]
TUDelft

Decreasing message complexity in Byzantine Fault Tolerant communications using
Consistent-Broadcast

Daniel Prinsze
Supervisor(s): Bart Cox, Jérémie Decouchant
EEMCS, Delft University of Technology, The Netherlands

23-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering

Abstract— During this research we have replaced Bracha’s
layer in the state-of-the-art Bracha-Dolev protocol to improve
the performance by decreasing the message complexity of the
protocol running on top of a given network topology so long as the
requirements stated by Bracha and Dolev are met. Bracha-Dolev
is an algorithm that is used to establish a Byzantine fault tolerant
communication in a network but it requires a lot of messages
to reach consensus. This improvement has been achieved by
utilizing a Byzantine Consistent Broadcast algorithm in place of
Bracha’s layer: Authenticated Echo Broadcast in order to reduce
the message complexity and reduce the network consumption
compared to the original optimized Bracha-Dolev algorithm.
Some of the optimizations applied to optimized Bracha-Dolev
have also been applied to this new protocol under the hard
assumption that the sender is always reliable. As a result, this
new protocol is an optimal choice in such instances where these
constraints hold and where multiple faulty nodes are present in
the system.

I. INTRODUCTION

In the communication between multiple processes in a
distributed network, it might be that some nodes perform
in an adversarial manner that will inhibit the functionality
of the whole system. Behaving in such a manner is usually
caused by internal faults, simple errors in communication over
a network (interference) or malicious intent. Such processes
are labeled Byzantine processes, referring to the Byzantine
generals problem which is a famous communication problem
that is used as an analogy to describe the issues with achieving
consensus in a distributed network [8].

Reliable communication in a distributed network by means of
achieving consensus is of great importance for the process of
verification in transactions or distributing workload between
remote systems amongst other use-cases. As such a number
of different protocols have been developed to achieve this
consensus taking into account these types of faults. The goal
of these protocols is to achieve a Byzantine fault tolerant
(BFT) network where consensus can be reached even though
Byzantine processes are present. Previous works have proven
that independent of network topology or model, in order to
reach consensus there exist two upper bounds on the number
of faulty processes f that may be present in a network where
J < 3 and where the connectivity of the network is at least
2f + 1 when utilizing Dolev’s algorithm [6] which also hold
for asynchronous randomized network configurations [14].
Realizing a consensus in a network can be done by combining
the protocol proposed by Gabriel Bracha [4] and the protocol
proposed by Danny Dolev [6] where each protocol will fulfil
a specific function in their respective layer.

Previous works have optimized or proposed optimizations for
these protocols since Dolev’s and Bracha’s algorithms need to
send a lot of messages in order to achieve this consensus which
can prove to be problematic regarding the amount of time it
takes when considering a large scale distributed network and
many other optimizations have been proposed to improve dis-
tributed communication in the presence of byzantine processes
[131[91[71[1][3][10][2]. The larger a distributed network of
systems becomes, the more computational power is demanded.
As aresult, the energy consumption will increase which makes
this a costly endeavor for long and computationally intense

tasks.

As of today and to our knowledge there are no available
works yet that have tried replacing Bracha’s algorithm with an
algorithm of the consistent broadcast paradigm while imposing
hard constraints in order to reduce message complexity of a
system that utilizes Bracha-Dolev to communicate.

This paper will try to extend the research done by Bonomi
et al. [2] while imposing some constraints that will contain
the research within its intended scope. Byzantine consistent
broadcast (BCB) poses a very likely group of candidates to
replace Bracha’s layer. The algorithm of particular interest is
the Authenticated Echo Broadcast (AEB) algorithm [5] since
it drops the ’Ready’ message type in its entirety and is not
as computationally intensive as other options within the same
group (i.e. due to generating digital signatures). Using this
algorithm, it is theoretically possible to achieve a message
complexity of O(n?) messages required given that the sender
is always reliable, thereby providing a significant reduction
on required resources where the only hard requirement made
in such a set-up would be that the sender always has to be
reliable [5].

This study has set-out to provide concrete data regarding
whether or not using Dolev in conjunction with BCB-Dolev
in a network with a reliable sender provides a significant
enough speed-up and decrease in message complexity in a real
life simulation and to provide conclusive results that warrant
further study and examination. Furthermore this paper has
sought to answer the following questions:

1. Is it possible to reduce the message complexity in Bracha-
Dolev utilizing consistent broadcast given that the sender
is always reliable?

ii. Is this strategy valid and is it correct? Does it ensure
consensus?

