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Preface

The life of a commuter, living in Amsterdam and working in Delft, can be hard sometimes.
He chooses to travel by train, since 78 kilometers are too many to go by bicycle every day.
Upon arrival at the railway station, problems may already present themselves. He may receive
conflicting information as to which train will be the first to leave in the desired direction.
Having interpreted the information obtained from the guard and the traffic-control as well as
he can, he ends up in a train having a seat with a very good view of the train that leaves in the
desired direction before his own. Of course, we are only at the beginning of the information
era and no one can expect the Dutch railways to make use of all the new possibilities offered.

Other inconveniences may be his lot as well. He may have to fight his way to the last
empty seat, the driver may forget to make a stop in Delft, or the train may arrive at the
commuter’s destination with a rather serious delay. Of course, just like the weather, these
inconveniences are somewhat compensated by their being a rich source of conversation.

For a statistician travelling by train, however, a commuting life is not bad at all. For
every inconvenience is alleviated by the prospect of being able to add another element to his
data set of train delays, thus yielding the possibility of applying his statistical techniques in
order to enlarge his knowledge about train delays between Amsterdam and Delft.

Of course he has to be careful in his study design, but he has plenty of time to think
about it during his 55 minute’s journey. In fact, he is in a very fortunate situation, for he
is able to observe his data with an inaccuracy of at most a few seconds. Moreover, the data
can be collected in such a way that the data can be viewed as a realization of a sample of
independent observations, or “draws”, from the same “population” of train delays. For a
practically inclined statistician, this is the most ideal situation, since a lot of theory has been
developed to deal with such data. The statistical models treated in this thesis deal with data
sets that are not nearly as ideal. A lot of theory still has to be developed, and this thesis is
a small contribution to the understanding of these models.

The first part of this thesis (chapters 1 and 2) deals with a situation in which the data
can still be seen as a realization of a sample of independent observations from the same
population. However, this sample does not consist of the data in which we are interested.
The data of interest are censored to a certain extent. Nonetheless, clever use of the censored
information still tells us a lot. This work is a continuation of a study that resulted in my
Master’s thesis (GEsKUS (1989)). A few parts of it will be repeated in this Ph.D. thesis.

The second part of this thesis (chapter 3) deals with a completely different model, used
to describe the amount of repulsion between elements in some homogeneous area, such as
goshawks occupying territory in a homogeneous forest. This side-track was taken as a means
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to give new inspiration during a period, in which my main area of research was in an impasse.
Later, when new progress was being made, my main attention switched back to the
interval censoring model. Therefore, it covers the larger part of my thesis.
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Chapter 1

Interval censoring and lower bounds

Censoring models are used in situations in which inaccuracy in part, or even all of the data
is not due to some small measurement error, but is of another order of magnitude and often
of another origin as well.

We will start with a short characterization of some frequently encountered censored data
structures in survival analysis problems. They are mostly exemplified by situations from
HIV and AIDS related research. This is followed by an overview of the relevant notions and
theorems from efficiency theory. At the beginning we will take a rather intuitive approach.
A rigorous and much more general treatment of the subject can be found elsewhere, e.g.
in BICKEL et al. (1993) and part I of GROENEBOOM AND WELLNER (1992). We will become
more formal when we get nearer to the application of this theory to the interval censoring
model. The chapter is closed by the mathematically rigorous lower bound calculations for
the different interval censoring cases. Since the reference GROENEBOOM AND WELLNER (1992)
will be used frequently, it will be abbreviated by GW in the sequel.

1.1 Some censoring models

In survival analysis, the data of interest are time points xy,...,x,, such as time of death,
time of failure or, more generally, event times of some elements of the population studied.
Usually, the observation of the event times is censored to some degree.

The most well-known type of censoring is right censoring. An event time is right censored
because it has not yet occurred at the end of the study or because its observation is made
impossible due to the occurrence of some other competing event. In HIV/AIDS cohort
studies, right censored incubation times of HIV infected persons occur frequently because
these studies have not yet been going on long enough in order to observe long incubation times
(study cutoff). Moreover, the AIDS diagnosis may not be observed since persons left the study
before they developed AIDS (loss to follow-up) or were subject to some other event, preventing
the occurrence of AIDS (competing risk, such as pre-AIDS mortality). Ideally, these censoring
mechanisms are unrelated to disease progression, in which situation they can all be treated in
the same way. For censoring due to study cutoff, this independence assumption is a reasonable
one. For censoring due to loss to follow-up, and especially censoring due to competing
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risks, one should be very careful. For example, pre-AIDS mortality is a frequently occurring
phenomenon among injection drug users, and may very well be related with progression to
AIDS (see e.g. VAN HAASTRECHT et al. (1996)). If the censoring mechanism is not unrelated
to the event time mechanism, model building is much harder. In the sequel, we will assume
both mechanisms to act independently.

Left censoring is the equivalent of right censoring at the left side of the time axis. For
example, in estimation of the HIV seroconversion distribution over calendar time, one may
have persons that were already positive at their first test.

When modelling left and right censoring, one usually assumes a sample of censoring times
t1,...,t, along with the sample of event times. In case of right censored data, if the event time
x; occurs before the censoring time t;, it is observed; otherwise the event time is censored.
In order to get in correspondence with the terminology used in the interval censoring model,
the censoring times are called the observation times. There is a wealth of literature on all
kinds of aspects of left and right censoring. See ANDERSEN et al. (1993) for a recent overview.
The estimation of the distribution function in case of independent censoring is usually based
on the Kaplan-Meier estimator. This estimator strongly depends on the uncensored event
times. If all event times are censored, it cannot be used.

Combinations of left and right censored data are usually called doubly censored. See e.g.
CHANG AND YANG (1987) and CHANG (1990), who deal with estimation of the distribution
function. It can be modelled by introducing two observation times for each event time. If
the event occurs between both censoring times, it is observed. Otherwise it is censored. The
terminology “doubly censored data” is a somewhat unfortunate one, since another kind of
censored data, to be treated below, is called doubly censored as well. It may be better to
call this censoring mechanism two-sided censoring.

Left, right and two-sided censoring have in common the prerequisite that at least part of
the event times can be observed themselves, without censoring. Often, we have to deal with
situations in which direct observation of the event times is impossible altogether.

In its simplest form, one has one observation time for each element in the study popula-
tion, and all one knows about the event time is whether the event has occurred before this
observation time or not. An example of this type of censoring is treated by Keminag (1991)
and GW: the occurrence of hepatitis A infection as a function of age is investigated through
data from a cross-sectional study among the Bulgarian population. The data used consist
of the age of the persons in the study (the observation times), and the information whether
they have been infected with the hepatitis A virus. This kind of censoring is called interval
censoring case 1. Such data are called current status data. From a theoretical point of view,
it is the most tractable kind of interval censoring. Quite a lot is known about the estimation
of the distribution function via the nonparametric maximum likelihood estimator when the
observation time distribution is independent of the event time distribution. From now on
the nonparametric maximum likelihood estimator will be abbreviated as NPMLE. See GW
for an overview of results on the NPMLE, in which estimation of the NPMLE of the mean is
treated as well. In HUANG AND WELLNER (1995A) the NPMLE of a wider class of estimands
than the mean is treated. That article is much related to the contents of this thesis.

Interval censored data can be summarized by a set of intervals Jy,...,J, in which the
event times xy,...,x, are known to be contained. In case 1, all intervals have the form [r(,. t]
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1.1 Some censoring models

or (t;,Ty|, with 7, the smallest possible event time (often zero) and 7,, the largest possible
event time (infinity allowed). In the more general interval censoring situation, the intervals
can be arbitrary, say of the form (u;,v;]. For example, in HIV/AIDS cohort studies, people
are tested for HIV antibodies at several, more or less regular, time intervals. So we have a
set of observation times, with at most two of them delimiting the relevant event time. These
are the only observation times that are needed for the computation of the NPMLE if the
observation times are independent of the event times. For asymptotic results, however, the
distribution of the whole set of observation times is important. The number of observation
times per element of the study population gives a further subspecification in cases. If one
has two observation times for each unobservable event time, one usually speaks of interval
censoring case 2. GW, WELLNER (1995) and GROENEBOOM (1996) deal with estimation of
the distribution function for case 2. The main subject of this thesis will be the estimation
of “smooth” functionals of the distribution function in case 2. With interval censored data,
the mean is an example of a smooth functional, whereas the median is a counterexample. Of
course, the restriction to two observation times is quite stringent. Extensions to more than
two, and a variable number of observation times per unobservable event time are usually
treated separately for reasons of ease of notation (see WELLNER (1995) and this thesis).
However, as far as the methods and techniques used are concerned, the main distinction
is between case 1 and case 2. The situation with data having partly one and partly two
observation times per unobservable event time will be treated in this thesis together with
case 2. The rest will be treated separately and summarized as interval censoring case k. Note
that the main distinction between two-sided censoring and interval censoring case 2 (and
case k) is the fact that with interval censoring, the event time is always unobservable, even
if the event has occurred between the two observation times u; and v;.

With respect to asymptotic considerations, another distinction exists within case 2 (and
case k). This distinction is determined by how close the observation times can come to each
other. These cases will be called 2A and 2B. We will come back to this later.

All the above censored data structures have both an initiating event and a terminating
event, but only the last one is censored. The other one determines the origin of the time axis.
For data that may have both events censored within the same individual, DE GRUTTOLA AND
LAGAKOS (1989) introduced the term double censoring. For example, in research estimating
the time from seroconversion to AIDS (the latency period), the date of seroconversion is
almost always interval censored, whereas the date of AIDS diagnosis may be right censored,
and in some studies interval censored as well. Of course, this problem may be treated uni-
variately, transforming the data to information on the, possibly right censored, length of the
period from seroconversion to AIDS, but this leads to loss of information. A better way is
to treat the problem bivariately, incorporating the information on both the seroconversion
distribution over calendar time and the latency period. Two other examples of doubly cen-
sored data are investigated in JEWELL, MALANI AND VITTINGHOFF (1994). For one of them
the matter of interest is the estimation of the distribution of the length of the period between
becoming infectious and seroconversion, based on data from blood transfusions. The most
important observation times are the time of the last seronegative donation and the time of
the first seropositive donation. The donor’s moment of seroconversion is always in this inter-
val. Compared to the previous example of double censoring, the loss of information by the
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censoring mechanism is more considerable. Not only are both the initiating event (the donor
becomes infectious) and the terminating event (the donor seroconverts) always censored, but
also the moment the donor’s blood becomes infectious may be in the same interval as his
moment of seroconversion. The blood recipients in the study had no other risk factor to
HIV-infection prior to transfusion, so their time of seroconversion determines the position of
the donor’s switch to infectivity relative to the last seronegative donation.

We will only be concerned with estimation of the distribution function and functionals
thereof, based on a sample of independent, identically distributed (i.i.d.) interval censored
random variables. Models incorporating covariates will not be treated in this thesis, but some
things have been done in this field with respect to interval censoring. See e.g. HUANG AND
WELLNER (1995B), in which the Cox proportional hazards model for case 2 is considered.
References to other regression models with interval censored data can be found in HuaNG
AND WELLNER (1996).

1.2 Efficiency theory for smooth functionals

In this section the event times x4, . .., x, are assumed to be observable themselves. We assume
the data to be a realization of a sample X7, ..., X, of i.i.d. random variables. Although this
may not always hold in practice, often one can design one’s experiment in such a way that it
is at least approximately true. We will restrict ourselves to the estimation of some real-valued
aspect of the distribution, like the mean. Formally, the general set-up is:

e We have an i.i.d. sample X;,..., X, ~ P. An arbitrary element of this sample is
denoted by X.

e P is an unknown distribution, to be estimated from some collection of distributions P.

o We are interested in the estimation of K(P), which is performed via the estimator
7—;1 = t()(l ----- A’n)’

Under these assumptions, criteria have been set up and methods have been developed
in order to evaluate the quality of 7,,. We will restrict our attention to the Cramér-Rao
information lower bound and its generalization to infinite-dimensional parameter spaces.

First we consider the parametric model P = {Py |6 € © C IR"}, with Py having density
pe with respect to some dominating measure p. One approach to obtaining a good estimator
is to look for an unbiased estimator such that its variance has the smallest possible value for
each value of §. The Cramér-Rao information inequality gives a lower bound for the variance
of unbiased estimators. In its simplest form, for a one-dimensional parametric model with
© C IR, it says that any unbiased estimator of the estimand K (f) € IR satisfies

(K" (6))?

varg(T,) > m for each 6 € ©.

The wnformation function 1(0) is given by

d ?
L= F [@l()g })5(‘\’)} .
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The function % log pe(z) =: lg() is called the score function. In the above formulation, both
K and log py are implicitly assumed to be differentiable in 6, the latter for each x. These
smoothness conditions, together with some minor extra conditions, are often summarized as
the regularity conditions.

Example: For P = {N(4,1)|6 € R}, we have ly(z) = « — 6 and I(9) = 1, yielding
varg(T,) > 1/n for any unbiased estimator of K (f) = . Hence X, can be seen as best in
this sense.

However, biased estimators may perform as well as or even better than unbiased ones with
respect to mean squared error, and, especially in nonparametric models, estimators that are
unbiased for each possible P € P often do not even exist. Then the Cramér-Rao theorem loses
its value, but the same bound turns up in asymptotic considerations, when the sample size
goes to infinity. Let 2, denote convergence in distribution. Apart from a slight but necessary
modification, and under the same kind of regularity conditions as above, the following holds.

If
V[T, — K(8)] 2 N(0, v(6)),

as n — oo

with v(6) > 0, then
71 2

for each 6 € ©.
e [(9) or each 0 €

Example (continued): By the central limit theorem, it is seen immediately that X,, as
estimator of the mean, asymptotically attains the lower bound 1.

The modification that is needed to make things rigorous is motivated by a counterexample
which is named after its discoverer:

Hodges’ counterexample: In the example above, consider the following estimator

Then

1 if6#0
‘(9)_{(12 it 6=0

Hence, for 0 < a < 1, T, violates the uniform lower bound at 6 = 0.

One way to cope with this phenomenon of superefficiency is to prove the lower bound to
hold for almost all (with respect to Lebesgue measure) parameter values (see e.g. LEHMANN
(1983), chapter 6, for a short discussion on this topic).

Another solution, which has been extended to nonparametric models, is to formulate
theorems in a minimaz form. Using some form of bowl-shaped loss function, such theorems
say that the supremum of the expected loss, over a collection of parameter values in a
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neighbourhood of the parameter of interest, is always larger than some lower bound value
(see e.g. chapter 2 in part I of GW).

Yet another approach, which can also be extended to nonparametric models, is to look at
a way to exclude T, as an acceptable estimator. It is suggested by the following observation.
Suppose 8§ = 0, the point where things go wrong, and consider a sequence 0,, converging to
0asn — oo. Let X;,..., X, ~ N(6,,1). We look at the limit behaviour of v/n [T, — 6, ].
Since

\/H[a){rn o 971] = (1\/5[};771 — 011] == ((l s 1)\/;071
5~ JV(((I i 1)\/5911‘(12)*

we have:
I: If 6,.= o(n='/2):
B s il] e lil00R)

II: If 6, = c,n"/? with ¢, — ¢ # 0:
V[T, = 6.] = N((a — )e,a”)

II: If 6, = c,n"'/? with ¢, going to infinity, a limit distribution does not exist.

A difference with the mean X, is that for T/ the limit distribution in case II depends
on the “direction of approach” of 8, to 0, represented by ¢. We can also say that we have
subcollections of distributions { P, }, with Py, ~ N(6,,1) and 6, as in II, called submodels,
for which the limit distribution of /n [T — 6, ] under Py, is not equal for all directions c.
This leads to the consideration of estimators, which do not have this directional dependence
(see the definition on page 11).

We will formalize these observations. In order to be able to extend the theory beyond
parametric models, we use a different definition of the regularity conditions. Let our un-
known distribution P, defined on (Y, B), be contained in some class of probability measures
P, which is dominated by a o-finite measure u. Let P have density p with respect to pu.

Definition: Let, for some ¢ > 0, the collection {P,;} with ¢ € (0,6) be a one-dimensional
parametric submodel. Such a submodel is called regular or Hellinger differentiable at P, if
the following holds:

2
/ [t"(ﬂ — %(1\/1_)} du— 0 ast |0, for some a € Ly(P).

This property can be seen as a, more generally applicable, Ly-version of the differentiability,
in ¢, of log p(x) at t = 0 for each point x (with py = p). The function a(-) plays the role of
the score function % log 1),(~)ft:0. For we have
: Jessk A Trod d
lim VP e —Dy
t10 t 2/po dt

Sarllovf 5 A
RO\ o

t=0
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Therefore, a is called the score function as well, sometimes abbreviated to score. It is well-
known that each score belonging to some Hellinger differentiable submodel integrates to zero:
JadP = 0. This follows from

/adP = ltil%lfl /(p, —p)du =0,

using the following proposition.

Proposition 1.2.1 Suppose

1‘_1(\/})_,— VD) — %a D in Lo(p).

Then

t~ (p, — p) — ap in Ly(p).
Proof: Let || - ||; denote the L,(p)-norm, and let || - ||» denote the Ly(u)-norm. Then we
have:

< l2vp{t™ (v = vp) — savpiil + I (VP = V)l
< 2|lvpll I (VP — vP) = 5av/Pll2

+t (It (vF = VP)ll)

The first term converges to zero by Hellinger differentiability, the second term is bounded by

2t (It~ (VB ~ vB) - davll) +2t (Iav/all)

which also tends to zero as t | 0, using Hellinger differentiability and a € Ly(P).

It (ps — p) ~ ap||y

2

O

Notation: The subspace of Ly(P)-functions satisfying [ adP = 0 will be denoted as L3(P).

Example (continued): Let P = N(2,1) € P = {N(6,1)|0 € R}. Many submodels that
are Hellinger differentiable at § = 2 can be found. The most obvious is P, = N(2 + t,1),
vielding a(r) = & — 2 as score function. One can as well approach N(2,1) from the other
side via N(2 — t,1), or, more generally, one can take P, = N(2 + ¢; t,1), with ¢; — ¢, giving
a(z) = c.(z — 2). Other possible candidates are P, = N(2+t%,1) and P, = N(2 + V/1,1).
The first one has a(x) = 0, whereas the last one is not a Hellinger differentiable submodel.

Definition: The linear span of all possible scores {a} is called the tangent space, denoted as
TR,

Usually, the collection of scores is a linear space itself. In the example we have T(N(2,1)) =
{Ma| X € R}, with a(z) =z — 2.
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The above example was based on a small one-dimensional parametric model. The exten-
sion to finite dimensional parametric models is straightforward, leading to finite dimensional
tangent spaces. When the collection P no longer has a finite dimensional parametrization,
one considers all one-dimensional sub-parametrizations. On the other side of the spectrum is
the situation with the tangent space as large as possible. The following proposition is proved
in BICKEL et al. (1993), example 3.2.1 and GESKUS (1989), proposition 3.2.

Proposition 1.2.2 The model
P, ={all P on (Y, B) with P < p}
has tangent space T(P) = L3(P) at P.
In the proof in BICKEL et al. (1993) the score function a € L(P) is yielded by the submodel

R L% S
PP i+ e )1 dP

In Geskus’ proof it is yielded by

0 p(1 +ta)laieaz0)
Ip(1 +ta)l g razoydp

DPe

For our interval censoring model, the tangent space is somewhere between a finite di-
mensional space and the L}-space. In asymptotic lower bound theory, models beyond the
parametric domain with a tangent space that is not the whole LJ-space are usually denoted
as semi-parametric models, whereas models with tangent space as large as possible are called
nonparametric.

The definition of differentiability of the estimand K(€) is also extended to fit into this
new set-up. From now on K (f) is seen as a functional K: P — R.

Definition: The functional K: P — IR is pathwise differentiable at P if there exists a
continuous linear map Kp: T(P) — IR such that for each Hellinger differentiable path {P;} C
P, with score a, we have

l{i;(z)lf_l[]\'(P,) —SKIPI=FK_(a)
i

K, can be written in an inner product form. Since T'(P) is a subspace of the Hilbert-space
(Ly(P), (-, -)), the continuous linear functional K’ can be extended to a continuous linear
functional 1_\'/,, on Ly(P). By the Riesz representation theorem, to F’,) belongs a unique
kp € Ly(P), called the gradient or influence function, satisfying

Kp(h) = (sp, h)p for all h € Ly(P).

Instead of Ly(P), any closed subspace H between T'(P) and Ly(P) can be chosen as space to
. 5=/ . . . T
which to extend K, and on which to apply the Riesz representation theorem. Note that xp

I8 sasen iy
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1.2 Efficiency theory for smooth functionals il

is uniquely determined once the extension of K has been made. However, many continuous
linear extensions of K'» may be possible, so generally the gradient is not unique. One gradient
is playing a special role, which is obtained by making the smallest extension, to T'(P). Then
the extension of K’ is unique, yielding the canonical gradient or efficient influence function
fp € T(P). The orthogonal projection of any gradient xp, obtained after extension of Kb,

into T'(P) yields the same canonical gradient. Hence we have

llkpllp = l&pll: + llkp — Bpllp > ||Rp|1,

so the canonical gradient has the smallest norm among all gradients.
For a Hellinger differentiable submodel at P with score a, the lower bound becomes

[Kp(@)? _ [(kp,a)p)® _ [ o (G ok
- naN '

(@a)p  (aa)p

Since (kp,a)p = (kp,a)p for each a € T(P), this expression does not depend on the choice
of the gradient. Each one-dimensional Hellinger differentiable submodel has a lower bound.
The lower bound for P is obtained by taking the supremum of all these lower bounds. We
have

a€T(P)

sup [(RP. w)p} :[<'?'p. H?P_Ilh)} = |l&pllp- (1.1)

If Kp is contained in T'(P) itself, the one-dimensional submodel with score function &p is
called the least favourable submodel.

To define regularity of the estimator, we go back to the one-dimensional subcollections
{Py,}, with 0, = 0y + ¢, n~? and ¢, — ¢, as in Hodges’ counterexample.

Definition: An estimator T,, of K(P) is a regular estimator at P € P if for every Hellinger
differentiable (or regular) submodel {P;} C P and every sequence {f,}, with 6, = O(n~%/?),
vn([T, — K(P,,)] converges in distribution, under Xi,..., X, ~ P, to the same random
variable Z.

The term regularity refers both to smooth submodels as well as to estimators that behave
neatly within such models. Both aspects are needed as regularity conditions in the following
important theorem, called the convolution theorem:

Theorem 1.2.1 Suppose that:
(1) K 1is pathwise differentiable at P € P along all reqular submodels.
(1) T, s a reqular estimator, with limit random variable Z.

(i11) The set of all directions {a} is a linear space.

Then there exist random variables Zy and Ay such that

A. Z has the same distribution as Zy + Ay.
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B. Zy and Aq are independent.
C. Zo ~ N(O, [Rpll3).

Proof: See e.g. Theorem 3.11.2, p. 414 of VAN DER VAART AND WELLNER (1996)

More general formulations of this theorem exist, but this one is sufficient for the scope
of this thesis. The theorem says that the limiting distribution of any regular estimator
of K(P) is more spread out than the distribution of Z,. Hence the smallest asymptotic
variance for a regular estimator of K(P) is ||&p||*>. An asymptotically efficient estimator is a
regular estimator for which the limiting distribution equals the distribution of Z;. However,
regularity of the estimators to be considered will be ignored in this thesis. The only topic
of interest will be to show that \/n [T, — K(P)], with P fized, converges to a N(0, ||<p||%)
distribution. Such estimators will be called optimal instead of efficient.

So in order to prove optimality of some estimator T,,, two aspects have to be considered.
First, one should find out what the lower bound looks like, which is mostly a functional
analytic problem. Secondly, one should investigate the limit behaviour of T,,, if X;, ..., X, ~
P, which is mostly a probabilistic problem, using techniques from empirical process theory.
In this chapter, attention is paid to the structure of the lower bound. In the next chapter,
we will consider the distributional aspects.

1.2.1 Lower bound computations for the nonparametric model

We first consider pathwise differentiability and computation methods for the canonical gradi-
ent in the nonparametric setting, thus when T(P) = L3(P). Results for the semi-parametric
interval censoring model are related to the gradient structure of the nonparametric model,
as will be clarified in the next section.

For the nonparametric situation, once we have proved differentiability and found a gra-
dient kp € Ly(P), determining the canonical gradient is an easy task: just subtract [xpdP
to find the projection into Ly(P).

An important class of functionals are the linear functionals

kipys / o(z) dP().

[f P is a one-dimensional distribution, examples of linear functionals are the moment function-
als K(P) = [ 2" dP(x). Estimation of the distribution function at a fixed point to concerns a
linear functional as well: for K(P) = P(X < ty) we have c(x) = 1jg4)(2). For the nonpara-
metric model P, any linear functional with suppep Epc(X)? < oo is pathwise differentiable
at any P € P, with canonical gradient

Kp(z)=clz) = / c(z) dP(3),
yielding the information lower bound

| e(X) = Ep[e(X)] |

2
P

1888y
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See proposition A.5.2 in BICKEL et al. (1993) for a proof. For nonlinear functionals, there is
no general method that immediately establishes differentiability and supplies the formula for
the canonical gradient. For two nonlinear functionals the canonical gradient is given below.
Moreover, the proof gives information on how to perform the calculations. It is partly similar
to the proof of proposition A.5.2 in BICKEL et al. (1993) for linear functionals. However, the
notation used is different. Moreover, the conditions are stronger than theirs, thus slightly
simplifying part of the proof. In view of the next section, attention will be restricted to
one dimensional, absolutely continuous distributions having compact support and bounded
density. Extensions are possible, but will not be considered here. Also in correspondence with
the next section, the distribution will be denoted by its distribution function F instead of P.
The class of distributions P will be assumed to satisfy the following uniformity property: the
support of each distribution is contained in the same bounded interval S and the densities are
uniformly bounded. Let Fg denote this nonparametric class of distributions. Restriction to
this class does not change the maximality of the tangent space, i.e. we still have T'(F) = L3(F)
for each F' € Fg. This can be seen by the choice of submodels in proposition 1.2.2 yielding
the tangent space: they are still contained in Fg for ¢ small enough.

Proposition 1.2.3 Let F' € Fg have density f and bounded support [y, 7] C IR. Consider
the functionals
™ 2
B = / [f (@) w(z) da
T0

and

Ky (F) = /;M [F(2))? w(z) dx

[}
with w(x) a bounded weight function.
Then both functionals are pathwise differentiable, with gradient

Knte) = 2 (@l e)
and R
Gl =" / F(s)w(s)ds
respectively.

Proof: All norms in the proof denote either L;()\) or Ly(\)-norms, with A denoting Lebesgue
measure.
Both functionals can be written in the form
™
K(F) = / (@) cp(z) de,
T0
with cp(x) = f(2)w(x) and cp(x) = [ F(s)w(s)ds respectively. By the conditions on w
and Fg, cp is bounded for both functionals, uniformly over F € Fg.
Let a be the score function of the regular submodel {F;} C Fs at F. We have

™

t K(F,) - K(F)] = t! / cr(@)[fi(z) = f(2)] dz {{1=2)

T0

Sl _/TTM .f!(.r)[(',,"(m) el (’F(-l‘)] s
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Both terms converge to (cg, a) 5.
For the first term this is proved in an almost similar way as in BICKEL et al. (1993). We

lew (VEc+VF) [ (VA= VT) = 305
Hlew 3o/ (V= /1) I

A(t) + B(2).

llerlt™ (fe = £) — aflllx

IA

i

For t | 0, |A(¢)| is bounded by

™ 1/2 i 1/2
[{/ e (IF,} + {/ ch (IF} ] o(1),
70 T0

whereas |B(t)| can be bounded by

([ seaar}”™ Wi -5

Using a € Lyo(F), boundedness of cg, and ||v/f; — V/fll2 = o(1) as t | 0, one obtains that
A(t) + B(t) — 0.

The second term in (1.2) can be transformed into a form, similar to the first term, but
with c¢p replaced by cp,. For K, this transformation is immediate; for K, this follows from

™ ™ ™
/ fuerdhi= / w Fy Fd) = / f erdA.

0

Thus the argument for the first term can be repeated, using uniform boundedness of {cp,}.

O

Remarks.

I.) Pathwise differentiability certainly holds for other nonlinear functionals as well. The
problem in the proof is determining to what expression the second term in (1.2) converges.
For the functionals considered here, we have the advantage that the second term is similar
in structure to the first term.

II.) The functionals K; and K, are the same as the ones considered in HANSEN (1991).
She considers the asymptotic distribution of these functionals for interval censoring case 1.
Theoretical results are obtained for K, only. The limit distribution of the nonparametric
maximum likelihood estimator (NPMLE), as obtained by her, is optimal as will be shown
in subsection 1.4.1. This result can be extended to the other interval censoring cases, as
will be shown in this thesis. The functional K; has the disadvantage that some smoothing
technique has to be applied. The distributional results for the NPMLE that will be obtained
in the next chapter do not apply to K;. However, as far as lower bound considerations are
concerned, both functionals can be treated equivalently.

EEFEF S E R TSR EREE R D
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1.3 Lower bounds with interval censoring

The interval censoring model is an example of a model with information loss. This information
loss can be expressed by saying that the distribution of the sample is induced by another
distribution, on which we only obtain partial information. The functional of interest is a
function of the inducing distribution, but is defined implicitly via the sample distribution.
The lower bound theory for such implicitly defined functionals is treated in VAN DER VAART
(1991) and BICKEL et al. (1993). This theory boils down to solving an operator equation,
relating the inducing distribution to the induced one. In this section it will be shown how
this operator equation is obtained. The theory needed is illustrated by case 2 of the interval
censoring model. However, the derivation of the operator equation for the other interval
censoring cases goes in a similar way.

We start with the formulation of the model for case 2. The loss of information is expressed
by the fact that, instead of (X7, ..., X, ), we observe (Uy, V3, A1,T1), ..., (Un, Vo, An, T'y) with
Ai=1¢x,<v,y and I';=1(y, < x,<v;). The following modelling assumptions are made:

(M1) X is an absolutely continuous random variable with distribution function F'. Let K > 0
and let S be a bounded interval C IR. F'is contained in the class

Fs = {F| support(F) C S,; F absolutely continuous, sup |f(z)| < K}.

