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Preface 

The life of a commuter, living in Amsterdam and working in Delft, can be hard sometimes. 
He chooses to travel by train, since 78 kilometers are too many to go by bicycle every day. 
Upon arrival at the railway station, problems may already present themselves. He may receive 
conflicting information as to which train will be the first to leave in the desired direction. 
Having interpreted the information obtained from the guard and the traffic-control as well as 
he can, he ends up in a train having a seat with a very good view of the train that leaves in the 
desired direction before his own. Of course, we are only at the beginning of the information 
era and no one can expect the Dutch railways to make use of all the new possibilities offered. 

Other inconveniences may be his lot as well. He may have to fight his way to the last 
empty seat, the driver may forget to make a stop in Delft, or the train may arrive at the 
commuter's destination with a rather serious delay. Of course, just like the weather, these 
inconveniences are somewhat compensated by their being a rich source of conversation. 

For a statistician travelling by train, however, a commuting life is not bad at all. For 
every inconvenience is alleviated by the prospect of being able to add another element to his 
data set of train delays, thus yielding the possibility of applying his statistical techniques in 
order to enlarge his knowledge about train delays between Amsterdam and Delft. 

Of course he has to be careful in his study design, but he has plenty of time to think 
about it during his 55 minute's journey. In fact, he is in a very fortunate situation, for he 
is able to observe his data with an inaccuracy of at most a few seconds. Moreover, the data 
can be collected in such a way that the data can be viewed as a realization of a sample of 
independent observations, or "draws", from the same "population" of train delays. For a 
practically inclined statistician, this is the most ideal situation, since a lot of theory has been 
developed to deal with such data. The statistical models treated in this thesis deal with data 
sets that are not nearly as ideal. A lot of theory still has to be developed, and this thesis is 
a small contribution to the understanding of these models. 

The first part of this thesis (chapters 1 and 2) deals with a situation in which the data 
can still be seen as a realization of a sample of independent observations from the same 
population. However, this sample does not consist of the data in which we are interested. 
The data of interest are censored to a certain extent. Nonetheless, clever use of the censored 
information still tells us a lot. This work is a continuation of a study that resulted in my 
Master's thesis (GESKUS (1989)). A few parts of it will be repeated in this Ph.D. thesis. 

The second part of this thesis (chapter 3) deals with a completely different model, used 
to describe the amount of repulsion between elements in some homogeneous area, such as 
goshawks occupying territory in a homogeneous forest. This side-track was taken as a means 
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Preface 

to give new inspiration during a period, in which my main area of research was in an impasse. 
Later, when new progress was being made, my main attention switched back to the 

interval censoring model. Therefore, it covers the larger part of my thesis. 



Chapter 1 

Interval censoring and lower bounds 

Censoring models are used in situations in which inaccuracy in part, or even all of the data 
is not due to some small measurement error, but is of another order of magnitude and often 
of another origin as well. 

We will start with a short characterization of some frequently encountered censored data 
structures in survival analysis problems. They are mostly exemplified by situations from 
HIV and AIDS related research. This is followed by an overview of the relevant notions and 
theorems from efficiency theory. At the beginning we will take a rather intuitive approach. 
A rigorous and much more general treatment of the subject can be found elsewhere, e.g. 
in BiCKEL et al. (1993) and part I of GROENEBOOM AND WELLNER (1992). We will become 
more formal when we get nearer to the application of this theory to the interval censoring 
model. The chapter is closed by the mathematically rigorous lower bound calculations for 
the different interval censoring cases. Since the reference GROENEBOOM AND WELLNER (1992) 
will be used frequently, it will be abbreviated by GW in the sequel. 

1.1 Some censoring models 

In survival analysis, the data of interest are time points i i , . . . ,a;„, such as time of death, 
time of failure or, more generally, event times of some elements of the population studied. 
Usually, the observation of the event times is censored to some degree. 

The most well-known type of censoring is right censoring. An event time is right censored 
because it has not yet occurred at the end of the study or because its observation is made 
impossible due to the occurrence of some other competing event. In HIV/AIDS cohort 
studies, right censored incubation times of HIV infected persons occur frequently because 
these studies have not yet been going on long enough in order to observe long incubation times 
(study cutoff). Moreover, the AIDS diagnosis may not be observed since persons left the study 
before they developed AIDS (loss to follow-up) or were subject to some other event, preventing 
the occurrence of AIDS (competing risk, such as pre-AIDS mortality). Ideally, these censoring 
mechanisms are unrelated to disease progression, in which situation they can all be treated in 
the same way. For censoring due to study cutoff, this independence assumption is a reasonable 
one. For censoring due to loss to follow-up, and especially censoring due to competing 
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risks, one should be very careful. For example, pre-AIDS mortality is a frequently occurring 
phenomenon among injection drug users, and may very well be related with progression to 
AIDS (see e.g. VAN HAASTRECHT et al. (1996)). If the censoring mechanism is not unrelated 
to the event time mechanism, model building is much harder. In the sequel, we will assume 
both mechanisms to act independently. 

Left censoring is the equivalent of right censoring at the left side of the time axis. For 
example, in estimation of the HIV seroconversion distribution over calendar time, one may 
have persons that were already positive at their first test. 

When modelling left and right censoring, one usually assumes a sample of censoring times 
ti,... ,tn along with the sample of event times. In case of right censored data, if the event time 
Xj occurs before the censoring time tj, it is observed; otherwise the event time is censored. 
In order to get in correspondence with the terminology used in the interval censoring model, 
the censoring times are called the observation times. There is a wealth of literature on all 
kinds of aspects of left and right censoring. See ANDERSEN et al. (1993) for a recent overview. 
The estimation of the distribution function in case of independent censoring is usually based 
on the Kaplan-Meier estimator. This estimator strongly depends on the uncensored event 
times. If all event times are censored, it cannot be used. 

Combinations of left and right censored data are usually called doubly censored. See e.g. 
CHANG AND YANG (1987) and CHANG (1990), who deal with estimation of the distribution 
function. It can be modelled by introducing two observation times for each event time. If 
the event occurs between both censoring times, it is observed. Otherwise it is censored. The 
terminology "doubly censored data" is a somewhat unfortunate one, since another kind of 
censored data, to be treated below, is called doubly censored as well. It may be better to 
call this censoring mechanism two-sided censoring. 

Left, right and two-sided censoring have in common the prerequisite that at least part of 
the event times can be observed themselves, without censoring. Often, we have to deal with 
situations in which direct observation of the event times is impossible altogether. 

In its simplest form, one has one observation time for each element in the study popula
tion, and all one knows about the event time is whether the event has occurred before this 
observation time or not. An example of this type of censoring is treated by KEIDING (1991) 
and GW: the occurrence of hepatitis A infection as a function of age is investigated through 
data from a cross-sectional study among the Bulgarian population. The data used consist 
of the age of the persons in the study (the observation times), and the information whether 
they have been infected with the hepatitis A virus. This kind of censoring is called interval 
censoring case 1. Such data are called current status data. From a theoretical point of view, 
it is the most tractable kind of interval censoring. Quite a lot is known about the estimation 
of the distribution function via the nonparametric maximum likelihood estimator when the 
observation time distribution is independent of the event time distribution. From now on 
the nonparametric maximum likelihood estimator will be abbreviated as NPMLE. See GW 
for an overview of results on the NPMLE, in which estimation of the NPMLE of the mean is 
treated as well. In HUANG AND WELLNER ( 1 9 9 5 A ) the NPMLE of a wider class of estimands 
than the mean is treated. That article is much related to the contents of this thesis. 

Interval censored data can be summarized by a set of intervals J i , . . . , J„ in which the 
event times Xi,... ,x„ are known to be contained. In case 1, all intervals have the form [TQ, t,] 
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or (ti,TM], with To the smallest possible event time (often zero) and T „ the largest possible 
event time (infinity allowed). In the more general interval censoring situation, the intervals 
can be arbitrary, say of the form {ui,Vi]. For example, in HIV/AIDS cohort studies, people 
are tested for HIV antibodies at several, more or less regular, time intervals. So we have a 
set of observation times, with at most two of them delimiting the relevant event time. These 
are the only observation times that are needed for the computation of the NPMLE if the 
observation times are independent of the event times. For asymptotic results, however, the 
distribution of the whole set of observation times is important. The number of observation 
times per element of the study population gives a further subspecification in cases. If one 
has two observation times for each unobservable event time, one usually speaks of interval 
censoring case 2. GW, WELLNER (1995) and GROENEBOOM (1996) deal with estimation of 
the distribution function for case 2. The main subject of this thesis will be the estimation 
of "smooth" functionals of the distribution function in case 2. With interval censored data, 
the mean is an example of a smooth functional, whereas the median is a counterexample. Of 
course, the restriction to two observation times is cjuite stringent. Extensions to more than 
two, and a variable number of observation times per unobservable event time are usually 
treated separately for reasons of ease of notation (see WELLNER (1995) and this thesis). 
However, as far as the methods and techniques used are concerned, the main distinction 
is between case 1 and case 2. The situation with data having partly one and partly two 
observation times per unobservable event time will be treated in this thesis together with 
case 2. The rest will be treated separately and summarized as interval censoring case k. Note 
that the main distinction between two-sided censoring and interval censoring case 2 (and 
case k) is the fact that with interval censoring, the event time is always unobservable, even 
if the event has occurred between the two observation times Ui and Vi. 

With respect to asymptotic considerations, another distinction exists within case 2 (and 
case k). This distinction is determined by how close the observation times can come to each 
other. These cases will be called 2A and 2B. We will come back to this later. 

All the above censored data structures have both an initiating event and a terminating 
event, but only the last one is censored. The other one determines the origin of the time axis. 
For data that may have both events censored within the same individual, D E GRUTTOLA AND 
LAGAKOS (1989) introduced the term double censoring. For example, in research estimating 
the time from seroconversion to AIDS (the latency period), the date of seroconversion is 
almost always interval censored, whereas the date of AIDS diagnosis may be right censored, 
and in some studies interval censored as well. Of course, this problem may be treated uni-
variately, transforming the data to information on the, possibly right censored, length of the 
l^eriod from seroconversion to AIDS, but this leads to loss of information. A better way is 
to treat the problem bivariately, incorporating the information on both the seroconversion 
distribution over calendar time and the latency period. Two other examples of doubly cen
sored data are investigated in JEWELL, MALANI AND VITTINGHOFF (1994). For one of them 
the matter of interest is the estimation of the distribution of the length of the period between 
Ijecoming infectious and seroconversion, based on data from blood transfusions. The most 
important observation times are the time of the last seronegative donation and the time of 
the first seropositive donation. The donor's moment of seroconversion is always in this inter
val. Compared to the previous example of double censoring, the loss of information by the 
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censoring mechanism is more considerable. Not only are both the initiating event (the donor 
becomes infectious) and the terminating event (the donor seroconverts) always censored, but 
also the moment the donor's blood becomes infectious may be in the same interval as his 
moment of seroconversion. The blood recipients in the study had no other risk factor to 
HIV-infection prior to transfusion, so their time of seroconversion determines the position of 
the donor's switch to infectivity relative to the last seronegative donation. 

We will only be concerned with estimation of the distribution function and functionals 
thereof, based on a sample of independent, identically distributed (i.i.d.) interval censored 
random variables. Models incorporating covariates will not be treated in this thesis, but some 
things have been done in this field with respect to interval censoring. See e.g. HUANG AND 
WELLNER ( 1 9 9 5 B ) , in which the Cox proportional hazards model for case 2 is considered. 
References to other regression models with interval censored data can be found in HUANG 
AND W E L L N E R (1996) . 

1.2 Efficiency theory for smooth functionals 

In this section the event times xi,... ,Xn are assumed to be observable themselves. We assume 
the data to be a realization of a sample X i , . . . , Xn of i.i.d. random variables. Although this 
may not always hold in practice, often one can design one's experiment in such a way that it 
is at least approximately true. We will restrict ourselves to the estimation of some real-valued 
aspect of the distribution, like the mean. Formally, the general set-up is: 

• We have an i.i.d. sample Xi,..., X^ ~ P. An arbitrary element of this sample is 
denoted by X. 

• P is an unknown distribution, to be estimated from some collection of distributions V. 

• We are interested in the estimation of K{P), which is performed via the estimator 
Tn = t{Xi, . . . , X„). 

Under these assumptions, criteria have been set up and methods have been developed 
in order to evaluate the cjuality of Tn. We will restrict our attention to the Cramer-Rao 
information lower bound and its generalization to infinite-dimensional parameter spaces. 

First we consider the parametric model V = {Pe\9 ^ Q C IR"}, with Pe having density 
Pe with respect to some dominating measure /i.. One approach to obtaining a good estimator 
is to look for an unbiased estimator such that its variance has the smallest possible value for 
each value of 9. The Cramer-Rao information inequality gives a lower bound for the variance 
of unbiased estimators. In its simplest form, for a one-dimensional parametric model with 
6 C IR, it says that any unbiased estimator of the estimand K{6) G IR satisfies 

varö(T„) > ' ;^ ; for each Ö e 6 . 
nl{e) 

The information function 1(9) is given by 

I{9) — log pe{X\ 
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The function ;^ log pe(x) =: lg{x) is called the score function. In the above formulation, both 
A' and log pe are implicitly assumed to be differentiable in d, the latter for each x. These 
smoothness conditions, together with some minor extra conditions, are often summarized as 
the regularity conditions. 

E x a m p l e : For V = {N{e,l)\e e IRj, we have ig{x) = x - Ö and I{9) = 1, yielding 
vare(Tn) > l/n for any unbiased estimator of K{9) = 0. Hence X„ can be seen as best in 
this sense. 

However, biased estimators may perform as well as or even better than unbiased ones with 
respect to mean squared error, and, especially in nonparametric models, estimators that are 
unbiased for each possible P Q V often do not even exist. Then the Cramer-Rao theorem loses 
its value, but the same bound turns up in asymptotic considerations, when the sample size 
goes to infinity. Let —> denote convergence in distribution. Apart from a shght but necessary 
modification, and under the same kind of regularity conditions as above, the following holds. 

If 

with v{d) > 0, then 

y{0) > yj foi' each 6» e e . 
1(0) 

E x a m p l e (continued): By the central limit theorem, it is seen immediately that Xn, as 
estimator of the mean, asymptotically attains the lower bound 1. 

The modification that is needed to make things rigorous is motivated by a counterexample 
which is named after its discoverer: 

H o d g e s ' c o u n t e r e x a m p l e : In the example above, consider the following estimator 

, ^ f X„ if |X,.| > nV4 
' " \ a X if \Xn\<n'/' 

Then 
' 1 if 6» ^ 0 

v(ö) 

Hence, for 0 < a < 1, T/, violates the uniform lower bound at 0 = 0. 

One way to cope with this phenomenon of superefficiency is to prove the lower bound to 
hold for almost all (with respect to Lebesgue measure) parameter values (see e.g. LEHMANN 
(1983), chapter 6, for a short discussion on this topic). 

Another solution, which has been extended to nonparametric models, is to formulate 
theorems in a m,immax form. Using some form of bowl-shaped loss function, such theorems 
say that the supremum of the expected loss, over a collection of parameter values in a 
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neighbourhood of the parameter of interest, is always larger than some lower bound value 
(see e.g. chapter 2 in part I of GW). 

Yet another approach, which can also be extended to nonparametric models, is to look at 
a way to exclude T^ as an acceptable estimator. It is suggested by the following observation. 
Suppose 9 = 0, the point where things go wrong, and consider a sequence dn, converging to 
0 as n ^ CX3. Let Xi,... ,X„ ~ N{9n, 1). We look at the limit behaviour of i /n [7",'i ~ ^n]-
Since 

^/n[aXn-On] = a^[Xn-en] + {a-l)^id„ 
~ i V ( ( a - l ) v ^ ö „ , a ^ ) , 

-^ N{{a- l)c,a^) 

III: If 9n = CnTi'^^^ with Cn goiug to infinity, a limit distribution does not exist. 

A difference with the mean X„ is that for T^ the hmit distribution in case II depends 
on the "direction of approach" of 0^ to 0, represented by c. We can also say that we have 
subcollections of distributions {Pe„], with Pg^ ~ N{9n,l) and d„ as in II, called submodels, 
for which the limit distribution of y/ïï [ T,' — $„ ] under Pg^ is not equal for all directions c. 
This leads to the consideration of estimators, which do not have this directional dependence 
(see the definition on page 11). 

We will formalize these observations. In order to be able to extend the theory beyond 
parametric models, we use a different definition of the regularity conditions. Let our un
known distribution P, defined on (y,B), be contained in some class of probabihty measures 
V, which is dominated by a cr-finite measure /(. Let P have density p with respect to /;. 

Definition: Let, for some 6 > 0. the collection {P,} with t G (0,(5) l:)e a one-dimensional 
parametric submodel. Such a submodel is called regular or Hellinger differentiable at P, if 
the following holds: 

/ [f'Wp't - v/p) - | o \ / p ] ^ (̂ Z' ^ 0 as U 0, for .some a £ LiiP). 

This property can be seen as a, more generally appHcable, L2-version of the differentiability, 
in t, of logP((x) at i = 0 for each point x (with po = p). The function a(-) plays the role of 
the score function J^logp((-) _ . For we have 

v / P f - y P o 1 d 
um ~ — = v, 
(10 t 2 ^ dt 

\[i'''^'' 
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Therefore, a is called the score function as well, sometimes abbreviated to score. It is well-
known that each score belonging to some Hellinger differentiable submodel integrates to zero: 
ƒ a dP = 0. This follows from 

f adP = lim r^ ƒ (p, - p)dfi = 0, 

using the following proposition. 

P r o p o s i t i o n 1.2.1 Suppose 

Then 

t^^iPt - p) -^ ap in Li{ii). 

Proof: Let || • ||i denote the Li(ju)-norm, and let || • II2 denote the Z,2(A')-norm. Then we 
have; 

\\t-'{Pt-'P)~ap\u < \\2^{r'{Vp<-Vp)--2^Vp}\U + \\t~\VPt-Vp)% 

The first term converges to zero by Hellinger differentiability, the second term is bounded by 

2̂  {\\r'{Vft-Vp)--2"Vphf + 2t {Ua^hf, 

which also tends to zero as / ], 0, using Hellinger differentiability and a G L2{P). 

a 

N o t a t i o n : The subspace of L2(^)-functions satisfying j adP = 0 will be denoted as Ll{P). 

E x a m p l e (continued): Let P = N{2,1) eV = {iV(ö, l ) | ö € IR}. Many submodels that 
are Hellinger differentiable at Ö = 2 can be found. The most obvious is Pt = N{2 + t, 1), 
yielding a{x) = a- — 2 as score function. One can as well approach N{2,1) from the other 
side via N{2 — f, 1), or, more generally, one can take Pt = N{2 + r, f, 1), with Q —* r, giving 
a{x) = f.(.r - 2). Other possible candidates are P, = N{2 + t'^. 1) and P, = N{2 + \/ï, 1). 
The first one has a{x) = 0, whereas the last one is not a Hellinger differentiable submodel. 

Defini t ion; The linear span of all possible scores {0} is called the tangent space, denoted as 
T(P). 

usually, the collection of scores is a linear space itself. In the example we have T{N{2,1)) = 
{Ao I A e R } , with a{x) = x - 2. 
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The above example was based on a small one-dimensional parametric model. The exten
sion to finite dimensional parametric models is straightforward, leading to finite dimensional 
tangent spaces. When the collection V no longer has a finite dimensional parametrization, 
one considers all one-dimensional sub-parametrizations. On the other side of the spectrum is 
the situation with the tangent space as large as possible. The following proposition is proved 
in BiCKEL et al. (1993), example 3.2.1 and GESKUS (1989), proposition 3.2. 

Proposit ion 1.2.2 The m,odel 

V^ = {all P on {y, B) with P < fi} 

has tangent space T{P) = L^l-^) '^^ ^• 

In the proof in BICKEL et al. (1993) the score function a G L\[P) is yielded by the submodel 

2(14-6-^ '" ) - ' 

^ ' ~ ^ / 2 ( H - e - 2 " ' ) - i d P ' 

In Geskus' proof it is yielded by 

_ p(l -I- to)l{l+ta>0} 

/ p ( l + ia)l{i+(a>o}dA'' 

For our interval censoring model, the tangent space is somewhere between a finite di
mensional space and the L\-&\>diQ.e.. In asymptotic lower bound theory, models beyond the 
parametric domain with a tangent space that is not the whole Lj-space are usually denoted 
as semi-parametnc models, whereas models with tangent space as large as possible are called 
nonparavaetric. 

The definition of differentiability of the estimand K{6) is also extended to fit into this 
new set-up. From now on K{6) is seen as a functional K: P ^- IR. 

Definition: The functional K: P ^ IR is pathwi.se differentiable at P if there exists a 
continuous linear map K'p-. T{P) -^ IR such that for each Bellinger differentiable path {P(} C 
V, with score 0, we have 

\imt-'[KiP,)-K{P)] = K'p(a). 

K'p can be written in an inner product form. Since T{P) is a subspace of the Hilbert-space 
(Z/2(-P), (•: •))' ^^^ continuous linear functional K'p can be extended to a continuous linear 
functional Kp on L2{P). By the Riesz representation theorem, to Kp belongs a unique 
Kp £ Z/2(-P)i called the gradient or influence function, satisfying 

K'p{h) = {Kp,h)p for all h e LiiP). 

Instead of ^2(^)1 any closed subspace H between T{P) and L2{P) can be chosen as space to 
which to extend Kp and on which to apply the Riesz representation theorem. Note that Kp 

http://pathwi.se


1.2 Efficiency theory for smooth functionals 11 

is uniquely determined once the extension of K'p has been made. However, many continuous 
linear extensions of K'p may be possible, so generally the gradient is not unique. One gradient 
is playing a special role, which is obtained by making the smallest extension, to T{P). Then 
the extension of K'p is unique, yielding the canonical gradient or efficient influence function 
kp G T{P). The orthogonal projection of any gradient Kp, obtained after extension of K'p, 
into T{P) yields the same canonical gradient. Hence we have 

\M\'p = up\\i+hp-'^prp>\\'ip\\i, 
so the canonical gradient has the smallest norm among all gradients. 
For a Hellinger differentiable submodel at P with score a, the lower bound becomes 

[K'pja)]' ^[{-Kp,a)p]' 

{a,a)p {a,a)p 

Since {kp,a)p = {Kp,a)p for each a G T{P), this expression does not depend on the choice 
of the gradient. Each one-dimensional Hellinger differentiable submodel has a lower bound. 
The lower bound for V is obtained by taking the suprenium of all these lower bounds. We 
have 

sup (KP,T—7T)P 
aeT{P) [ \\n\\ _ 

If Kp is contained in T{P) itself, the one-dimensional submodel with score function kp is 
called the least favourable submodel. 

To define regularity of the estimator, we go back to the one-dimensional subcoUections 
{Pe„}^ with On = 9o + CnU'^^"^ and Cn -^ c, as in Hodges' counterexample. 

Defini t ion: An estimator Ti, of K{P) is a regular estimator at P G T' if for every Hellinger 
differentiable (or regular) submodel {Pt} C V and every sequence {ö^}, with ö„ — 0{n~^^'^), 
y/n[Tr, — K{Po^) ] converges in distribution, under Xi,... ,Xn ~ Pe„, to the same random 
variable Z. 

The term regularity refers both to smooth submodels as well as to estimators that behave 
neatly within such models. Both aspects are needed as regularity conditions in the following 
important theorem, called the convolution theorem: 

T h e o r e m 1.2.1 Suppose that: 

(i) K IS pathwise differentiable at P ^ V along all regular submodels. 

(a) T„ IS a regular estimator, with limit random, variable Z. 

('ïïïj The set of all directions {a} is a linear space. 

Then there exist random variables ZQ and AQ such that 

A. Z has the same distribution as ZQ + AQ. 

{Kp,jrj^P 

\\>^p\\ 
= W^PWP- (1.1) 
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B. ZQ and AQ are independent. 

a Zo-^N{o,\\kp\\i). 

Proof: See e.g. Theorem 3.11.2, p. 414 of VAN DER VAART AND WELLNER (1996) 

More general formulations of this theorem exist, but this one is sufficient for the scope 
of this thesis. The theorem says that the limiting distribution of any regular estimator 
of K{P) is more spread out than the distribution of ZQ. Hence the smallest asymptotic 
variance for a regular estimator of K{P) is | |KP| |^ . An asymptotically efficient estimator is a 
regular estimator for which the limiting distribution equals the distribution of ZQ. However, 
regularity of the estimators to be considered will be ignored in this thesis. The only topic 
of interest will be to show that \/n\Tn — A'(P)] , with P fixed, converges to a N{0, \\iip\\j:>) 
distribution. Such estimators will be called optimal instead of efficient. 

So in order to prove optimahty of some estimator r „ , two aspects have to be considered. 
First, one should find out what the lower bound looks like, which is mostly a functional 
analytic problem. Secondly, one should investigate the limit behaviour of T„, if X i , . . . , X„ ~ 
P, which is mostly a probabilistic problem, using techniques from empirical process theory. 
In this chapter, attention is paid to the structure of the lower bound. In the next chapter, 
we will consider the distributional aspects. 

1.2.1 Lower bound computations for the nonparametric model 

We first consider pathwise differentiability and computation methods for the canonical gradi
ent in the nonparametric setting, thus when T{P) = L2{P). Results for the semi-parametric 
interval censoring model are related to the gradient structure of the nonparametric model, 
as will be clarified in the next section. 

For the nonparametric situation, once we have proved differentiability and found a gra
dient Kp e L2{P). determining the canonical gradient is an easy task: just subtract f KpdP 
to find the projection into L^iP). 

An important class of functionals are the linear functionals 

K{P) = I c{x)dP{x). 

If P is a one-dimensional distribution, examples of hnear functionals are the moment function
als K{P) = J x'' dP{x). Estimation of the distribution function at a fixed point to concerns a 
hnear functional as well: for A'(P) = P{X < tg) we have c{x) = l[o,(|j](:r). For the nonpara
metric model V, any linear functional with suppgp £'pr(A')^ < CXD is pathwise differentiable 
at any P £ V, with canonical gradient 

kp{x) = c{x)- J c{x)dP{x), 

yielding the information lower bound 

\\c{X)-Ep[c{X)]\\l. 
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Sec proposition A.5.2 in BICKEL et al. (1993) for a proof. For nonlinear functionals, there is 
no general method that immediately establishes differentiability and supplies the formula for 
the canonical gradient. For two nonlinear functionals the canonical gradient is given below. 
Moreover, the proof gives information on how to perform the calculations. It is partly similar 
to the proof of proposition A.5.2 in BICKEL et al. (1993) for linear functionals. However, the 
notation used is different. Moreover, the conditions are stronger than theirs, thus slightly 
simplifying part of the proof. In view of the next section, attention will be restricted to 
one dimensional, absolutely continuous distributions having compact support and bounded 
density. Extensions are possible, but will not be considered here. Also in correspondence with 
the next section, the distribution will be denoted by its distribution function F instead of P. 
The class of distributions V will be assumed to satisfy the following uniformity property: the 
support of each distribution is contained in the same bounded interval S and the densities are 
uniformly bounded. Let Ts denote this nonparametric class of distributions. Restriction to 
this class does not change the maximahty of the tangent space, i.e. we still have T{F) = L\{F) 
for each F e Ts- This can be seen by the choice of submodels in proposition 1.2.2 yielding 
the tangent space; they are still contained in Tg for t small enough. 

Proposit ion 1.2.3 Let F G Ts have density ƒ and hounded support [To,r„] C IR, Consider 
the functionals 

Ki{F)= [f{x)Yw{x)dx 
Jra 

and 
K2iF)= r [F{x)fw{x)dx 

J TO 

with w{x) a bounded weight function. 

Then both Junctionals are pathwise differentiable, with gradient 

Kr{x)=2f{x)iü{x) 

and 
Kf{x) = 2 / F{s)w{s)ds 

J s—x 

respectively. 

Proof: All norms in the proof denote either Li{\) or L2('^)-norms, with A denoting Lebesgue 
measure. 

Both functionals can be written in the form 

K{F)= /(x)c^(rr)rf.T, 
J TO 

with <:>(.!:) = /(.r)ui(.r) and CF{X) — / J " F{s)w{s)ds respectively. By the conditions on w 
and JT^, CF is bounded for both functionals, uniformly over F G JT^. 

Let a be the score function of the regular submodel {Ft} C Ts at F. We have 

rM/v(F,)-A-(F)] = r ' r"cf(x)[/,(.r)-ƒ(.•)] dx (1.2) 
JTQ 

+ ' / f,{.T)\cF,{x)-CF{x)]dx 
•JTn 
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Both terms converge to {cp,a)p. 
For the first term this is proved in an almost similar way as in BICKEL et al. (1993). We 

have 

\\cF[r\h-f)-af\\\, < ||c^ ( /ƒ;+/ƒ) [ r i ( v 7 ^ - / f ) - l a / f ] 111 

= A{t) + B{t). 

For t I 0, 1^(^)1 is bounded by 

cldFtj + 1 1 4 d F | 0(1), 

whereas \B{t)\ can be bounded by 

Using a G L2{F), boundedness of c/r, and \\\/Tt — vTIb = o(l) as t J, 0, one obtains that 
A{t) + B{t) - ^ 0 . 

The second term in (1.2) can be transformed into a form, similar to the first term, but 
with cp replaced by cpf For Kx this transformation is immediate; for K2 this follows from 

r'^M f^M f^M 
ƒ ftCfd\= w Ft F dX = f cptdX. 

JTO JTQ JTO 

Thus the argument for the first term can be repeated, using uniform boundedness of {cp,}-

a 

R e m a r k s . 
I.) Pathwise differentiability certainly holds for other nonlinear functionals as well. The 
problem in the proof is determining to what expression the second term in (1.2) converges. 
For the functionals considered here, we have the advantage that the second term is similar 
in structure to the first term. 
II.) The functionals A'l and A'2 are the same as the ones considered in HANSEN (1991). 
She considers the asymptotic distribution of these functionals for interval censoring case 1. 
Theoretical results are obtained for A'2 only. The hmit distribution of the nonparametric 
maximum likelihood estimator (NPMLE), as obtained by her, is optimal as will be shown 
in subsection 1.4.1. This result can be extended to the other interval censoring cases, as 
will be shown in this thesis. The functional A"i has the disadvantage that some smoothing 
technique has to be apphed. The distributional results for the NPMLE that will be obtained 
in the next chapter do not apply to A'l. However, as far as lower bound considerations are 
concerned, both functionals can be treated equivalently. 
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1.3 Lower bounds with interval censoring 

The interval censoring model is an example of a model with information loss. This information 
loss can be expressed by saying that the distribution of the sample is induced by another 
distribution, on which we only obtain partial information. The functional of interest is a 
function of the inducing distribution, but is defined implicitly via the sample distribution. 
The lower bound theory for such implicitly defined functionals is treated in VAN DER VAART 
(1991) and BIGKEL et al. (1993). This theory boils down to solving an operator equation, 
relating the inducing distribution to the induced one. In this section it will be shown how 
this operator equation is obtained. The theory needed is illustrated by case 2 of the interval 
censoring model. However, the derivation of the operator equation for the other interval 
censoring cases goes in a similar way. 

We start with the formulation of the model for case 2. The loss of information is expressed 
by the fact that, instead oi{Xi,..., X^), we observe {Ui, Vi, A i , r i ) , . . . , ([/„, V„, A „ , r „ ) with 
Ai = l^x,<u,] and Ti = l^u^^x,<v,]- The following modelling assumptions are made: 

(Ml) X is an absolutely continuous random variable with distribution function F. Let A' > 0 
and let 5 be a bounded interval C IR. F is contained in the class 

J^s '•= {F\ support(F) C S,; F absolutely continuous, sup| / (a;) | < A'}. 
X 

F is the distribution on which we want to obtain information; however, we do not 
observe X directly. Let Tg and T^ be the lower bound and the upper bound of the 
support of F. 