In section II we will talk more about the related work and the
ideas that led to researching and implemention this new form
of a BFT protocol; BCB-Dolev.

In section III we will explain the system model that has been
used, the necessary interface, the required constraints and the
properties resulting of these settings.

In section IV we will discuss the methodology of this research
in which a deeper look will be taken into the hardware that
has been used, the experimental setup that is required in order
to execute the experiment properly, what choices have been
made regarding the experimental setup, how these choices
were validated and how the experiment can be recreated.

In section V we will discuss the results, findings and contribu-
tions of this research, whether or not these results match our
theoretical expections and evaluate and argue why our results
are correct. In section VI we will discuss how the research
was conducted in a responsible manner and subsequently in
section VII we will delve into the conclusions and possible
future works and-or improvements that could be made.

II. RELATED WORK

The optimized Bracha-Dolev protocol consists of two
protocols of different paradigms to create an algorithm
that is able to establish a BFT communication. The first

group of protocols that includes Bracha’s algorithm is the
group of Byzantine Reliable Broadcast (BRB) algorithms
and the second is the group of Reliable Communication
(RC) protocols. Typically, BRB protocols allow for correct
processes to all decide whether or not to accept a message,
even if the sender is faulty. Whereas RC protocols allow
processes to authenticate messages in a partially connected
protocol, and provides to each process the illusion that it is
directly connected to all other processes.

Byzantine Reliable Broadcast: Bracha’s work [4] has proposed
a solution to the problem of achieving consensus in a network
where Byzantine processes are present and has done so by
creating a protocol that makes use of three different message
types: INIT, ECHO and READY, that will propagate in three
different phases throughout the entire network as seen in
Figure 1. It is important to note however that reliable nodes
only relay a message if and only if it has received one of
the INIT messages, "Tﬂc of the ECHO messages and f + 1
messages of the READY type. A hard bound set by Bracha is
that there should be at most f < % Byzantine processes in
the system.

Reliable Communication: Whereas Bracha’s protocol only
works in fully connected networks, the protocol proposed
by Dolev should be able to establish a reliable connection
link in both synchronous and asynchronous networks as long
as the graph has a connectivity of at least 2f + 1 [6][14].
It manages to do so by looking for f + 1 disjoint paths as
depicted in Figure 2.

Fig. 1: Bracha’s communication protocol utilizing
three phases to distribute a message sent by ¢

A

Ce:
Ce”’@r

Fig. 2: Dolev’s protocol establishing f 4 1 disjoint
paths in the presence of 2 faulty nodes

The problem with both of these protocols is that they have
a high message complexity and in Dolev’s case there is
also a high computational complexity required to calculate
the disjoint paths it needs to find. In order to mitigate this
problem, we have have proposed a different implementation
under the constraint that the original transmitter is always
reliable through the means of the consistent broadcast
paradigm. The work done by Ramasamy et al. implemented
a more efficient atomic broadcast algorithm that reduced
the message complexity from O(n?) to amortized O(n)

utilizing a consistent broadcast algorithm [10]. This has
proven the potential and the feasibility for the algorithm to be
implemented in conjunction with Dolev’s algorithm instead
of Bracha’s.

The algorithm that Ramasay et al. [10] has employed in their
work is known as Authenticated Echo Broadcast (AEB) which
has been developed by Srikanth et al. [12]. This algorithm
is known to implement consistent broadcast in quadratic
message complexity O(n?) whilst only requiring two of
the three message types that Bracha’s original algorithm
utilizes. Much like Bracha’s algorithm, it first c-broadcasts
the message m to all nodes and then when the amount of
faulty nodes in the system is f < %, every correct process
waits until it has received %f“ ECHO messages (in other
words, a Byzantine quorum has been reached) from other
nodes before it finally will c-deliver the original message m
as depicted in Figure 3.

