this result remained uncertain.
The interpretation of these results should be taken with caution. The reliability is uncertain, since no women
with migraine with respiratory problems were included in this research.
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Figure 4.15: Boxplot of relative energy density of women without (left) and with migraine (right), in the peak phase of ROI1.

Relative energy density respiratory activity
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 Baseline 0.20 (0.10-0.39) 0.22 (0.06-0.71) No (p = 0.07840)
ROI1 Peak 0.18 (0.06-0.37) 0.21 (0.09-0.49) Yes (p = 0.01333)
ROI1 Plateau 0.20 (0.13-0.34) 0.22 (0.10-0.49) No (p = 0.66155)
ROI2 Baseline 0.22 (0.11-0.43) 0.24 (0.09-0.57) No (p = 0.34819)
ROI2 Peak 0.20 (0.06-0.40) 0.21 (0.11-0.45) No (p = 0.35745)
ROI2 Plateau 0.20 (0.11-0.40) 0.17 (0.06-0.36) No (p = 0.29588)
ROI3 Baseline 0.21 (0.11-0.40) 0.22 (0.03-0.61) No (p = 0.37643)
ROI3 Peak 0.17 (0.08-0.34) 0.18 (0.10-0.53) No (p = 0.30421)
ROI3 Plateau 0.19 (0.14-0.39) 0.19 (0.09-0.39) No (p = 0.93591)

Table 4.2: Table of p-values for the relative energy density of the respiratory activity of women with and without migraine, for all different
combinations of ROIs and phases. Mean values and ranges are given in each case.

4.4.2. Endothelial activity (NO-dependent)
Table 4.3 shows a significant difference in the endothelial activity (NO-dependent) in the peak phase of ROI3
of women with migraine (p = 0.008). The boxplot in Figure 4.16 shows higher values of the relative energy
density for women with migraine. This suggests increased NO activity in women with migraine. This signifi-
cant difference was only detected in the peak phase of ROI3 and not in the entire measurement region.

Figure 4.16: Boxplot of relative energy density of women without (left) and with migraine (right), in the peak phase of ROI3.
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Relative energy density endothelial activity (NO-dependent)
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 Baseline 0.17 (0.04-0.34) 0.08 (0.04-0.20) No (p = 0.07840)
ROI1 Peak 0.19 (0.06-0.34) 0.11 (0.06-0.22) No (p = 0.20777)
ROI1 Plateau 0.21 (0.09-0.34) 0.07 (0.03-0.16) No (p = 0.50281)
ROI2 Baseline 0.09 (0.03-0.25) 0.07 (0.04-0.18) No (p = 0.05941)
ROI2 Peak 0.09 (0.03-0.22) 0.10 (0.03-0.20) No (p = 0.30421)
ROI2 Plateau 0.08 (0.02-0.21) 0.07 (0.03-0.18) No (p = 0.92171)
ROI3 Baseline 0.10 (0.04-0.20) 0.08 (0.04-0.21) No (p = 0.37643)
ROI3 Peak 0.10 (0.04-0.26) 0.12 (0.06-0.25) Yes (p = 0.00797)
ROI3 Plateau 0.09 (0.03-0.21) 0.09 (0.03-0.27) No (p = 0.86521)

Table 4.3: Table of p-values for the relative energy density of the endothelial activity (NO-dependent) of women with and without mi-
graine, for all different combinations of ROIs and phases. Mean values and ranges are given in each case.

4.5. Entire measurement region evaluation using DFT
In this section, the results obtained using the DFT are presented to assess whether there are clear differences
compared to the WT method and to determine if one approach has a practical advantage over the other
for this specific dataset. Before looking at the different phases (baseline, peak and plateau) using DFT, the
entire measurement region was evaluated for ROI1, ROI2 and ROI3 individually. A statistical analysis, as
outlined in Subsection 3.2.3, was conducted to determine the significance of the results. P-values below
0.05 were considered significant. Only tables with statistically significant results are shown. The remaining
tables can be found in the Appendix A.3. For the evaluation of the entire measurement region using DFT,
there were significant results for respiratory activity and endothelial activity for both NO-dependent and NO-
independent cases.

4.5.1. Respiratory activity
Table 4.4 shows significant results for ROI1. This was in accordance with Table 4.1, where the WT was used.
However, when comparing the values of ROI1 and ROI3 (control region) for the women without migraine and
the women with migraine separately, the p-values were p = 0.02 and p < 0.00005. The values for both groups
were significantly higher in ROI1 than ROI3. There was no significant difference between the values in ROI3
(p = 0.46) and the values for women with migraine were higher. This suggests a higher increase in values for
women with migraine in respiratory activity. The interpretation of these results should be with caution, since
the reliability is uncertain. Moreover, the biological interpretation is unknown.

Figure 4.17: Boxplot of relative energy density of women without (left) and with migraine (right) for ROI1, across the entire measurement
region using the DFT.
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Relative energy density respiratory activity
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 0.16 (0.08-0.23) 0.20 (0.11-0.50) Yes (p = 0.00797)
ROI2 0.18 (0.09-0.33) 0.20 (0.12-0.41) No (p = 0.20777)
ROI3 0.15 (0.09-0.22) 0.15 (0.09-0.46) No (p = 0.45836)

Table 4.4: Table of p-values for the relative energy density, evaluated across the entire measurement region of the respiratory activity of
women with and without migraine, for all different ROIs, using DFT. Mean values and ranges are given in each case.

4.5.2. Endothelial activity (NO-dependent)
Table 4.5 shows significant differences in ROI1 (p = 0.002). The boxplot in Figure 4.18 shows higher values
for the group of women without migraine. No significant differences between the values in ROI1 and ROI3
were detected for women without migraine (p = 0.46). For women with migraine, the values in ROI1 were
significantly lower compared to the control region (p = 0.0006). Since NO was inhibited in ROI1, lower val-
ues in ROI1 compared to ROI3 were expected. This was only the case in the group of women with migraine.
However, it seemed unlikely that NO inhibition was only effective in women with migraine and not in those
without migraine. An explanation could be that women with migraine have higher levels of NO compared
to women without migraine. Consequently, there could be more NO-related activity simply because there
is more NO present in women with migraine. The relative energy density only reflects the activity, but not
the amount of NO. If this interpretation holds, it would align with the well-known paradox linking migraine
and cardiovascular disease. Migraine patients have a higher chance of cardiovascular disease, but not due to
traditional risk factors [7], such as atherosclerosis, since more NO-related activity is detected in women with
migraine, which relates to less atherosclerosis [6].

When using WT, no significant differences were found in the endothelial activity that depends on NO (see
Section 4.3).

Figure 4.18: Boxplot of relative energy density of women without (left) and with migraine (right) for ROI1, across the entire measurement
region.

Relative energy density endothelial activity (NO-dependent)
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 0.17 (0.10-0.27) 0.13 (0.07-0.22) Yes (p = 0.00152)
ROI2 0.16 (0.08-0.25) 0.14 (0.05-0.19) No (p = 0.19516)
ROI3 0.18 (0.10-0.23) 0.17 (0.09-0.26) No (p = 0.42653)

Table 4.5: Table of p-values for the relative energy density, evaluated across the entire measurement region of the endothelial activity
(NO-dependent) of women with and without migraine, for all different ROIs, using DFT. Mean values and ranges are given in each case.
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4.5.3. Endothelial activity (NO-independent)
Table 4.6 shows a significant difference in ROI1. The boxplot in Figure 4.19 shows higher values for women
without migraine. The ROI1 values of women without migraine compared to ROI3 in the control region were
lower (p = 0.003). This was also the case for women with migraine (p < 0.00005). The values in ROI3 were not
significantly different (p = 0.73). These observations suggest that the decrease in energy was larger in women
with migraine compared to women without migraine, as a significant difference was observed in ROI1, but
not in ROI3. The biological interpretation of this result is unknown.

When using WT, no significant differences were found in endothelial activity independent of NO (see Sec-
tion 4.3).

Figure 4.19: Boxplot of relative energy density of women without (left) and with migraine (right) for ROI1, across the entire measurement
region.

Relative energy density endothelial activity (NO-independent)
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 0.22 (0.08-0.42) 0.20 (0.05-0.37) Yes (p = 0.03422)
ROI2 0.20 (0.05-0.40) 0.19 (0.07-0.33) No (p = 0.25652)
ROI3 0.29 (0.16-0.42) 0.28 (0.06-0.42) No (p = 0.72751)

Table 4.6: Table of p-values for the relative energy density, evaluated across the entire measurement region of the endothelial activity
(NO-independent) of women with and without migraine, for all different ROIs, using DFT. Mean values and ranges are given in each
case.

4.6. Evaluation of phase characteristics using DFT
Similarly to Section 4.4, a statistical analysis as outlined in Subsection 3.2.3, was conducted to determine
the significance of the results. This will be done for all different frequency domains, each corresponding to
a distinct biological mechanism. A p-value smaller than 0.05 was considered significant. Only tables with
statistically significant results are shown. The remaining tables can be found in the Appendix A.4. For the
evaluation of phase characteristics using DFT, there were only significant results for respiratory activity and
endothelial activity (NO-dependent).

4.6.1. Respiratory activity
Table 4.7 presents the relative energy densities and p-values of women without migraine and women with
migraine, using the DFT. Similarly to the WT (Table 4.2), the only significant difference was found in the
peak phase for ROI1. The p-values were also calculated for the differences of values in the peak phase in
ROI1 and ROI3 of women without and with migraine. These were p = 0.03 and p = 0.01 respectively. The
values in the peak phase of ROI1 were significantly higher compared to the values in ROI3 for both groups.
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The interpretation of these results should be with caution, since the reliability is uncertain. Moreover, the
biological interpretation is unknown.

Figure 4.20: Boxplot of relative energy density of women without (left) and with migraine (right), in the peak phase of ROI1.

Relative energy density respiratory activity
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 Baseline 0.24 (0.12-0.43) 0.27 (0.09-0.77) No (p = 0.13107)
ROI1 Peak 0.19 (0.07-0.42) 0.21 (0.11-0.53) Yes (p = 0.01547)
ROI1 Plateau 0.23 (0.15-0.47) 0.25 (0.12-0.58) No (p = 0.62315)
ROI2 Baseline 0.25 (0.14-0.47) 0.27 (0.11-0.65) No (p = 0.15545)
ROI2 Peak 0.22 (0.03-0.40) 0.25 (0.11-0.54) No (p = 0.31270)
ROI2 Plateau 0.21 (0.13-0.48) 0.20 (0.06-0.46) No (p = 0.27968)
ROI3 Baseline 0.23 (0.14-0.44) 0.25 (0.05-0.69) No (p = 0.46926)
ROI3 Peak 0.15 (0.03-0.24) 0.17 (0.06-0.58) No (p = 0.10586)
ROI3 Plateau 0.21 (0.15-0.46) 0.21 (0.12-0.44) No (p = 0.61057)

Table 4.7: Table of p-values for the relative energy density of the respiratory activity of women with and without migraine, for all different
combinations of ROIs and phases, using DFT. Mean values and ranges are given in each case.

4.6.2. Endothelial activity (NO-dependent)
Table 4.8 presents the relative energy densities and p-values of women with and without migraine. Two sig-
nificant differences between the two groups were found in the baseline phase for ROI1 and the baseline phase
for ROI2. The corresponding boxplots can be found in Figure 4.21. When using the WT, Table 4.3 did not show
these two differences as statistically significant. However, when using the WT, Table 4.3 shows that the cor-
responding p-values were relatively small (p = 0.08 and p = 0.06 respectively) and that the values for women
without migraine were lower compared to women with migraine. Another distinction was that the significant
difference in the peak phase for ROI3 observed with the WT is no longer present when using the DFT.

When comparing ROI1 and the control region in the baseline phase for women without migraine and with
migraine, the p-values were p = 0.28 and p = 0.05 respectively. This means that, in the baseline phase, the val-
ues of ROI1 and ROI3 for women without migraine were similar. Women with migraine showed smaller values
in ROI1 compared to ROI3. A similar pattern was present when comparing ROI2 with the control region. The
p-values for women without migraine and women with migraine were respectively p = 0.86 and p = 0.009.
This exact behavior was also observed in Subsection 4.5.2 and therefore, the same reasoning applies here.
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(a) (b)

Figure 4.21: Boxplot of relative energy density of women without (left) and with migraine (right), in the baseline phase (a) of ROI1. (b) of
ROI2.

Relative energy density endothelial activity (NO-dependent)
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 Baseline 0.17 (0.02-0.49) 0.12 (0.04-0.31) Yes (p = 0.02380)
ROI1 Peak 0.12 (0.04-0.27) 0.14 (0.06-0.23) No (p = 0.68765)
ROI1 Plateau 0.12 (0.02-0.32) 0.11 (0.02-0.24) No (p = 0.26409)
ROI2 Baseline 0.16 (0.05-0.33) 0.11 (0.03-0.27) Yes (p = 0.02860)
ROI2 Peak 0.11 (0.03-0.28) 0.11 (0.02-0.20) No (p = 0.96437)
ROI2 Plateau 0.12 (0.01-0.35) 0.10 (0.05-0.28) No (p = 0.68765)
ROI3 Baseline 0.16 (0.03-0.31) 0.14 (0.04-0.35) No (p = 0.46926)
ROI3 Peak 0.15 (0.05-0.34) 0.16 (0.07-0.27) No (p = 0.57353)
ROI3 Plateau 0.11 (0.03-0.29) 0.11 (0.05-0.28) No (p = 0.86521)

Table 4.8: Table of p-values for the relative energy density of the endothelium activity (NO-dependent) of women with and without
migraine, for all different combinations of ROIs and phases, using DFT. Mean values and ranges are given in each case.
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Discussion

This study investigated whether wavelet analysis (WA) of the VASCULAR-study data yield more insights than
Fourier analysis (FA) into bloodflow measurements in women, particularly in examining the role of nitric ox-
ide (NO) and calcitonin gene-related peptide (CGRP) in the microvasculature among women with and with-
out migraine. This was achieved by performing WA using the complex Morlet wavelet as the mother wavelet.
Relative energy density served as a quantitative measure. Differences between women with migraine and
women without migraine were assessed through statistical analyses using p-values. Both WA and FA were
applied to examine differences across the entire measurement region and within specific phases (baseline,
peak and plateau).

5.1. Main findings
When investigating the entire measurement region using WA, significant differences in relative energy density
were only found in the respiratory activity of ROI1. However, statistical comparison of ROI1 and the control
region ROI3 within the two groups individually did not show any significant differences, suggesting similar
values in ROI1 and ROI3 for both groups.

Looking at the phases individually, significant differences were found in the respiratory activity during the
peak phase of ROI1. The values for ROI1 of women without migraine were similar to the values of the control
region ROI3. The values for ROI1 of women with migraine were significantly higher compared to the control
region. However, since the relative energy density appeared to be higher in women with migraine and this
difference is only observed in the peak phase of ROI1, the biological clarification remains unclear and the
result should be interpreted with caution.

Furthermore, significant differences were found in the endothelial activity dependent on NO during the
peak phase of ROI3. The values of women with migraine appeared higher in the peak phase of ROI3. This
difference was not significant in the entire measurement region and therefore, the biological interpretation
remains unclear.

When using FA, the same significant difference was found in the respiratory activity of ROI1. The values
of women with migraine appeared to be higher. This same pattern was observed when using WA.

Additionally, significant differences were found in both NO-dependent and NO-independent endothelial
activity. For NO-dependent endothelial activity, a significant decrease in relative energy density was observed
for women with migraine. This same pattern was not discovered in the group of women without migraine. A
decrease in NO activity is as expected, since NO is inhibited in ROI1. However, a decrease in relative energy
density was only observed in ROI1 for women with migraine, while no such decrease occurred in women
without migraine. A possible explanation could be that women with migraine have higher levels of NO and
thus more NO-related activity. This would also be consistent with the paradoxical relationship between mi-
graine and cardiovascular disease; the traditional risk factor of cardiovascular disease is atherosclerosis, but
more NO-related activity relates to less atherosclerosis, which is also observed in women with migraine [6][7].
The exact explanation of the detected difference in activity remains unknown and requires further research.