(M2) We observe the pairs (U, V), with simultaneous distribution function H. H is contained 
in H, the collection of all two-dimensional distributions on {{u,v)\u < v}, absolutely 
continuous with respect to two-dimensional Lebesgue measure and such that ([/, V) is 
independent of X for each choice of H and F. Let h denote the density of {U,V), 
with marginal densities and distribution functions hi, Hi and /i2, H2 for U and V 
respectively. We let H have its mass concentrated on { {u, v) \ rjo < u < v < r;„}. 

(M3) If both Hi and H2 put zero mass on some set A, then F has zero mass on this set as 
well, so F < Hi + H2. 

Condition (M3) precludes observation time distributions that are purely discrete, implying 
that deterministic observation times are not allowed. It will be needed to ensure consistency 
of the NPMLE with respect to the supremum norm on its support. Moreover, without this 
assumption the functionals we are interested in are not well-defined. (M3) also implies that 
% < T"o and T„ < 71M-

The model formulation for the other interval censoring cases is similar in essence. (Ml) has 
nothing to do with the observation times and is similar for all cases; (M2) says that the 
observation times and the event times should be independent; (M3) says that F cannot have 
mass on sets in which no observations can occur. 
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What we do observe can be seen as a measurable transformation S of what we would observe 
if there would be no censoring: 

S{x,u,v) = {u,v,6,'r). 

The domain {{x,u,v) | TQ < x < T^ , 7̂  < u < w < ??„} will be called the hidden space, and 
the image space will be called the observation space. In our model, P is induced by F and 
H, and is from now on written as Qfjj, having density 

qF,H(u, V, 6, 7) = /I(M, v)F{uyiF{v) - F( t i ) r ( l - ^(^0)'"*-^ 

with respect to A2 x i/2- Here A2 denotes two-dimensional Lebesgue measure and 1^2 denotes 
counting measure on the set {(0,1), (1,0), (0,0)}. 

We first take a look at the Hellinger differentiable paths. All Hellinger differentiable 
submodels at QF.H that can be formed, together with the corresponding score functions, are 
induced by the Hellinger differentiable paths of densities on the hidden space, according to 
the following theorem: 

Theorem 1.3.1 Let V <C yU be a class of probability measures on the hidden space {y,B). 
Let F e P be induced by the random vector Y. Suppose that the path {Ft} to F satisfies 

J [t'Wpt - VP) - ^ay^f d^. ^ 0 astiO 

for some a £ L^iF). 
Let S: {y,B) -^ {Z,C) be a measurable mapping. Let fiS~^ be a-finite. Suppose that the 
induced measures Qp^ = FtS^^ and Qp = FS~^ on {Z,C) are absolutely continuous with 
respect to / i 5 ^ ' , with densities qi and q. Then the path {Qp,} is also Hellinger differentiable, 
satisfying 

witha{z) = Ep[a{Y)\S = z\. 

Proof: See BICKEL et al. (1993), proposition A.5.5. 

The relation between the scores o in the hidden tangent space T{F) and the induced scores 
a is expressed by the mapping 

Ap: a ^ Ep[a{Y)\S]. 

Definition: The mapping Ap: a t-^ Ep\a{Y) | S] is called the score operator. 

The score operator is continuous and linear. Its range is the induced tangent space, 
which is contained in L2{Qp). For the interval censoring model it will turn out to be a 
proper subspace of L^iQp). 

Since F and H are assumed to be independent, the one-dimensional submodels in the 
hidden space are formed by first looking at the classes !Fs and Tl separately. Bv proposition 
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1.2.2, our assumptions on Ts and 7i make the tangent spaces T{F) and T{H) as large as 
possible: T{F) = L\{F) and T{H) = L°^{H). Let { F J be a regular submodel at F with 
score function a, and let {Ht} be a regular submodel at H with score function e. Joining 
these paths gives, using independence. 

/ 
1 I — • - ' 

-{a + e)^fh dXs^O ast i 0. 

L^(F) and L^(//) are orthogonal subspaces of L^F x ƒƒ). The tangent space L^(F) + L^(//) 
is a proper subspace of L^iF x ƒƒ). Thus, due to the independence assumption, we have 
left the nonparametric model. Indeed, the construction of proposition 1.2.2 can no longer be 
used to obtain the whole L^iF x //)-space, since any function b{x,u,v) that cannot be spht 
into a direct sum of a{x) and e{u,v) yields a submodel in which pt{x,u,v) is the density of 
dependent X and ([/, V). 

Now theorem 1.3.1 is applied, with Y = {X,U,V), F = F x H and /i = A3. The tangent 
space T{QPH) of the induced Hellinger differentiable paths is yielded by the score operator 
.4: L°{F) + L°iH) - . T{Qr.„) given by: 

[A^^,H{a + e)]{u,v,6,j) = Et-^H{a{X) + e{U,V)\(U,V,AS) = {u,v,6,j)} 

We are interested in estimation of some aspect K{F) of F. However, due to the censoring 
mechanism, h'{F) can only be accessed indirectly through the observation space via the 
functional @{QF,H)^ with H acting as a nuisance parameter. Thus we define 

Q{QF.H) -^ A-(F). 

Note that &{QF,H) is defined unambiguously by condition (M3). 
Having specified the Hellinger differentiable paths in the observation space, differentia

bility of the functional Q{QF.H) i" the observation space will now be investigated. Differ
entiability of implicitly defined functional 0{Qp) = A'(P) can be proved by looking at the 
structure of the adjoint A'p of the map Ap according to theorem 1.3.2 below, which was 
first proved in VAN DER VAART (1991) in a more general setting, allowing for Banach space-
valued functions as estimand. Then the proof is slightly more elaborate. The proof in case 
of real-valued functionals is very simple and is given below. 

The adjoint of a continuous linear mapping A: G ^ H, with G and H Hilbert-spaces, is 
the unique continuous linear mapping A*: H —* G satisfying 

{Ag, h)H = (5, A*h)a ^g eG,he H. (1.3) 

Any Hilbert space that contains TZIA) can be chosen as the image space ƒƒ, creating a 
different adjoint A*^. However, this does not complicate things: each adjoint yl^ has the 
same behaviour on TZ(A) and its behaviour on Ti{A) determines A^ completely, since .4*,/i = 
A*,{l\{h)) = y l^^(n( / i ) ) , with n denoting orthogonal projection into Tl{A). We do not 
specify the image space chosen and write A* instead of >1^. 

For the score operator from theorem 1.3.1, the adjoint is a conditional expectation oper
ator as well: if Z ~ Qp, and b e H C Li{Qp), then 

\A' b\{y) = Ep[b{Z)\Y = 2/] - Ep[b{Z)] a.e.-[P], 
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which is seen immediately by definition 1.3 of the adjoint. Note that the term Ep[b{Z)\ 
vanishes 'd b e L^iQp) 

Theorem 1.3.2 Let Q = VS~^ be a class of probability measures on the image space un
der the measurable transformation S. Suppose the functional 0 : Q —» IR can be written as 
0(Qp) = ^{f)- Suppose that K is pathwise differentiable at P in the hidden space, having 
canonical gradient kp. 
Then Q is differentiable at Qp G Q along the induced paths if and only if 

RpeniA") (1.4) 

If (1-4) holds, then the canonical gradients 6QP of Q and kp of K are related via 

kp^A*èQ, (1.5) 

Proof: We have 

lim t-' [ e{Qp,) - e{Qp) ] - lim r> [ K{P,) - K{P) ] 

= {kp,g)p (1.6) 

Suppose 0 is pathwise differentiable at Qp. So, for any Hellinger differentiable path {Pt}, 
with score-function g £ T{P), we have 

l i m r M e ( Q p J - e ( Q p ) l = {Ag,0)Q, 

= {9,A'è)p, 

where 6 = OQ^ G T^{A) is uniquely determined. Combining this with (1.6) gives kp = A* OQ^, 
hence kp £ 7^(^*). 

Conversely, suppose kp = A'b for some b in the domain of A*. Then we have, for any 
{Pt}, having score g, 

l i m r ' [ e ( Q p , ) - e ( Q p ) l = (kp,g)p 

= {A'b,g)p = (b,Ag)Q, 

Hence 6 is pathwise differentiable with gradient b. 

a 

Equation (1.5) is called the score equation. This theorem is applied to the interval cen
soring model. First, the score operator A{a + e) is split in two parts, one related to the 
unobservable event times and one related to the observation times: 

AF,H{0' + e) = Lia + LiC, 

with 
Lia = Ep,n[a{X)\{U,V,A,r)] 
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and 
L2e = EF^H[e{U,V)\{U,V,A,r)]. 

Note that TZ(Li) and TZ{L2) are orthogonal subspaces in L^^QFH), as is easily shown using 
independence of X and {U,V), and Ea{X) = Ee{U,V) = 0. Due to the fact that the 
observation times are not censored, L2 is simply the identity operator. Lj is given by 

[Lia\{u,v,6,j) = ° +-Br~\ E r̂T + ^ ? n a.e.-Qf,// 1.7 
F(u) F{vj - F(u) 1 - F{v) 

Note that T" adF = L™ adF ^0. 
Now we apply theorem 1.3.2. Since K does not depend on H, the (canonical) gradient of 

A' is a function in the L2(.^)-subspace of the L2{F x iï^)-space. In fact, with respect to A', we 
are in the nonparametric model Ts with tangent space L^iF). So the gradient calculations 
of subsection 1.2.1 can be used, and we write kp for the canonical gradient. Now theorem 
1.3.2 says that 6 is pathwise differentiable if and only if 

A*pJ = kF, (1.8) 

for some 9 G TZ{Li) + TZ{L2). The adjoint can be written as 

A'b = L\b + Llh. (1.9) 

For we have, for any a G A2(-^)' ^ ^ ^\{H) and b G L2{QFH), 

{A*b,a + e) = {b,A{a + e)) 

= (b, Lia) + {b, Lie) 

= {L\b,a) + {Llb,e) 

= {L\b,a + e) + {Llb,a + e) 

= {Llb + Llb,a + e), 

using (Aiö,e) = {Llb,a) = 0. By (1.9), 7^(L^) _L kp and 7^(L,) ± 7^(L2), (1-8) is equivalent 
to 

L\è = kF (1.10) 

for some 6 G Tl{L\). So only the adjoint of Li plays a role in the score equation. 
The adjoint of Li is given by the formula 

\L\b]{x) = b{u,v,l,0)h{u,v)dvdu + 
J U = XJ V = U 

/ / b{u,v,0,l)h{u,v)dvdu+ (1.11) 

[ f b{u,v,0,0)h{u,v)dvdu a.e.-[F]. 

Many functionals that are pathwise differentiable in the model without censoring, lose 
this property in the interval censoring model. Due to the smoothness of the adjoint operator, 
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any functional A' with a canonical gradient that is not a.e. equal to a continuous function 
cannot be obtained under L*. So not all linear functional remain pathwise differentiable. 
For example, A'(F) = F{to), with canonical gradient l[o,(o](-) — F{to), loses this property. 
Hence the above lower bound theory can no longer be applied -one may also say that the 
lower bound has an infinite value- and F{to) is not estimable at >/n-rate. In the next chapter, 
the convergence rate and limit distribution of the NPMLE of F{to) is briefly discussed. 

However, functionals of the form K{F) = ƒ CF{X) dF{x), with cp sufficiently smooth, will 
be shown to remain differentiable under censoring. Hence for these functionals the above 
information lower bound theory does apply. This will be the subject of the next sections. 

We first state one more general result. The information lower bound \\0\\Q^ = J9^dQp 
can also be written as an inner product with respect to the hidden probability F, instead of 
Qp, according to the following theorem: 

Theorem 1.3.3 i): Let 9 = dqp satisfy kp = A*9 and assume that 9 is contained in 
Tl{A): 9 = Aüo for some a^ G T{P). Then we have 

\ml, = {ao,kp)p-

li): If moreover P is a one-dimensional continuous distribution with support contained in 
[a, b], and kp can be written as kp{t) = fl k'p{x)dx -I- kp{a), with k'p bounded, we have 

WQ,^ fk'p{x)U^)dx 
Ja 

with(t>o{x) = f^aoit)dP{t). 

Hi): If 9 £ TZ{A)\TZ(A), say 9 = linin^oo Aa^, we have 

II^IIQP = }im^{an,kp)p, 

which, under the conditions in ii), can be rewritten as 

I |Ö" | |QP- lim f k'p{x)(j>n{x)dx (1.12) 

with (pnix) = Jj. a,i(i) dP{t). 

Proof: 

i): We have 

ml, = {Aa,,9)Q, 
= {ao,A'9)p 

= (ao,kp)p 
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Under the extra conditions, this can be rewritten as 

rb r /*' 1 f^ 
{ao,kp)p = / a„(<) / R'p{x)dx dP{t) + ao{t)kp{a)dP(t) 

Ja VJa J Ja 

L 
b 

k'p[x)4>a{x)dx 

D 

using J ügdP = 0. 

iii); Similar to i) and ii). 

R e m a r k s . 

I): Although, in iii), the sequence {un} cannot converge if Ö / T^-{A), it may happen that 
0n does converge, say to 0o- Then (1.12) becomes 

mi,^ t k'pix)u^)dx 
J a 

This (j)o may fail to be continuous. Examples will be given in the next section. 

II); In the interval censoring model, the function 

(t>{x) := / ait) dF{t) with a G L°^{F). 

appears explicitly in the score operator Li. Therefore it will play an important role. It 
will be called the integrated score function. From its definition we know that (p satisfies 
4>{TO) = 4'{TM) = '^ and that 0 is continuous for F € Ts-

1.4 Lower bound computations 

In this section, the lower bound computations will be given for the different interval censoring 
cases. Actually, "computations" may not be the right description of what will be done. 
Apart from case 1 and some special choices of F , K and h in case 2, the computations do 
not lead to a formula for the lower bound. Solvability of the score equation will be the main 
topic, and the structure of the lower bound will be investigated. The derivation for case 1 
also appeared in e.g. VAN DER VAART (1991), GW, BICKEL et al. (1993) and HUANG AND 

WELLNER ( 1 9 9 5 A ) . However, some extra remarks will be made that have not been made in 
these references, especially with respect to the situation with 9 G TZ(Li). The lower bound 
theory for case 2 is new. A subdivision is made. In case 2A, the {U, V)-distribution has 
no mass around the diagonal, meaning that Ui and Vi cannot come arbitrarily close. This 
case is also treated in GESKUS AND GROENEBOOM ( 1 9 9 5 A , 1 9 9 5 B , 1 9 9 6 A ) . In case 2B, the 

observation times are allowed to get arbitrarily close, implying that, asymptotically, part of 
the event times get arbitrarily close to being direct observations. This case is also treated 
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in GESKUS AND GROENEBOOM ( 1 9 9 6 B ) . Case A and case B are treated separately, since the 

techniques used are much simpler in case A. Both lower bound calculations are given in the 
next subsections. The distribution theory for case 2A will be treated in detail in the next 
chapter. The distribution theory for case 2B will only be given partially. The many technical 
details that are needed can be found in GESKUS AND GROENEBOOM ( 1 9 9 6 B ) . With respect 

to the asymptotic behaviour of the NPMLE of the distribution function, case 2A is in many 
respects more similar to case 1 than to case 2B. In the next chapter, more will be said about 
this distinction between case 2A and case 2B. For case k, which covers everything not covered 
by case 1 and case 2, the operator equation is completely similar in structure to the one for 
case 2. In section 1.5, the explicit form of the solution is given in case 2, for K{F) = Ef{X) 
and some specific choices of F and H. 

For all interval censoring cases, the basic ingredients are the model assumptions (Ml) to 
(M3), and the score equation 

with 9 G TZ{Li). Most attention will be given to the situation 

L*Lia = kp. 

The operator L* is given by 

Llb = £:[&(observables)|A:]. 

It is the adjoint of the operator Li, given by 

L\a = E[a[X) | observables]. 

The combination L\Li is called the information operator. 

F r e d h o l m in tegra l equa t ions 

An important theory for the cases beyond case 1 is the theory on Fredholm integral equations 
of the second kind. A Fredholm integral equation of the second kind has the general form 

rb 

(t){x) - K{x,t)ip{t)dt = r{t), xe[a,b\. 
J a 

Because of the free occurrence of (t>(x) it is called an equation of the second kind; the fixed 
range of integration makes it a Fredholm integral equation. In 1903, I. Fredholm investigated 
the solvability of such equations. Later, in 1918, F. Riesz extended the results to general 
operator equations of the form 4> — A(f> = r, with A being a compact operator. This theory 
can be found in many textbooks. In KRESS (1989), chapters 1 to 4, a general account on the 
theory is given. We restrict ourselves to giving the most important results for our situation. 
One theorem from REED AND SIMON (1972) is used as well. 

A linear operator A: X —> Y from a normed space X into a normed space Y is called 
compact if it maps each bounded set in X into a relatively compact set in Y. An equivalent 
condition is to say that for each bounded sequence {Xn} in X, the sequence {Vn} = {'^Xr,} 
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contains a convergent subsequence in F . A compact operator with values in an infinite 
dimensional space in some respects almost behaves as a finite dimensional operator. It shares 
the property with finite dimensional linear operators that each bounded set is mapped to a 
totally bounded one. If we have a compact operator from a Banach space X into itself, we 
know that the set of eigenvalues has at most one limit point, namely 0, and for any e > 0, 
the number of eigenvalues A with |A| > e is finite. The important property for us that is 
shared with finite dimensional linear operators is the following one: 

T h e o r e m 1.4.1 Let X be a normed linear space, and let A: X —> X be a compact linear 
operator. 
If I — A is injective, then the inverse operator {I — A)~^: X —> X exists and is bounded. 

Proof: See KRESS (1989), theorem 3.4 

So if the homogeneous equation 
(p-A(t> = 0. (1.13) 

only has the trivial solution 0 = 0, then for each r £ X the inhomogeneous equation 

4> — A4> = r 

has a unique solution 0 £ X and this solution depends continuously on r, with respect to 
the norm of A'. 

Note that hardly any restrictions are imposed on the space X. For example, it need not be 
a complete space. 
In the next chapter, an extension of theorem 1.4.1 will be used, stating what happens if 
the homogeneous equation has a nontrivial solution. We will only formulate it for the case 
X = C{\a, 6]), but more general formulations are possible. As in section 4.1 in KRESS (1989), 
the system {C{[a, &]), C{\a, b])) is a dual system with the bilinear form 

{4), i>)= f 4,{x) ip{x) dx, 0, V € C{[a, b]). 

J a 

If the kernel A' is continuous, the integral operators 

rb 

[A(P]{x) := / K{x,y)<p{y)dy 
J a 

\B4,\{x) := f K[y,x)4>{y)dy 
J a 

are adjoint. 

T h e o r e m 1.4.2 Let X = C([a,6]). Consider the Fredholm integral equation 

<j) — A4> = r, 

with A: X —> X being a compact linear operator. 
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If the homogeneous equation é — A4> = 0 has a nontnvial solution, two possibilities arise, 
depending on the structure of the homogeneous adjoint equation 

ip-Bip = 0. (1.14) 

/; U 
rb 

I r{x)i>{x) dx = 0 for all i> satisfying (1.14), (1-15) 
Ja 

then the inhomogeneous equation 

4> — Alp = r 

is solvable, and its general solution is of the form 
m 

4> = ^ + Y1 °'k4>k 
k=l 

where 4>i,... ,<f>m are linearly independent solutions of the homogeneous equation, (j> de
notes a particular solution of the inhomogeneous equation and Q i , . . . , a^ are arbitrary 
real or complex numbers. Moreover 

m = Am\{M{I - A)) = dim{Af{I - A*)) 

II) If (1-15) IS not satisfied, then the inhomogeneous equation is unsolvable. 

Proof: See KRESS (1989), corollary 3.7, theorem 4.3, theorem 4.15 and theorem 4.17. 

For integral equations of the form Acp = r (these are called integral equations of the first 
kind), possible existence of a solution is much harder to prove. It is the structure {I — A) 
that makes the problem tractable. 

In order to establish solvability of Fredholm integral equations of the second kind, the 
first thing to do is to prove compactness of the operator 

A: (/)(•)'—> I K{-,t)(j>{t)dt. (1.16) 
J a 

Therefore, we have to specify X and its norm. Note that the solvability condition (1.13) is 
not related to any norm. So, after X has been determined, its norm is of minor importance 
with respect to showing solvability, as long as the norm makes the integral operator into a 
compact one. More attention should be given to X. X is determined by the kind of solution 
we expect, which in turn is determined by the structure of the kernel and the function r on 
the right-hand side. At the same time, it should be chosen such that I — A 'is injective, hence 
it should not be chosen too large. In our situation, the integrated score function plays the 
role of <j> in the integral equation. As long as we look at the situation with 0 G TZ(Li), 0 
should be continuous. If the conditions on the distributions are such that the kernel A'(.r, t) 
is continuous, then A(p is a continuous function for each continuous cp. So, if r is continuous 
as well, X can be chosen to be C([a,6]), the space of contirmous functions on [a,b]. If this 
space is equipped with the supremum norm, we can use theorem 2.20 in KRESS (1989): 



1.4 Lower bound computations 25 

T h e o r e m 1.4.3 Let X = C{[a,b]), and let K be a continuous kernel. Then the integral 
operator is compact with respect to the supremum norm. 

An application of the Arzela-Ascoli theorem is the main step in the proof of this theorem. 
Note that compactness also holds if we supply C{[a,b]) with the L2-norm. See KRESS (1989), 
problem 2.5. 
We will also allow for kernels having the following property. 

(C) For each x, A'(x, •) and K{-,x) are bounded real-valued functions, right-continuous 
with left limits (cadlag). The points of jump belong to a finite (possibly empty) set E, 
independent of x. 

With such a kernel, the space X has to be extended. Each cadlag function is mapped to 
a cadlag function, so X can be taken to be the space of cadlag functions D{[a,b]). Then 
compactness of the integral operator can be proved with respect to the supremum norm, 
using an extension of the Arzela-Ascoli theorem. Note that a cadlag function on a compact 
set is bounded. 

T h e o r e m 1.4.4 The operator A as defined in (1.16), with a kernel K satisfying (C), is a 
compact operator on the space of cadlag functions {D{[a,b]), || • ||oo)-

Proof: If the set E of points of discontinuity T, of the functions K{x, •) and K{-,x) is empty, 
the result is an easy consequence of the Arzela-Ascoli theorem. So suppose that r; 6 (a, b) 
is a discontinuity point and that r,_i is the preceding discontinuity point or is equal to a if 
there is no such point. Since the functions K{-,x) have left-hand limits for each x e [a,6], 
we can modify these functions on [Ti_i,ri] by making them left-continuous at r^. Let (ƒ„) be 
a bounded sequence in D{[aJ}]). Then the sequence of functions 

xi-^ {Afr,){x), x e [r,_i,T,],7l = 1 ,2 . . . , 

for the modified kernel A' is equicontinuous and hence has a convergent subsequence in 
(£'([ri_i, r,]), II • lloo), converging to a continuous function g : [T,_i,Ti] i-̂  IR. Since the same 
subsequence of functions, restricted to [ri_i,T,), converges to the restriction of g to [Ti_i,Ti), 
which obviously has a left-hand limit at T;, we get that the sequence of functions 

x ^ {Afn){x), X e [r ,_i ,r ,) ,n = 1 ,2 . . . , 

restricted to the half-open interval [r^-i, r,), has a uniformly convergent sequence, converging 
to a function which is continuous on [ri_i,Ti) and has a left-hand limit at TJ. 

Since we can repeat the argument for the other (at most finitely many) intervals of 
continuity of the (non-modified) functions A'(-,.r), x € [a,b\, we get that the sequence {Afn) 
has a uniformly convergent subsequence, converging to a function g which is right continuous 
and has left-hand limits at the points T,. 

D 

The following theorem on compactness in L2-spaces will be used as well. 
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Theorem 1.4.5 Let X = L2{[a, 6], /i) and let K be a kernel satisfying 

fb rb 

I I [K{x, t)]^ d^. X fi < oo. 
Ja J a 

Then the integral operator A is compact with respect to the L2-norm. 

Proof: See section VI.6 in REED AND SIMON (1972). The proof of this theorem uses tech
niques different from an application of the Arzela-Ascoli theorem. 

Remark: The operator from theorem 1.4.5 is a Hilbert-Schmidt operator. 

1.4.1 Case 1 

In case 1, we have one observation time Ti for each unobservable event time X,. Suppose 
the observation times Ti to have an absolutely continuous distribution function G with a 
density g, and a support [770,??M]. Let the event times Xi have an absolutely continuous 
distribution function F with a density ƒ and a support [T(,,T„]. We assume Xi and Ti to be 
independent (compare assumption (M2)) and F to be dominated by G (compare assumption 
(M3)). Note that strict inequality % < ô and/or r„ < rjM implies that on part of the event 
times no information at all may be obtained, since the corresponding observation time is 
outside the support of F. The score operator Li has the form 

[L^a]{t,b) = E[a{X)\T = t,A = S] 

bSl^adF ^ {l-6)Jl-adF 

m + 1 - Fit) 
a.e. - [QF,G\ 

with adjoint 

[Llb]{x) = E[b{T,A)\X = x] 

= / b{t,l)g{t)dt+ b{t,0)g{t)dt a.e.-[F]. 

First consider the case 6 G TZ(L\). Then the score equation 

L\Lia = kp 

has to be solved in a £ L2(F). L\Li has the form 

[L\Lia]{x) = I K{x,u)a{u)dF{u), 

with kernel 

^ ( ^ • « ) = / T^)dG{t)+ Tk)dG{t). 
Jt = TjO Jt = X\/U ^ ' 
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Since J J K^{x,u)dF{u) dF{x) can be shown to be finite (see also section 3.2 in part I of 
GW), we can apply theorem 1.4.5 to obtain compactness of LJLi with respect to the L2{F)-
norm. The composition Ao B oi two operators is compact whenever one of them is compact, 
unless the other one is unbounded. Since the identity operator is not compact in any infinite 
dimensional space, (LjLj)"^ does not exist as a bounded operator, and existence of a solution 
cannot be shown directly. 

We will follow another approach. L\Lia = Rf can be written as an equation in the 
integrated score function 4>{x) = J^" adF, having the form 

Since (p{t) = 0 ii t < T^ and t > T^, integration starts at TQ and ends at T^ . 
We assume 

(Gl) g is continuous, with g{x) > 0 for all x G [TO,T„] 

(Kl) kf \s continuously differentiable 

By taking derivatives on both sides, we get, 

'^^''^ 9{x) + ^,g{x) = k'Ax), (1.17) 
1-F{xy^ ' F{x 

from which the following expression for 0 is obtained 

,,) = ,. M & z Z M . (US) 
9(x) 

Thus the canonical gradient is 

MU) = - ^ Ü + d-^) (̂̂  
F{t) ' 'l-F{t) 

- f ( ' 
9(0 

-'^'Aty-^ if5 = 1 
k',{t)!^ ifé = 0 

sC) 

and the information lower bound is, using theorem 1.3.3.ii) 

k,'p{x)4>{x) dx 

,2 F{x)[l - F{x)] 
' T O 

= / Ki^f 
J TO 9{x) 

dx. 

This is subject to the condition that 0(.r) can be obtained as the integral / J " a{t) dF{t) 
over some L2(F)-function a. Since the derivative a = dcp/dF is equal to 

- ( 1 - 2 F ) + F ( 1 - F ) ^ 
9 dF 

the condition 
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(CI) {k'/g) o F - i is Lipschitz on [0,1] 

is sufficient to make a square integrable. The same Lipschitz condition (CI) is used by HUANG 
AND WELLNER ( 1 9 9 5 A ) to prove asymptotic optimality of the NPMLE for linear functionals 
in case 1. I will come back to this proof in the next chapter. The condition J adF = 0 is 
fulfilled because 0(TO) = 0. 

If we use the somewhat stronger assumptions that both ƒ and g are bounded away from 
zero on [TO,T„], with g having bounded derivative g', and that ~^K' is bounded, we obtain 
that 

dF g g 

rf/t' k' dg 

IF' '^dF 

is an L2(j?^)-function. In GW, the NPMLE of the mean is proved asymptotically to attain the 
efficiency bound under these stronger conditions, using a method of proof which is different 
from the one in HUANG AND WELLNER ( 1 9 9 5 A ) . 

It may happen that 9 is contained in 7l{L\)\7l{Li), as is illustrated by the following examples. 

E x a m p l e 1. Take F{x) = x on [0,1], g{x) = l^/x on [0,1] and K{F) = EF{X). Then we 
have Kf (x) = x—\, and <j){x) = ^y/x{l — x), the latter implying a{x) = 4)'{x) — s/x — \/{i\/x), 
which is not a square integrable function. However, if we take the sequence {a,,} C L\{F), 
given by 

w ^ ^ _ | / ? - | y ^ i f O < x < l / n 
""^•^^~ \ V ^ - l / ( 3 v ^ ) i f l / n < 2 ; < l , 

each a„ is continuous, {on} does not converge, but we have, pointwise, 

lim / unit) dt = é(x), 

and, in Lo-norm, 

lim LiUn 

E x a m p l e 2. Another class of examples for which 9 is contained in 7l{Li) \ TZ{Li) arises if 
g or k' has jumps. As long as g{x) > c > 0 for each x, we can define a function (p as in 
(1.18). Since this 4> is not continuous, 9 cannot be contained in TZ{Li). However, at least if 
ƒ > c' > 0 at these points of discontinuity, (p can be approached by continuous (p^ that satisfy 
4>n{x) = / J " an{t) dF{t), with a G L2{F). For example, one can take (p„ = F ( l - F)7n, with 
7„ linear with slope of order n near the jump, and otherwise equal to k'/g. When (pn is 
chosen in this way, we again have 9p = lim„^oo^ittii with respect to the L2-distance. 
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1.4.2 Case 2 

Functionals that are pathwise differentiable in case 1, are likely to be the same in case 2, 
since it is a more informative situation. Indeed, the following function solves Lib = kp: 

b{u,v,b,-i)= I Q if 7 = 1 (1.19) 

[k'A^)^) if 5 = 7 = 0 

Since this function neglects the middle part, 7 = 1 , one may already suspect that it is not 
the canonical gradient Ö, meaning that is contained in L^iQF,H)\'^i^i)- ^^ ^^^ 1̂ ^̂  vfith the 
problem to project this gradient into TZ{Li) in order to obtain the information lower bound. 
However, outside finite dimensional spaces, there is no standard way to perform projections. 
So we leave this approach, and try to solve the operator equation L\6 = kp directly. 

We will mainly consider the case 9 £ TZ{Li). So solvability of the equation 

kp = L\L\a 

in the variable a e L\{F) will be the point of interest. We follow the same approach as in 
case 1. kp = L\Lia can be reformulated as an equation in 4>: 

KF(-T) = - / / fff;h{u,v)dvdu 
Ju—xJv—u ^ 

~r r"ii!i5i^M«,«)'^^d« (1-20) 

+ r r j^.hiu,v)dudv a.e.-[F]. 

The support of F may consist of a finite number of disjoint intervals. However, (1.20) is an 
equation a.e.-F, so we need not worry about intervals where F does not put mass. Without 
loss of generality we assume the support of F to consist of one interval [TQ, T ^ ] . 

Differentiating equation (1.20) on both sides, and writing k{x) instead of k'p{x), yields 
the following equation: 

{x) + d{x) Jf- F(i)~f(l) '^'•''^ / j ^ ^ F(t)-f( i) "•(^' ' '^)"^ k{x)d{x) (1.21) 

with d{x) being the function 

d(x) = ^(^)'^-^(")l (1 22) 
''^''' hi{x)[l-F{x)] + h2{x)F{xy ^'•''> 

Here hi and /!2 denote the marginal densities of U and V respectively. 
Unlike case 1, taking derivatives does not yield an explicit formula for (p. Also, further 

differentiation does not simplify things. We will investigate the solvability of equation (1.21), 
and whether the canonical gradient 9 obtained via the solution (f> is in TZ{Li). Moreover, 
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solvability of (1.21), and properties of this solution, will be investigated for convex combina
tions 

F = (1 - a)Fo + aPn, 

where FQ G TS (the unknown distribution) is continuous and F„ (the NPMLE of FQ) is purely 
discrete. This will be needed in the next chapter on the NPMLE. The function k, however, 
remains completely determined by the underlying distribution FQ (so k = H'p^)- Therefore we 
write k instead of k'p. 