F is the distribution on which we want to obtain information; however, we do not
observe X directly. Let 7, and 7,, be the lower bound and the upper bound of the
support of F.

(M2) We observe the pairs (U, V'), with simultaneous distribution function H. H is contained
in ‘H, the collection of all two-dimensional distributions on {(u,v)|u < v}, absolutely
continuous with respect to two-dimensional Lebesgue measure and such that (U, V) is
independent of X for each choice of H and F. Let h denote the density of (U, V),
with marginal densities and distribution functions hy, H, and hy, Hy for U and V
respectively. We let H have its mass concentrated on { (u,v)|n, <u < v < ny}.

(M3) If both H, and H, put zero mass on some set A, then F' has zero mass on this set as
well, so F' < Hy + H,.

Condition (M3) precludes observation time distributions that are purely discrete, implying
that deterministic observation times are not allowed. It will be needed to ensure consistency
of the NPMLE with respect to the supremum norm on its support. Moreover, without this
assumption the functionals we are interested in are not well-defined. (M3) also implies that
M < To and 7y < 7y

The model formulation for the other interval censoring cases is similar in essence. (M1) has
nothing to do with the observation times and is similar for all cases; (M2) says that the
observation times and the event times should be independent; (M3) says that F cannot have
mass on sets in which no observations can occur.
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What we do observe can be seen as a measurable transformation S of what we would observe
if there would be no censoring:

Slonrali=l ui0, o)

The domain {(z,u,v) |7 < T < Ty, M < u < v < My} will be called the hidden space, and
the image space will be called the observation space. In our model, P is induced by F' and
H, and is from now on written as Qr g, having density

qrp(u,v,6,v) = h(u, L‘)F(u)"(F(zi) — F(u))"(1 - ) L

with respect to Ay x v5. Here Ay denotes two-dimensional Lebesgue measure and v, denotes
counting measure on the set {(0,1), (1, 0),(0,0)}.

We first take a look at the Hellinger differentiable paths. All Hellinger differentiable
submodels at Qp g that can be formed, together with the corresponding score functions, are
induced by the Hellinger differentiable paths of densities on the hidden space, according to
the following theorem:

Theorem 1.3.1 Let P < p be a class of probability measures on the hidden space (Y, B).
Let P € P be induced by the random vector Y. Suppose that the path {P,} to P satisfies

W~ dovan =0 o 010

for some a € LY(P).

Let S: (¥,B) — (Z,C) be a measurable mapping. Let uS=' be o-finite. Suppose that the
induced measures Qp, = P,S™! and Qp = PS™' on (Z,C) are absolutely continuous with
respect to wS—t, with densities g and q. Then the path {Qp,} is also Hellinger differentiable,
satisfying

/ [f“l(\/@* Va) — %E\/a]z(l/tS"l —0 as t]0
with @(z) = Ep[a(Y)|S = z].

Proof: See BICKEL et al. (1993), proposition A.5.5.

The relation between the scores @ in the hidden tangent space T'(P) and the induced scores
a is expressed by the mapping

Ap:a Epla(Y)]|S].

Definition: The mapping Ap: a — Ep[a(Y)|S] is called the score operator.

The score operator is continuous and linear. Its range is the induced tangent space,
which is contained in L(Qp). For the interval censoring model it will turn out to be a
proper subspace of L(Qp).

Since F' and H are assumed to be independent, the one-dimensional submodels in the
hidden space are formed by first looking at the classes Fg and ‘H separately. By proposition
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1.2.2, our assumptions on Fg and H make the tangent spaces T(F) and T(H) as large as
possible: T(F) = LY(F) and T(H) = LY(H). Let {F;} be a regular submodel at F with
score function a, and let {H,} be a regular submodel at H with score function e. Joining
these paths gives, using independence,

/ [f’l(\/ﬂTM— JFh) - %((1 +e)\/ﬁr(u3 0 ast]0,

LY(F) and LY(H) are orthogonal subspaces of L3(F x H). The tangent space L(F)+ L(H)
is a proper subspace of LY(F x H). Thus, due to the independence assumption, we have
left the nonparametric model. Indeed, the construction of proposition 1.2.2 can no longer be
used to obtain the whole LY(F x H)-space, since any function b(z, u,v) that cannot be split
into a direct sum of a(x) and e(u,v) yields a submodel in which p¢(z, u,v) is the density of
dependent X and (U, V).

Now theorem 1.3.1 is applied, with Y = (X,U,V), P = F x H and u = A3. The tangent
space T(Qr y) of the induced Hellinger differentiable paths is yielded by the score operator
A: LY(F) + LY(H) — T(QF.n) given by:

[Apn(a+e)|(u,v,6,7) = Erg{a(X) +e(U, V)| (U,V,A,T) = (u,v,6,7)}

We are interested in estimation of some aspect K (F') of F. However, due to the censoring
mechanism, K(F') can only be accessed indirectly through the observation space via the
functional ©(Qr g ), with H acting as a nuisance parameter. Thus we define

O(Qru) == K(F).

Note that O(Qp y) is defined unambiguously by condition (M3).

Having specified the Hellinger differentiable paths in the observation space, differentia-
bility of the functional ©(Qp ) in the observation space will now be investigated. Differ-
entiability of implicitly defined functionals ©(Qp) = K(P) can be proved by looking at the
structure of the adjoint A} of the map Ap according to theorem 1.3.2 below, which was
first proved in VAN DER VAART (1991) in a more general setting, allowing for Banach space-
valued functions as estimand. Then the proof is slightly more elaborate. The proof in case
of real-valued functionals is very simple and is given below.

The adjoint of a continuous linear mapping A: G — H, with G and H Hilbert-spaces, is
the unique continuous linear mapping A*: H — G satisfying

(Ag,h)y = (g9, A*h)¢ Yg € G,h € H. (1.3)
Any Hilbert space that contains R(A) can be chosen as the image space H, creating a
different adjoint Aj. However, this does not complicate things: each adjoint A% has the
same behaviour on R(A) and its behaviour on R(A) determines A}, completely, since A% h =
Ay (II(h)) = A% (II(h)), with IT denoting orthogonal projection into R(A). We do not
specify the image space chosen and write A* instead of A3.
For the score operator from theorem 1.3.1, the adjoint is a conditional expectation oper-
ator as well: if Z ~ Qp, and b € H C Ly(Qp), then

[A*b)(y) = Ep[b(2)|Y =y] — Ep[b(2)] a.e-[P],
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which is seen immediately by definition 1.3 of the adjoint. Note that the term Ep[b(Z)]
vanishes if b € LY(Qp)

Theorem 1.3.2 Let Q = PS~! be a class of probability measures on the image space un-
der the measurable transformation S. Suppose the functional ©: @ — IR can be written as
O(Qp) = K(P). Suppose that K is pathwise differentiable at P in the hidden space, having
canonical gradient Kp.

Then © 1is differentiable at Qp € Q along the induced paths if and only if

Rkp € R(A") (1.4)
If (1.4) holds, then the canonical gradients éQP of © and Kp of K are related via
kp=A*0g, (1.5)
Proof: We have
lim ¢ [6(Qr) — ©Qp)] = limt™ [K(P) - K(P)]
= (kp,g)p (1.6)

Suppose © is pathwise differentiable at Qp. So, for any Hellinger differentiable path {P,},
with score-function g € T'(P), we have

ltilrgll‘*l[@(Qp,)_(_)(QP)] = <Ag~9>QP
- <g,A*0~>p,

where 6 = éQP € vﬁ(T) is uniquely determined. Combining this with (1.6) gives kp = A* éQw
hence kp € R(A*).

Conversely, suppose kp = A*b for some b in the domain of A*. Then we have, for any
{P:}, having score g,

l}llg)lffl [6(Qr) —O(Qp)] = (Rp,9)p
= <44*b. g>p = <b. ‘4(1>QP
Hence © is pathwise differentiable with gradient b.
O

Equation (1.5) is called the score equation. This theorem is applied to the interval cen-
soring model. First, the score operator A(a + e) is split in two parts, one related to the
unobservable event times and one related to the observation times:

Arpp(a+e) = Lia + Lae,

with
Ll(l = Ep\}[ [(I,(A\') | (L’Y, "y, A‘ F)]




1.3 Lower bounds with interval censoring 19

and
Lge = EF,H[(’(U,V) | (U, V,A,F)]

Note that R(L;) and R(L,) are orthogonal subspaces in L}(Qr ), as is easily shown using
independence of X and (U,V), and Ea(X) = Ee(U,V) = 0. Due to the fact that the
observation times are not censored, L, is simply the identity operator. L; is given by

olfEaldiE v [, adF (1=6—=7)f™adF

[ Laa) (s v 6,0 = F(a) S F(v) — F(u) + 1— F(v)

S= ks 0L

Note that [ adF = [V adF = 0.

Now we apply theorem 1.3.2. Since K does not depend on H, the (canonical) gradient of
K is a function in the Ly(F')-subspace of the Ly(F x H)-space. In fact, with respect to K, we
are in the nonparametric model Fs with tangent space LS(F). So the gradient calculations
of subsection 1.2.1 can be used, and we write Kp for the canonical gradient. Now theorem
1.3.2 says that © is pathwise differentiable if and only if

A0 =T (1.8)
for some 6 € m The adjoint can be written as
A*b = Lib+ L3b. (1.9)
For we have, for any a € LY(F), e € LY(H) and b € Ly(Qrp),

(A*b,a+e) =

(b, A(a +e€))

(b, Lya) + (b, Lqe)
(L7b,a) + (L3b, €)
( s
(

e

Lib,a+e)+ (L3b,a+e)
Liber Lgb¥a +e),

using (L3b,e) = (L3b,a) = 0. By (1.9), R(L3) L kr and R(L;) L R(L,), (1.8) is equivalent
to

B s fop (1.10)
for some # € R(L;). So only the adjoint of L, plays a role in the score equation.
The adjoint of L; is given by the formula

M M
[L7b]( / /” u,v,1,0) h(u,v) dvdu +
nwm
/ / : (u,v,0,1) h(u,v) dvdu + (1.11)
u=no
/ / b(u,v,0,0) h(u,v) dvdu a.e.-[F].
u=ngoJv=u

Many functionals that are pathwise differentiable in the model without censoring, lose
this property in the interval censoring model. Due to the smoothness of the adjoint operator,
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any functional K with a canonical gradient that is not a.e. equal to a continuous function
cannot be obtained under L}. So not all linear functionals remain pathwise differentiable.
For example, K(F) = F(t), with canonical gradient 1f,(-) — F(to), loses this property.
Hence the above lower bound theory can no longer be applied -one may also say that the
lower bound has an infinite value- and F'(,) is not estimable at \/n-rate. In the next chapter,
the convergence rate and limit distribution of the NPMLE of F(t,) is briefly discussed.

However, functionals of the form K(F) = [ cp(x) dF (x), with cp sufficiently smooth, will
be shown to remain differentiable under censoring. Hence for these functionals the above
information lower bound theory does apply. This will be the subject of the next sections.

We first state one more general result. The information lower bound ||91|2QP = [6%dQp
can also be written as an inner product with respect to the hidden probability P, instead of
Qp, according to the following theorem:

Theorem 1.3.3  1): Let 6 = éQp satisfy kp = A*0 and assume that 0 is contained in
R(A): 6 = Aa, for some a, € T(P). Then we have

1611, = (a0, &p)p.

1): If moreover P 1is a one-dimensional continuous distribution with support contained in
=, > < 2 2 > =
[a,b], and kp can be written as kp(t) = [, Kp(x)dx + kp(a), with k' bounded, we have

. b
181, = [ ®e(@)o0le)da

with ¢o(z) = frb ao(t) dP(t).
wi): If 6 € R(A)\ R(A), say 6 = lim, . Aan, we have
10115, = lim (an,Rp)p,

which, under the conditions in i), can be rewritten as

. b
16113, = lim / Rlo(2)bn(2)dz (1.12)

with ¢n(x) = [ a,(t) dP(t).
Proof:

i): We have

10115, = (Aao,f)q,
=_ (05, AN} p

= (ay, Kp)P

S S REEREERERERR D
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ii): Under the extra conditions, this can be rewritten as

/ﬂb ao(?) /ﬂt f{’P(;r)d.r] dP(t)+/ab ao(t)Rp(a)dP(?)
/a R ()

]

<(10« ':'P>P

i

usimp fia,dP =0

iii): Similar to i) and ii).

Remarks.

I): Although, in iii), the sequence {a,} cannot converge if § # R(A), it may happen that
¢, does converge, say to ¢,. Then (1.12) becomes

= b
181, = [ Kol@)du(a)de
This ¢, may fail to be continuous. Examples will be given in the next section.

II): In the interval censoring model, the function
o(a) = / " a(t) dF(t) with a € LY(F).

appears explicitly in the score operator L. Therefore it will play an important role. It
will be called the integrated score function. From its definition we know that ¢ satisfies
&(1,) =d(7y) =0 and that ¢ is continuous for F € Fg.

1.4 Lower bound computations

In this section, the lower bound computations will be given for the different interval censoring
cases. Actually, “computations” may not be the right description of what will be done.
Apart from case 1 and some special choices of F', K and h in case 2, the computations do
not lead to a formula for the lower bound. Solvability of the score equation will be the main
topic, and the structure of the lower bound will be investigated. The derivation for case 1
also appeared in e.g. VAN DER VAART (1991), GW, BICKEL et al. (1993) and HUANG AND
WELLNER (1995A). However, some extra remarks will be made that have not been made in
these references, especially with respect to the situation with § € R(L;). The lower bound
theory for case 2 is new. A subdivision is made. In case 2A, the (U, V)-distribution has
no mass around the diagonal, meaning that U; and V; cannot come arbitrarily close. This
case is also treated in GESKUS AND GROENEBOOM (1995A,19958,1996A). In case 2B, the
observation times are allowed to get arbitrarily close, implying that, asymptotically, part of
the event times get arbitrarily close to being direct observations. This case is also treated



22 Chapter 1 Interval censoring and lower bounds

in GESKUS AND GROENEBOOM (1996B). Case A and case B are treated separately, since the
techniques used are much simpler in case A. Both lower bound calculations are given in the
next subsections. The distribution theory for case 2A will be treated in detail in the next
chapter. The distribution theory for case 2B will only be given partially. The many technical
details that are needed can be found in GESKUS AND GROENEBOOM (1996B). With respect
to the asymptotic behaviour of the NPMLE of the distribution function, case 2A is in many
respects more similar to case 1 than to case 2B. In the next chapter, more will be said about
this distinction between case 2A and case 2B. For case k, which covers everything not covered
by case 1 and case 2, the operator equation is completely similar in structure to the one for
case 2. In section 1.5, the explicit form of the solution is given in case 2, for K(F) = Fp(X)
and some specific choices of F' and H.

For all interval censoring cases, the basic ingredients are the model assumptions (M1) to
(M3), and the score equation

L6 = kp,

with 8 € R(L,). Most attention will be given to the situation

LIL](L = I:\I

*

The operator L7 is given by

Lib = E[b(observables) | X |.
It is the adjoint of the operator L;, given by

Lia = E[a(X) | observables .

The combination L]L, is called the information operator.

Fredholm integral equations

An important theory for the cases beyond case 1 is the theory on Fredholm integral equations
of the second kind. A Fredholm integral equation of the second kind has the general form

b
o(z) — /a K(z,t) ¢(t) dt = r(t), z € [a,b].

Because of the free occurrence of ¢(z) it is called an equation of the second kind; the fixed
range of integration makes it a Fredholm integral equation. In 1903, I. Fredholm investigated
the solvability of such equations. Later, in 1918, F. Riesz extended the results to general
operator equations of the form ¢ — A¢ = r, with A being a compact operator. This theory
can be found in many textbooks. In Kress (1989), chapters 1 to 4, a general account on the
theory is given. We restrict ourselves to giving the most important results for our situation.
One theorem from REED AND SIMON (1972) is used as well.

A linear operator A: X — Y from a normed space X into a normed space Y is called
compact if it maps each bounded set in X into a relatively compact set in Y. An equivalent
condition is to say that for each bounded sequence {z,} in X, the sequence {y,} = {Az,}
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contains a convergent subsequence in Y. A compact operator with values in an infinite
dimensional space in some respects almost behaves as a finite dimensional operator. It shares
the property with finite dimensional linear operators that each bounded set is mapped to a
totally bounded one. If we have a compact operator from a Banach space X into itself, we
know that the set of eigenvalues has at most one limit point, namely 0, and for any € > 0,
the number of eigenvalues A\ with |[A| > e is finite. The important property for us that is
shared with finite dimensional linear operators is the following one:

Theorem 1.4.1 Let X be a normed linear space, and let A: X — X be a compact linear
operator.
If I — A is injective, then the inverse operator (I — A)™': X — X emists and is bounded.

Proof: See KrEss (1989), theorem 3.4

So if the homogeneous equation

¢p—Ap=0. (I%13)
only has the trivial solution ¢ = 0, then for each r € X the inhomogeneous equation
op—Ap=r

has a unique solution ¢ € X and this solution depends continuously on r, with respect to
the norm of X.

Note that hardly any restrictions are imposed on the space X. For example, it need not be
a complete space.

In the next chapter, an extension of theorem 1.4.1 will be used, stating what happens if
the homogeneous equation has a nontrivial solution. We will only formulate it for the case
X = C([a, b]), but more general formulations are possible. As in section 4.1 in KRESS (1989),
the system (C([a,b]),C([a,b])) is a dual system with the bilinear form

(9, 9) = /ab é(z) Y(z) dz, @, Y € C([a,]).

If the kernel K is continuous, the integral operators

Aolx) = [ K,9)o)dy
B9 (@) = [ K(2)6()dy
are adjoint.
Theorem 1.4.2 Let X = C([a,b]). Consider the Fredholm integral equation
g'= Ap="r,

with A: X — X being a compact linear operator.
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If the homogeneous equation ¢ — A¢p = 0 has a nontrivial solution, two possibilities arise,
depending on the structure of the homogeneous adjoint equation

v — By = 0. (CIETES
1) If
/b r(z)y(z)dx = 0 for all ¢ satisfying (1.14), (1.15)
then the mh,mn,og(’m’oa'zw equation
o—Ap=r

is solvable, and its general solution is of the form

m

d=0d+ adr
k=1

where ¢y, ..., ¢n are linearly independent solutions of the homogeneous equation, ¢ de-
notes a particular solution of the inhomogeneous equation and «, ..., &, are arbitrary
real or complex numbers. Moreover

m = dim(N (I — A)) = dim(N (I — A*))

II) If (1.15) 1is not satisfied, then the inhomogeneous equation is unsolvable.

Proof: See KrESS (1989), corollary 3.7, theorem 4.3, theorem 4.15 and theorem 4.17.

For integral equations of the form A¢ = r (these are called integral equations of the first
kind), possible existence of a solution is much harder to prove. It is the structure (I — A)
that makes the problem tractable.

In order to establish solvability of Fredholm integral equations of the second kind, the
first thing to do is to prove compactness of the operator

Aoty /b K(-,1) 6(t) dt. (1.16)

Therefore, we have to specify X and its norm. Note that the solvability condition (1.13) is
not related to any norm. So, after X has been determined, its norm is of minor importance
with respect to showing solvability, as long as the norm makes the integral operator into a
compact one. More attention should be given to X. X is determined by the kind of solution
we expect, which in turn is determined by the structure of the kernel and the function r on
the right-hand side. At the same time, it should be chosen such that I — A is injective, hence
it should not be chosen too large. In our situation, the integrated score function plays the
role of ¢ in the integral equation. As long as we look at the situation with 0 € R(Ly), ¢
should be continuous. If the conditions on the distributions are such that the kernel K(x,t)
is continuous, then A¢ is a continuous function for each continuous ¢. So, if r is continuous
as well, X can be chosen to be C'([a,b]), the space of continuous functions on [a,b]. If this
space is equipped with the supremum norm, we can use theorem 2.20 in KRrEss (1989):
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Theorem 1.4.3 Let X = C([a,b]), and let K be a continuous kernel. Then the integral
operator is compact with respect to the supremum norm.

An application of the Arzela-Ascoli theorem is the main step in the proof of this theorem.
Note that compactness also holds if we supply C([a, b]) with the Ly-norm. See KRESS (1989),
problem 2.5.

We will also allow for kernels having the following property.

(C) For each z, K(z,-) and K(-,z) are bounded real-valued functions, right-continuous
with left limits (cadlag). The points of jump belong to a finite (possibly empty) set E,
independent of z.

With such a kernel, the space X has to be extended. Each cadlag function is mapped to
a cadlag function, so X can be taken to be the space of cadlag functions D([a,b]). Then
compactness of the integral operator can be proved with respect to the supremum norm,
using an extension of the Arzela-Ascoli theorem. Note that a cadlag function on a compact
set is bounded.

Theorem 1.4.4 The operator A as defined in (1.16), with a kernel K satisfying (C), is a
compact operator on the space of cadlag functions (D([a,b]), || - ||s0)-

Proof: If the set F of points of discontinuity 7; of the functions K (z,-) and K (-, z) is empty,
the result is an easy consequence of the Arzela-Ascoli theorem. So suppose that 7, € (a,b)
is a discontinuity point and that 7;_; is the preceding discontinuity point or is equal to a if
there is no such point. Since the functions K (-, z) have left-hand limits for each x € [a, ],
we can modify these functions on [7;_;, 7;] by making them left-continuous at 7;. Let (f,) be
a bounded sequence in D([a, b]). Then the sequence of functions

z— (Afn)(z), z € [y, ),n=1,2...,

for the modified kernel K is equicontinuous and hence has a convergent subsequence in
(D([7i—1,7i])s || - llso), converging to a continuous function g : [r;_1,7;] +— IR. Since the same
subsequence of functions, restricted to [7;_1,7;), converges to the restriction of g to [r,_;, 7;),
which obviously has a left-hand limit at 7;, we get that the sequence of functions

g (AL (@) i Ellran =2

restricted to the half-open interval [7;_1,7;), has a uniformly convergent sequence, converging
to a function which is continuous on [7;_1,7;) and has a left-hand limit at 7;.

Since we can repeat the argument for the other (at most finitely many) intervals of
continuity of the (non-modified) functions K (-, z), « € [a, b], we get that the sequence (Af,)
has a uniformly convergent subsequence, converging to a function ¢ which is right continuous
and has left-hand limits at the points 7;.

The following theorem on compactness in Li-spaces will be used as well.
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Theorem 1.4.5 Let X = Lq([a,b], 1) and let K be a kernel satisfying

b b
/ / [K(z,t))*du x pu < oo.
a a
Then the integral operator A is compact with respect to the Ly-norm.

Proof: See section VI.6 in REED AND SIMON (1972). The proof of this theorem uses tech-
niques different from an application of the Arzela-Ascoli theorem.

Remark: The operator from theorem 1.4.5 is a Hilbert-Schmidt operator.

1.4.1 Casel

In case 1, we have one observation time T; for each unobservable event time X;. Suppose
the observation times 7; to have an absolutely continuous distribution function G with a
density g, and a support [ny, 7). Let the event times X; have an absolutely continuous
distribution function F' with a density f and a support [, 7). We assume X; and T; to be
independent (compare assumption (M2)) and F to be dominated by G' (compare assumption
(M3)). Note that strict inequality 7, < 7, and/or 7,, < 7, implies that on part of the event
times no information at all may be obtained, since the corresponding observation time is
outside the support of F. The score operator L; has the form

(i3] (@16 /N =00E o (X)) | F=st P —"6)]
g 6fradF (1-26) ™ adF !
) 1- F(1) ae. — [Qrd]
with adjoint
[Lib)(z) = EB(T,A)|X = 1]

/tlmb(f,l)g(t)dt+ ‘ b(t,0) g(t)dt a.(’-‘[F].

=z t=no
First consider the case § € R(L;). Then the score equation
LILl(l = I:{F

has to be solved in a € LY(F). L*L; has the form

™

[L1Lya)(z) = / K(z,u) a(u) dF (u),

u=rp
with kernel

; TAu 1 M i
K(z,u) = / L dG(t) + L dG(t).
t=no

t=xVu B
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Since [[ K?(x,u)dF(u)dF(z) can be shown to be finite (see also section 3.2 in part I of
GW), we can apply theorem 1.4.5 to obtain compactness of LjL; with respect to the Ly(F')-
norm. The composition Ao B of two operators is compact whenever one of them is compact,
unless the other one is unbounded. Since the identity operator is not compact in any infinite
dimensional space, (L;L;)~! does not exist as a bounded operator, and existence of a solution
cannot be shown directly.

We will follow another approach. LjL;a = Kp can be written as an equation in the
integrated score function ¢(x) = [T adF, having the form

x

[ 20 e [0

sl A e G ARE e

Since ¢(t) =0 if t < 7, and ¢ > 7, integration starts at 7, and ends at 7.
We assume

(G1) g is continuous, with g(z) > 0 for all x € (7, Ty]

(K1) Rp is continuously differentiable

By taking derivatives on both sides, we get,

$@)
et Fl)

from which the following expression for ¢ is obtained

F(@)[L - F@)]

ol) =& s (o) ma (1.18)
Thus the canonical gradient is
: (1) (1)
Or(t,6) = —6=%+(1—-06)—=—
F(t,0) F(t)+( )l#F(t)
D —Rp(t)md if6=1
R'F(t);—%) if6=0
and the information lower bound is, using theorem 1.3.3.ii)
=9 o ‘
W13,y = [ Re(@)o(z) da
0
o, F@)l - F(a)]
= Rp(r)] ——————du.
L el =2

This is subject to the condition that ¢(x) can be obtained as the integral [[* a(t) dF'(¢)
over some L)(F)-function a. Since the derivative a = d¢/dF is equal to

ol e
—(1 —-2F Fl-F)— [—
g( )+ F(1 )(IFL]}*

the condition
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(C1) (&'/g)o F~!is Lipschitz on [0, 1]

is sufficient to make a square integrable. The same Lipschitz condition (C1) is used by HuANG
AND WELLNER (1995A) to prove asymptotic optimality of the NPMLE for linear functionals
in case 1. I will come back to this proof in the next chapter. The condition [adF = 0 is
fulfilled because ¢(1,) = 0.

If we use the somewhat stronger assumptions that both f and g are bounded away from
2€10 On [T,, Ty}, with g having bounded derivative ¢/, and that (—;”;k/ is bounded, we obtain
that

d¢

b AP T
g

+F(l—F) Ry
dF

g dF g dF

is an Ly(F')-function. In GW, the NPMLE of the mean is proved asymptotically to attain the
efficiency bound under these stronger conditions, using a method of proof which is different
from the one in HUANG AND WELLNER (1995A).

It may happen that 6 is contained in R(L, J\R(L,), as is illustrated by the following examples.

Example 1. Take F(z) = z on [0,1], g(z) = 2\/z on [0,1] and K(F) = Ep(X). Then we
have kp(z) = z—1, and ¢(z) = 2\/z(1-=z), the latter implying a(z) = ¢'(z) = vVz-1/(3\/Z),
which is not a square integrable function. However, if we take the sequence {a,} C LY(F),
given by

a2 =

VT —3/n if0<z<1/n
N ey A By T Wk 4 el SN 1D

each a, is continuous. {a,} does not converge, but we have, pointwise,

1
lim an(t) dt = o),

n—oo T

and, in Ly-norm,

0 = lim Lja,

n—oo

Example 2. Another class of examples for which  is contained in R(L;) \ R(L,) arises if
g or k' has jumps. As long as g(z) > ¢ > 0 for each z, we can define a function ¢ as in
(1.18). Since this ¢ is not continuous, # cannot be contained in R(L,). However, at least if
f > ¢ > 0 at these points of discontinuity, ¢ can be approached by continuous ¢, that satisfy
n(x) = [[M an(t) dF(t), with a € Ly(F). For example, one can take ¢, = F(1 — F)v,, with
¥, linear with slope of order n near the jump, and otherwise equal to &’'/g. When ¢, is
chosen in this way, we again have é[-‘ = lim, .o Lia, with respect to the Lj-distance.
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1.4:2 Case 2

Functionals that are pathwise differentiable in case 1, are likely to be the same in case 2,
since it is a more informative situation. Indeed, the following function solves Lib = kp:

—Rp(u) W 5 =1

bla vio, ap)i= 1540 it =il (1.19)
Rip(v) s if6=y=0

Since this function neglects the middle part, v = 1, one may already suspect that it is not
the canonical gradient f, meaning that is contained in LY(Qr 5)\R(L;). We are left with the
problem to project this gradient into R(L;) in order to obtain the information lower bound.
However, outside finite dimensional spaces, there is no standard way to perform projections.
So we leave this approach, and try to solve the operator equation L’{H~ = Kp directly.

We will mainly consider the case § € R(L;). So solvability of the equation

RF = LIL](I

in the variable a € LY(F) will be the point of interest. We follow the same approach as in
case 1. kp = L{L,a can be reformulated as an equation in ¢:

n
Kpla)s = ~/ " Fg(;zh(u v) dv du

77M (v)
/ no/u Fo)—F(a) h(u v) dv du (1.20)

* o PR

The support of F' may consist of a finite number of disjoint intervals. However, (1.20) is an
equation a.e.-F', so we need not worry about intervals where F' does not put mass. Without
loss of generality we assume the support of F' to consist of one interval [7,, 7y].

Differentiating equation (1.20) on both sides, and writing k(z) instead of (), yields
the following equation:

W(u,v) du dv a.e.-[F).

(m+&mu;ﬂiﬂwt1m—/ H0-46) o ¢ dt| = k(z)d(z)  (1.21)

Flx F()—F(z)

with d(z) being the function

‘U— ()]

gt = hi(2)[1 — F()] + hao(z)F(z)

(1.22)

Here h, and h, denote the marginal densities of U and V respectively.

Unlike case 1, taking derivatives does not yield an explicit formula for ¢. Also, further
differentiation does not simplify things. We will investigate the solvability of equation (1.21),
and whether the canonical gradient # obtained via the solution ¢ is in R(Ly). Moreover,
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solvability of (1.21), and properties of this solution, will be investigated for convex combina-
tions

8= (1 = O.’)F() eh CYFn,

where Fyy € Fg (the unknown distribution) is continuous and £, (the NPMLE of Fy) is purely
discrete. This will be needed in the next chapter on the NPMLE. The function k, however,
remains completely determined by the underlying distribution Fy (so & = &l ). Therefore we
write k instead of f’p.