For the NO-independent endothelial activity, values in ROI1 for both groups were significantly smaller
compared to ROI3.
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Looking at the phases individually, the same significant difference was found in the respiratory activity
of ROI1 in the peak phase. The values in the peak phase for both groups were significantly higher in ROI1
compared to the peak phase of ROI3.

Moreover, significant differences were found in the endothelial activity associated with NO in the baseline
phase in both ROI1 and ROI2. In both regions, women with migraine had significantly smaller value, whereas
no notable differences were found in women without migraine. The same pattern was visible when consid-
ering the entire measurement region, instead of the phases separately. The biological interpretation of these
results remains unclear.

A major advantage of WA over FA is its ability to enable time and frequency localization, both at the same
time. One notable observation using WA was that, around 1500 seconds, a pronounced difference in ac-
tivity was noticed between women with migraine and women without migraine. This difference emerged
between the peak and plateau phase. The underlying cause of this difference remains unclear. This was the
only notable observation identified when analyzing the data in both the frequency and time domain using
the WA. To calculate relative energy density as a quantitative measure, the wavelet coefficients were averaged
over time. This facilitated comparison between the two groups of women. However, in this way, the time
information was lost by the averaging process. Given that WA trades frequency resolution for time-frequency
localization at the same time, FA may be more suitable in this study for this specific dataset as it offers more
precise frequency resolution. Moreover, using relative energy density as quantitative measure eliminates the
time-localization advantage of WA.

5.2. Limitations and strengths
Several limitations are present in this study. One of them is related to the WA, since it involves multiple
choices during implementation. One of them is the choice for the mother wavelet. In addition, many mother
wavelets also provide additional parameters from which to choose. While this flexibility allows the mother
wavelet to be adapted to the specific characteristics of the data, it also is a disadvantage, since there is no
standardized measure found to assess how well the mother wavelet fits the data. In this study, the parameters
were chosen based on the commonly used values in the literature.

Moreover, the division of the frequency intervals into distinct biological mechanisms varies across the
literature [13][15][16][17][59]. In this study, one specific classification was chosen. However, there exist other
studies that have defined these intervals differently.

Additionally, the sample frequency used in this study was relatively low. Consequently, no significant dif-
ferences were observed in the frequency intervals associated with the neurogenic activity (0.02−0.06 Hz) and
smooth muscle cells activity (0.06−0.15 Hz) did not show any results. Although some results were detected
for respiratory activity (0.15−0.4 Hz), the reliability of these results is uncertain. Significant results were found
in the two lowest frequency intervals, which are associated with endothelial activity.

One of the strengths of this study is the combined use of WA and FA. Each method has its own advantage. FA
provides good frequency localization, while WA offers both frequency and time localization, while sacrificing
part of the frequency resolution. By using both methods, the study ensures reliable frequency resolution, by
comparing the results using WA and the results using FA, and also time localization, since WA also provides
information in the time domain.

5.3. Future work
The primary recommendation for future research is to adjust the sampling frequency to a higher value. The
sample frequency plays a critical role in frequency-based analyses. In this study, a sampling frequency of 1
Hz was used. However, many studies utilize much higher frequencies of for example 40 Hz. Increasing the
sample frequency would also enable analysis of the cardiac activity, as it would satisfy the requirements of the
Nyguist-Shannon Sampling Theorem. In PIMSoft, the software used by researchers of ERASMUS MC to ac-
quire LSCI data, the sampling frequency is determined by two parameters: the frame rate and the record with
averaging. The frame rate denotes the number of images captured per second. The record with averaging is
the number of images averaged to compute a single speckle contrast value. The resulting effective frame rate,
which corresponds to the sampling frequency, is given by the ratio:

fs = f r ame r ate

r ecor d wi th aver ag i ng
. (5.1)
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A higher sampling frequency is obtained by increasing the frame rate or decreasing the record with averaging.
This study employed continuous wavelet transform (CWT) using the complex Morlet wavelet as the mother

wavelet, which is commonly used in blood perfusion analysis. While this choice is reasonable, it may still be
interesting and valuable to explore other mother wavelet options to assess whether the results differ signif-
icantly. Moreover, this study focused on using CWT, but future studies could also use the discrete wavelet
transform (DWT) for the same reason.

It could also be interesting to repeat this research by focusing on the group of women with migraine with
aura and women without migraine.

As mentioned earlier, a significant difference was observed around 1500 seconds between women with
migraine and without migraine. Further investigation into the underlying cause of this difference would be
interesting.

Erasmus MC is currently conducting new measurements on the forehead instead of the forearm. Compar-
ing these results with those obtained from the forearm could be of interest and may reveal different results.



6
Conclusion

Both wavelet analysis (WA) and Fourier analysis (FA) revealed significant differences in respiratory activity
within ROI1, with higher values in relative energy density observed in women with migraine. When look-
ing at phase-specific analysis in respiratory activity, this difference was reflected in the peak phase of ROI1
for both WA and FA. In addition, both methods identified significant differences in endothelial activity as-
sociated with NO, when evaluating the phases individually. WA detected significant differences in the peak
phase of ROI3, with higher values for women with migraine. FA revealed the significant differences at the
baseline of ROI1 and ROI2, where values for women without migraine appeared to be higher. WA also yielded
notably low p-values for the baseline phase of ROI1 and ROI2, suggesting possible patterns that were sug-
gestive but not statistically significant. The biological explanation behind these observed patterns is not yet
understood and further research is required to investigate them. WA did show statistical significance in the
peak phase of ROI3, while, FA did not. Moreover, FA identified significant differences in both NO-dependent
and NO-independent endothelial activity in ROI1. These differences were not observed with WA. Although
many similar patterns were observed for the WA and FA for the VASCULAR-study dataset, there were also
subtle differences. These subtle differences are likely due to the higher frequency resolution of FA, whereas
WA sacrifices frequency resolution to achieve time and frequency localization at the same time. Using this
advantage of WA, a significant increase in activity was observed in women with migraine between the peak
and plateau phase.
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A
Tables and figures

A.1. Tables: Entire measurement region evaluation using WT

Relative energy density smooth muscle cells activity
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 0.24 (0.15-0.36) 0.22 (0.12-0.43) No (p = 0.97862)
ROI2 0.24 (0.17-0.31) 0.23 (0.14-0.38) No (p = 0.85117)
ROI3 0.24 (0.14-0.44) 0.20 (0.14-0.44) No (p = 0.09478)

Table A.1: Table of p-values for the relative energy density, evaluated across the entire measurement region of the smooth muscle cells
activity of women with and without migraine, for all different ROIs. Mean values and ranges are given in each case.

Relative energy density neurogenic activity
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 0.21 (0.12-0.35) 0.23 (0.11-0.31) No (p = 0.82326)
ROI2 0.24 (0.16-0.33) 0.23 (0.14-0.37) No (p = 0.79556)
ROI3 0.20 (0.13-0.37) 0.21 (0.11-0.31) No (p = 0.52586)

Table A.2: Table of p-values for the relative energy density, evaluated across the entire measurement region of the neurogenic activity of
women with and without migraine, for all different ROIs. Mean values and ranges are given in each case.

Relative energy density endothelial activity (NO-dependent)
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 0.13 (0.07-0.23) 0.10 (0.06-0.20) No (p = 0.06973)
ROI2 0.11 (0.06-0.17) 0.11 (0.05-0.18) No (p = 0.75451)
ROI3 0.12 (0.05-0.19) 0.11 (0.06-0.17) No (p = 0.89339)

Table A.3: Table of p-values for the relative energy density, evaluated across the entire measurement region of the endothelial activity
(NO-dependent) of women with and without migraine, for all different ROIs. Mean values and ranges are given in each case.
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A.2. Tables: Evaluation of phase characteristics using WT 40

Relative energy density endothelial activity (NO-independent)
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 0.14 (0.05-0.29) 0.10 (0.04-0.30) No (p = 0.19516)
ROI2 0.09 (0.05-0.30) 0.08 (0.04-0.31) No (p = 0.37643)
ROI3 0.13 (0.05-0.32) 0.14 (0.04-0.28) No (p = 0.66155)

Table A.4: Table of p-values for the relative energy density, evaluated across the entire measurement region of the endothelial activity
(NO-independent) of women with and without migraine, for all different ROIs. Mean values and ranges are given in each case.

A.2. Tables: Evaluation of phase characteristics using WT

Relative energy density smooth muscle cells activity
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 Baseline 0.22 (0.12-0.42) 0.26 (0.08-0.37) No (p = 0.37643)
ROI1 Peak 0.19 (0.08-0.35) 0.20 (0.04-0.28) No (p = 0.54944)
ROI1 Plateau 0.31 (0.14-0.48) 0.30 (0.15-0.52) No (p = 0.64864)
ROI2 Baseline 0.24 (0.16-0.36) 0.24 (0.11-0.37) No (p = 0.86521)
ROI2 Peak 0.22 (0.10-0.39) 0.22 (0.08-0.32) No (p = 0.43699)
ROI2 Plateau 0.27 (0.15-0.49) 0.24 (0.14-0.52) No (p = 0.67455)
ROI3 Baseline 0.24 (0.16-0.31) 0.24 (0.08-0.34) No (p = 0.74097)
ROI3 Peak 0.21 (0.11-0.45) 0.20 (0.06-0.27) No (p = 0.17731)
ROI3 Plateau 0.29 (0.20-0.46) 0.28 (0.16-0.47) No (p = 0.74097)

Table A.5: Table of p-values for the relative energy density of the smooth muscle cells activity of women with and without migraine, for
all different combinations of ROIs and phases. Mean values and ranges are given in each case.

Relative energy density neurogenic activity
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 Baseline 0.21 (0.07-0.39) 0.19 (0.03-0.38) No (p = 0.35745)
ROI1 Peak 0.21 (0.12-0.38) 0.22 (0.07-0.35) No (p = 0.97862)
ROI1 Plateau 0.21 (0.08-0.36) 0.21 (0.11-0.39) No (p = 0.76812)
ROI2 Baseline 0.23 (0.09-0.33) 0.23 (0.04-0.34) No (p = 0.90754)
ROI2 Peak 0.24 (0.09-0.34) 0.23 (0.09-0.43) No (p = 0.79556)
ROI2 Plateau 0.22 (0.12-0.36) 0.27 (0.10-0.44) No (p = 0.24184)
ROI3 Baseline 0.22 (0.09-0.32) 0.17 (0.04-0.34) No (p = 0.22777)
ROI3 Peak 0.20 (0.12-0.42) 0.19 (0.06-0.34) No (p = 0.45836)
ROI3 Plateau 0.19 (0.10-0.36) 0.21 (0.09-0.34) No (p = 0.74097)

Table A.6: Table of p-values for the relative energy density of the neurogenic activity of women with and without migraine, for all different
combinations of ROIs and phases. Mean values and ranges are given in each case.
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Relative energy density endothelial activity (NO-independent)
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 Baseline 0.11 (0.03-0.26) 0.09 (0.02-0.27) No (p = 0.17731)
ROI1 Peak 0.18 (0.04-0.41) 0.13 (0.02-0.40) No (p = 0.13569)
ROI1 Plateau 0.08 (0.01-0.21) 0.05 (0.02-0.30) No (p = 0.63584)
ROI2 Baseline 0.11 (0.02-0.22) 0.09 (0.01-0.18) No (p = 0.27180)
ROI2 Peak 0.09 (0.02-0.54) 0.08 (0.02-0.37) No (p = 0.82326)
ROI2 Plateau 0.06 (0.02-0.20) 0.05 (0.004-0.27) No (p = 0.59811)
ROI3 Baseline 0.12 (0.03-0.23) 0.11 (0.03-0.43) No (p = 0.79556)
ROI3 Peak 0.19 (0.03-0.45) 0.14 (0.03-0.44) No (p = 0.61057)
ROI3 Plateau 0.08 (0.02-0.27) 0.09 (0.02-0.26) No (p = 0.74097)

Table A.7: Table of p-values for the relative energy density of the endothelial activity (NO-independent) of women with and without
migraine, for all different combinations of ROIs and phases. Mean values and ranges are given in each case.

A.3. Tables: Entire measurement region evaluation using DFT

Relative energy density smooth muscle cells activity
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 0.18 (0.12-0.35) 0.20 (0.11-0.33) No (p = 0.17731)
ROI2 0.20 (0.11-0.32) 0.20 (0.14-0.32) No (p = 0.59811)
ROI3 0.16 (0.10-0.35) 0.15 (0.11-0.34) No (p = 0.48031)

Table A.8: Table of p-values for the relative energy density, evaluated across the entire measurement region of the smooth muscle cells
activity of women with and without migraine, for all different ROIs, using DFT. Mean values and ranges are given in each case.

Relative energy density neurogenic activity
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 0.20 (0.11-0.28) 0.20 (0.10-0.30) No (p = 0.76812)
ROI2 0.20 (0.14-0.29) 0.20 (0.14-0.34) No (p = 0.45836)
ROI3 0.18 (0.14-0.27) 0.18 (0.11-0.24) No (p = 0.54944)

Table A.9: Table of p-values for the relative energy density, evaluated across the entire measurement region of the neurogenic activity of
women with and without migraine, for all different ROIs, using DFT. Mean values and ranges are given in each case.

A.4. Tables: Evaluation of phase characteristics using DFT

Relative energy density smooth muscle cells activity
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 Baseline 0.24 (0.11-0.45) 0.27 (0.08-0.42) No (p = 0.67455)
ROI1 Peak 0.15 (0.09-0.34) 0.18 (0.04-0.28) No (p = 0.92171)
ROI1 Plateau 0.32 (0.12-0.53) 0.27 (0.15-0.57) No (p = 0.66155)
ROI2 Baseline 0.23 (0.13-0.37) 0.25 (0.10-0.40) No (p = 0.71414)
ROI2 Peak 0.20 (0.05-0.32) 0.21 (0.08-0.30) No (p = 0.72751)
ROI2 Plateau 0.29 (0.14-0.50) 0.26 (0.14-0.56) No (p = 0.74097)
ROI3 Baseline 0.26 (0.14-0.38) 0.27 (0.05-0.38) No (p = 0.86521)
ROI3 Peak 0.15 (0.07-0.33) 0.16 (0.05-0.26) No (p = 0.61057)
ROI3 Plateau 0.31 (0.15-0.46) 0.29 (0.17-0.53) No (p = 0.89339)

Table A.10: Table of p-values for the relative energy density of the smooth muscle cells activity of women with and without migraine, for
all different combinations of ROIs and phases, using DFT. Mean values and ranges are given in each case.
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Relative energy density neurogenic activity
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 Baseline 0.19 (0.07-0.37) 0.20 (0.03-0.39) No (p = 0.67455)
ROI1 Peak 0.19 (0.07-0.34) 0.19 (0.05-0.40) No (p = 0.72751)
ROI1 Plateau 0.20 (0.08-0.34) 0.20 (0.09-0.38) No (p = 0.96437)
ROI2 Baseline 0.18 (0.08-0.31) 0.23 (0.03-0.38) No (p = 0.36686)
ROI2 Peak 0.20 (0.04-0.34) 0.21 (0.08-0.40) No (p = 0.62315)
ROI2 Plateau 0.22 (0.11-0.38) 0.26 (0.12-0.49) No (p = 0.43699)
ROI3 Baseline 0.20 (0.08-0.31) 0.19 (0.04-0.32) No (p = 0.97862)
ROI3 Peak 0.18 (0.06-0.30) 0.18 (0.04-0.35) No (p = 0.83719)
ROI3 Plateau 0.18 (0.09-0.37) 0.20 (0.09-0.33) No (p = 0.87928)

Table A.11: Table of p-values for the relative energy density of the neurogenic activity of women with and without migraine, for all
different combinations of ROIs and phases, using DFT. Mean values and ranges are given in each case.