If (1.21) is solvable, its solution 0 can be shown to contain a factor F ( l — F) , just like 
in case 1. The structure of d already suggests this factor to be present. We will essentially 
need this property in the next chapter. Validity of the factorization is shown by inserting 

0 = F ( 1 - F ) ^ 

in (1.21). Some reordering yields an integral equation in ^: 

i l„ MM) °̂(̂ ' -) ̂ ^ - IZ ^^^p^ '̂ °("' *) '^i k{x)c{x) (1.23) ^(x) + c(x) 

with c{x) given by 

l / c ( i ) = / [I- F{t)]h{t,x)dt+ F{t)h{x,t)dt 
Jt=rio J t—x 

= h2{x)E[l-F{U)\V = x] + hi{x)E[F{V)\U = x] (1.24) 

and 
h°{t,x) = F{t)[l- F{t)]h{t,x) 'dt<x 

h°{x,t) = F{t)[l-F{t)]h{x,t) i{x<t 
(1.25) 

Note that, on [770, To] and [T„,7?M], h°{-,x) and h°{x, •) are zero, so the domain of integration 
in (1.23) can be restricted to [TO,T„]. In c~ \ however, integration over the whole interval 
[VO,I1M] is performed. 

If (1.23) is solvable as well, then the factorization indeed holds. The lemmas and theorems in 
the rest of this section apply to both the (^-equation (1.21) and the .^-equation (1.23), since 
they are very similar in structure. 

We briefly pay some attention to the situation with a combination of type 1 and type 2 
censoring. The most natural way to model such a combination, is to split the observation 
time distribution into a univariate case 1 part and a bivariate case 2 part. If /i® denotes the 
density of the combined distribution, we can write 

with /i'^' and /i^^' denoting the densities, conditioned on the univariate and bivariate part 
respectively, and Pi and /?2 the fractions of the combined observation time distribution yielded 
by both parts. We have /?i + /32 < 1, with equality if to each event time corresponds at least 
one observation time on \T„,TM]- Note that /i*̂ '̂ and h'-^^ have their mass concentrated on 
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[TOJTM] and {{U,V)\TO < u < v < r „ } respectively. We obtain an integral equation which is 
similar in structure to (1.21), but with d{x) replaced by 

F{x)[l - F{x) 

0ihm{x) + p2 {h^'\x)[l - F{x)] + hf\x)F{x)}' 
(1.26) 

The function d® can also be obtained from (1.20) directly. For if we split off the part of h in 
(1.20) outside {TO < u < v < T „ } , we obtain (1-21), with TJO replaced by TQ, TJM replaced by 
TM, and the denominator of d{x) given by 

ƒ h{u,x) du+ ƒ h{x,v)G 
Ju=rio JV=TM 

/ h{x,v)dv [ 1 - F ( x ) ] + / h{u,x) 
Jv — X J \_Ju — To 

du F{x) 

So Pih^^'' can be obtained by considering the mass of the bivariate observation time distribu
tion h outside the support of F , namely on [??OIT"O1 X [T'O,'''J«] and on [TO,T„] X [7^,1]^]- Pihf-'^'^ 
is the mass of this observation time distribution on {{U,V)\TO < u < v < T^} • The remaining 
part oi {{u,v)\ria < u < v < 7]^} contains the observation time mass that corresponds to the 
situation with no information at all. From these observations, and especially formula (1.26), 
we see that restricting to the strict case 2 situation does not lead to loss of generality. So 
integration in (1.21) and (1.24) will be considered from r,, to T „ , and formula (1.22) will be 
used. 

Apart from the model conditions (Ml ) to (M3), some extra conditions will have to be 
introduced in order to make the proofs in this section possible. We suppose 

(HI) hi and /i2 are continuous, with hi{x) + h2{x) > 0 for all x G [TO,T„] 

(H2) h{u, v) is continuous 

(Fl) The density of FQ is bounded away from zero, say /o(a;) > c for all x € [T(,,rM] 

(Kl) k'p^ — k is continuous 

Of course, (H2) implies continuity of h\ and hi, which is also stated in (HI). However, (H2) 
can be relaxed (see remark H after theorem 1.4.7). (HI) is the analogue of 5 > 0 in case 1. 
Note that (HI) implies that the functions c and d are bounded. The above conditions are 
sufficient to prove solvability of the integral equation for contirmous (/> in case 2A. Showing 
solvability in case 2B, and, for both case 2A and 2B, showing that (j) is an integrated score 
function, i.e. 4>{x) = J^" a(t)dF{t) for some a G L2{F), requires some more conditions. 
These are: 

(H3) The partial derivatives Aj(x) = ^h{x,t) and A^(x) = ~h{t,x) exist, except for at 
most a finite number of points x, where left and right derivatives with respect to x do 
exist for each t. The derivatives are bounded, uniformly in t and x. 

(K2) k is differentiable, except for at most a finite number of points x, where left and right 
derivatives exist. The derivative is bounded, uniformly in x. 
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With respect to the NPMLE F„ we assume 

(CF) Fn is a non-degenerate, non-defective, piecewise constant distribution function with at 
most finitely many points of jump. Let D = {TQ, TJ, . . . , rm,TM} denote the ordered 
set of jump points of Fn, augmented with the endpoints of its support. Moreover we 
assume F„ to satisfy 

sup \Fn{x) - Fo{x)\ < f 

for some e to be determined. The class of functions thus obtained is denoted by T. 
Note that e has to be uniform over F„ G J--

Note that (CF) does not hold for all possible realizations of F„. However, by the strong 
uniform consistency of F„ (see the next chapter), together with condition (Fl) , it always 
holds for 71 sufficiently large. 

If the integral equation (1-21) has solution 4>, the canonical gradient 9p G 7?.(Li) has the 
form: 

a t f, \ fitlM , 4>F{V) - <PF{U) , ^, „^ <PF{V) ,, ^^. 

F(u) F{v) — F[u) 1 — F{v) 

Now one can see that the gradient 6, defined at the beginning of this section and solving 
L*& = Kf, is indeed not the canonical gradient since the middle part of the canonical gradient 
is not zero. 

A: Obse rva t ion t i m e s b o u n d e d away 

For this case, we only have to look at the situations a = 0 ( F = F^) and Q = 1 ( F = FQ). 
When looking at equations (1.21) and (1.23), we see a singularity of the form l/{F{v) — F{u)) 
appearing in the kernel, implying that it does not belong to one of the standard integral 
equations. However, in case A the singularity vanishes. Formally we suppose: 

(H4) h does not have mass close to the diagonal, i.e. Probjl^ - U < e^} = 0 for some (o > 0. 

The e in condition (CF), determining ƒ", is chosen in such a way that F„{v) — Fn(u) remains 
bounded away from zero as long as w — u > CQ- This implies that (1.21) can be rewritten as 
a Fredholm integral equation of the second kind. The kernel is equal to 

K{x,t) 
d{x)D{x,t) 

l+d{x)r" D{x,t)dt' 
(1.28) 

with D{x, t) defined as 

D{x,t) 
h{t,x) 

F(x)-F{t) 
h(x,t) 

lit <x 

if f > X F(t)-F(x) 

The function r in the general Fredholm form (j) — Acp = r is in our situation 

(1.29) 

r{x) 
k{x)d{x) 

l + d{x)g"Dix,t)df 
(1.30) 
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I 

For F = FQ the kernel, d and r are all three continuous. So we can take X = (^([TOJTM]) 
and we have compactness of the integral operator by theorem 1.4.3. For F = Fn £ T the 
kernel obtained satisfies condition (C) on page 25. By theorem 1.4.4 we have compactness of 
the integral operator on Ö( [TO,T„] ) . NOW we are ready to apply theorem 1.4.1, establishing 
solvability of both integral equations (1.21) and (1.23). The conditions stated are slightly 
more general. 

Theorem 1.4.6 Consider the integral equation 

d{x)D{x,t) 
c)+ f 

JT, TO i + d ( x ) / ; - D ( . x , i ) d t 
(p{t)dt = r{x) 

with D > 0 satisfying condition (C) on page 25. r and d are cadlag functions having at most 
finitely many jumps, with d being nonnegative. 
This equation has a unique solution in D(\TO,TM]). 

Proof: 
Theorem 1.4.1 will be used. So consider the homogeneous equation 

4>{x) = ƒ A'(x, t) (j){t) dt for all x € [T», T„ ] 
JTO 

This equation is equivalent to 

d[x) D{x,t)dt 4>{x) = d{x) D{x,t)(p{t)dt, (X + (1.31) 

for all X G [7"O,TM]. Suppose (p{x) / 0 for some x. Without loss of generality, we may assume 
<i){x) > 0. 
If the supremum is attained, say at s, we get, since D{s,t) > 0 and d(x) > 0, 

nu r fTM 

d{s) D{sJ)(j){t)dt< d{s) D{s,t)dt 

The right-hand side is strictly smaller than 

(/)(s)+ d{s) / D{s,t)dt 0(s) 
which contradicts equation (1.31). 
It may happen that 0 jumps downward just before the supremum is attained: 

sup (p{x) — <P{s—) > 0(s) 
xelro.Tu] 

Then one can find a 6 > 0 such that (j){s — è) > 0 and 

d{s-6) f 
Jit {( .0(f)>0(^)} 

D{s-6,t)(j){t)dt< l4>is-ö) 
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Hence 

d{s-6) D{s-6,t)(t>{t)dt< d{s-6) D{s-è,t)dt 4>{s-6) + \fp{s~b), 
JTO L JTQ J 

again contradicting (1.31). 
D 

If F = Fo, and rf, h and r are all continuous, the solution 0 is contained in C([ro, r„]). 
However, by (H3) and (K2), it may not be differentiable everywhere. At some points it may 
only have separate left and right derivatives. The next theorem proves that the derivatives 
are bounded, uniformly in x, which yields 6 G TZ{Li). 

Theorem 1.4.7 Let the conditions (Ml) to (M3) on page 15, (HI) to (H4), (Fl) and (Kl) 
and (K2) he satisfied. Then the score equation kpo — L\Lia is solvable. 

Proof: 
Taking derivatives on both sides of the integral equation, using left and right derivatives if 
necessary, existence of, possibly different, left and right derivatives (j)' is shown. Then we 
obtain, writing F and ƒ instead of FQ and /Q: 

4>'{x) = d{x)k'{x) 

+d'{x)(t>{x)/d{x) 

-d{^){lll^£êïF^h{t,x)dt + J^"jj^^h{x,t)dt] 

We have (j>/d = ^ [hi{l — F) + h2F]. Bringing everything containing cp' to the left-hand 
side, we obtain 

(p'{x)ll + d{x) j^ P^^^lp^^^h{t,x)dt + d{x) j j(T)h^) K^J) dt^ 

= d{x)k'{x) 

+d'{x)ax) Mx)[l - F{x)] + h2{x)F{x)] 

-rfW{£l[fi5|^iM*,x)d<-£ 0W-<»(j) a_ 
F{t)-F(x) dx 

h{x,t)dt\. 

The right-hand side is bounded, uniformly over x. Since the part between curly brackets on 
the left-hand side is bounded away from zero, we get boundedness of <p'. Using f > c, this 
implies d(p/dF e Ll{F). 
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Remarks: 

I); The conditions (Fl), (H3) and (K2) can be weakened, more in the line of {a'p^/g) ° FQ^ 
being Lipschitz on [0,1] for case 1. Instead of (Fl), (H3) and (K2), it is sufficient to 
suppose 

dk 

and 

„ is bounded 
dFo 

— h{t,x)\<Kgi{t) and l-érh{x, t)\ < Kg2{t) 

with gi independent of x and satisfying 

ƒ' 
J To 

giit) dt < oo. 

II): From theorem 1.4.6 we see that solvability of the integral equation also holds if we 
allow for discontinuities in the simultaneous observation time density /i or in k. The 
function (p thus obtained is in general no longer continuous, but will be contained in 
TZ{Li) \ TZ{Li). An example in which (H2) is violated, but continuity of the solution 
does hold, is: h is constant, and zero on the set 0 < y — x < €„ along the diagonal. 

When F = Fn, the same kind of boundedness property can be proved for 0' and (,', 
uniformly over F^ € ^- Therefore we introduce the class of integral equations 

{IQflFeT}, 

given by 

Mx) + dp{x) [£^^ %]Z''/(}^ h,{t, x) dt - ^^" ";:|;|:t^i)' hpix, t) dt 

= k{x)dF{x). 

Here hp > Q satisfies condition (C) on page 25, {df\ F G JF} is uniformly bounded and 
nonnegative, and k is a cadlag function having at most finitely many jumps. Let (t>F be the 
solution to IQp. 

First we prove a uniform boundedness property of (pp itself. 

Lemma 1.4.1 The class {(J)F\ F 6 T} is uniformly bounded. 

Proof: 
Let F e ƒ". Define 

and 

So we have 

IF{X) := l^^y^lS"^^ hp{t,x)dt 

J^(3:) := _ £ ^ ^HO-M^) hp{x, t) dt 

(pp = dp[k — Ip — Jp] 
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The proof is based on the observation that Ip and Jp have a reducing influence on the value 
of the extremum. 
First suppose that the minimum and the maximum of (pf are attained. Let m = a,Tgmin{(f)p) 
and M = a rgmax(0f) . 
Since 4>p reaches its minimum at m, both /^ (m) and Jpim) should be < 0. Hence, for each 

4'F{X) > <AF("Ï) = dF{m)k{m) — dF{m)[lF['m) + J f (m)] 

> dF{m)k{m). 

Likewise, from IF{M) > 0 and JF{M) > 0 we derive 

(PF{X) < dF{M)k{M) 

for every x. 

If the maximum is not attained, say supj.gr^u ^^-i <i>F{x) = 4>F{M—) > <J>F{M), we have 

(t>F{x) < k{M-)dF{M-) for all x. 

If the minimum is not attained, we have </>f ( i ) > k{m—) dF{m—) for all x. 
From boundedness of k and uniform boundedness of {dplF e ƒ"}, uniform boundedness of 
{4>F\F e T} follows. 

D 

Remark: 
From the proof we see that, if k is nonnegative, (pF is nonnegative as well; likewise k < 0 
implies 4>F < 0. This also holds ii F = FQ. SO, for example, when the functional A' is the 
mean, with k = 1, we have </> > 0. 

The proof of the following lemma is very similar to the proof of theorem 1.4.7. 

Lemma 1.4.2 Let cpp and $^f denote the solutions to the equations (1-21) and (1.23) respec
tively. The following holds: 

I. The derivative of (pp at the points of continuity is bounded, uniformly over F £ T and 
the points of continuity, implying 

\<PF{y)-4>F{x)\<K,\y-x\ 

if y and x are in the same interval between jumps. Here Ki is independent of F and x 
and y. 
The same holds for ^F-

II: The jumps satisfy 
\Mx) - <pFix-)\ < A'2 \F{x) - F{x-)\, 

with A'2 independent of x and F. 
The same holds for ^F-
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Proof: The denominator of d^ satisfies 

inf inf [hi{x)[l - F{x)] + h2{x)F{x)] > 0. (1.32) 
Fe:F ig[To,TM] 

For let X G [TO,TM] be arbitrary. 

If X satisfies To + €„ < x < T^ — €„ we have, using (H4) and F G ƒ", 

hi{x) [1 - F{x)] + /i2(x) F{x) > c'{hi(x) + h2{x)) > 0. 

If To < X < To+Co, we have h2{x) = 0. Hence hi{x) > 0 by (HI), implying hi{x) [l-F{x)] > 0. 
The argument for T„ > x > r^ — €o runs in a similar way. 
(For the denominator of cp the argument is almost the same.) 
Now the proof is almost similar to the proof of theorem 1.4.7. We only give it for 4>p. 

I: At each continuity point x of F we have, by taking derivatives and some reordering: 

0;,(x) | l+df.(x) ƒ ;p(^j^/ i (^ ,x)di + rff-(x)£" p^^j^j^^h{x,t)dt\ 

= rff (X)K'^„(X) + d'f (x) [/i,(x)[l - F(x)] + h2{x)F{x)] 

-dfix] 4>r(x)-4>F{t) a_ 
F{x)^F(t) dx h[t,x)dt- ['' ij}§Mlh{x,t)dt]. 

By lemma 1.4.1, using (1.32), { 0 F | F G T] is uniformly bounded. Hence, again using 
(1.32), the right-hand side is bounded, uniformly over x and F. Since the part between 
brackets on the left-hand side is bounded away from zero, we get uniform boundedness 
o f (t>'p. 

II: At the points of jump x of F we get a similar expression. Define Ag{x) := g{x) — g{x—). 
Then we have 

A,»F(X) 
AF(x) | l + rff (j--) ƒƒ F(x)-F(t) Ht^^) dt + dF{x-)l^" F{t)-F(x) ^̂ (2̂ ' *) ̂ 4 

^ ^ ^ ( x ) Mx)[l - F(x)] + h2{x)F{x)] 

+ "/"i-^ ; / {f(i)-F(t)}{F(i-)-f(()} ^ ' -' 
•f TQ 

+ du-(r-) f " (t>F{l)-'t>F(x~) , / ,^,. 
-rapyx ) j ^ {F(t)-F(x)}{F(t)-F(x-)} "\-^^'•) "•'•^ 

with Adf(x)/AF{x) given by 

Adpjx) [ l -F(x) ] [ l -F(x- ) ] fe i (x) - F(x)F(x-)/i2(x) 
AF(x) ~{hr{x)[l - F(x)] + h2{x)F{x)}{h,ix)[l - F(x-)] + h2{x)F{x-)} 

Using boundedness of Adf (x)/AF(x), boundedness of A(pp{x)/AF{x), uniformly over 
the points of jump, is obtained. 

D 
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B: Obse rva t i on t i m e s a r b i t r a r i l y close 

We now allow the observation time density to have mass around the diagonal. So condition 
(H4) is no longer imposed. The approach for case A can no longer be used directly. We 
first have to change the integral equation to make it into a Fredholm integral equation by 
"desingularization". The change we make is replacing {F{v) — F{u)) by {F{v) — F{u)) V e 
for some e € (0,1). This equation is similar in structure to the one from case A, so it has a 
unique solution by theorem 1.4.6. 

What remains to be proved is the convergence of </)£, as e J. 0, to some function 0 in 
C'([ro,T„]) or D{[TQ,TM]) with respect to the supremum norm | | . ||oo. Moreover, this </> has to 
satisfy the original equation (1.21). Finally, for F = FQ, 4> needs to be Lipschitz, implying 
that d(p/dF is an L2(F)-function. Boundedness of 4>t as well as ff^fÊz^M., uniformly in e, is 
needed. 

The case F = F^ will not be considered in this section. We will look at convex combina
tions F = {l — a)Fo + aFn, with a G [0,1). These combinations have the advantage that they 
do not have intervals of constancy. If F has jumps, the solution of the integral equation will 
in general also have jumps. However, the key observation in analyzing the integral equation 
and in proving the efficiency of the NPMLE is that, even when F has discontinuities, we 
can make a change of scale in such a way that the solution of the integral equation can be 
extended to a Lipschitz function in the transformed scale. 

We first introduce some notation. Let G{y) = F'^{y), y € [0,1], with a derivative g 
which exists except for at most a finite number of points, where, however, G has left and 
right derivatives. Furthermore, let k{y) = k{G{y)), H{u,v) = H{G{u),G{v)) and likewise 
h{u,v) = h{G{u),G{v)), and let dp be defined by 

(1 - y)hi{y) + y h2{y) 

where hi = hioG, i = 1,2. Note that, if F has jumps, dp ^ dp o G. Also note that k, d and 
h are continuous. In a similar way, we define 

My) = r (1 - s) h{s. y) dG{s) + f' sh{y. s) dG{s) 
JQ Jy 

and h°{s, y) = s( l - s)h{s, y) and h°{y, s) = s ( l — s)h{y, s). 

Lemma 1.4.3 (i) The integral equation 

My) = My){Hy) - [ ^ f ^ Ks.y) dG{s) + f^ ^f^ Hy, s) dG{s)] (IM) 

has a unique continuous solution 4>(, satisfying 

inf dF{x)k{x) < 4>€{y) < sup dp{x)k{x), (1.35) 

for all y G [0,1] and e > 0. 
For points y in the range of F , say y = F(x) , we have (pe{y) = 4>t(x) fL 
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(ii) The integral equation 

Uy) = èF{y){Hy)- I' ^^^h%s,y)dG{s) + 1^ ^ ^ ^ (1.36) 

has a unique continuous solution <̂ j, satisfying 

inf CF{x)k{x) < ^i{y) < sup CF{x)k{x), (1-37) 
3:e[To,TM] xe[To,TM] 

for all y S [0,1] and e > 0. 
For points y in the range of F, say y = F{x), we have Ce(ï/) = (,({x) 

Proof: 
ad (i) By theorem 1.4.6, the 0j-equation (1.34) has a unique continuous solution, for each 
€ > 0. Note that the integration in (1.34) is only with respect to dG{s) and therefore only 
involves values belonging to the range of F. So for points y in the range of F we have 

My) = MGiy))-

The proof of the bounds in (1.35) is completely similar to the proof in lemma 1.4.1 
ad (ii) The argument is completely similar to the argument given for (i). 

D 

The following lemma is the crux of the proof of the existence of the solution to the original 
integral equation. 

L e m m a 1.4.4 The functions 4>( are Lipschitz on [0,1], uniformly in e > 0. 

Proof: As before, let r i , . . . ,Tm denote the points of jump of F. Furthermore, let Zi — 
F{T,), i — 0,... ,m, M. The interval [zi, Zi+i\ can be divided into two parts: 

(1) the interval [2,, z[), where z'^ = F(ri+i —). The interval [2,, z[) corresponds to the interval 
[r,,r,+i) in the original scale. The function G is strictly increasing and differentiable 
on the interval (2,, 2,'), and is right and left differentiable at 2, and 2,' respectively. 

(2) the interval [z[, 2,+i]. This interval corresponds to the jump of F at TI^I- Here the func
tion G is constant, again having right and left derivatives at the respective endpoints. 

If i = m, the second interval only consists of the point 1. Let 

D' = { 2 o , . . . , 2 „ } U { 2 ; , . . . , 2 ; j 

U {discontinuity points of k'{y), d'p{y), 

A'(2/) = | ; % , s ) f o r y < s, and ^\y) = fh{s,y)iox y > s}. 
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Then 4>c{y) is differentiable for y ^ D', and has left and right derivatives for y G D', satisfying 

0:(2/)= d'^{y)Uy) [{i-y)h,{y) + yh2{y)] 

>.(y)-'A.(^) _a_/ 
(y-s)Ve dy 

+ 

+d^iy){k'iy) - f^ % i ^ |;Ms, y) dG{s) 

fHï^iHy^s)dG{s)] 

My){l{'i^-'-^t^}dHis,y) 
J s:y—s>£ 

+ l_J^^-'-^n^}dHiy,s)] 

-My) 4>'Ay) i-'{f ^ Hs, y)9{s) ds + f^' h{y, s)g{s) du]. (1.38) 

Note that ^H{y, s) = h{y, s)g{y) and similarly for the other partial derivative of H. Moving 
the terms containing ((>[ to the left-hand side of (1.38), shows that (f>[{y) has a finite upper 
bound, using lemma 1.4.3. Moreover, cp[ is piecewise continuous on the closed intervals from 
one point in D' to the subsequent one. So (j)[ attains a maximum value, which may be a right 
or left derivative. 

The rest of the proof is devoted to showing that this maximum value is uniform in e. Let 
Mf := supjgro 1] ^j(j/) and suppose that 4>[ attains its supremum at a point M. Note that 
Mf > 0, since (f>e{0) — 0e(l) = 0 and (j)^ is continuous. Then, if 0 < s < M — e, 

0',(M) 4>.{M) - Ms) ^ r{0:(M) - }[{u)} du ^ 
M-s {M-sf - {M-sY 

Likewise, if 1 > s > M -I- e, we get 

MM) Ms) - MM) 
s- M {s- My 

> 0. 

So these parts work in the opposite direction, and are harmless in (1.38). 
Now let K^{y) be defined by 

K,{y) := df{y)k'{y) + d'p{y)Uy)[{i-y)hi{y) + yHy)] 

-My){[ ^ f ^ IHs, y) dG{s) - J^ ï f ^ f^Hy, s) dG{s 

and let Ci{y) be defined by 

C,{y) := 1 + dfiy) t-'[j' h{s, y)g{s) ds + | ' ^ ' h{y, s)g{s) ds], y e [0,1]. (1.39) 

Then we have 
MM) C,{M) < K,{M), (1.40) 
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implying 
M, < sup A',(s)/C,(s). (1.41) 

se[o,i] 

In a similar way, if m-e := infsg[o,i] <t>'e{s), we get 

m, > inf KAs)/C,{s). (1.42) 

Let the function As be defined by 

My) := dF{y)U'jlh{s, y)\dG{s) + j'^'lfyHy, s)\dG{s)V y £ [0,1] 

Fix (5 > 0 such that, for all ye [0,1] 

My)/C.{y) < \. (1.43) 

Note that 6 > 0 can be chosen independently of e > 0, since 

limC,(2;) = 1 + 2dF{y)h{y,y)g{y), y € (0,1). 

Then we get from (1.43), for each y e [0,1], by applying the mean value theorem on the 
ratios {4>€{v) - (t>i{u)}/{v — u), 

< As{y) max{M„ \m,\}/C,{y) < \ max{M„ \m,\}. 

Defining Bs(y) by 

Bsiy) := df{y)W{y)\ + \d'Ay)\\(i-y)hi{y) + yh2{y)] sup {c^(s)|^s)|} 

+ ^AM sup {d,{s)\k{s)\} [sup \-§-h{s,y)\+ s u p | ^ % , s ) | } 
0 selO,l] ^€[0,yl "̂ ^ sely,l] " ' 

we get, for y G [0,1], 

dF{y)\~k'{y)\ + \My)Uy)\ [{•^-y)h{y) + yh2{y)] 

+d,{y){jy Ê M ± M IAJ,(,,y)\dG{s) + £ ^ & M ± M !!_/,(,,,)|rfG(s)} 

< My)\~k'{y)\ + \d'Ay)Uy)\ [{i-'y)h{y) + yh2{y)] 

+ ̂ ÉfM. sup \4>^{s)\{r'\fh{s,y)\dG{s)+ f \f^Hy,s)\dG{s)} 
0 se[0,l] '-•'0 " Jy+6 " ) 

< Bs(y)<c, (1.44) 
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for some constant c, independent of e and y. Hence, for each y e [0,1], 

\4>:iy)\ < A6iy)/C,iy) + Bsiy)/C,{y) < i m a x { M „ \m,\} + Bs{y)/C,{y), 

implying 
|max{Me, |m, | } < sup Bs{s)/C,{s) < sup c/C,{s) < c', (1.45) 

se[o,il se[o,i] 

for some constant c' independent of e. 
Hence 4'[{y) is bounded on [0,1], uniformly in e and y, implying that 0E is Lipschitz, uniformly 
in e > 0. 

D 

We now have the following theorem. 

Theorem 1.4.8 Let G{y) = F ^{y), y G [0,1], with a derivative g which exists except for 
at most a finite number of points, where G has left and right derivatives. Furthermore, let 
k{y) = k{G{y)), H{u, v) = H{G{u), G{v)), h{u, v) = h{G{u), G{v)), and let dp be defined by 

dpiy) := 
y{^-y) 

( l - t / ) / i i ( 2 / ) + t//i2(2/)' 
(1.46) 

where h^ = hi o G, i = 1,2. Then 

(i) The integral equation 

4>{V) = dF{y){k{y) - [ ^ ^ ^ dH{s, y) + f^ M i d dH{y, s)], y e [0,1], (1.47) 

has a unique solution which is Lipschitz on [0,1]. 

(ii) The Lipschitz norm in (i) has the following upper bound. Let C{y) be defined by 

C{y):=i + 2dF{y)9{y)Hy,y)-

Moreover, let As{y) and Bs{y) be defined by 

J^JfyHs, y)\dGis) + J^ \lh{y, s)\dG{s) 

(1.48) 

(1,49) 

and 

Be{y) ••= My)\k'{y)\ 

-\d'Fiy)\ 

2dF{y) 

+ \d'piy)\ Ul-y)-h,{y) + yh2{y)] sup {c>(s)|fc(s)|} 

sup {dF{s)\k{s)\} X 
Ö se[o,il 

x { s u p | | ; f t ( s , 2 / ) l + snp \lh{y,s)\} (1.50) 
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At the points in 

D' = {discontinuity points of g{y), augmented with 0 and 1} 
U {discontinuity points of k'{y), d'p{y), 

A\y) = ^hiy, s) for y < s, and A\y) = ^/i(s, y) for y > s}, 

Ai and B^ have two versions, one corresponding to taking left derivatives and one 
corresponding to taking right derivatives. 

Then there exists a 6 > Q such that 

sup Ae{s)/C{s) < 1/2 
se[o,i] 

and we have 
\4>{v) - 4>{u)\ <c{v-u),0<u<v <1, (1.51) 

where c is given by 
c = 2 sup Bs{s)/C{s). (1.52) 

s6[0,ll 

(Hi) The integral equation (1.21) has a unique solution 4>. 

Proof: 
ad (i) By the preceding two lemma's, the set {0e : e < eo} (for some ÊQ > 0) is bounded 
and equicontinuous. Hence, by the Arzela-Ascoli theorem, each sequence (̂ f„, £„ J, 0, has a 
subsequence (0e„), converging in the supremum metric to a continuous function 0 on [0,1]. 
By Lebesgue's dominated convergence theorem we get, for such a subsequence (0e„), 

= My){Hy) - [ ^ ^ Ms,y) dG(s) + f^ M M I ^y^ s) dG{i 

(1.53) 

Uniqueness of the solution follows by applying the same kind of supremum argument as in 
lemma (1.4.1) on the difference of two solutions of equation (1.53). 
ad (ii) It was shown in (1.45) in the proof of lemma 1.4.4 that 

sup \<t>[{s)\ < 2 sup B,(s) /a(s) , 
se[o,il se[o,i] 

where C; is defined by (1.39). But since 

\imC,{y) = 1 + 2dF{y)h{y,y)g{y), 

for y e [0,1], (1.51) now follows. 
ad (iii) We define (p by (p{x) = 4>{F{x)). li y — F{x), we get, by a change of variables, 

(t>{x) = 4>{y) 

= dF{y){Hy) - f^ W f l dH{s, y) + f^ M M dH{y, s)] 

= dF{x){k{x) - [ H f l f l ^ dH{t, X) + [ |[Ü5|M dH{x, t)Y 



44 Chapter 1 Interval censoring and lower bounds 

and hence (p satisfies the original integral equation. Uniqueness of 4> follows from uniqueness 
of 4> (since a solution 4> conversely defines a solution <j> on the inverse scale). 

D 

Remark. The same arguments can be applied to prove existence of a solution to the in
equation. Hence 0 can be written as 

0 = F ( 1 - F ) e 

Solvability of Up = L\Lia can now immediately be seen. 

Corollary 1.4.1 Let the conditions (Ml) to (M3), (HI) to (H3), (Fl) and (Kl) and (K2) 
be satisfied. Then the equation kp = L\Lxa is solvable. 

Proof: By the Lipschitz property of 4> we have, for any 0 < w < v < M, 

\4>{v) -'P{u)\ ^ l^iFjv)) - ^{F{u))\ 

F{v)-F{u) F{v)-F{u) - ' 

for some constant A'. Thus the Radon-Nikodym derivative d4>/dF is a.e.-[F] bounded by A'. 

D 

Remark: Again the conditions (Fl), (H3) and (K2) can be weakened, this time to: 
dk 3 , , , , d , , . 
-^^^h{t,x)^nd^^^h{x,t) 

exist, possibly at some points only as separate left and right derivatives, and are bounded. 