A different algorithm within the same consistent broadcast
paradigm is know as Signed Echo Broadcast (SEB) or simply
Echo Broadcast which has been developed by M. K. Reiter
[11]. Unlike AEB, SEB utilizes digital signatures to establish
a secure connection in a network and manages to do so in
linear message complexity O(n). Just as with AEB, SEB
also first sends a message m to all network participants and
waits until a Byzantine quorum is reached. However, instead
of propagating this ECHO message, each process digitally
signs this message and returns it to the sender ¢ where ¢ then
awaits a Byzantine quorum of these signed statements before
it relays them to all processes in the network in the final step
as depicted in Figure 4.

bcb-broadcast

X bcb—deliver

T

SEND beb-deliver

ECHO

Fig. 3: Authenticated echo broadcast establishing a
connection [5]

bcb-broadcast

X\ beb-deliver

NN

@
A
SEND ECHO FINAL bcb-deliver

Fig. 4: Signed echo broadcast establishing a connection

[5]

The work done by Aguilera et al. [1] has provided
even further information about whether or not the consistent
broadcast paradigm is useful compared to the group of BRB
protocols when considering the utilization and implementing
of digital signatures. They have shown that digital signatures
are more costly than simple network communication and

that the same holds for the sending of a lot of replicas, a
characteristic of Bracha-Dolev’s protocol.

This research has considered all the previous works and
both possible implementations and has determined that it
would be optimal to combine AEB with Dolev instead of
SEB since SEB will require more computational resources
which, depending on the systems that utilize it, will increase
the latency due to the computational complexity resulting
from establishing these digital signatures. Further more, the
strategy of implementing AEB with Dolev should reduce
the message complexity substantially already, making the
increased computational load and latency an undesirable
side-effect.

III. SYSTEM MODEL AND PROBLEM STATEMENT

The current state of the art Bracha-Dolev communication
protocol is the one provided by Bonomi et al. [2]. In their
work they provide an optimized version of Bracha-Dolev that,
based on certain circumstances such as network topology and
connectedness, can provide an improvement in performance
compared to the regular version of the protocol. During this
experiment the focus will be on comparing Optimized Bracha-
Dolev versus an implementation of BCB-Dolev that utilizes
AEB with regards to throughput and latency as a result of
reduced message complexity.

In order to implement AEB in the form of BCB-Dolev, some
constraints must be applied to the system model for the
protocol to function as desired. We will adhere to a similar
way of declaring this model as Bonomi et al. [2].

Nodes: Each graph will consist of n nodes (or processes) that
will be denoted or referenced using the following notation:
P = {t,p1,p2,...,pn—1} Where p; is the unique identifier
of each subsequent non-initial transmitter node, p; through
pn—1 are the elements (processes) of the set of nodes (IP) in
the graph and ¢ the initial transmitter of a given message (or
payload). For the nodes in the system model it is assumed
that ¢ is always reliable as a transmitter and that the amount
of faulty nodes in the system f is always less than a third of
the amount of nodes in the system: f < [%].

Connections: Each graph will be denoted as G = (V, E)
where V includes the set P as to indicate that all nodes in P
are part of the given presented graph such that P C V' and
VO<i<n:teVAp; €V.A hard requirement in order
to utilize AEB states that we will assume all connections in
E are established using authenticated perfect point-to-point
links [5]. Topologies can either be known or unknown but
we will assume an unknown topology where there is a hard
requirement that each v € V has a connectivity of at least
2f + 1. We will also assume the rest of the network edges
(or connections) to be reliable such that messages will always
be delivered, whether Byzantine or not. Figure 5 provides an
example for a topology with eight nodes and a connectivity
of at least three.

Byzantine Consistent Broadcast (BCB): Utilizing consistent
broadcast we construct an interface that can guarantee a set of
properties inherent to the protocol [5]. This interface contains
two mains Events:

Fig. 5: An example graph with n = 8 can f = 1 where transmitter ¢ will be able to
reliable deliver the message since the connectivity is larger or equal to 2 f + 1

1) Request: a transmitter ¢ and only transmitter ¢ broadcasts
to all other nodes p;

2) Indication: whenever a node v € V broadcasts a payload
m, it is delivered.

The following properties are guaranteed when using this
interface:

[BCB1]: Validity: Whenever a correct process v € V' broad-
casts a message m then eventually every correct process
delivers m.

[BCB2]: No duplication: Every correct process delivers at
most one message.

[BCB3]: Integrity: If some correct process delivers a message
m with sender p; and process p; is correct, then m was
previously broadcast by p;.

[BCB4]: Consistency: If some correct process delivers a
message m and another correct process delivers a message
m/, then we can conclude that m = m/'.

Reliable Communication: Following the BCB interface we
need another interface that will represent Dolev’s layer in the
BCB-Dolev implementation. For this an Reliable Communica-
tion (RC) interface has been assumed with the same interface.
Given the initial assumption that ¢ € V where ¢ is always a
reliable sender, every property of the BCB interface is still
valid and as such a correctly defined system model has been
constructed.