Relative energy density endothelial activity (NO-independent)
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 Baseline 0.08 (0.01-0.26) 0.07 (0.001-0.26) No (p = 0.15032)
ROI1 Peak 0.30 (0.07-0.65) 0.19 (0.04-0.51) No (p = 0.05475)
ROI1 Plateau 0.05 (0.001-0.25) 0.04 (0.0009-0.38) No (p = 0.99287)
ROI2 Baseline 0.10 (0.01-0.30) 0.07 (0.006-0.24) No (p = 0.11794)
ROI2 Peak 0.15 (0.02-0.76) 0.12 (0.009-0.50) No (p = 0.27180)
ROI2 Plateau 0.03 (0.0005-0.24) 0.05 (0.001-0.26) No (p = 0.11379)
ROI3 Baseline 0.09 (0.01-0.28) 0.09 (0.0002-0.51) No (p = 0.59811)
ROI3 Peak 0.31 (0.05-0.72) 0.27 (0.05-0.61) No (p = 0.43699)
ROI3 Plateau 0.05 (0.002-0.32) 0.07 (0.003-0.37) No (p = 0.64864)

Table A.12: Table of p-values for the relative energy density of the endothelial activity (NO-independent) of women with and without
migraine, for all different combinations of ROIs and phases, using DFT. Mean values and ranges are given in each case.

A.5. Tables: P-values within each group across all phases

Relative energy density respiratory activity using WT
Blank Significance (no migraine) Significance (migraine)
ROI1 Baseline-Peak No (p = 0.19738) No (p = 0.15567)
ROI1 Baseline-Plateau No (p = 0.33051) No (p = 0.13733)
ROI1 Peak-Plateau No (p = 0.11396) No (p = 0.42937)
ROI2 Baseline-Peak No (p = 0.68399) No (p = 0.25601)
ROI2 Baseline-Plateau No (p = 0.52706) Yes (p = 0.00153)
ROI2 Peak-Plateau No (p = 0.96645) Yes (p = 0.01788)
ROI3 Baseline-Peak Yes (p = 0.04906) Yes (p = 0.04552)
ROI3 Baseline-Plateau No (p = 0.70476) No (p = 0.07976)
ROI3 Peak-Plateau No (p = 0.11396) No (p = 0.68557)

Table A.13: Table of p-values for the relative energy density of the respiratory activity of women with and without migraine, analyzed
separately within each group across the phases (baseline vs. peak, baseline vs. plateau and peak vs. plateau) in all the ROIs.
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Relative energy density smooth muscle cells activity using WT
Blank Significance (no migraine) Significance (migraine)
ROI1 Baseline-Peak No (p = 0.06043) Yes (p = 0.00010)
ROI1 Baseline-Plateau Yes (p = 0.00871) No (p = 0.06229)
ROI1 Peak-Plateau Yes (p = 0.00057) Yes (p = 0.0000005)
ROI2 Baseline-Peak No (p = 0.85534) No (p = 0.10086)
ROI2 Baseline-Plateau Yes (p = 0.02486) No (p = 0.16885)
ROI2 Peak-Plateau Yes (p = 0.03399) Yes (p = 0.00198)
ROI3 Baseline-Peak No (p = 0.09510) Yes (p = 0.00380)
ROI3 Baseline-Plateau Yes (p = 0.00281) Yes (p = 0.00988)
ROI3 Peak-Plateau Yes (p = 0.00065) Yes (p = 0.0000003)

Table A.14: Table of p-values for the relative energy density of the smooth muscle cells activity of women with and without migraine,
analyzed separately within each group across the phases (baseline vs. peak, baseline vs. plateau and peak vs. plateau) in all the ROIs.

Relative energy density neurogenic activity using WT
Blank Significance (no migraine) Significance (migraine)
ROI1 Baseline-Peak No (p = 0.49080) No (p = 0.19762)
ROI1 Baseline-Plateau No (p = 0.94411) No (p = 0.25601)
ROI1 Peak-Plateau No (p = 0.37475) No (p = 0.83136)
ROI2 Baseline-Peak No (p = 0.43893) No (p = 0.27463)
ROI2 Baseline-Plateau No (p = 0.83337) No (p = 0.06551)
ROI2 Peak-Plateau No (p = 0.94411) Yes (p = 0.03863)
ROI3 Baseline-Peak No (p = 0.98881) No (p = 0.59400)
ROI3 Baseline-Plateau No (p = 0.60331) No (p = 0.22971)
ROI3 Peak-Plateau No (p = 0.24053) No (p = 0.44202)

Table A.15: Table of p-values for the relative energy density of the neurogenic activity of women with and without migraine, analyzed
separately within each group across the phases (baseline vs. peak, baseline vs. plateau and peak vs. plateau) in all the ROIs.

Relative energy density endothelial activity (NO-dependent) using WT
Blank Significance (no migraine) Significance (migraine)
ROI1 Baseline-Peak No (p = 0.70476) Yes (p = 0.01058)
ROI1 Baseline-Plateau No (p = 0.17798) No (p = 0.74932)
ROI1 Peak-Plateau No (p = 0.42234) Yes (p = 0.00694)
ROI2 Baseline-Peak No (p = 0.81154) Yes (p = 0.01132)
ROI2 Baseline-Plateau No (p = 0.31651) No (p = 0.55035)
ROI2 Peak-Plateau No (p = 0.52706) Yes (p = 0.04552)
ROI3 Baseline-Peak No (p = 0.96645) Yes (p = 0.02155)
ROI3 Baseline-Plateau No (p = 0.62309) No (p = 0.89834)
ROI3 Peak-Plateau No (p = 0.60331) Yes (p = 0.00074)

Table A.16: Table of p-values for the relative energy density of the endothelial activity (NO-dependent) of women with and without
migraine, analyzed separately within each group across the phases (baseline vs. peak, baseline vs. plateau and peak vs. plateau) in all
the ROIs.
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Relative energy density endothelial activity (NO-independent) using WT
Blank Significance (no migraine) Significance (migraine)
ROI1 Baseline-Peak Yes (p = 0.00533) Yes (p = 0.04083)
ROI1 Baseline-Plateau Yes (p = 0.02293) No (p = 0.18283)
ROI1 Peak-Plateau Yes (p = 0.00224) Yes (p = 0.00801)
ROI2 Baseline-Peak No (p = 0.37475) No (p = 0.94907)
ROI2 Baseline-Plateau Yes (p = 0.01260) No (p = 0.35785)
ROI2 Peak-Plateau No (p = 0.10110) No (p = 0.36923)
ROI3 Baseline-Peak Yes (p = 0.02913) Yes (p = 0.01382)
ROI3 Baseline-Plateau Yes (p = 0.04249) No (p = 0.20533)
ROI3 Peak-Plateau Yes (p = 0.00032) Yes (p = 0.00215)

Table A.17: Table of p-values for the relative energy density of the endothelial activity (NO-independent) of women with and without
migraine, analyzed separately within each group across the phases (baseline vs. peak, baseline vs. plateau and peak vs. plateau) in all
the ROIs.

A.6. Tables: P-values within each group across all ROIs using WT

Relative energy density respiratory activity
Blank Significance (no migraine) Significance (migraine)
Baseline ROI1-ROI3 Yes (p = 0.01152) No (p = 0.09633)
Baseline ROI2-ROI3 Yes (p = 0.03665) No (p = 0.068870)
Peak ROI1-ROI3 No (p = 0.94411) Yes (p = 0.01211)
Peak ROI2-ROI3 Yes (p = 0.00004) Yes (p = 0.00074)
Plateau ROI1-ROI3 No (p = 0.89957) No (p = 0.28427)
Plateau ROI2-ROI3 No (p = 0.76830) No (p = 0.32500)

Table A.18: Table of p-values for the relative energy density of the respiratory activity of women with and without migraine, analyzed
separately within each group across the ROIs (ROI1 vs. ROI3 and ROI2 vs. ROI3) in every phase. ROI3 is the control region.

Relative energy density smooth muscle cells activity
Blank Significance (no migraine) Significance (migraine)
Baseline ROI1-ROI3 No (p = 0.94411) No (p = 0.12065)
Baseline ROI2-ROI3 No (p = 0.96645) No (p = 0.50830)
Peak ROI1-ROI3 No (p = 0.39025) No (p = 0.59400)
Peak ROI2-ROI3 No (p = 0.25225) Yes (p = 0.00006)
Plateau ROI1-ROI3 No (p = 0.87741) No (p = 0.78186)
Plateau ROI2-ROI3 No (p = 0.39025) No (p = 0.38084)

Table A.19: Table of p-values for the relative energy density of the smooth muscle cells activity of women with and without migraine,
analyzed separately within each group across the ROIs (ROI1 vs. ROI3 and ROI2 vs. ROI3) in every phase. ROI3 is the control region.

Relative energy density neurogenic activity
Blank Significance (no migraine) Significance (migraine)
Baseline ROI1-ROI3 No (p = 0.94411) No (p = 0.41692)
Baseline ROI2-ROI3 No (p = 0.78984) Yes (p = 0.00516)
Peak ROI1-ROI3 No (p = 0.42234) Yes (p = 0.02583)
Peak ROI2-ROI3 No (p = 0.21822) Yes (p = 0.00019)
Plateau ROI1-ROI3 No (p = 0.87741) No (p = 0.41692)
Plateau ROI2-ROI3 No (p = 0.08392) Yes (p = 0.00030)

Table A.20: Table of p-values for the relative energy density of the neurogenic activity of women with and without migraine, analyzed
separately within each group across the ROIs (ROI1 vs. ROI3 and ROI2 vs. ROI3) in every phase. ROI3 is the control region.
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Relative energy density endothelial activity (NO-dependent)
Blank Significance (no migraine) Significance (migraine)
Baseline ROI1-ROI3 No (p = 0.12084) No (p = 0.34668)
Baseline ROI2-ROI3 No (p = 0.34488) Yes (p = 0.00380)
Peak ROI1-ROI3 No (p = 0.72574) No (p = 0.14937)
Peak ROI2-ROI3 No (p = 0.24053) Yes (p = 0.00005)
Plateau ROI1-ROI3 No (p = 0.72574) No (p = 0.57928)
Plateau ROI2-ROI3 No (p = 0.22919) No (p = 0.25601)

Table A.21: Table of p-values for the relative energy density of the endothelial activity (NO-dependent) of women with and without
migraine, analyzed separately within each group across the ROIs (ROI1 vs. ROI3 and ROI2 vs. ROI3) in every phase. ROI3 is the control
region..

Relative energy density endothelial activity (NO-independent)
Blank Significance (no migraine) Significance (migraine)
Baseline ROI1-ROI3 No (p = 0.30290) Yes (p = 0.00276)
Baseline ROI2-ROI3 No (p = 0.06465) Yes (p = 0.00254)
Peak ROI1-ROI3 No (p = 0.81154) Yes (p = 0.01211)
Peak ROI2-ROI3 Yes (p = 0.00065) Yes (p = 0.00002)
Plateau ROI1-ROI3 No (p = 0.50877) No (p = 0.06229)
Plateau ROI2-ROI3 No (p = 0.28967) No (p = 0.05920)

Table A.22: Table of p-values for the relative energy density of the endothelial activity (NO-independent) of women with and without
migraine, analyzed separately within each group across the ROIs (ROI1 vs. ROI3 and ROI2 vs. ROI3) in every phase. ROI3 is the control
region.

Tables: P-values within each group across all ROIs using FT

Relative energy density respiratory activity
Blank Significance (no migraine) Significance (migraine)
Baseline ROI1-ROI3 No (p = 0.31651) No (p = 0.18283)
Baseline ROI2-ROI3 No (p = 0.19738) No (p = 0.15567)
Peak ROI1-ROI3 No (p = 0.06043) Yes (p = 0.00012)
Peak ROI2-ROI3 Yes (p = 0.00002) Yes (p = 0.00002)
Plateau ROI1-ROI3 No (p = 1.0) No (p = 0.07976)
Plateau ROI2-ROI3 No (p = 0.49080) No (p = 0.63912)

Table A.23: Table of p-values for the relative energy density of the respiratory activity of women with and without migraine, analyzed
separately within each group across the ROIs (ROI1 vs. ROI3 and ROI2 vs. ROI3) in every phase, using DFT. ROI3 is the control region.

Relative energy density smooth muscle cells activity
Blank Significance (no migraine) Significance (migraine)
Baseline ROI1-ROI3 No (p = 0.54567) No (p = 0.15567)
Baseline ROI2-ROI3 No (p = 0.06910) No (p = 0.62393)
Peak ROI1-ROI3 No (p = 0.06465) Yes (p = 0.03654)
Peak ROI2-ROI3 Yes (p = 0.00718) Yes (p = 0.00003)
Plateau ROI1-ROI3 No (p = 0.85534) No (p = 0.66995)
Plateau ROI2-ROI3 No (p = 0.30290) No (p = 0.05064)

Table A.24: Table of p-values for the relative energy density of the smooth muscle cells activity of women with and without migraine,
analyzed separately within each group across the ROIs (ROI1 vs. ROI3 and ROI2 vs. ROI3) in every phase, using DFT. ROI3 is the control
region.
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Relative energy density neurogenic activity
Blank Significance (no migraine) Significance (migraine)
Baseline ROI1-ROI3 No (p = 0.22919) No (p = 0.22137)
Baseline ROI2-ROI3 No (p = 0.89957) No (p = 0.07599)
Peak ROI1-ROI3 No (p = 0.16881) Yes (p = 0.04552)
Peak ROI2-ROI3 Yes (p = 0.04906) Yes (p = 0.00117)
Plateau ROI1-ROI3 No (p = 0.85534) No (p = 0.32500)
Plateau ROI2-ROI3 No (p = 0.07873) Yes (p = 0.00037)

Table A.25: Table of p-values for the relative energy density of the neurogenic activity of women with and without migraine, analyzed
separately within each group across the ROIs (ROI1 vs. ROI3 and ROI2 vs. ROI3) in every phase, using DFT. ROI3 is the control region.

Relative energy density endothelial activity (NO-dependent)
Blank Significance (no migraine) Significance (migraine)
Baseline ROI1-ROI3 No (p = 0.27682) Yes (p = 0.04552)
Baseline ROI2-ROI3 No (p = 0.85534) Yes (p = 0.00922)
Peak ROI1-ROI3 Yes (p = 0.03148) Yes (p = 0.01058)
Peak ROI2-ROI3 Yes (p = 0.00533) Yes (p = 0.00005)
Plateau ROI1-ROI3 No (p = 0.94411) No (p = 0.18283)
Plateau ROI2-ROI3 No (p = 0.98881) No (p = 0.60888)

Table A.26: Table of p-values for the relative energy density of the endothelial activity (NO-dependent) of women with and without
migraine, analyzed separately within each group across the ROIs (ROI1 vs. ROI3 and ROI2 vs. ROI3) in every phase, using DFT. ROI3 is
the control region..

Relative energy density endothelial activity (NO-independent)
Blank Significance (no migraine) Significance (migraine)
Baseline ROI1-ROI3 No (p = 0.25225) Yes (p = 0.01294)
Baseline ROI2-ROI3 No (p = 0.60331) No (p = 0.59400)
Peak ROI1-ROI3 No (p = 0.07873) Yes (p = 0.00182)
Peak ROI2-ROI3 Yes (p = 0.00015) Yes (p = 0.00006)
Plateau ROI1-ROI3 No (p = 0.50877) No (p = 0.16885)
Plateau ROI2-ROI3 No (p = 0.17798) No (p = 0.48120)

Table A.27: Table of p-values for the relative energy density of the endothelial activity (NO-independent) of women with and without
migraine, analyzed separately within each group across the ROIs (ROI1 vs. ROI3 and ROI2 vs. ROI3) in every phase, using DFT. ROI3 is
the control region.