1.4.3 Case k 

Consider the case with exactly k observation times per unobservable event time. The ob
servation time distribution becomes a higher dimensional distribution, so the I/2(QFO,W)" 

space changes. This also has consequences for the score operator and the score equation 
kpg = L\Lia. However, taking derivatives in this equation, we turn up with an equation 
which is similar in structure to the 0-equation (1.21). 

Let the ordered observation times {Ti,T2, •.. ,Tk) replace (f/, V). Let the simultaneous 
density function of these observation times be denoted by h{ti, ti,..., tk). Moreover, let the 
simultaneous density of {Ti,Ti+i) be denoted by hii+i, and let hi and h^. denote the density 
of the first and last observation times respectively. Then we get as integral equation 

0(x) + d{x) 

with 

/!„ WFW) (̂̂ ' ̂ ) d' - IZ wrm (̂̂ '̂ ̂ ) d{ k{x)d{x), (1.54) 

k-l _ fc-1 

h{t,x) = '}2h,,t+i{t,x) h{x,t) = Y,h-t,.+i{x,t) 
-1 

and d given by 
d{x)= n^)[^-n^)] 

hyix)[l-F{x)] + hk(x)F(xy 
The situation with a varying number of observation times can be treated in the same way. 
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1.5 Some special choices of F, h and the functional 

In this section, some choices of FQ, h and k will be treated, for which we have been able to 
find a more or less explicit solution to the integral equation in case 2. In all cases we take 
k'p^ = 1 (estimation of the mean). An exphcit solution to the integral equation exists in the 
following situations: 

I) Let F{x) = X on [0,1] and h{u,v) = 4 on the square {0 < w < 1/2, 1/2 < v < 1}. 
Then we have the solution 

4>o(x) = | x ( l - x) 

II) Let 
h{u,v) = CF-{F{V) -F{U)) 

with l/Cp = { ( T „ — To) J xdF{x) — ƒ x^dF(x)}, and with marginal densities 

hi{u) = CF / f{s)[{TM - To) - s] ds 

h-iiy) — Cp ƒ sf{s)ds. 
-/TO 

Now the singularity is wiped away by h, and the integral part reduces to 

Cf { ( r M - r „ ) 0 ( T ) - £ ' 0 ( s ) r f s } 

We arrive at the solution 

4>{x) -
1 - CF ƒ;« c{x)dx 

th 
, ( , ) _ F ( . ) ( l - F ( x ) ) 

CF{TM - r„)F(x)[l - F{x)] + F(x)/i2(x) + [1 - F(x)] h,{x) 

Hence, the lower bound is given by 

L ^^ ' l-CFCcix)dx-

In the next situation the solution is not given by an explicit formula. 

1.5.1 U n i f o r m d i s t r i b u t i o n s o n [0,1] 

In this subsection, the solution will be given if X is uniform on [ro,T„] and we have two 
independent observation times Ti and T2, also uniformly distributed on [ro,T„]. Letting 
{' = min{r i , r2} and V — max{r i , r2} , (f/, V') is uniformly distributed on the triangle 
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To < u < V < T„. This situation is the case 2 analogue oi g = 1/(TM — TQ) in case 1. Having 
more information we may expect a smaller lower bound 

dx 

in case 2. 
No explicit solution is available. We give the solution with respect to a basis of Legendre 

polynomials. Legendre polynomials are most commonly considered for the interval [—1,1], 
However, we first solve the problem for the interval [0,1]. So we have F(x) = x and h = 2. 

The integral equation can be written in the form: 

2 - 4 x ( l - . r ) ^ ^ ^ ^ ^ ^ 

x(l — X) 

with the operator A defined by: 

[Ac^]{x) := 2 If ^W:f<'> dt - I' ^<'|:f"' dt\ . (1.56) 

First the structure of A is investigated. 

The operator A 

In this subsection it will be proved that the Legendre polynomials on [0,1] are the eigenfunc-
tions of A, and the corresponding eigenvalues will be given. 

The Legendre polynomials {Pn} on [0,1] are defined as a complete orthogonal basis of the 
space L2([0,1]) with respect to the inner product induced by the standard norm and having 
the extra restriction degree(i-'„) — n. This last condition makes them uniquely determined 
up to multiplying constants. We choose the constants such that Pn(l) = 1. Then {Pn} can 
be obtained via 

' ' " « ^ ^ ' ^ ^ 
or via the recurrent relation 

(71 + l)P„+i(x) = (2n + l)(2x - l)P„(x) - nP„_i(x), (1.58) 

with Po{x) = I and Pi(x) = 2x — 1 as starting values. The properties that are needed in 
the sequel are given in the next proposition. Their proofs are based on the above procedure 

(1.57). 

Proposit ion 1.5.1 The polynomials as given by (1-57) or (1.58) satisfy: 

i: degiee(Pn)=n. 

IV. PklPi ifk^l. 

m: (P„,P„) = 5-L_, 

1 ^ 
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iv: P„(0) = ( -1 )" , Pn{l) = 1. 

V: J^ Pn{t)dt = - Jô  P„{t) dt = ^^{Pn-l{x) - Pn+l{x)). 

in: The coefficient of the leading term x" of P„ is ' j ^ . 

Proof. 

i: Trivial, 

ii: Suppose k > I. Then 

f^ P,{x)Pi{x)dx = f^!^d{[x(x-l)ft-'^ 

= - ƒ (K--i)p'̂ -V(i)(x)rfx 

since P/*"' = 0. 

iii: Since [x(x - 1)]" = x^" + lower order terms, the coefficient of x" in the n-th derivative 

of [x(x - 1)]" is ^ , hence Pi'^Kx) =('^"')n!. Thus we have 

J^ P„{x)P„{x)dx = ( - i ) " | ^ ' M ï ^ p W ( x ) d , 

•^ 2T1 + 1 ' 

iv: Differentiating '^^^^, ' n times yields 

Pn{x) = (2x — 1)" + terms with at least one factor x(l — x). 

v: Since ^ 

and 

we have 

P„+i(x)-P„_i(x) = £^ {'-(^-11"" l(2x - 1)̂  - 1]} + 2 £ P„it)dt 

= (in+ 2) r Pn{t)dt 
Jo 
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vi: Trivial. 

As an illustration, we give the first seven Legendre polynomials on [0,1] with Pn(l) = 1-

Po{x) 
P,{x) 

P2{X) 

P^{x) 
Pdx) 
P5{X) 

Peix) 

= 
= 

= 
= 

= 

= 
= 

1 
2x - 1 
62:̂  - 6x + 1 

20x^ - 30x^ + 12a: - 1 

70a;'* - 140a:̂  + gOa:̂  - 20x + 1 
252a:̂  - 630a;̂  + SGOx̂* - 210a:̂  + 30a- - 1 

924x'̂  - 2772a;̂  + aiSOx-* - 1680x^ + 420a-̂  -- 42a- + 1 

Let P " be the (n + l)-dimensional space of real-valued polynomials on [0,1] of maximal 
degree n. The operator A maps polynomials of degree n to polynomials of the same degree. 
For, using a;" - ^ = (a: - t) E"=o x^'^'H', we obtain 

A[x"]ix) = iSnX''+ q^iix), 

with Sn = ir"=i i and 5„_i € P"^'^. Moreover, constant functions are mapped to the zero 
function. 
Now we have: 

Proposi t ion 1.5.2 The Legendre polynomials {PQ, . . . , P„} are an orthogonal basis of eigen
functions for the operator A : IP" —> IP", with corresponding eigenvalues \k = 45*,. 

Proof: One easily shows that the operator A, defined on P " , is symmetric with respect 
to the standard L2 inner-product. So there exists an orthogonal basis of eigenfunctions 
{po, • • • ,Pn} on IP". This holds for any n G IN. Together with the fact that A preserves the 
degree of polynomials, it follows by induction that degree(jOn) = n. So this orthogonal basis 
of eigenfunctions consists of the Legendre polynomials up to degree n. 

Expanding a:" along the Legendre basis, x" = "111=0 lkPk{x), we get 

n - l 

A-inPn = Ax"-AY.-ikPk 
k=0 

n-l 

= iS^x" + qn-i - Y. ^kAPk 
k=0 

= ASnJnPn + Qn-l, 

with i7„_i and qn~i £ P""^. Since g„_i is of lower degree than P„ and since Pn is an 
eigenfunction, we have 5„_i = 0, and thus AP„ = ASnPn-

D 

Remark: Since the eigenvalues converge to 00, A is an unbounded operator. 
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Solu t ion w i t h r e spec t t o t h e Legend re basis 

We turn back to the integral equation (1.55). Since Z-2([0,1]) can be split up in the orthogonal 
subspaces L^^O, 1]) and span{Po}, any a G L^^lO, l]) can be written as a = I ^ ^ i akPk- Let 

oo 

fc=l 

denote the solution to Up- = L\Lia with respect to the Legendre basis. By proposition l.S.l.v, 
we have 

Using orthogonality of the Legendre polynomials, the lower bound is equal to 

oo o 

k=\ 

The coefficients Pk can be found by taking the inner product of the Legendre polynomials 
Pi, P2, • • • with both sides of L\Lia = kp. This yields an infinite set of linear equations in 
Pk, which will turn out to be easily solvable. 

For the right-hand side we get, since k{x) = | Pi{x), 

IP ..v__ ƒ 1/6 fo r j = l 
^ • ^ - " ^ ^ ~ \ 0 for j = 2 , . . . . 

For the left-hand side we make use of the structure of the operator A, appearing in the 
derivative of L\Lia. For our choice of F, h and K, we have 

'^-[L\Lra]{x) = [{A-A)]4>{x)+ ^ 
dx x{l — x) 

with 0(.r) = ll a{x) dx. Define 
Pk 

Ak + 2 

Then we get, using continuity of L\Lx, property l.S.l.v and proposition (1.5.2), 

00 

{Pj,L\L,a^) = Y,Pk{Pj,L\L,Pk) 

00 ^1 

k=i ^ -=0 

{£0 ('^^ ' ^^^^'~' ~ ^̂ •+̂ 1̂̂ *̂  + i(ï^[(^^-i - -P-̂ +OKO) dt^ dx 
00 
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oo 

- E ^-^-1 { ^ % ^ (Pj^ P^ - P^-2) - % r ^ {P,^ P^^2 - P.)] 

We have to pay some extra attention to the part with the factor l / [ i ( l — t)]. By prop
erty 1.5.1.iv we have Pk{l) = (-1)*A(0) = 1, so Pk-i-Pk+i is divisible by the factor t{l-t). 
Hence we can write 

Pfc_i(i) - Pk+i{t) = {4k + 2) i ( l - t) Qk-i{t), (1.59) 

with degiee{Qk-i) = k — I. 
The relevant properties of Q^ are given in the following proposition: 

Proposi t ion 1.5.3 In the space (i2([0,1]), [ •, • ]), with inner product 

[f,9] = / 2̂ (1 -x)f{x)g(x)dx, 
Jx=0 

the polynomials {Qj} are a complete orthogonal basis for which the following relations hold: 

( / , P , - P , + 2 ) = ( 4 j + 6 ) [ / , Q , ] . (1.60) 

and 

[Qj,Qi] U + l){j + 2){2j+3y 

Proof: 
Relation (1.60) is a direct consequence of (1.59). 
Since Pj-i — Pj+i is orthogonal to P-*"^ with respect to the standard inner product (•, •), 
(5j_i is orthogonal to F-*"^ with respect to [•, • ] . By theorem 3.1.5. in SZEGÖ (1978) the 
Q-polynomials form a complete basis. 

The inner product expression can be found by using the relations between P, and Qj. Let 
Q] = T.i=olkPk- Then we have 

4j + 6 (2j + l ) ( 4 j + 6 ) -

In order to determine the factor 7j, let Cj and dj denote the coefficients of the leading term 
of Pj and Qj respectively. Then, on one hand 

Pj{x) — Pj+2{x) = (4j + 6){x — x^){djX^ + polynomial of degree < j — 1), 

whereas on the other hand 

Pj{x) — Pj+2{x) = —Cj+iX^^'^ + polynomial of degree < j + 1. 

Hence Cj+2 = (4j + &)dj and 7̂  = djcj = [cj+2/cj] x [ l / (4 j + 6)]. From property 1.5.1.vi we 
know that c, = [(2j)!]/[j! j ! ] , yielding the result. • 
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The first five Q-polynomials have the following form: 

Qo(x) = 1 

(5i(x) = 2 i - l 

Q2ix) = 5 x ^ - 5 a : + l 

Qiix) = 14x^ - 21x^ + to - 1 

Qiix) = Mx" - 841^ + 561^ - 14x + 1 

Using this proposition, we get 

£ ^ 2 j ( ^ [P,_i - P,+,l(i) '^'-'-^^^'"'^ rft = 2(4fc + 2)[Q,_i, 0 ,_ i ] , 

which is equal to 4/[ j( j + 1)] if fc = j and zero otherwise. 
So, finally, multiplying both sides by 2 (2j + 1) and shifting the index by one, we get, for 
J = 0 , 1 , . . . 

~ 4 ^ 4 j - 2 + 4 ( 2 J ^ + 27TrHj - 4^;j:p5-^J+2 + (j + l)(j+2) Ĵ - MJ=0} 

with ^_i = î _2 = 0 by definition. This is essentially a tridiagonal system: 

«0,0 ia + 0-0,2 iï = 1 

Q i , i 6 + Cki.s^ = 0 

«2.0 Co + Q2,2 ^2 + «2.4 ^4 = 0 

03,1^1 + 03 ,36 + 03,5^5 = 0 

04,2 C2 + 04,4 '̂ 4 + 06,4 Ce = 0 

with coefficients QĴ .̂ given by: 

Oj,J = ^J + ^J+2 + Ö-J 

Oj,j+2 = - ö j + 2 

" j J - 2 = - & ; 

Oj.fc = 0 

Here hj and CTJ have the following values: 

^ _ 4(5, -1) 

_ 8(2j+3) 

^ ~ (;+i)ü+2)-
By corollary 1.4.1 we already know the solution to this system of equations to be unique. 
We immediately see that the ^-values with odd index are zero. So from now on we will only 
look at the ^-values with even index. Note that, in principle, any value <̂o can be inserted, 

for J > 0 
for J > 0 
for j > 2 
for \j - A:| > 2 or |j - k\ 

(1.61) 
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but once (,o is determined, all the other values C2>C4' • • • are fixed. Uniqueness of ô follows 
from the extra restriction that UQ = JZ^Li PkPk has to be an Z/2-function. Thus 

oo oo 

(«0, «o) = E ^ = E m-i)\2k + 1) < 00. (1.62) 

It will be shown that this leaves exactly one solution for ^„i which can be written as a con
tinued fraction expansion, arising naturally from the tridiagonal system of linear equations. 

Starting with ^o. Gt can be obtained as: 

6*: = Ak^o + Bk-

Equivalently we have 
^ _ 2̂<c Bk 

^"'Ak Ak-

It will be shown that Ak goes to infinity very quickly as A" —> oo, leaving 

Bk 
Co = lim — 

k^oc Ak 

as the only possible solution satisfying (1.62). 

Proposi t ion 1.5.4 The following holds: 

i: l/Ak = o(fc~") as k -^ oo for any Q G H . 

,. Bk 
ii: lim —— exists. 

k^oo Ak 

Proof: 

i): Define 

°'-2k.2k hk , , , 0^2^ , n 1 o 

Pk '•= = 7 *"-̂  + I « = 0 , 1 , 2 , . . . 

02{fc+l) 

' - ' 2 1 , 2 ( 1 - 1 ) "-^K , T r , 

Qk •= = - 7 fc = l , 2 , . . . 

0:2k,2{k+\) 

'^2fc,2(fc-I) 

' i 2 t , 2 ( t -H) 

Ö2 

hik+i) 

bik 

hik+i) 

9o := 

The following relation holds for {.4*.} and {Bk}: 

Ak+i = PkAk + QkAk-i 

Bk+i = PkBk+qkBk-i, 
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with A^i = 0 , ^0 = 1. -B-i = 1 and Bo = 0, which can be proved by induction. 
Subtracting Ak in the first relation yields: 

•52fc - 1 4fc + 5 , , , , 
Ak^,-Ak = - ^ -j-—{Ak-A,.,) 

•32(fc+l) - 14/C + 1 

+ 2 (4fc + 3)(4fc + 5) 

52( , - , i ) - l (2fc + l)(2fc + 2) '• ^ - ' 

Since the second term on the right-hand side is > 0, we immediately see 

Sjfc ~ 1 4A: -H 5 , , 

^2{k+l) - i 4/C -I- i 

> . . . 
^ ik + 5 S2-I . . . . ^ 4fc + 5 

•S'2(fc+l) - 1 5 S2(k+l) - 1 

Hence, using 52*: — 1 < log(2/;), 

2/c 
f̂c > C*!!—7—7 + ^k-i for all A; > 0 and some fixed C\ > 0, 

log(2fc) 

which implies A^ > Ci Z L i \o% ) ^ C2,0 fĵ .̂  for some C2 > 0. Using the second term 

on the right-hand side of (1.63), we have 

implying 

and 

^-•-^^^^^Ikjfc))' -̂-11 ^>0' 

^^>c.j:i^y>c.-, ^''^' ^ ^ V l o g ( 2 j ) ; - ^ ^ ( l o g ( 2 f c ) ) 2 
3 

3 

^/c+1 - AkyCii I for some C3 > 0. 
Vlog(2A-); 

Repeating the same argument again and again, we find, for any / e IN and for all 
ke IN: 

2k ^' 
Ak > C,+i 2k — — - with Ci > 0. 

\log(2k)J 

Of course l/A^ = o{k~'^) for some /? G IR. implies l/yl*. = o(fc"'') for all Q < /?. 

ii); To prove the second part of the proposition, define 

Dk-.J' ^̂  
V 1 Pk 
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Then 
Bk Bir+i 

DoD,... Dfc = , 

Ak Ak+i 

Hence, computing determinants left and right: 

- n r ^ ^ = ^fc^^+i - ^kBk+u 

implying 
Bk Bk+i ^ 4fc + 5 1 

Ak Ak+i S2(k+i) — 1 AkAk+i 

Since l//ljt = o{k~°) as A; ^ oo for all a > 0, the sequence {f*-1 is a Cauchy sequence, 

hence convergent. (Notice that the approximated solution — ^ is monotonously in

creasing in fc.) 

Although we already know that at least one solution should exist, it can also be shown 
directly that the solution {^k} obtained in this way indeed satisfies (1.62). It is sufficient to 
show 

lim ^ikk"" = 0 for some «„ > 1- (1-65) 

This holds for any Q G R. For, writing 2̂*: = -'^ki.o + Bk, with 0̂ = ^^^k^oo ~^^ ^nd using 
(1.64), we obtain 

\^2kk''\ = \{Ak{(o + ^)}n 
Ak 

^4j + 5Ak A;° 

3=k ^•iU+l) ^1 ^ J + 1 

This sum converges to zero as fc ^ 00, since Ak < Aj and /:" ^^^1 can be made smaller than 
Cj'^ for some C > 0. 
What remains to be done is computing limjt^oo "f*̂ - Since the countable system of equations 
is tridiagonal, one of the possible solutions 0̂ from the system of equations can be represented 
as a continued fraction expansion: 

1 

Qo.o ~ 00,2120 ,_, „ . , 
— — ( l .DO) 

^2 ,2 f^2,4Q^4,2 

This is easily seen by rewriting: 

^0 ,0 ^0 ' ^^0,2 S2 ^ t 'v' '/' qo ^^ 
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and 

02t,2(t- l) 42(t-l) + Oi2k.2k £.2k + Ck2t,2(fc + i) ^2(1 + 1) = U "̂  ^ 

~Q2)b,2()i-l) S2it 

It turns out to be the same solution as the one obtained by taking limit_^oo —-^• 

P r o p o s i t i o n 1.5.5 limi;_cx) —4*- «̂  the same as the continued fraction expansion (1.66). 

Proof: Define the fc"* approximand of the continued fraction expansion as: 

1 
Pk{w) :=-

C^O,2^2,0 

"2(t- l ) ,2t "2t ,2( t - l ) 

a2/c,2fc + a2t,2(fc + l) w 

So Pki^f^^) yields the solution ^o, based on the first k equations, as a function of '̂*"^". 
Furthermore define 

Uw) := ^ 

n{w) : = 
~Cl2t,2(t-l) 

021 21: «2 •i:2t,2l: " 2 t , 2 ( f c + l ) <^ 

Then 
Pk{w) = T^...Tk{w). 

By induction, it is easily shown that 

To...Tk(w) = . 
Ak+i - AkW 

Hence 

lim - : ^ = lim To . . . T,(0) - lim P,(0). 
fc—>00 A-k + l K—'OO k—'OO 

D 

Computing the continued fraction expansion gives 

Co = 0.1194623... 

The continued fraction expansion converges very quickly. For the O"* approximand, we al
ready have 

1 5 
PJO) = = — = 0.1190476 . . . 

^ «0.0 42 
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and each next approximand increases accuracy by about two digits. 

For case 1, with a uniform observation time distribution on [0,1], we have cpoi^) = 3;(1 — x). 
On the other hand, in the model without censoring, the score operator L reduces to the 
identity operator, yielding ao{x) = x — 1/2, hence 4>oix) = 1/2x(l — x). Since all even 
coefficients ^2* in the expansion are nonzero, 4>o is definitely not a polynomial in case 2. 
However, since (1.65) holds for any Q > 0, convergence of the coefficients to zero goes very 
fast, faster than fc"" for any Q > 0. In figure 1.1, the first order and third order expansion of 

0 0 

Mx) = E i^k (Sk + 6) x{l - x) Q2k{x) 

are given by the middle dashed curve and the solid curve respectively. 

0<')(a;) = ^,6xil-x)Qo{x) = 0.71677 a-(l - a:) 

0<''(3;) = x( l - .T) (7 .1677 10"' Qo{x) + 1.2192 10"' Q,{x) + 2.432110^^ Q,{x)) 

A further expansion does not give any visible change in this plot. The upper dashed curve 
is the corresponding solution for case 1, (tio{x) = x{l — x), whereas the lower dashed curve 
is the function 1/21(1 — x). Note that in case 2, being a situation between case 1 and the 
uncensored model, 00 is enclosed by x{l — x) and 1/2x(l — a;). 

Figure 1.1: The functions (j), with first order approximation for case 2. 

Remark: For the special case II from the beginning of this subsection, taking F{x) = x, 
we can derive the information bound in a similar way, since the integral operator A is very 
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simple. The derivative of the operator equation becomes 

3 

i ( l — x) 

Again, we get a tridiagonal system in î , with 

4>(x) - 6 / 4>{s)ds 
Jo 

f^. + 1̂3 = 0, 
- 3 c I f 3 I 3 12(2j+3) 1 c 3 _ p , n 

2j + l M - 2 -^ \ 2 j + l "^ 2j+5 ü + l)(;+2) ƒ ''J 2>+5'>J+2 "• 

Choose 2̂*:+i to be zero and write ^2* = ^̂ ^̂ o + -Bfc and ^o = ^ ~ f̂ - Proceeding in the same 
way, we have l/|A/t| = o{k~°') as fc —• cxo and we get 

lim - - ^ = 0.1198987. 

which is indeed the same number as 

Jo C{x)dx _ Jo 3(l-x(~l-x))^^ 

l-QS'oc{x)dx- l-&Q^^f^^^dx 

Uniform distributions on [To,r„] 

For uniform distributions on the interval [TO, T ^ ] , the solution of the integral equation for the 
[0, l]-case can be used. The integral equation in the transformed scale is similar to equation 
(1.55), with the right-hand side replaced by (T„ - TQ). This implies that all coefficients ^k 
are multiplied by a factor (T„ — To), and the transformed-scale solution can be written as 

^To,T„ = ( T M - To) 00,1 

with (t>a,i the solution for the [0, l]-case. The lower bound becomes 

/ <pro,r»{x)dx = (r„ - To)' / KM) d^ = i^M " To)'0.1194623 
JTO JO 
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Chapter 2 

Interval censoring: the NPMLE 

The aim of this chapter is to show that the lower bound for estimation of smooth function-
als with interval censored data is reached asymptotically by the nonparametric maximum 
hkelihood estimator F„. Just like in the preceding chapter, we assume the support of Fo to 
consist of one interval [T„ , T „ ]. However, we may allow for intervals of constancy of FQ without 
changing the proofs. Let A'(Fo) be the smooth, real valued aspect of FQ in which we are inter
ested. From chapter 1 we know that the lower bound is determined by the canonical gradient 
Of-g of the functional Q{QF) '•= K{F), defined on the observation space. (In the sequel we 
neglect the dependence on the observation time distribution in the notations. So we write 
Qfg instead of QF^M etc.) We will show that the NPMLE § „ = A'(^n) of Q{QFO) = A'(Fo) 
satisfies 

\ A ^ ( ê „ - e ( Q f J ) ^ i V ( 0 , | | ö V o | | ^ ^ J a s n ^ o o . (2.1) 

One further specification is made to the kind of functionals that are allowed. Let KF^ be 
the canonical gradient at FQ of the functional h'{F), defined on the hidden event time space. 
We assume: 

(K3) A'(F) - A-(Fo) = ƒ -KFoix) d{F - Fo)(x) + 0{\\F - Fo\\l) 

for all distributions F with support contained in [ro,Tjw]. The norm \\F — Fo||>, is the L^-
distance between the distribution functions F and FQ w.r.t. Lebesgue measure on IR. 
For linear frmctionals 

G^ / c{x)dG{x), 
JTQ 

we have «^^(a;) = c{x)-jcdFo, and (K3) even holds without the O-term. However, condition 
(K3) is satisfied by a wider class of functionals than the linear ones. For example, the 
functional 

A'2(F) = f F\x)w{x)dx 

from subsection 1.2.1, with gradient KF{X) = 2 JJ^^ F{s) w(s) ds, also satisfies (K3), using 
boundedness of the weight function w. For we have 

/ G^x)w{x)dx- F^{x)w{x)dx-

r VI 
J X — Tn L ''S 

FQ(S) W{S) ds d{G - Fo) + r [G{s) - Fo{s)f iu{s) ds 
Jrn 

59 
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We start with an overview of known results of the NPMLE F^, with emphasis on case 2. 
Most results for case 1 are similar in essence. Then we will sketch the proof for case 1 as 
it appears in HUANG AND WELLNER ( 1 9 9 5 A ) . Since the canonical gradient has an explicit 
expression in case 1, it is the simplest case. Our summary of their proof will serve to illustrate 
what are the main ingredients needed to show optimality in case 2. A short overview of 
empirical process theory will be given, since this will be needed in the proof. Throughout 
this chapter, we use "Prob" to denote the probability measure needed for the asymptotic 
considerations. More specifically, Prob is the product measure on the sample space of all 
infinite sequences {Xi, Ui,Vi), (X2, f/2, ^^2),... (in case 2), endowed with the Borel a-algebra 
which is generated by the product topology. 

2.1 Some known results 

Based on the sample of observations {Ui,Vi, Ai, F i ) , . . . , ([/„, V„, A„, F^), the NPMLE F„ is 
the (sub)distribution function that maximizes the likelihood 

n Fm^'{F{V,) - F{U,)f'{l - F{Vi)y-^--^' h{U„ V^ (2.2) 
1 = 1 

over the class of non-decreasing cadlag functions F with values in [0,1]. The factor fl fi{Ui, Vi) 
is of no importance in the maximization procedure with respect to F and can be neglected. 
First note that only the values of F at the observation times occur explicitly in the likelihood, 
and even not all of them. If A^ = 1, i.e. Xi < Ui, the corresponding VJ does not play any role. 
Likewise, if Xj > Vj, we can throw away the corresponding Uj. The remaining observation 
points are called the relevant observation points. The order restriction on F causes the 
NPMLE to be a function that is piecewise constant and uniquely defined on large parts of its 
domain. Generally these intervals contain several observation times. The only places where 
Fn is not uniquely defined is between two consecutive ordered relevant observation times for 
which Fn has a different value. Here F„ can be chosen freely. However, how F„ is chosen 
there does not influence the asymptotic properties that follow, since the total length of these 
intervals shrinks to zero as the sample size goes to infinity. So, without loss of generality, 
we impose F„ to be piecewise constant everywhere, and only to have jumps at (a subset of) 
the observation points. As before, let T ,̂ i = 1 , . . . , m denote the points of jump of Fn, and 
define 

J; := [T,, T ,+I ) , I = 0 , . . . , m - 1 and J,„ := [T„,, T « ] . (2.3) 

Then F„ is uniquely determined from TJ up to and including Tm- Except for the rare case 
that all Ai's are one, we always have F„(ro) = 0 and Fn is also uniquely determined from To 
to r,. At the other end we may end up with a degenerate distribution, having F„(i) < 1 at 
all observation points. This occurs when the largest relevant observation time corresponds 
with an event time beyond that observation time. Then the largest relevant observation 
time is equal to some Vj, and [1 — F{Vj)] in the likelihood formula is larger than zero. The 
NPMLE is not determined beyond this Vj. The asymmetry between the left-hand side and 
the right-hand side of [TO, T^] is due to the right continuity of the NPMLE. For estimation of 
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smooth functionals based on a finite sample, we have to specify where to put the remaining 
mass. However, for properties concerning the limit behaviour, this question does not play 
any role, since the probability to obtain a defective distribution function tends to zero as 
n —» cx), as long as FQ <^ Hi + H2 (condition (M3) on page 15). 

Proposit ion 2.1.1 
lim Probf Fn is defective } = 0 

n—'00 

Proof: Let X^n) denote the (unobservable) event time corresponding to the largest relevant 
observation time. Let vo denote the left limit of the support of V, with V having distribution 
function Hi- Then we have, using independence of X and V and integration by parts, 

Prob{ Fn is defective } = / Prob{X(„) > v} nh2{v)H2{vf-^ dv 
Jvn 

= / {1 - Fo{v)} nh2{v)H2{v) 

= / [H2{vT dFoiv) 

Using Lebesgue's dominated convergence theorem finishes the proof. 

'dv 

O 

Given a sample (f/i, Vj, Ai , F i ) , . . . , (t/„, V„, A„,F„) , let Qn denote the corresponding em
pirical probability measure. If we let the NPMLE have its mass restricted to the observation 
times, proposition 1.3 in GW gives an alternative criterion which is necessary and sufficient 
for a function to be the NPMLE. Consider the random class on of distribution functions F 
satisfying 

r F(f/,) > 0 , a Xr< U„ 
\ F(V,) - F{U,) > 0 ,iiU,<X,< K, 
[ 1 - F{V,) > 0 , iiX,> V„ 

and having mass concentrated on the set of observation points augmented with an extra 
point bigger than all observation points. It is easily seen that F„ belongs to this class. For 
distribution functions in this class, the following process t >-^ Wf{t) is properly defined: 

Wf {t)= [ 6F{u)-'dQ^{u,v,6,y) 
-'"6[TO,(1 

- / y{F{v)-F{u)}-'dQ„{u,v,S,j) 

+ f 'r{F{v)-F{u)}-'dQn{u,v,6n) 
JvelTo.t] 

- I , (1 - 6 - ^) {1 - F{v)}-'dQn{u,v,6,y), 
JvelTn.t] 

(2.4) 

for t > 

ProjKjsition 1.3 in GW and the discussion preceding it say: 

Proposit ion 2.1.2 Let T^n) denote the largest relevant observation time, and let X(n) denote 
the corresponding (unobservable) event time Xi. Then 

t 
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(i) If X(n) < Tj^n), Fn maximizes (2.2) over all F ^ Qn if and only if 

I dWp [t') < 0, Vi > Ti, (2.5) 

and 
[ Fn{t) dWp (t) = 0. (2.6) 

• ' [T I ,T„ ) 

Moreover, F„ is uniquely determined by (2.5) and (2.6) and is non-defective, 

(ii) If X(n) > T(n), Fn muximizcs (2.2) over all F £ On if and only if 

f dW^Jt')<0, yt>n, (2.7) 
• ' [ ' .^ (T . ) I 

and 
f Fn{t)dWp(t) = 0. (2.8) 

An.T(n)] 

Moreover, Fn is uniquely determined by (2.1) and (2.8) and is defective. 