If (1.21) is solvable, its solution ¢ can be shown to contain a factor F'(1 — F), just like
in case 1. The structure of d already suggests this factor to be present. We will essentially
need this property in the next chapter. Validity of the factorization is shown by inserting

é=F(1-F)¢

in (1.21). Some reordering yields an integral equation in £:

T

£(z) + e(z) [/t L. po(4, 3) dt /t”' Mﬂ)/ﬁ(l-,t)df] = ka)elz)  (1:23)

- _, FO-F@

with ¢(x) given by

g 9 /t (1= FOlh(t,z)dt+ [ F(t) h(z, t) dt

= hf(.'{f) E[l - FU)|V = 2] + /:1?(1-) E[F(V)|U = 1] (1.24)

and
he(t,x) = F(t)[1 — F(t)] h(t,z) it m 1.25)
he(z,t) = F(t)[1— F(t)] h(z,t) if ¢ <t (s

Note that, on 1o, 7] and |7y, nx], h°(-, ) and h°(z,-) are zero, so the domain of integration
in (1.23) can be restricted to [, 7y]. In ¢!, however, integration over the whole interval
(M0, M) is performed.

If (1.23) is solvable as well, then the factorization indeed holds. The lemmas and theorems in
the rest of this section apply to both the ¢-equation (1.21) and the &-equation (1.23), since
they are very similar in structure.

We briefly pay some attention to the situation with a combination of type 1 and type 2
censoring. The most natural way to model such a combination, is to split the observation
time distribution into a univariate case 1 part and a bivariate case 2 part. If h% denotes the
density of the combined distribution, we can write

h® = 1AM + Bh ),

with 2 and h(® denoting the densities, conditioned on the univariate and bivariate part
respectively, and 3; and 3, the fractions of the combined observation time distribution yielded
by both parts. We have 5 + f; < 1, with equality if to each event time corresponds at least
one observation time on [r,,7y]. Note that AV and A® have their mass concentrated on

liffaasnnnifiiissg
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[70, Tar] and {(w,v)| 70 < u < v < 7),} respectively. We obtain an integral equation which is
similar in structure to (1.21), but with d(z) replaced by

4 F()[1 - F(a)]
Bih(z) + b {hP (2)[1 - F(@)] + P (@) F(z)}

d®(z) (1.26)

The function d® can also be obtained from (1.20) directly. For if we split off the part of A in
(1.20) outside {7, < u < v < 7}, we obtain (1.21), with 7, replaced by 7,, 1, replaced by
Tu, and the denominator of d(z) given by

70 M
/ h(u, ) du + / h(z,v) dv]
u V=TM

=0

T

& [/UZ h(z,v) d’u} 1 - F(2)] + [/u:m h(u, ) du} ()

So ﬁlh(l) can be obtained by considering the mass of the bivariate observation time distribu-
tion h outside the support of F, namely on [1, 7o] X [7o, Ta] and on [7o, Tas] X [Tar, ar)- Bah®
is the mass of this observation time distribution on {(u,v)|7, < v < v < 7,,}. The remaining
part of {(u,v)|n, < u < v <y} contains the observation time mass that corresponds to the
situation with no information at all. From these observations, and especially formula (1.26),
we see that restricting to the strict case 2 situation does not lead to loss of generality. So
integration in (1.21) and (1.24) will be considered from 7, to 7, and formula (1.22) will be
used.

Apart from the model conditions (M1) to (M3), some extra conditions will have to be
introduced in order to make the proofs in this section possible. We suppose

H1) h; and hy are continuous, with hy(z) + he(z) > 0 for all = € [1,, Ty]

H2) h(u,v) is continuous

(H1)
(H2)
(F1) The density of Fp is bounded away from zero, say fo(z) > ¢ for all z € [, 7]
(K1)

K, = k is continuous

K1
Of course, (H2) implies continuity of h; and hs, which is also stated in (H1). However, (H2)
can be relaxed (see remark II after theorem 1.4.7). (H1) is the analogue of ¢ > 0 in case 1.
Note that (H1) implies that the functions ¢ and d are bounded. The above conditions are
sufficient to prove solvability of the integral equation for continuous ¢ in case 2A. Showing
solvability in case 2B, and, for both case 2A and 2B, showing that ¢ is an integrated score
function, i.e. ¢(z) = [™ a(t)dF(t) for some a € LY(F), requires some more conditions.
These are:

(H3) The partial derivatives A}(z) = a%h(.r,t) e A (i %h(t,.r) exist, except for at

most a finite number of points x, where left and right derivatives with respect to x do
exist for each t. The derivatives are bounded, uniformly in ¢ and z.

(K2) k is differentiable, except for at most a finite number of points x, where left and right
derivatives exist. The derivative is bounded, uniformly in z.
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With respect to the NPMLE Fn we assume

(CF) F,, is a non-degenerate, non-defective, piecewise constant distribution function with at
most finitely many points of jump. Let D = {74, 7y,...,Tm, T} denote the ordered
set of jump points of F}, augmented with the endpoints of its support. Moreover we
assume Fn to satisfy

sup |E,(z) — Fo(z)| < e
z€[70,7M]
for some € to be determined. The class of functions thus obtained is denoted by F.
Note that € has to be uniform over £, € F.

Note that (CF) does not hold for all possible realizations of F,. However, by the strong
uniform consistency of F), (see the next chapter), together with condition (F1), it always
holds for n sufficiently large. -

If the integral equation (1.21) has solution ¢, the canonical gradient 8z € R(L,) has the
e (v) = 6r(u) (v)

¢r(v) — or(u ; ¢r(v

9 +(1-6—-7)——— 15274
T T VT F) (1.27)
Now one can see that the gradient b, defined at the beginning of this section and solving
L}b = kp, is indeed not the canonical gradient since the middle part of the canonical gradient
is not zero.

Bl i 5oy g S 2

A: Observation times bounded away

For this case, we only have to look at the situations a = 0 (F = F,) and a = 1 (F = ).
When looking at equations (1.21) and (1.23), we see a singularity of the form 1/(F(v)—F(u))
appearing in the kernel, implying that it does not belong to one of the standard integral
equations. However, in case A the singularity vanishes. Formally we suppose:

(H4) h does not have mass close to the diagonal, i.e. Prob{V — U < ¢,} = 0 for some ¢, > 0.

The ¢ in condition (CF), determining F, is chosen in such a way that F,(v) — F},(u) remains
bounded away from zero as long as v — u > ¢,. This implies that (1.21) can be rewritten as
a Fredholm integral equation of the second kind. The kernel is equal to

1ot tyenin BB DG oy e (1.28)
1 +d(x) [} D(x,t)dt
with D(z,t) defined as
1') t,.‘l‘z ift<ao
D(a,t) := { Fa-Fm -t =1 (1.29)
—(—F<()7[,(l_) ikt
The function r in the general Fredholm form ¢ — A¢ = r is in our situation
A. s 1 o
r(z) L (1.30)

" 1+d(z) [ D(z, t)dt

EEEEEEEEEEEEEEE S
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For F' = Fy the kernel, d and r are all three continuous. So we can take X = C([r, Ty])
and we have compactness of the integral operator by theorem 1.4.3. For F' = F,, € F the
kernel obtained satisfies condition (C) on page 25. By theorem 1.4.4 we have compactness of
the integral operator on D([r,, Ty]). Now we are ready to apply theorem 1.4.1, establishing
solvability of both integral equations (1.21) and (1.23). The conditions stated are slightly
more general.

Theorem 1.4.6 Consider the integral equation

™ d(x) D(z,t) .
4@)+ [ L T d@) [ D, pat| DU =T

with D > 0 satisfying condition (C) on page 25. v and d are cadlag functions having at most
finitely many jumps, with d being nonnegative.
This equation has a unique solution in D([Ty, Tp]).

Proof:
Theorem 1.4.1 will be used. So consider the homogeneous equation
d(z) = / 4 K(z,t) ¢(t) dt for all x € (1o, Tu]
70
This equation is equivalent to
™ ™
e [d(.r) / D(I,t)dt] #(2) = diz) / D(z,t) $(t) dt, (1.31)

0

for all z € [y, 7). Suppose ¢(z) # 0 for some x. Without loss of generality, we may assume
a(@) =40,
If the supremum is attained, say at s, we get, since D(s,t) > 0 and d(z) > 0,

d(s)/: D(s,t) 6(t) dt < [d(s)/: D(s,t)dr] é(s).

The right-hand side is strictly smaller than

6(s) + [d(s) /“ D(s,t)dt] 6(s)

which contradicts equation (1.31).
It may happen that ¢ jumps downward just before the supremum is attained:

sup  ¢(z) = ¢(s—) > P(s)

z€[10,7M]

Then one can find a 6 > 0 such that ¢(s—6) > 0 and

d(s—6) D(s—6,t) $(t) dt < L ¢(s—6)
{t:o(t)>¢(s-9)}
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Hence
d(s—é)/w D(s—6,t) $(t) dt < {d(s—é)/w D(s—6,t) dt| p(s—6) + L ¢(s~6),

again contradicting (1.31).
=

If F = F,, and d, h and 7 are all continuous, the solution ¢ is contained in C([r,, 7))
However, by (H3) and (K2), it may not be differentiable everywhere. At some points it may
only have separate left and right derivatives. The next theorem proves that the derivatives
are bounded, uniformly in z, which yields § € R(L;).

Theorem 1.4.7 Let the conditions (M1) to (M3) on page 15, (H1) to (H4), (F1) and (K1)
and (K2) be satisfied. Then the score equation kg, = LiLia is solvable.

Proof:

Taking derivatives on both sides of the integral equation, using left and right derivatives if
necessary, existence of, possibly different, left and right derivatives ¢ is shown. Then we
obtain, writing F' and f instead of Fj and fy:

¢'(z) = d(z)k'(z)
+d'(z)p(x)/d(x)

—d(a { ﬁ—“’(Lh t, dt+/ W()Th(;r,t)dt}
/ FEH f@h(tz)dt + [ AU f(@)h(e, 1) dt
—d(a {/ UG 2nt z)at - [ H Lhia, f)di}

We have ¢/d = £ [hi(1 — F) + hoF']. Bringing everything containing ¢’ to the left-hand
side, we obtain

£ ™
(p'(r){l + d(z) / m h(t,z) dt + d(x) / m filmat) dt}
70 T

=)k (%)
+d'(z) €(z) [h(z)[1 — F(2)] + ho(z)F(2)]
+d(x {/ Mf fuliya) df+/ (—;%,IL?QL fla )h(f-t)dt}

T M
—(z(tr){/m £ St o) dt - [ HIHD 2 h, f)dr}

The right-hand side is bounded, uniformly over x. Since the part between curly brackets on
the left-hand side is bounded away from zero, we get boundedness of ¢'. Using f > ¢, this
implies d¢/dF € LS(F).

O
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Remarks:

I): The conditions (F1), (H3) and (K2) can be weakened, more in the line of (&, /g) o Fy
being Lipschitz on [0, 1] for case 1. Instead of (F1), (H3) and (K2), it is sufficient to
suppose

dk
d_Fo is bounded

and
lsmh(t,2)| < Kqu(t)  and  |gh(z,t)| < Koa(t)

with ¢; independent of z and satisfying

™
/ gi(t) dt < oo.

—
—
T

: From theorem 1.4.6 we see that solvability of the integral equation also holds if we
allow for discontinuities in the simultaneous observation time density h or in k. The
function ¢ thus obtained is in general no longer continuous, but will be contained in
R(Ly) \ R(L;). An example in which (H2) is violated, but continuity of the solution
does hold, is: h is constant, and zero on the set 0 < y — x < ¢, along the diagonal.

When F = Fn the same kind of boundedness property can be proved for ¢’ and ¢/,
uniformly over F,, € F. Therefore we introduce the class of integral equations

{IQr|F € F},
given by
br(x) + dr(a [/ eele)-oe() p o (1, ) dt — / e(l=0e@) j 1 (g, 1) dt

=Fk(z)dz(z):

Here hr > 0 satisfies condition (C) on page 25, {dr| F € F} is uniformly bounded and
nonnegative, and k is a cadlag function having at most finitely many jumps. Let ¢p be the
solution to IQp.

First we prove a uniform boundedness property of ¢ itself.

Lemma 1.4.1 The class {¢p| F € F} is uniformly bounded.

Proof:
Let F' € F. Define

Ip(z) = /HO ¢ee)-0r) pp(t, z) dt

and
™
Tr(a) == [ tel=te) ho(a, 1) at

So we have
G)F = dp[k = IF s JF]
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The proof is based on the observation that I and Jr have a reducing influence on the value
of the extremum.

First suppose that the minimum and the maximum of ¢ are attained. Let m = arg min(¢p)
and M = arg max(¢r).

Since ¢p reaches its minimum at m, both Ir(m) and Jp(m) should be < 0. Hence, for each
z € [Ty, Tul,

dr(m) = dp(m)k(m) — dp(m)[Ip(m) + Jp(m))
dr(m)k(m).

(bp(.l‘)

IV 1V

Likewise, from Ir(M) > 0 and Jp(M) > 0 we derive
bp(x) < dp(M)k(M)

for every z.
If the maximum is not attained, say sup,¢(ry s, #r(2) = ¢r(M—) > ¢p(M), we have

or(z) < k(M—=)dp(M-) for all z.

If the minimum is not attained, we have ¢p(z) > k(m—) dp(m—) for all z.
From boundedness of & and uniform boundedness of {dp|F € F}, uniform boundedness of

{¢r| F € F} follows.
O

Remark:

From the proof we see that, if £ is nonnegative, ¢ is nonnegative as well; likewise £ < 0
implies ¢ < 0. This also holds if F' = Fy. So, for example, when the functional K is the
mean, with £k = 1, we have ¢ > 0.

The proof of the following lemma is very similar to the proof of theorem 1.4.7.

Lemma 1.4.2 Let ¢ and {p denote the solutions to the equations (1.21) and (1.23) respec-
twely. The following holds:

I. The derwative of ¢ at the points of continuity is bounded, uniformly over F € F and
the points of continuity, implying
|9r(y) — ¢r(z)| < K1 |y — 7|

if y and x are in the same interval between jumps. Here K, is independent of F' and x
and y.
The same holds for &p.

II: The jumps satisfy
lor(z) — or(z—)| < K3 |F(z) — F(z—)|,

with Ky windependent of x and F.
The same holds for &p.
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Proof: The denominator of dp satisfies

}1611; re[lTI;,er] [h(z)[1 = F(z)] + ho(z)F(z)] > 0. (@282)

For let = € [y, 7] be arbitrary.
If x satisfies 7, + ¢, < © < Ty — €, we have, using (H4) and F € F,

hi(z) [1 — F(2)] + ha(z) F(z) > ' (hi(z) + ho(z)) > 0.

If 7, < & < To+¢€, we have hy(z) = 0. Hence h;(z) > 0 by (H1), implying h4(z) [1—F(z)] > 0.
The argument for 7,, > & > 7,, — €, runs in a similar way.

(For the denominator of cp the argument is almost the same.)

Now the proof is almost similar to the proof of theorem 1.4.7. We only give it for ¢p.

I At each continuity point z of F we have, by taking derivatives and some reordering:

™

O'F(J'){l + dp(2) /T: ?Tr‘)l—F—(t) h(t,z)dt + dp(x) /I P(z—)—lﬁf) h(z,t) dt}
= dp(2)RE () + dp(z) [h(z)[1 = F(z)] + ho(a) F(z)]

T ™
—(1,,(‘1~){/ 2elel-4r) 2 h(t, r)dt~/ 2eCodr) 2 b, t)dt}
T0 T

By lemma 1.4.1, using (1.32), {¢r|F € F} is uniformly bounded. Hence, again using
(1.32), the right-hand side is bounded, uniformly over z and F'. Since the part between
brackets on the left-hand side is bounded away from zero, we get uniform boundedness
of ¢'p.

II: At the points of jump x of F we get a similar expression. Define Ag(z) := g(z)—g(x—).
Then we have

i’[‘ {1+(11( )/ mh(t.r)dt+(1p(.1'—)/1
Selep(x) [hi(z)[1 = F(z)] + ha(x)F(2)]
+dp(z—) / 0 ot h(t, ) dt

™
+dr(z—) / FO _ijiof‘(li) =y h(z,t) dt,

™

~F@)HF(6)—FE-))
with Adp(z)/AF(z) given by

Adp(z) 1— F(2)][1 - F(z=)]hi(z) — F(z)F(z—)ha(z)
AF(z)  {hi(z)]1 - F(2)] + hz }{hl t)[1 — F(z—)] + ho(x)F(z—)}

Using boundedness of Adp(x)/AF(x), boundedness of App(x)/AF (x), uniformly over
the points of jump, is ()1)'[(1111(‘(1.
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B: Observation times arbitrarily close

We now allow the observation time density to have mass around the diagonal. So condition
(H4) is no longer imposed. The approach for case A can no longer be used directly. We
first have to change the integral equation to make it into a Fredholm integral equation by
“desingularization”. The change we make is replacing (F(v) — F(u)) by (F(v) — F(u)) V€
for some € € (0,1). This equation is similar in structure to the one from case A, so it has a
unique solution by theorem 1.4.6.

What remains to be proved is the convergence of ¢, as € | 0, to some function ¢ in
C([7o, T1t]) or D([75, Tar]) With respect to the supremum norm ||.||... Moreover, this ¢ has to
satisfy the original equation (1.21). Finally, for F = Fj, ¢ needs to be Lipschitz, implying
that d¢/dF is an L(F)-function. Boundedness of ¢, as well as fp‘gi;:‘;‘“t))), uniformly in €, is
needed.

The case F = F, will not be considered in this section. We will look at convex combina-
tions F = (1—a)Fy+aF,, with a € [0,1). These combinations have the advantage that they
do not have intervals of constancy. If F' has jumps, the solution of the integral equation will
in general also have jumps. However, the key observation in analyzing the integral equation
and in proving the efficiency of the NPMLE is that, even when F has discontinuities, we
can make a change of scale in such a way that the solution of the integral equation can be
extended to a Lipschitz function in the transformed scale.

We first introduce some notation. Let G(y) = F~'(y), y € [0,1], with a derivative g
which exists except for at most a finite number of points, where, however, G has left and
right derivatives. Furthermore, let k(y) = k(G(y)), H(u,v) = H(G(u),G(v)) and likewise
h(u,v) = h(G(u), G(v)), and let dp be defined by

7 y(1~-y)
dr(y) = - - . (133

BT - h(y) + yha(y)
where h; = h; oG, i = 1,2. Note that, if F has jumps, dp # dp o G. Also note that k, d and

h are continuous. In a similar way, we define

er@) = [ (1= 5)h(s,0) dG(s) + [ shy,5)dG(s)

and h°(s,y) = s(1 — s)h(s,y) and h°(y, s) = s(1 — s)h(y, s).

Lemma 1.4.3 (1) The integral equation
= 2 £ Y = LElay T 1 - 7, .
8(y) = dr(){kw) - [ S R(s, ) dG(s) + [ B iy, 5)dG(s) (130
Yy

has a unique continuous solution ., satisfying

inf dp(2)k(z) < ¢c(y) < sup dp(x)k(z), (17:85)

z€[70,7M] z€[r0,7Mm])

for all y € [0,1] and € > 0.
For points y in the range of F, say y = F(x), we have ¢.(y) = ¢(z)

SN RSN R R
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(i2) The integral equation

I

= 1. Ve —E&(s) 70 (s —E 7.0
&) =er){k) - [ SO Ro(s,y) dG(s) + [ SE5ED Ry, ) dG(s) ) (1.36)
&
has a unique continuous solution &, satisfying

inf cp(x)k(z) <&(y) < sup cp(x)k(z), (1.37)
z€[70,TM] IE[To,T[H]
for all y € [0,1] and € > 0. )
For points y in the range of F, say y = F(x), we have &(y) = &(x)

Proof:

ad (i) By theorem 1.4.6, the @.-equation (1.34) has a unique continuous solution, for each
€ > 0. Note that the integration in (1.34) is only with respect to dG(s) and therefore only
involves values belonging to the range of F. So for points y in the range of F' we have

The proof of the bounds in (1.35) is completely similar to the proof in lemma 1.4.1
ad (ii) The argument is completely similar to the argument given for (i).

The following lemma is the crux of the proof of the existence of the solution to the original
integral equation.

Lemma 1.4.4 The functions ¢. are Lipschitz on [0,1], uniformly in € > 0.

Proof: As before, let 7,,...,7, denote the points of jump of F. Furthermore, let z; =
() =1 (e m, M. The interval [z;, z;11] can be divided into two parts:

(1) theinterval [2;, 2!), where 2} = F(7;41—). The interval [z;, z]) corresponds to the interval

[7i,Ti+1) in the original scale. The function G is strictly increasing and differentiable
on the interval (z;, 2!), and is right and left differentiable at 2, and z! respectively.

(2) the interval [2/, z,41]. This interval corresponds to the jump of F at 7;;,. Here the func-
tion G is constant, again having right and left derivatives at the respective endpoints.

If : = m, the second interval only consists of the point 1. Let

D = {C() ..... :M}U{;B ,,,,, :;n}
U {discontinuity points of k'(y), dx(y),
Al(y) = &R(y, s)for y < s, and A2(y) =

Lh(s,y)for y > s}.
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Then ¢.(y) is differentiable for y ¢ D', and has left and right derivatives for y € D', satisfying

dL(y) = @«)é()hl—wh<>+yﬁ<ﬂ

+dr(y) {F(y / 8l)=30) 25 4) dG(s)

+/ &lo-80) 21y ) dG(s))
—&(y){/&yﬂx{%é%l -8 } 4F1 (s, y)
—Jp(y)éi(y)f‘l{/yy_ﬁ(s Y)g ds+/ (5) du}. (1.38)

Note that %H(y‘ s) = h(y, s)g(y) and similarly for the other partial derivative of H. Moving
the terms containing ¢, to the left-hand side of (1.38), shows that ¢/(y) has a finite upper
bound, using lemma 1.4.3. Moreover, (Z_>'( is piecewise continuous on the closed intervals from

one point in D’ to the subsequent one. So ¢/ attains a maximum value, which may be a right
or left derivative.

The rest of the proof is devoted to showing that this maximum value is uniform in €. Let
M, := sup,ep1) #.(y) and suppose that ¢, attains its supremum at a point M. Note that
M, > 0, since ¢.(0) = ¢.(1) = 0 and ¢, is continuous. Then, if 0 < s < M — e,

Gu(M)  d(M) = e(s) _ [M{F(M) — §(u)} du
M—s (M — s)? Z (M — s)? 20

Likewise, if 1 > s > M + ¢, we get

(M) 6(5) — ¢(M)
s—M  (s— M)? 20

-1

So these parts work in the opposite direction, and are harmless in (1.38).
Now let K.(y) be defined by

K(y) = dr@F () +dp(y) &y) [(1 = n)h(y) + yho(y)]

_dp(y {/ E)=3(0) 215, 4) dG(s / EAOEA0) ah(y,s)dG(s)}

(y—s)Ve (s—y)Ve Oy

and let C¢(y) be defined by

Ce(y):=1+ (ip(y)pl{/yi h(s,y)g(s)ds + /yyﬂ h(y, s)g(s) ds}, y € [0,1]. (1.39)

Then we have

GL(M) C(M) < K (M), (1.40)

EEESEEEEEEERRERE
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implying
M, < sup K(s)/Cc(s). (1.41)

s€[0,1]

In a similar way, if m, := inf e 1) #.(s), we get

e = Il RE L AGE 142
G B S (8)/Ce(s) (1.42)
Let the function As be defined by
- ¥ a1 -
Asy) = @)} [ 1Zh,vIdGG6) + [T 1ER9)IdG(s) [y € [0.1]
y— v
Fix 6 > 0 such that, for all y € [0,1],
1

As(y)/Cely) < 3 (1.43)

Note that 6 > 0 can be chosen independently of € > 0, since
lim C(y) = 1+ 2dr(y)h(y,9)9(y), y € (0,1).

Then we get from (1.43), for each y € [0,1], by applying the mean value theorem on the
ratios {¢.(v) — @.(u)}/(v — u),

dr(y) [ (Y (de(u)-de(s) o 7 PG (4= 7
e {/H ZORAO ,i/( V]de() + [ [EEER L ) dG(s)]
< As(y) max{ M., [m|}/Cc(y) < 3 max{ M, |m.|}.

Defining Bs(y) by

Bs(y) = dr@)IF @)+ e [(1 = 9)h(y) + yha(v)] sup {2e(s){k()1)
+2(1F,(y) sup {dr(s)|k(s)|} { sup | g h (s,y)| + sup \diyl-l(ysﬂ}
s€[0,1] s€(y,1]

we get, for y € [0,1],

dr(W)|F ()| + | de(¥) &) [1 = YY)+ yha(w)]
wlp(u){ [ L (s ) aG(s) + [ B 2Ry, ) aG(s)

y+é

< dr()IK )|+ |dp(y) &) [(vu)hl(u)whz( )
2(11:‘( 9 s
4 16 { (s, )| dG(s +/ |2 h(y )|dc(h)}
< Bs(y) <¢ (1.44)
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for some constant ¢, independent of e and y. Hence, for each y € [0, 1],
|6e(y)| < As(y)/Ce(y) + Bs(y)/Cely) < 3 max{Mc, |mc|} + Bs(y)/Ce(y),

implying
1+ max{M,, |m|} < sup Bjs(s)/Cc(s) < 1p ¢/C.(s , (1.45)
s€[0,1] s€(0,1
for some constant ¢’ independent of e.
Hence ¢/ (y) is bounded on [0, 1], uniformly in € and y, implying that ¢, is Lipschitz, uniformly
in'e >0,

@)
We now have the following theorem.

Theorem 1.4.8 Let G(y) = F~(y), y € [0,1], with a derwative g which exists except for
at most a finite number of points, where G has left and right derwatives. Furthermore, let

k(y) = k(G(y)), H(u,v) = H(G(u),G(v)), h(u,v) = h(G(u), G(v)), and let dr be defined by

gy y(1—y)
dp(y) == (1 —y)hi(y) +yha(y)’

(1.46)

where h; = h; oG, i=1,2. Then

(i) The integral equation
= = i Y.z - s 1 o z
oy) = dr(w){k) - [ 292D afi(s,y) + [ LD afi(y,5)}, y e 0.1, (147)
v
has a unique solution which is Lipschitz on [0, 1].
(11) The Lipschitz norm in (i) has the following upper bound. Let C(y) be defined by

Cly) := 1+ 2dr(y)g(y)h(y, y)- (1.48)
Moreover, let As(y) and Bs(y) be defined by

As(y) ::(U(y){/ibl h(s,y)| dG(s +/ Wy, s)|dG(s } (1.49)
and
Bs(y) = dp(y)|K'(y)|
Hdp(y)] [(1 = 9)ha(y) + v ha(y)] sup {2e(s)[k(s)]}
) s€[0,1]
+2d y) sup {dp(s)|k(s)[} x

s€(0,1]

X { sup %h (s,y)| + sup —yi}(ys)|} (1.50)
s€(0,y] 7 s€[y,1]

SRR
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At the points in
D' = {discontinuity points of g(y), augmented with 0 and 1}
U {discontinuity points of &'(y), d%(y),
M) = %E(y, s)fory <s, and A%(y) = %B(s,y)for Vias s
As and Bgs have two wversions, one corresponding to taking left derivatives and one
corresponding to taking right derivatives.

Then there exists a 6 > 0 such that
sup As(s)/C(s) <1/2

s€[0,1]
and we have B ’
lp(v) — p(u)| < c(v—u), 0 <u<v<1, (1:51)
where ¢ is giwen by
¢ =2 sup Bs(s)/C(s) (1.52)
s€(0,1]

(i) The integral equation (1.21) has a unique solution ¢.

Proof:

ad (i) By the preceding two lemma’s, the set {¢. : ¢ < €} (for some ¢ > 0) is bounded
and equicontinﬁuous. Hence, by the Arzela-Ascoli theorem, each sequence ¢, , €, | 0, has a
subsequence (¢, ), converging in the supremum metric to a continuous function ¢ on [0, 1].

By Lebesgue’s dominated convergence theorem we get, for such a subsequence (¢ ),
é(y) = lim 6., (y)
{ / =86 (5. y) dG(s +/ )80 F(y, ) dG (s )}

=4

I

(1.53)

Uniqueness of the solution follows by applying the same kind of supremum argument as in
lemma (1.4.1) on the difference of two solutions of equation (1.53).
ad (ii) It was shown in (1.45) in the proof of lemma 1.4.4 that

Zl{lopllla( <2 SUP Bs(s)/Cc(s),

se[
where C. is defined by (1.39). But since

lim C(y) = 1+ 2dr(y)h(y, v)9(y),

for y € [0, 1], (1.51) now follows.
ad (iii) We define ¢ by ¢(z) = ¢(F(z)). If y = F(z), we get, by a change of variables,

d(x) = o(y)
= drw){ky / H=8e) 47 (s, y) + / H)-80) 41 (y, )}

= dp(z /gi(;g—‘;’((;—(mm / A0-¢6) 41 (z,1)},
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and hence ¢ satisfies the original integral equation. Uniqueness of ¢ follows from uniqueness
of ¢ (since a solution ¢ conversely defines a solution ¢ on the inverse scale).

0O

Remark. The same arguments can be applied to prove existence of a solution to the &-
equation. Hence ¢ can be written as

=F(1-F)¢.
Solvability of K = L}L;a can now immediately be seen.

Corollary 1.4.1 Let the conditions (M1) to (M3), (H1) to (H3), (F1) and (K1) and (K2)
be satisfied. Then the equation kp = LiLja is solvable.

Proof: By the Lipschitz property of ¢ we have, for any 0 < u < v < M,
[6(v) — 8(w)| _ [6(F(v) ~ BF W)
F(v) — F(u) F(v) — F(u)

for some constant K. Thus the Radon-Nikodym derivative d¢/dF is a.e.-[F] bounded by K.

s R

O
Remark: Again the conditions (F1), (H3) and (K2) can be weakened, this time to:
dk 3] 0
h(t, 1 h{z,t
aF 3F(m) e and grshiet)

exist, possibly at some points only as separate left and right derivatives, and are bounded.