A.7. Tables: Women with aura using WT

Relative energy density respiratory activity
Blank No migraine Migraine with aura Significance

(p < 0.05)
ROI1 0.18 (0.10-0.33) 0.20 (0.12-0.46) No (p = 0.06175)
ROI2 0.19 (0.12-0.32) 0.19 (0.12-0.37) No (p = 0.51691)
ROI3 0.17 (0.11-0.31) 0.21 (0.14-0.44) No (p = 0.13705)

Table A.28: Table of p-values for the relative energy density, evaluated across the entire measurement region of the respiratory activity of
women with migraine with aura and women without migraine, for all different ROIs. Mean values and ranges are given in each case.
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Relative energy density respiratory activity
Blank No migraine Migraine with aura Significance

(p < 0.05)
ROI1 Baseline 0.20 (0.10-0.39) 0.21 (0.06-0.71) No (p = 0.17390)
ROI1 Peak 0.18 (0.06-0.37) 0.21 (0.09-0.47) Yes (p = 0.01144)
ROI1 Plateau 0.20 (0.13-0.34) 0.23 (0.10-0.49) No (p = 0.30331)
ROI2 Baseline 0.22 (0.11-0.43) 0.24 (0.09-0.57) No (p = 0.31540)
ROI2 Peak 0.20 (0.06-0.40) 0.23 (0.14-0.45) No (p = 0.28005)
ROI2 Plateau 0.20 (0.11-0.40) 0.21 (0.06-0.32) No (p = 0.90894)
ROI3 Baseline 0.21 (0.11-0.40) 0.21 (0.03-0.61) No (p = 0.50061)
ROI3 Peak 0.17 (0.08-0.34) 0.19 (0.10-0.53) No (p = 0.39452)
ROI3 Plateau 0.19 (0.14-0.39) 0.22 (0.09-0.39) No (p = 0.43822)

Table A.29: Table of p-values for the relative energy density of the respiratory activity of women with migraine with aura and women
without migraine, for all different combinations of ROIs and phases. Mean values and ranges are given in each case.

Relative energy density smooth muscle cells activity
Blank No migraine Migraine with aura Significance

(p < 0.05)
ROI1 0.24 (0.15-0.36) 0.22 (0.12-0.43) No (p = 1.0)
ROI2 0.24 (0.17-0.31) 0.22 (0.14-0.38) No (p = 0.67494)
ROI3 0.24 (0.14-0.44) 0.22 (0.16-0.36) No (p = 0.56741)

Table A.30: Table of p-values for the relative energy density, evaluated across the entire measurement region of the smooth muscle cells
activity of women with migraine with aura and women without migraine, for all different ROIs. Mean values and ranges are given in each
case.

Relative energy density smooth muscle cells activity
Blank No migraine Migraine with aura Significance

(p < 0.05)
ROI1 Baseline 0.22 (0.12-0.42) 0.26 (0.08-0.37) No (p = 0.40878)
ROI1 Peak 0.19 (0.08-0.35) 0.20 (0.04-0.28) No (p = 0.38056)
ROI1 Plateau 0.31 (0.14-0.48) 0.30 (0.15-0.52) No (p = 0.90894)
ROI2 Baseline 0.24 (0.16-0.36) 0.25 (0.11-0.37) No (p = 0.82896)
ROI2 Peak 0.22 (0.10-0.39) 0.22 (0.08-0.32) No (p = 0.48458)
ROI2 Plateau 0.27 (0.15-0.49) 0.31 (0.18-0.52) No (p = 0.65647)
ROI3 Baseline 0.24 (0.16-0.31) 0.24 (0.08-0.34) No (p = 0.75071)
ROI3 Peak 0.21 (0.11-0.45) 0.19 (0.06-0.26) No (p = 0.19931)
ROI3 Plateau 0.29 (0.20-0.46) 0.31 (0.16-0.45) No (p = 0.53348)

Table A.31: Table of p-values for the relative energy density of the smooth muscle cells activity of women with migraine with aura and
women without migraine, for all different combinations of ROIs and phases. Mean values and ranges are given in each case.

Relative energy density neurogenic activity
Blank No migraine Migraine with aura Significance

(p < 0.05)
ROI1 0.21 (0.12-0.35) 0.20 (0.11-0.27) No (p = 0.38056)
ROI2 0.24 (0.16-0.33) 0.22 (0.14-0.34) No (p = 0.56741)
ROI3 0.20 (0.13-0.37) 0.20 (0.11-0.25) No (p = 0.17390)

Table A.32: Table of p-values for the relative energy density, evaluated across the entire measurement region of the neurogenic activity
of women with migraine with aura and women without migraine, for all different ROIs. Mean values and ranges are given in each case.
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Relative energy density neurogenic activity
Blank No migraine Migraine with aura Significance

(p < 0.05)
ROI1 Baseline 0.21 (0.07-0.39) 0.19 (0.03-0.33) No (p = 0.36691)
ROI1 Peak 0.21 (0.12-0.38) 0.18 (0.07-0.30) No (p = 0.17390)
ROI1 Plateau 0.21 (0.08-0.36) 0.19 (0.11-0.31) No (p = 0.45338)
ROI2 Baseline 0.23 (0.09-0.33) 0.18 (0.04-0.34) No (p = 0.62016)
ROI2 Peak 0.24 (0.09-0.34) 0.20 (0.09-0.35) No (p = 0.17390)
ROI2 Plateau 0.22 (0.12-0.36) 0.20 (0.10-0.42) No (p = 0.56741)
ROI3 Baseline 0.22 (0.09-0.32) 0.17 (0.04-0.34) No (p = 0.21769)
ROI3 Peak 0.20 (0.12-0.42) 0.14 (0.06-0.34) No (p = 0.07316)
ROI3 Plateau 0.19 (0.10-0.36) 0.17 (0.09-0.34) No (p = 0.36691)

Table A.33: Table of p-values for the relative energy density of the neurogenic activity of women with migraine with aura and women
without migraine, for all different combinations of ROIs and phases. Mean values and ranges are given in each case.

Relative energy density endothelial activity (NO-dependent)
Blank No migraine Migraine with aura Significance

(p < 0.05)
ROI1 0.13 (0.07-0.23) 0.11 (0.07-0.20) No (p = 0.15836)
ROI2 0.11 (0.06-0.17) 0.11 (0.07-0.18) No (p = 0.75071)
ROI3 0.12 (0.05-0.19) 0.12 (0.08-0.16) No (p = 0.69361)

Table A.34: Table of p-values for the relative energy density, evaluated across the entire measurement region of the endothelial activity
(NO-dependent) of women with migraine with aura and women without migraine, for all different ROIs. Mean values and ranges are
given in each case.

Relative energy density endothelial activity (NO-dependent)
Blank No migraine Migraine with aura Significance

(p < 0.05)
ROI1 Baseline 0.10 (0.04-0.30) 0.07 (0.04-0.20) Yes (p = 0.04602)
ROI1 Peak 0.10 (0.04-0.23) 0.12 (0.07-0.22) No (p = 0.09596)
ROI1 Plateau 0.08 (0.02-0.22) 0.07 (0.03-0.16) No (p = 0.51691)
ROI2 Baseline 0.09 (0.03-0.25) 0.07 (0.04-0.15) No (p = 0.06175)
ROI2 Peak 0.09 (0.03-0.22) 0.11 (0.05-0.19) No (p = 0.25804)
ROI2 Plateau 0.08 (0.02-0.21) 0.07 (0.03-0.18) No (p = 0.94934)
ROI3 Baseline 0.10 (0.04-0.20) 0.08 (0.04-0.20) No (p = 0.23724)
ROI3 Peak 0.10 (0.04-0.26) 0.14 (0.10-0.25) Yes (p = 0.00260)
ROI3 Plateau 0.09 (0.03-0.21) 0.09 (0.03-0.19) No (p = 0.84882)

Table A.35: Table of p-values for the relative energy density of the endothelial activity (NO-dependent) of women with migraine with
aura and women without migraine, for all different combinations of ROIs and phases. Mean values and ranges are given in each case.

Relative energy density endothelial activity (NO-independent)
Blank No migraine Migraine with aura Significance

(p < 0.05)
ROI1 0.14 (0.05-0.29) 0.11 (0.05-0.30) No (p = 0.65647)
ROI2 0.09 (0.05-0.30) 0.10 (0.04-0.31) No (p = 0.77007)
ROI3 0.13 (0.05-0.32) 0.14 (0.07-0.28) No (p = 0.53348)

Table A.36: Table of p-values for the relative energy density, evaluated across the entire measurement region of the endothelial activity
(NO-independent) of women with migraine with aura and women without migraine, for all different ROIs. Mean values and ranges are
given in each case.
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Relative energy density endothelial activity (NO-independent)
Blank No migraine Migraine Significance

(p < 0.05)
ROI1 Baseline 0.11 (0.03-0.26) 0.09 (0.02-0.27) No (p = 0.38056)
ROI1 Peak 0.18 (0.04-0.41) 0.15 (0.02-0.40) No (p = 0.32781)
ROI1 Plateau 0.08 (0.01-0.21) 0.05 (0.02-0.30) No (p = 0.60234)
ROI2 Baseline 0.11 (0.02-0.22) 0.10 (0.03-0.18) No (p = 0.50061)
ROI2 Peak 0.09 (0.02-0.54) 0.09 (0.02-0.37) No (p = 0.78957)
ROI2 Plateau 0.06 (0.02-0.20) 0.04 (0.004-0.27) No (p = 0.26889)
ROI3 Baseline 0.12 (0.03-0.23) 0.11 (0.03-0.43) No (p = 0.63821)
ROI3 Peak 0.19 (0.03-0.45) 0.14 (0.07-0.44) No (p = 0.94934)
ROI3 Plateau 0.08 (0.02-0.27) 0.09 (0.02-0.26) No (p = 0.56741)

Table A.37: Table of p-values for the relative energy density of the endothelial activity (NO-independent) of women with migraine with
aura and women without migraine, for all different combinations of ROIs and phases. Mean values and ranges are given in each case.

A.8. Tables: Women with aura using DFT

Relative energy density respiratory activity
Blank No migraine Migraine with aura Significance

(p < 0.05)
ROI1 0.16 (0.08-0.23) 0.19 (0.11-0.50) No (p = 0.08623)
ROI2 0.18 (0.09-0.33) 0.19 (0.12-0.41) No (p = 0.35356)
ROI3 0.15 (0.09-0.22) 0.16 (0.10-0.46) No (p = 0.39452)

Table A.38: Table of p-values for the relative energy density, evaluated across the entire measurement region of the respiratory activity
of women with migraine with aura and women without migraine, for all different ROIs, using DFT. Mean values and ranges are given in
each case.

Relative energy density respiratory activity
Blank No migraine Migraine with aura Significance

(p < 0.05)
ROI1 Baseline 0.24 (0.12-0.43) 0.26 (0.09-0.77) No (p = 0.20835)
ROI1 Peak 0.19 (0.07-0.42) 0.23 (0.11-0.53) Yes (p = 0.02977)
ROI1 Plateau 0.23 (0.15-0.47) 0.25 (0.12-0.58) No (p = 0.42335)
ROI2 Baseline 0.25 (0.14-0.47) 0.29 (0.11-0.65) No (p = 0.13705)
ROI2 Peak 0.22 (0.03-0.39) 0.25 (0.11-0.54) No (p = 0.35356)
ROI2 Plateau 0.21 (0.13-0.48) 0.21 (0.06-0.46) No (p = 0.82896)
ROI3 Baseline 0.23 (0.14-0.44) 0.27 (0.05-0.69) No (p = 0.32781)
ROI3 Peak 0.5 (0.03-0.24) 0.16 (0.06-0.58) No (p = 0.28005)
ROI3 Plateau 0.21 (0.15-0.46) 0.22 (0.12-0.44) No (p = 0.80920)

Table A.39: Table of p-values for the relative energy density of the respiratory activity of women with migraine with aura and women
without migraine, for all different combinations of ROIs and phases, using DFT. Mean values and ranges are given in each case.

Relative energy density smooth muscle cells activity
Blank No migraine Migraine with aura Significance

(p < 0.05)
ROI1 0.18 (0.12-0.35) 0.21 (0.11-0.33) No (p = 0.30331)
ROI2 0.20 (0.11-0.32) 0.19 (0.14-0.32) No (p = 0.98986)
ROI3 0.16 (0.10-0.35) 0.16 (0.13-0.32) No (p = 0.71247)

Table A.40: Table of p-values for the relative energy density, evaluated across the entire measurement region of the smooth muscle cells
activity of women with migraine with aura and women without migraine, for all different ROIs, using DFT. Mean values and ranges are
given in each case.
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Relative energy density smooth muscle cells activity
Blank No migraine Migraine with aura Significance

(p < 0.05)
ROI1 Baseline 0.24 (0.11-0.45) 0.29 (0.08-0.42) No (p = 0.51691)
ROI1 Peak 0.15 (0.09-0.34) 0.17 (0.04-0.28) No (p = 0.69361)
ROI1 Plateau 0.32 (0.12-0.53) 0.29 (0.15-0.57) No (p = 0.80920)
ROI2 Baseline 0.23 (0.13-0.37) 0.27 (0.10-0.40) No (p = 0.78957)
ROI2 Peak 0.20 (0.05-0.32) 0.20 (0.08-0.30) No (p = 0.55032)
ROI2 Plateau 0.29 (0.14-0.50) 0.28 (0.18-0.56) No (p = 0.78957)
ROI3 Baseline 0.26 (0.14-0.38) 0.26 (0.06-0.38) No (p = 0.75071)
ROI3 Peak 0.15 (0.07-0.33) 0.15 (0.05-0.26) No (p = 0.36691)
ROI3 Plateau 0.31 (0.15-0.46) 0.34 (0.17-0.53) No (p = 0.58475)

Table A.41: Table of p-values for the relative energy density of the smooth muscle cells activity of women with migraine with aura and
women without migraine, for all different combinations of ROIs and phases, using DFT. Mean values and ranges are given in each case.

Relative energy density neurogenic activity
Blank No migraine Migraine with aura Significance

(p < 0.05)
ROI1 0.20 (0.11-0.28) 0.19 (0.10-0.26) No (p = 0.42335)
ROI2 0.20 (0.14-0.29) 0.20 (0.14-0.34) No (p = 0.80920)
ROI3 0.18 (0.14-0.27) 0.17 (0.11-0.22) No (p = 0.28005)

Table A.42: Table of p-values for the relative energy density, evaluated across the entire measurement region of the neurogenic activity
of women with migraine with aura and women without migraine, for all different ROIs, using DFT. Mean values and ranges are given in
each case.

Relative energy density neurogenic activity
Blank No migraine Migraine with aura Significance

(p < 0.05)
ROI1 Baseline 0.19 (0.07-0.38) 0.19 (0.03-0.30) No (p = 0.78957)
ROI1 Peak 0.19 (0.07-0.34) 0.18 (0.05-0.34) No (p = 0.46884)
ROI1 Plateau 0.20 (0.08-0.34) 0.18 (0.03-0.38) No (p = 0.19931)
ROI2 Baseline 0.18 (0.08-0.31) 0.18 (0.03-0.38) No (p = 0.94934)
ROI2 Peak 0.20 (0.04-0.34) 0.16 (0.08-0.38) No (p = 0.21769)
ROI2 Plateau 0.22 (0.11-0.38) 0.19 (0.04-0.31) No (p = 0.42335)
ROI3 Baseline 0.20 (0.08-0.31) 0.15 (0.04-0.35) No (p = 0.82896)
ROI3 Peak 0.18 (0.06-0.30) 0.15 (0.05-0.26) No (p = 0.13705)
ROI3 Plateau 0.18 (0.09-0.37) 0.17 (0.09-0.29) No (p = 0.26889)

Table A.43: Table of p-values for the relative energy density of the neurogenic activity of women with migraine with aura and women
without migraine, for all different combinations of ROIs and phases, using DFT. Mean values and ranges are given in each case.

Relative energy density endothelial activity (NO-dependent)
Blank No migraine Migraine with aura Significance

(p < 0.05)
ROI1 0.16 (0.08-0.25) 0.14 (0.08-0.19) Yes (p = 0.00392)
ROI2 0.20 (0.14-0.29) 0.20 (0.14-0.34) No (p = 0.60234)
ROI3 0.18 (0.10-0.23) 0.17 (0.12-0.26) No (p = 0.46884)

Table A.44: Table of p-values for the relative energy density, evaluated across the entire measurement region of the endothelial activity
(NO-dependent) of women with migraine with aura and women without migraine, for all different ROIs, using DFT. Mean values and
ranges are given in each case.
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Relative energy density endothelial activity (NO-dependent)
Blank No migraine Migraine with aura Significance

(p < 0.05)
ROI1 Baseline 0.17 (0.02-0.49) 0.11 (0.04-0.31) Yes (p = 0.04075)
ROI1 Peak 0.12 (0.04-0.27) 0.13 (0.07-0.22) No (p = 0.73151)
ROI1 Plateau 0.12 (0.02-0.32) 0.11 (0.02-0.24) No (p = 0.50061)
ROI2 Baseline 0.16 (0.05-0.33) 0.11 (0.03-0.27) Yes (p = 0.02977)
ROI2 Peak 0.11 (0.03-0.28) 0.11 (0.06-0.20) No (p = 0.88883)
ROI2 Plateau 0.12 (0.01-0.35) 0.10 (0.05-0.28) No (p = 0.80920)
ROI3 Baseline 0.16 (0.03-0.31) 0.11 (0.05-0.35) No (p = 0.30331)
ROI3 Peak 0.15 (0.05-0.34) 0.15 (0.09-0.24) No (p = 0.51691)
ROI3 Plateau 0.11 (0.03-0.29) 0.12 (0.05-0.22) No (p = 0.88883)

Table A.45: Table of p-values for the relative energy density of the endothelial activity (NO-dependent) of women with migraine with
aura and women without migraine, for all different combinations of ROIs and phases, using DFT. Mean values and ranges are given in
each case.