The following corollary is an immediate consequence. 

Corollary 2.1.1 Any function a that is constant on the same intervals as Fn satisfies 

j^a{u)dW,Su) = /^^_a(«){^-^; ;^^^^^}dQ„(«, . ,5 ,7) 

= 0, 

for z = 1 , . . . , m — 1 (under the conditions of proposition 2.1.2.(i)) or i — I,... ,m (under 
the conditions of proposition 2.1.2.(ii)). 

Proof: Suppose Fn is non-defective. Then we have case (i) of proposition 2.1.2. We now 
use: if 0 = flo < • • • < Om-i, EJl",^ 0;̂  < 0 for i e { 1 , . . . , w - 1}, and EjLl^ o^i^i = 0. then 
Xi = ... = Xm-i = 0. This easily follows by rewriting 

m—1 m —1 m—1 

Y^ a,Xi = Xl(«> - «i-i) H ^j-
1=1 1=1 j=i 

Taking x, = Jj^ dWp and a, = Fn{Ti), and using proposition 2.1.2, we derive: 

ƒ dWj,,^ = 0 , z = l , . . . , m - 1. (2.9) 

The proof of (2.9) is completely similar for case (ii) of proposition 2.1.2, and then also holds 
for the interval J„. The result now follows, since a is constant on the intervals J .̂ • 
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R e m a r k . The case 1 analogue of corollary 2.1.1 is derived and used in the proof of propo
sition 2.1.2, as it appears in GW. The corollary follows from Fenchel duality theory (see e.g. 
RocKAFELLAR (1970), theorem 28.3). However, once we have proposition 2.1.2 it can also be 
used to derive corollary 2.1.1. 

Proposition 2.1.2 characterizes maximization of the likelihood, in contrast with the so-
called "self-consistency equation" which only yields a necessary but not a sufficient condition. 
If the points of jump of the NPMLE, and hence the intervals of constancy, were known, the 
problem would be reduced to a normal maximization problem without order restrictions. 
Then equations (2.6) and (2.8), or rather corollary 2.1.1, having the partial derivatives of the 
loglikelihood appearing in the integrand, characterizes the maximization procedure. Equa
tions (2.5) and (2.7) serve to take account of the order restrictions. The fact that only the 
interval [ri,Tm) is playing a role in (2.5) and (2.6) is caused by the extra restriction that 
the solution should have values between zero and one. In case of the situation in proposi
tion 2.1.2.(ii), F„{TM) < 1 is fulfilled automatically. 

The above characterization of the NPMLE also plays an important role when the NPMLE 
has to be computed. Contrary to case 1, for which the NPMLE F„ can be computed via a 
one-step procedure, only iterative procedures are available for computation of the NPMLE 
in case 2. A slight modification of the iterative convex minorant algorithm, as introduced in 
part II of GW, is shown always to converge to the maximizing value in JONGBLOED (1995). 
See also GROENEBOOM (1996). Computer experiments show that convergence is generally 
quite fast. Since we only consider theoretical aspects, we do not go into this any further. 

Before we give the asymptotic results for the NPMLE, we first group together all con
ditions that are needed for showing the asymptotic optimality of the NPMLE of smooth 
functionals in case 2. 

Cond i t i ons on X ~ FQ. 

(Ml) FQ, with support [To,r„], is unknown and contained in the class 

!Fs '•= {F\ support(F) C S; F absolutely continuous, sup| / (a;) | < A'}, 

for a fixed A' > 0 and a fixed bounded interval 5 C IR. 

(Fl) The density satisfies /o(x) > ci for some Ci > 0 and for all x € [TQ, r ^ ] . 

Cond i t i ons on {U, V) ~ H. 

(M2) H, with support {{u,v)\rio < u < v < r?„}, is unknown and contained in H, the 
collection of all two-dimensional distributions on {{u,v)\ u < v}, absolutely continuous 
with respect to two-dimensional Lebesgue measure and such that {U, V) is independent 
of X for each choice oï H e Ti and F ^ Ts-

(H2) The density h{u,v) is continuous. 

(H4) Case A. 
h{u, v) = 0 whenever \u — v\ < CQ for some £„ > 0 
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Case B. 
h[x, x) = lira h{x, v) > C2 > 0 

for all X e [TQ, TJK] and some C2 > 0. 

(HI) The marginal densities hi and /12 of U and V are continuous, satisfying hi{x)+h2{x) > 0 
for all X € [ro,r„]. 

(H3) The partial derivatives ^h{x,t) and ^h{t,x) exist, except for at most a finite number 
of points x, where left and right derivatives with respect to x do exist for each t. The 
derivatives are bounded, uniformly in t and x. 

(M3) If both Hi and H2 put zero mass on some set A, then F £ Ts has zero mass on A as 
well, so F <^ Hi + H2. 

Condit ions on the functional K. 

(Kl) The hidden-space canonical gradient kp^ and its derivative k'p^ = k are continuous. 

(K2) k is differentiable, except for at most a finite number of points x, where left and right 
derivatives exist, k' is bounded, uniformly over x G [To,r„]. 

(K3) For all distributions F with support contained in [ro,rjv,] we have 

K{F) - K{Fo) = jk,,{x) d{F - Fo){x) + Oi\\F - F,\\l). 

For case 1, (Ml), (Kl), (K3) and the one-dimensional analogues of (M2), (M3), (HI) and 
(H2) are needed as well. (Fl ) , (K2), and the one-dimensional analogue of (H3), together, are 
replaced by the combined condition 

(C) (k/g) o Fo^ is Lipschitz on [0,1], 

with g denoting the density of the observation time distribution. 
For case 2, mixtures of A and B may occur as well, meaning that there is positive mass 

along part of the diagonal. We make a short remark about this when case 2B is treated. 

Asymptot ic results 

We have uniform consistency of the NPMLE of FQ: 

Proposit ion 2.1.3 

Prob {jirn^ ||F„ - F Q I U = O } = 1 

Proof: See GW, part II, sections 4.1 (case 1) and 4.3 (case 2). 
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A rate of convergence result that will be needed can be deduced from VAN DE GEER (1993) 
(case 1) and VAN DE GEER (1996) (case 2). For case 2, define the densities qp and qp^, with 
respect to ƒƒ 0 î 2 > by 

qp^iu, V, 6, 7) := 6F^{u) + j{Fn{v) - F„(w)} + (1 - 7 - ^){1 - / 'n(f)}, 

and 
qp.iu. V, 6,7) := 6Fo{u) + ^{Fo{v) - Fo{u)} + {1-6- 7){l - Fo{v)}. 

Similar definitions hold for case 1. Define the Hellinger distance h{qF^,qF2) by 

(2.10) 

(2.11) 

KiFi^qp^) /G '1F^ /qfA dH ® V2 
-,1/2 

Proposit ion 2.1.4 Let G denote the distribution function of the observation times in case 
1 and let Hi and H2 denote the marginal distribution functions of respectively the first and 
the second observation time of the pair of observation times {U, V) m case 2. Then 

(i) The Hellinger distance h{qp ,qFo) satisfies 

KlPn^lFo) = C'p(n"'^^) as n 

and 

00 for case 1 and 2A 

hiqp^,qF,) = Op{n-''%\ogny"') as n ^ 00 

(ii) Similar rates hold for the L2-distance ||F„ — FQWG and ||F„ 

for case 2B. 

FÜ\\H„I = 1,2. 

Proof: 
ad (i): For case 1, the result is proved in example 4.8(a) in VAN DE GEER (1993). The 
result for case 2 is proved in example 3.2 in VAN DE GEER (1996) for a particular choice of 
FQ and /ƒ, belonging to subcase B. It is accompanied by the remark that the result also 
holds if both h and /o remain bounded away from zero. These conditions can be relaxed to 
H{FQ^{u), FQ^{v)) being Lipschitz in both variables. For case 2A, the convergence can be 
shown to be a little faster, since her truncation devices 

/ , 
1 

• d^i 

and 

{lFo><Jn) QFO 

J [a -'{<7Fo<CT7.} 

are not needed. A self-contained proof for case 2A, using the general theory in VAN DE GEER 
(1996), can be found in GESKUS AND GROENEBOOM ( 1 9 9 6 A ) . 

ad (ii): We use part (i) and 

[Fn - F^f < 4 Fn - /fi^) and (F„ - F^f < 4 (^l - F„ - ^/Ï^J 

In case 2, considering the parts ^ = I and 5 = 7 = 0 separately, we obtain the desired results 
for Hi and H2. The result for G in case I is obtained in a similar way. G 
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Although not used in the sequel, we spend some words on the asymptotic distribution 
of F„(io)i for fixed to G [TO,TM]. Contrary to smooth functionals, K(F) = F{to) cannot 
be estimated at yn-ra te . Moreover, the limit distribution is no longer normal. The limit 
distribution is determined by a random variable Z, defined as the last time where standard 
two-sided Brownian motion minus the parabola y{t) = t'^ reaches its maximum. 

For case 1 we have theorem 5.1 in GW: 

Theorem 2.1.1 Let tg be such that 0 < Fo{to),G{to) < I, and suppose that fo and go are 
continuous at to and strictly positive. Then we have, as n —^ oo, 

,1/3 Fnito) - Fo{to) 

with 

For case 2A we have: 

Ci(t 

\^Mto)/c,{to)] 

9{to) 

1/3 
•2Z, (2.12) 

Fo{to)[l - Fo{to)Y 

Theorem 2.1.2 Let /ii(ro) > 0 and /i2(''"iw) > 0. Moreover lei the conditions (Fl), (HI), 
(H2), (H3) and (H4). Case A he satisfied. 
Let to be such that 0 < Fo{to), H[to,to) < 1. 
Define 

rM h{u, v) 
ki{u) := / 

and 

Then 

with 

r h 

Fo{v) - Fo{u) 

h{u,v) 

dv 

,1 /3 

jTo Fo{v) - Fo{u) 

Fnito) - Foito) 

I^f0{t0)/C2{t0)] 
1/3 

du. 

•2Z, (2.13) 

^o(^o) 

Proof: See GROENEBOOM (1996). 

C2[U) = „ ., . + ki(to) + k2[to) + 
I-Foito)' 

If the relative amount of mass of the (U, V)-distribution near the diagonal point [to, to), 
compared to the amount of mass of F near to is very small we are in a case 1-type situation 
and we have a 7i'/''-convergence rate. Although rate and limit distribution are different, 
the norming constant in the cases 1 and 2A shows some similarities to the integrated score 
function for smooth functionals. The conditions needed are comparable as well, the main 
difference being that here most of them only have to hold at the point of interest io-
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For case 2B, the limit distribution of F„(<o) has not been established yet. It is conjectured 
to have the same asymptotic distribution as the "toy estimator" F^^'(io), which is obtained 
by doing one step in the iterative convex minorant algorithm, with the true underlying dis
tribution FQ as starting value. Of course, this procedure, which does not lead to an estimator 
in the strict sense, has no practical value. However, the asymptotic distribution of FJ^^\to) is 
known. For case 2A, the same working hypothesis was originally used in WELLNER (1995), 
proving the above limit behaviour to hold for F^^\to) as well in case 2A. For F^^\to), the 
convergence rate in case 2B increases to (nlogn)^/ ' . Here the norming constant is completely 
different from the one in case of smooth functionals. So either the limit distribution of F„{to) 
is different from that of Fj^^^to), or in case 2B the norming constant is quite different from 
the one in case 1 and case 2A, and has no similarities with the integral equation for smooth 
functionals. For case 2B we have: 

Theorem 2.1.3 Let 0 < Fo{to), H{to,to) < 1. Let /Q be continuous at tg, with fü{ta) > 0. 
Suppose that the density h{u,v) is continuous at {u,v) if (u,v) is sufficiently close to {to,to). 
Let h{tQ,to) > 0 and suppose that h{t,t), defined by 

h{tj) \im.h(t,v), 
vlt 

is continuous in t 
Then 

with 

for t in a neighbourhood of tg. 

(n log n) 1/3 F('\to) - F,{to) 

|/o(io)/c3(<o)] 
1/3 

C3{tQ) = lh{to,to)/fo{to) 

Proof: See GW, theorem 5.3. 

• 2Z, (2.14) 

2.2 Case 1: the main ingredients 
The following theorem shows asymptotic optimality of the NPMLE of smooth functionals in 
case 1. It is a shght modification of theorem 5.1 in HUANG AND WELLNER ( 1 9 9 5 A ) . The basic 
ingredients of the proof serve as an introduction to the techniques used in case 2. 

Theorem 2.2.1 Let Fg have a bounded support [TO,TM], with Fa £ Ts- Let the observation 
time distribution G satisfy FQ <C G. Let G have a continuous density g, satisfying g{t) > 0 
for all t G [TO, TM]- Let the functional K satisfy (Kl) and (K3) on page 64- Moreover suppose 
that (K'P^I g) o F^^ is a bounded Lipschitz function on [0,1]. Then we have 

^[K{F^) - A ' (FO)1 ^ N{0,\\èFXj as 00 

Basic ing red ien t s of t h e proof: 
We may assume F„ to be piecewise constant. Moreover, by proposition 2.1.1, we may assume 
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F„{TM) = 1. Let Qn denote the empirical measure of the observations (Ti, Ai ) , . . . , (T„, A„). 
It is sufficient to show the following: 

VTi[K{Fn) - A'(Fo)] = V^l epodiQn - QFO) + Op(l). (2.15) 

Then an application of the central limit theorem finishes the proof. The proof of (2.15) 
consists of the following steps. 

I: The nonlinear aspect of the functional is negligible. 
By condition (K3), we have 

^ ^ [ A'(F„) - K(Fa) ] = xAI ƒ Kf„ diF„ - FQ) + 0^(1), 

if we can show 
\\Fn - FolU = o,{n-'^'). (2.16) 

This follows from proposition 2.1.4.(ii), using dX = {l/g)dG and g > 0. 

II: Transformation to observation space measure. 
The expression ^/n ƒ kpa d{Fn — Fo) is an integral with respect to the measure (F„ — Fo) in the 
hidden event time space. (Note that J kp^dFo = 0.) We now show that it can be rewritten 
as an integral with respect to the probability measure of the observations QFO- Define the 
function 9p^ by 

5 ,, , , ƒ -[l~F^{t)]WFAt)/g{t)] a 6^1 

[ Fr.it) Koit)/git)] a 6 = 0 

If F„ is replaced by FQ, this is the canonical gradient formula for case 1. Note that 9p. no 
longer has an interpretation as canonical gradient, since Fi, being a discrete distribution 
function, is not dominated by G. The following holds: 

ƒ KF, diPn - Fo) = - ƒ èp^ dQp,. (2.17) 

This is easily seen by writing out the definition of 9p : 

-J9,JQ,, = | | j ^ [ l -F„ ]^Fo) - (^F„^[ l -Fo] ) | 

== j{Fn- Fa)dkF^ 

= / Kf„rf(F„ - Fo), 

using integration by parts and Fnir^) = 1. 

I l l : NPMLE condition; inserting of empirical measure. 
Now we will use the fact that we deal with the NPMLE. The case 1 equivalent of corollary 2.1.1 
says that any function a that is constant on the same intervals J; as F„ satisfies 

dG 

http://Fr.it
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Let 0^ denote the function 9^ , but with ^ := k'p^/g replaced by a function that is constant 
on the intervals J;. The following is an obvious choice: 

Then we obtain, using a = Fn[l — Fn\ ̂ , 

So (2.17) can be rewritten as 

- ƒ 9p^ dQF, = j'9p^ d{Q„ -QFO) + l(dF„ - Sp-JdQFo- (2-18) 

Using the formulas for 9p and 6p , we get 

ƒ (Ö̂ „ - èpJdQf, = J [it - Fo) a - 0] dG. 

By applying Cauchy-Schwarz we see that we have to prove 

l | F . - F o l i c X l ie-Cl |G = Op(n-^/^). 

Since FQ^{FO{X)) = x a.e.-Fo and k'^^ can be taken zero at places where FQ does not have 
mass, ^(i) can be replaced by C(Fo~'(Fo(<)) in the L2(G)-norm. Using the Lipschitz condition 
for ^ o FQ~\ we see that it is sufficient to prove 

| |F, - Folic = Op(n-i/^) (2.19) 

which again follows from proposition 2.1.4.(ii). 

IV: Closeness in empirical process. 
The first term in (2.18) is further split into 

jÖpJ{Qn-QF„) = jèFAQn-QFo) 

+ j(êp^-9rMQn-QFo)-

The last term is Op(n^''^). To show this we need to use some empirical process theory. 

2.3 Empirical processes 

We need to show that 

V ^ / ( Ö F „ - èp,)d{Qn - QFO) = Op(l). 

This is performed by considering the empirical process 

l^n.FoitF) = \/n(Qn - QFo){tF), 
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indexed by the set {tf} = {9f : F G ƒ"} U {dpo}- ^ should be such that it contains all 
possible realizations F„, for each n, or at least a subset of all possible realizations occurring 
with a probability tending to one as n —» oo. So the defective distribution functions may 
be excluded beforehand. The process i'n,Fo(') has to converge to a tight Gaussian process 
Gf„(-). If this holds, then v^j^i^p) and fn,fo(^^o) '^^^ close with high probability whenever 
the indices are. Closeness of 'dp and dp^ is shown to hold for F = F^ with probability tending 
to one, using convergence of F„ to Fo and corresponding convergence of 9p to 6p^. 

In the general setting, let X i , . . . , X^ be a sample of i.i.d. observations, each with distri
bution P on the sample space {X,A). Pn = \ Z)"=i ^{x,) is the empirical measure, based on 
this sample. Let T denote a class of functions, being a subset of L^iP)- Define the empirical 
process 

ynA-) ••= MPn - P) (•) 

as a process on the index set T. Assume that 

sup \f{x) - P{f)\ < oo for every x. (2.20) 

For each finite subset {fi, • • •, fk} C JF we have, by the multivariate central limit theorem, 

Kp(/l),...,i^n,p(A))^MO,S) 
with the matrix E having coefficients Ofjj = P[fi~P{fi)][fj — P{fj)]- For the limit distribution 
of the empirical process over T, we have to define a space in which {i>n,p{f) '• ƒ € ^} takes 
its values. By (2.20), this space can be taken to be the Banach space of all bounded functions 
B from ƒ" to IR: 

^~(7") := {B : T ^ M : \\B\\r = sup \B{f)\ < oo}. 

Convergence in distribution of Vn.p to a Borel measurable process Gp is defined as 

E*{h{iy^,p)) ^ E(hiGp)) 

for all bounded || • ||j)r-continuous real-valued functions h on (°°{T), using outer expectations 
E* whenever i/n,p is not Borel measurable. 

We say that the uniform central limit theorem holds at P if Gp is a tight Borel measurable 
element in £°°{T). A class T for which the uniform central limit theorem holds at P is called 
a P-Donsker class. 

Consider the following semi-metric on ƒ": 

Pp{f, 9)-= {I [if -9)- P{f - 9)f dP^' • 

{'^n,p} is called asymptotically uniformly equicontinuous m probability on !F with respect to 
PP if for every €,ri > 0 there exists a 5 > 0 such that 

limsup Prob ' sup |^n,p(/) - '^nA9)\ >(] < V 
n^oo \pp(f,g)<6 I 

with Prob* denoting outer probability on the relevant product sample space. We have the 
following theorem (see e.g. VAN DER VAART AND WELLNER (1996), example 1.4.9). 
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T h e o r e m 2.3.1 The sequence {I'n^p} converges in distribution to a tight Gaussian process 
Gp if and only if the following three properties hold 

. K,p(/i),...,i^„,p(A))^Mo,s) 

• {'^n,p} is asymptotically uniformly pp-equicontinuous in probability on T. 

• T IS totally bounded for pp 

R e m a r k . If supygjf | P ( / ) | < oo, the pp metric can be replaced by the L2{P) metric (see 
VAN DER VAART AND WELLNER (1996), problem 2.1.2). 

The stochastic equicontinuity property is the one that is needed. However, this is by far 
the strongest property of the three; hence showing the P-Donsker class property is almost 
similar. So our question is: when is a class of functions a P-Donsker class? We restrict 
ourselves to classes of cadlag functions. For our purpose, the definition of univariate cadlag 
functions is extended to bivariate functions in the following way. A function ƒ defined on (a 
subset of) ]R^ is called cadlag if 

f{x, y) = f{x+, y) = f{x, 2^) = ƒ (a;+, i^) 

Sufficient for ƒ" to be a P-Donsker class is JF to be of uniformly bounded variation (see e.g. 
VAN DER LAAN (1993)). This can be characterized via the variation norm \\ • \\y. For the 
one-dimensional case, if ƒ is a cadlag function on [6o, &M] C R , its variation norm is defined 
as 

ll/llt,, :=max{||/|U,||/|K,}, 
with the norm || • ||i/, defined by 

M 

ll/llv, :- sup Z\m)-f{bj-i)\-

Here I is the set of all disjoint partitions Ij = (6j-i, bj] of (6o, b^]-
For a bivariate real-valued cadlag function ƒ on [ai, 02] x [61, 2̂] C IR^, the variation norm 

is defined as the maximum of four norms: 

ll/llt, : = m a x | | | / | | o c , |l/ | |v,, sup | | / (x , OHv., sup || ƒ(•, 2/)||v, } 

The norm \\f\\v2 is defined as 

ll/llv, :=SUP5: | / ( ^ . , ) | , 

where the supremum is taken over all finite rectangular partitions {Aij} of (01,02] x {bi,b2]. 
If Aij is of the form (5,2:] x {t,y], then f {Aij) is defined as 

f{A,):=f{x,y)-f{s,y)~f{x,t) + f{s,t). 
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IV: Closeness in empirical process, continued. 
Now we return to case 1. The index set is formed by the class 

T = {ëF\FeJ'}u{èpJ 

with JT being the class of piecewise constant non-defective distribution functions with mass 
contained in [TO,TM]. By the Lipschitz condition on (̂  o FQ"' this class is easily shown to 
have a uniformly bounded variation norm, hence it is a Qp^-Donsker class. Now we use 
theorem 2.3.1 and the subsequent remark. Again by the Lipschitz property of ^ o Fo~\ we 
have 

= C\\F„-FO\\G 

Using convergence of Fn to FQ, e.g. in L2(G)-norm (proposition 2.1.4 once more) or in supre-
mum norm (see GW, section II.4.1), we obtain the desired result, which ends the proof for 
case 1 

D 

In the next subsection, on case 2A, we more or less repeat the above proof. However, 
some things are slightly different. Moreover, the proof is more complicated since we lack an 
explicit formula for the canonical gradient. For case 2B the main difficulty is in part IV, 
closeness in empirical process. Standard results on Donsker classes cannot be used, due to 
the singularity in 'y.h{u,v)/[F{v) — F{u)]. 

2.4 Case 2A: observation times bounded away 

The following theorem will be shown to be valid. 

Theorem 2.4.1 Let the conditions on page 63 he satisfied, except for (H4).Case B. Then we 
have 

^[A' (F„) -A ' (Fo)]^7V(0, | |ö f -„ | | ^^J as n - ^ 

Proof: 
Again it is sufficient to show the following: 

\ /^[ A'(F.) - A-(Fo)] = v ^ ƒ èp, d{Q^ - Q^J + Op(l). (2.21) 

By the strong consistency of the NPMLE (proposition 2.1.3), /Q > ci and condition H4.Case 
A, there exists a constant c', such that 

Fr,{u) - F„{t) > c', ii u - t > €o, (2.22) 

with probability tending to one if n is sufficiently large. This c' determines the e in condi
tion (CF) on page 32, giving the definition of the class T, consisting of the non-defective. 
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piecewise constant distribution functions that have enough increase to prevent occurrence of 
a singularity in h{u,v)/{F{v) — F{u)): 

T := {F : F is non-defective and satisfies (CF) on page 32}. 

Using proposition 2.1.1 and property (2.22) we see that Fn £ ^ , with probability tending to 
one as n ^ oo. Hence we may restrict ourselves to F„ G JT. 
Now we take the same steps as in the proof of theorem 2.2.1. 

I: Functional almost linear. 

From hi + h2 > 0, (K3) and proposition 2.1.4 we derive 

V^ [ K{Fn) - K{Fo) ] = y/^ jkp, d{Fr, - Fo) + Op(l) 

II: Transformation to observation space. 

In case 1, 9p was defined as 

^F„W , n .^ '^fnW {t,6) = -6^^4^ + {l-6)-
Fn{t) '1- F„(t) 

with (pp. the solution of the equation 

, % , Mx) + ^ y - 5 ( ï ) = ^Vo(x). 

This equation has its analogue in the integral equation 

Mx)/dF{x) + [£^^ ^^p^ h{t, x) dt - £ " ";<;>JfW h{x, t) dt = 

= k'.^ix) (2.23) 

with F — F„. So we look at this equation and the corresponding ^/r-equation for F £ ƒ". 
Note that {ƒ• is only defined on the interval from the first point of jump of F„ to its last one, 
say on [ri(Fn), Tm{Fn)]. By theorem 1.4.6, we know both equations to have a unique solution 
in D ( [ T „ , T „ ] ) and F ' ( [ T I ( F ; ) , T „ ( F „ ) ] ) respectively. 

Contrary to case 1, where ^ was given by ^ = a'p^/g, the ̂ -function for case 2 depends 
on F . Moreover, this ^-function is no longer continuous everywhere. It is a cadlag function 
instead, having jumps at the same points as F . The solution (pf can be used to extend the 
definition of OF to F G T: 

Of X \ C^FM <I>F{V) - <PF{U) , . , . . <PF{V) 
of M, w, 6, 7 := -6 - — - - 7 -^p-. ^q-z- + 1 - ^ - 7 :, h ^ , 2.24 

r (u) F(v) - F[u) 1 — F(v) 

where (J>F{U)IF[-u) and 0 F ( I I ) / ( 1 - F{v)) are defined to be zero if F[u) = 0 or F{v) = 1, 
respectively. At points where the denominator in the 7-part of (2.24) is zero, we have 
h{u,v) = 0 as well. There we need not define Op, since the integral on the right-hand 
side of lemma 2.4.1 can be restricted to {rjo < u < v ~ e^ < r ;„}. 
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Lemma 2.4.1 For any F e f we have 

jkF,d{F-Fo)^- jèFdQf, 

Proof: 
Let, for any distribution function F £ J^, Lp: L2{F) -^ L2{QF) denote the conditional 
expectation operator 

[Lfa](M,u,5,7) = EF[a{X)\U = u,V = v,^ = 6,T = -)] 
^IrladF yj:adF (i - S - y) J^-adF 

' F{u) '^F{v)-F{u)^ l-F{v) a.e.-[c^^j, 

with adjoint given by 

[L*b]{x) = E[b{U,V,A,r)\X = x] a.e.-F. 

Since the adjoint is an expectation, conditionally on the value of the random variable X ~ F, 
its structure does not depend on F. F only determines where it has to be defined (the a.e.-F 
part). Still a e L°2(F) implies Lria) £ L{{QF). 

Note that Op G L2{QFO)'- for (5 = 1 and ó = 7 = 0 we use boundedness of ^^, for 7 = 1 
we use boundedness of 0/r, together with condition (H4).Case A. Let 1 G L2{F) denote the 
constant function \{x) = 1, a; G IR. Under Lp this transforms into the constant function 
1°(M,V, (5,7) = 1 on L2{QF)- NOW we have, 

jepdQFo = <èFX>Q,^ 

= <èF,LF,{l)>Q^^ 

= <L*{9F),1>FO 

= j L*{èF)dF,. 

L'iêp) = KFO - / 'ï'Fo dF a.e.-Fo 

If we can prove 

we are done. 
This is shown as follows: 
The integral equation was obtained by taking derivatives in the equation «^0(2;) — \L*dFo]{^) 
for all X G [TO,TM]. NOW we will go the other way, integrate, but replace Opa by dp, obtaining 

[L''6p]{x) = [kFo]{x) + C for all x G [TO, T^]. 

For the constant C we have, using that F is non-defective, 

C = J CdF 

= j L*{dF)dF~ j KF.dF 

= <L'-{èp),\>p - I kp.dF 

iL 
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It is easily shown that 9f is contained in L\{QF). (However, it is not contained in 7l(Lf), 
since 4>F is not piecewise constant.) Now we have 

< riöp), 1>F = < dp, LF{1) >Q^ 

= <èF,r>Q, (2.25) 

= 0 

G 

R e m a r k s . 

I. This result can also be proved by writing out the integrals using definition (2.24). 

II. For case 1, the equality 

was first shown to hold in GW. In VAN DER LAAN (1993), this equality is derived for a 
general class of missing data models which allow for complete observations. The interval 
censoring models do not belong to this class, however, since direct observations do not 
occur. The above proof suggests that the equality holds more generally in missing data 
models, also when direct observations do not occur. Basically, what is needed is: 

• F is non-defective 

• [L*èf]{x) = [fiF„]{x) + C for all x e [ro,T„] 

• OF e L2{QFO) 

. 0F e L°{QF) 

Note that Op does not belong to the range (nor the closure of the range) of the score 

operator Lp • A modification (pp is introduced below, which does belong to the range 

III. Validity of the lemma is not restricted to this choice of OF- The same result holds if we 
had based OF on the non-canonical gradient at the beginning of section 1.4.2, i.e. 

M « , M , 7 ) : = - ^ ^ ' . » ^ + (1 - ^ - 7) ^ ' . » g ^ . 

Since this definition is given by an explicit formula, the lemma can be proved by a 
simple direct computation, like in case 1. Of course, this cannot lead to the optimality 
result, so one of the next two steps should go wrong. Indeed, part III does not hold for 
this choice of 6F' if we insert the empirical measure, the correction we have to make to 
get a piecewise constant function is not negligible in the limit. 
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III: Inserting of empirical measure. 

Now we will use the NPMLE characterization, corollary 2.1.1. Since (pp and <̂^ are not 
piecewise constant, we introduce the functions (f)p and ^p . These functions are constant on 
the same intervals J; = [Ti,Ti+i) as F„. The value of ^^ on J, is defined to be: 

ïp {Ji) '•= •?/•„(*) '̂  there exists a point s £ J^ with Fn{s) = Fais) 

?/.„(J.) := ^p„(T.) if Fo(x) > F^{T,) for all x e J^ 

?F„('̂ >) := '^/r„(Ti+i-) if Fo(a;) < f'n(Ti) for all x e Ji 

The function (pp is defined as 

^pjx) := Fn{x){l - Fn{xMp^{x) 

Let 6p denote the function defined in (2.24), but with 4>p replaced by (pp . Now corollary 
2.1.1 says 

Jëp^dQ, = 0, 

yielding 

-^jèp^ dQp, = V^jëp^ d{Qn - Qfo) + V^j{Op^ - èp^)dQF, 

The last term will be shown to be Op(l) in lemma 2.4.2. Note that the area of integration of 
Qn can be taken to be {TQ < M < w — eo < r^} as well, since points (f/;, Vi) with Vi — t/; < to 
do not occur. 

Lemma 2.4.2 
V^ jih„-hjdQF, = o^{i) 

Proof: 
Let the function i)n be defined by 

iin{u,v) = - \ëp^ - 6pju, V, 1,0) Fo{u) - [êp^ - èpju,v,0,1) [Foil') - Fo{u)] 

+ [ ^ F „ - Ö ~ F J ( ' ' ' Ï ' . O . O ) [ 1 - F O ( I 0 1 . 