1.4.3 Case k

Consider the case with exactly k observation times per unobservable event time. The ob-
servation time distribution becomes a higher dimensional distribution, so the Ly(Qp, u)-
space changes. This also has consequences for the score operator and the score equation
kp, = LiLya. However, taking derivatives in this equation, we turn up with an equation
which is similar in structure to the ¢-equation (1.21).

Let the ordered observation times (7,75, ..., Ty) replace (U, V). Let the simultaneous
density function of these observation times be denoted by h(ty,t,,..., tr). Moreover, let the
simultaneous density of (7;,T;,;) be denoted by h;;.1, and let h; and h; denote the density
of the first and last observation times respectively. Then we get as integral equation

m”+du%[>Tmﬁﬁwulyu—Af%%%ghprmq k(z)d(z), (1.54)
with y
sl k—1
) =2 hign(te)  h(@t) =3 hia(a,t)
i=1 =1

and d given by
X o) F(z)[l = F(z)]
d“)‘hmmu—F@ﬂ+hunFuy

The situation with a varying number of observation times can be treated in the same way.

SEEREETEESERRRE
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1.5 Some special choices of F, h and the functional

In this section, some choices of Fy, h and & will be treated, for which we have been able to
find a more or less explicit solution to the integral equation in case 2. In all cases we take
K, = 1 (estimation of the mean). An explicit solution to the integral equation exists in the
following situations:

I) Let F(z) = z on [0,1] and h(u,v) = 4 on the square {0 < u < 1/2, 1/2 < v < 1}.
Then we have the solution
@()(I) = %.l‘(l = ;1‘)

IT) Let
h(u,v) = Cr (F(v) — F(u))

with 1/Cp = {(ty — 1) [ 2dF(z) — [ 2*dF(z)}, and with marginal densities

il = Cp /UTM F(s)(mm — 1) — 8] ds
hs(w): = / sf(s)ds.

Now the singularity is wiped away by h, and the integral part reduces to

i ™
/,:, Fore h(t, W”‘—/: HAHE) h(z,t) dt =
™
Cr {(TM — To)P(T) — / o(s) ds}

c(x)
1 = Cp [ clalde

We arrive at the solution

OB =

with

F(2)(1 - F(x))
Cr(ty — 70)F(2)[1 = F(x)] + F(x)hy(z) + [1 — F(z)] hi ()
Hence, the lower bound is given by

™ o(q)dx
p(a)ides = :
/r() ‘ (1)( : 1-— C[ fT” ‘(I)([.I‘

el =

In the next situation the solution is not given by an explicit formula.

1.5.1 Uniform distributions on [0, 1]

In this subsection, the solution will be given if X is uniform on [7,, 7)) and we have two
independent observation times 77 and 75, also uniformly distributed on [7,,7y]. Letting
U = min{T},T,} and V = max{T},T>}, (U,V) is uniformly distributed on the triangle
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7o < u < v < 7). This situation is the case 2 analogue of g = 1/(7y — 7,) in case 1. Having
more information we may expect a smaller lower bound

™
[ ¢le)d
T0

in case 2.

No explicit solution is available. We give the solution with respect to a basis of Legendre
polynomials. Legendre polynomials are most commonly considered for the interval [—1,1].
However, we first solve the problem for the interval [0,1]. So we have F(z) = z and h = 2.

The integral equation can be written in the form:

2 —4z(1 — z)

L gy A G =%, (1.55)

with the operator A defined by:
T ik
[Ad)(z) = 2{/ aot gy — [ ﬂi};—f@df}. (1.56)
0 @
First the structure of A is investigated.

The operator A

In this subsection it will be proved that the Legendre polynomials on [0,1] are the eigenfunc-
tions of A, and the corresponding eigenvalues will be given.

The Legendre polynomials { P, } on [0, 1] are defined as a complete orthogonal basis of the
space Ly([0,1]) with respect to the inner product induced by the standard norm and having
the extra restriction degree(P,) = n. This last condition makes them uniquely determined
up to multiplying constants. We choose the constants such that P,(1) = 1. Then {P,} can
be obtained via
d* [z(z —1)|"
dat n!

Pn(I) =
or via the recurrent relation
(n+1)Pyy1(z) = (2n+1)(22 — 1) Py(z) — nP,_1(x), (1.58)

with Py(z) = 1 and Pi(z) = 2z — 1 as starting values. The properties that are needed in
the sequel are given in the next proposition. Their proofs are based on the above procedure
(1.57).

Proposition 1.5.1 The polynomials as gwen by (1.57) or (1.58) satisfy:
1. degree(P, )=n.
el SR T =2 h
i (P, P,) = =1

2n+1"

EEEEEE SRR R RRE
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WA 0= (= 1Es Pl )=t

v: [ Pa(t)dt = = [§ Pa(t) dt = 515 (Pa-i(2) = Paga(2)).

vi: The coefficient of the leading term z™ of P, is %L;),—I
Proof.

i: Trivial.

ii: Suppose k£ > [. Then

/lPk(I)PI(I)dr / A& ([x(x — 1))F)*Y
0

- /gu__uu_pl (¢)dz

/ L——]—I 1)kP(k o) dio =10,

since Pl(k) =t}

iii: Since [z(x —1)]™ = z®™ + lower order terms, the coefficient of 2™ in the n-th derivative
of [z(z — 1)|™ is @n)! hence P(™(z) = <2n>n' Thus we have

l n
/Pn A= (—1)"/ et P (z)dx

0 n!
2n : n( n 1
= <n>/0 (1 —z)"de = 5755+
iv: Differentiating EGH%UL n times yields
P,(x) = (22 — 1)" + terms with at least one factor z(1 — z).

v: Since

| Pyt = e
0

dzn—1 =y

and

Pn+1<‘l‘> = ﬂ {M(2l - 1)2} 4+ 25— = LI(’—I)J_‘

— dgn—l n—1! dzn—1 n!

we have

Po(z) - Poa(z) = £ {lﬂ%l."—”[(zr—n?—l]}jLQ/o P, (t)dt

dzn-1  n-1!

oh gl MH/IP,,(U(H
0

- (4n+2)/0 P (t)dt
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vi: Trivial.

As an illustration, we give the first seven Legendre polynomials on [0, 1) with P,(1) = 1:

Py(z) 1

Br(ke= pi2a—-

Py(z) = 6z —6z+1

Pi(z) = 202 -3022 +122-1

Py(z) = 70z* — 14023 + 9022 — 20z + 1

Pi(x) = 252z° — 630z* + 56023 — 210x% 4+ 30z — 1

Ps(z) = 924z% — 27722° + 3150z* — 16802 + 42022 — 42z + 1

Let IP™ be the (n + 1)-dimensional space of real-valued polynomials on [0, 1] of maximal
degree n. The operator A maps polynomials of degree n to polynomials of the same degree.

For, using z" — " = (x — t) E]";OI 2" 7714 we obtain

Alz")(z) = 483" + gna(T),

Withis e Z?:l % and ¢,_; € IP"~!. Moreover, constant functions are mapped to the zero
function.
Now we have:

Proposition 1.5.2 The Legendre polynomials { Py, ..., P,} are an orthogonal basis of eigen-
functions for the operator A : IP™ — IP", with corresponding etgenvalues A\ = 4S.

Proof: One easily shows that the operator A, defined on IP", is symmetric with respect
to the standard L, inner-product. So there exists an orthogonal basis of eigenfunctions
{po,-..,pn} on IP™. This holds for any n € IN. Together with the fact that A preserves the
degree of polynomials, it follows by induction that degree(p, ) = n. So this orthogonal basis
of eigenfunctions consists of the Legendre polynomials up to degree n.

Expanding 2™ along the Legendre basis, 2" = Yp_q 7 Pe(z), we get

n—1
‘4—\7"Pn = A" - A Z Vkpk
k=0
n—1

= 45711,11 ARl e Z ’7/\“4Pk
k=0

4Sn')nPn = (]n—h

with ¢,—; and ¢, € P™!. Since §,_, is of lower degree than P, and since P, is an
eigenfunction, we have ¢,_; = 0, and thus AP, = 4S,P,.

Remark: Since the eigenvalues converge to oo, A is an unbounded operator.
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Solution with respect to the Legendre basis

We turn back to the integral equation (1.55). Since L,([0, 1]) can be split up in the orthogonal
subspaces LI([0, 1]) and span{Fy}, any a € LI([0, 1]) can be written as a = }72, oy Py. Let

o0
Qg = Z Br P
k=1
denote the solution to kp = L}L;a with respect to the Legendre basis. By proposition 1.5.1.v,
we have
- B
bo =2 zi5(Pe1 — Pur).
i
Using orthogonality of the Legendre polynomials, the lower bound is equal to

& B
Z PAl—PA+1)P0>:El~

The coefficients f; can be found by taking the inner product of the Legendre polynomials
Py, P,, ... with both sides of L7L,a = Kr. This yields an infinite set of linear equations in
By, which will turn out to be easily solvable.

For the right-hand side we get, since &(z) = 5 Pi(2),

=l e =1l
<Pf‘h>_{0 fon =

For the left-hand side we make use of the structure of the operator A, appearing in the
derivative of LjL,a. For our choice of F, h and k, we have

d ., e .
E[LILI(I](.I) = [(A - 4)]o(z) + *_.1‘(1 —

with ¢(z) = [, a(z) dx. Define
Br
4k +2°

Then we get, using continuity of L]L;, property 1.5.1.v and proposition (1.5.2),

k1 :=

(P;, L Lyag) = Af: (P, L*L, P;)
=
oL
{/ WPearoPui )|t lBla = PA-+1)](1)) df}d.r
+3 6t (.0
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. {%& (P, B - B ) - 4(Sk+1=1) L e pk>}

4k+6

[Pic1 = Bia](8)

: + 0
47 4+ 2

= ka
k=1
o 1
+) & /t—O 2 ﬁ [FE51 =Pl
k=1 s
We have to pay some extra attention to the part with the factor 1/[t(1 — t)]. By prop-

erty 1.5.1.iv we have Py (1) = (—=1)*P,(0) = 1, so Py_; — Py, is divisible by the factor ¢(1—t).
Hence we can write

Pi1(t) = Peya(t) = (4k + 2) 1(1 — 1) Qe (D), (1.59)

with degree(Qx—1) =k — 1.
The relevant properties of @, are given in the following proposition:

Proposition 1.5.3 In the space (Ly([0,1]),[-, - ]), with inner product

= /11:0 z(1 —z) f(z) g(z) de,

the polynomials {Q,} are a complete orthogonal basis for which the following relations hold:

(£, Pj = Pj12) = (47 + 6) [f, Qj]- (1.60)
and :

@) = TG oE v o)
Proof:

Relation (1.60) is a direct consequence of (1.59).
Since Pj_; — Pj41 is orthogonal to IP?~% with respect to the standard inner product (-, -),
Qj—1 is orthogonal to IP?~* with respect to [-, -]. By theorem 3.1.5. in SzEGO (1978) the
Q@-polynomials form a complete basis.

The inner product expression can be found by using the relations between P; and Q;. Let
Q; = Sk—o V& FPr. Then we have

(P — Pj12,Q;) - o

@5, Q5] = 45+6  (2+1)dj+6)

In order to determine the factor v;, let ¢; and d; denote the coefficients of the leading term
of P; and @, respectively. Then, on one hand

Pj(x) — Pj4a(z) = (45 + 6)(z — 2?)(d;2” + polynomial of degree < j — 1),
whereas on the other hand
P;(z) — Pj4a2(z) = —cjy22”*? + polynomial of degree < j + 1.

Hence ¢4z = (45 +6)d; and v; = d;/c; = [¢cj+2/¢;] X [1/(4j + 6)]. From property 1.5.1.vi we
know that ¢; = [(25)!]/[7! 7], yielding the result. a

i sessuneannssniil
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The first five @-polynomials have the following form:

Qo) 1

Qi(z) = 2¢-1

Qi(z) = 5z*=5x+41

Qs(z) = 142° -212? 4+ 921

Qi(z) = 42z* — 84x® 4+ 5622 — 14z + 1

Using this proposition, we get

1
/t = e r)[P‘ L=

which is equal to 4/[j(j + 1)] if k = j and zero otherwise.

PA+1]( ) _14]1 2+1](t dt =

2(4k + 2)[Qk-1, Qj-1],

o1

So, finally, multiplying both sides by 2 (25 + 1) and shifting the index by one, we get, for

e Bk
_ 551 7Syl Sipa=1 4 Siza=1 8(27+3)
4?1351 2 T 4(5}1? i _%jT)—)é s 2j+5 iz + G+1)(G+2) 5
with £, = &_, = 0 by definition. This is essentially a tridiagonal system:
Q0 o + @gip &5 =1
Ghi &y 0 o s =0
Q30 o 0 & + @48, =0
a3, & = @Y 5 s + @35&s =0
Qg0 & i, € + Q4 &6 =0
with coeflicients «a; given by:
aj; = bj+bja+o; forj=>0
it = —bis for j >0
Qg = —bj fonit = 2
G = 0 for |j— k| >2or |j—k|=1.
Here b; and o, have the following values:
b, —o 255=1)
i3 & R 2o
o . 8(27+3)
J o o (G2

Lii=o0

(1.61)

By corollary 1.4.1 we already know the solution to this system of equations to be unique.
We immediately see that the {-values with odd index are zero. So from now on we will only

look at the &

-values with even index. Note that, in principle, any value &, can be inserted,
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but once &, is determined, all the other values &,,&,, ... are fixed. Uniqueness of &, follows
from the extra restriction that a, = Y3, BxPx has to be an Lo-function. Thus

(G0, o) = 3 Bl = 3 4(€,-1)%(2k + 1) < o0 (1.62)
k=1 =1

It will be shown that this leaves exactly one solution for &,, which can be written as a con-
tinued fraction expansion, arising naturally from the tridiagonal system of linear equations.

Starting with &,, £ can be obtained as:
S ="ArE, T Dh

Equivalently we have

e _fn_B
O A A

It will be shown that A, goes to infinity very quickly as & — oo, leaving

= lin
§ = lim A,

as the only possible solution satisfying (1.62).
Proposition 1.5.4 The following holds:

i: 1/Ax = o(k™*) as k — oo for any a € R.

5 + k 3
1 lim ex1sts.
k—oo Aj

Proof:
1): Define

Qe bok Ook

PR .. SURSTA . S L k=0,1,2,...
Mok 2(k41) b2(k+1) b‘z(k+1)

G = S O b Li=ali0
Qo 2(k+1) bZ(HI)
1 95

G = ——=-25

do by

The following relation holds for {4} and {B}:

Appil = PrAr 4 qpA s
By PeBr + gk Bi—1,

Il

—
o
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1):

with A_; =0, Ag = 1, B_; = 1 and By = 0, which can be proved by induction.
Subtracting Ay in the first relation yields:
Sor —1 4k +5
Appg —Ap = —————— (A — A=
k+1 k e (Ax k—1)
2 (4k + 3)(4k + 5)

Ag. 1.63
Sakeny — 1 (Zk+1)(2k+2) " e

o

Since the second term on the right-hand side is > 0, we immediately see

Sok—1 4k+5

Apy1 — A > A — A
k1 b2 g o 1dk+1 (A=4,9)
S |
4k +5 S 4k + 5
> o ool e R (Ax— Ay) = ‘_+__
Soks1) —1 5 52(k+1) i

Hence, using Sor — 1 < log(2k),

2
Cl og(2E) + Ax_; for all £k > 0 and some fixed C;, > 0,

which implies A, > C; 32X Cg for some Cy > 0. Using the second term
I 1= 1log(21 8

on the right-hand side of (1.63), we have

log

g8 3t
Apl — A > Cy | ———— for all k > 0,
k+1 k2 O (10g(2k)> orall k >

implying
k ’ 2 (2/\")3
C. =) 2 Cyrm—s
2 Z; (log(l])) - C'} (lOg(Zk))z
and 3
25k '
Agsr = Ap > O <——Iog(2/\')> for some C3 > 0.

Repeating the same argument again and again, we find, for any [ € IN and for all
k € IN:

T \\lth C 0
1()g(2l\) d -

Of course 1/A; = o(k~?) for some 3 € IR implies 1/A; = o(k~2) for all a < 3.

Ak Z (Vl+1 2k (

To prove the second part of the proposition, define

(0
Dk'_<1 I)k)
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Then

B B
i ¥ gy

Hence, computing determinants left and right:

k
bo
Tl % = ByAps1 — AxBia,
7=0 Y2(k+1)
implying
B B 4k +5 1

— - = : (1.64)
Ap B Sy 1 A Ay
Since 1/Ay = o(k™*) as k — oo for all @ > 0, the sequence {%} is a Cauchy sequence,
hence convergent. (Notice that the approximated solution —2% is monotonously in-

k
creasing in k.)

O

Although we already know that at least one solution should exist, it can also be shown
directly that the solution {&} obtained in this way indeed satisfies (1.62). It is sufficient to
show

k«lillolo&kk“o =0 for some a, > 1. (1.65)

This holds for any o € R. For, writing & = Aré, + B, with § = lim; —%‘: and using
(1.64), we obtain
B,
&k = [{Ar(& + T:)}]f“|

© 45 +5 A k°
Saginy Aj Aj

g=k

This sum converges to zero as k — oo, since Ay < A; and k¢ A;:l can be made smaller than
Cj~* for some C > 0.

What remains to be done is computing limy_, o —% Since the countable system of equations
is tridiagonal, one of the possible solutions &, from the system of equations can be represented
as a continued fraction expansion:

Qoo — Q203 o
Qo — Oy 4y 5

(1.66)

Qyq —
This is easily seen by rewriting:

1
Qo Eo + @, f,_ =0 ) 50 = Aot
Qo S (10.25

 srsaspssssosrn R
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and
Mok 2(k-1) 62(;;—1) + Qk 2k & Qg 2(k+1) 52(k+1) = 0 «—
— Ok 2(k—1) . Eor
Ea(kt1)
Qo ok + azk,2(k+l)__(52k : 5'2(k—!)
It turns out to be the same solution as the one obtained by taking limg_. . —%.
Proposition 1.5.5 limy_. —%: is the same as the continued fraction expansion (1.66).
Proof: Define the k* approximand of the continued fraction expansion as:
1
Rl =t
Qoo — Q203 0
Ol —
Mo(k—-1),2k Mok 2(k-1)
Qo 2k T ok p(k41) W
So Pk(E%:—”) yields the solution &, based on the first k equations, as a function of 2+
Furthermore define
il
To(w) = ——
Qg0 + Qoo W
— Olgg 2(k-1
Telw) = ——22CD
Qop ok Ook 2(k+1) W
Then
Pl = T ()
By induction, it is easily shown that
Bii1 — Brw
+1 k
To.. . Th(w) = ——————.
Ak-H — Ak w
Hence B
: k+1 : :
lim — = im0 = lim = (0}
k—o00 k1 k—o0 k—oo0
=]

Computing the continued fraction expansion gives
&= L IEL9A623 T8

The continued fraction expansion converges very quickly. For the 0* approximand, we al-
ready have

= 0.1190476 . ..

Q
S
°
S e
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and each next approximand increases accuracy by about two digits.

For case 1, with a uniform observation time distribution on [0, 1], we have ¢,(z) = z(1 — z).
On the other hand, in the model without censoring, the score operator L reduces to the
identity operator, yielding a,(x) = x — 1/2, hence ¢o(z) = 1/2x(1 — x). Since all even
coefficients &y in the expansion are nonzero, @, is definitely not a polynomial in case 2.
However, since (1.65) holds for any a > 0, convergence of the coefficients to zero goes very
fast, faster than k=% for any o > 0. In figure 1.1, the first order and third order expansion of

ol = i Eor (8k +6) (1 — ) Qo ()

k=0

are given by the middle dashed curve and the solid curve respectively.

() &6zl — ) Qy(z) = 0.71677 z(l — )
O(z) = z(1-1)(7.16771071 Q,(z) + 1.2192107! Q,(z) + 2.4321 1072 Q,(z))

0

A further expansion does not give any visible change in this plot. The upper dashed curve
is the corresponding solution for case 1, ¢,(x) = x(1 — x), whereas the lower dashed curve
is the function 1/2x(1 — ). Note that in case 2, being a situation between case 1 and the
uncensored model, ¢, is enclosed by z(1 — z) and 1/2z(1 — ).

B N
4 ™
- / \
0.2 7 N
7 S = e S X
i / i S N
(0105 / \
2 ® s NS Rl \ \
! 3 S i
O it o % Y N
Y g™ \ \
Liis I < D
A = \\\
L ’
005t /4 N
4 \\\
/ \
4 N\
02 0.4 0.6 0.8 1

Figure 1.1: The functions ¢, with first order approximation for case 2.

Remark: For the special case II from the beginning of this subsection, taking F(z) = x,
we can derive the information bound in a similar way, since the integral operator A is very
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simple. The derivative of the operator equation becomes

3
{1‘(1—.1)_3} ; _6/@ =1L

Again, we get a tridiagonal system in &, with
4?)2—50 + %{2 = 1\
%61 i %63 =0,
= 3 3 12(25+3)
R by 36~

25+1 2]«}—) (7+1)(5+2)

3 —
21+5£1+2 =1

. . By . .
Choose &9x41 to be zero and write &3, = Aré,+ By and &, = %f - 3": Proceeding in the same
way, we have 1/|Ax| = o(k™®) as k — oo and we get

B,
lim —4—‘ — 0.1198987. ..

k—o0 Ag
which is indeed the same number as

1(1 ) )
Il i I i—a(i-z) A

13— 6]01 (’(_r)([.l 1i=6 fo T%dl“

Uniform distributions on [7,, 7]

For uniform distributions on the interval [, 7)], the solution of the integral equation for the
[0, 1]-case can be used. The integral equation in the transformed scale is similar to equation
(1.55), with the right-hand side replaced by (7, — 7,). This implies that all coefficients &
are multiplied by a factor (7,, — 7,), and the transformed-scale solution can be written as

(:)T(),TA’ = (TM i Tg) 00,1

with ¢,, the solution for the [0, 1]-case. The lower bound becomes

™ > 1 ’
/ Gryrae (T) AT = (The — o) / Goa(z) dz = (Tar — T5)2 0.1194623
T JO

0
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Chapter 2

Interval censoring: the NPMLE

The aim of this chapter is to show that the lower bound for estimation of smooth function-
als with interval censored data is reached asymptotically by the nonparametric maximum
likelihood estimator F),. Just like in the preceding chapter, we assume the support of Fj to
consist of one interval [y, 7)]. However, we may allow for intervals of constancy of F without
changing the proofs. Let K (Fj) be the smooth, real valued aspect of Fj in which we are inter-
ested. From chapter 1 we know that the lower bound is determined by the canonical gradient
(;,s(, of the functional ©(Qr) := K(F), defined on the observation space. (In the sequel we
neglect the dependence on the observation time distribution in the notations. So we write
Qr, instead of Qp, i etc.) We will show that the NPMLE ©,, = K(F}) of O(Qr,) = K(F)
satisfies
Vil(6r — 0(Qr,)) = N(0,I0rllg,,)  as n— oo, (2.1)
One further specification is made to the kind of functionals that are allowed. Let kg, be
the canonical gradient at Fj of the functional K (F'), defined on the hidden event time space.
We assume:

(K3) K(F) - K(F) = [ #r (@) d(F - Fo)(2) + O(IF - o)

for all distributions F' with support contained in [r,,7y]. The norm ||F — Fp|x is the L,-
distance between the distribution functions F' and Fj w.r.t. Lebesgue measure on IR.
For linear functionals

(’»—>/ r) dG(z),

we have kg, (2) = c(x)— [ cdFy, and (K3) even holds without the O-term. However, condition
(K3) is satisfied by a wider class of functionals than the linear ones. For example, the
functional

Ky(F /F Ndw
from subsection 1.2.1, with gradient kp(z) = 2[”’ F(s)w(s)ds, also satisfies (K3), using
boundedness of the weight function w. For we have

X G*(z) w(z) dzx ~/ Fi(z)w(z)dz =
. ™ P
p [ / Fy(s) w( ds] d(G - F) +/ L B ) T
59
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We start with an overview of known results of the NPMLE Fn, with emphasis on case 2.
Most results for case 1 are similar in essence. Then we will sketch the proof for case 1 as
it appears in HUANG AND WELLNER (1995A). Since the canonical gradient has an explicit
expression in case 1, it is the simplest case. Our summary of their proof will serve to illustrate
what are the main ingredients needed to show optimality in case 2. A short overview of
empirical process theory will be given, since this will be needed in the proof. Throughout
this chapter, we use “Prob” to denote the probability measure needed for the asymptotic
considerations. More specifically, Prob is the product measure on the sample space of all
infinite sequences (X1, U, V1), (Xa,Us, V3),... (in case 2), endowed with the Borel o-algebra
which is generated by the product topology.

2.1 Some known results

Based on the sample of observations (Uy, V1, A1,T1), ..., (Un, Vi, Ap, T'n), the NPMLE E, is
the (sub)distribution function that maximizes the likelihood

F(U)S(FW) - FU)(1 = F(V)' -2 (U, Va) (2.2)

==

=1

over the class of non-decreasing cadlag functions F with values in [0, 1]. The factor [T h(U;, V;)
is of no importance in the maximization procedure with respect to F' and can be neglected.
First note that only the values of F' at the observation times occur explicitly in the likelihood,
and even not all of them. If A; = 1,i.e. X; < U;, the corresponding V; does not play any role.
Likewise, if X, > V;, we can throw away the corresponding U;. The remaining observation
points are called the relevant observation points. The order restriction on F' causes the
NPMLE to be a function that is piecewise constant and uniquely defined on large parts of its
domain. Generally these intervals contain several observation times. The only places where
Fn is not uniquely defined is between two consecutive ordered relevant observation times for
which Fn has a different value. Here Fn can be chosen freely. However, how Fn is chosen
there does not influence the asymptotic properties that follow, since the total length of these
intervals shrinks to zero as the sample size goes to infinity. So, without loss of generality,
we impose F, to be piecewise constant everywhere, and only to have jumps at (a subset of)
the observation points. As before, let 7;, i = 1,..., m denote the points of jump of F,,, and
define

;=i e (RS and el i L (28)

Then F,, is uniquely determined from 7, up to and including 7,,. Except for the rare case
that all A;’s are one, we always have F,,(T(,) = [ amd Fn is also uniquely determined from 7,
to 7,. At the other end we may end up with a degenerate distribution, having F,(t) < 1 at
all observation points. This occurs when the largest relevant observation time corresponds
with an event time beyond that observation time. Then the largest relevant observation
time is equal to some Vj}, and [1 — F(V})] in the likelihood formula is larger than zero. The
NPMLE is not determined beyond this V;. The asymmetry between the left-hand side and
the right-hand side of [r,, 7] is due to the right continuity of the NPMLE. For estimation of
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smooth functionals based on a finite sample, we have to specify where to put the remaining
mass. However, for properties concerning the limit behaviour, this question does not play
any role, since the probability to obtain a defective distribution function tends to zero as
n — 00, as long as Fy < H; + H, (condition (M3) on page 15).

Proposition 2.1.1 .
lim Prob{ F, is defective } =0

Proof: Let X(,) denote the (unobservable) event time corresponding to the largest relevant
observation time. Let vy denote the left limit of the support of V', with V' having distribution
function H,. Then we have, using independence of X and V' and integration by parts,

Prob{ F, is defective } = o Prob{X(n) > v} nhe(v)Hy(v)" ' dv
o
= /TM {1 - Fy(v)} nhy(v)Hy(v)" dv
Vo
™
= [" ) R
vo

Using Lebesgue’s dominated convergence theorem finishes the proof.

O

Given a sample (Uy, V1, A1, 1), ..., (Un, Vi, Ay, Th), let @, denote the corresponding em-
pirical probability measure. If we let the NPMLE have its mass restricted to the observation
times, proposition 1.3 in GW gives an alternative criterion which is necessary and sufficient
for a function to be the NPMLE. Consider the random class G,, of distribution functions F
satisfying

FU) >0 ARG <<,
F(V))—FU;) >0 A Uk e =iV
I =A== sl X i

and having mass concentrated on the set of observation points augmented with an extra
point bigger than all observation points. It is easily seen that F), belongs to this class. For
distribution functions in this class, the following process t — Wg(t) is properly defined:

We(t) = /6[7 S F ) dQu(u,v,6,7)
- y{F(v) — F(u)}~1dQ.(u,v,6,7)

u€(7o,t]

+f  A{F@©) = F@)}d@u(u,v,6,7) (2.4)
vE[T0,t]

0 4 ](1—6—7){1—F(v)}'IdQT,(u\lxé.w).
vE|T0,t

for 4 =,
Proposition 1.3 in GW and the discussion preceding it say:

Proposition 2.1.2 Let T}, denote the largest relevant observation time, and let X(ny denote
the corresponding (unobservable) event time X;. Then
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X ey < Ty, E, mazimizes (2.2) over all F € G, if and only if

n

A AW, () <0,  Vt>r, (2.5)
)

and A
% Fu(t) W (1) = 0. (2.6)
T1,Tm) :

Moreover, F, is uniquely determined by (2.5) and (2.6) and is non-defective.

() I e L E, mazimizes (2.2) over all F € G, if and only if

/ AWy () <0,  Vt>m, (2.7)
N R
and »
/ Eu(t)dWp (1) = 0. (2.8)
[11,T(m)) gl

Moreover, F, is uniquely determined by (2.7) and (2.8) and is defective.
The following corollary is an immediate consequence.

Corollary 2.1.1 Any function o that is constant on the same intervals as E, satisfies

£ Gt xa s i (LB LN )
Lammn&@)_ L“am{mM AMJMJM%wnmw

et
+/v€J ”(l'){ﬁ,(u)zﬁn(u) N ulm}(’(?"(“~ % 5t
0,

Jora = 15 m — 1 (under the conditions of proposition 2.1.2.(i)) or i = 1,..., m (under
the conditions of proposition 2.1.2.(11)).