IV. METHODOLOGY

In order to execute the experiment it should be possible
to keep track of important metrics from which we can
extract a definitive conclusion regarding the optimality of
the implementation compared to optimized Bracha-Dolev.
Such metrics include the amount of messages sent, the
amount of bytes a payload contains, the amount of broadcasts
executed, the times at which each broadcast was executed and
completed and the amount of deliveries made. The amount of
messages sent will show whether or not the implementation
has a better message complexity than optimized Bracha-
Dolev, the size of the payload will give more insight into
the network consumption and load on the network as well as
the throughput in conjunction with the amount of messages
sent and the broadcast times should provide insight into the
latency of the algorithm as a whole.

During the experiment we measure these metrics in an
existing network. Such a network has to be instantiated,
either by using different nodes over vast distances or by
using isolated processes on a local network. This research
has opted to use isolated instances of Docker processes in

order to emulate different nodes on a local network. The
experiment could be performed using seperate systems as
well but this would require additional measures to ensure
integrity. However, it will probably still have the same ratios
as the setup that uses the Docker instances.

In order to run the experiment we make use of Salticidae
which is a small and compact network library that offers
handlers and bindings that we can utilize to implement the
different phases of the communication protocol we have
implemented as well as basic initiators and terminators
for the communication in our simulated network. The
implementations have been written in C++ and the scripts
that execute them and compile the date have been written
in Python. For C++, version 9.4.0 of the GCC compiler has
been used and for Python version 3.8.10 of the interpreter.
For Docker we have used version 4.9.0. No compiler flags
have been set in the Makefile other than the linking to the
Salticidae libraries. The experiment has been executed over
a wireless local network using a computer that accomodates
16GB of random access memory and 4 cores clocked at
1.7GHz. This has influenced the results because Salticidae
makes use of multithreading.

The algorithm that has been implemented is a combination
of both Dolev’s algorithm as well as Authenticated Echo
Broadcast (AEB). The pseudocode for the AEB algorithm
that has been used to implement BCB-Dolev is provided in
Algorithm 1. The setup makes sure that the initial broadcast
performed by the sender ¢ is performed by sending a Dolev
message to a node p; in the network. Then if this node p; is
reliable, that node will execute the AEB algorithm in order to
deliver the message m to it’s neighbours. If the node p; is not
reliable then we request to relay the message using Dolev’s
algorithm to a node p; instead. This process is repeated until
a reliable node is found. The pseudocode for Dolev’s protocol
can be found in Algorithm 2.

In order to recreate the BCB-Dolev implementation Algorithm
1 and 2 can be combined through replacing the forall triggers
in Algorithm 1 on lines 14-15 and 19-20 with the broadcast
operation (dolev, BROADCAST | [msgType, m]) in Algorithm
2 on line 9-13. It is important to note that the message type
in the Dolev broadcast event should also be passed where
msgType €{INIT, ECHO}. Furthermore, the

(al, DELIVER | ¢,[msgType, m]) in Algorithm 1 should be
replaced by (dolev, DELIVER | [msgType, m]). The resulting
protocol should be a valid and correct implementation of
BCB-Dolev.

The work done by Bonomi et al. [2] also provides some op-
timizations for their algorithm. However, some are applicable
to BCB-Dolev as well and as such have been applied during
the execution of this experiment. These optimizations include:
[MD.1]: If a process p; receives a message m directly from
the transmitter ¢, then p; directly delivers it.

[MD.2]: If a process p; has delivered a message m, then it
can discard all the related paths and relay the message only
with an empty path to all of its neighbours.
[MD.3]: A process p; relays path related to a message only
to the neighbours that have not delivered it.

Algorithm 1: Authenticated Echo Broadcast (AEB) in
the presence of a reliable transmitter

1 Parameters:

2 P: the set of all nodes in the network

3 n: the amount of nodes in the network

4 f < | %]: maximum amount of Byzantine nodes
5 t: the transmitter such that ¢ € P

6 Uses: Auth, perfect point-to-point links, instance al

7
8
9

upon event (bcb,INIT) do

sentEcho = FALSE

10 delivered := FALSE
1 echos = ()

13 upon event (bcb, BROADCAST | m) do
14 forall e € P do
15 trigger (al, SEND | e, [SEND,m])

17 upon event (al, DELIVER | g, [SEND,m]) such that
q =t A sentecho =FALSE do

18 sentecho := TRUE
19 forall e € P do
20 trigger (al, SEND | e, [ECHO, m])

22 upon event (al, DELIVER | g, [ECHO, m] do
23 if echos[q] = () then
24 echos[q] :=m