Using the decomposition 4>f = F{1 — F)^^, and 

F{v) - F{u) =-[{1 - Fiv)} - {I - Fiu))], 

we get 

'>Pn{u,v) = ^ ^ ^ "^ ^ ^ [^FM^ - '̂ F„('")] X 

f'niv) 

Fr,(v) ~ F„{u) 

x[(l - Fo){v) {F^{u)-Fo{u)) + (1 - Fo){u) {Fo{v)-K{v))]. 

pn 1 - F„{u) 

Kiv) - Fn{u) '^^'''^' ^^-^^^^'^ I 

x[Foiv) (F„(M)-FO(M)) + FO(«) {FO{V)-K{V))] m 
(?K(^)-CF„W)X i 



2.4 Case 2A: observation times bounded away 77 

Applying Cauchy-Schwarz we obtain: 

\V^j(^F„-hjdQFo\ 

<V^K Üp^ - ^PJH, X [||F„ - FolU, + \\Fn - FolU,] 

+V^.K Mp^-^fjH, X [||F„ -Fo||«, + ||F„ -FOIIH,] 

By part I of lemma 1.4.2 on page 36 and /o > cj > 0 we find 

\ÏFM - ^FM\ < K \Fn{n) - Fo(«)|. (2.26) 

An application of proposition 2.1.4 on page 65 finishes the proof. Property (2.26) is seen as 
follows. 
For example, if the interval J, 3 u has a point s where F i and FQ have equal value, we have 

ICF„(«)-Cf„(«)l = l^#„(s)-^/-„(w)l < K,\s-u\ 

< {KJC)\Fo{s)-Foiu)\ 

= {Kr/C)\F^{s)-Fo{u)\ 

= {K,/C)\Fn{u)-Fo{u)\ 

The same argument is used for the other two situations, with s replaced by Ti or Ti+j- and 
' one =-sign replaced by a <-sign. 

a 

m IV: Closeness in empirical process. 

The first term is further split into 

Wmn ^JOpJ{Qn-QFo) = ^jhAQn-QFo) 

+ \ / ^ / ( ö ^ „ - ö V o ) < i ( Q n - Q F „ ) . 

l ^ ^ l H Again the last term will be shown to be Op(l): 

Lemma 2.4.3 

mamm \ /^ ƒ (^F„ - ho)d{Qn - QFO) = op(i) 

i Proof: 
Consider the class of functions 

We show the class /C to be a Qfo-Donsker class by showing the variation norm to be uniformly 
bounded. 
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The parts with 6 = 1 and (5 = 7 = 0 are essentially one-dimensional. For example, for é = 1, 
we only have to consider the one-dimensional variation of 

ëF{u,v,l,0) = -{1 - F{U))IF{U) 

From lemma 1.4.2 on page 36 we derive, 

\^F{y) - iF{x)\ < K{\y -x\ + \F{y) - F{x)\). 

From this one easily derives the variation of ̂ p to be bounded, uniformly over F £ T. 
For the part with 7 = 1, we have 

f{x,y) 
F{y) - F(x) • 

Note that ƒ is a function that is constant on rectangles of the form [ri, Ti+i) x [TJ,TJ+I), with 
T, and Tj being points of jump of F. Let Ay = {s,x] x {t,y]. f{Aij) can be rewritten as 

f{A^,) = 
Ni + N2- N3 

D 

with 

N, = [Fit) - Fix)] [Fit) - Fis)] X [Fix) - Fis)] [My) - Mt)] 
N2 = [Fiy) - Fix)] [Fit) - Fix)] x_[Fiy) -Jit)] [M^) " Ms)] 
N, = [Fiy) + Fit) - Fix) - F(s)l [0^(i) - M^)] x [Fiv) " Fit)] [Fix) - Fis)] 
D = [Fiv) - Fix)] [Fiy) - Fis)] [Fit) - Fix)] [Fit) - Fis)] 

The denominator D remains larger than (c')''. For Ni, N2 and N3 only the parts after the 
x-sign are important. Again using lemma 1.4.2, one obtains 

[cpfiy) - Mx)\ < Ki\y ~x] + \Fiy) - F(x)|) 

implying boundedness of ||/||vj = sup^_^ Ei,j IfiA])]-
With respect to the one-dimensional variation for 7 = 1 we have, for x < t < y, 

fix,y)-fix,t) 
[Fiy) - Fix)] [0^(2/) - 4>F{t)] - [cppiy) - 4>Ax)] [Fiy) ~ Fit)] 

[Fiy) - Fix)][Fit) - Fix)] 

implying boundedness of sup ,̂ | | / ( i , Ollvi- Boundedness of variation in the other variable is 
shown in a similar way. The same arguments apply to the function Sp^ e K,. 

From the Qf^-Donsker class property for K., we derive asymptotic uniform equicontinuity 
over /C, with respect to Z/2('3Fo)"'iorm, of the empirical process \A*(Qn —<3FO) (theorem 2.3.1). 
Finally we have to show 

l | Ö F „ - ö f o | | Q , ^ = O p ( l ) . 

For this we use (2.26), i.e. |?/-^(w) - <̂ f-„(M)| < K |F„(u) - Fo(u)|, together with convergence 
of (,p^ to ^f(,, which is shown in lemma 2.4.4 below. Using L2-consistency of F„ with respect 
to Lebesgue measure, we are done. 

D 

'T 
nn 

1 

PW 
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Lemma 2.4.4 Let \\ • \\x denote L2-norm with respect to Lebesgue measure. Then 

\\K - F\\x -» 0 implies | |0jr„ - <J>F\\X -* 0 . 

The same holds for ^p. 

Proof: 
The following holds: 

Let An- X —> X, n — 1,2,... and A: X ^> X he compact linear operators on the normed 
space {X, II • II). Let 4>n be the solution to (7 — An)(t>n = fn and let <{) satisfy (ƒ — A)4> = ƒ• 
Then we can write 

0 - < / ) „ = [ ( ƒ - A)-'] (ƒ - ƒ„) - [(ƒ - Ar\An - A)] <Pn 

We apply this, with X = [ro,r„] and the L2(A)-norm and A being our integral operator. 
Boundedness of {I — A)~^ (theorem 1.4.1) and uniform boundedness of {(/>F„} is used, together 
with the following inequalities: 

and 

\\fp„-fFo\\x<K,\\Fn-Fo\ 

\A^^-A\\,<K2\\Fn-Fo\\x-

These inequalities can be proved by repeatedly using 

— - — = - ( t t i - a j ) + 7-r-(62 - &i) 
6i 62 Oi O1O2 

D 

2.5 Case 2B: observation times arbitrarily close 

Again, the following theorem will be shown to be valid. 

T h e o r e m 2.5.1 Let the conditions on page 63 be satisfied, except for (H4)-Case A, Then 
we have 

V^[K{Fn)-K{Fo)]^N{Q,\\0FX^^) as n - x ^ 

Proof: 
We again go through the successive steps. To prove that the functional is almost linear (part 
I), we refer to case 2A. 



80 Chapter 2 Interval censoring: the NPMLE 

II: Transformation to observation space . 

Like in the previous cases, our definition of the canonical gradient 9F will be extended to 
piecewise constant distribution functions F with finitely many discontinuities. However, since 
F{v) — F{u) no longer remains bounded away from zero on the region where H has mass, the 
situation is quite different from case 2A. One may guess what will happen from the following 
observations. 
On one hand, the quotient 

(pFJv) - <PF{U) 

F{v)-F{u) ' 
for u and v in the same interval of constancy of F , can only be defined correctly if 4)F is 
constant on the same interval. On the other hand, dp, h and k'p^ in general are not constant 
on these intervals, making a completely discrete version of the integral equation impossible. 
The integral equation for discrete f is a compromise between these two conflicting demands. 

Instead of one function 4>F we have a pair of functions (0;r, IPF), satisfying 

(PF{X) = dF{x)lk{x) - r rpit, x) h{t, x) dt + T'" r^(i, t) h{x, t) dtV (2.27) 

where rF{u,v), for F{u) < F{v), is defined by 

4>F{V) - 4>F{U) 
Tpiu,V) 

F{v) - F{u) 
(2.28) 

If u and V are on the same interval of constancy of F, we have some freedom defining TF-
Two versions will be considered. First we use 

rF{u,v) = -tpFiv) ~IPF{U) on {{u,v)\F(u) = F{v)}, (2.29) 

for which it is rather easily shown that (2.27) has a solution, nicely using theory on Fredholm 
integral equations. This choice has the disadvantage that {ipF \ F e ƒ"} is not uniformly 
Lipschitz, as will be shown in section 2.6. Moreover, the way of proof given does not show 
4>F to be uniformly Lipschitz in the inverse scale. These uniform Lipschitz properties will be 
used when showing the Donsker property for {OF \ F G JF}. Another version is 

rF{u,v) = 
•ipF{v) ~ IPF{U) 

on {{u,v)\ F{u) = F{v)}, (2.30) 
Fo{v) ~ Fo{u) 

for which V'F will be shown to be uniformly Lipschitz. The Fredholm technique used to 
prove version (2.29) to be a valid one cannot be used for version (2.30), due to the fact that 
a singularity is introduced via the quotient. A diflferent approach showing that (2.28) and 
(2.30) lead to a solvable equation (2.27) will be given in theorem 2.5.2, in which the uniform 
Lipschitz property for both { 0 F | F G JF} on the inverse scale and {tpF\F e T} is shown as 
well. 

The definition of the function 9F is extended to piecewise constant distribution functions 
F by defining, for the pair {(pF,i>F) solving equation (2.27), 

?{u,v,6,-f) 
(pFJu) 
F{u) 

• 'yrF{u,v) + (1 - (5 - 7) 
(pFiv) 

l - F ( v ) ' 

ni 



m 
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where (pf{u)/F{u) and 4>F{V)/{1 - F{v)) are defined to be zero if F{u) = 0 or if F{v) = 1, 
respectively. 

Since (pp is constant, the only real integral part is the ip-pait; the rest of the integral can 
be written as a summation. As in chapter 1, we let Zi = F{Ti); moreover we let yi = 4>F{Ti)-
We define 

Mg).= J^'^\{t)dt, (2.31) 

A y 

and 

{h) := r"' r^' h{u,v) dvdu, for i < j (2.32) 
Ju — Ti JV=:TJ 

J. ._ ^'(-^ ~ ^'> (2 33^ 

We now start with the first choice (2.29). For the following proposition, condition 
(H4).CaseB can be slightly weakened. 

Using the Fredholm theorem 1.4.2 we obtain 

Proposi t ion 2.5.1 Let F be a piecewise constant distribution function, having a finite num
ber of jumps. Instead of (H4).CaseB, the following is supposed to hold: 

/ h{u,t)du+ h{t,v)dv > 0 for each X <t <y (2.34) 
J u~x Jv=t 

Then a pair of functions {<PF,'4'F), solving equation (2.27), exists, with rp defined by (2.28) 
and (2.29). 4>F IS a piecewise constant function, constant on intervals of constancy of F. 

The vector y = ( j / i , . . . ,ym)', with yi = 4>F(Ti), is the unique solution of the set of linear 
equations 

^c' + E^+Ef-f} 

Proof: Define 

A.(fc) + E ! f ^ % + E ! ; ^ % ^ ï = l , . . . , m - l . (2.35) 

h%t,x):={ ;;f'^J ' ' 1 1 ' 
' h{x,t) n t > x 

Split [T„, r„] into the intervals J, = [r;,Ti+i), i = 0,... ,ni ~ 1 and Jm = [rm,T„]. We have 
4'F[JO) = yo = 0 and 4>F{Jm) = ym = yu — (>• On these intervals we can choose tppix) = 0. 

Assume (pp to be constant on the same intervals as F. Let x £ Ji for some index 
i e {1, 2 , . . . , m — 1}. Rewriting equation (2.27) as an integral equation in V̂  on [T,, r,+i], we 
obtain: 

i>F{x) f h'{t,x)dt~l h*{t,x)'ipF{t)dt = r{x), (2.36) 
JteJi JteJ, 
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r{x) = k{x) y. 
Zi{l - z,) 

[/i,(a;)(l - z^) + h2{x)zt] 

(2.37) 
J = 0 

The homogeneous equation corresponding to (2.36) is solved by the constant functions. So we 
are in the situation of theorem 1.4.2 on page 23. Part I of this theorem is applied. Defining 

Xrix) ••= IPF{X) J h*(t,x)dt, 

we look at the adjoint homogeneous equation of the XF-equation, which is given by 

a{x) f h'-{t,x)dt- f h*{t,x)c7{t)dt = Q. (2.38) 

Note that this is the same equation as the homogeneous part of (2.36). By a supremum 
argument as in theorem 1.4.6 on page 33, using (2.34), one can show that only the constant 
functions solve this homogeneous adjoint equation. Thus equation (2.36) is solvable if and 
only if 

ƒ Cr[x)dx = Q for all C e M. 

This is equivalent to the condition 

2,(1 - Zi) 

Mk) - E 7;^^Ah) + E ^^^JW (2.39) 
j=0 7—1+1 

Note that this should hold for any interval J;, so the set of linear equations Ay = b should 
be solvable, with: 

Olii = U; + ZvJ<I 2 _2 

Ai,(h) 

, 7 7 1 — 1 6, = A,(A:) for i, j = 1, 

Again we can use theorem 1.4.6 on page 33 to show that this equation has a unique solution. 
Since yi = 4>F{Ji), this solution specifies (pF- Moreover, this specification is not in conflict 

with the integral equation (2.27). (2.27) is the same as (2.36), and integrating both sides of 
(2.36) from r; to T,+I and applying Fubini's theorem cancels the left-hand side. Hence we 
have shown the existence of a solving pair {(j>F,i)F)-

Note that ipp is only determined up to a constant, since only the difference between 
two values of ipp occurs in equation (2.27). (This also follows from the Fredholm theory: 
dim(A^(/ — A)) = é\m{J\f{I — A*)) = 1.) We can ensure uniqueness by defining tppiTi) = 0. 

D 



2.5 Case 2B: observation times arbitrarily close 83 

R e m a r k s . 

I. The same method can be used to prove existence of a comparable (^,C) equation. Let 
^(T;) = Wi. Then the matrix equation Aw = b has coefficients: 

a,j = -c, ^ ^ Zj{l - Zj) 

hi = QAi(fc) for i, j = l , . . . , m - 1 , 

where Ci is defined by 

1/c. : = = l ^ [ ( l - 2 j ) A j , ( / i ) ] + / / h{u,v)dvdu + Y.^3^^Ah)• 
; = 0 " '"= '•• • '" = " 3 = 1 

II. We may have a situation in which no mass is present along part of the diagonal. If, for 
each t e [Tfc,rfc+i], 

ft f^k + l 
/ h{u,t)du+ h{t,v)dv = 0, 

equation 2.38 is solved by any function a, hence the approach of lemma 2.5.1 fails. This 
is to be expected, since this is situation 2A, in which (pp cannot be constant. 

However, if, for each t e [T/,Ti_|_i], 

ƒ h{u, t) du+ ƒ h{t, v) dx> > 0, for each x < t < y, 
Ju=x Jv=i 

lemma 2.5.1 can still be applied on this part of [TO, r „ ] . r{x) has a form which is slightly 
different from the full case 2B. If [rfc,r(c+i] belongs to a section of the diagonal where 
mass is absent, (pf is no longer constant on these intervals, implying that e.g. 

Zl - Zk 

should be replaced by 

r'+' r-"' vi^Miih{t^x)dtdx. 

Of course, an interval [r<.,T<.+i] may also partly belong to a part of the diagonal where 
mass is present and partly to a part were mass is absent. Then, (pp should be constant 
on the part where mass is present, with a V'-function needed in the integral equation 
for this section of [TJ,, r^+i]. On the rest, 4>p is not constant, and no compensating tli is 
needed there. 

For the second choice of rp we use a representation of the equation for (j)p on the inverse 
scale and the construction of a continuous extension of the equation for 4>p on this inverse 
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scale (similar techniques were used in subsection 1.4.2). Using a similar notation, we denote 
by G the inverse of F, where, for purely discrete distribution functions F, we take the right-
continuous version of the inverse, defined by 

G{y) = inf{x e [TO, T^] : F{x) >y},Q<y<l. 

Similarly, we define 
kf = k o G, hi F = hl o G, /i2,F = /12 ° G, 

'"-y' {i-y)hiAy) + yh2Ayy 

H{u,v) = H{G{u),G{v)), 0<u<v<l, 

and 

CF{y) = r ( 1 -«)'^^(«'y)+ t ^d^^y^s). 
Jo Jy 

We again have to restrict ourselves to the class 

T :— {F : F is non-defective and satisfies (CF) on page 32}, 

which was also used incase 2A. The choice of e in (CF) is given in the proof of the theorem 
below. We have 

Theorem 2.5.2 The following holds: 

(i) There exists a unique Lipschitz function 4>f ; [0, l\ —* IR such that, for y £ [0,1] \ D, 

^F{y) = My){kF{y)-( ^^^f_t'^'UH{s,y) 

+ f M^)-My)rf//(y,s)}, (2.40) 

where D is the (finite) set of discontinuities of the right-continuous inverse G = F~ ' 
in (0,1), augmented with 0 and 1. The function 4>p- is Lipschitz, uniformly for F £ T. 

(11) There exists a pair {(J)F,'>PF), solving the integral equation (2.27), with rp- defined by 
(2.28) and (2.30). 4>F is absolutely continuous with respect to F and the function ipp is 
Lipschitz on each interval between jumps of F, uniformly for F G T, with a Lipschitz 
norm not depending on the interval. 

(Hi) The vector y = (2/1,..., j/m)', with yi = (priTi), is the unique solution of the set of linear 
equations 

y,^ 
j<i ' j>i 

.̂(̂ •) + E!f^2/. + E t ^ % . •̂ = l,...,m. (2.41) 
7<Z j>i 
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Theorem 2.5.2 will be proved by approximating the purely discrete distribution function 
F by the function Fa = {I — a)Fo + aF, which was considered in section 1.4.2, and by 
studying the behaviour of the corresponding function (pp^, as a t 1. 

Proof: 
ad (i) Let FQ = (1 — a)Fo + aF. For a € [0,1), the function Fa is strictly increasing 
and continuous between jumps and hence the solution 0^^ to the integral equation exists by 
theorem 1.4.8 in section 1.4.2. For simplicity of notation, we will denote (f>F^ by (pa- Moreover 
we let Ga = F~^, with derivative ga- Furthermore, we write k^ instead of kp^, and use the 
same notation for the other functions in the inverse scale. By theorem 1.4.8, 0» is the unique 
solution of the integral equation 

My) = da{y){Uy) - [ ^'^'tt^'^ dHa{s,y) 

+ ƒ MflzMyldHa{y,s)}, ye [0,1] 

Let the set Da be defined by 

Da = {discontinuity points of 5Q(J/), augmented with 0 and 1} 

U {discontinuity points of k'a{y), d'a{y), 

A\y) = •§^ha{y, s) for y < s, and A\y) = ^ha{s, y) for y > s}, 

and let Aa,6{y) and Ba,6{y) be defined by 

ry+S 

Aa • • ~ 

and 

aAv) = d.{y)U\\lha{s,y)\dGa{s) + J^' | ̂ ft.„(y, s) | dG,(s) i, (2.42) 

BaAy) = da{y)\k'a{y)\ + \d'a{y)\[{l-y)hUy) + yh2Ay)] sup {c„(s)|fc,(s)|} 
se[o,il 

+ ^Éjyl sup {da{s)\ka{s)\} X 
Ö se[o,il 

X { sup \i-ha{s,y)\ + sup \i;ha{y. s)\}. (2.43) 

Moreover let 
Ca{y) - l + 2da{y)ga{y)ha{y,y)- (2.44) 

As in theorem 1.4.8 we have that at points of Da the functions Aa,s and 0^,6 have two 
versions, one corresponding to taking left derivatives and one corresponding to taking right 
derivatives. By theorem 1.4.8, there exists a i5 > 0 such that 

sup Aa,6{s)/Ca{s) < 1/2, 
se[o,i] 
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and we have 
|0Q(V) — 4>a{u)\ < Ka{v — u),Q <U < V <l, 

where A'Q is given by 
A-, = 2 sup B„,,(s)/a(s), (2.45) 

s6[0,ll 
for (5 > 0 such that sup^grg n >lQi(s)/Ca(s) < 1/2. We need to show that we can choose b 
and A'Q independently of a and F in a small (supremum distance) neighbourhood of FQ. 

If (using the same notation as in the proof of lemma 1.4.4) y belongs to an interval (z^, z[), 
on which GQ increases, then, going back to the original scale, we get 

Aa,6{y)ICa{y) 

a:e(To,TM) 2h[x,x) 

The essential observation here is that, although Aa,6[y) tends to cxo, as Q T 1, for points y in 
the range of FQ, the ratio Aa^s{y)/Ca{y) stays bounded, since the factor ga{y), causing the 
steep increase of Aa^i{y) via 4-ha, also occurs in the denominator Ca{y)-

If, on the other hand, y belongs to an interval {z[,Zi+i), on which Ga is constant, then 
Aa,6{y) = Oi since gdy) = 0 on such an interval. Hence we can choose è > 0 such that 

sup AcAs)/Ca{s) < 1/2, 
se[o,il 

for all a e [0,1) and all F such that sup^gi^^^^j \F{x) — Fo{x)\ < f, for a fixed suitably chosen 
e > 0. (Note that here the e in condition (CF) on page 32 is determined.) 

In a similar way we get, using (1.50) in section 1.4.2, if F is close enough to FQ, 

BaAy)/c.{y) 
k'{x)\ 

< sup 
ie(To,TM) 2h(x,x) 

1 + \hi{x) - h2{x)\ + \h\{x)\ + \h'2{x)\ k{x) 

X£(TO,TM) ll(X,Xj a;e(To,TjK) Cl "(,3^1 2:J 

1 2k(x) 
+ -TT-j -. r sup 6i^Ue(ro,TM)h{x,x) xÊ{ro,T„) hi{x) + hiix) 

x{ sup \lh{x,y)\+ sup \lh{x,y)\], (2.46) 
T,y6(T0,TA() I,!/e{TO,TM) 

X 
léi 

for some e, > 0, uniform over a and F , implying that suPsgrgii BQ,é(s)/CQ(s) and hence l ^ ^ l B 
also A'a in (2.45) has a finite upper bound (given by the right-hand side of (2.46)) which is r ^ ^ ^ 
independent of a and F. ^ 

It follows that the sequence {4'a) is equicontinuous and hence has a subsequence, converg
ing to a function 4>F which is Lipschitz on [0,1]. Let {an)nr=i,2,... be a sequence of numbers 
such that a„ T 1 -̂̂ d 0Q„ —* 4>f in the supremum distance. Define 

<PF{X) := 0f (F(x)). (2.47) 

i . 
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Then, by the equicontinuity of the sequence (0a„), we obtain, for each x G [TO,T,U 

4>p{x) = 4>F{F{X)) = jim^0„„(Fa„(a:)) 

= lim (/)Q^(X). (2.48) 

Now let y G [0,1] \ D. Then j / is a point of continuity of G and does not belong to the 
range of F. We have 

4>F{y) = j™„^an(y) 

= lim d^MlhAy) - [ ^""^'llt""^'^ dH^^{s,y) 

I hALLiÉB^^dH. a„(2/,s) | 

dF{y){kF{y)- lim / ^'^%-Jr^'^ dH^As,y) 
I n—too 7 j g j g j^) » 

+ lim / i^^Mzi£MdH^^y,s)]. (2.49) 

Suppose F(r ,) < y < F(r,+i) . Hence G(y) = Ti+i. Then (2.49) can be written as 

? / ( l - J / ) 
K2/) /ii(r,+i)(l - t/) +/i2(Ti+i)?/ 

x ( ^ r , + i ) - lim / M i / ) - y rf/j(^,G (y)) 

+ l i m / ^ .n(0-Mi/ ) r f f f (G^jy) ,^) | 

(2.50) 

and by the dominated convergence theorem and (2.48), we get 

2/(1 - y) 
4>F{y) 

hi{n+i){l - y) + h2{T,+i)y 

T + / ^ % ^ d H ( r , + i , i ) | 
Jt:F(t)>y '^(^1 y J 

2/(1-2/) 

/ i i(2/)(l-2/) + /i2(2/)2/ 

(fcf (2/) - / ^^^^Ef^ rf^(s, 2/) + / MflzMal dH{y, s)] 

Uniqueness of (pp will be proved below in part (iii) 

e(!/,i] 
(2.51) 

i. 
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ad (ii) We define, for a e (0,1), the functions Va : [TO.TM] —» 1? by 

ipaix) = , X G Ji, z = 0 , . . . , m. (2.52) 
1 — a 

Recall that J, = [Ti,Ti+i) and J^ = [TTn,TM\- Using the uniform Lipschitz property of {4>a}. 
we get, for x, y in the same interval J,, 

\é iv) --ib {x)\ = ["̂ "(̂ ^ ~ '^°(^)l = I4(i^>(?/)) - 4 (^a (a : ) ) | 
1— Q 1 — Q 

< c ' ^ °^^^^"^"^ ' ^^ ' ^ c |F o (y ) -F o (x ) | , (2.53) 
1 — a 

where c > 0 is independent of Q and F G ƒ". By the continuity of (f>a, we can extend the 
function tpa, restricted to an interval [Ti,ri+i) to a continuous function i>a,i, defined on the 
closed interval [Ti,ri+i]. The functions V'Q.I are equicontinuous in a on the intervals [r^jTi+i] 
and hence have a convergent subsequence, converging (in the supremum metric for functions 
defined on [Ti,Ti+i]) to a continuous function ip,, defined on [r,,ri+i]. Let ipp : [Tg^T^] -^ IR 
be the function, such that 

II!F{X) = ^i[x), X e [T,,r,+i), i = 0,...,m, II)F{TM) = ^'miTu), 

and let {il>a„)n=i,2,... be a sequence such that the restriction of V̂ ^̂  to [T;, r^+i), i = 0 , . . . , m—1, 
or to [Tm,Tj,] converges to ipF in the supremum metric for continuous functions on such an 
interval. Since the sequence (0Q„) is also equicontinuous, we can also assume (by switching 
to a further subsequence) that 4>a^ converges in the supremum metric to a Lipschitz function 
4>F, as in part (i). Then we have 

1pF{y) - -^Pix) _ <Pa„{y) - fpa^ix) 

Fo{y) - Fo(j-) "-00 (1 _ a„){Fa{y) - F^ix)} 

= — F „ „ ( , ) - F . „ ( . ) ' (2-^^) 

for Ti < x < y < T,_|_i, i = 0,...,m. Since, by theorem L4.8, part (iii), on page 42, (pa 
satisfies the integral equation 

Mx) = da{x){k{x) - f p\l\:p^'\dH{t,x)+ [ pflJ/l\dH(x,t)}, 

we now get, by (2.48), (2.54) and the dominated convergence theorem, 

4>F{X) = dF{x){k{x) - f rF{t,x)dH(t,x)+ f rF{x,t) dH{x,t)}, (2.55) 

where rp is defined by (2.28) and (2.30). 
The function (pp is absolutely continuous with respect to F, since, by the Lipschitz prop

erty of 4>F > 

\<i>F{y) - Mx)\ = \~^F{F{y)) - MF{x))\ 

< c\F{y) ~ F{x)\, 2;,j/6 [T„,T„]. 

nn 
In 

nh 
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This shows in particular that constancy of F on an interval implies constancy of 4)^ on that 
same interval. Moreover, by (2.53) and the bounded differentiability of FQ, we have that V'a 
is Lipschitz on each interval [Ti,Ti+i), and hence tpF is also Lipschitz on such an interval. 

ad (iii) Multiplying both sides of (2.55) by d i r ( i )~ \ and integrating from Ti to Ti+i, the 
V'f-part cancels and we get a finite set of linear equations Ay = b for yi = (ppiTi), given by 
(2.41). This matrix equation was already shown to have a unique solution in the proof of 
proposition 2.5.1, using theorem 1.4.6 on page 33. The unicity of 4>f is easily obtained from 
this, since the integral parts of the equation for (f>F are with respect to a measure that has 
mass restricted to the values Zi = F{Ti). 

D 

Remark. The proof of theorem 2.5.2 crucially uses h{x,x) > 0, whereas case 2A assumes 
h{u, v) to be zero in a neighbourhood of the diagonal. For the situation in-between, a uniform 
Lipschitz property has not been established yet. 

Now we have for both versions of r^, similarly to case 2A: 

L e m m a 2.5.1 

fkF,d{F^-Fo) = - JèpJQpo 

Proof: The proof is similar to the proof of lemma 2.4.1 on page 74. The basic properties 
needed in the proof were given in the remark following lemma 2.4.1. dp G L2{QFO) follows 
from boundedness of the ratios occurring in 9f. JOpdQp = 0 is easily shown to hold by 
writing out the definition of 9p. 

G 

III: Inserting of empirical m e a s u r e . 

Unlike case 2A, (/)p and ^p. are constant on the same intervals as F„. ipp is not constant. 

However, we always have 7 = 0 if Fn{v) = Fn{u). So proposition 2.1.1 can be used directly 

to obtain 

l9pJQ„ = 0, 
yielding 

- y^ ƒ èp^ dQp, = ^ i j ö\ d{Qn -QFO)-

IV: Closeness in empi r i ca l p rocess . 

Again we write 

V^JèpJiQn-Qpo) = V^ifêpodiQn-QFo) 

+V^J{èp^-èF,)d{Qn~Qp,), 
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and the last term will be shown to be Op(l). We will not give the proof in full detail, but 
restrict ourselves to the basic ideas. The full proof is rather extended and can be found 
in GESKUS AND GROENEBOOM ( 1 9 9 6 B ) . We use the second version of vp, given by (2.28) 

and (2.30), since for this version we have proved the uniform Lipschitz properties to hold. 
However, the other version, given in (2.29), leads to the same result. For we have 

r ^ ' r ^ ' [^(^) - ^(«)l diQniu, V, 0,1) - Qp,{u, V, 0,1)) 

= / / [i'{v)-tp{u)]h{u,v)[Fo{v)-Fo{u)]dvdu 

= ƒ Fo{v) ƒ [ip(v) —'tp{u)] h{u,v) du dv 

rT,+i r /-T.+i 
- / Fo{u) / [ipiv)-tp{u)]h{u,v)dv 

f^' + l [" /"T. + l 

= ƒ Fo{v) r{v) + [4i{u) — ip{v)]h{v,u)du 

f 
Jv= 

f^^ + l 

- / Fo{u) 

Fo{v) r{v) dv 

• f^i + l 
ƒ [ip{v) — ^{u)]h{u,v) dv 

.Jv=u 

du 

dv 

du 

with r defined by (2.37) on page 82. A similar computation for version (2.30) also leads to 
J Fo{v)r(v) dv, implying that both versions lead to \/nf{Op^ — OFo)d{Q„ — Qpo)-

So we see that the -^-function is only playing a minor role. It is needed for a correct 
definition of the integral equation, and should occur in such a way that lemma 2.5.1 holds. 
However, this still leaves some freedom in choosing t/;. 

The main extra difficulty compared to case 2A is the fact that the denominator in Op for 
7 = 1 can be arbitrarily close to zero and is not compensated by h being zero. The parts 
8 = 1 and i5 = 7 = 0 do not lead to extra difficulties, since (pp contains a factor F {I — F). 
But for 7 = 1 we can no longer neglect the denominator when trying to compute the two-
dimensional Lipschitz norm. In fact, computer simulations strongly suggest the quotient ^Sp 
not to be of uniformly bounded variation. We have 

ƒ/. 

K 

^^<P'p^ {s)ds 

- r • 

Ti+1 - Ti 

^FnJT.+i) - F „ ( r . ) 

Ti + l — Ti 

The latter quotient does not seem to show less variation with increasing mimber of points. 
This difficulty is faced by considering three regions of integration: 

and 

C„,,(F) = {w : qp{w) > i]qp„{w), qPo{w) > n ^^^}, 

D^{F) = {w : qp{w) < rjqFoiw)}, 

C^{Fo) = {w:qp^iw)<n-'^'}, 

(2.56) 

(2.57) 

(2.58) 
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for some rj G (0,1), where the elements w are of the form w = {t,u,6,j). On the region 
Cn,ri{F), dp has a behaviour which is comparable to the behaviour of df^; on the other 
regions we use the uniform boundedness of 9F and the fact that the integrals over these 
regions become sufficiently small. 

First we state two lemma's, which are proved in GESKUS AND GROENEBOOM ( 1 9 9 6 B ) . 