Proof: Suppose F, is non-defective. Then we have case (i) of proposition 2.1.2. We now

useiilE—"ng <t Distiomisy Z;’;l 7 <i0fonre {Id o, m — 1}, and Z;’;’ll a;5=A05 then
2} =...= &m—1 = 0. This easily follows by rewriting
m—1 m—1 m—1

Z )= Z((z, — ;1) Z T
1=1 =1 J=1
Taking z; = [, dW;, and a; = F,(7;), and using proposition 2.1.2, we derive:

/ dWe =0 9= 1, ¢, m — 1. (2.9)
g e

JJ,

The proof of (2.9) is completely similar for case (ii) of proposition 2.1.2, and then also holds
for the interval .J,,. The result now follows, since ¢ is constant on the intervals J;. O
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Remark. The case 1 analogue of corollary 2.1.1 is derived and used in the proof of propo-
sition 2.1.2, as it appears in GW. The corollary follows from Fenchel duality theory (see e.g.
ROCKAFELLAR (1970), theorem 28.3). However, once we have proposition 2.1.2 it can also be
used to derive corollary 2.1.1.

Proposition 2.1.2 characterizes maximization of the likelihood, in contrast with the so-
called “self-consistency equation” which only yields a necessary but not a sufficient condition.
If the points of jump of the NPMLE, and hence the intervals of constancy, were known, the
problem would be reduced to a normal maximization problem without order restrictions.
Then equations (2.6) and (2.8), or rather corollary 2.1.1, having the partial derivatives of the
loglikelihood appearing in the integrand, characterizes the maximization procedure. Equa-
tions (2.5) and (2.7) serve to take account of the order restrictions. The fact that only the
interval [r,,7,,) is playing a role in (2.5) and (2.6) is caused by the extra restriction that
the solution should have values between zero and one. In case of the situation in proposi-

tion 2.1.2.(i1), Fn(7y) < 1 is fulfilled automatically.

The above characterization of the NPMLE also plays an important role when the NPMLE
has to be computed. Contrary to case 1, for which the NPMLE E, can be computed via a
one-step procedure, only iterative procedures are available for computation of the NPMLE
in case 2. A slight modification of the iterative convex minorant algorithm, as introduced in
part IT of GW, is shown always to converge to the maximizing value in JONGBLOED (1995).
See also GROENEBOOM (1996). Computer experiments show that convergence is generally
quite fast. Since we only consider theoretical aspects, we do not go into this any further.

Before we give the asymptotic results for the NPMLE, we first group together all con-
ditions that are needed for showing the asymptotic optimality of the NPMLE of smooth
functionals in case 2.

Conditions on X ~ Fj.

(M1) F,, with support [7,, 7y, is unknown and contained in the class

Fs = {F| support(F) C S; F absolutely continuous, sup |f(z)| < K},

for a fixed K > 0 and a fixed bounded interval S C IR.

(F1) The density satisfies fo(z) > ¢; for some ¢; > 0 and for all z € [r,, 7).
Conditions on (U,V) ~ H.

(M2) H, with support {(u,v)[n, < u < v < nmy}, is unknown and contained in H, the
collection of all two-dimensional distributions on {(u,v)| v < v}, absolutely continuous
with respect to two-dimensional Lebesgue measure and such that (U, V) is independent
of X for each choice of H € H and F € Fg.

(H2) The density h(u,v) is continuous.

(H4) Case A.
h(u,v) = 0 whenever |u — v| < ¢, for some €, > 0
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Case B.
llae)i= Iifn i) = le 00

for all z € [1,, 7)] and some ¢y > 0.

(H1) The marginal densities h; and hy of U and V are continuous, satisfying hy (z)+ha(z) > 0
for all @ €. [To5 T

(H3) The partial derivatives %h(r, t) and (%h(t, x) exist, except for at most a finite number
of points x, where left and right derivatives with respect to x do exist for each ¢. The

derivatives are bounded, uniformly in ¢ and z.

(M3) If both H; and H, put zero mass on some set A, then F' € Fg has zero mass on A as
well, so FF < H, + H,.

Conditions on the functional K.
(K1) The hidden-space canonical gradient &z, and its derivative K, = k are continuous.

(K2) k is differentiable, except for at most a finite number of points z, where left and right
derivatives exist. k' is bounded, uniformly over = € [7,, 7)J.

(K3) For all distributions F' with support contained in |7, 7,,] we have

K(F) - K(F) = [ &g (@) d(F = Fy)(z) + O(IF = Foll}).

For case 1, (M1), (K1), (K3) and the one-dimensional analogues of (M2), (M3), (H1) and
(H2) are needed as well. (F1), (K2), and the one-dimensional analogue of (H3), together, are
replaced by the combined condition

(C) (k/g)o Fy!is Lipschitz on [0, 1],

with ¢ denoting the density of the observation time distribution.
For case 2, mixtures of A and B may occur as well, meaning that there is positive mass
along part of the diagonal. We make a short remark about this when case 2B is treated.

Asymptotic results

We have uniform consistency of the NPMLE of Fj:

Proposition 2.1.3
Prob {nlilrgo £ = Folloo = 0} =1

Proof: See GW, part II, sections 4.1 (case 1) and 4.3 (case 2).

figgssssnnififigis
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A rate of convergence result that will be needed can be deduced from VAN DE GEER (1993)
(case 1) and VAN DE GEER (1996) (case 2). For case 2, define the densities ¢; and qg,, with
respect to H ® v, by

ag, (u,v,8,7) 1= 8F,(u) + Y{Fn(v) — Fu(w)} + (1 — v = 6){1 - Fu(v)}, (2.10)

and
a0 (v, v, 6,7) = 6Fo(u) + Y{Fo(v) — Fo(w)} + (1 — 6 — y){1 - Fo(v)}. (2.11)
Similar definitions hold for case 1. Define the Hellinger distance h(gg,,gr,) by

haroam) =[5 [ (VAR - vam) aH ® VJW

Proposition 2.1.4 Let G denote the distribution function of the observation times in case
1 and let H, and H, denote the marginal distribution functions of respectively the first and
the second observation time of the pair of observation times (U, V') in case 2. Then

(1) The Hellinger distance h(qy, ,qr,) satisfies
h(qz, ,qr,) = Op(n,_l/s) as n — oo for case 1 and 2A

and
h(as , qr,) = Op(ngl/s(log n)/¢) as n — oo for case 2B.

(i1) Similar rates hold for the Ly-distance ||Fy, — Fyllq and ||Fy, — Folln,, i =1, 2.

Proof:

ad (1): For case 1, the result is proved in example 4.8(a) in VAN DE GEER (1993). The
result for case 2 is proved in example 3.2 in VAN DE GEER (1996) for a particular choice of
F, and H, belonging to subcase B. It is accompanied by the remark that the result also
holds if both ~ and f; remain bounded away from zero. These conditions can be relaxed to
H(Fy'(u), Fy'(v)) being Lipschitz in both variables. For case 2A, the convergence can be
shown to be a little faster, since her truncation devices

1
/ —
{ary>0on} QF,
and
d
/{qposU,,} Ve

are not needed. A self-contained proof for case 2A, using the general theory in VAN DE GEER
(1996), can be found in GESKUS AND GROENEBOOM (1996A).
ad (ii): We use part (i) and

(F— Fp)? < 4 (ﬁ— \/Fo)z and (F, — F))* < 4 (\/1 N e F0>2.

In case 2, considering the parts § = 1 and 6 = v = 0 separately, we obtain the desired results
for H, and H,. The result for G in case 1 is obtained in a similar way. 0O



66 Chapter 2 Interval censoring: the NPMLE

Although not used in the sequel, we spend some words on the asymptotic distribution
of ﬁn(to), for fixed to € [7,7x]. Contrary to smooth functionals, K(F) = F(ty) cannot
be estimated at \/n-rate. Moreover, the limit distribution is no longer normal. The limit
distribution is determined by a random variable Z, defined as the last time where standard
two-sided Brownian motion minus the parabola y(t) = t? reaches its maximum.

For case 1 we have theorem 5.1 in GW:

Theorem 2.1.1 Let t, be such that 0 < Fy(to), G(ty) < 1, and suppose that fo and gy are
continuous at ty and strictly positive. Then we have, as n — oo,

1/3 Fa(to) — Fo(to) D

n MIRA s (2.12)
[%fe(to)/ﬁ(fu)] :

with (fo)
_ o)
) = Rl - Fato]

For case 2A we have:
Theorem 2.1.2 Let hi(7,) > 0 and ha(1y) > 0. Moreover let the conditions (F1), (H1),

(H2), (H3) and (H4).Case A be satisfied.
Let ty be such that 0 < F()(fo), H(to,fo) <<l

Define
() = ™ Py
K (w) ‘_/u Py T
and h(d, )
v v(u, v
0= ) Foo) - Folw) ™
Then
nl/3 Fltg)—~ FO(fOI)/S —2.0F (2.13)
[3fo(to)/c2(to)]
= hy(to) ha(to)
ca(to) = + ki(to) + ka(to) + — 7~
2(00 F[)(to) 1\%0 2\t0 I_Fo(to).

Proof: See GROENEBOOM (1996).

If the relative amount of mass of the (U, V')-distribution near the diagonal point (o, %),
compared to the amount of mass of F' near ¢, is very small we are in a case 1-type situation
and we have a n!/3-convergence rate. Although rate and limit distribution are different,
the norming constant in the cases 1 and 2A shows some similarities to the integrated score
function for smooth functionals. The conditions needed are comparable as well, the main
difference being that here most of them only have to hold at the point of interest .

EEEES S ESEEEEEERE
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For case 2B, the limit distribution of £, (t,) has not been established yet. It is conjectured
to have the same asymptotic distribution as the “toy estimator” F(!(ty), which is obtained
by doing one step in the iterative convex minorant algorithm, with the true underlying dis-
tribution Fj as starting value. Of course, this procedure, which does not lead to an estimator
in the strict sense, has no practical value. However, the asymptotic distribution of F{!(t) is
known. For case 2A, the same working hypothesis was originally used in WELLNER (1995),
proving the above limit behaviour to hold for F{V(¢;) as well in case 2A. For F{V(ty), the
convergence rate in case 2B increases to (nlogn)'/3. Here the norming constant is completely
different from the one in case of smooth functionals. So either the limit distribution of Fn(to)
is different from that of F{!(ty), or in case 2B the norming constant is quite different from
the one in case 1 and case 2A, and has no similarities with the integral equation for smooth
functionals. For case 2B we have:

Theorem 2.1.3 Let 0 < Fy(to), H(to,t9) < 1. Let fo be continuous at ty, with fo(ty) > 0.
Suppose that the density h(u,v) is continuous at (u,v) tf (u,v) is sufficiently close to (ty, o).
Let h(to,to) > 0 and suppose that h(t,t), defined by

Glt= li{Izl h(t,v),
1s continuous in t, for t win a neighbourhood of t,.
Then
E(M(tg) — Fo(t
[ n(to) = Fof ‘1’33 A (2.14)
H%fo(to)/%(to)]

(nlogn)'/?
with
cs(to) = 2h(to, to)/ fo(to)-
Proof: See GW, theorem 5.3.

2.2 Case 1: the main ingredients

The following theorem shows asymptotic optimality of the NPMLE of smooth functionals in
case 1. It is a slight modification of theorem 5.1 in HUANG AND WELLNER (1995A). The basic
ingredients of the proof serve as an introduction to the techniques used in case 2.

Theorem 2.2.1 Let Fy have a bounded support [1o, 7], with Fy € Fg. Let the observation
time distribution G satisfy Fy < G. Let G have a continuous density g, satisfying g(t) > 0
for allt € [19,Ta]. Let the functional K satisfy (K1) and (K3) on page 64. Moreover suppose
that (R, /g) o Fy ' ts a bounded Lipschitz function on [0,1]. Then we have

Vi K () - K(Fp)] = N(O, |0r)l3,,) as n— oo

Basic ingredients of the proof:
We may assume F, to be piecewise constant. Moreover, by proposition 2.1.1, we may assume
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Fn(TM) = 1. Let @, denote the empirical measure of the observations (77, Ay),. .., (TAAT),
It is sufficient to show the following:
VAl K(E) — K(F)] f/ Gy d(Qn — Qry) + 0p(1). (2.15)

Then an application of the central limit theorem finishes the proof. The proof of (2.15)
consists of the following steps.

I: The nonlinear aspect of the functional is negligible.
By condition (K3), we have

ValK(E) = K(Fo)] \/_/mod (5~ Fodto1),
if we can show !
1 = Folla = ap(n1%), (2.16)
This follows from proposition 2.1.4.(ii), using dA = (1/g) dG and g > 0.

II: Transformation to observation space measure.

The expression /n [ kg, d Fn Fp) is an integral with respect to the measure (F), — Fy) in the
hidden event time space. (Note that [Kp,dFy = 0.) We now show that it can be rewritten
as an integral with respect to the probability measure of the observations @)p,. Define the
function 6 i by

& { 1 - Bul®)] [’ (O)/9(8)] i 8=1
Ez(t) [R/Fo(t)/(J(t)] if6=0
If FA’H is replaced by Fp, this is the canonical gradient formula for case 1. Note that g 7, DO

longer has an interpretation as canonical gradient, since F,,, being a discrete distribution
function, is not dominated by G. The following holds:

/MUd(F g /9 dQr,. (2.17)

This is easily seen by writing out the definition of 6 P
: \ el . R ,
T / 9F dQFO §T / [1 ¥ Fn] = FO 5o Ez —2 [1 5 F()] dCr
5 » ”
/(Fn e Fo) (IF{FO

/F;FO Ay =B,

using integration by parts and F,(7,) = 1.

IIT: NPMLE condition; inserting of empirical measure.
Now we will use the fact that we deal with the NPMLE. The case 1 equivalent of corollary 2.1.1
says that any function o that is constant on the same intervals J; as F), satisfies

Z/ O{ 755 — 5} d@a(t.8) = 0

4§85
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Let 5;;1 denote the function épn, but with § := &', /g replaced by a function that is constant
on the intervals J;. The following is an obvious choice:

f=leo k.0
Then we obtain, using o = Fn[l = F,,] £,

/ O, dQn =0

So (2.17) can be rewritten as
~ [ 85, dQr, = [ 85, d(@u—Qr) + [ (@5, - 85,) dQr. (2.18)
Using the formulas for gﬁ‘n and 6}«‘", we get

@5, ~8:) d0r = [ (B - o) €-€)] dG.
By applying Cauchy-Schwarz we see that we have to prove
1% = Folle % |I€ = Elle = op(n™"/?).
Since Fy '(Fy(z)) = x a.e-Fy and K}, can be taken zero at places where Fy does not have
mass, £(t) can be replaced by &(Fy ' (Fy(t)) in the Ly(G)-norm. Using the Lipschitz condition
for £ o FO_I. we see that it is sufficient to prove

||ﬁ11 - FOH(:' — 07)(7771/4) (219)

which again follows from proposition 2.1.4.(ii).

IV: Closeness in empirical process.
The first term in (2.18) is further split into

/@nd((gn—(m) = /ém/ Ga Qs
+/ r —0p)d(Qn — Qr,).-

The last term is (),,(11’1/2), To show this we need to use some empirical process theory.

2.3 Empirical processes

We need to show that

\F/ — 0r,)d(Qn — Qry) = 0,(1).

This is performed by considering the empirical process

1/71.1‘1)(“’) -3 \/ﬁ((x?n £ (21“0)(1‘1'")~
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indexed by the set {tr} = {8 : F € F}U {fg}. F should be such that it contains all
possible realizations Fn, for each n, or at least a subset of all possible realizations occurring
with a probability tending to one as n — oo. So the defective distribution functions may
be excluded beforehand. The process v, g (-) has to converge to a tight Gaussian process
Gy (-). If this holds, then v, g, (6r) and v, g, (0F,) are close with hlgh probability whenever
the indices are. Closeness of Bp and 9p0 is shown to hold for F = F, with probability tending
to one, using convergence of E, to F, and corresponding convergence of 9 to 9F0

In the general setting, let Xi,..., X, be a sample of i.i.d. observatlons "each with distri-
bution P on the sample space (X, .A)‘ P, =137 1{x, is the empirical measure, based on
this sample. Let F denote a class of functions, being a subset of Ly(P). Define the empirical
process

vnp() = Vn(Pn = P)(

as a process on the index set F. Assume that

sup |f(z) — P(f)| < > for every x. (2.20)
feF

For each finite subset {fi,..., fe} C F we have, by the multivariate central limit theorem,

Wnp(f1)s - sV, p(fi)) == N(0, )

with the matrix ¥ having coefficients a, ; = P[f;—P(f:)|[f;—P(f;)]. For the limit distribution
of the empirical process over F, we have to define a space in which {v, p(f) : f € F} takes
its values. By (2.20), this space can be taken to be the Banach space of all bounded functions
B from F to IR:

2(F)={B:F->R: |[Blr= ?22'3(”' < 0o}

Convergence in distribution of v, p to a Borel measurable process Gp is defined as
E*(h(vn,p)) = E(h(Gp))

for all bounded || - || z-continuous real-valued functions h on ¢*°(F), using outer expectations
E* whenever v, p is not Borel measurable.

We say that the uniform central limit theorem holds at P if Gp is a tight Borel measurable
element in ¢>°(F). A class F for which the uniform central limit theorem holds at P is called
a P-Donsker class.

Consider the following semi-metric on F:

~{J1-9-Py-orar}”.

{vn.p} is called asymptotically uniformly equicontinuous in probability on F with respect to
pp if for every €, > 0 there exists a 6 > 0 such that

lim sup Prob* ( sup  |¥n,p(f) — vnp(g)| > 6) <
Lo pp(f.9)<é

with Prob* denoting outer probability on the relevant product sample space. We have the
following theorem (see e.g. VAN DER VAART AND WELLNER (1996), example 1.4.9).

148555 iﬁiiilill
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Theorem 2.3.1 The sequence {v, p} converges in distribution to a tight Gaussian process
Gp if and only if the following three properties hold

o (Wnp(fi):- v plfi)) 2 N(O,5)
o {v,.p} is asymptotically uniformly pp-equicontinuous in probability on F.
o F is totally bounded for pp

Remark. If sup;cr |P(f)| < oo, the pp metric can be replaced by the Ly(P) metric (see
VAN DER VAART AND WELLNER (1996), problem 2.1.2).

The stochastic equicontinuity property is the one that is needed. However, this is by far
the strongest property of the three; hence showing the P-Donsker class property is almost
similar. So our question is: when is a class of functions a P-Donsker class? We restrict
ourselves to classes of cadlag functions. For our purpose, the definition of univariate cadlag
functions is extended to bivariate functions in the following way. A function f defined on (a
subset of) IR? is called cadlag if

flz,y) = f(a+,y) = fz,p+) = f(z+, y+)

Sufficient for F to be a P-Donsker class is F to be of uniformly bounded variation (see e.g.
VAN DER LAAN (1993)). This can be characterized via the variation norm || - ||},. For the
one-dimensional case, if f is a cadlag function on [by, bys] C IR, its variation norm is defined
as

/15, := max{{| flloo, [l fllvi },

with the norm || - ||y, defined by
M

Wfllv = sup X |F(b;) — f(bj=)l-

L. ImM€eT j=1

Here 7 is the set of all disjoint partitions I; = (b;_1, b;] of (bo, ba)-
For a bivariate real-valued cadlag function f on [a;, as] x [by, by] C IR?, the variation norm
is defined as the maximum of four norms:

19155 = {7l 1 502 G s sup 7o)l

The norm || f||v, is defined as

[1£llva = sup 3_ £ (Aij),

Aij i,

where the supremum is taken over all finite rectangular partitions {A;;} of (a;, as] x (by, ba].
If A;; is of the form (s, 2] % (¢,y], then f(A;;) is defined as

f(Ay) = f(z,y) = f(s,9) = f(=z,t) + f(s,).
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IV: Closeness in empirical process, continued.
Now we return to case 1. The index set is formed by the class

T:{EF,FE}-}U{éFO}

with F being the class of piecewise constant non-defective distribution functions with mass
contained in [ry, Ty]. By the Lipschitz condition on & o ;! this class is easily shown to
have a uniformly bounded variation norm, hence it is a Qpg,-Donsker class. Now we use
theorem 2.3.1 and the subsequent remark. Again by the Lipschitz property of € o Fy!, we
have

19, = Orollgr, < ClIFn— Fullge,
= C||Fn - Folle
Using convergence of F}, to Fy, e.g. in Ly(G)-norm (proposition 2.1.4 once more) or in supre-

mum norm (see GW, section 11.4.1), we obtain the desired result, which ends the proof for
case 1

O

In the next subsection, on case 2A, we more or less repeat the above proof. However,
some things are slightly different. Moreover, the proof is more complicated since we lack an
explicit formula for the canonical gradient. For case 2B the main difficulty is in part IV,
closeness in empirical process. Standard results on Donsker classes cannot be used, due to
the singularity in v.h(u,v)/[F(v) — F(u)].

2.4 Case 2A: observation times bounded away

The following theorem will be shown to be valid.

Theorem 2.4.1 Let the conditions on page 63 be satisfied, except for (Hf).Case B. Then we
have
VR K(E,) - K(Fy)] = N(O,|lfg|l5,,) as n—oo

Proof:

Again it is sufficient to show the following:
VRLK(F) = K(Fo)) = Vi [ 8r, d(Qu — Qr) + 0,(1). (2.21)

By the strong consistency of the NPMLE (proposition 2.1.3), fy > ¢; and condition H4.Case
A, there exists a constant ¢’, such that

Biw) Bty ¢, #u—=t>e, (2.22)

with probability tending to one if n is sufficiently large. This ¢’ determines the € in condi-
tion (CF) on page 32, giving the definition of the class F, consisting of the non-defective,
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2.4 Case 2A: observation times bounded away i3

piecewise constant distribution functions that have enough increase to prevent occurrence of
a singularity in h(u,v)/(F(v) — F(u)):

F = {F : F is non-defective and satisfies (CF) on page 32}.

Using proposition 2.1.1 and property (2.22) we see that F, € F, with probability tending to
one as n — oo. Hence we may restrict ourselves to F, € F.
Now we take the same steps as in the proof of theorem 2.2.1.

I: Functional almost linear.

From hy + hy > 0, (K3) and proposition 2.1.4 we derive
VAIK(F) = K(Fo)) = /i [ &, d(Fn = F) +0,(1)

II: Transformation to observation space.

In case 1, épﬂ was defined as

o, (1) b ¢p, (1)

Bp, (t,6) = -6 e
7. (60) Fu(t) o e Fo(t)
with ¢ the solution of the equation
d)ﬁ'n (I) d)i‘,, (I) g S
I—FR(I)Q(I)+ Fn(l‘) g(‘r)_"‘Fo(I)'

This equation has its analogue in the integral equation

t)/dp(x) + [/t: _FU_‘;@(LII (t,z)dt — / TF%FL&@h(r Ldeii=

= R (2) (2.23)

with F = F,. So we look at this equation and the corresponding &p-equation for F' € F.
Note that {r is only defined on the interval from the first point of jump of F,, to its last one,
say on [Tl(F e AU By theolem 1.4.6, we know both equations to have a unique solution
i D, 7] end B (& Tm(F )]) respectively.

Contrary to case 1, whexe § was given by & = Rl /g, the {-function for case 2 depends
on F. Moreover, this &-function is no longer continuous everywhere. It is a cadlag function
instead, having jumps at the same points as F. The solution ¢ can be used to extend the
definition of 0y to F € F:

Bhoiics 5,3, 41 o 8 or(u) 5 ¢r(v) — ¢r(u) or(v) ‘

F(u) F(v) — F(u) 1- F(v)

where ¢p(u)/F(u) and ¢p(v)/(1 — F(v)) are defined to be zero if F(u) =0 or F(v) = 1,

respectively. At points where the denominator in the y-part of (2.24) is zero, we have

h(u,v) = 0 as well. There we need not define é[‘. since the integral on the right-hand
side of lemma 2.4.1 can be restricted to {n, < u < v~ ¢ < My }-

${1l = 6+9) (2.24)
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Lemma 2.4.1 For any F € F we have

[y d(F ~ Fo) =~ [ 0rdQp,

Proof:

Let, for any distribution function F' € F, Lg: Ly(F) — Lo(Qr) denote the conditional
expectation operator

[Lral(u,v,6,7)

]

B aCal| = Ve—u A — 5T —a
6 [, adF v [, adF (1~ & aqp Mg dp . |
F(u) F(v) — F(u) 1-F(v) a-e-[Qrl

with adjoint given by
[L*b)(z) = E[6(U,V,A,T)|X =z] ae-F.

Since the adjoint is an expectation, conditionally on the value of the random variable X ~ F|
its structure does not depend on F. F only determines where it has to be defined (the a.e.-F'
part). Still @ € LY(F) implies Lr(a) € LY(QF).

Note that 6p € Ly(Qr,): for § =1 and 6 = v = 0 we use boundedness of {r, for v =1
we use boundedness of ¢, together with condition (H4).Case A. Let 1 € Ly(F') denote the
constant function 1(z) = 1, x € IR. Under Lp this transforms into the constant function
1°(u,v,6,7) =1 on Ly(QF). Now we have,

/éFdQFo = < ép, i >QF0

== ép,Lpo(l) >QF0

= < L*(ép),l >F,

b /L*(ép) dF,.
If we can prove

dprar o / Rr, dF  ae-Fy

we are done.
This is shown as follows: 3
The integral equation was obtained by taking derivatives in the equation &, (x) = [L*0r,)(x)
for all z € [7,, 7). Now we will go the other way, integrate, but replace 6z, by 8, obtaining

[L*0F)(z) = [Rr,)(x) + C  for all & € [ro, Tae].

For the constant C' we have, using that F' is non-defective,

T /L*(é[n)([F—/RFOdF
o P 1 f/ Rg, dF

SRR SR EREEEERD
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It is easily shown that fp is contained in LY(Qr). (However, it is not contained in R(LF),
since ¢ is not piecewise constant.) Now we have

= L*(gp),l >F = < éF,Lp(l) >QF
= <0p,1° >q, (2.25)
0

Remarks.
I. This result can also be proved by writing out the integrals using definition (2.24).

II. For case 1, the equality
[ d(F - Fy) = = [0rdQp,

was first shown to hold in GW. In vAN DER LAAN (1993), this equality is derived for a
general class of missing data models which allow for complete observations. The interval
censoring models do not belong to this class, however, since direct observations do not
occur. The above proof suggests that the equality holds more generally in missing data
models, also when direct observations do not occur. Basically, what is needed is:

e [ is non-defective
o [L*0F)(x) = [RR)(z) + C for all z € [ry, Ty
o 0p € Ly(Qr,
e 0r € LY(Qr)
Note that éﬁn does not belong to the range (nor the closure of the range) of the score

operator L . A modification EF is introduced below, which does belong to the range

[II. Validity of the lemma is not restricted to this choice of 6. The same result holds if we
had based 6y on the non-canonical gradient at the beginning of section 1.4.2, i.e.

(110,81 1= =8 00 ST 4 (1 =8 =) B 0)

Since this definition is given by an explicit formula, the lemma can be proved by a
simple direct computation, like in case 1. Of course, this cannot lead to the optimality
result, so one of the next two steps should go wrong. Indeed, part III does not hold for
this choice of fp: if we insert the empirical measure, the correction we have to make to
get a piecewise constant function is not negligible in the limit.

—
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IIT: Inserting of empirical measure.

Now we will use the NPMLE characterization, corollary 2.1.1. Since ¢z and {; are not
piecewise constant, we introduce the functions EF*" and ZF"A These functions are constant on
the same intervals J; = (1, Ti41) as F,. The value of ZF" on J; is defined to be:

ZF«,”(JZ) = i (5) if there exists a point s € J; with F,(s) = Fy(s)
& (J) = &p(m)  if Fy(z) > Fu(r) forall z € J;
EF-,”(JL) = &p (Ti1—) if Fo(z) < E,(r;) for all z € J;

The function Bpﬂ is defined as

65 (z) = Fu(@)[1 - Fu(2)] &, (2)

Let 5& denote the function defined in (2.24), but with ¢z replaced by Ef Now corollary
2.1.1 says

/gﬁ‘" e, =0,
yielding
Vi [ 85, dQr, = v/ [ 05, d(@n— Q) + v [ (@, 0z dQs,
The last term will be shown to be 0,(1) in lemma 2.4.2. Note that the area of integration of

@, can be taken to be {7, < u < v —¢ < 7y} as well, since points (U;, Vi) with V; = U; < ¢,
do not occur.

Lemma 2.4.2

Vi [@, —0,) dQr, = 0p(1)

Proof:
Let the function v, be defined by

Un(u, ) [9 ~ 0 )(w;9,1,0) Fo(u) — [0 éi.n](u, v,0,1) [Fo(v) — Fo(u)]
+ (05, ~ (;F"](ll"l’.o,()) (1 — Fo(v)].
Using the decomposition ¢p = F(1 — F) &p, and

Fv)— F(u) = —[(1- F(v)) — (1 — F(u))],
we get

s s ﬁ—)[ff u) — &5 (u)] x
X [Fo(v) (Fy(u) = Fo(u)) + Fo(u) (Fo(v)—Fu(v))]
TE )~ Buqu) S8 R (0)

X[(1 = Fo)(v) (Fn(u)—Fo(u)) + (1 = Fo)(u) (Fo(v)—E,(v)))-

SR EEE RN ERREEEEERD
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Applying Cauchy-Schwarz we obtain:

Vi [@, - b5,) d@r,
gﬁﬁmn—%MJME—mm+Mﬁ%M4

+Vn K €5, — & llm % [IFn — Follm, + 1B — Follm,)

By part I of lemma 1.4.2 on page 36 and fy > ¢; > 0 we find

EF"(“) IR P an(U) — Fy(u)].

(2.26)

An application of proposition 2.1.4 on page 65 finishes the proof. Property (2.26) is seen as

follows.

For example, if the interval J; 3 u has a point s where F‘n and Fy have equal value, we have

€5, () — &p (u)| = €4 (5) — €z (w)] < Kils—ul
=

(K+/C) |Fa(s)
(K:/C) [Fo(s) -
(K1/C) Fuu) -

Il

— Fo(u)|

Fo(u)|
Fo(u)|

The same argument is used for the other two situations, with s replaced by 7; or 7,4;- and

one =-sign replaced by a <-sign.