26 upon exists m 7# () such that

#({Ve € Plechosle] = m}) > % A delivered =FALSE do
27 delivered := TRUE
28 trigger (bcb,DELIVER | ¢, m)

Algorithm 2: Dolev’s protocol for a 2f+1 connected
network at process e;

Parameters:
f: maximum amount of Byzantine nodes
Uses: Auth, perfect point-to-point links, instance al

1
2

3

4

5 upon event (dolev,INIT) do
6 delivered := FALSE
7

8

9

paths :=
upon event (dolev, BROADCAST | m) do
10 forall e; € neightbours(e;) do
11 trigger (al, SEND | ej, [m, []])
12 delivered = TRUE
13 trigger (dolev, DELIVER | m)

15 upon event (al, DELIVER | e;, [m, path]) do

16 paths.INSERT(path + [e;])
17 forall ¢, € neighbours(e;) \ (path U {e;}) do
18 trigger (al, SEND | ey, [m, path + [e;]])

20 upon event (e; is connected to the source through f + 1 node-disjoint paths
contained in paths) A delivered = FALSE do

21 trigger (dolev, DELIVER | m)

22 delivered = TRUE

[MD.5]: A process p; stops relaying further paths related to
a message after it has been delivered and the empty path has
been forwarded.

A set of newly provided modifications has also been accomo-
dated when running the experiment. Notably:

[MBD.3]: Echo to Echo transitions: When a process p;
receives an ECHO message from a neighbour p;, p; will
then Dolev-deliver the message in line with [MD.2] and will
forward the message to its neighbours whilst excluding the
paths. As a result of delivering the ECHO message, process p;
might also send another ECHO message to all of its neighbours
after having delivered the SEND message of the source, or
received f + 1 ECHOS.

https://www.github.com/Determinant/salticidae

[MBD.7]: Ignore all received ECHO messages related to the
contents of a message that has been delivered.

[MBD.9]: Do not send anything related to content to neigh-
bours that have successfully delivered that content.
[MBD.10]: If a node p; receives a message m; (e.g., an ECHO
from t) with path path;, for which a previous message mg
with pathy was received (and which only differs from m; by
its path) and such that pathg is a subpath of path;, then p;
can ignore mj.

[MBD.12]: If the transmitter ¢ has more than 2f + 1 neigh-
bours, it can transmit its SEND message to 2f + 1 of its
neighbours instead of to all of them.

The experiment itself has been executed with a message
payload of 10 Bytes for a set of different connectivities
[4,6,8,10,12,14,16], while having a set of faulty nodes
present [1,3,5] where the number of nodes in the system
has been chosen to be constant n = 31. The experiment has
been performed whilst always having [MD.1] through [MD.5]
enabled and both with and without applicable optimizations
provided by Bonomi et al. [2].

V. CONTRIBUTIONS, FINDINGS AND RESULTS

This research has implemented a fully functional and correct
version of the protocol proposed in Section IV by combining
the Authenticated Echo Broadcast protocol with Dolev’s proto-
col in conjunction with an expandable code base. Furthermore,
this research has shown the correctness and validity of this
combination and that this protocol adheres to all necessary
properties in order for it to be Byzantine fault tolerant in
Section III. The full implementation and codebase can be
found on Gitlab.

During our experimentation we found that our implementa-
tion of BCB-Dolev greatly reduces the message complexity
compared to the original unoptimized Bracha-Dolev protocol.
When applying all proposed optimizations by Bonomi et al. [2]
to Bracha-Dolev and BCB-Dolev where applicable we found
that our implementation of BCB-Dolev has a more efficient
message complexity in systems with more faulty nodes.

First we will evaluate the results from the first experimental
phase. Figure 6 depicts the results required after execut-
ing the first phase of the experiment for the unoptimized
BCB-Dolev protocol. In this figure, we can see the average
amount of messages sent per broadcast cycle for connectivities
[4,6,8,10,12,14,16] with f = 1, f = 2 and f = 3
faulty nodes in a system of 31 nodes with 75 broadcast
cycles. It becomes clear that there is a correlation between
the connectivity of a network, the amount of faulty nodes
and the amount of messages sent during a broadcast cycle.
This correlation is not surprising because of how the algorithm
works. Whenever the transmitter sends a Dolev message to a
reliable node, that node then starts a BCB-Dolev broadcast.
This BCB-Dolev broadcast will then send messages to all its
connected neighbours. As such it is logical that the higher the
connectivity, the more messages will be sent and as such these
results are in line with our expectations.