Relative energy density endothelial activity (NO-independent)
Blank No migraine Migraine with aura Significance

(p < 0.05)
ROI1 0.22 (0.08-0.42) 0.21 (0.06-0.37) No (p = 0.19930)
ROI2 0.20 (0.05-0.39) 0.20 (0.07-0.33) No (p = 0.58475)
ROI3 0.29 (0.16-0.42) 0.29 (0.11-0.42) No (p = 0.90894)

Table A.46: Table of p-values for the relative energy density, evaluated across the entire measurement region of the endothelial activity
(NO-independent) of women with migraine with aura and women without migraine, for all different ROIs, using DFT. Mean values and
ranges are given in each case.

Relative energy density endothelial activity (NO-independent)
Blank No migraine Migraine with aura Significance

(p < 0.05)
ROI1 Baseline 0.08 (0.01-0.26) 0.07 (0.002-0.26) No (p = 0.39452)
ROI1 Peak 0.30 (0.07-0.65) 0.23 (0.04-0.51) No (p = 0.32781)
ROI1 Plateau 0.05 (0.002-0.25) 0.04 (0.003-0.38) No (p = 0.84882)
ROI2 Baseline 0.10 (0.01-0.30) 0.09 (0.008-0.23) No (p = 0.42335)
ROI2 Peak 0.15 (0.02-0.76) 0.12 (0.03-0.50) No (p = 0.80920)
ROI2 Plateau 0.03 (0.005-0.24) 0.06 (0.001-0.26) No (p = 0.35356)
ROI3 Baseline 0.09 (0.01-0.28) 0.09 (0.0002-0.24) No (p = 0.75071)
ROI3 Peak 0.31 (0.05-0.72) 0.33 (0.05-0.61) No (p = 0.98986)
ROI3 Plateau 0.05 (0.002-0.32) 0.06 (0.003-0.37) No (p = 0.98986)

Table A.47: Table of p-values for the relative energy density of the endothelial activity (NO-independent) of women with migraine with
aura and women without migraine, for all different combinations of ROIs and phases, using DFT. Mean values and ranges are given in
each case.
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Python code

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import pywt
4 import numpy as np
5 import pandas as pd
6 from math import ceil
7 from scipy.fft import fft , fftfreq
8

9 #Maken arrays tijden per fase
10 # baseline_b =[116 , 100, 111, 78, 105, 126, 82, 2750, 100, 170, 1617, 75, 1329, 57, 57,

147, 96, 1163, 81, 73, 247, 1249, 90, 949, 959, 57, 78, 75, 139, 74, 72, 63, 960,
116, 41, 1048, 64, 108, 88, 946, 64, 152, 112, 83, 165, 81, 88, 83, 48, 135, 71,
945, 76]

11 baseline_b =[116 , 40, 111, 78, 105, 126, 82, 2750, 100, 170, 1617, 75, 1329, 57, 57,
147, 96, 1163, 81, 73, 247, 1249, 90, 949, 959, 57, 78, 75, 139, 74, 72, 63, 960,
116, 41, 1048, 64, 108, 88, 946, 64, 152, 112, 83, 165, 81, 88, 83, 48, 135, 71,
945, 76]

12 baseline_e =[416 , 340, 411, 378, 405, 426, 382, 3050, 400, 470, 1917, 375, 1629, 357,
357, 447, 396, 1463, 381, 373, 547, 1549, 390, 1249, 1259, 357, 378, 375, 439, 374,
372, 363, 1260, 416, 341, 1348, 364, 408, 388, 1246, 364, 452, 412, 383, 465, 381,
388, 383, 348, 435, 371, 1245, 376]

13 piek_b =[416, 340, 411, 378, 405, 426, 382, 3050, 400, 470, 1917, 375, 1629, 357, 357,
447, 396, 1463, 381, 373, 547, 1549, 390, 1249, 1259, 357, 378, 375, 439, 374, 372,
363, 1260, 416, 341, 1348, 364, 408, 388, 1246, 364, 452, 412, 383, 465, 381, 388,
383, 348, 435, 371, 1245, 376]

14 piek_e =[1016 , 940, 1011, 978, 1005, 1026, 982, 3650, 1000, 1070, 2517, 975, 2229, 957,
957, 1047, 996, 2063, 981, 973, 1147, 2149, 990, 1849, 1859, 957, 978, 975, 1039,
974, 972, 963, 1860, 1016, 941, 1948, 964, 1008, 988, 1846, 964, 1052, 1012, 983,
1065, 981, 988, 983, 948, 1035, 971, 1845, 976]

15 plateau_b =[2216 , 2140, 2211, 2178, 2205, 2226, 2182, 4853, 2200, 2270, 3717, 2175,
3429, 2157, 2157, 2247, 2196, 3263, 2181, 2173, 2347, 3349, 2190, 3049, 3059, 2157,
2178, 2175, 2239, 2174, 2172, 2163, 3060, 2216, 2141, 3148, 2164, 2208, 2188,

3046, 2164, 2252, 2212, 2183, 2265, 2181, 2188, 2183, 2148, 2235, 2171, 3045, 2176]
16 plateau_e =[2516 , 2440, 2511, 2478, 2505, 2526, 2482, 5150, 2500, 2570, 4017, 2475,

3729, 2457, 2457, 2547, 2496, 3563, 2481, 2473, 2647, 3649, 2490, 3349, 3359, 2457,
2478, 2475, 2539, 2474, 2472, 2463, 3360, 2516, 2441, 3448, 2464, 2508, 2488,

3346, 2464, 2552, 2512, 2483, 2565, 2481, 2488, 2483, 2448, 2535, 2471, 3345, 2476]
17 N_b =[300, 240, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300,

300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300,
300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300,
300, 300, 300, 300, 300]

18 N_piek =[600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600,
600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600,

600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600,
600, 600, 600, 600, 600]

19 N_p =[300, 300, 300, 300, 300, 300, 300, 297, 300, 300, 300, 300, 300, 300, 300, 300,
300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300,
300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300,
300, 300, 300, 300, 300]

20
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21 def reflect_data(data ,sample):
22 dataMeasurement = data[baseline_b[sample ]: plateau_e[sample ]]
23 reversedData = dataMeasurement [::-1]
24 reflectedData = np.concatenate (( reversedData , dataMeasurement , reversedData))
25 return reflectedData
26

27 def scale(voice):
28 v=voice #define the value for voice
29 num_octaves = np.log2 (200 / 2) #calculate the amount of octaves
30 num_scales = int(num_octaves * v) + 1
31 scales = 2 * 2 ** (np.arange(num_scales) / v)
32 return scales
33

34 def plot_wavelet_total_amplitude(data ,wavelet ,sample ,ax):
35 scales = scale (10)
36 coeffs , freqs = pywt.cwt(data ,scales ,wavelet)
37 power = np.abs(coeffs[:, baseline_b[sample ]: plateau_e[sample ]])
38 plot = ax.imshow(power , extent =[0, plateau_e[sample]-baseline_b[sample], freqs[-1],

freqs [0]], cmap=’viridis ’, aspect=’auto’)
39 ax.set_yscale("log")
40 ax.set_xlabel("Time (s)")
41 ax.set_ylabel("Frequency (Hz)")
42 ax.set_title("Wavelet coefficients plot total for " + wavelet)
43 plt.colorbar(plot , ax=ax)
44 return ax
45

46 def plot_wavelet_total_amplitude_reflecting(data ,wavelet ,sample ,ax,title):
47 scales = scale (10)
48 reflectedData = reflect_data(data ,sample)
49 coeffs , freqs = pywt.cwt(reflectedData ,scales ,wavelet)
50 segmentLength = plateau_e[sample]-baseline_b[sample]
51 power = np.abs(coeffs[ : , segmentLength : 2* segmentLength ])
52 plot = ax.imshow(power , extent =[0, segmentLength , freqs[-1], freqs [0]], cmap=’

viridis ’, aspect=’auto’)
53 ax.set_yscale("log")
54 ax.set_xlabel("Time (s)")
55 ax.set_ylabel("Frequency (Hz)")
56 ax.set_title(title)
57 plt.colorbar(plot , ax=ax)
58 return ax
59

60 def plot_wavelet_total(data ,wavelet ,sample ,ax):
61 scales = scale (10)
62 coeffs , freqs = pywt.cwt(data ,scales ,wavelet)
63 power = np.abs(coeffs[ : , baseline_b[sample] : plateau_e[sample ]]) **2
64 plot = ax.imshow(power , extent =[0, plateau_e[sample]-baseline_b[sample], freqs[-1],

freqs [0]], cmap=’viridis ’, aspect=’auto’)
65 ax.set_yscale("log")
66 ax.set_xlabel("Time (s)")
67 ax.set_ylabel("Frequency (Hz)")
68 ax.set_title("Wavelet coefficients plot total for " + wavelet)
69 plt.colorbar(plot , ax=ax)
70 return ax
71

72 def power_wavelet_total_with_reflecting(data ,wavelet ,sample):
73 scales = scale (10)
74 reflectedData = reflect_data(data ,sample)
75 coeffs , freqs = pywt.cwt(reflectedData ,scales ,wavelet)
76 segmentLength = plateau_e[sample]-baseline_b[sample]
77 power = np.abs(coeffs[ : , segmentLength : 2* segmentLength ])**2
78 return power
79

80 def plot_wavelet_total_with_reflecting(data ,wavelet ,sample ,ax ,title):
81 scales = scale (10)
82 reflectedData = reflect_data(data ,sample)
83 coeffs , freqs = pywt.cwt(reflectedData ,scales ,wavelet)
84 segmentLength = plateau_e[sample]-baseline_b[sample]
85 power = np.abs(coeffs[ : , segmentLength : 2* segmentLength ])**2
86 plot = ax.imshow(power , extent =[0, segmentLength , freqs[-1], freqs [0]], cmap=’

viridis ’, aspect=’auto’)
87 ax.set_yscale("log")
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88 ax.set_xlabel("Time (s)")
89 ax.set_ylabel("Frequency (Hz)")
90 ax.set_title(title)
91 plt.colorbar(plot , ax=ax)
92 return ax
93

94 def plot_data(data ,wavelet ,sample ,ax ,title):
95 scales = scale (10)
96 reflectedData = reflect_data(data ,sample)
97 coeffs , freqs = pywt.cwt(reflectedData ,scales ,wavelet)
98 segmentLength = plateau_e[sample]-baseline_b[sample]
99 plot = ax.imshow(data , extent =[0, segmentLength , freqs[-1], freqs [0]], cmap=’

viridis ’, aspect=’auto’)
100 ax.set_yscale("log")
101 ax.set_xlabel("Time (s)")
102 ax.set_ylabel("Frequency (Hz)")
103 ax.set_title(title)
104 plt.colorbar(plot , ax=ax)
105 return ax
106

107 def plot_wavelet_total_with_reflecting_scale(data ,wavelet ,sample ,ax,title ,scaleValue):
108 scales = scale(scaleValue)
109 reflectedData = reflect_data(data ,sample)
110 coeffs , freqs = pywt.cwt(reflectedData ,scales ,wavelet)
111 segmentLength = plateau_e[sample]-baseline_b[sample]
112 power = np.abs(coeffs[ : , segmentLength : 2* segmentLength ])**2
113 plot = ax.imshow(power , extent =[0, segmentLength , freqs[-1], freqs [0]], cmap=’

viridis ’, aspect=’auto’)
114 ax.set_yscale("log")
115 ax.set_xlabel("Time (s)")
116 ax.set_ylabel("Frequency (Hz)")
117 ax.set_title(title)
118 plt.colorbar(plot , ax=ax)
119 return ax
120

121 def COI(data , wavelet , eFoldingTimeFactor): #eFoldingTimeFactor is normally equal to
sqrt (2) for morlet

122 scales = scale (10)
123 coeffs , freqs = pywt.cwt(data , scales , wavelet)
124 power = np.abs(coeffs)**2
125 reliableCoefficientsBoolean = np.ones((len(power),len(power [0])), bool)
126 for i, s in enumerate(scales):
127 eFoldingTime = int(np.ceil(s * eFoldingTimeFactor))
128 reliableCoefficientsBoolean[i, : eFoldingTime] = False
129 reliableCoefficientsBoolean[i, -eFoldingTime : ] = False
130 reliableCoefficients = np.where(reliableCoefficientsBoolean , power , np.nan)
131 return reliableCoefficients
132

133 def plot_wavelet_total_with_COI(data , wavelet , sample , ax, eFoldingTimeFactor ,person):
134 scales = scale (10)
135 coeffs , freqs = pywt.cwt(data , scales , wavelet)
136 power = np.abs(coeffs)**2
137

138 reliableCoefficients = COI(data , wavelet , eFoldingTimeFactor)
139 plot = ax.imshow(reliableCoefficients , extent =[0, len(data), freqs[-1], freqs [0]],

cmap=’viridis ’, aspect=’auto’)
140 ax.set_yscale("log")
141 ax.set_xlabel("Time (s)")
142 ax.set_ylabel("Frequency (Hz)")
143 ax.set_title("Wavelet coefficients plot total for " + wavelet + " with COI" + "

person " + str(person))
144 plt.colorbar(plot , ax=ax)
145 return reliableCoefficients
146

147 def plot_wavelet_baseline(data ,wavelet ,sample ,ax):
148 scales = scale (10)
149 coeffs , freqs = pywt.cwt(data ,scales ,wavelet)
150 power = np.abs(coeffs[:, baseline_b[sample ]: baseline_e[sample ]])**2
151 plot = ax.imshow(power , extent =[0, baseline_e[sample]-baseline_b[sample], freqs

[-1], freqs [0]], cmap=’viridis ’, aspect=’auto’)
152 ax.set_yscale("log")
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153 ax.set_xlabel("Time (s)")
154 ax.set_ylabel("Frequency (Hz)")
155 ax.set_title("Wavelet coefficients plot baseline for " + wavelet)
156 plt.colorbar(plot , ax=ax)
157 return ax
158

159 def plot_wavelet_baseline_reflecting(data ,wavelet ,sample ,ax):
160 power = power_wavelet_total_with_reflecting(data ,wavelet ,sample)[:,:( baseline_e[

sample]-baseline_b[sample ])]
161 scales = scale (10)
162 reflectedData = reflect_data(data ,sample)
163 coeffs , freqs = pywt.cwt(reflectedData ,scales ,wavelet)
164 plot = ax.imshow(power , extent =[0, baseline_e[sample]-baseline_b[sample], freqs

[-1], freqs [0]], cmap=’viridis ’, aspect=’auto’)
165 ax.set_yscale("log")
166 ax.set_xlabel("Time (s)")
167 ax.set_ylabel("Frequency (Hz)")
168 ax.set_title("Wavelet coefficients plot baseline for " + wavelet + " with

reflecting")
169 plt.colorbar(plot , ax=ax)
170 return ax
171

172 def plot_wavelet_peak(data ,wavelet ,sample ,ax):
173 scales = scale (10)
174 coeffs , freqs = pywt.cwt(data ,scales ,wavelet)
175 power = np.abs(coeffs[:,piek_b[sample]-baseline_b[sample ]: piek_e[sample]-baseline_b