IV: Closeness in empirical process.
The first term is further split into
Vi [05,d@Qu-Qr) = VA [0rd(Qu~Qr)
+V [ @5, — 0 )d(@n
Again the last term will be shown to be 0,(1):

Lemma 2.4.3
\/_/ P T 91‘0 ([ Qn QF()) o= Op(1>

Proof:
Consider the class of functions

K= {gf il (= f} U {é[‘b}'

4 (2[“0)'

We show the class K to be a @ p,-Donsker class by showing the variation norm to be uniformly

bounded.



78 Chapter 2 Interval censoring: the NPMLE

The parts with é =1 and 6 = y = 0 are essentially one-dimensional. For example, for 6 = 1,
we only have to consider the one-dimensional variation of

Or(u,v,1,0) = —(1 = F(u)) Ep(u)
From lemma 1.4.2 on page 36 we derive,
1€r(y) — Ep(2)] < K(ly — 2| + [F(y) - F(2))).

From this one easily derives the variation of £ to be bounded, uniformly over F € F.
For the part with v = 1, we have

55(&/) - 51’(1)

e = Py —F@
Note that f is a function that is constant on rectangles of the form [Tl, Tit1) X [T, Tj+1), with
7, and 7; being points of jump of F. Let A;; = (s,x] x (t,y]. f(A;;) can be rewritten as
f(Ay) = %—_]\/3
with
Ny = [F(t) = F(2)] [F(t) = F(s)] x [F(x) = F(5)] [65(y) — ¢(t)]
Ny = [F(y) — F(z)] [F(t) o F( )] X [F( ) — F ()] [6p(z) — dp(s)]
N3 = [F(y) + F(t) = F(z) = F(s)] [6( ¢F(I)] x [F(y) = F(t)] [F(z) - F(s)]
D = [F(y) - F(z)] [F(y) — F(s)] [F(t) — F(2)] [F(t) — F(s)]

The denominator D remains larger than (c')*. For N;, N, and N; only the parts after the
x-sign are important. Again using lemma 1.4.2, one obtains

l¢r(y) — or(z)| < K(ly — 2|+ [F(y) — F(2)])

implying boundedness of || f|lv, =sup,, ¥i; |f(4i)l-
With respect to the one-dimensional variation for v = 1 we have, for z < t < y,

[F(y) = F(2)] [6p(y) — ¢r(t)] = [6r(y) — ép()] [F(y) ~ F(t)]

floy) = flm ) = [F() — F@F() - F@)

implying boundedness of sup, |[f(z,)[|v;. Boundedness of variation in the other variable is
shown in a similar way. The same arguments apply to the function fp, € K.

From the () p,-Donsker class property for X, we derive asymptotic uniform equicontinuity

over K, with respect to Ly(Q p, )-norm, of the empirical process \/n(Q,—QF,) (theorem 2.3.1).
Finally we have to show

19z, = Orllar, = op(1)-
For this we use (2.26), i.e. [€5 (u) — & (u)| < K [F,(u) — Fy(u)|, together with convergence
of £ to &p,, which is shown in lemma 2.4.4 below. Using L,-consistency of F, with respect

to Lebesgue measure, we are done.
0

fll!iiiiiﬁiiﬂli
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2.5 Case 2B: observation times arbitrarily close 79
Lemma 2.4.4 Let || - ||x denote Ly-norm with respect to Lebesque measure. Then
HFn = F”)\ — 0 7mplze5 ||(25Fn = (ﬁp”)\ — 0.

The same holds for &p.

Proof:
The following holds:

Let A,: X — X, n=1,2,... and A: X — X be compact linear operators on the normed
space (X, || - ||). Let ¢, be the solution to (I — A,)¢, = f, and let ¢ satisfy (I — A)¢p = f.
Then we can write

6 —dn = [(I ~ A7) (f = fo) = [0 = A)7(An — 4)] ¢

We apply this, with X = [r,, 7] and the Ly(A)-norm and A being our integral operator.
Boundedness of (I —A)~! (theorem 1.4.1) and uniform boundedness of {¢F, } is used, together
with the following inequalities:

£z, = frllx < K1 l|Fn = Folla.

and
145, = Alls < KellFo = Byl

These inequalities can be proved by repeatedly using

a a 1 ay b
b b b (Gs=taEE ble(b2 by).

2.5 Case 2B: observation times arbitrarily close

Again, the following theorem will be shown to be valid.

Theorem 2.5.1 Let the conditions on page 63 be satisfied, except for (H4).Case A. Then
we have

Vi K(F) = K(Fy)] = N0, |10k ]1g,,) a5 n— oo

Proof:
We again go through the successive steps. To prove that the functional is almost linear (part
I), we refer to case 2A.



80 Chapter 2 Interval censoring: the NPMLE

II: Transformation to observation space.

Like in the previous cases, our definition of the canonical gradient fr will be extended to
piecewise constant distribution functions F with finitely many discontinuities. However, since
F(v)— F(u) no longer remains bounded away from zero on the region where H has mass, the
situation is quite different from case 2A. One may guess what will happen from the following
observations.
On one hand, the quotient

¢r(v) — ¢r(u)

F(v)— F(u)’
for v and v in the same interval of constancy of F, can only be defined correctly if ¢p is
constant on the same interval. On the other hand, dp, h and R’FO in general are not constant
on these intervals, making a completely discrete version of the integral equation impossible.
The integral equation for discrete F' is a compromise between these two conflicting demands.
Instead of one function ¢ we have a pair of functions (¢, ¥r), satisfying

¢p(r)::dpﬁﬂ{k(f)— [Irp@,I)hu,x)dt+uA”4rpCmt)tht)dt}, (2.27)

0

where rp(u,v), for F(u) < F(v), is defined by

_ 9r(v) — ¢p(u) .
mey_?ﬁwjﬁby. (2.28)

If w and v are on the same interval of constancy of F, we have some freedom defining rp.
Two versions will be considered. First we use

Tr(u,v) = Yp(v) — Yp(u) on {(u,v)|F(u) = F(v)}, (2.29)

for which it is rather easily shown that (2.27) has a solution, nicely using theory on Fredholm
integral equations. This choice has the disadvantage that {¢)p | F € F} is not uniformly
Lipschitz, as will be shown in section 2.6. Moreover, the way of proof given does not show
@ to be uniformly Lipschitz in the inverse scale. These uniform Lipschitz properties will be
used when showing the Donsker property for {é; | F € F}. Another version is

Yr(v) ~ ¥r(w)
Fo(v) ~ Fy(u)

for which ¢p will be shown to be uniformly Lipschitz. The Fredholm technique used to
prove version (2.29) to be a valid one cannot be used for version (2.30), due to the fact that
a singularity is introduced via the quotient. A different approach showing that (2.28) and
(2.30) lead to a solvable equation (2.27) will be given in theorem 2.5.2, in which the uniform
Lipschitz property for both {¢r | F € F} on the inverse scale and {¢r | F € F} is shown as
well.

The definition of the function é[: is extended to piecewise constant distribution functions
F by defining, for the pair (¢r,¥r) solving equation (2.27),

o= on {(u,v)|F(u)= F(v)}, (2.30)

or(v)
1-F(v)’

s

—yre(u,v)+ (1 =06 —7)

IiIESEEEERFERRIT
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where ¢r(u)/F(u) and ¢p(v)/(1 — F(v)) are defined to be zero if F(u) = 0 or if F(v) =1,
respectively.

Since ¢p is constant, the only real integral part is the ¢-part; the rest of the integral can
be written as a summation. As in chapter 1, we let z; = F(7;); moreover we let y; = ¢p(7;).

We define

Ti+1
Ai(g) == / g(t) dt, (2.31)
T 5
Ayi(h) ;:/ / h(u,v) dv du, forsly (2.32)
and
= :i(l o 3,)

ok = (2.33)

A1(h1) (1 F :i) Fis Az(hz) Zi.

We now start with the first choice (2.29). For the following proposition, condition
(H4).CaseB can be slightly weakened.
Using the Fredholm theorem 1.4.2 we obtain

Proposition 2.5.1 Let F be a piecewise constant distribution function, having a finite num-
ber of jumps. Instead of (H4).CaseB, the following is supposed to hold:

t y
/ h(u,t) du+ / h(t,v)dv >0 foreachz <t <y (2.34)
u=x v=t
Then a pair of functions (¢pr,Yr), solving equation (2.27), exists, with T defined by (2.28)
and (2.29). ¢ s a piecewise constant function, constant on intervals of constancy of F.

The vector y = (y1,. .-, Ym)', with y; = ¢p(1;), is the unique solution of the set of linear
equations

£ Agilh Ayl
y7{dzl+zjﬁ(z—’]) +Z—3@}

1<t 3>t 2T
= . 8;i(h) Ai(h) . = S
A,(L)+; Fag +]2>:i s vt R 1SS o (2.35)

Proof: Define

ol ]| i) S S
Wt aom { h(z,t) ift>a

Splitilre] 7 iintoithel intervals el =il whilt =100, m — 1 and J,,, = [T, 7s]. We have
or(Jo) = Yo = 0 and ¢p(Jin) = Ym = yu = 0. On these intervals we can choose ¥r(x) = 0.

Assume ¢p to be constant on the same intervals as F. Let x € J; for some index
i € {1,2,...,m — 1}. Rewriting equation (2.27) as an integral equation in ¢ on [7;, 7i11], we
obtain:

br(z) /M h*(t, ) di - /tEJ R*(t,x) Yp(t) dt = r(z), (2.36)
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with
r(@) = ka) Zi(ly 5 W@ = 2) + ha(2)z]
—Z%j o)+ Y UEA(h(z, ). (2.37)
j=i+l

The homogeneous equation corresponding to (2.36) is solved by the constant functions. So we
are in the situation of theorem 1.4.2 on page 23. Part I of this theorem is applied. Defining

XF r(T) / (%) idt]
we look at the adjoint homogeneous equation of the yg-equation, which is given by
o(z) / (t,z) dt — / h*(t,z) o(t) dt = 0. (2.38)
Ji

Note that this is the same equation as the homogeneous part of (2.36). By a supremum
argument as in theorem 1.4.6 on page 33, using (2.34), one can show that only the constant
functions solve this homogeneous adjoint equation. Thus equation (2.36) is solvable if and
only if

/J Cr(z)dz=0 forallC€eR.

This is equivalent to the condition

~(—1y_~—) [Ai(h) (1 — 2) + Bilha) z) =

k)—izy‘—iA ) + Z UZEA(R) (2.39)

z,—2 2

Jj=i+l

Note that this should hold for any interval J;, so the set of linear equations Ay = b should
be solvable, with:

Q. = d_ +Z]<z Zi—z; +Z >i z]ﬁ_q
O = Ay

2i—2z;
bin = (k) for 4.ife=d4z . . f=—Fl

Again we can use theorem 1.4.6 on page 33 to show that this equation has a unique solution.

Since y; = ¢p(J;), this solution specifies ¢. Moreover, this specification is not in conflict
with the integral equation (2.27). (2.27) is the same as (2.36), and integrating both sides of
(2.36) from 7; to 7,41 and applying Fubini’s theorem cancels the left-hand side. Hence we
have shown the existence of a solving pair (¢, V).

Note that ¥ is only determined up to a constant, since only the difference between
two values of )p occurs in equation (2.27). (This also follows from the Fredholm theory:
dim(NV (I — A)) = dim(N (I — A*)) = 1.) We can ensure uniqueness by defining 1z (7;) = 0.

O
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Remarks.

I. The same method can be used to prove existence of a comparable (¢, () equation. Let
&(1;) = w;. Then the matrix equation Aw = b has coefficients:

h R)
oy = 1+2J<z€17‘1},]):](1—:j)+Zj>1€,z—£<z—zj(1—:j)
~ Ak
C}i] = —C; Z—‘J_—(;]v)lj(l*'lj)
(i = AN fora, g =1 .= om—1,

where ¢; is defined by

1/51 = Z [ ]1 h)] /UTl+1 /171“ /I(u‘ U) dl' dll + Z :JA’J(h)'

= = 4
T u j=i

II. We may have a situation in which no mass is present along part of the diagonal. If, for
each t € [k, Tkt1),
t Tht1
/ h(u,t)du+ h(t,v) dv =0,
U

=7, v=t

equation 2.38 is solved by any function o, hence the approach of lemma 2.5.1 fails. This
is to be expected, since this is situation 2A, in which ¢ cannot be constant.

However, if, for each t € [, 7141],

i
/ uf(lu—i—/ it w)idu >0 fereach & <6<
lemma 2.5.1 can still be applied on this part of [r,, 7). r(z) has a form which is slightly
different from the full case 2B. If 74, 7x4+1] belongs to a section of the diagonal where
mass is absent, ¢ is no longer constant on these intervals, implying that e.g.

should be replaced by

/71+1 / lJl m(f) h(f ) dido.

Of course, an interval 7y, 7x41] may also partly belong to a part of the diagonal where
mass is present and partly to a part were mass is absent. Then, ¢p should be constant
on the part where mass is present, with a 1)-function needed in the integral equation
for this section of [7x, 7x41]. On the rest, ¢ is not constant, and no compensating 1) is
needed there.

For the second choice of 7 we use a representation of the equation for ¢ on the inverse
scale and the construction of a continuous extension of the equation for ¢ on this inverse
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scale (similar techniques were used in subsection 1.4.2). Using a similar notation, we denote
by G the inverse of F', where, for purely discrete distribution functions F', we take the right-
continuous version of the inverse, defined by

Glyh=ntlme [mm ] Hln) e L0 =
Similarly, we define )
Z‘F:A‘OG. 711'F:h10G, hQ‘F:hQOGq

y(l-y)
1= y)hir(y) + y hor(y)’
H(u,v) = H(G(u),G()),0 <u<v <1,

dr(y) = (

and

cr(y) = /Oy(l — s)dH(s,y) + /1 sdH(y, s).

Y

We again have to restrict ourselves to the class
F :={F : F is non-defective and satisfies (CF) on page 32},

which was also used incase 2A. The choice of € in (CF) is given in the proof of the theorem
below. We have

Theorem 2.5.2 The following holds:

(i) There exists a unique Lipschitz function ¢ : [0,1] — IR such that, for y € [0,1]\ D,

or(y) = Jp(y){kp(y)—/

s€[0,y)

45 éﬁ.gsz:fpﬂy) (IH(y, s)}

s€(y,1]

ér(y)—dr(s) (H:[(S, y)

y—s

(2.40)

where D is the (finite) set of discontinuities of the right-continuous inverse G = F~1
m (0,1), augmented with 0 and 1. The function ¢p 1s Lipschitz, uniformly for F € F.

(i2) There exists a pair (¢p,%r), solving the integral equation (2.27), with rr defined by
(2.28) and (2.30). ¢r is absolutely continuous with respect to F' and the function Vg 1s
Lipschitz on each interval between jumps of F', uniformly for F € F, with a Lipschitz
norm not depending on the interval.

(i IS TGk UeCion T = (1] Ym) 5
equations

with y; = ¢p(7;), 1s the unique solution of the set of linear

7—1 4;i(h) Ay (k)
y'{dl +Z 2i—2; +Z Z5—2; }

1< 1>t
= Ay(k)+ S Sy S ulB =g m. (2.41)
L wf —=1

<t

1>t

I i fsg s FFEREE
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Theorem 2.5.2 will be proved by approximating the purely discrete distribution function
F by the function F, = (1 — a)Fy + oF, which was considered in section 1.4.2, and by
studying the behaviour of the corresponding function ¢p, , as a T 1.

Proof:

ad (i) Let F, = (1 — a)Fy + aF. For a € [0,1), the function F, is strictly increasing
and continuous between jumps and hence the solution ¢, to the integral equation exists by
theorem 1.4.8 in section 1.4.2. For simplicity of notation, we will denote ¢, by ¢,. Moreover
we let G, = Fgl‘ with derivative g,. Furthermore, we write k. instead of /:'pa‘ and use the
same notation for the other functions in the inverse scale. By theorem 1.4.8, @, is the unique
solution of the integral equation

6a(v) = da(W){kaly) — [ SelEel 4R (5,)
Yy
+/ MdH(ys},yE[O,l].
y,1] &
Let the set D, be defined by

D, = {discontinuity points of g,(y), augmented with 0 and 1}
U {discontinuity points of &, (y), d,(y),
All) = %ﬁa(y‘s)for y < s, and A%(y) = dif (s,y)fory > s},

and let A, s(y) and B, s(y) be defined by
S y
Aas) = da®)] [ | Hals, 1) dGa / o(y,5)| dGals) (2.42)

and

Bas(y) = da@)ka@)| + e [(1 = 9)h1,a(y) + Yy haa(y)] sup {Cal(s)|kal:

s)|}
s€[0,1]
2d.,
+ daly) sup {dq(s)|ka(s)|} x
s€[0,1]
{ sup I()y o(8,y)| + sup [aﬁyﬁﬂ(gs)[} (243
€0y s€[y,1]
Moreover let
Caly) = 1+ 2da(y)ga(y)ha(y, y). (2.44)

As in theorem 1.4.8 we have that at points of D, the functions A,s and B,s have two
versions, one corresponding to taking left derivatives and one corresponding to taking right
derivatives. By theorem 1.4.8, there exists a & > 0 such that

sup Aq5(8)/Cals) < 1/2,

s€[0,1]
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and we have 5
|#a(v) — $a(u)| < Ka(v—u),0<u<v <1,

where K, is given by
A’cx =2 sup Ba,é(s)/ca(s)~ (245)
s€(0,1]
for & > 0 such that sup,g(p 1 Aas(s)/Ca(s) < 1/2. We need to show that we can choose ¢
and K, independently of @ and F in a small (supremum distance) neighbourhood of Fj.
If (using the same notation as in the proof of lemma 1.4.4) y belongs to an interval (z;, 27),
on which G, increases, then, going back to the original scale, we get

An,é(y)/Ca(y)
a
& i fz;Fn(r)-6<pa(t)<f;,(x)|3—Ih(l‘, x)|dt + ft:Fo(r)<F<,(t)<Fa(r)+5|%h(.r, t)| dt
"~ ze(r0,mm) 20z, 2

The essential observation here is that, although A, s(y) tends to oo, as a T 1, for points y in
the range of F,, the ratio A, s(y)/Ca(y) stays bounded, since the factor g,(y), causing the
steep increase of A, 4(y) via gyha, also occurs in the denominator C,(y).

If, on the other hand, y belongs to an interval (z!, z;;1), on which G, is constant, then
Ans(y) =0, since go(y) = 0 on such an interval. Hence we can choose 6 > 0 such that

sup Aas(8)/Cals) < 1/2,
s€[0,1]
for all @ € [0,1) and all F such that sup,¢ir, -1 [F(z) — Fo(z)| < ¢, for a fixed suitably chosen
¢ > 0. (Note that here the € in condition (CF) on page 32 is determined.)
In a similar way we get, using (1.50) in section 1.4.2, if F' is close enough to Fj,

y)/Caly)
Ll
o o K (@)
r€( 70711)211( z)
1+ |hi(z) — ho(x hile hhy(x k
v sy L@ - M@ BE@IBE@ k@)
2€(70,7Mm) 11(‘T~ ‘l‘) z€(r0,7m) €1 /I(.l‘. -l‘)
Il 2k(w)
sup A PRSP
blnflE(ToTu h(l I>J‘€(TOTM ( )+h?( )
x{ sup |)i (z,y)|+ sup |‘) h( ry|} (2.46)
2,y€(70,7a1) z,y€(70,7M )

for some ¢, > 0, uniform over a and F', implying that sup,c( 1) Bas(s)/Ca(s) and hence
also K, in (2.45) has a finite upper bound (given by the right-hand side of (2.46)) which is
independent of o and F.

It follows that the sequence (¢, ) is equicontinuous and hence has a subsequence, converg-
ing to a function ¢ which is Lipschitz on [0,1]. Let (ay)n=12,. be a sequence of numbers
such that a,, T 1 and Oan — ¢p in the supremum distance. Define

giisasssaERERENN
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2.5 Case 2B: observation times arbitrarily close 87

Then, by the equicontinuity of the sequence (¢, ), we obtain, for each = € [7,, T,

¢r(z) = ¢p(F(2)) = lim 6q,(Fo,(z))

n—oo

= lim ¢q, (). (2.48)

Now let y € [0,1] \ D. Then y is a point of continuity of G and does not belong to the
range of F'. We have

or(y) = lim a,(y)
— {Z / San(W=0an(s) g7, . (5,9)
n—oo sE[Oy Y—8
+/ ] Pan ssg—tganﬂy dH ( )}
E€(y,1
= J,F(y){ ol hm/ MdH (s,1)
n—00 s€[0y Y==8
+ lim ?—""(S)—W(de (v, )} (2.49)
n—oo sE(y,l] Yy

Suppose F(7;) < y < F(7i41). Hence G(y) = 7;41. Then (2.49) can be written as

op(y) = v —9)
: hi(7ix1) (1 — y) + ho(Tit1)y
X{k(’fi+l) i M(lH(t’G""(y))
1= Jie[r,Gan(y)) ¥~ Fen(®)
+ lim &'}‘:Q(_&@dh’(c (Y )t)}
BRI Con ()i Tar] L P
(2.50)
and by the dominated convergence theorem and (2.48), we get
. y(1-y)
or(y) = X
‘ j) }11(71+1)(1 - y +}ZZ( 1+1)I/
+/ O—F(-;Zf)—'fz(i’l(IH(T,+1.t)}
F(t)>y §
& y1-yv)
ha(y)(1 = y) + ha(y)y
< {Fr(y) “/ 8e(W=8r(s) 4F (5, ) +/ 2ela)=0e) 41 (y, 5)}.
SE[OI/ y—s yl s—y
(2:51)

Uniqueness of ¢ will be proved below in part (iii).
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ad (i) We define, for a € (0,1), the functions v¥q : [7o, ] — IR by
qba(f) - d)a('rz)

B (= DT L BEl T =10) £ it (2.52)

Recall that J; = [7;, 7341) and J,,, = [T, Ta]. Using the uniform Lipschitz property of {QBQ}
we get, for z,y in the same interval J;,

|6a(y) = $a(@)] _ |@a(Fa(y)) — fa(Fu(2))|
= IL =g

Fay) = Fa()| _ g
(T = c|Fo(y) — Fo(z)|, (2.53)

[Ya(y) — Ya(z)] =

:

where ¢ > 0 is independent of a and F € F. By the continuity of ¢,, we can extend the
function v,, restricted to an interval [r;,7;+1) to a continuous function v, ;, defined on the
closed interval [7;, 7;11]. The functions v, ; are equicontinuous in « on the intervals [7;, 7;41]
and hence have a convergent subsequence, converging (in the supremum metric for functions
defined on [7;,7:41]) to a continuous function 1, defined on [7i, Tiv1]. Let ¢p : [r0,7u] — R
be the function, such that

Yp(x) = 0i(x), x € [1, Tip1), i = 0,...,m, Yr(Ta) = Urm(Tar),

and let (Ya, )n=12,.. be a sequence such that the restriction of ¢, to [, 7i41), 1 =0, ..., m—1,
or to [Tm, T converges to ¥ in the supremum metric for continuous functions on such an
interval. Since the sequence (¢, ) is also equicontinuous, we can also assume (by switching
to a further subsequence) that ¢, converges in the supremum metric to a Lipschitz function
ép, as in part (i). Then we have

e = Ur@) _ L faly) = 6u@)
Fo(y) — Fo(z) n= (1 — ax){Fo(y) — Fo(z)}
Pan (¥) = Pan ()

= lim =——~——"—~ (2.54)
50 Bo (G- Ho L)
{01 T s < §l i e Oty m. Since, by theorem 1.4.8, part (iii), on page 42, ¢,

satisfies the integral equation

Oalm) = (IQ(.I‘){I.‘(.F) - / 3——"“—(— dH (t,x) +/ ] —it—v—) (IH(J',I)},
TOI .I sTM

1(.1)1'

we now get, by (2.48), (2.54) and the dominated convergence theorem,

¢r(z) = dp(@){k(z) - [

te[ro,x)

re(t, ) dH(t, ) + / re(z,t)dH(z, )}, (2.55)
te(z,7m)
where 7 is defined by (2.28) and (2.30).
The function ¢ is absolutely continuous with respect to F, since, by the Lipschitz prop-
erty of ¢p,

|pr(y) — op(x)] |6r(F(y)) — dr(F(z))|

c|F(y) — F(z)|, EyypEsnl Tl

INA
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2.5 Case 2B: observation times arbitrarily close 89

This shows in particular that constancy of F' on an interval implies constancy of ¢ on that
same interval. Moreover, by (2.53) and the bounded differentiability of Fp, we have that v,
is Lipschitz on each interval [r;, 7i4+1), and hence 9¥p is also Lipschitz on such an interval.

ad (iii) Multiplying both sides of (2.55) by dp(x)~!, and integrating from 7; to 7y, the
Yp-part cancels and we get a finite set of linear equations Ay = b for y; = ¢p(7;), given by
(2.41). This matrix equation was already shown to have a unique solution in the proof of
proposition 2.5.1, using theorem 1.4.6 on page 33. The unicity of ¢ is easily obtained from
this, since the integral parts of the equation for ¢ are with respect to a measure that has
mass restricted to the values z; = F(7;).

O
Remark. The proof of theorem 2.5.2 crucially uses h(x,z) > 0, whereas case 2A assumes

h(u,v) to be zero in a neighbourhood of the diagonal. For the situation in-between, a uniform
Lipschitz property has not been established yet.

Now we have for both versions of rz, similarly to case 2A:

Lemma 2.5.1

/F;,pod(F = /9 dQr,

Proof: The proof is similar to the proof of lemma 2.4.1 on page 74. The basic properties
needed in the proof were given in the remark following lemma 2.4.1. 0y € Ly(Qp,) follows
from boundedness of the ratios occurring in 6. fédep = 0 is easily shown to hold by
writing out the definition of @p.

O

III: Inserting of empirical measure.

Unlike case 2A, ¢ and {; are constant on the same intervals as F,. ¥p 1s not constant.
However, we always have v = 0 if F,,(zv) = Fn(u). So proposition 2.1.1 can be used directly
to obtain

/ 05, dQ, =0,
yielding

v [ B, dQr, = Vi [0z, d(Qu—Qr).

IV: Closeness in empirical process.

Again we write

\/ﬁ/éhd(Qn - Qr) \/E/épod Qn — Qr,)

+V [ (B, = 0r,)d(@n ~ Q)
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and the last term will be shown to be 0,(1). We will not give the proof in full detail, but
restrict ourselves to the basic ideas. The full proof is rather extended and can be found
in GESKUS AND GROENEBOOM (1996B). We use the second version of rp, given by (2.28)
and (2.30), since for this version we have proved the uniform Lipschitz properties to hold.
However, the other version, given in (2.29), leads to the same result. For we have

L 7 ) = (0] d(@n(,0,0,1) = Qry(,,0,1)
g /"“ /”“ (v) = 9] h,) [Fov) = Foa)] do du
[ R [ B - @Ik du) o
_/uw Fo) [ [ (o) = vt h(u,v)va du

oy

[l

Ti41

= Fo(v) [ v +/_U ur(v)]h(v,u)d'u] dv

V="3

_/UZ: Fo(u) [/U:u [¢¥(v) — ¥(u)] h(u,v) dv} du

Ti41

— / Fo(v) r(v) dv,
with 7 defined by (2.37) on page 82. A similar computation for version (2.30) also leads to
[ Fo(v) r(v) dv, implying that both versions lead to \/ﬁf(éF" — 05,)d(Qn — Qr,)-

So we see that the i-function is only playing a minor role. It is needed for a correct
definition of the integral equation, and should occur in such a way that lemma 2.5.1 holds.
However, this still leaves some freedom in choosing .

The main extra difficulty compared to case 2A is the fact that the denominator in 05 for
v = 1 can be arbitrarily close to zero and is not compensated by h being zero. The parts
6 =1and 6 =y = 0 do not lead to extra difficulties, since ¢p contains a factor F(1 — F).
But for v = 1 we can no longer neglect the denominator when trying to compute the two-
dimensional Lipschitz norm. In fact, computer simulations strongly suggest the quotient y.rp
not to be of uniformly bounded variation. We have

O, (Tir1) = b (1) _ J3 B (s)ds

T4l — T4 Tl = T
L Zig1 — 2  FL(1i1) — Fo(m
S I\ 1 1 :[\ 11( 14+ ) ﬂ( 1)‘
Tty = T4 Ti+1 — T

The latter quotient does not seem to show less variation with increasing number of points.
This difficulty is faced by considering three regions of integration:
Com(F) = {w : gr(w) > nqr,(w), gr,(w) > n" 3}, (2.56)
Dy(F) = {w : gr(w) < ngry(w)}, (2.57)
and
Cn(Fp) = {w: gr(w) 71‘1/3}, (2.58)

—_ A~
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2.5 Case 2B: observation times arbitrarily close 91

for some n € (0,1), where the elements w are of the form w = (¢,u,6,7). On the region

C. . (F), fr has a behaviour which is comparable to the behaviour of fp,; on the other
regions we use the uniform boundedness of fp and the fact that the integrals over these
regions become sufficiently small.

First we state two lemma’s, which are proved in GESKUS AND GROENEBOOM (1996B).

Lemma 2.5.2 (i) Let the function a, be defined by

an = 1{qFo>n—1/3} /q%ﬂ.
Then
@Qnay, —Oxlopm) (2:59)
(12) Let the function b, be defined by

bn = g, <n-1/2)-
Then
Qubs = Ol ") (2.60)

For the next lemma we have to exclude part of the possible outcomes E,, occurring with
small probability. By proposition 2.1.4, if F, is the set of distribution functions F' € F,
satisfying

R (gp, qr,) < 0”3 logn, (2.61)

with h denoting Hellinger distance (see page 65), we have:
Prob{l}n € F.} — 1, asn — 0.

In fact, the upper bound n=%3logn, defining the class F,, can be replaced by

can” 3 (log n)/3,
where we only need ¢, — oo, as n — oo. However, being a little bit wasteful with powers of
log n avoids an accumulation of constants in the upper bounds.