L e m m a 2.5.2 (i) Let the function an be defined by 

Then 
Qnün = O,{\ogn) (2.59) 

(li) Let the function 6„ be defined by 

Then 
Q„b„ = 0,{n-^'^) (2.60) 

For the next lemma we have to exclude part of the possible outcomes Fn, occurring with 
small probability. By proposition 2.1.4, if T„ is the set of distribution functions F G ƒ", 
satisfying 

hHqF,qFo)<n-'''\ogn, (2.61) 

with /( denoting Hellinger distance (see page 65), we have: 

Prob{F„ e /"„} ^ 1 , as n —> 00. 

In fact, the upper bound n~^^'^logn, defining the class !F„, can be replaced by 

c„r^'-2/3(logn)l/^ 

where we only need Cn —>• cso, as n —> (X). However, being a little bit wasteful with powers of 
log n avoids an accumulation of constants in the upper bounds. 

Now we have 

L e m m a 2.5.3 Let, for ?] G (0,1), the set D^{F) be defined by (2.57). Then 

sup QnD„{F) = Op{n-''' logn). (2.62) 

Lemma 2.5.2.(i) is not directly related to one of the areas of integration C^ ,,(F), A , ( F ) or 
Cr,{F(j). However, it is used in the entropy calculations in lemma 2.5.3 and below. 

Using the notation of POLLARD (1984), page 150, we let £„ denote the empirical process 
\Aï(Qn — QFO) ^^'^ ^^^ F^ denote the symmetrized empirical process. Fix an (arbitrary) e > 0. 
Restricting to the most difficult part with 7 = 1, we have by the symmetrization lemma 

Prob| |£ 'n(rF - rp,^)'y\ > ( for some F G ƒ"„} < 

< 4Prob{ |£0( r f - Tp-.^l > \e for some F G ƒ•„}. 
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Let 7? G (0,1) be fixed. The rest of the proof consist in showing that 

Pr{\E°{rF - rpohl > | e for some F 6 / ; | Cn} ^ 0, as n ^ oo, (2.63) 

for all 
C„ = ((Ti, C/i, Ai, T i ) , . . . , (T„, [/„, A„, r „ ) ) , 

such that 
/ dQ„ < n - ^ / ^ l o g n , (2.64) 

f QFO dQn < {logn)\ (2.65) 

and 
sup QnD^{F) = sup dQn<n~^'^{\ogn)\ (2.66) 

FeJ^n F£J^„ JqF<niFa 

are satisfied for the empirical measure Q„, corresponding to ^„. By the preceding lemmas, the 
probability that these conditions are not satisfied for the sample (f„ tends to zero, as n —» cxo. 
In (2.64) to (2.66) we again use the method of absorbing constants into extra powers of logn. 
For the entropy calculations, ratios rp^g^^^^ of the form 

Gk{u) - F,(i) 

are used, where Ft and G^ are distribution functions such that F^ < F < Gk {{Fk,Gk) is 
a "bracket" for F ) and where (j)^ is a Lipschitz function approximating (j)p. In this way the 
good behaviour of the ratios rp on the region Cn,ri{F) is preserved on the same region by the 
approximating ratio fp^Q^^^. Note that the approximating ratios are outside the original 
class of ratios rp. The basic remaining part of the proof consists of a chaining argument, 
somewhat along the lines of proof on page 161 in POLLARD (1984). 

2.6 Some simulations 

2 .6 .1 A c o m p u t a t i o n of 6^, , óf. a n d i/'r 

Let F be a discrete distribution function, belonging to the class T on page 73. For case 2A, 
we have a Fredholm integral equation, and we can use the algorithms from the Numerical 
Recipes book (PRESS et al. (1992)). We will only give the computation for an example 
belonging to case 2B. For case 2B, computation is even easier. We know from theorem 2.5.2 
that 0f, as given by equation 2.27, is a piecewise constant function as well. In this equation, 
we do not need the tpp-pari in order to obtain the (;èF-solution. We know from part (iii) of 
theorem 2.5.2 that the values of <1)F can be found from a finite set of linear equations Ay = b. 
The matrix A has positive diagonal elements and non-positive off-diagonal elements (such a 
matrix is called an M-matrix). It is a strictly diagonally dominant matrix, meaning that each 
diagonal element is strictly bigger than the sum of the absolute values of the off-diagonal 
elements in the same row. In BERMAN AND PLEMMONS (1979) it is shown that a symmetric, 
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strictly diagonally dominant M-matrix (also called a Stieltjes matrix) is positive definite. So 
Cholesky decomposition can be used, which is a fast algorithm and numerically stable. 

The solution of the integral equation in the transformed scale is easily obtained from this, 
since the integral parts are with respect to a measure that has mass restricted to the values 
Zt = Fn{T,). In figure 2.1 we give a picture of the NPMLE and in figures 2.2 to 2.4 we give 
the solutions 4>p , ^p. and î '̂ , respectively, based on a random sample of size n = 300 from a 
uniform distribution on [0,1], censored by two uniformly distributed observation times, where 
k = I. This is the case considered in section 1.5.1. Hence these solutions can be compared 
with the solution (pp^, which is equal to (pf^ since FQ is the uniform distribution on [0,1]. 

The number of jumps of the NPMLE was 15 and the locations of the jumps are indicated 
by small vertical bars (slightly smaller than the tickmarks at 0.25, etc.) on the i-axis in figure 
2.1. On the other hand, in figures 2.2 to 2.4 the small vertical bars on the x-axis denote the 
values of Fn at these points of jump. 

There are some interesting things to notice from these figures. The derivative <i>'p is 

continuous (this does not hold in general!). Moreover, it has cusps at the points ^ „ ( T , ) , 
which seem to be located on a curve. Indeed, we will show the cusps to be located on the 
curve t ^ \ { l - 2t)^pjt), t e (0,1). 

P r o p o s i t i o n 2.6.1 Let U = min{Ti,T2), V = m&x{Ti,T2), with Ti and T2 uniformly dis
tributed on [0,1]. Let A'(Fo) = J xdFo{x). 
Then 4>'p is continuous and 

^'F^r^) = \iF^r^)[^-mr^)]• (2-67) 

Proof: 
We turn back to the integral equation (2.40) on the inverse scale, as given in part (i) of 
theorem 2.5.2 on page 84. This equation was only defined at the points that do not belong 
to the range of F^. However, letting y J, F{Ti), we find 

0f (n) = MF{T^)) 

F(T . ) (1 - F{T,)) ^^ 

-^'^(^(^•)+) U . n r , - ^^ (^ ' ^ -^ ^ U>nr, '-^^^^^^ ' ^ ^ ^ ^ ' - ' * 4 ' 

(2.68) 

and letting y ] F(ri), we get 

Mr^) = 4>F{F{T,)) 

F(r.)(l - F(r.)) 

h,{T^){l~F{T,)) + h2{T,)F{T,) 
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+MF{n)-) I dH{n,t) + 
Jt:F{t) = F(T,) 

(2.69) 

Note that the right and left derivatives 

Mnn)+) := lim AMy) - Mnrr))}/{y - F(T,)) 
ylF(T,) 

and 
0 '^ (F( r , ) - ) := lim (0^(F(r , ) ) - 0 H 2 / ) } / ( ^ ( T . ) - v) 

exist, since the other functions appearing in (2.40) on page 84 are continuous and have finite 
limits as y i F{Ti) or y t F{Ti), respectively. These one-sided derivatives so to speak "catch" 
the discontinuities in the functions k, h\, h^ and H, if one crosses a point F ( T , ) in the range; 
the function 4'F is continuous at such a point and can be defined there by either taking 
the left-hand limit (involving /li(Ti), fc(r,), etc. at F{Ti)), or the right-hand limit (involving 
hi{n+i),k{Tr+i), etc. at F{Ti)). 
Also note that the integrals are just summations. 

First we show the derivative (j)'^ to be continuous, for the special case under consideration. 
We have k{Ti) = 1 and dH{t,Ti) = dH{Ti,t) = 2dt for all i. Hence the parts involving the 
integrals and k are the same in (2.68) and (2.69). Furthermore we have 

h{x)[l - F(r,)] + h{x)F{T,) = 2[1 - F{T,)] - 2x(l - 2F(r,)] (2.70) 

Bringing the rf^-part of (2.68) and (2.69) to the left-hand side and adding both equations 
yields 

2^f (r.) [2 [1 - F(r,)] - [1 - 2F(r,)](T.+, + r,)] = 

I Jt:F{t)<F(r,) ^(^•)-^W Jt.F{t)>F(r,) nt)-FM ƒ 

+2 [4>'AF{T,)-) - 0 ' ^ (F(T . )+) ] (T,+, - rO 

Without the last part, involving the left and right derivatives of 4>F, this is the same equation 
as the one in part (iii) of theorem 2.5.2, apart from a factor r^+i — T;, occurring on both sides 
of (2.41). Hence we obtain 

MFir,)-) = ^'F{F{n)+). 

To prove the second part of the proposition, we bring the dp-part of (2.68) and (2.69) to the 
left-hand side and subtract the first from the second. This yields 

Mr,) (T,+I - n ) [1 - 2F{T,)] =2^'p{F{T,)) F{T,)[1 - F ( T , ) 1 (T,+I - T.) . 
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from which we derive 

D 

For the above special case, we can also give an explicit expression for the function V'f in (2.27), 
for both versions of r^. Apart from the function ipp, the only part that is not constant in 
(2.27) is the denominator oidf. So for the version Tp{u,v) = IPF{V) — 'IPF{U), the non-constant 
part in 

-f rp{t,x)2dt+ ['^\F{x,t)2dt 

is equal to 
-TpF{x)2{Ti+i -Ti). 

Using (2.70), we obtain 

with C an arbitrary real number. For the other version of rF{u,v), we obtain 

IPF{X) = AX + C 

with 

A=l[i-2F(rO]^^(rO. 

Note that this function is equal to (2.67). Also note that this last version of rp leads to a 
V'F-function that is uniformly Lipschitz, whereas this is not the case for the first version. 

2 .6 .2 A s i m u l a t i o n of K{Fn) 

For the same uniform case as above, we did a computer experiment of 10.000 samples of 
magnitude 1000, and estimated the mean IX{FQ) by the NPMLE //(•f'looo)- Estimating the 
variance of \/l000(/x(Fiooo) - l^{Fo)) by the unbiased estimator 5J\„„Q yielded the number 
0.11917, while analytic computations as in section 1.5 yield 0.1198987 for the information 
lower bound. So the estimate is very close to the information lower bound. 
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Chapter 3 

On the NPMLE in repulsive Gibbs 
models 

3.1 Spatial patterns 
An illustrative real-life example of a random spatial pattern is the location of nest sites of 
birds. Depending on habitat and species, several kinds of nest patterns occur. The influence 
of habitat is clear: no goshawk has ever built its nest on open water, whereas a mute swan 
does not build its nest on top of a tree. Within a suitable habitat, differences do occur as 
well. Herring gulls show gregarious nesting behaviour, whereas goshawk and mute swan are 
more inclined to have a breeding territory, in which no birds of the same species are allowed. 

When modelling a random pattern of small objects in a bounded region, say A, the 
simplest model arises if we suppose complete spatial randomness. This means that there is 
no preference for certain subregions (homogeneity), and that the location of each object is 
not influenced by the location of the other objects (independence). 

If the number of objects is fixed, say n, a realization of such a pattern can be obtained by 
randomly choosing n points in A. The number of points in a subregion B C A, N{B), has 
a binomial distribution with parameters n and | B | / | ^ | . (Here and in the sequel | • | denotes 
the area of a set.) Often, the number of objects in A is random as well. Then complete 
spatial randomness can be constructed via a limiting procedure. n(A') points are generated 
uniformly in a region K D A, which is expanded to IR^. The number of points in A' is made 
to converge to oo in such a way that n{K)/\K\ -^ A for some A G IR. What we get in the 
limit is called a homogeneous Poisson point process on IR^. A is called the intensity of the 
process, the average number of points per unit area. For any B G IR^ we have 

P{N{B) = yt} = exp( -A |B | (3.1) 

Hence E{N{B)) = X\B\. Since the points have been generated independently, the random 
variables N{Bi) are independent if the B / s are disjoint. Formula (3.1) completely charac
terizes a homogeneous Poisson point process. 

Although an extension to R,^ was used in the construction of the process in order to allow 
for a random number of points in A, we can forget everything outside A and use formula (3.1) 
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for all B C A to obtain a homogeneous Poisson point process on A. Note that conditionally 
on N{A) = n we are back in the situation of randomly choosing n points in A. 

Complete spatial randomness can be tested; a wide range of possibilities to test on the 
null hypothesis of a homogeneous Poisson process exists. See STOYAN et al. (1987), section 
2.7, and RIPLEY (1977) for an overview of testing procedures for the null hypothesis of a 
homogeneous Poisson process. 

With respect to the nest patterns of birds, the homogeneous Poisson model may sometimes 
be a reasonable model. Some nesting habitats, like the Russian taiga or the desert, are 
quite homogeneous. However, many habitats show geographical variation, thus causing non-
constant nesting intensity over the region. If we abandon the homogeneity assumption, but 
still stick to an independent choice of nest sites, we get a nonhomogeneous Poisson point 
process, for which (3.1) holds as well, but with X\B\ replaced by an intensity measure A{B). 
For a nonhomogeneous pattern, the independence assumption can only be tested if one has 
several independent realizations of the same point process, since any single point pattern 
on a bounded region can always be fitted in the Poisson model by choosing an appropriate 
intensity measure. A recent article testing the null hypothesis of independence is MCDONALD 
(1989). As an example, the hypothesis that redwings choose their nest sites independently 
in some inhomogeneous region is tested, and rejected. 

For points that cannot be seen as generated independently, such as nest sites of birds 
showing gregarious or repulsive nesting behaviour, several alternative models have been de
veloped (see STOYAN et al. (1987), chapter 5, for an overview). Although these models are 
no longer Poisson processes, the Poisson process is often still playing a role. Estimation 
procedures usually have to be based on a single instantaneous observation of a point pattern. 
Then homogeneity of the point pattern has to be taken as an untestable model assumption. 
Note that outside the realm of the Poisson model homogeneity is no longer common ter
minology. Stationarity (translation invariance) and isotropy (rotation invariance), together 
called motion invariance, are used instead. 

One of these models is the cluster process. This process is obtained by considering two 
subprocesses. The first generates a random collection of parent points. At each parent point, 
daughter points are generated according to the second process. In some models the parent 
points are included in the final realization, in some models they are not. Often, both the 
parent process and the daughter process are assumed to be homogeneous Poisson processes. 
The cluster model may be used to describe the choice of nest sites of a gregarious bird species 
like the herring gull. 

A model dealing with repulsive forces between points is the point process with dependent 
thinning. In this model, a pattern is formed by first generating points through some point 
process, often a homogeneous Poisson process. Afterwards points are deleted simultaneously 
with deletion probability of a point depending on the distance to its nearest neighbour. 
Simultaneous deletion is needed in order to prevent the probability of the configuration to 
depend on the order of deletion. 

We will deal with another class of models, which are called Gibbs point processes. Attrac
tive as well as repulsive forces between points can be modelled by such processes. Usually 
the strength of the interaction forces is assumed to be determined by all interpoint distances 
(and not by the distance to the nearest neighbouring point only, as in the thinning model). 
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In CRESSIE (1991), section 8.5, an overview of estimation methods for Gibbs processes 
is given. The observable region A is usually seen as a subregion of some larger region E. 
Sometimes this approach may be motivated by the real life situation on which the model is 
based: the observation window may be part of some larger area with the same characteristics. 
However, points outside A, which are invisible, exert influence on points inside A, so with 
this approach edge corrections have to be taken into account. 

The amount of repulsion can be modelled by the nearest-neighbour distribution function 
D. For a stationary process, it is defined as one minus the probability that there are no other 
points in a ball b{x, r) around an arbitrary point x of the process: 

D(r) = 1 - P{N{b{x, r)) = l\ point at x } 

Equivalently, it is the distribution function of the distance from an arbitrary point of the 
process to the nearest other point in the process. The empty space function F is the distri
bution function of the distance of an arbitrary point in the area A to the nearest point of the 
process. For a homogeneous Poisson process on IR^ with intensity A, we have 

D{r) = F{r) = 1 - exp(-A7r7-^). 

Several estimators have been proposed for D and F, see for example STOYAN et al. (1987), 

p. 128. In VAN LIESHOUT AND BADDELEY (1996), both functions are combined in the formula 

They show this function to have some nice characteristics. It is computed rather easily. It 
is identically one for Poisson processes. Values smaller than one indicate clustering, whereas 
values larger than one indicate repulsive forces. The function remains constant for values 
larger than the interaction range. 

A nice characteristic of Gibbs point processes is that a formula for the density is available. 
However, this formula contains a very complex norming constant, making pure maximum 
likelihood estimation an impossible task. Apart from methods that are not related to the 
maximum likelihood procedure, like the method based on the function J mentioned above, one 
can use some approximation of the likelihood function or use a pseudo maximum likelihood 
approach. In DIGGLE et al. (1994) three methods are compared: an approximate maximum 
likelihood, a pseudo maximum likelihood and the Takacs-Fiksel method, all from a parametric 
point of view. Only few authors have considered nonparametric methods. In DIGGLE et al. 
(1987) the Percus-Yevick approximation, known from statistical physics, is used to obtain a 
nonparametric procedure. 

We will consider the pure nonparametric maximum likelihood approach under the side 
condition of the interaction forces being repulsive only, with strength decreasing with increas
ing interpoint distance. An approximate maximum likelihood estimator is derived. Simu
lation experiments are performed in order to test the behaviour of the estimator for some 
choices of repulsive forces. 

Repulsive Gibbsian point patterns generally have a more regular structure than Poisson 
patterns, therefore such patterns are sometimes called regular point patterns. 

I 
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3.2 Gibbs point processes 

Gibbs point processes have their origin in statistical physics, describing the behaviour of a 
particle system (like a gas or a fluid) in a bounded volume V C IR"*. The particle system 
is supposed to be in equilibrium, and to have a fixed number of elements, say n. On a 
microscopic scale, the positions of the n elements with respect to some coordinate system 
can be seen either as an ordered n-tuple {xi,... ,x„) or as an unordered set {xi,... ,Xn}, 
leading to formulas differing by a factor n\. The microscopic behaviour of the particle system 
is described by a point process $, with probability density of the (ordered) configuration 
((> = {xi,..., Xn) given by a function ƒ„; V" —> [0, oo) of the form 

/„(0) = e x p { - ^ } / Z . (3.2) 

Here T denotes absolute temperature and k is Boltzmann's constant. The function 

is called the energy function or multiparticle potential. It is usually written as a sum of 
interaction potentials over all subconfigurations: 

V>C0 

thus giving ƒ„ a multiplicative structure: 

fnW = I n e^P{-^}- (3-3) 

Often, the function W is further specified as 

W{iP) = 0 if N{i>) + 2 
iy({x,y}) - Q{\\x-y\\ 

leading to the formula 

(3.4) 

U^) = \ n K\'^^-^A)- (3.5) 
1<'<7<" 

The function B is called the pair potential function, h is called the interaction function. 
The normalizing factor Z is called the partition, function. The partition function is a very 
important quantity in statistical physics, since it describes the macroscopic properties tem
perature and pressure of the system. Its value is obtained by integration over all possible 
configurations: 

^ = i.^*^"P^-^f-^'^'^ = y v - - - y / " P ^ kf }dx,...dxr,. 

I 



3.2 Gibbs point processes 107 

A density formula as in (3.2) can be shown to arise using arguments from physics. Starting 
with an energy function U^ and a density function g, in equihbrium, the system of particles 
is required to have a fixed total energy 

e, = / [ / ;(0)ff(0)#. 

The extra condition of maximal entropy 

'H, = -J^ JW log gWd4> 

leads to the above density formula ƒ„. 
Note that we get a uniform density if no interaction takes place. Then, the energy function 

U:, is zero, yielding /„(0) = 1/\V\". 

poisson gibbs 

T 
0.0 0.2 0.4 0.6 0.8 1.0 

Figure 3.1: Realization of Poisson and Gibbs process, with 100 points 

In our model of repulsive point patterns on a bounded region /I C IR^, the description and 
terminology from statistical physics is adopted, apart from the terms k and T. So we suppose 
that the point configuration has arisen after an adjustment of points, such that an equilibrium 
situation is attained. The density ƒ„; A" —+ [0,oo) at a configuration 4> ~ {xi,- • • ,Xn) is 
assumed to be given by (3.5). Our aim is to estimate the interaction function h = exp{—Ö}, by 
performing the maximum likelihood procedure on the density function ƒ„. As an illustration, 
in figure 3.1 two samples of 100 points on the unit square are given. The first is a completely 
random configuration of points. The second is a realization from a Gibbs distribution with 
interaction function 

1 - (1 - (20x)^)^ if J < 0.05 
1 if X > 0.05 

h{x) 
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Note that the point configuration for the second case is slightly more regular. 
Before we continue with the estimation procedure, a section is spent on the justification 

of the Gibbs model. 

3.3 Some justification for the Gibbs distribution 

Just like in the case of point configurations without interaction, the total number of points 
in the bounded region A may either be finite and fixed, or random. For a gas in a closed 
medium, the number of molecules is clearly finite and fixed, but when modelling nesting 
behaviour, this assumption is violated. So we have to allow for a varying number of points. 
We first consider this approach, although finally, for reasons of simplicity, our estimation 
procedure will be based on the conditional model, with A^(^) = n. 

When considering general Gibbs point processes, problems with existence may arise. 
STRAUSS (1975) has tried to cast a special kind of cluster process in the framework of a 
Gibbs process. In KELLY AND RIPLEY (1976) his definition of the cluster process is shown to 
be non-existent, since the norraing constant 3.12 on page 112 is infinite. One may say that 
the clustering effect causes an "explosion" of points. However, for processes corresponding 
with repulsion patterns with finite interaction range, problems with existence do not occur. 

In the sequel, we suppose the Gibbs process PQ to be absolutely continuous with respect to 
some Poisson process PA with intensity measure A. The choice of A is not arbitrary, especially 
when considering processes on IR^. It is not difficult to prove that any two stationary Poisson 
processes on IR^ with different intensities are mutually singular measures. (See STOYAN et al. 
(1987), section 5.5.1, for a proof.) 

If absolute continuity holds, the Gibbs process has a Radon-Nikodym derivative, which 
can be written as 

dPr-
^G(<^) = 7jf= e x p { - [ / ( ^ ) } . (3.6) 

Note that C/(0) = oo (configuration impossible under Gibbs process) and U = 0 (Gibbs process 
is Poisson process PA) are allowed. 

3.3.1 Markov point processes: product s t ructure 

If we impose some extra conditions, a multiplicative structure 'like in (3.3) can be derived 
and related to a Markov property in higher dimensions, as is described in RIPLEY AND KELLY 
(1977). Thereby the exponential space approach of point processes is used. Let X be a, 
not necessarily bounded, region. The exponential space can be seen as a union of classes 
X„,n = 0 , 1 , . . . , where a typical element of Xn consists of n elements from X. So only a 
finite number of points is allowed to occur. Note that a configuration is seen as an unordered 
set. A point process P^ is a Markov point process if the following holds: 

1. P$ is absolutely continuous with respect to some Poisson process PA with finite intensity 
measure A. 
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2. The set ƒƒ = { ƒ > 0} is hereditary. A set is called hereditary if both (f) £ H and ip C 4> 
imply i> e H. So, if both ƒ (0) > 0 and ip C (p, then f{ip) > 0 should hold as well. 

3. If the point configuration is known on a subset B C X, then the behaviour of the 
process on A = X \ B, given the configuration on B, only depends on those points in 
B that are within the interaction range of A. 

For a repulsion process, existence of a dominating Poisson process and {ƒ > 0} being hered
itary are natural assumptions. 

Condition 3. can be expressed in a formal way as follows. Suppose we have a measurable 
symmetric reflexive relation ~ on X. We say that two points x, y £ X are neighbours if 
X ~ J/. The environment E{A) of A C X is defined by 

E{A) = {x\x ~ y for some y € A}. 

An example of a neighbourhood relation is 

X ~ 2/ <^=^ d{x, y) < R for some fixed R 

and the environment of A consists of those points that are within distance R of some point 
in A. 
If we split the set X into the separate regions A and B = A' \ .4 , then the state space X^ of the 
process P$, i.e. the space of all possible realizations of P$, can be factored as X^ = A^ x B^, 
with Af giving the behaviour on A, and B^ the behaviour on B. Let p and q be the projec
tions onto Ae and B^ respectively. Then condition (3) is formally expressed by saying that, 
for all realizations F x {&}, the conditional probability P,^{p £ F\q = b} only depends on 
bn{E{A)\A). 

If conditions 1, 2 and 3 are satisfied, it is shown in RIPLEY AND KELLY (1977) that the 
density ƒ can be written as 

fW = n QW- (3-7) 

Here g is a non-negative function defined on all finite sets of points, including the empty set, 
having the property that g{ip) / 1 implies that all points of i/» are neighbours, i.e. are within 
each other's interaction range. Hence g: X^ —» [0, oo) is a function satisfying 

g{ip) / 1 =^ X ^ y lor all x, y £ ip-

Our repulsive point patterns are seen as generated by a Markov point process, so, writing 
g{il') = exp{ —V(V')}, we indeed get the multiplicative structure as in (3.3). The function U 
in (3.6), which is playing the role of the energy function of statistical physics, can be written 
as a sum of interaction potentials 

f/(0) = Y: v(v), 

with V(i/)) = 0 if (at least) two points in ip are outside each other's interaction range. 
Note that the intensity measure is supposed to be finite, hence this construction fails if 

we consider a stationary Poisson process on R^ as dominating measure of the Markov point 
process. 
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3.3.2 Pairwise interaction processes 

In a molecular gas, only mutual interactions play a role. This means that the amount of 
repulsion or attraction between, say, 3 points, is the sum of the repulsive or attractive forces 
between each pair of molecules separately. Of course, birds are not molecules, and the 
presence of two nests around some location may make it extra unlikely for a bird to nest 
there, if the "threat" of two nests is greater than the sum of the "threats" of each nest 
separately. For the sake of simplicity, however, it is supposed that a bird is only influenced 
by each nest separately. This means that only interaction potentials depending on at most 2 
points do matter. Hence we can write, for a configuration of points (p = {xi,..., Xiv((/>)}, 

U{(j)) =c+Y^w{xi) + '^z{x^,Xj). 
i i<j 

Now we return to our motion invariance assumption. The nest sites are supposed to 
be situated in some homogeneous habitat. Expanding this habitat to an area on which a 
group of translations and rotations can be defined, like K^, homogeneity can be modelled by 
assuming the process to be stationary and rotation invariant. 

Of course, this means that we suppose the point configuration inside the bounded region 
A to depend on the location of points outside A, which in reality are not present. So in 
reality less repulsive influence is expected near the edge, but the absence of repulsive forces 
from points outside A may partially be compensated by a repulsive influence from the edge 
itself. For example, there may be a preference for birds not to nest too close to the edge of 
their habitat, especially if their breeding area is also their food-supply area. So the problem 
may be treated as if points outside A do occur, but cannot be observed. This means that 
some edge correction procedure will have to be applied. 

When considering a motion invariant Gibbs process, a homogeneous Poisson process Px 
with intensity A is the most natural dominating measure. However, in the Markov process 
approach of the previous subsection, the dominating process was assumed to have finite 
intensity measure. So the Poisson process on IR,̂  cannot be taken as dominating measure. 
However, we only consider repulsive forces with finite interaction range. Instead of defining 
the Gibbs process on H^, we define it on a large region E D A. We let the process on E 
be independent of the choice of the origin and coordinate axes. Near the edge of E, there 
will be an outward force working on the points. However, this influence will be negligible for 
points in A, so there the Gibbs process still behaves like a stationary process on IR .̂ 

Taking the homogeneous Poisson process on E as dominating measure, w becomes a 
constant function. Since each distance preserving transformation is a combination of a trans
lation and a rotation, z only depends on the distance between the points. So, under these 
assumptions, ƒ = dPc/dPx in formula (3.7) can be simplified to: 

fern = ff(0) = c, 

fG{{x}) = gm^g{{x}) = Cp, 

and for 0 = { i i , . . . , xjv(0)} we have: 

fG{<i>) = Cp''^^^'[\h{\\x,~x,\\). (3.8) 
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The above considerations were used to motivate the structure in (3.8). Depending on the 
situation under consideration, either we use this construction and see A as an observation 
window for a process on a larger region E, or we just assume (3.8) and we see A as is. In the 
rest of this section, the last approach is taken. However, one could as well read E instead of 
A and see A as an observation window. 

C is equal to PG{N{A) = 0}/P>,{N{A) = 0}. C depends on h via an infinite number of 
high dimensional integrals. Using ƒ fG{<p)dPx{(j>) = 1, we get, writing b instead of PX, 

°° b" r 
exp{X\A\}C-' = I + b\A\.+ E ;^ y „ n H\\X' - ^M) dxi... da:„. (3.9) 

ft" 

n=2 ' 

C should satisfy 0 < C < oo. A sufficient condition for this to hold is the following inequality 

n K\\x,-x,\\)<e'<-, 
l<i<j<n 

which is automatically fulfilled for repulsion processes, but may be problematic for Gibbs 
models with attractive forces. 
Conditioning on NG{A) = n, we get the density 

The function h can be seen to express the likelihood of points to be at interpoint distance r, 
relative to a completely random configuration of points. The stronger the repulsive forces 
at some interpoint distance, the smaller the value of h. For h(r) < 1, we have repulsion at 
distance r, with total inhibition if h{r) = 0. h{r) = 1 means no interaction, whereas h{r) > 1 
means attractive influence. For example, in the so-called hard core inhibition process, we 
have h{r) = 0 for 0 < r < RQ, and h{r) = 1 for r > RQ. This process can be used to model 
the configuration of balls, each having diameter RQ, but without any further repulsive or 
attractive forces among each other. 

Up till now we have written the density of the Gibbs process as a Radon-Nikodym deriva
tive with respect to a homogeneous Poisson process with intensity A. It is also possible to write 
down the density with respect to Lebesgue measure. Multiplying both numerator and de
nominator in formula (3.8), using C as in (3.9), by a factor A/(n!), a term exp{—A \A\} A/(n!) 
is obtained in the denominator. This term can be seen as the density f*{4>) at an ordered 
point configuration (p = (x i , . . . ,Xn) with respect to Lebesgue measure under the Poisson 
assumption. For 

ƒ*((/.) = P{N{A) = n} X ^ = exp{-A \A\} A 

The factor A appearing in the numerator is absorbed into /? to obtain 6, whereas the factor 
l/(n!) is absorbed by considering ordered point configurations instead of unordered ones. 
Now we obtain 

fGW = Cb''^^^Y[h{\\x,-x,\\), (3.11) 
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with C~ ' equal to 

°° b" r 
C-' = l + b\A\ + ^ ~ U'^dl^^'-^^ID'^^i---'^^- (3.12) 

^ _ ^ 7?.! J A'" •.• =2 '^- •'"' i<] 

For the conditional case, b is absorbed by the norming constant and the density can be 
written as in (3.5). 

This density will be used as input for the maximum-likelihood procedure. It has the 
advantage that we lose the influence of the dominating Poisson measure in the formula of the 
density: we are no longer confronted with the problem that the value of A occurs as a free 
variable in exp{—A \A\}. 

3.4 An approximation to the likelihood function 

Using formula (3.11) for the density of a Gibbs process, we can, in principle, perform max
imum likelihood estimation in order to estimate the interaction function h, using a single 
instantaneous spatial realization of points {xi,... ^x^i^^)) in equilibrium. In our model we 
assume only repulsive forces between points to occur, with the amount of repulsion dimin
ishing with increasing distance. Moreover we assume the interaction range to be finite. This 
results in the following side conditions for the maximization procedure: 

(SI): 0 < /? < 1, ft(0) = 0, and h{R) = 1 for some R 

(S2): h is increasing. 

h only depends on the interpoint distances \\Xi — Xj\\, which will be denoted by dij. The 
ordered interpoint distances are written as d(i) for ? = 1 , . . . , Af = ('^^'^'j. Note that ö > 0. A 
direct implementation of the maximization procedure is an impossible task, due to the very 
complicated structure of C as a function of h. However, one thing can be said about the 
maximum-likelihood estimator under the side conditions (SI) and (S2). From the structure 
of the likelihood we can derive that the maximizing h is a piecewise constant function. 