[sample ]])**2
176 plot = ax.imshow(power , extent =[ piek_b[sample]-baseline_b[sample], piek_b[sample]-

baseline_b[sample], freqs[-1], freqs [0]], cmap=’viridis ’, aspect=’auto’)
177 ax.set_yscale("log")
178 ax.set_xlabel("Time (s)")
179 ax.set_ylabel("Frequency (Hz)")
180 ax.set_title("Wavelet coefficients plot peak for " + wavelet)
181 plt.colorbar(plot , ax=ax)
182 return ax
183

184 def plot_wavelet_peak_reflecting(data ,wavelet ,sample ,ax):
185 scales = scale (10)
186 power = power_wavelet_total_with_reflecting[ : , piek_b[sample]-baseline_b[sample

]:( piek_e[sample]-baseline_b[sample ])]
187 scales = scale (10)
188 reflectedData = reflect_data(data ,sample)
189 coeffs , freqs = pywt.cwt(reflectedData ,scales ,wavelet)
190 plot = ax.imshow(power , extent =[ piek_b[sample]-baseline_b[sample], piek_e[sample]-

baseline_b[sample], freqs[-1], freqs [0]], cmap=’viridis ’, aspect=’auto’)
191 ax.set_yscale("log")
192 ax.set_xlabel("Time (s)")
193 ax.set_ylabel("Frequency (Hz)")
194 ax.set_title("Wavelet coefficients plot peak for " + wavelet + " with reflecting")
195 plt.colorbar(plot , ax=ax)
196 return ax
197

198 def plot_wavelet_plateau(data ,wavelet ,sample ,ax):
199 scales = scale (10)
200 coeffs , freqs = pywt.cwt(data ,scales ,wavelet)
201 power = np.abs(coeffs[:,plateau_b[sample]-baseline_b[sample ]: plateau_e[sample]-

baseline_b[sample ]])**2
202 plot = ax.imshow(power , extent =[ plateau_b[sample]-baseline_b[sample], plateau_e[

sample]-baseline_b[sample], freqs[-1], freqs [0]], cmap=’viridis ’, aspect=’auto’
)

203 ax.set_yscale("log")
204 ax.set_xlabel("Time (s)")
205 ax.set_ylabel("Frequency (Hz)")
206 ax.set_title("Wavelet coefficients plot plateau for " + wavelet)
207 plt.colorbar(plot , ax=ax)
208 return ax
209

210 def plot_wavelet_plateau_reflecting(data ,wavelet ,sample ,ax):
211 scales = scale (10)
212 power = power_wavelet_total_with_reflecting[ : , plateau_b[sample]-baseline_b[

sample ]:( plateau_e[sample]-baseline_b[sample ])]
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213 scales = scale (10)
214 reflectedData = reflect_data(data ,sample)
215 coeffs , freqs = pywt.cwt(reflectedData ,scales ,wavelet)
216 plot = ax.imshow(power , extent =[ plateau_b[sample]-baseline_b[sample], plateau_e[

sample]-baseline_b[sample], freqs[-1], freqs [0]], cmap=’viridis ’, aspect=’auto’
)

217 ax.set_yscale("log")
218 ax.set_xlabel("Time (s)")
219 ax.set_ylabel("Frequency (Hz)")
220 ax.set_title("Wavelet coefficients plot plateau for " + wavelet + " with reflecting

")
221 plt.colorbar(plot , ax=ax)
222 return ax
223

224 def plot_average_over_time(data ,wavelet ,sample ,ax ,label):
225 scales = scale (10)
226 coeffs , freqs = pywt.cwt(data , scales , wavelet)
227 coeffs_sliced = coeffs[:, baseline_b[sample ]: plateau_e[sample ]]
228 averageOverTime = np.abs(coeffs_sliced).mean(axis =1)
229 ax.plot(freqs , averageOverTime ,label=label)
230 ax.set_xscale("log")
231 ax.set_xlabel(’Frequency (Hz)’)
232 ax.set_ylabel(’Average Wavelet Coefficient Magnitude ’)
233 ax.set_title("Average over time plot for " + wavelet)
234 ax.grid(True)
235 return ax
236

237 def plot_average_over_time_reflecting(data ,wavelet ,sample ,ax ,label):
238 scales = scale (10)
239 reflectedData = reflect_data(data ,sample)
240 coeffs , freqs = pywt.cwt(reflectedData ,scales ,wavelet)
241 segmentLength = plateau_e[sample]-baseline_b[sample]
242 coeffs_sliced = coeffs[ : , segmentLength : 2* segmentLength]
243 averageOverTime = np.abs(coeffs_sliced).mean(axis =1)
244 ax.plot(freqs , averageOverTime ,label=label)
245 ax.set_xscale("log")
246 ax.set_xlabel(’Frequency (Hz)’)
247 ax.set_ylabel(’Average wavelet coefficients ’)
248 ax.set_title("Average over time plot for " + wavelet + " with reflecting")
249 ax.grid(True)
250 return ax
251

252 def plot_average_over_time_reflecting_values(data ,wavelet ,sample):
253 scales = scale (10)
254 reflectedData = reflect_data(data ,sample)
255 coeffs , freqs = pywt.cwt(reflectedData ,scales ,wavelet)
256 segmentLength = plateau_e[sample]-baseline_b[sample]
257 coeffs_sliced = coeffs[ : , segmentLength : 2* segmentLength]
258 averageOverTime = np.abs(coeffs_sliced).mean(axis =1)
259 return (averageOverTime , freqs)
260

261 def plot_3D(data ,wavelet ,sample ,ax):
262 scales = scale (10)
263 coeffs , freqs = pywt.cwt(data , scales , wavelet)
264 time_range = np.arange(baseline_b[sample], plateau_e[sample ])
265 logFreqs = np.log10 (1/ freqs)
266 T, F = np.meshgrid(time_range , logFreqs)
267 ax.plot_surface(T, F, np.abs(coeffs[:, baseline_b[sample ]: plateau_e[sample ]]), cmap

=’cividis ’)
268 ax.set_xlabel(’Time (s)’)
269 ax.set_ylabel(’log10 (1/ Frequency) (Hz)’)
270 ax.set_zlabel(’Wavelet coefficients ’)
271 ax.set_title(’3D-plot for ’ + wavelet)
272 return ax
273

274 def plot_3D_reflecting(data ,wavelet ,sample ,ax ,title):
275 scales = scale (10)
276 reflectedData = reflect_data(data ,sample)
277 coeffs , freqs = pywt.cwt(reflectedData ,scales ,wavelet)
278 segmentLength = plateau_e[sample]-baseline_b[sample]
279 coeffs_sliced = coeffs[ : , segmentLength : 2* segmentLength]
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280 time_range = np.arange(baseline_b[sample], plateau_e[sample ])
281 logFreqs = np.log10 (1/ freqs)
282 T, F = np.meshgrid(time_range , logFreqs)
283 ax.plot_surface(T, F, np.abs(coeffs_sliced), cmap=’viridis ’)
284 ax.set_xlabel(’Time (s)’)
285 ax.set_ylabel(’log10 (1/ Frequency) (Hz)’)
286 ax.set_zlabel(’Wavelet coefficients ’)
287 ax.set_title(title)
288 return ax
289

290 def average_energy_density(data ,wavelet ,sample ,f_i1 ,f_i2):
291 scales = scale (10)
292 coeffs , freqs = pywt.cwt(data , scales , wavelet)
293

294 s_lower = 1 / f_i2
295 s_upper = 1 / f_i1
296 scalesUsed = (scales >= s_lower) & (scales <= s_upper)
297 scalesFiltered = scales[scalesUsed]
298 coeffsFiltered = coeffs[scalesUsed , baseline_b[sample ]: plateau_e[sample ]]
299

300 power = np.abs(coeffsFiltered)**2
301

302 res = 1 / scalesFiltered **2
303 y = power.T * res
304

305 scalesIntegration = np.trapz(y,scalesFiltered ,axis =1)
306

307 timeIntegration = np.trapz(scalesIntegration ,np.arange(baseline_b[sample],plateau_e
[sample ])) / (plateau_e[sample]-baseline_b[sample ])

308 return timeIntegration
309

310 def average_energy_density_reflecting(data ,wavelet ,sample ,f_i1 ,f_i2):
311 scales = scale (10)
312 reflectedData = reflect_data(data ,sample)
313 coeffs , freqs = pywt.cwt(reflectedData ,scales ,wavelet)
314 segmentLength = plateau_e[sample]-baseline_b[sample]
315 coeffs = coeffs[ : , segmentLength : 2* segmentLength]
316

317 s_lower = 1 / f_i2
318 s_upper = 1 / f_i1
319 scalesUsed = (scales >= s_lower) & (scales <= s_upper)
320 scalesFiltered = scales[scalesUsed]
321 coeffsFiltered = coeffs[scalesUsed , :]
322

323 power = np.abs(coeffsFiltered)**2
324

325 res = 1 / scalesFiltered **2
326 y = power.T * res
327

328 scalesIntegration = np.trapz(y,scalesFiltered ,axis =1)
329

330 timeIntegration = np.trapz(scalesIntegration ,np.arange(0, segmentLength)) /
segmentLength

331 return timeIntegration
332

333 def average_energy_density_reflecting_baseline(data ,wavelet ,sample ,f_i1 ,f_i2):
334 scales = scale (10)
335 reflectedData = reflect_data(data ,sample)
336 coeffs , freqs = pywt.cwt(reflectedData ,scales ,wavelet)
337 segmentLength = plateau_e[sample]-baseline_b[sample]
338 coeffs = coeffs[ : , segmentLength : 2* segmentLength]
339

340 s_lower = 1 / f_i2
341 s_upper = 1 / f_i1
342 scalesUsed = (scales >= s_lower) & (scales <= s_upper)
343 scalesFiltered = scales[scalesUsed]
344 coeffsFiltered = coeffs[scalesUsed , :]
345

346 power = np.abs(coeffsFiltered)**2
347

348 res = 1 / scalesFiltered **2
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349 y = power.T * res
350

351 scalesIntegration = np.trapz(y,scalesFiltered ,axis =1)
352 scalesIntegrationBaseline = scalesIntegration [: baseline_e[sample]-baseline_b[sample

]]
353 timeIntegration = np.trapz(scalesIntegrationBaseline ,np.arange(0,len(

scalesIntegrationBaseline))) / len(scalesIntegrationBaseline)
354 return timeIntegration
355

356 def average_energy_density_reflecting_peak(data ,wavelet ,sample ,f_i1 ,f_i2):
357 scales = scale (10)
358 reflectedData = reflect_data(data ,sample)
359 coeffs , freqs = pywt.cwt(reflectedData ,scales ,wavelet)
360 segmentLength = plateau_e[sample]-baseline_b[sample]
361 coeffs = coeffs[ : , segmentLength : 2* segmentLength]
362

363 s_lower = 1 / f_i2
364 s_upper = 1 / f_i1
365 scalesUsed = (scales >= s_lower) & (scales <= s_upper)
366 scalesFiltered = scales[scalesUsed]
367 coeffsFiltered = coeffs[scalesUsed , :]
368

369 power = np.abs(coeffsFiltered)**2
370

371 res = 1 / scalesFiltered **2
372 y = power.T * res
373

374 scalesIntegration = np.trapz(y,scalesFiltered ,axis =1)
375 scalesIntegrationBaseline = scalesIntegration[piek_b[sample]-baseline_b[sample ]:

piek_e[sample]-baseline_b[sample ]]
376 timeIntegration = np.trapz(scalesIntegrationBaseline ,np.arange(0,len(

scalesIntegrationBaseline))) / len(scalesIntegrationBaseline)
377 return timeIntegration
378

379 def average_energy_density_reflecting_plateau(data ,wavelet ,sample ,f_i1 ,f_i2):
380 scales = scale (10)
381 reflectedData = reflect_data(data ,sample)
382 coeffs , freqs = pywt.cwt(reflectedData ,scales ,wavelet)
383 segmentLength = plateau_e[sample]-baseline_b[sample]
384 coeffs = coeffs[ : , segmentLength : 2* segmentLength]
385

386 s_lower = 1 / f_i2
387 s_upper = 1 / f_i1
388 scalesUsed = (scales >= s_lower) & (scales <= s_upper)
389 scalesFiltered = scales[scalesUsed]
390 coeffsFiltered = coeffs[scalesUsed , :]
391

392 power = np.abs(coeffsFiltered)**2
393

394 res = 1 / scalesFiltered **2
395 y = power.T * res
396

397 scalesIntegration = np.trapz(y,scalesFiltered ,axis =1)
398 scalesIntegrationBaseline = scalesIntegration[plateau_b[sample]-baseline_b[sample ]:

plateau_e[sample]-baseline_b[sample ]]
399 timeIntegration = np.trapz(scalesIntegrationBaseline ,np.arange(0,len(

scalesIntegrationBaseline))) / len(scalesIntegrationBaseline)
400 return timeIntegration
401

402 def relative_energy_density(data ,wavelet ,sample ,f_i1 ,f_i2):
403 totalEnergy = average_energy_density(data ,wavelet ,sample ,0.005 ,0.5)
404 energy = average_energy_density(data ,wavelet ,sample ,f_i1 ,f_i2)
405 return energy / totalEnergy
406

407 def relative_energy_density_reflecting(data ,wavelet ,sample ,f_i1 ,f_i2):
408 totalEnergy = average_energy_density_reflecting(data ,wavelet ,sample ,0.005 ,0.5)
409 energy = average_energy_density_reflecting(data ,wavelet ,sample ,f_i1 ,f_i2)
410 return energy / totalEnergy
411

412 def relative_energy_density_reflecting_baseline_part(data ,wavelet ,sample ,f_i1 ,f_i2):
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413 totalEnergy = average_energy_density_reflecting_baseline(data ,wavelet ,sample
,0.005 ,0.4)

414 energy = average_energy_density_reflecting_baseline(data ,wavelet ,sample ,f_i1 ,f_i2)
415 return energy / totalEnergy
416

417 def relative_energy_density_reflecting_peak_part(data ,wavelet ,sample ,f_i1 ,f_i2):
418 totalEnergy = average_energy_density_reflecting_peak(data ,wavelet ,sample ,0.005 ,0.4)
419 energy = average_energy_density_reflecting_peak(data ,wavelet ,sample ,f_i1 ,f_i2)
420 return energy / totalEnergy
421

422 def relative_energy_density_reflecting_plateau_part(data ,wavelet ,sample ,f_i1 ,f_i2):
423 totalEnergy = average_energy_density_reflecting_plateau(data ,wavelet ,sample

,0.005 ,0.4)
424 energy = average_energy_density_reflecting_plateau(data ,wavelet ,sample ,f_i1 ,f_i2)
425 return energy / totalEnergy
426

427 def relative_energy_density_reflecting_baseline(data ,wavelet ,sample ,f_i1 ,f_i2):
428 totalEnergy = average_energy_density_reflecting_baseline(data ,wavelet ,sample

,0.005 ,0.5)
429 energy = average_energy_density_reflecting_baseline(data ,wavelet ,sample ,f_i1 ,f_i2)
430 return energy / totalEnergy
431

432 def relative_energy_density_reflecting_peak(data ,wavelet ,sample ,f_i1 ,f_i2):
433 totalEnergy = average_energy_density_reflecting_peak(data ,wavelet ,sample ,0.005 ,0.5)
434 energy = average_energy_density_reflecting_peak(data ,wavelet ,sample ,f_i1 ,f_i2)
435 return energy / totalEnergy
436

437 def relative_energy_density_reflecting_plateau(data ,wavelet ,sample ,f_i1 ,f_i2):
438 totalEnergy = average_energy_density_reflecting_plateau(data ,wavelet ,sample

,0.005 ,0.5)
439 energy = average_energy_density_reflecting_plateau(data ,wavelet ,sample ,f_i1 ,f_i2)
440 return energy / totalEnergy
441

442 def average_amplitude(data ,wavelet ,sample ,f_i1 ,f_i2):
443 scales = scale (10)
444 coeffs , freqs = pywt.cwt(data , scales , wavelet)
445

446 s_lower = 1 / f_i2
447 s_upper = 1 / f_i1
448 scalesUsed = (scales >= s_lower) & (scales <= s_upper)
449 scalesFiltered = scales[scalesUsed]
450 coeffsFiltered = coeffs[scalesUsed , baseline_b[sample ]: plateau_e[sample ]]
451