Now we have

Lemma 2.5.3 Let, for n € (0,1), the set D,(F) be defined by (2.57). Then

sup Q.Dy(F) = O,(n"**logn). (2.62)
FeF,
Lemma 2.5.2.(i) is not directly related to one of the areas of integration C, ,(F), D,(F) or
Cn(Fy). However, it is used in the entropy calculations in lemma 2.5.3 and below.
Using the notation of POLLARD (1984), page 150, we let £, denote the empirical process
Vn(Qn—Qpr,) and let E° denote the symmetrized empirical process. Fix an (arbitrary) e > 0.
Restricting to the most difficult part with v = 1, we have by the symmetrization lemma

Proh{lEn(rp — 1TR)7Y| > € for some F € F,} <
<4 Prob{lEﬁ(rp — TR )y| > g€ for some F € F,}.
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Let n € (0,1) be fixed. The rest of the proof consist in showing that

Pr{|ES(rp — TrR)7Y| > }€ for some F € F, | fn} — 0, as n — o0, (2.63)

for all
én = ((Tlv Lrlﬂ AI‘ I_‘l)s veey (T‘na Ijny An~ Fn))x

such that

/ dQ, < n"* logn, (2.64)
gry<n—1/3
= 2
/ qp, dQn < (logn)*, (2.65)
qry>n~1/3
and
sup QnD,(F) = sup / dQ, < n~¥3(logn)?, (2.66)
FeFa FeFn Yar<4F,

are satisfied for the empirical measure @,, corresponding to &,. By the preceding lemmas, the
probability that these conditions are not satisfied for the sample &, tends to zero, as n — oo.
In (2.64) to (2.66) we again use the method of absorbing constants into extra powers of log n.
For the entropy calculations, ratios rp, ¢, 5, of the form

o1 (Gr(u)) — de(F(t))
Gk(u) = Fk(f)

are used, where F} and G} are distribution functions such that F, < F < Gy ((Fk, G) is
a “bracket” for F') and where ¢y is a Lipschitz function approximating ¢. In this way the
good behaviour of the ratios 7 on the region C, ,(F') is preserved on the same region by the
approximating ratio rp, s, 5,- Note that the approximating ratios are outside the original
class of ratios rp. The basic remaining part of the proof consists of a chaining argument,
somewhat along the lines of proof on page 161 in POLLARD (1984).

2.6 Some simulations

2.6.1 A computation of Pp (EFH and ¢z

Let F be a discrete distribution function, belonging to the class F on page 73. For case 2A,
we have a Fredholm integral equation, and we can use the algorithms from the Numerical
Recipes book (PRESS et al. (1992)). We will only give the computation for an example
belonging to case 2B. For case 2B, computation is even easier. We know from theorem 2.5.2
that ¢p, as given by equation 2.27, is a piecewise constant function as well. In this equation,
we do not need the ¥ p-part in order to obtain the ¢p-solution. We know from part (iii) of
theorem 2.5.2 that the values of ¢p can be found from a finite set of linear equations Ay = b.
The matrix A has positive diagonal elements and non-positive off-diagonal elements (such a
matrix is called an M-matrix). It is a strictly diagonally dominant matrix, meaning that each
diagonal element is strictly bigger than the sum of the absolute values of the off-diagonal
elements in the same row. In BERMAN AND PLEMMONS (1979) it is shown that a symmetric,
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2.6 Some simulations 93

strictly diagonally dominant M-matrix (also called a Stieltjes matrix) is positive definite. So
Cholesky decomposition can be used, which is a fast algorithm and numerically stable.

The solution of the integral equation in the transformed scale is easily obtained from this,
since the integral parts are with respect to a measure that has mass restricted to the values
7 = Fy(7). In figure 2.1 we give a picture of the NPMLE and in figures 2.2 to 2.4 we give
the solutions (pF fF and qﬁ respectively, based on a random sample of size n = 300 from a
uniform distribution on [0, 1] "censored by two uniformly distributed observation times, where
k = 1. This is the case considered in section 1.5.1. Hence these solutions can be compared
with the solution ¢p,, which is equal to ¢z, since Fy is the uniform distribution on [0, 1].

The number of jumps of the NPMLE was 15 and the locations of the jumps are indicated
by small vertical bars (slightly smaller than the tickmarks at 0.25, etc.) on the z-axis in figure
2.1. On the other hand, in figures 2.2 to 2.4 the small vertical bars on the z-axis denote the
values of F, at these points of jump.

There are some interesting things to notice from these figures. The derivative ‘5’;" is

continuous (this does not hold in general!). Moreover, it has cusps at the points Fn(ﬂ),
which seem to be located on a curve. Indeed, we will show the cusps to be located on the
curve t — (1 — 2t)€; (t), t € (0,1).

Proposition 2.6.1 Let U = min(Tl,TQ) V = max(Ty,T,), with Ty and Ty uniformly dis-
tributed on [0, 1]. Let K(Fy) = [z dFy(x)
Then @/p 18 continuous and

B, () = 5 €, () [L = 2P(7). (2.67)

Proof:

We turn back to the integral equation (2.40) on the inverse scale, as given in part (i) of
theorem 2.5.2 on page 84. This equation was only defined at the points that do not belong
to the range of F,,. However, letting y | F(7;), we find

or(1i) = dp(F (7))
F(r)(1 - F(r)) G
hi(7ep1 (3 = F (1)) + ha(750 ) F7)

X< k(n —/ ———d”(n) $e®) R (¢, 7i04
{ (1+1) LaP{)<F(T:) B(m)=E( ( l-H)

“Fe(F)4) [ dH(t i) +/ $e0=0elrd 4py(r, ., )},
t:E{t)=F(mn) t)>F(7)

(2.68)

and letting y T F(7;), we get
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Figure 2.1: F),, based on sample size 300, and F, (dashed)
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F(r;)-

x{k(n) - / \ peinl-2eQ) dH (t, 7;)
Jt:F(t)<F(7,)
ABp(Fr)=) [ dH 1)+

+ [ S0 dH (r )]
LR@)> B EO=ET) (ri,t)

(2.69)

Note that the right and left derivatives
Fo(F(r)+) = lim {3r(y) = 36(F(r)}/(y — F(r)

and

Gp(F(7)—) = Lt {¢>F = ér()}/(F(:) — v)

Y1 F(m

exist, since the other functions appearing in (2.40) on page 84 are continuous and have finite
limits as y | F(r;) or y T F(7:), respectively. These one-sided derivatives so to speak “catch”

the discontinuities in the functions k, hy, hy and H, if one crosses a point F(r;) in the range;
the function ¢p is continuous at such a point and can be defined there by either taking
the left-hand limit (involving h;(7;), k(7;), etc. at F'(7;)), or the right-hand limit (involving
hi(Tit1), k(Tit1), ete. at F()).

Also note that the integrals are just summations.

First we show the derivative a& to be continuous, for the special case under consideration.

We have k(7;) =1 and dH(t,7;) = (IH(T“ t) =2dt for all :. Hence the parts involving the
integrals and k are the same in (2.68) and (2.69). Furthermore we have

hi(z)[1 — F(1)] + ho(2)F(1:) = 2[1 — F(7;)] — 2z[1 — 2F(7;)] (2.70)

Bringing the dp-part of (2.68) and (2.69) to the left-hand side and adding both equations
yields

2£F(T1)[2 {1_ F( )] [I—QF(T,)]( 1+1+T1

:2{1—/ 2 e{nldrtt) dt+/ 2 $e{li-dp(n) dt}
t:F(t)<F(r:) >F(r) T

+2 [§p(F(:)=) = $p(F(r:)+)] (Tis1 = Tz)
Without the last part, involving the left and right derivatives of ¢, this is the same equation

as the one in part (iii) of theorem 2.5.2, apart from a factor 7;;, — 7;, occurring on both sides
of (2.41). Hence we obtain

Gp(F(1:)=) = Op(F(r:)+).
To prove the second part of the proposition, we bring the dp-part of (2.68) and (2.69) to the
left-hand side and subtract the first from the second. This yields

¢r(1) (Tigr — 1) (1 = 2F ()] = 265(F () F(n)[l = F(1)] (Tis1 — 1),

(8N
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from which we derive

B, (1) = 360,() (L~ 2P (),
O

For the above special case, we can also give an explicit expression for the function ¥r in (2.27),
for both versions of rg. Apart from the function ¥, the only part that is not constant in
(2.27) is the denominator of dp. So for the version rr(u,v) = ¥r(v)—1p(u), the non-constant
part in

*/I ,-F(t,.r)th—}—/ﬂH TRl T2 dl

is equal to

—Yr () 2 (Ti41 — 7).
Using (2.70), we obtain
(1 —2F(r)] ép(mi)

Tiv1 — Ts

Yr(z) = z+C,

with C' an arbitrary real number. For the other version of rz(u,v), we obtain
Yr(z) =Az+C

with 1
A= 51— 2F (R r(r).

Note that this function is equal to (2.67). Also note that this last version of rp leads to a
Yp-function that is uniformly Lipschitz, whereas this is not the case for the first version.

2.6.2 A simulation of K(F,)

For the same uniform case as above, we did a computer experiment of 10.000 samples of
magnitude 1000, and estimated the mean p(Fy) by the NPMLE pu(F,p). Estimating the
variance of v/1000((Fioe) — i(Fp)) by the unbiased estimator S2 ., yielded the number
0.11917, while analytic computations as in section 1.5 yield 0.1198987 for the information

lower bound. So the estimate is very close to the information lower bound.
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Chapter 3

On the NPMLE in repulsive Gibbs
models

3.1 Spatial patterns

An illustrative real-life example of a random spatial pattern is the location of nest sites of
birds. Depending on habitat and species, several kinds of nest patterns occur. The influence
of habitat is clear: no goshawk has ever built its nest on open water, whereas a mute swan
does not build its nest on top of a tree. Within a suitable habitat, differences do occur as
well. Herring gulls show gregarious nesting behaviour, whereas goshawk and mute swan are
more inclined to have a breeding territory, in which no birds of the same species are allowed.

When modelling a random pattern of small objects in a bounded region, say A, the
simplest model arises if we suppose complete spatial randomness. This means that there is
no preference for certain subregions (homogeneity), and that the location of each object is
not influenced by the location of the other objects (independence).

If the number of objects is fixed, say n, a realization of such a pattern can be obtained by
randomly choosing n points in A. The number of points in a subregion B C A, N(B), has
a binomial distribution with parameters n and |B|/|A|. (Here and in the sequel |- | denotes
the area of a set.) Often, the number of objects in A is random as well. Then complete
spatial randomness can be constructed via a limiting procedure. n(K’) points are generated
uniformly in a region K O A, which is expanded to IR?*. The number of points in K is made
to converge to oo in such a way that n(K)/|K| — A for some A € IR. What we get in the
limit is called a homogeneous Poisson point process on IR?. X is called the intensity of the
process, the average number of points per unit area. For any B € IR? we have

(AlB])*
k!
Hence E(N(B)) = A|B|. Since the points have been generated independently, the random
variables N(B;) are independent if the B;’s are disjoint. Formula (3.1) completely charac-

terizes a homogeneous Poisson point process.
Although an extension to IR? was used in the construction of the process in order to allow
for a random number of points in A, we can forget everything outside A and use formula (3.1)

P{N(B) = k} = exp(—A|B|) (3.1)
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104 Chapter 3 On the NPMLE in repulsive Gibbs models

for all B C A to obtain a homogeneous Poisson point process on A. Note that conditionally
on N(A)=n we are back in the situation of randomly choosing n points in A.

Complete spatial randomness can be tested; a wide range of possibilities to test on the
null hypothesis of a homogeneous Poisson process exists. See STOYAN et al. (1987), section
2.7, and RIpLEY (1977) for an overview of testing procedures for the null hypothesis of a
homogeneous Poisson process.

With respect to the nest patterns of birds, the homogeneous Poisson model may sometimes
be a reasonable model. Some nesting habitats, like the Russian taiga or the desert, are
quite homogeneous. However, many habitats show geographical variation, thus causing non-
constant nesting intensity over the region. If we abandon the homogeneity assumption, but
still stick to an independent choice of nest sites, we get a nonhomogeneous Poisson point
process, for which (3.1) holds as well, but with A\|B| replaced by an intensity measure A(B).
For a nonhomogeneous pattern, the independence assumption can only be tested if one has
several independent realizations of the same point process, since any single point pattern
on a bounded region can always be fitted in the Poisson model by choosing an appropriate
intensity measure. A recent article testing the null hypothesis of independence is MCDONALD
(1989). As an example, the hypothesis that redwings choose their nest sites independently
in some inhomogeneous region is tested, and rejected.

For points that cannot be seen as generated independently, such as nest sites of birds
showing gregarious or repulsive nesting behaviour, several alternative models have been de-
veloped (see STOYAN et al. (1987), chapter 5, for an overview). Although these models are
no longer Poisson processes, the Poisson process is often still playing a role. Estimation
procedures usually have to be based on a single instantaneous observation of a point pattern.
Then homogeneity of the point pattern has to be taken as an untestable model assumption.
Note that outside the realm of the Poisson model homogeneity is no longer common ter-
minology. Stationarity (translation invariance) and isotropy (rotation invariance), together
called motion invariance, are used instead.

One of these models is the cluster process. This process is obtained by considering two
subprocesses. The first generates a random collection of parent points. At each parent point,
daughter points are generated according to the second process. In some models the parent
points are included in the final realization, in some models they are not. Often, both the
parent process and the daughter process are assumed to be homogeneous Poisson processes.
The cluster model may be used to describe the choice of nest sites of a gregarious bird species
like the herring gull.

A model dealing with repulsive forces between points is the point process with dependent
thinning. In this model, a pattern is formed by first generating points through some point
process, often a homogeneous Poisson process. Afterwards points are deleted simultaneously
with deletion probability of a point depending on the distance to its nearest neighbour.
Simultaneous deletion is needed in order to prevent the probability of the configuration to
depend on the order of deletion.

We will deal with another class of models, which are called Gibbs point processes. Attrac-
tive as well as repulsive forces between points can be modelled by such processes. Usually
the strength of the interaction forces is assumed to be determined by all interpoint distances
(and not by the distance to the nearest neighbouring point only, as in the thinning model).

o Nk
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3.1 Spatial patterns 105

In CRESSIE (1991), section 8.5, an overview of estimation methods for Gibbs processes
is given. The observable region A is usually seen as a subregion of some larger region F.
Sometimes this approach may be motivated by the real life situation on which the model is
based: the observation window may be part of some larger area with the same characteristics.
However, points outside A, which are invisible, exert influence on points inside A, so with
this approach edge corrections have to be taken into account.

The amount of repulsion can be modelled by the nearest-neighbour distribution function
D. For a stationary process, it is defined as one minus the probability that there are no other
points in a ball b(z, r) around an arbitrary point x of the process:

D(r) =1 — P{N(b(z,r)) = 1| point at z }

Equivalently, it is the distribution function of the distance from an arbitrary point of the
process to the nearest other point in the process. The empty space function F' is the distri-
bution function of the distance of an arbitrary point in the area A to the nearest point of the
process. For a homogeneous Poisson process on IR? with intensity A, we have

D(r) = F(r) = 1 — exp(=Anr?).

Several estimators have been proposed for D and F', see for example STOYAN et al. (1987),
p. 128. In VAN LIESHOUT AND BADDELEY (1996), both functions are combined in the formula

P - D(r)

They show this function to have some nice characteristics. It is computed rather easily. It
is identically one for Poisson processes. Values smaller than one indicate clustering, whereas
values larger than one indicate repulsive forces. The function remains constant for values
larger than the interaction range.

A nice characteristic of Gibbs point processes is that a formula for the density is available.
However, this formula contains a very complex norming constant, making pure maximum
likelihood estimation an impossible task. Apart from methods that are not related to the
maximum likelihood procedure, like the method based on the function J mentioned above, one
can use some approximation of the likelihood function or use a pseudo maximum likelihood
approach. In DIGGLE et al. (1994) three methods are compared: an approximate maximum
likelihood, a pseudo maximum likelihood and the Takacs-Fiksel method, all from a parametric
point of view. Only few authors have considered nonparametric methods. In DIGGLE et al.
(1987) the Percus-Yevick approximation, known from statistical physics, is used to obtain a
nonparametric procedure.

We will consider the pure nonparametric maximum likelihood approach under the side
condition of the interaction forces being repulsive only, with strength decreasing with increas-
ing interpoint distance. An approximate maximum likelihood estimator is derived. Simu-
lation experiments are performed in order to test the behaviour of the estimator for some
choices of repulsive forces.

Repulsive Gibbsian point patterns generally have a more regular structure than Poisson
patterns, therefore such patterns are sometimes called regular point patterns.
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3.2 Gibbs point processes

Gibbs point processes have their origin in statistical physics, describing the behaviour of a
particle system (like a gas or a fluid) in a bounded volume V' C IR®. The particle system
is supposed to be in equilibrium, and to have a fixed number of elements, say n. On a
microscopic scale, the positions of the n elements with respect to some coordinate system
can be seen either as an ordered n-tuple (zy,...,2,) or as an unordered set {z,...,: ol
leading to formulas differing by a factor n!. The microscopic behaviour of the particle system
is described by a point process ®, with probability density of the (ordered) configuration
¢ = (x1,...,2,) given by a function f,: V™ — [0, 00) of the form

UL
£u(0) = exp{- 22y 7 (32)
b
Here T denotes absolute temperature and £ is Boltzmann’s constant. The function
Uy V" = RU {oo)

is called the energy function or multiparticle potential. It is usually written as a sum of
interaction potentials over all subconfigurations:

Un(¢) = D> W(¥),

YCo
thus giving f, a multiplicative structure:
1 W (v)
= = -4 > 3.5
1@ =7 T en{-—2") (33)
YCo
Often, the function W is further specified as
W) = 0 if N(v) #2 (3.4)
W({z,y}) = 6(lz-yl) ;
leading to the formula
‘ 1
= Z H h(||z: — z;][). (3.5)
1<i<y<n

The function € is called the pair potential function, h is called the interaction function.
The normalizing factor Z is called the partition function. The partition function is a very
important quantity in statistical physics, since it describes the macroscopic properties tem-
perature and pressure of the system. Its value is obtained by integration over all possible
configurations:

_— Un(9)
b /‘ B

bk s s st
o = ‘/".../"exp{~—ﬂ(—l—kT—*)} dzy...dz,.
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A density formula as in (3.2) can be shown to arise using arguments from physics. Starting
with an energy function U}, and a density function g, in equilibrium, the system of particles
is required to have a fixed total energy

&= [ Un@)g(@)ds.
The extra condition of maximal entropy
Hg:-—AWQWOMgﬂoﬂé

leads to the above density formula f,.
Note that we get a uniform density if no interaction takes place. Then, the energy function

U} is zero, yielding fn(¢) = 1/|V|™

poisson gibbs
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Figure 3.1: Realization of Poisson and Gibbs process, with 100 points

In our model of repulsive point patterns on a bounded region A ¢ IR?, the description and
terminology from statistical physics is adopted, apart from the terms & and 7. So we suppose
that the point configuration has arisen after an adjustment of points, such that an equilibrium
situation is attained. The density f,: A® — [0,00) at a configuration ¢ = (x1,...,2,) is
assumed to be given by (3.5). Our aim is to estimate the interaction function h = exp{—6}, by
performing the maximum likelihood procedure on the density function f,. As an illustration,
in figure 3.1 two samples of 100 points on the unit square are given. The first is a completely
random configuration of points. The second is a realization from a Gibbs distribution with
interaction function ba
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108 Chapter 3 On the NPMLE in repulsive Gibbs models

Note that the point configuration for the second case is slightly more regular.

Before we continue with the estimation procedure, a section is spent on the justification
of the Gibbs model.

3.3 Some justification for the Gibbs distribution

Just like in the case of point configurations without interaction, the total number of points
in the bounded region A may either be finite and fixed, or random. For a gas in a closed
medium, the number of molecules is clearly finite and fixed, but when modelling nesting
behaviour, this assumption is violated. So we have to allow for a varying number of points.
We first consider this approach, although finally, for reasons of simplicity, our estimation
procedure will be based on the conditional model, with N(A) = n.

When considering general Gibbs point processes, problems with existence may arise.
STRAUSS (1975) has tried to cast a special kind of cluster process in the framework of a
Gibbs process. In KELLY AND RIPLEY (1976) his definition of the cluster process is shown to
be non-existent, since the norming constant 3.12 on page 112 is infinite. One may say that
the clustering effect causes an “explosion” of points. However, for processes corresponding
with repulsion patterns with finite interaction range, problems with existence do not occur.

In the sequel, we suppose the Gibbs process P to be absolutely continuous with respect to
some Poisson process P, with intensity measure A. The choice of A is not arbitrary, especially
when considering processes on IR?. It is not difficult to prove that any two stationary Poisson
processes on IR? with different intensities are mutually singular measures. (See STOYAN et al.
(1987), section 5.5.1, for a proof.)

If absolute continuity holds, the Gibbs process has a Radon-Nikodym derivative, which

can be written as

Foldl="56  cont- (A}, (3.6)

~ dPy
Note that U(¢) =00 (configuration impossible under Gibbs process) and U =0 (Gibbs process
is Poisson process P,) are allowed.

3.3.1 Markov point processes: product structure

If we impose some extra conditions, a multiplicative structure ‘like in (3.3) can be derived
and related to a Markov property in higher dimensions, as is described in RIPLEY AND KELLY
(1977). Thereby the exponential space approach of point processes is used. Let X be a,
not necessarily bounded, region. The exponential space can be seen as a union of classes
X,n,n = 0,1,..., where a typical element of X, consists of n elements from X. So only a
finite number of points is allowed to occur. Note that a configuration is seen as an unordered
set. A point process Py is a Markov point process if the following holds:

1. Ps is absolutely continuous with respect to some Poisson process P, with finite intensity
measure A.
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2. The set H = {f > 0} is hereditary. A set is called hereditary if both ¢ € H and ¢ C ¢
imply ¢ € H. So, if both f(¢) > 0 and ¥ C ¢, then f(1)) > 0 should hold as well.

3. If the point configuration is known on a subset B C X, then the behaviour of the
process on A = X \ B, given the configuration on B, only depends on those points in
B that are within the interaction range of A.

For a repulsion process, existence of a dominating Poisson process and {f > 0} being hered-
itary are natural assumptions.

Condition 3. can be expressed in a formal way as follows. Suppose we have a measurable
symmetric reflexive relation ~ on X. We say that two points x, y € X are neighbours if
x ~ y. The environment E(A) of A C X is defined by

E(A) = {z|z ~ y for some y € A}.
An example of a neighbourhood relation is
x ~ Yy <= d(z,y) < R for some fixed R

and the environment of A consists of those points that are within distance R of some point
in A.

If we split the set X into the separate regions A and B = X'\ A, then the state space X, of the
process Py, i.e. the space of all possible realizations of Pg, can be factored as X, = A, x B,
with A, giving the behaviour on A, and B, the behaviour on B. Let p and ¢ be the projec-
tions onto A, and B, respectively. Then condition (3) is formally expressed by saying that,
for all realizations F' x {b}, the conditional probability Ps{p € F|q¢ = b} only depends on
bN(E(A)\ A).

If conditions 1, 2 and 3 are satisfied, it is shown in RipPLEY AND KELLY (1977) that the
density f can be written as
£(6) = I1 9. (3.7)
e
Here g is a non-negative function defined on all finite sets of points, including the empty set,
having the property that ¢g(v) # 1 implies that all points of 1 are neighbours, i.e. are within
each other’s interaction range. Hence g: X, — [0, 00) is a function satisfying

glah)ytall=—ris sty sforal No gy el

Our repulsive point patterns are seen as generated by a Markov point process, so, writing
g(¥) = exp{—V (¥)}, we indeed get the multiplicative structure as in (3.3). The function U
in (3.6), which is playing the role of the energy function of statistical physics, can be written
as a sum of interaction potentials

U(e) = > V(¥),
YCo
with V() = 0 if (at least) two points in 1 are outside each other’s interaction range.

Note that the intensity measure is supposed to be finite, hence this construction fails if
we consider a stationary Poisson process on IR? as dominating measure of the Markov point
process.
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3.3.2 Pairwise interaction processes

In a molecular gas, only mutual interactions play a role. This means that the amount of
repulsion or attraction between, say, 3 points, is the sum of the repulsive or attractive forces
between each pair of molecules separately. Of course, birds are not molecules, and the
presence of two nests around some location may make it extra unlikely for a bird to nest
there, if the “threat” of two nests is greater than the sum of the “threats” of each nest
separately. For the sake of simplicity, however, it is supposed that a bird is only influenced
by each nest separately. This means that only interaction potentials depending on at most 2
points do matter. Hence we can write, for a configuration of points ¢ = {z1,...,Zx(},

U(g) =c+ Y w(z) + Y 2(zi,2;).
% 1<)

Now we return to our motion invariance assumption. The nest sites are supposed to
be situated in some homogeneous habitat. Expanding this habitat to an area on which a
group of translations and rotations can be defined, like IR?, homogeneity can be modelled by
assuming the process to be stationary and rotation invariant.

Of course, this means that we suppose the point configuration inside the bounded region
A to depend on the location of points outside A, which in reality are not present. So in
reality less repulsive influence is expected near the edge, but the absence of repulsive forces
from points outside A may partially be compensated by a repulsive influence from the edge
itself. For example, there may be a preference for birds not to nest too close to the edge of
their habitat, especially if their breeding area is also their food-supply area. So the problem
may be treated as if points outside A do occur, but cannot be observed. This means that
some edge correction procedure will have to be applied.

When considering a motion invariant Gibbs process, a homogeneous Poisson process Py
with intensity A is the most natural dominating measure. However, in the Markov process
approach of the previous subsection, the dominating process was assumed to have finite
intensity measure. So the Poisson process on IR? cannot be taken as dominating measure.
However, we only consider repulsive forces with finite interaction range. Instead of defining
the Gibbs process on IR?, we define it on a large region £ O A. We let the process on E
be independent of the choice of the origin and coordinate axes. Near the edge of F, there
will be an outward force working on the points. However, this influence will be negligible for
points in A, so there the Gibbs process still behaves like a stationary process on IR?.

Taking the homogeneous Poisson process on F as dominating measure, w becomes a
constant function. Since each distance preserving transformation is a combination of a trans-
lation and a rotation, z only depends on the distance between the points. So, under these
assumptions, f = dPg/dP, in formula (3.7) can be simplified to:

fa(0) = g(0) = C,
fa({z}) = g(0) x g({z}) = CB,

and for ¢ = {z1,..., 2N} We have:

fe(9) = € BN TT h(lla: — ;).

1<J
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3.3 Some justification for the Gibbs distribution 1815

The above considerations were used to motivate the structure in (3.8). Depending on the
situation under consideration, either we use this construction and see A as an observation
window for a process on a larger region E, or we just assume (3.8) and we see A as is. In the
rest of this section, the last approach is taken. However, one could as well read E instead of
A and see A as an observation window.

C is equal to Pg{N(A) = 0}/P\{N(A) = 0}. C depends on h via an infinite number of
high dimensional integrals. Using [ fo(¢)dP\(¢) = 1, we get, writing b instead of BA,

o0 le
exp{AAl} 7 = 1+ b4+ Y = /P TI h(llz: — ;1) day - . . dz. (3.9)
n=l " 8T a0y

C should satisfy 0 < C' < oo. A sufficient condition for this to hold is the following inequality

T Al —al) < e<m,

1<i<j<n

which is automatically fulfilled for repulsion processes, but may be problematic for Gibbs
models with attractive forces.
Conditioning on Ng(A) = n, we get the density

B e (|| ="
Hel b = CﬁP?{TVJ(A(y: n} g

(3.10)

The function h can be seen to express the likelihood of points to be at interpoint distance r,
relative to a completely random configuration of points. The stronger the repulsive forces
at some interpoint distance, the smaller the value of h. For h(r) < 1, we have repulsion at
distance r, with total inhibition if A(r) = 0. h(r) = 1 means no interaction, whereas h(r) > 1
means attractive influence. For example, in the so-called hard core inhibition process, we
have h(r) = 0 for 0 < r < Ry, and h(r) = 1 for 7 > Ry. This process can be used to model
the configuration of balls, each having diameter Ry, but without any further repulsive or
attractive forces among each other.

Up till now we have written the density of the Gibbs process as a Radon-Nikodym deriva-
tive with respect to a homogeneous Poisson process with intensity A. It is also possible to write
down the density with respect to Lebesgue measure. Multiplying both numerator and de-
nominator in formula (3.8), using C as in (3.9), by a factor A/(n!), a term exp{—\ |A|} A/(n!)
is obtained in the denominator. This term can be seen as the density f*(¢) at an ordered
point configuration ¢ = (2y,...,: v,) with respect to Lebesgue measure under the Poisson
assumption. For

01 PN 1 =1

1l
| Al
The factor A appearing in the numerator is absorbed into 3 to obtain b, whereas the factor
1/(n!) is absorbed by considering ordered point configurations instead of unordered ones.
Now we obtain

f&(9) = Co"@ T h(llzi — 1), (3.11)

i<
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with C~! equal to

Cl=1+blA]+) b—‘ / I A(llzi — z;l) dzy .. . dzw. (3.12)
n=2 T JA" i

For the conditional case, b is absorbed by the norming constant and the density can be
written as in (3.5).

This density will be used as input for the maximum-likelihood procedure. It has the
advantage that we lose the influence of the dominating Poisson measure in the formula of the
density: we are no longer confronted with the problem that the value of A occurs as a free
variable in exp{—X\|A|}.

3.4 An approximation to the likelihood function

Using formula (3.11) for the density of a Gibbs process, we can, in principle, perform max-
imum likelihood estimation in order to estimate the interaction function h, using a single
instantaneous spatial realization of points (zy,...,Zn(e)) in equilibrium. In our model we
assume only repulsive forces between points to occur, with the amount of repulsion dimin-
ishing with increasing distance. Moreover we assume the interaction range to be finite. This
results in the following side conditions for the maximization procedure:

(S1): 0 <A <1, h(0) =0, and A(R) =1 for some R
(S2): h is increasing.

h only depends on the interpoint distances |jx; — x;||, which will be denoted by d;;. The
ordered interpoint distances are written as d;) fori =1,..., M = N;") . Note that b > 0. A
direct implementation of the maximization procedure is an impossible task, due to the very
complicated structure of C' as a function of h. However, one thing can be said about the
maximum-likelihood estimator under the side conditions (S1) and (S2). From the structure
of the likelihood we can derive that the maximizing his a piecewise constant function.