Figure 7 shows the average amount of messages with the
same parameters but now for the unoptimized Bracha-Dolev

Non-optimized BCB-Dolev
6000

—o— f=1
f=3
5000 1 =5

4000

3000 4

2000 4

ity (avg. #messages sent per broadcast cycle)

1000 A
g N

T T T T T T T T
[} 2 4 6 8 10 12 14 16 18
Network connectivity (c)

Fig. 6: Message complexity BCB-Dolev, n=31, 75
broadcasts executed

Non-optimized Bracha-Dolev

- =1 L]
=3 :
-m f=5

6000 +

5000 +

4000

3000 +

2000 4

1000 A

Message complexity (avg. #messages sent per broadcast cycle)

T T T T T T T T
0 2 4 6 8 10 12 14 16 18
Network connectivity (c)

Fig. 7: Message complexity BRB-Dolev, n=31, 75
broadcasts executed

Percentile decrease non-optimized protocols
100

=1
-¥- f=3

W f=5
80 S

0804

40

Percentile decrease (BCBDolev/BRBDolev %)

T T T T T T T T
0 2 4 6 8 10 12 14 16 18
Network connectivity (c)

Fig. 8: Percentile decrease of BCB-Dolev v.s. BRB-
Dolev

protocol. As with BCB-Dolev it becomes clear that again
there is a correlation between the connectivity of a network,
the amount of faulty nodes and the amount of messages
sent during a broadcast cycle and for the same reasons this
matches our expectations. However, the average amount of
messages sent per cycle is far greater than we saw in BCB-
Dolev. This can be mostly attributed to the fact that we have
three message phases instead of two where, again depending
on the connecitivity, messages will be sent to each other
connected node. As a result these message complexities will
be substantially higher and as such these results were in line
with our expectations.

https://gitlab.tudelft.nl/cse3000-2022-reliable-communications

During the evaluation of the experimental results of the
unoptimized BCB-Dolev and BRB-Dolev protocols it becomes
clear that unoptimized BCB-Dolev is, quite strictly, the better
option in terms of lowest message complexity, boasting an
average message complexity reduction of ~ 65% for f =1,
about the same for f = 2 and an average of about ~ 75% for
f = 3 as seen in Figure 6, 7 and 8. Whilst these reductions
are impressive, these results are not very surprising given the
fact that original Bracha-Dolev utilizes all three phases of
Bracha’s communication algorithm which causes a factor of
about O(n?) more messages to be sent on top of what our
implementation requires. Furthermore, the initial broadcast in
our implementation propogates an instance of a Dolev message
throughout the network until it has found a reliable node
that can propogate the BCB-Dolev broadcast. As a result, the
two phases of the BCB broadcast do not have to propogate
throughout every node in the network unlike with BRB-Dolev.
These factors both play a big role in the size of the reduction
in message complexity and were expected based on the theory
presented in Section II and Section III. In the second phase
of our experiment, we applied all proposed optimizations to
Bracha-Dolev and compared it to our partially optimized BCB-
Dolev algorithm, using a part of the same optimizations and
using the same settings as in the first phase.

Just as during the first phase we can deduce that the results
are in line with our expectations due to having applied
all optimizations MBD.1 through MBD.12 to Bracha-Dolev
which has significantly reduced the amount of messages sent.
While the optimizations applied to BCB-Dolev have not posed
a decrease as severe as with Bracha-Doley, it is still in line
with our expectations due to the various applied optimizations.
It becomes quite clear that the reduction becomes less severe
and in some cases our implementation becomes less efficient.
From Figure 9, 10 and 11 we can derive that for f = 1
our BCB-Dolev implementation requires up to ~ 55% more
messages than the optimized Bracha-Dolev protocol. However,
we notice that for higher amounts of faulty nodes in the
system, our implementation does perform better with regards
to the message complexity where for f = 2 we achieve an
average decrease of about ~ 30% and for f = 3 an average
decrease of about ~ 40% over all connectivities. The fact
that our implementation has a higher message complexity
compared to the optimized Bracha-Dolev protocol can be
largely attributed to the other optimizations applied to it that
were not applicable to our implementation of BCB-Dolev.
More interesting are the results regarding networks with higher
amounts of faulty processes which is when our implementation
seems to again provide a higher degree of efficiency over
optimized Bracha-Dolev.