Theorem 3.4.1 Under the side conditions (SI) and (S2), the density 

fcW 
è^(^) n,<,/i(</y) 

1 + b\A\ + Er=2 ^ L" n,<, h{d,,)dxr ...dx.^ 

is maximized by a piecewise constant function h, with all jumps contained in a subset of the 
set of interpoint distances {dij}. 

Proof: 
Maximizing the expression in (6, h) under the side condition 0 < h{d(i)) < . . . < h{d(M)) < 1-
we have to cope with two opposite effects with respect to /). Maximization of the numerator 
will make /i(rf(i)) as large as possible, whereas the denominator forces h towards zero. For 
the numerator, only the values at the points rf(,) do matter, so the denominator forces h{d) 
equal to h{d^t)) on [rf(,), rf(i+i)). Since this holds for any ft > 0, we obtain the desired result. 
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Due to the complicated structure of the normalizing constant, attention will be restricted 
to maximum likelihood estimation, conditionally on the observed number of points A''(^) = n. 
If the phenomenon under study has a random number of points, this is only a vahd procedure 
if the number of points N{A) is approximately ancillary for h. We arrive at the following 
procedure: 

Given a realization X i , . . . ,Xn, maximize 

with Zh given by 

Zh= Ylh{\\x,-Xj\\)dxi...dxn, 

under the side conditions (SI) and (S2). 

The conditional likelihood is also maximized by a stepfunction, with all jumps contained 
in a subset of the set of interpoint distances {dij}. 

We are still left with the problem that the partition function Zh cannot be computed, but 
some approximation will be used. A frequently used technique, with its origin in statistical 
physics, is the Mayer cluster expansion. In the Mayer cluster expansion the function h is 
expanded around the value 1. Let g = h — 1. Then we obtain 

Zh = Y[i^~^ 9{dij)}dxi--.dxn 

= / {l + Y,9{di])+ J2J2 9{drj)gidki) +•••}dxi...dxn 

(W)lt(k,l) 

The first term gives \A\". For the second term we obtain 

Y^ / g{d,j)dxi ...dxn = L / g{du)dxi ...dx^ 

\\A\-'' jj,j^g{dn)dx2}dx, 

\\A\'-^ f'^{h{r)-l)2nrdr 
2) Jo 

In the last approximation it is assumed that we can take a fixed point, say Xi, from which 
integration over another variable, say X2, is performed. This is approximately true if the 
interaction area TTR^ is of a lower order of magnitude than the area of the total region. 

A derivation of higher order terms is given in RIPLEY (1988). This higher order ex
pansion contains integrals that are hard to compute. For some special parametric models, 
fairly accurate expressions for these integrals have been obtained. Since our approach is 

'n 

.2 

file:////A/-''
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nonparametric, and no general formula exists for the higher order terms, this method is not 
applicable. Another approach is to use Markov Chain Monte Carlo methods. In OGATA 
AND TANEMURA (1984) and OGATA AND TANEMURA (1989), some parametric models which 
are characterized by a scale parameter are considered. A Monte Carlo approximant to the 
derivative, with respect to the scale parameter, of the logarithm of the norming constant is 
used. Another option is to use a Monte Carlo approximant to the norming constant itself 
(GEYER AND THOMPSON (1992)). It may be possible to implement this approach under our 
order restriction. We did not investigate this, however. We will truncate the expansion at 
the second term, which may be a reasonable approximation if the process is close to Poisson. 

3.5 The nonparametric estimation procedure 

We use one further approximation: log(l +a;) « x. If TT R^ is of lower order of magnitude than 
|v4|/M, X is close to zero and the approximation is good. Then the approximate conditional 
log-likelihood becomes, with M = (Tj: 

\ogL„{h) = -£\ogh{d^,))-n\og\A\-M— {h{r) - l)rdr (3.13) 

Of course we do not know the value of R, but since we assume the interaction area to be of 
lower order than the total area, we can safely assume /i(rf(M)) = 1. The last term in (3.13) 
forces h{r) = 0 for r < d(i) and theorem 3.4.1 yields h{r) = h{d^i)) for rf(i) < r < d(i+i). So 
the problem reads, writing t/, — h{d(i)): 

Maximize 

M - l M - l M - l M - l 

^ logy, - M — ^ [y, - 1] [4+j) - 4)] = ^ logj/, - ^ [y, - l)a, (3.14) 
i=\ l"^l 1=1 i= l i=\ 

under the side condition 0 < yi < . . . < yM-i < 1-

The maximization problem can be seen as a generalized isotonic regression problem (sec 
ROBERTSON et al. (1988), section 1.5). Our problem boils down to maximizing their formula 
(1.5.4), with $(j/) = 2/logy + 1. As weight function we take w(xi) = a, and for g we take 
g{xi) ~ l/tti- Their theorem 1.5.1 says that maximizing 

M - l M - l 

i=l i= l 

under the isotony restriction 0 < yi < ... < VM-I is the same as minimizing 

gf^'-^-F"' 

I 
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under the same restriction. Isotonic regression theory gives a general procedure for finding the 
function y that minimizes "EfiLiiVi — gi}^Wi over a class of isotonic functions on {1, 2 , . . . , n}. 
This procedure reads: 

Plot the points PQ = (0,0) and P, = {Wj,Gj), j = l,2,...,N, with , Wj = Ei=i w; and 
Gj = Yl\=i Wigi- Connect these points by a piecewise linear function. The function we get is 
called the cusum-diagram (cumulative sum diagram). Then yi is equal to the left derivative 
of the greatest convex minorant of this function at the point i. 

In our situation the cusum-diagram is generated by the points 

w hich gives the same result with respect to y, as considering the points 

( . 4 ^ , i , . ,3,,5, 

So the estimator yi — h{di^i)) is obtained by computing one over the relative increase in circle 
area, 

'-^dl+D - 7r4) / 1 

under the side restriction that this relative increase is isotonic. 
If we want to use some edge correction procedure, a natural correction is to discard the 

amount of circle area not covered by the region A. Let C(x, r) denote the circle with midpoint 
X and radius r. If dij is the distance between the points Pi and pj, ndf^ is replaced by 

0.5 [ area{C(p„ d^) n A} + area{C(pj, dy) n A} ] (3.17) 

as input to the maximum likelihood procedure. 
Note that, for indices near M, both coordinates in (3.15) are approximately one. These 

high indices will have to be neglected in order to get a reasonable procedure. We correct this 
in the algorithm, by only considering values d(i) which are much smaller than the maximal 
interpoint distance. This means that we assume R to be smaller than some predetermined 
value, much smaller than the largest interpoint distance. 

3.6 Consistency 

We will prove uniform consistency of the approximate NPMLE in the situation that the 
true process is without interaction. For processes with repulsive forces, the approximate 
NPMLE is not consistent, since higher order terms have been neglected in the Mayer cluster 
expansion. The simulations in the next section confirm this. Moreover, the approximation 
log(l +x) « X, made at the beginning of section 3.5, is only reasonable for processes that are 
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close to a Poisson process. In the next section, we provide some simulation results, showing 
the behaviour of the estimator under a Gibbs process with repulsion. 

Let Am be a window, growing with m, through which the process is seen. Suppose that 
N{Am) = n. Let 4> = ( x i , . . . , Xn) and let the empirical measure l / ( n (n — 1)) Hi^j A^i.^j) 
be denoted by G-n- If we assume R to be smaller than some predetermined value, we can 
ignore edge effects and edge corrections asymptotically, since the number of points within this 
predetermined distance from the boundary is asymptotically negligible compared to the total 
number of points. Then the approximate log-likelihood LL^, conditionally on N{Am) = n, 
and divided by M = n (n — l ) /2 , can be written as 

LL„{h) = log Ln{h) 

n\og\Am\ 
II log( h{d{x, y)) dGn{x, y) - \Am\-' H [h{d{x, y)) - 1] dxdy 

M 

Let hn denote the approximate NPMLE. Since 

lim e'l [LLn{{l - i)K + eK) - LLn{K)\ < 0, (3.18) 

we obtain 

ll¥fp^dG„{x,y) + \A^\-' 11 K{d{x,y))dxdy 

< l + \A„ '• II ho{d{x,y))dxdy. (3.19) 

We now restrict ourselves to the situation without interaction. Conditionally on the 
number of points N{Am) = n, we have a uniform distribution of n points on A^- By formula 
(3.16), we see that, given a realization (p, shrinking the area A^ and the distance between 
the points by a factor \/|Am| leads to exactly the same estimate. Moreover, for the uniform 
process, such a realization on the shrunken area has the same probability to occur, since, for 
Be A, 

n\ flBlV ( IBr""'' 

which only depends on the relative size of B. So, without loss of generality, we may assume 
the n points to be uniformly distributed on a fixed region A, with the number of points in 
A increasing to infinity. Let G denote the uniform distribution on A. Formula (3.19) now 
reads: 

/ / r ,,] ,, dG^{x, y) + / / ft„(rf(x, y)) dG{x) x G(t/) < 2. (3.20) 
J J hn(d(x,y)) J J 

The consistency proof is similar to the method used in the consistency proofs of the 
NPMLE with interval censored data (chapter 4 in part II of GROENEBOOM AND WELLNER 
(1992)). Let fl be the sample space of all infinite sequences of points A ' i ,X2, . . . , endowed 
with the Borel cr-algebra and the product measure, which is denoted by P . The following 
will be shown 

file:///Am/-'
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T h e o r e m 3.6.1 For each e > 0 

P < lim su sup \h{t)- 1| = 0^ = 1 
• oo) J 

R e m a r k . Since the approximate NPMLE always has /i„(0) = 0, we can only have consis
tency on an interval [e,oo). 

Proof: 
Let Lij denote a point in the sample space. We write Gn{-, • \i-^) instead of G„(-, •), in order to 
indicate dependence on tu. By the strong law of large numbers. 

pjlim^ //dG„ = ƒ/rfGx G I = 1, 

for each bounded continuous function on A x A. By separabihty of the space of bounded 
continuous functions on A x A with respect to the supremum norm, we have that G„(-, •; w) 
converges weakly to G(-) x G(-), for each u; in a set B, occurring with P-probability one. 

Let LÜ he a. realization in this set. By the Helly compactness theorem, the sequence 
{h„{-;Lü)} has a weakly converging subsequence, say {/i„^(-;(.<;)}. Let h{-;iü) denote the 
right continuous limit. h{- ;ui) has its values in [0,1]. 

Let f > 0. For all n sufficiently large, l/hn{d;uj) is bounded for d> e. This follows from 
the weak convergence of G„(-, •; w) to G(-) x G(-), together with the inequality (3.20). By 
the weak convergence of h„i^{- -jUj) to h{- ;w), l//i(- ;uj) is bounded on [e, oo) as well. So we 
may assume, for each d > t and for some K < oo, 

l/hn{d]uj) < K 

and 
l//i(d;w) < K. 

Let Dj denote the set { (x, y) | d(x, y) > e}. Now we have 

lim / / dGnAx,V',^) = / / Ti-r, ^—- dG(x) x G(y). 

This is shown in essentially the same way as in lemma 4.1 in GROENEBOOM AND WELLNER 
(1992). Fix 0 < ^ < 1. Take an equidistant grid of points e = do < di < • • • < rfm = -R, 
such that m = 1 + [l/i5^]. Without loss of generality, we may assume the di to be points of 
continuity of h{d;uj). Let I be the set of indices i, i = 1,... ,m such that 

' >6. 
/i(di-i;a;) h{di\üj) 

The number of such points is not bigger than 1 + [A'/é]. Let J denote the remaining set 
of indices. Let the set { (x, ?/) | do < d(,r, y) < d\} be denoted by Do and let the sets 
{ [x, y) I d,_i < d(x, y) < d,) be denoted by D,. We have 
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/ / dGnAx.y.w) = y^ dGnAx,y;u)) 
D. hni,{d{x,y);uj) r^o-'-'o, hn,{d{x,y);uj) 

dGn^{x,y;uj) 
ft,JJD,hnM^'y)'^) 

+ Y1 II ~ dGn^{x,y\oj) 
i^jJJD, hn^{d{x,y);uj) 

= / / ^ - 7 7 ^ - — - r f G ( x ) x G ( 2 / ) + r,(a;), 
JJD. h„^{d{x,yy,Lü) 

with rj.(a') < cS, for a constant c > 0. This is because the integrand is of bounded variation 
on ö i , for i e J , whereas 

^ / / dG{x) X G{y) -> 0, if <5 i 0. 
lel 

By dominated convergence, we derive 

lim f[ -. ^- dG(x) X G{y) = f f , , „ V , dG{x) x G{y). 
k^^JJD,hn,{d{x,y);uj) ^' ^' JJD.h{d{x,y);uj) ^' ^" 

By dominated convergence, we moreover have 

l i m / / / i„,(d(x,y);w))rfG(2;)xG(2/)= / / h{d{x,y)-Lü)dG{x)xG{y). 

Combining these results, using (3.20), we obtain 

/ / UM ^ ^ ^ ^ ^ ( ^ ) ^ ^(2/) + / / Kd{x, y)-uj) dG{x) x G(y) < 2. 
JJD, h{d[x,yy,üj) JJD, 

By monotone convergence, we derive 

II m^) '̂ "̂̂ ' ""^'^ ̂  II '̂ '̂ "' '^'^^ '""^'^" ""̂'̂  - '• 
The function 

1 
- + y 
y 

is minimal at y = 1, taking the value 2. Using the monotonicity of h, this implies that the 
inequality can only hold for /i = 1. Moreover, we have equality in this case. Since, for each 
subsequence /i„j we have a weakly converging sub-subsequence, all converging to the same 
limit, we obtain weak convergence of /i„(-, •; w) to /IQ = 1, for each w in the set B. occurring 
with probability one. This is the same as 

]P< lim sup \h(t)-l\ = 0^ = 1, 
K (e[(,oo) J 

for each e > 0. Note that 0 is not a point of continuity of /IQ = 1-

G 
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Although the approximate NPMLE is not consistent for general Gibbs processes, the 
complete NPMLE, with the order restrictions, may very well be. A proof may be given along 
the lines of the above proof, but this will clearly be more complicated. For the conditional 
situation, with n points, using (3.18) yields the basic inequality: 

^0 j ^ •^° ^ 0 ƒƒ r'^^-f ̂  
with 

(iomk,i) 

for some arbitrary but fixed pair of points kl, and 

B=l ]^ / i„ ( ( iy )dx i . . .rfi^. 

This inequality will be the basis for the different steps of the proof. 

3.7 Simulations 

We have performed some simulations in order to test for the behaviour of the approximate 
NPMLE for a fixed number of points. Consider a rectangular region A, say A = (0, a) x (0,6). 
Then an explicit formula exists for the edge correction formula (3.17). Let pi = [xi.yi), 
di = min(2;,,a — i , ) and ^2 = inin(j/i,h — y^). Then we have (see DIGGLE (1983), p. 72): 

area(C(p,,r) n A) = 

7rr̂  — r^[arccos((rfi A r)lr) + arccos(((i2 A r)/?-)] if r^ < dj + d\ 

0.757rr^ - 0.5r^[arccos(di/r) + arccos(d2/'')] if r'^ > d\ + d\ 

Realizations of Gibbs point patterns have been obtained via the method described in section 
3 of OGATA AND TANEMURA (1989). Choose 6 > 0. Starting with some point configuration 
0(0) = {x i (0 ) , . . . ,Xn(0)}, a Gibbsian pattern with a specified interaction function h is 
generated via the following iterative procedure: 

• S t ep k: We have the pattern (j){k) — {xi{k),... ,Xn{k)}. 

- Choose one of the points {x\[k),... ,Xn{k)] at random, say Xj{k). 

- Choose a new point x'j{k), uniformly on the square with length 2b and midpoint 
Xj{k), and let <j)'{k) be the point configuration with Xj{k) replaced by x''{k). 

- Let fn be the density of the Gibbs distribution of interest. Then the new config
uration is chosen with probability 

- :, fn{<P'M)\ • j , n.^,hi\\x',{k)-X,{k)\\)\ 
p = m m < 1, „ , ,.,, } = m m •; 1, „ -̂  . ,,, • ' , . . > fniUk))} 1 'n.^,h{\\x,{k)-X,{k)\\)j 
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• S t ep k + 1 : We have the pattern 4>„{k + 1) 

Note that the normalizing factor is not needed in the procedure, since it cancels in the 
probability U4>'n{k))Ifn{'t>n{k)). 
The choice of i5 determines how quickly the algorithm converges. OGATA AND TANEMURA 
(1989) and DIGGLE et al. (1994) refer to W O O D (1968), who found the experimental result 
that a (5 leading to a new point configuration about half of the times, is a reasonable choice. 
However, such a 8 does not exist for sparse configurations. 
The following simulations have been performed on the unit square: 

1. Poisson process, /ii = 1, with n — 500. 

,^(,) _ ƒ 1 - (1 - (x^)^f i f - < « I 1 - (1 - {x/a) 
if 2; > a 

with n = 500, ê = 0.1 and a = 0.002, 0.008, 0.02, 0.04 

3. A Strauss process with 

hsix) = 
e x p { - a } ii X < P 
1 if X > /? 

with n = 500, 6 = 0.1 and a = 0.2, 1.75 and /? = 0.008, 0.04. 

Formulas 2. and 3. have been investigated in DIGGLE et al. (1994) as well, in their comparison 
of some parametric estimation procedures. The estimates h are given in figures 3.2 to 3.6, 
together with the interaction function by which the points were generated. 

In order to investigate the influence of sample size, we did another simulation for the 
function /12, with a — 0.008, thus 

h2{x) = I \ 1 - (1 - {x/O.Qmff \ix< 0.008 
if a: > 0.008 

We looked at a sample size of 100, 500, and 2000 points, on the square with area 0.2, 1 and 
4, respectively. The results are in figure 3.7. 

We only considered the model in which A is standing on itself, without influence from 
points outside A. Otherwise simulations can be performed by using a periodic boundary (see 
DIGGLE et al. (1994)). We ran the above step 2.100.000 times, evaluating the result after 
every 300.000 steps, starting at step 600.000. In all computations, we only considered values 
of the interpoint distance which were smaller than 0.126 (corresponding to a circle area with 
size 0.05). 

Some things can be noticed. In general, the estimate is quite far from the interaction 
function that generated the process. Moreover, the stronger the repulsive forces, the more 
inaccurate the estimate. The direction of the bias, introduced by not considering higher 
order terms, seems to depend on the strength of the repulsive forces. In general, there is a 
tendency to underestimate the repulsive force in case of strong interactions, whereas there is 
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a small tendency to overestimate the repulsive force in case of weak interactions. In figure 
3.6, with parameter values (a,/?) = (1.75,0.04), all estimates are very close together. It 
is unclear why this is the case. It may have to do v/ith the fact that the repulsive forces 
are quite strong with this choice of parameters, leading to a regular pattern, without much 
variation over the simulations. Note that the total area covered by the interaction forces is 
500 X TT X 0.04^ = 2.512, which is more than the total area of A. 

The results of the simulation with three different sample sizes indicate that the approx
imate NPMLE converges to some value as the sample size increases. However, the limit is 
clearly not the true value. 
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Summary 

Estimation of smooth functionals with interval censored data 

and something completely different 

Two quite different topics are treated. One is estimation of smooth functionals of the distri
bution in a situation with interval censored data; the other one is estimation of the amount 
of repulsion among points in some homogeneous area, based on one spatial realization. 

The larger part (chapters 1 and 2) is devoted to the first topic. One has to deal with inter
val censored data, if one wants to obtain information on some distribution FQ, often represent
ing an event time distribution, without being able to observe the event times Xi,... ,Xn ^ FQ 
directly. One only has a collection of, usually random, observation times, leading to a sample 
of intervals J i , . . . , J„ in which the unobservable Xi are known to be contained. Interval 
censored data can be subdivided into several categories. In case 1, we have one observation 
time T, for each Xi, and we only know whether Xi is smaller or larger than the corresponding 
observation time T .̂ Case 2 is denoted as the situation with two observation times (f/,, K) 
for each unobservable event time, and we only know whether Xi is left of Ui, between Ui 
and V, or right of Vi. Situations with more than two observation times, or a variable number 
of observation times, for each unobservable event time are denoted as the case k situation. 
This case very much resembles case 2, since only the two observation times immediately 
surrounding the event time give relevant information. 

Typical for interval censored data, contrary to right censored data, is that the event time 
is never observed itself. This has strong consequences for the asymptotic theory. The distri
bution function cannot be estimated with the usual ^/n-iaXe, and the limiting distribution is 
not normal. However, some aspects of the distribution, such as the mean, remain estimable 
at y«-ra te and have a normal Hmit distribution. Necessary for this to happen is that the 
functional, representing this aspect of the distribution, is sufficiently "smooth". For such 
functionals, a general lower bound theory exists, telling us what is the best performance an 
estimator can have with respect to the variance of the limiting normal distribution. A relation 
exists with the limit variance in case of direct observable event times, which is expressed by 
the score equation. For smooth functionals, this score equation is solvable, and the squared 
norm of its solution yields the lower bound in the situation with interval censored data. 

In case 1, the score equation is easily shown to be solvable under general conditions, and 
an explicit formula for the solution is obtained. In case 2, however, we have to solve an 
integral equation with a Fredholm type structure. A solution is shown to exist under general 
conditions, but no explicit formula is available. In the last section of chapter 1, for some 
specific choices of both the observation time distribution and the event time distribution as 
well as the functional of interest, a more explicit solution to this integral equation is obtained. 

In chapter 2, the results of chapter 1 are used to show that the nonparametric maxi-
nmm likelihood estimator (NPMLE) of a smooth functional asymptotically has the optimal 
behaviour with respect to the variance of the limit distribution. First the basic ingredients 
of the proof in case 1 are sketched. In case 2, the proof is similar in essence. Since no 
explicit expression is available for the lower bound, each part of the proof is considerably 
more complicated. One of the important parts is the derivation of an equality, reformulat
ing the functional as an integral with respect to the probability measure on the observation 
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space. The integrand is the solution to a modified integral equation, with Fo replaced by the 
NPMLE Fn- In chapter 1, some smoothness properties of this solution, which hold uniformly 
over F„, are derived. Another important part is a characterization of F„ as an integral with 
respect to the empirical measure on the observation space. 

The last chapter deals with Gibbs point processes, which are characterized by the existence 
of spatial interaction among points. Gibbs processes have a specific structure of the density. 
The main ingredient of the density is the interaction function. Only pairwise interactions 
are assumed to occur. Moreover, the interaction is assumed to be repulsive in nature, with 
the amount of repulsion decreasing with increasing interpoint distance. Then the interaction 
function is monotonically increasing as a function of the interpoint distance, with values 
between zero and one. The nonparametric maximum likelihood estimator is shown to be a 
piecewise constant function. Since the density has a very complex norming constant, only 
approximations to the likelihood can be computed. Attention is restricted to Gibbs processes, 
conditioned on a fixed number of points. We make a rough approximation, which is only 
reasonable in case the process is close to Poisson. Consistency of the procedure in case the 
true process is Poisson is shown, and some simulations are done for other choices of the 
interaction function. The simulation studies show the estimator to be quite heavily biased. 



Samenvatting 

Het schatten van gladde functionalen op basis van 

interval gecensureerde data 

en iets geheel anders 

Twee verschillende onderwerpen uit de statistiek worden behandeld. Het eerste betreft het 
schatten van gladde functionalen van de verdelingsfunctie op basis van interval gecensureerde 
data. Het tweede betreft het schatten van de mate van afstoting tussen elementen op basis 
van één ruimtelijke configuratie van die elementen in een homogeen gebied. 

Het grootste deel (hoofdstuk 1 en 2) is gewijd aan het eerste onderwerp. Men heeft te 
maken met interval gecensureerde data wanneer men de kansverdeling van de tijd tot het 
optreden van een gebeurtenis (gerepresenteerd door FQ) wil schatten, zonder dat men de 
gebeurtenissen direct kan waarnemen. Men heeft slechts de beschikking over een collectie, 
meestal stochastisch bepaalde, observatietijdstippen, hetgeen leidt tot een steekproef van 
intervallen J i , . . . , J^ waarin de niet direct observeerbare Xi,..., Xn ~ Fo (de tijdstippen 
van optreden van de gebeurtenis) gelegen zijn. Interval gecensureerde data kunnen in ver
schillende categorieën ingedeeld worden, afhankelijk van het aantal observatietijdstippen per 
gebeurtenis. In "case 1" heeft men per onobserveerbare gebeurtenis één observatietijdstip 
Ti, en over de gebeurtenis is slechts bekend of deze voor of na Ti heeft plaatsgevonden. In 
"case 2" heeft men twee observatietijdstippen {Ui, V,) per gebeurtenis, en weet men de locatie 
van de gebeurtenis ten opzichte van deze twee tijdstippen. Situaties met meer dan twee ob
servatietijdstippen, of een variabel aantal, per gebeurtenis behoren tot "case k". Deze laatste 
situatie vertoont veel overeenkomsten met geval 2, omdat slechts het laatste observatietijdstip 
vóór en het eerste observatietijdstip na de gebeurtenis relevante informatie geven. 

Kenmerkend voor interval gecensureerde data, en dit in tegenstelling tot rechts gecen
sureerde data, is dat de gebeurtenis zelf nooit wordt waargenomen. Dit heeft belangrijke 
implicaties voor de asymptotiek. De verdelingsfunctie kan niet met ^n-snelheid geschat wor
den, en de asymptotische verdeling is niet normaal. Sommige aspecten van de verdeling, 
zoals de verwachting, blijven echter met i/n-snelheid schatbaar, met een normale verdeling 
als limietverdeling. Noodzakelijk hiervoor is dat de functionaal die dit aspect van de verdeling 
representeert voldoende "glad" is. Voor zulke gladde functionalen kan gebruik gemaakt wor
den van algemene theorie over informatie-ondergrenzen. De informatie-ondergrens geeft de 
kleinst mogelijke variantie van de normale limietverdeling die een gestandaardiseerde schatter 
kan bereiken. Er is een directe relatie met de ondergrens in de situatie met ongecensureerde 
A',. Deze relatie wordt uitgedrukt middels de score vergelijking. Deze score vergelijking 
is oplosbaar voor gladde functionalen, en de informatie-ondergrens wordt gegeven door de 
gekwadrateerde norm van de oplossing. 

In geval 1 heeft de score vergelijking een eenvoudige structuur en hebben we een expli
ciete formule voor de ondergrens. In geval 2, daarentegen, komt het oplossen van de score 
vergelijking neer op het oplossen van een Fredholm integraalvergelijking. Het bestaan van een 
oplossing wordt aangetoond onder algemene condities. Een expliciete formule is echter niet 
beschikbaar. In de laatste paragraaf van hoofdstuk 1 wordt voor een aantal speciale keuzes 
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van de verdeling van Xi en de observatietijdstippen, met als functionaal de verwachting, een 
min of meer expliciete oplossing afgeleid. 

In hoofdstuk 2 worden de resultaten uit hoofdstuk 1 gebruikt om aan te tonen dat de niet-
parametrische maximum-likelihood schatter (NPMLE) van een gladde functionaal asympto-
tisch het optimale gedrag heeft wat betreft de limietvariantie van de normale verdeling. Eerst 
worden de belangrijke ingrediënten van het bewijs in geval 1 geschetst. Het bewijs in geval 2 
verloopt in essentie op dezelfde wijze. Echter, omdat er geen expliciete oplossing van de inte
graalvergelijking is, is iedere stap in het bewijs aanmerkelijk gecompliceerder dan in geval 1. 
Een belangrijkste stap is de afleiding van een vergelijking die de functionaal herformuleert 
als een integraal met betrekking tot de kansmaat van de observatieruimte. De integrand is 
de oplossing van een gemodificeerde integraalvergelijking, waarin FQ vervangen is door de 
NPMLE F„. In hoofdstuk 1 worden een aantal gladheidseigenschappen bewezen voor deze 
oplossing, die uniform zijn over alle mogelijke realisaties /%,. Een andere belangrijke stap is 
het gebruik van een karakterisatie van Fr, als een integraal met betrekking tot de empirische 
kansmaat op de observatieruimte. 

Het laatste hoofdstuk gaat over Gibbs puntprocessen, die gebruikt worden om ruimtelijke 
interactie tussen punten te modelleren. Gibbs processen hebben een dichtheid, waarvan het 
belangrijkste ingredient een interactiefunctie is. Alleen Gibbs processen waarbij alle interac
ties paarsgewijs zijn worden onderzocht. Bovendien wordt aangenomen dat alle interacties 
afstotend van aard zijn, waarbij de sterkte van de afstotingskracht afneemt als de afstand 
tussen de punten groter wordt. Voor de interactiefunctie betekent dit dat deze monotoon 
niet-dalend is als functie van de afstand tussen punten, met waarden tussen nul en één. 
De niet-parametrische maximum-likelihood schatter onder de monotoniciteitsrestrictie is een 
stuksgewijs constante functie. Echter, het uitrekenen hiervan is ingewikkeld, vanwege de 
aanwezigheid van een gecompliceerde normeringsconstante. Een ruwe benadering van de 
NPMLE wordt afgeleid voor de situatie waarin het aantal punten vast ligt. Deze benadering 
is slechts redelijk als er weinig interactie is. Als er geen interactie is, is de schattingsproce
dure asymptotisch consistent. Voor een aantal keuzes van de interactiefunctie is een simulatie 
gedaan. Hieruit blijkt dat de schatter niet erg zuiver is. 
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the past one and a half year. I hope I will be able to lead a more social life again. 
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Stellingen 

behorende bij het proefschrift 

Het schatten van gladde functionalen op basis van 
interval gecensureerde data 

en iets geheel anders 

door 

Ronald Geskus 



1. Zij A een niet-singuliere M-matrix. Beschouw de vergelijking Ax = y. 
^'•s Vh' 7̂  O '<^oor iedere nucleus K, en als Xi > O voor iedere index i met yi < 0. dan 
geldt dat al de coördinaten van x positief zijn. 

MiLASZEWicz, J.P. AND MoLEDO, L.P. (1993). On nonsingular M-matnces, Linear 
Algebra and its Applications, vol. 195, p. 1-8. 

Een aanmerkelijk eenvoudiger bewijs van deze stelling kan gegeven worden door gebruik 
te maken van de redenering uit het bewijs van lemma 1.4.1 op pagina 35 van dit 
proefschrift. 

2. Gezien het niet-normale asymptotische gedrag, heeft, bij het niet-parametrisch schat
ten van niet-gladde functionalen op basis van interval gecensureerde en dubbel ge
censureerde data, het gebruik van de Fisher informatie matrix voor het bepalen van 
betrouwbaarheidsintervallen een twijfelachtige waarde. Alleen wanneer het probleem 
parametrisch behandeld wordt en een zeer grof vast grid gekozen wordt, geldt het 
asymptotisch gedrag bij de aanwezige steekproefgrootte bij benadering. 

3. Het formuleren van een statistiek opgave via 

Zij Xi,... Xn de realisatie van een steekproef uit een normale verdeling ... 

rechtvaardigt op logische gronden het geven van een onzinnig antwoord. 

4. Het gebruik van de archaïsche notatie x voor een stochastische variabele heeft een 
onderwijskundig voordeel. Bij het nakijken van tentamens is veel eenvoudiger te zien 
of een student het verschil begrijpt tussen een stochastische variabele en een realisatie 
daarvan. 

5. De bewering dat deelnemers aan cohort studies naar HIV en AIDS, die tijdens de studie 
zijn geseroconverteerd, een gedocumenteerde datum van seroconversie hebben, is vanuit 
statistisch oogpunt misleidend. 

6. De homo-emancipatie is nog verre van voltooid, ook niet bij de homoseksueel zelf. Het 
is dan ook te prefereren een jongen te vragen of hij een relatie heeft in plaats van te 
vragen of hij een vriendin heeft. 

7. De straat van Gibraltar is een eufemisme geworden. 

8. Beter één milieu-onvriendelijke white-board stift in de hand, dan tien milieu-vriendelijke 
in de prullenmand. 