Theorem 3.4.1 Under the side conditions (S1) and (S2), the density

> N (#) qu h(d;;)
1+bjA|+ 352, % Jae Wiy Bldi)day - A,

fa(®)

is mazimized by a precewise constant function h, with all jumps contained in a subset of the
set of interpoint distances {d,;}.

Proof:

Maximizing the expression in (b, #) under the side condition 0 < A(d)) < ... < h(d)) < 1,
we have to cope with two opposite effects with respect to h. Maximization of the numerator
will make h(d(;)) as large as possible, whereas the denominator forces h towards zero. For
the numerator, only the values at the points d(;) do matter, so the denominator forces h(d)
equal to h(d(;)) on [dg), d;11)). Since this holds for any b > 0, we obtain the desired result.
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Due to the complicated structure of the normalizing constant, attention will be restricted
to maximum likelihood estimation, conditionally on the observed number of points N(A) = n.
If the phenomenon under study has a random number of points, this is only a valid procedure
if the number of points N(A) is approximately ancillary for h. We arrive at the following

procedure:

Gwen a realization xy, . ..,x,, marimize

La(h) = — [[ Alz: — z1),

Zn i<y

with Zy, given by
2 /A T1 i(llz: — z;1))das . .. dzn,

1<J

under the side conditions (S1) and (S2).

The conditional likelihood is also maximized by a stepfunction, with all jumps contained
in a subset of the set of interpoint distances {d;;}.

We are still left with the problem that the partition function Z, cannot be computed, but
some approximation will be used. A frequently used technique, with its origin in statistical
physics, is the Mayer cluster ezpansion. In the Mayer cluster expansion the function h is
expanded around the value 1. Let ¢ = h — 1. Then we obtain

/A" [I{1 + g(dis)}dz; . . . da

i<j

/An{l + 3 9di)+ DN 9(dij)g(di) + .. Yday .. . da,

1<g 1<y k<l

(1.7)#(k 1)

Zh

I

The first term gives |A|". For the second term we obtain
n
Z/ glds da e din — ( )/ g(dyp)dzy .. . dz,
An 2) Jar

(Z)IAI“/A{AMH) e
@ A /f(h(r) ~ 1)2ardr

In the last approximation it is assumed that we can take a fixed point, say z1, from which
integration over another variable, say x,, is performed. This is approximately true if the
interaction area wR? is of a lower order of magnitude than the area of the total region.

A derivation of higher order terms is given in RipLEY (1988). This higher order ex-
pansion contains integrals that are hard to compute. For some special parametric models,
fairly accurate expressions for these integrals have been obtained. Since our approach is

Q
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nonparametric, and no general formula exists for the higher order terms, this method is not
applicable. Another approach is to use Markov Chain Monte Carlo methods. In OGATA
AND TANEMURA (1984) and OGATA AND TANEMURA (1989), some parametric models which
are characterized by a scale parameter are considered. A Monte Carlo approximant to the
derivative, with respect to the scale parameter, of the logarithm of the norming constant is
used. Another option is to use a Monte Carlo approximant to the norming constant itself
(GEYER AND THOMPSON (1992)). It may be possible to implement this approach under our
order restriction. We did not investigate this, however. We will truncate the expansion at
the second term, which may be a reasonable approximation if the process is close to Poisson.

3.5 The nonparametric estimation procedure

We use one further approximation: log(1+x) =~ z. If 7 R? is of lower order of magnitude than
|A|/M, x is close to zero and the approximation is good. Then the approximate conditional
log-likelihood becomes, with M = (;)

M

2
log Ln(h) = 3" log h(d)) — nlog |A] — Mi—:l
£ 0

R
(h(r) = 1)rdr (3.13)
t=1
Of course we do not know the value of R, but since we assume the interaction area to be of
lower order than the total area, we can safely assume h(d(y)) = 1. The last term in (3.13)
forces h(r) = 0 for 7 < d(1) and theorem 3.4.1 yields h(r) = h(d(;) for d;) < v < d(it1). So
the problem reads, writing y; = h(d):

Mazimaze

M-1 M-1 M-1 M-1

s :
Z logy; — M|T| Z [y: — 1] [d(ziﬂ) - dfi)] = Z log y; — Z (4 — 1)a (3.14)
1=1 S ge=T

t=1 =1

under the side condition 0 < y; < ... <ypy_1 < 1.

The maximization problem can be seen as a generalized isotonic regression problem (see
ROBERTSON et al. (1988), section 1.5). Our problem boils down to maximizing their formula
(1.5.4), with ®(y) = ylogy + 1. As weight function we take w(z;) = a; and for g we take
g(z;) = 1/a;. Their theorem 1.5.1 says that maximizing

M-1 M-1

Z lOg Yi — Z Yiay
1=1 1=1

under the isotony restriction 0 < y; < ... < yp—; is the same as minimizing
M-1 112
Polgrei i
=1 a;

o N

Ci

I

Y

A e e
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under the same restriction. Isotonic regression theory gives a general procedure for finding the
function 7 that minimizes SN | {y; — g:}*w; over a class of isotonic functions on {1,2,...,n}.
This procedure reads:

Blot hespointsh B =i (00ands R =2 VGiG i)y T2, g iV awsthi N o =0 = ustand
G :ZZZI w;g;. Connect these points by a piecewise linear function. The function we get s
called the cusum-diagram (cumulative sum diagram). Then ¥; is equal to the left derivative
of the greatest conver minorant of this function at the point 1.

In our situation the cusum-diagram is generated by the points

2 2
%6+ ~ )

(WJ’G]) = (M iA[

ik
which gives the same result with respect to y; as considering the points

dimiesids j

(5+1) GoE %/
), 3’5
(m |Al ’ M) ( )

So the estimator y; = B(d(i)) is obtained by computing one over the relative increase in circle

area,
ad gy = mddy 71\
( <+1|)A| ()/M> ’ iy

under the side restriction that this relative increase is isotonic.

If we want to use some edge correction procedure, a natural correction is to discard the
amount of circle area not covered by the region A. Let C(x, ) denote the circle with midpoint
x and radius 7. If d;; is the distance between the points p; and pj, ﬂdfj is replaced by

0.5 [area{C(p;, d;;) N A} + area{C(p;, dij) N A}] (B

as input to the maximum likelihood procedure.

Note that, for indices near M, both coordinates in (3.15) are approximately one. These
high indices will have to be neglected in order to get a reasonable procedure. We correct this
in the algorithm, by only considering values d(;y which are much smaller than the maximal
interpoint distance. This means that we assume R to be smaller than some predetermined
value, much smaller than the largest interpoint distance.

3.6 Consistency

We will prove uniform consistency of the approximate NPMLE in the situation that the
true process is without interaction. For processes with repulsive forces, the approximate
NPMLE is not consistent, since higher order terms have been neglected in the Mayer cluster
expansion. The simulations in the next section confirm this. Moreover, the approximation
log(1+ z) ~ x, made at the beginning of section 3.5, is only reasonable for processes that are
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close to a Poisson process. In the next section, we provide some simulation results, showing
the behaviour of the estimator under a Gibbs process with repulsion.

Let A,, be a window, growing with m, through which the process is seen. Suppose that
N(An) = n. Let ¢ = (21,...,2,) and let the empirical measure 1/(n (n — 1)) Xiz; Lz; 2y
be denoted by G,. If we assume R to be smaller than some predetermined value, we can
ignore edge effects and edge corrections asymptotically, since the number of points within this
predetermined distance from the boundary is asymptotically negligible compared to the total
number of points. Then the approximate log-likelihood LL,, conditionally on N(A4,,) = n,
and divided by M =n(n —1)/2, can be written as

LL,(h) =log Lu(h)

nlog |An
/10g Iv)dC(IU—\4\2// d(z,y)) — 1] dzdy —%\F
Let f?n denote the approximate NPMLE. Since
lim e [LE (1> eMin Y ~LL. (h.)] <0, (3.18)
we obtain
ho(d
//((1 J)) Gn(z,v) |Am|7 //h ) dzdy
ha (s y)
< 1+ Al [[ hold(z,y) dady. (3.19)

We now restrict ourselves to the situation without interaction. Conditionally on the
number of points N(A,,) = n, we have a uniform distribution of n points on A,,. By formula
(3.16), we see that, given a realization ¢, shrinking the area A,, and the distance between
the points by a factor /| A,,| leads to exactly the same estimate. Moreover, for the uniform
process, such a realization on the shrunken area has the same probability to occur, since, for

Béar A,
- k n—k
wnn-a-() () (-

which only depends on the relative size of B. So, without loss of generality, we may assume
the n points to be uniformly distributed on a fixed region A, with the number of points in
A increasing to infinity. Let G denote the uniform distribution on A. Formula (3.19) now

reads: q
// e G+ // ha(d(z, y)) dG(z) x G(y) < 2. (3.20)

The consistency proof is similar to the method used in the consistency proofs of the
NPMLE with interval censored data (chapter 4 in part II of GROENEBOOM AND WELLNER
(1992)). Let Q be the sample space of all infinite sequences of points X;, X5, ..., endowed
with the Borel o-algebra and the product measure, which is denoted by IP. The following
will be shown

Iliiii!!iiilllliw
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Theorem 3.6.1 For each ¢ > 0

P {nlglolo sup |h(t) —1| = 0} =

tele,00)

Remark. Since the approximate NPMLE always has fzn(O) = 0, we can only have consis-
tency on an interval [€, 00).

Proof:
Let w denote a point in the sample space. We write G,,(+,;w) instead of G,(-,-), in order to
indicate dependence on w. By the strong law of large numbers,

P{nhl&/fdc;”:/fdc;xc:}ﬂ,

for each bounded continuous function on A x A. By separability of the space of bounded
continuous functions on A x A with respect to the supremum norm, we have that G,(, -;w)
converges weakly to G(-) x G(-), for each w in a set B, occurring with IP-probability one.

Let w be a realization in this set. By the Helly compactness theorem, the sequence
{fzn(- ;w)} has a weakly converging subsequence, say {il,lk(- ;w)}. Let h(-;w) denote the
right continuous limit. A(-;w) has its values in [0, 1].

Let € > 0. For all n sufficiently large, 1/h,(d;w) is bounded for d > ¢. This follows from
the weak convergence of G, (-, ;w) to G(-) x G(-), together with the inequality (3.20). By
the weak convergence of fz,,k(- ;w) to h(-;w), 1/h(-;w) is bounded on [¢, 00) as well. So we
may assume, for each d > € and for some K < oo,

1/hn(d;w) < K

and
1/h(d;w) < K.

Let D, denote the set { (z,y)|d(x,y) > ¢}. Now we have

) 1 patieily 1 .
Jm [f G D il = /], Mlle gra) oo *

This is shown in essentially the same way as in lemma 4.1 in GROENEBOOM AND WELLNER
(1992). Fix 0 < 6 < 1. Take an equidistant grid of points € = dp < d; < ... < d;p = R,
such that m = 1+ [1/6%. Without loss of generality, we may assume the d; to be points of
continuity of hA(d;w). Let I be the set of indices i, i =1,..., m such that

] : >0
hldsyw) Uhldag) 20

The number of such points is not bigger than 1 + [K/¢]. Let J denote the remaining set
of indices. Let the set {(z,y)|dy < d(z,y) < d;} be denoted by Dy and let the sets
{(z,y)|di-y < d(z,y) < d;} be denoted by D,. We have
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1 = 1
//m denk(I»yiw) = ;//D‘ m}—)dGnk(I,y;w)

- Z//D m)._jdGnk(r.y;w)

+Z// )dGnk(I,y;w)

i€

Il

S m AG(x) x G(y) + re(w),

with ri(w) < ¢é, for a constant ¢ > 0. This is because the integrand is of bounded variation

on D;, for i € J, whereas

Z// dG(z) x G(y) — 0, if 6 | 0.

el

By dominated convergence, we derive

_ 1 i 1 X
klﬂ//amdc(x) xG(y)—/De W) 0@ x G,

By dominated convergence, we moreover have

lim //( n (d(z,y);w)) dG(z) x G(y //( w)dG(z) x G(y).

k—oo0

Combining these results, using (3.20), we obtain

1
w)d Gly) <2
o, Wty 15 * €O+ [, W 0ie) d5(a) x G6) <
By monotone convergence, we derive
I
=<0
// e e g AL +// kel

The function 1
Y

is minimal at y = 1, taking the value 2. Using the monotonicity of h, this implies that the
inequality can only hold for 2 = 1. Moreover, we have equality in this case. Since, for each
subsequence h,, we have a weakly converging sub-subsequence, all converging to the same
limit, we obtain weak convergence of h,(-,;w) to hg = 1, for each w in the set B, occurring

with probability one. This is the same as

lP{hm sup |h(t —1]:()}:1

te(e,00)

for each ¢ > 0. Note that 0 is not a point of continuity of hy = 1.

O

J

P
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Although the approximate NPMLE is not consistent for general Gibbs processes, the
complete NPMLE, with the order restrictions, may very well be. A proof may be given along
the lines of the above proof, but this will clearly be more complicated. For the conditional
situation, with n points, using (3.18) yields the basic inequality:

//;éyh dGn—§§O

= /n ha(dij) X ho(di) dzy . .. day
(

with
1<)
1,7)#(k,0)
for some arbitrary but fixed pair of points kl, and

15 = / Hh" dida e

1<y

This inequality will be the basis for the different steps of the proof.

3.7 Simulations

We have performed some simulations in order to test for the behaviour of the approximate
NPMLE for a fixed number of points. Consider a rectangular region A, say A = (0,a) x (0,b).
Then an explicit formula exists for the edge correction formula (3.17). Let p; = (x4, %),
d; = min(z;,a — ;) and dy = min(y;, b — y;). Then we have (see DIGGLE (1983), p. 72):

area(C(p;, 1) N A) =
{ mr? — r*arccos((d; A 1)/r) + arccos((dy A 7)/7)] if r?* < d2 + d2

0.75mr* — 0.5r%[arccos(dy /1) + arccos(dz /1)) if r2 > d? + d3

Realizations of Gibbs point patterns have been obtained via the method described in section
3 of OGATA AND TANEMURA (1989). Choose § > 0. Starting with some point configuration

) = {z1(0),...,2,(0)}, a Gibbsian pattern with a specified interaction function h is
generated via the following iterative procedure:

e Step k: We have the pattern ¢(k) = {z1(k),...,z.(k)}.

— Choose one of the points {z;(k),...,z,(k)} at random, say x;(k).

— Choose a new point x’(k), uniformly on the square with length 26 and midpoint
z;(k), and let ¢'(k) I)e the point configuration with x;(k) replaced by z’(k).

— Let f, be the density of the Gibbs distribution of interest. Then the new config-
uration is chosen with probability

fn(cbi,(k))} o {1 Mo, Al (k) — ~n<k>u>}
Fa(@n(R) gy bl (0) = (R

p = min {1‘
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e Step k+1: We have the pattern ¢, (k + 1)

Note that the normalizing factor is not needed in the procedure, since it cancels in the
probability fu(@,(k))/ fa(6a(k)).

The choice of ¢ determines how quickly the algorithm converges. OGATA AND TANEMURA
(1989) and DIGGLE et al. (1994) refer to Woobp (1968), who found the experimental result
that a 6 leading to a new point configuration about half of the times, is a reasonable choice.
However, such a 6 does not exist for sparse configurations.

The following simulations have been performed on the unit square:

1. Poisson process, hy = 1, with n = 500.

23
_f1-0-(z/e)?)? ifz<a
hQ(I)_{ 1 ifr>a

with n = 500, 6 = 0.1 and a = 0.002, 0.008, 0.02, 0.04

3. A Strauss process with

_ | exp{-a} ifz<p
h“(“’)_{ 1 if ¢ > 3

with n = 500, 6 = 0.1 and a = 0.2, 1.75 and @ = 0.008, 0.04.

Formulas 2. and 3. have been investigated in DIGGLE et al. (1994) as well, in their comparison
of some parametric estimation procedures. The estimates h are given in figures 3.2 to 3.6,
together with the interaction function by which the points were generated.

In order to investigate the influence of sample size, we did another simulation for the
function hy, with @ = 0.008, thus

ey (1 — (2/0.008)2)* if z < 0.008
i 1 if z > 0.008

We looked at a sample size of 100, 500, and 2000 points, on the square with area 0.2, 1 and
4, respectively. The results are in figure 3.7.

We only considered the model in which A is standing on itself, without influence from
points outside A. Otherwise simulations can be performed by using a periodic boundary (see
DIGGLE et al. (1994)). We ran the above step 2.100.000 times, evaluating the result after
every 300.000 steps, starting at step 600.000. In all computations, we only considered values
of the interpoint distance which were smaller than 0.126 (corresponding to a circle area with
size 0.05).

Some things can be noticed. In general, the estimate is quite far from the interaction
function that generated the process. Moreover, the stronger the repulsive forces, the more
inaccurate the estimate. The direction of the bias, introduced by not considering higher
order terms, seems to depend on the strength of the repulsive forces. In general, there is a
tendency to underestimate the repulsive force in case of strong interactions, whereas there is
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a small tendency to overestimate the repulsive force in case of weak interactions. In figure
3.6, with parameter values (a, 3) = (1.75,0.04), all estimates are very close together. It
is unclear why this is the case. It may have to do with the fact that the repulsive forces
are quite strong with this choice of parameters, leading to a regular pattern, without much
variation over the simulations. Note that the total area covered by the interaction forces is
500 x 7 x 0.04%> = 2.512, which is more than the total area of A.

The results of the simulation with three different sample sizes indicate that the approx-
imate NPMLE converges to some value as the sample size increases. However, the limit is
clearly not the true value.

1.0
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Figure 3.2: Poisson process
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Figure 3.5: Strauss process, with («, 5) = (0.2,0.008) and (a, 3) = (0.2,0.04)
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Figure 3.6: Strauss process, with («, ) = (1.75,0.008) and (a, 3) = (1.75,0.04)
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Summary

Estimation of smooth functionals with interval censored data

and something completely different

Two quite different topics are treated. One is estimation of smooth functionals of the distri-
bution in a situation with interval censored data; the other one is estimation of the amount
of repulsion among points in some homogeneous area, based on one spatial realization.

The larger part (chapters 1 and 2) is devoted to the first topic. One has to deal with inter-
val censored data, if one wants to obtain information on some distribution Fjp, often represent-
ing an event time distribution, without being able to observe the event times X3, ..., X, ~ Fj
directly. One only has a collection of, usually random, observation times, leading to a sample
of intervals Jp,...,J, in which the unobservable X; are known to be contained. Interval
censored data can be subdivided into several categories. In case 1, we have one observation
time T; for each X;, and we only know whether X is smaller or larger than the corresponding
observation time 7;. Case 2 is denoted as the situation with two observation times (U;, V;)
for each unobservable event time, and we only know whether X; is left of U;, between U;
and V; or right of V;. Situations with more than two observation times, or a variable number
of observation times, for each unobservable event time are denoted as the case k situation.
This case very much resembles case 2, since only the two observation times immediately
surrounding the event time give relevant information.

Typical for interval censored data, contrary to right censored data, is that the event time
is never observed itself. This has strong consequences for the asymptotic theory. The distri-
bution function cannot be estimated with the usual y/n-rate, and the limiting distribution is
not normal. However, some aspects of the distribution, such as the mean, remain estimable
at /n-rate and have a normal limit distribution. Necessary for this to happen is that the
functional, representing this aspect of the distribution, is sufficiently “smooth”. For such
functionals, a general lower bound theory exists, telling us what is the best performance an
estimator can have with respect to the variance of the limiting normal distribution. A relation
exists with the limit variance in case of direct observable event times, which is expressed by
the score equation. For smooth functionals, this score equation is solvable, and the squared
norm of its solution yields the lower bound in the situation with interval censored data.

In case 1, the score equation is easily shown to be solvable under general conditions, and
an explicit formula for the solution is obtained. In case 2, however, we have to solve an
integral equation with a Fredholm type structure. A solution is shown to exist under general
conditions, but no explicit formula is available. In the last section of chapter 1, for some
specific choices of both the observation time distribution and the event time distribution as
well as the functional of interest, a more explicit solution to this integral equation is obtained.

In chapter 2, the results of chapter 1 are used to show that the nonparametric maxi-
mum likelihood estimator (NPMLE) of a smooth functional asymptotically has the optimal
behaviour with respect to the variance of the limit distribution. First the basic ingredients
of the proof in case 1 are sketched. In case 2, the proof is similar in essence. Since no
explicit expression is available for the lower bound, each part of the proof is considerably
more complicated. One of the important parts is the derivation of an equality, reformulat-
ing the functional as an integral with respect to the probability measure on the observation
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space. The integrand is the solution to a modified integral equation, with Fg replaced by the
NPMLE F,. In chapter 1, some smoothness properties of this solution, which hold uniformly
over F,, are derived. Another important part is a characterization of F, as an integral with
respect to the empirical measure on the observation space.

The last chapter deals with Gibbs point processes, which are characterized by the existence
of spatial interaction among points. Gibbs processes have a specific structure of the density.
The main ingredient of the density is the interaction function. Only pairwise interactions
are assumed to occur. Moreover, the interaction is assumed to be repulsive in nature, with
the amount of repulsion decreasing with increasing interpoint distance. Then the interaction
function is monotonically increasing as a function of the interpoint distance, with values
between zero and one. The nonparametric maximum likelihood estimator is shown to be a
piecewise constant function. Since the density has a very complex norming constant, only
approximations to the likelihood can be computed. Attention is restricted to Gibbs processes,
conditioned on a fixed number of points. We make a rough approximation, which is only
reasonable in case the process is close to Poisson. Consistency of the procedure in case the
true process is Poisson is shown, and some simulations are done for other choices of the
interaction function. The simulation studies show the estimator to be quite heavily biased.
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Samenvatting

Het schatten van gladde functionalen op basis van

interval gecensureerde data

en iets geheel anders

Twee verschillende onderwerpen uit de statistiek worden behandeld. Het eerste betreft het
schatten van gladde functionalen van de verdelingsfunctie op basis van interval gecensureerde
data. Het tweede betreft het schatten van de mate van afstoting tussen elementen op basis
van één ruimtelijke configuratie van die elementen in een homogeen gebied.

Het grootste deel (hoofdstuk 1 en 2) is gewijd aan het eerste onderwerp. Men heeft te
maken met interval gecensureerde data wanneer men de kansverdeling van de tijd tot het
optreden van een gebeurtenis (gerepresenteerd door Fp) wil schatten, zonder dat men de
gebeurtenissen direct kan waarnemen. Men heeft slechts de beschikking over een collectie,
meestal stochastisch bepaalde, observatietijdstippen, hetgeen leidt tot een steekproef van
intervallen Jj,...,J, waarin de niet direct observeerbare X;,..., X, ~ F, (de tijdstippen
van optreden van de gebeurtenis) gelegen zijn. Interval gecensureerde data kunnen in ver-
schillende categorieén ingedeeld worden, afhankelijk van het aantal observatietijdstippen per
gebeurtenis. In “case 17 heeft men per onobserveerbare gebeurtenis één observatietijdstip
T;, en over de gebeurtenis is slechts bekend of deze voor of na T; heeft plaatsgevonden. In
“case 2" heeft men twee observatietijdstippen (U;, V;) per gebeurtenis, en weet men de locatie
van de gebeurtenis ten opzichte van deze twee tijdstippen. Situaties met meer dan twee ob-
servatietijdstippen, of een variabel aantal, per gebeurtenis behoren tot “case £”. Deze laatste
situatie vertoont veel overeenkomsten met geval 2, omdat slechts het laatste observatietijdstip
vOOr en het eerste observatietijdstip na de gebeurtenis relevante informatie geven.

Kenmerkend voor interval gecensureerde data, en dit in tegenstelling tot rechts gecen-
sureerde data, is dat de gebeurtenis zelf nooit wordt waargenomen. Dit heeft belangrijke
implicaties voor de asymptotiek. De verdelingsfunctie kan niet met \/n-snelheid geschat wor-
den, en de asymptotische verdeling is niet normaal. Sommige aspecten van de verdeling,
zoals de verwachting, blijven echter met y/n-snelheid schatbaar, met een normale verdeling
als limietverdeling. Noodzakelijk hiervoor is dat de functionaal die dit aspect van de verdeling
representeert voldoende “glad” is. Voor zulke gladde functionalen kan gebruik gemaakt wor-
den van algemene theorie over informatie-ondergrenzen. De informatie-ondergrens geeft de
kleinst mogelijke variantie van de normale limietverdeling die een gestandaardiseerde schatter
kan bereiken. Er is een directe relatie met de ondergrens in de situatie met ongecensureerde
X;. Deze relatie wordt uitgedrukt middels de score vergelijking. Deze score vergelijking
is oplosbaar voor gladde functionalen, en de informatie-ondergrens wordt gegeven door de
gekwadrateerde norm van de oplossing.

In geval 1 heeft de score vergelijking een eenvoudige structuur en hebben we een expli-
ciete formule voor de ondergrens. In geval 2, daarentegen, komt het oplossen van de score
vergelijking neer op het oplossen van een Fredholm integraalvergelijking. Het bestaan van een
oplossing wordt aangetoond onder algemene condities. Een expliciete formule is echter niet
beschikbaar. In de laatste paragraaf van hoofdstuk 1 wordt voor een aantal speciale keuzes
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van de verdeling van X; en de observatietijdstippen, met als functionaal de verwachting, een
min of meer expliciete oplossing afgeleid.

In hoofdstuk 2 worden de resultaten uit hoofdstuk 1 gebruikt om aan te tonen dat de niet-
parametrische maximum-likelihood schatter (NPMLE) van een gladde functionaal asympto-
tisch het optimale gedrag heeft wat betreft de limietvariantie van de normale verdeling. Eerst
worden de belangrijke ingredienten van het bewijs in geval 1 geschetst. Het bewijs in geval 2
verloopt in essentie op dezelfde wijze. Echter, omdat er geen expliciete oplossing van de inte-
graalvergelijking is, is iedere stap in het bewijs aanmerkelijk gecompliceerder dan in geval 1.
Een belangrijkste stap is de afleiding van een vergelijking die de functionaal herformuleert
als een integraal met betrekking tot de kansmaat van de observatieruimte. De integrand is
de oplossing van een gemodificeerde integraalvergelijking, waarin Fj vervangen is door de
NPMLE F,. In hoofdstuk 1 worden een aantal gladheidseigenschappen bewezen voor deze
oplossing, die uniform zijn over alle mogelijke realisaties F,,. Een andere belangrijke stap is
het gebruik van een karakterisatie van F,, als een integraal met betrekking tot de empirische
kansmaat op de observatieruimte.

Het laatste hoofdstuk gaat over Gibbs puntprocessen, die gebruikt worden om ruimtelijke
interactie tussen punten te modelleren. Gibbs processen hebben een dichtheid, waarvan het
belangrijkste ingredient een interactiefunctie is. Alleen Gibbs processen waarbij alle interac-
ties paarsgewijs zijn worden onderzocht. Bovendien wordt aangenomen dat alle interacties
afstotend van aard zijn, waarbij de sterkte van de afstotingskracht afneemt als de afstand
tussen de punten groter wordt. Voor de interactiefunctie betekent dit dat deze monotoon
niet-dalend is als functie van de afstand tussen punten, met waarden tussen nul en één.
De niet-parametrische maximum-likelihood schatter onder de monotoniciteitsrestrictie is een
stuksgewijs constante functie. Echter, het uitrekenen hiervan is ingewikkeld, vanwege de
aanwezigheid van een gecompliceerde normeringsconstante. Een ruwe benadering van de
NPMLE wordt afgeleid voor de situatie waarin het aantal punten vast ligt. Deze benadering
is slechts redelijk als er weinig interactie is. Als er geen interactie is, is de schattingsproce-
dure asymptotisch consistent. Voor een aantal keuzes van de interactiefunctie is een simulatie
gedaan. Hieruit blijkt dat de schatter niet erg zuiver is.
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Zy A een niet-singuliere M-matriz. Beschouw de vergelyking Az = y.
Als yx # 0 voor iedere nucleus K, en als x; > 0 voor iedere index i@ met y; < 0, dan
geldt dat al de coordinaten van x positief zijn.

MiLAszZEWICZ, J.P. AND MoLEDO, L.P. (1993). On nonsingular M-matrices, Linear
Algebra and its Applications, vol. 195, p. 1-8.

Een aanmerkelijk eenvoudiger bewijs van deze stelling kan gegeven worden door gebruik
te maken van de redenering uit het bewijs van lemma 1.4.1 op pagina 35 van dit
proefschrift.

Gezien het niet-normale asymptotische gedrag, heeft, bij het niet-parametrisch schat-
ten van niet-gladde functionalen op basis van interval gecensureerde en dubbel ge-
censureerde data, het gebruik van de Fisher informatie matrix voor het bepalen van
betrouwbaarheidsintervallen een twijfelachtige waarde. Alleen wanneer het probleem
parametrisch behandeld wordt en een zeer grof vast grid gekozen wordt, geldt het
asymptotisch gedrag bij de aanwezige steekproefgrootte bij benadering.

. Het formuleren van een statistiek opgave via

21y x1,...2, de realisatie van een steekproef uit een normale verdeling . ..

rechtvaardigt op logische gronden het geven van een onzinnig antwoord.

Het gebruik van de archaische notatie z voor een stochastische variabele heeft een
onderwijskundig voordeel. Bij het nakijken van tentamens is veel eenvoudiger te zien
of een student het verschil begrijpt tussen een stochastische variabele en een realisatie
daarvan.

. De bewering dat deelnemers aan cohort studies naar HIV en AIDS, die tijdens de studie

zijn geseroconverteerd, een gedocumenteerde datum van seroconversie hebben, is vanuit
statistisch oogpunt misleidend.

. De homo-emancipatie is nog verre van voltooid, ook niet bij de homoseksueel zelf. Het

is dan ook te prefereren een jongen te vragen of hij een relatie heeft in plaats van te
vragen of hij een vriendin heeft.

De straat van Gibraltar is een eufemisme geworden.

Beter één milieu-onvriendelijke white-board stift in de hand, dan tien milieu-vriendelijke
in de prullenmand.
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