As can be seen in the figures that present that data there seem
to be dips in message complexity for a set of differing con-
nectivities per version on the protocol that was being tested.
It was expected that the higher the connectivity the higher
the message complexity. However, during testing it became
clear that the optimized and non-optimized versions of Bracha-
Dolev weren’t able to execute all 75 broadcasts effectively. The
same holds for the optimized and non-optimized versions of
BCB-Dolev. However, the performance of our implementation

Partially optimized BCB-Dolev
2000

=1
f=3
=5

1750 4

1500 4

1250 4

1000 A

750 +

ity (avg. #messages sent per broadcast cycle)

500

T T T T T T T T
[} 2 4 6 8 10 12 14 16 18
Network connectivity (c)

Fig. 9: Message complexity optimized BCB-Dolev,
n=31, 75 broadcasts executed

Optimized Bracha-Dolev
2000

- f=1
f=3

1750
-m =5 $ -
1500
12504
1000

750 +

500 -

250 4 '/—'/o\r_/o”'

T T T T T T T T
0 2 4 6 8 10 12 14 16 18
Network connectivity (c)

Message complexity (avg. #messages sent per broadcast cycle)

Fig. 10: Message complexity optimized BRB-Dolev,
n=31, 75 broadcasts executed

Percentile decrease optimized protocols
100

80 4 -¥- f=3
m- f=5
60 -
[I
404
. »
PR P
- N .
20 L S

Percentile decrease (BCBDolev/BRBDolev %)

T T T T T T T T
0 2 4 6 8 10 12 14 16 18
Network connectivity (c)

Fig. 11: Percentile decrease of Opt BCB-Dolev v.s. Opt
BRB-Dolev

was less affected overall. These anomalies were happening
consistently across all test phases and were mostly present
when the connectivities were setto ¢ = 12, c = 14 and ¢ = 16
for optimized Bracha-Dolev and ¢ = 12 for non-optimized
and optimized BCB-Dolev as well as non-optimized Bracha-
Dolev. The failure to execute all broadcasts effectively causes
the message complexity on average to be lower than it should
be. Currently, it is not clear what the cause of this failure
to execute all broadcasts for these settings is. However, since
the failure was consistent in all testing, the acquired data was
still deemed usable. In fact, since the experiment was mainly
designed to determine whether or not our implementation

provides a significant decrease in message complexity, the fact
that our optimization was able to perform all 75 broadcasts
with more consistency and still achieved a lower average
message complexity compared to the optimized Bracha-Dolev
protocol despite finding lower numbers because of the failure
to execute all broadcasts, shows that our new implementation
is indeed more efficient by a secure margin. These findings
make BCB-Dolev a good candidate for future research and
use.

VI. RESPONSIBLE RESEARCH

The experimental setup has been briefly discussed in section
IV. In this section we will dive deeper into how the experiment
was executed in a responsible manner and how to recreate the
results using the implementation that has been created for this
project. First and foremost, all code and files that have been
used to draw the conclusions made in this paper are available
on Gitlab.

During this research the only concern was to get results from
performing the experiment with the presented implementation
and the implementation derived from the works by Bonomi
et al. [2] regardless of whether it matches our expections or
not to ensure integrity of the research. All the algorithms
have been implemented in this codebase to the best of our
abilities. However, it was found that for some connectivities,
network protocols were unable to successfully complete all
broadcast cycles. This however is probably a rather subtle bug
in the code base as the problem was consistent throughout all
testing and as such has not impacted our ability to interpret
the results. In order to acquire results one should run the
testDockerLocal .py file with the settings that one wants
to test. The averages as well as the minimum and maximum
values are printed to the console for all metrics mentioned
before. All the log files will be stored in code3/1log and
can be accessed after having completed the experiment with
the desired settings. Due to hardware limitations, all experi-
mentation data has been logged manually after each execution
of the main test file.

It is important to note that the experiment has some limitations.
First of all, the experiment was performed on commercial
hardware due to limitations that could not be solved in the
short amount of time available for this project. While the
chosen experimental setup should in theory provide a close
enough analogy for a real network with multiple independent
nodes, it would be optimal to actually perform the experiment
in such fashion. Because automated test scripts would cause
the hardware it was performed on to crash, all tests were done
manually, logging the results to ensure integrity of the acquired
data.