452 power = np.abs(coeffsFiltered)
453

454 res = 1 / scalesFiltered **2
455 y = power.T * res
456

457 scalesIntegration = (1 / f_i2 - f_i1) * np.trapz(y,scalesFiltered ,axis =1)
458

459 timeIntegration = np.trapz(scalesIntegration ,np.arange(baseline_b[sample],plateau_e
[sample ])) / (plateau_e[sample]-baseline_b[sample ])

460 return timeIntegration
461

462 def average_amplitude_reflecting(data ,wavelet ,sample ,f_i1 ,f_i2):
463 scales = scale (10)
464 reflectedData = reflect_data(data ,sample)
465 coeffs , freqs = pywt.cwt(reflectedData ,scales ,wavelet)
466 segmentLength = plateau_e[sample]-baseline_b[sample]
467 coeffs = coeffs[ : , segmentLength : 2* segmentLength]
468

469 s_lower = 1 / f_i2
470 s_upper = 1 / f_i1
471 scalesUsed = (scales >= s_lower) & (scales <= s_upper)
472 scalesFiltered = scales[scalesUsed]
473 coeffsFiltered = coeffs[scalesUsed , :]
474

475 power = np.abs(coeffsFiltered)
476

477 res = 1 / scalesFiltered **2
478 y = power.T * res
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479

480 scalesIntegration = (1 / f_i2 - f_i1) * np.trapz(y,scalesFiltered ,axis =1)
481

482 timeIntegration = np.trapz(scalesIntegration ,np.arange(0, segmentLength)) /
segmentLength

483 return timeIntegration
484

485 def average_amplitude_reflecting_baseline(data ,wavelet ,sample ,f_i1 ,f_i2):
486 scales = scale (10)
487 reflectedData = reflect_data(data ,sample)
488 coeffs , freqs = pywt.cwt(reflectedData ,scales ,wavelet)
489 segmentLength = plateau_e[sample]-baseline_b[sample]
490 coeffs = coeffs[ : , segmentLength : 2* segmentLength]
491

492 s_lower = 1 / f_i2
493 s_upper = 1 / f_i1
494 scalesUsed = (scales >= s_lower) & (scales <= s_upper)
495 scalesFiltered = scales[scalesUsed]
496 coeffsFiltered = coeffs[scalesUsed , :]
497

498 power = np.abs(coeffsFiltered)
499

500 res = 1 / scalesFiltered **2
501 y = power.T * res
502

503 scalesIntegration = (1 / f_i2 - f_i1) * np.trapz(y,scalesFiltered ,axis =1)
504 scalesIntegrationBaseline = scalesIntegration [: baseline_e[sample]-baseline_b[sample

]]
505 timeIntegration = np.trapz(scalesIntegrationBaseline ,np.arange(0,len(

scalesIntegrationBaseline))) / len(scalesIntegrationBaseline)
506 return timeIntegration
507

508 def average_amplitude_reflecting_peak(data ,wavelet ,sample ,f_i1 ,f_i2):
509 scales = scale (10)
510 reflectedData = reflect_data(data ,sample)
511 coeffs , freqs = pywt.cwt(reflectedData ,scales ,wavelet)
512 segmentLength = plateau_e[sample]-baseline_b[sample]
513 coeffs = coeffs[ : , segmentLength : 2* segmentLength]
514

515 s_lower = 1 / f_i2
516 s_upper = 1 / f_i1
517 scalesUsed = (scales >= s_lower) & (scales <= s_upper)
518 scalesFiltered = scales[scalesUsed]
519 coeffsFiltered = coeffs[scalesUsed , :]
520

521 power = np.abs(coeffsFiltered)
522

523 res = 1 / scalesFiltered **2
524 y = power.T * res
525

526 scalesIntegration = (1 / f_i2 - f_i1) * np.trapz(y,scalesFiltered ,axis =1)
527 scalesIntegrationBaseline = scalesIntegration[piek_b[sample]-baseline_b[sample ]:

piek_e[sample]-baseline_b[sample ]]
528 timeIntegration = np.trapz(scalesIntegrationBaseline ,np.arange(0,len(

scalesIntegrationBaseline))) / len(scalesIntegrationBaseline)
529 return timeIntegration
530

531 def average_amplitude_reflecting_plateau(data ,wavelet ,sample ,f_i1 ,f_i2):
532 scales = scale (10)
533 reflectedData = reflect_data(data ,sample)
534 coeffs , freqs = pywt.cwt(reflectedData ,scales ,wavelet)
535 segmentLength = plateau_e[sample]-baseline_b[sample]
536 coeffs = coeffs[ : , segmentLength : 2* segmentLength]
537

538 s_lower = 1 / f_i2
539 s_upper = 1 / f_i1
540 scalesUsed = (scales >= s_lower) & (scales <= s_upper)
541 scalesFiltered = scales[scalesUsed]
542 coeffsFiltered = coeffs[scalesUsed , :]
543

544 power = np.abs(coeffsFiltered)
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545

546 res = 1 / scalesFiltered **2
547 y = power.T * res
548

549 scalesIntegration = (1 / f_i2 - f_i1) * np.trapz(y,scalesFiltered ,axis =1)
550 scalesIntegrationBaseline = scalesIntegration[plateau_b[sample]-baseline_b[sample ]:

plateau_e[sample]-baseline_b[sample ]]
551 timeIntegration = np.trapz(scalesIntegrationBaseline ,np.arange(0,len(

scalesIntegrationBaseline))) / len(scalesIntegrationBaseline)
552 return timeIntegration
553

554 def relative_amplitude(data ,wavelet ,sample ,f_i1 ,f_i2):
555 totalEnergy = average_amplitude(data ,wavelet ,sample ,0.005 ,0.5)
556 energy = average_amplitude(data ,wavelet ,sample ,f_i1 ,f_i2)
557 return energy / totalEnergy
558

559 def relative_amplitude_reflecting(data ,wavelet ,sample ,f_i1 ,f_i2):
560 totalEnergy = average_amplitude_reflecting(data ,wavelet ,sample ,0.005 ,0.5)
561 energy = average_amplitude_reflecting(data ,wavelet ,sample ,f_i1 ,f_i2)
562 return energy / totalEnergy
563

564 def relative_amplitude_reflecting_baseline(data ,wavelet ,sample ,f_i1 ,f_i2):
565 totalEnergy = average_amplitude_reflecting_baseline(data ,wavelet ,sample ,0.005 ,0.5)
566 energy = average_amplitude_reflecting_baseline(data ,wavelet ,sample ,f_i1 ,f_i2)
567 return energy / totalEnergy
568

569 def relative_amplitude_reflecting_peak(data ,wavelet ,sample ,f_i1 ,f_i2):
570 totalEnergy = average_amplitude_reflecting_peak(data ,wavelet ,sample ,0.005 ,0.5)
571 energy = average_amplitude_reflecting_peak(data ,wavelet ,sample ,f_i1 ,f_i2)
572 return energy / totalEnergy
573

574 def relative_amplitude_reflecting_plateau(data ,wavelet ,sample ,f_i1 ,f_i2):
575 totalEnergy = average_amplitude_reflecting_plateau(data ,wavelet ,sample ,0.005 ,0.5)
576 energy = average_amplitude_reflecting_plateau(data ,wavelet ,sample ,f_i1 ,f_i2)
577 return energy / totalEnergy
578

579 def plot_boxplots_intervals_RED(ROI ,ax,morlet):
580 f6 = np.zeros (53)
581 f5 = np.zeros (53)
582 f4 = np.zeros (53)
583 f3 = np.zeros (53)
584 f2 = np.zeros (53)
585

586 for i in range (53):
587 f6[i] = relative_energy_density(ROI[i],morlet ,i ,0.005 ,0.0095)
588 f5[i] = relative_energy_density(ROI[i],morlet ,i ,0.0095 ,0.02)
589 f4[i] = relative_energy_density(ROI[i],morlet ,i ,0.02 ,0.06)
590 f3[i] = relative_energy_density(ROI[i],morlet ,i ,0.06 ,0.15)
591 f2[i] = relative_energy_density(ROI[i],morlet ,i ,0.15 ,0.4)
592

593 d = [f6, f5, f4, f3, f2]
594 ax.boxplot(d)
595 ax.set_title("Boxplots of the relative energy density")
596 ax.set_xlabel("Frequency intervals")
597 ax.set_ylabel("Value")
598 ax.set_xticks ([1, 2, 3, 4, 5])
599 ax.set_xticklabels (["0.005 -0.0095", "0.0095 -0.02", "0.02 -0.06", "0.06 -0.15", "

0.15 -0.4"])
600 ax.grid(True)
601 return ax
602

603 def plot_boxplots_intervals_RED_reflecting(ROI ,ax ,morlet):
604 f6 = np.zeros (53)
605 f5 = np.zeros (53)
606 f4 = np.zeros (53)
607 f3 = np.zeros (53)
608 f2 = np.zeros (53)
609

610 for i in range (53):
611 f6[i] = relative_energy_density_reflecting(ROI[i],morlet ,i ,0.005 ,0.0095)
612 f5[i] = relative_energy_density_reflecting(ROI[i],morlet ,i ,0.0095 ,0.02)
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613 f4[i] = relative_energy_density_reflecting(ROI[i],morlet ,i ,0.02 ,0.06)
614 f3[i] = relative_energy_density_reflecting(ROI[i],morlet ,i ,0.06 ,0.15)
615 f2[i] = relative_energy_density_reflecting(ROI[i],morlet ,i,0.15 ,0.4)
616

617 d = [f6, f5, f4, f3, f2]
618 ax.boxplot(d)
619 ax.set_title("Boxplots of the relative energy density with reflecting")
620 ax.set_xlabel("Frequency intervals")
621 ax.set_ylabel("Value")
622 ax.set_xticks ([1, 2, 3, 4, 5])
623 ax.set_xticklabels (["0.005 -0.0095", "0.0095 -0.02", "0.02 -0.06", "0.06 -0.15", "

0.15 -0.4"])
624 ax.grid(True)
625 return ax
626

627 def plot_boxplots_intervals_RA(ROI ,ax ,morlet):
628 f6 = np.zeros (53)
629 f5 = np.zeros (53)
630 f4 = np.zeros (53)
631 f3 = np.zeros (53)
632 f2 = np.zeros (53)
633

634 for i in range (53):
635 f6[i] = relative_amplitude(ROI[i],morlet ,i ,0.005 ,0.0095)
636 f5[i] = relative_amplitude(ROI[i],morlet ,i ,0.0095 ,0.02)
637 f4[i] = relative_amplitude(ROI[i],morlet ,i ,0.02 ,0.06)
638 f3[i] = relative_amplitude(ROI[i],morlet ,i ,0.06 ,0.15)
639 f2[i] = relative_amplitude(ROI[i],morlet ,i,0.15 ,0.4)
640

641 d = [f6, f5, f4, f3, f2]
642 ax.boxplot(d)
643 ax.set_title("Boxplots of the relative amplitude")
644 ax.set_xlabel("Frequency intervals")
645 ax.set_ylabel("Value")
646 ax.set_xticks ([1, 2, 3, 4, 5])
647 ax.set_xticklabels (["0.005 -0.0095", "0.0095 -0.02", "0.02 -0.06", "0.06 -0.15", "

0.15 -0.4"])
648 ax.grid(True)
649 return ax
650

651 def plot_boxplots_intervals_RA_reflecting(ROI ,ax ,morlet):
652 f6 = np.zeros (53)
653 f5 = np.zeros (53)
654 f4 = np.zeros (53)
655 f3 = np.zeros (53)
656 f2 = np.zeros (53)
657

658 for i in range (53):
659 f6[i] = relative_amplitude_reflecting(ROI[i],morlet ,i ,0.005 ,0.0095)
660 f5[i] = relative_amplitude(ROI[i],morlet ,i ,0.0095 ,0.02)
661 f4[i] = relative_amplitude(ROI[i],morlet ,i ,0.02 ,0.06)
662 f3[i] = relative_amplitude(ROI[i],morlet ,i ,0.06 ,0.15)
663 f2[i] = relative_amplitude(ROI[i],morlet ,i,0.15 ,0.4)
664

665 d = [f6, f5, f4, f3, f2]
666 ax.boxplot(d)
667 ax.set_title("Boxplots of the relative amplitude with reflecting")
668 ax.set_xlabel("Frequency intervals")
669 ax.set_ylabel("Value")
670 ax.set_xticks ([1, 2, 3, 4, 5])
671 ax.set_xticklabels (["0.005 -0.0095", "0.0095 -0.02", "0.02 -0.06", "0.06 -0.15", "

0.15 -0.4"])
672 ax.grid(True)
673 return ax
674

675 def plot_boxplots_intervals_ED(ROI ,ax ,morlet):
676 f6 = np.zeros (53)
677 f5 = np.zeros (53)
678 f4 = np.zeros (53)
679 f3 = np.zeros (53)
680 f2 = np.zeros (53)
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681

682 for i in range (53):
683 f6[i] = average_energy_density(ROI[i],morlet ,i ,0.005 ,0.0095)
684 f5[i] = average_energy_density(ROI[i],morlet ,i ,0.0095 ,0.02)
685 f4[i] = average_energy_density(ROI[i],morlet ,i ,0.02 ,0.06)
686 f3[i] = average_energy_density(ROI[i],morlet ,i ,0.06 ,0.15)
687 f2[i] = average_energy_density(ROI[i],morlet ,i,0.15 ,0.4)
688

689 d = [f6, f5, f4, f3, f2]
690 ax.boxplot(d)
691 ax.set_title("Boxplots of the average energy density")
692 ax.set_xlabel("Frequency intervals")
693 ax.set_ylabel("Value")
694 ax.set_xticks ([1, 2, 3, 4, 5])
695 ax.set_xticklabels (["0.005 -0.0095", "0.0095 -0.02", "0.02 -0.06", "0.06 -0.15", "

0.15 -0.4"])
696 ax.grid(True)
697 return ax
698

699 def plot_boxplots_intervals_ED_reflecting(ROI ,ax ,morlet):
700 f6 = np.zeros (53)
701 f5 = np.zeros (53)
702 f4 = np.zeros (53)
703 f3 = np.zeros (53)
704 f2 = np.zeros (53)
705

706 for i in range (53):
707 f6[i] = average_energy_density_reflecting(ROI[i],morlet ,i ,0.005 ,0.0095)
708 f5[i] = average_energy_density_reflecting(ROI[i],morlet ,i ,0.0095 ,0.02)
709 f4[i] = average_energy_density_reflecting(ROI[i],morlet ,i ,0.02 ,0.06)
710 f3[i] = average_energy_density_reflecting(ROI[i],morlet ,i ,0.06 ,0.15)
711 f2[i] = average_energy_density_reflecting(ROI[i],morlet ,i,0.15 ,0.4)
712

713 d = [f6, f5, f4, f3, f2]
714 ax.boxplot(d)
715 ax.set_title("Boxplots of the average energy density with reflecting")
716 ax.set_xlabel("Frequency intervals")
717 ax.set_ylabel("Value")
718 ax.set_xticks ([1, 2, 3, 4, 5])
719 ax.set_xticklabels (["0.005 -0.0095", "0.0095 -0.02", "0.02 -0.06", "0.06 -0.15", "

0.15 -0.4"])
720 ax.grid(True)
721 return ax
722

723 def plot_boxplots_intervals_AA(ROI ,ax ,morlet):
724 f6 = np.zeros (53)
725 f5 = np.zeros (53)
726 f4 = np.zeros (53)
727 f3 = np.zeros (53)
728 f2 = np.zeros (53)
729

730 for i in range (53):
731 f6[i] = average_amplitude(ROI[i],morlet ,i ,0.005 ,0.0095)
732 f5[i] = average_amplitude(ROI[i],morlet ,i ,0.0095 ,0.02)
733 f4[i] = average_amplitude(ROI[i],morlet ,i ,0.02 ,0.06)
734 f3[i] = average_amplitude(ROI[i],morlet ,i ,0.06 ,0.15)
735 f2[i] = average_amplitude(ROI[i],morlet ,i,0.15 ,0.4)
736

737 d = [f6, f5, f4, f3, f2]
738 ax.boxplot(d)
739 ax.set_title("Boxplots of the average amplitude")
740 ax.set_xlabel("Frequency intervals")
741 ax.set_ylabel("Value")
742 ax.set_xticks ([1, 2, 3, 4, 5])
743 ax.set_xticklabels (["0.005 -0.0095", "0.0095 -0.02", "0.02 -0.06", "0.06 -0.15", "

0.15 -0.4"])
744 ax.grid(True)
745 return ax
746

747 def plot_boxplots_intervals_AA_reflecting(ROI ,ax ,morlet):
748 f6 = np.zeros (53)
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749 f5 = np.zeros (53)
750 f4 = np.zeros (53)
751 f3 = np.zeros (53)
752 f2 = np.zeros (53)
753

754 for i in range (53):
755 f6[i] = average_amplitude_reflecting(ROI[i],morlet ,i ,0.005 ,0.0095)
756 f5[i] = average_amplitude_reflecting(ROI[i],morlet ,i ,0.0095 ,0.02)
757 f4[i] = average_amplitude_reflecting(ROI[i],morlet ,i ,0.02 ,0.06)
758 f3[i] = average_amplitude_reflecting(ROI[i],morlet ,i ,0.06 ,0.15)
759 f2[i] = average_amplitude_reflecting(ROI[i],morlet ,i ,0.15 ,0.4)
760

761 d = [f6, f5, f4, f3, f2]
762 ax.boxplot(d)
763 ax.set_title("Boxplots of the average amplitude with reflecting")
764 ax.set_xlabel("Frequency intervals")
765 ax.set_ylabel("Value")
766 ax.set_xticks ([1, 2, 3, 4, 5])
767 ax.set_xticklabels (["0.005 -0.0095", "0.0095 -0.02", "0.02 -0.06", "0.06 -0.15", "

0.15 -0.4"])
768 ax.grid(True)
769 return ax
770

771 def twoBoxplots(ROI ,data1 ,data2 ,ax,morlet ,begin ,end ,function ,label ,title):
772 mig = np.zeros(len(data1))
773 noMig= np.zeros(len(data2))
774

775 m=0
776 nm=0
777

778 for i in range (53):
779 if label[i] == 1:
780 mig[m] = function(ROI[i],morlet ,i,begin ,end)
781 m+=1
782 if label[i] == 0:
783 noMig[nm] = function(ROI[i],morlet ,i,begin ,end)
784 nm+=1
785

786 d = [noMig , mig]
787 ax.boxplot(d)
788 ax.set_title(title)
789 # ax.set_xlabel (" Frequency intervals ")
790 ax.set_ylabel("Value")
791 ax.set_xticks ([1, 2])
792 ax.set_xticklabels (["No migraine", "Migraine"])
793 ax.grid(True)
794 return ax
795

796 def twoBoxplots_values(ROI ,data1 ,data2 ,morlet ,begin ,end ,function ,label):
797 mig = np.zeros(len(data1))
798 noMig= np.zeros(len(data2))
799

800 m=0
801 nm=0
802

803 for i in range (53):
804 if label[i] == 1:
805 mig[m] = function(ROI[i],morlet ,i,begin ,end)
806 m+=1
807 if label[i] == 0:
808 noMig[nm] = function(ROI[i],morlet ,i,begin ,end)
809 nm+=1
810

811 return (mig ,noMig)
812

813 def twoBoxplotsaura(ROI ,data1 ,data2 ,ax,morlet ,begin ,end ,function ,label ,title):
814 mig = np.zeros(len(data1))
815 noMig= np.zeros(len(data2))
816

817 m=0
818 nm=0
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819

820 for i in range (53):
821 if label[i] == 2:
822 mig[m] = function(ROI[i],morlet ,i,begin ,end)
823 m+=1
824 if label[i] == 0:
825 noMig[nm] = function(ROI[i],morlet ,i,begin ,end)
826 nm+=1
827

828 d = [noMig , mig]
829 ax.boxplot(d)
830 ax.set_title(title)
831 # ax.set_xlabel (" Frequency intervals ")
832 ax.set_ylabel("Value")
833 ax.set_xticks ([1, 2])
834 ax.set_xticklabels (["No migraine", "Migraine with aura"])
835 ax.grid(True)
836 return ax
837

838 def twoBoxplots_valuesaura(ROI ,data1 ,data2 ,morlet ,begin ,end ,function ,label):
839 mig = np.zeros(len(data1))
840 noMig= np.zeros(len(data2))
841

842 m=0
843 nm=0
844

845 for i in range (53):
846 if label[i] == 2:
847 mig[m] = function(ROI[i],morlet ,i,begin ,end)
848 m+=1
849 if label[i] == 0:
850 noMig[nm] = function(ROI[i],morlet ,i,begin ,end)
851 nm+=1
852

853 return (mig ,noMig)
854

855 def twoBoxplots_fourier(ROI ,data1 ,data2 ,ax,f_i1 ,f_i2 ,function ,label ,title ,start ,end):
856 mig = np.zeros(len(data1))
857 noMig= np.zeros(len(data2))
858

859 m=0
860 nm=0
861

862 for i in range (53):
863 if label[i] == 1:
864 mig[m] = function(ROI[i],i,f_i1 ,f_i2 ,start ,end)
865 m+=1
866 if label[i] == 0:
867 noMig[nm] = function(ROI[i],i,f_i1 ,f_i2 ,start ,end)
868 nm+=1
869

870 d = [noMig , mig]
871 ax.boxplot(d)
872 ax.set_title(title)
873 # ax.set_xlabel (" Frequency intervals ")
874 ax.set_ylabel("Value")
875 ax.set_xticks ([1, 2])
876 ax.set_xticklabels (["No migraine", "Migraine"])
877 ax.grid(True)
878 return ax
879

880 def twoBoxplots_values_fourier(ROI ,data1 ,data2 ,f_i1 ,f_i2 ,function ,label ,start ,end):
881 mig = np.zeros(len(data1))
882 noMig= np.zeros(len(data2))
883

884 m=0
885 nm=0
886

887 for i in range (53):
888 if label[i] == 1:
889 mig[m] = function(ROI[i],i,f_i1 ,f_i2 ,start ,end)
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890 m+=1
891 if label[i] == 0:
892 noMig[nm] = function(ROI[i],i,f_i1 ,f_i2 ,start ,end)
893 nm+=1
894

895 return (mig ,noMig)
896

897 def threeBoxplots(ROI ,data ,ax ,morlet ,begin ,end ,function1 ,function2 ,function3 ,
labelNumber ,label ,title):

898 baselineValues = np.zeros(len(data))
899 peakValues = np.zeros(len(data))
900 plateauValues = np.zeros(len(data))
901

902 m=0
903 nm=0
904

905 if labelNumber == 1:
906 for i in range (53):
907 if label[i] == 1:
908 baselineValues[m] = function1(ROI[i],morlet ,i,begin ,end)
909 peakValues[m] = function2(ROI[i],morlet ,i,begin ,end)
910 plateauValues[m] = function3(ROI[i],morlet ,i,begin ,end)
911 m+=1
912 if labelNumber == 0:
913 for i in range (53):
914 if label[i] == 0:
915 baselineValues[nm] = function1(ROI[i],morlet ,i,begin ,end)
916 peakValues[nm] = function2(ROI[i],morlet ,i,begin ,end)
917 plateauValues[nm] = function3(ROI[i],morlet ,i,begin ,end)
918 nm+=1
919

920 d = [baselineValues , peakValues ,plateauValues]
921 ax.boxplot(d)
922 ax.set_title(title)
923 ax.set_xlabel("Frequency intervals")
924 ax.set_ylabel("Value")
925 ax.set_xticks ([1, 2, 3])
926 ax.set_xticklabels (["Baseline", "Peak", "Plateau"])
927 ax.grid(True)
928 return ax
929

930 def threeBoxplots_values(ROI ,data ,morlet ,begin ,end ,function1 ,function2 ,function3 ,
labelNumber ,label):

931 baselineValues = np.zeros(len(data))
932 peakValues = np.zeros(len(data))
933 plateauValues = np.zeros(len(data))
934

935 m=0
936 nm=0
937

938 if labelNumber == 1:
939 for i in range (53):
940 if label[i] == 1:
941 baselineValues[m] = function1(ROI[i],morlet ,i,begin ,end)
942 peakValues[m] = function2(ROI[i],morlet ,i,begin ,end)
943 plateauValues[m] = function3(ROI[i],morlet ,i,begin ,end)
944 m+=1
945 if labelNumber == 0:
946 for i in range (53):
947 if label[i] == 0:
948 baselineValues[nm] = function1(ROI[i],morlet ,i,begin ,end)
949 peakValues[nm] = function2(ROI[i],morlet ,i,begin ,end)
950 plateauValues[nm] = function3(ROI[i],morlet ,i,begin ,end)
951 nm+=1
952 return (baselineValues ,peakValues ,plateauValues)
953

954 def threeBoxplotsROI(ROI1 ,ROI2 ,ROI3 ,data ,ax,morlet ,begin ,end ,function ,labelNumber ,label
,title):

955 roi1 = np.zeros(len(data))
956 roi2 = np.zeros(len(data))
957 roi3 = np.zeros(len(data))
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958

959 m=0
960 nm=0
961

962 if labelNumber == 1:
963 for i in range (53):
964 if label[i] == 1:
965 roi1[m] = function(ROI1[i],morlet ,i,begin ,end)
966 roi2[m] = function(ROI2[i],morlet ,i,begin ,end)
967 roi3[m] = function(ROI3[i],morlet ,i,begin ,end)
968 m+=1
969 if labelNumber == 0:
970 for i in range (53):
971 if label[i] == 0:
972 roi1[nm] = function(ROI1[i],morlet ,i,begin ,end)
973 roi2[nm] = function(ROI2[i],morlet ,i,begin ,end)
974 roi3[nm] = function(ROI3[i],morlet ,i,begin ,end)
975 nm+=1
976

977 d = [roi1 , roi3 ,roi2]
978 ax.boxplot(d)
979 ax.set_title(title)
980 ax.set_xlabel("Frequency intervals")
981 ax.set_ylabel("Value")
982 ax.set_xticks ([1, 2, 3])
983 ax.set_xticklabels (["ROI1", "ROI3", "ROI2"])
984 ax.grid(True)
985 return ax
986

987 def threeBoxplotsROI_values(ROI1 ,ROI2 ,ROI3 ,data ,morlet ,begin ,end ,function ,labelNumber ,
label):

988 roi1 = np.zeros(len(data))
989 roi2 = np.zeros(len(data))
990 roi3 = np.zeros(len(data))
991

992 m=0
993 nm=0
994

995 if labelNumber == 1:
996 for i in range (53):
997 if label[i] == 1:
998 roi1[m] = function(ROI1[i],morlet ,i,begin ,end)
999 roi2[m] = function(ROI2[i],morlet ,i,begin ,end)

1000 roi3[m] = function(ROI3[i],morlet ,i,begin ,end)
1001 m+=1
1002 if labelNumber == 0:
1003 for i in range (53):
1004 if label[i] == 0:
1005 roi1[nm] = function(ROI1[i],morlet ,i,begin ,end)
1006 roi2[nm] = function(ROI2[i],morlet ,i,begin ,end)
1007 roi3[nm] = function(ROI3[i],morlet ,i,begin ,end)
1008 nm+=1
1009 return (roi1 ,roi2 ,roi3)
1010

1011 def threeBoxplotsROI_fourier(ROI1 ,ROI2 ,ROI3 ,data ,ax,start ,end ,function ,labelNumber ,
label ,title ,f_i1 ,f_i2):

1012 roi1 = np.zeros(len(data))
1013 roi2 = np.zeros(len(data))
1014 roi3 = np.zeros(len(data))
1015

1016 m=0
1017 nm=0
1018

1019 if labelNumber == 1:
1020 for i in range (53):
1021 if label[i] == 1:
1022 roi1[m] = function(ROI1[i],i,f_i1 ,f_i2 ,start ,end)
1023 roi2[m] = function(ROI2[i],i,f_i1 ,f_i2 ,start ,end)
1024 roi3[m] = function(ROI3[i],i,f_i1 ,f_i2 ,start ,end)
1025 m+=1
1026 if labelNumber == 0:
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1027 for i in range (53):
1028 if label[i] == 0:
1029 roi1[nm] = function(ROI1[i],i,f_i1 ,f_i2 ,start ,end)
1030 roi2[nm] = function(ROI2[i],i,f_i1 ,f_i2 ,start ,end)
1031 roi3[nm] = function(ROI3[i],i,f_i1 ,f_i2 ,start ,end)
1032 nm+=1
1033

1034 d = [roi1 , roi3 ,roi2]
1035 ax.boxplot(d)
1036 ax.set_title(title)
1037 ax.set_ylabel("Value")
1038 ax.set_xticks ([1, 2, 3])
1039 ax.set_xticklabels (["ROI1", "ROI3", "ROI2"])
1040 ax.grid(True)
1041 return ax
1042

1043 def threeBoxplotsROI_values_fourier(ROI1 ,ROI2 ,ROI3 ,data ,start ,end ,function ,labelNumber ,
label ,f_i1 ,f_i2):

1044 roi1 = np.zeros(len(data))
1045 roi2 = np.zeros(len(data))
1046 roi3 = np.zeros(len(data))
1047

1048 m=0
1049 nm=0
1050

1051 if labelNumber == 1:
1052 for i in range (53):
1053 if label[i] == 1:
1054 roi1[m] = function(ROI1[i],i,f_i1 ,f_i2 ,start ,end)
1055 roi2[m] = function(ROI2[i],i,f_i1 ,f_i2 ,start ,end)
1056 roi3[m] = function(ROI3[i],i,f_i1 ,f_i2 ,start ,end)
1057 m+=1
1058 if labelNumber == 0:
1059 for i in range (53):
1060 if label[i] == 0:
1061 roi1[nm] = function(ROI1[i],i,f_i1 ,f_i2 ,start ,end)
1062 roi2[nm] = function(ROI2[i],i,f_i1 ,f_i2 ,start ,end)
1063 roi3[nm] = function(ROI3[i],i,f_i1 ,f_i2 ,start ,end)
1064 nm+=1
1065 return (roi1 ,roi2 ,roi3)
1066

1067 def discrete_fourier_transform(ROI ,sample ,start ,end):
1068 start = start[sample]
1069 end = end[sample]
1070 data = ROI[start:end]-np.mean(ROI[start:end])
1071 res = fft(data)
1072 frequencies =fftfreq(len(data) ,1)
1073 mask = frequencies >= 0.005
1074 return (res[mask],frequencies[mask])
1075

1076 def energy_density_fourier(ROI ,sample ,f_i1 ,f_i2 ,start ,end):
1077 res ,frequencies = discrete_fourier_transform(ROI ,sample ,start ,end)
1078 mask = (frequencies >= f_i1) & (frequencies <= f_i2)
1079 res = res[mask]
1080 frequencies = frequencies[mask]
1081 return np.sum(np.abs(res)**2)
1082

1083 def relative_energy_density_fourier(ROI ,sample ,f_i1 ,f_i2 ,start ,end):
1084 total = energy_density_fourier(ROI ,sample ,0.005 ,0.5 ,start ,end)
1085 part = energy_density_fourier(ROI ,sample ,f_i1 ,f_i2 ,start ,end)
1086 return part/total
1087

1088 def amplitude_fourier(ROI ,sample ,f_i1 ,f_i2 ,start ,end):
1089 res ,frequencies = discrete_fourier_transform(ROI ,sample ,start ,end)
1090 mask = (frequencies >= f_i1) & (frequencies <= f_i2)
1091 res = res[mask]
1092 frequencies = frequencies[mask]
1093 return 1/(f_i2 -f_i1) * np.sum(np.abs(res))
1094

1095 def relative_amplitude_fourier(ROI ,sample ,f_i1 ,f_i2 ,start ,end):
1096 total = amplitude_fourier(ROI ,sample ,0.005 ,0.4 ,start ,end)
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1097 part = amplitude_fourier(ROI ,sample ,f_i1 ,f_i2 ,start ,end)
1098 return (part/total)

Listing B.1: Base document code containing all functions used in the main script.
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