VII. CONCLUSION

This paper has provided a functional implementation for
BCB-Dolev with a set of optimizations that were applicable
from the work this research has extended. We have accumu-
lated, presented and argued our results in Section V where we
have shown that by replacing Bracha’s layer with Authenti-
cated Echo Broadcast and thus creating a new protocol; BCB-
Dolev, we can significantly reduce the message complexity in

a network compared to using optimized Bracha-Dolev. Our
partially optimized implementation of BCB-Dolev is more
efficient regarding message complexity compared to the fully
optimized Bracha-Dolev protocol provided by Bonomi et al.
[2] when the amount of faulty nodes in the system is larger
than f = 1 even when not all broadcasts performed by
optimized Bracha-Dolev were effective. We have shown that
this implementation, under the strong assumption that the
sender is always reliable, is correct and ensures consensus and
we have shown that the network consumption can be reduced
by up to ~ 50% for f = 5 when using our implementation
compared to optimized Bracha-Dolev. This research has shown
that BCB-Dolev is a good candidate for future research given
the results that have been acquired. Future work could look
into finding and implementing optimizations for this protocol
in known and unknown topologies. Other research topics
might include finding weaker assumptions under which the
protocol would still be functional.

REFERENCES

[1] Marcos K Aguilera, Naama Ben-David, Rachid Guerraoui, Dalia Papuc,
Athanasios Xygkis, and Igor Zablotchi. Frugal byzantine computing.
arXiv preprint arXiv:2108.01330, 2021.

[2] Silvia Bonomi, Jérémie Decouchant, Giovanni Farina, Vincent Rahli,
and Sébastien Tixeuil. Practical byzantine reliable broadcast on partially
connected networks. In 2021 IEEE 4l1st International Conference on
Distributed Computing Systems (ICDCS), pages 506-516. IEEE, 2021.

[3] Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Multi-hop
byzantine reliable broadcast with honest dealer made practical. Journal
of the Brazilian Computer Society, 25(1):1-23, 2019.

[4] Gabriel Bracha. Asynchronous byzantine agreement protocols. Infor-
mation and Computation, 75(2):130-143, 1987.

[5] Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. Introduction
to reliable and secure distributed programming. Springer Science &
Business Media, 2011.

[6] Danny Dolev. Unanimity in an unknown and unreliable environment.
In 22nd Annual Symposium on Foundations of Computer Science (sfcs
1981), pages 159-168. IEEE, 1981.

[7] Chiu-Yuen Koo. Broadcast in radio networks tolerating byzantine
adversarial behavior. In Proceedings of the twenty-third annual ACM
symposium on Principles of distributed computing, pages 275-282,
2004.

[8] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agree-
ment in the presence of faults. Journal of the ACM (JACM), 27(2):228-
234, 1980.

[9]1 Andrzej Pelc and David Peleg. Broadcasting with locally bounded
byzantine faults. Information Processing Letters, 93(3):109-115, 2005.

[10] HariGovind V Ramasamy and Christian Cachin. Parsimonious asyn-
chronous byzantine-fault-tolerant atomic broadcast. In International
Conference On Principles Of Distributed Systems, pages 88-102.
Springer, 2005.

[11] Michael K Reiter. Secure agreement protocols: Reliable and atomic
group multicast in rampart. In Proceedings of the 2nd ACM Conference
on Computer and Communications Security, pages 68—80, 1994.

[12] TK Srikanth and Sam Toueg. Simulating authenticated broadcasts to
derive simple fault-tolerant algorithms. Distributed Computing, 2(2):80—
94, 1987.

[13] Lewis Tseng, Nitin Vaidya, and Vartika Bhandari. Broadcast using cer-
tified propagation algorithm in presence of byzantine faults. Information
Processing Letters, 115(4):512-514, 2015.

[14] Ye Wang and Roger Wattenhofer. Asynchronous byzantine agreement
in incomplete networks. In Proceedings of the 2nd ACM Conference on
Advances in Financial Technologies, pages 178—188, 2020.

https://gitlab.tudelft.nl/cse3000-2022-reliable-communications

	Introduction
	Related work
	System model and problem statement
	Methodology
	Contributions, Findings and Results
	Responsible research
	Conclusion
	References
	Research_Project__Bracha_Dolev_optimizations.pdf
	Introduction
	Related work
	System model and problem statement
	Methodology
	Contributions, Findings and Results
	Responsible research
	Conclusion
	References
	cover_page(1).pdf
	Introduction
	Methodology or Problem Description
	Methodology
	Formal Problem Description

	Your contribution (replace this section title by something more informative)
	Experimental Setup and Results
	Responsible Research
	Discussion
	Conclusions and Future Work
	Some further guidelines that go without saying (right?)
	Reference use
	Structure
	Style
	Tables and figures

