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ABSTRACT 15 

Utility operators have to rely on predictive analyses regarding the availability of their 16 

subsurface assets which highly depend on damages by the increasing amount of excavation 17 

works. However, straightforward use of standard statistical techniques, such as logistic 18 

regression or Bayesian logistic, does not allow accurate predictions of these rare events. 19 

Therefore, in this paper, alternative approaches are investigated. These approaches involve 20 

weighting the likelihood as well as over- and under-sampling the data. It was found that 21 

these data methods can improve the accuracy of predicting the rare failure events 22 

substantially. More specifically, an application based on real data of a Dutch water utility 23 

operator showed that: under sampling and weighting improved the balanced accuracy 24 

varying between 0.61 and 0.66, whereas the proposed methods resulted in failures 25 

predictions between 38% and 58% of the validation dataset. Hence, the proposed methods 26 

will enable utility operators to arrive at more accurate forecasts enhancing their asset 27 

operation decision making. 28 
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INTRODUCTION 33 

Uncertainty quantification and risk analysis are of paramount importance in all engineering sectors, 34 

therefore also in the subsurface utility sector. It is crucial to understand and account for the 35 

stochastic nature of underlying processes in the cable and pipe sector, in order to enable enhanced 36 

decision making, for example. Furthermore, subsurface utility companies moved their focus towards 37 

more pro-active approaches in risk analysis, by using predictive analyses. Engelhardt et al. (2000) and 38 

Tscheikner-Gratl (2016), for example, focused on predicting the deterioration state of cables or pipes 39 

before rehabilitation is planned. Likewise, Scholten et al. (2013) combined two models, a 40 

rehabilitation and pipe failure model in order to predict the long-term performance of rehabilitation 41 

strategies for water mains. It should be noted that rehabilitation in the Netherlands is defined by EN 42 

752 as follows: “measures for restoring or upgrading the performance of existing drain and sewer 43 

systems” (Tscheikner-Gratl et al. 2016). 44 

Cables and pipes are critical infrastructure systems (CISs) which are mostly located in the very 45 

crowded subsurface. Especially in urban areas, a typical road includes five to ten infrastructure 46 

systems, all owned and managed by different entities, mostly making decisions without any mutual 47 

coordination or information sharing (Osman, 2016). Over 1.7 million kilometers of cables and pipes 48 

are already situated in the subsurface in the Netherlands and the amount is anticipated to increase 49 

as the economy and population are expected to growth, as well as through innovation, e.g., 50 

fiberglass (Groot et al. 2016; Rijksoverheid.nl 2017). Each year, major investments are made in 51 

subsurface infrastructure in the Netherlands. The forecasts are that about €100 billion will be 52 

invested between 2015 and 2030 (Groot et al. 2016). The investments are made for extension and 53 

for rehabilitation of the networks. Rehabilitation contains all preventive maintenance activities, 54 

concerning all aspects of the network’s assets (Tscheikner-Gratl 2016). Rehabilitation is always 55 

planned for the longer term, therefore infrastructure companies moved their focus toward pro-56 

active approaches, using predictive analyses (Engelhardt et al. 2000; Tscheikner-Gratl 2016). 57 
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The CISs are spatially interdependent as these are highly interconnected due to the close spatial 58 

proximity. Despite the critical function of cables and pipes, over 30,000 cable and pipe failures from 59 

excavation works are reported in the Netherlands yearly. Multiple studies have been conducted to 60 

reduce the risk of excavation damage. These studies have mainly focused on the impact side. This is 61 

remarkable because, based on an extensive cooperation between the network operators and other 62 

stakeholders, a binding guideline (CROW500) was formed that seeks to prevent cable and pipe 63 

damage from excavation works. 64 

In contrast to rehabilitation, planning of repairs is not possible because the failures are unplanned 65 

and repairs are often executed almost immediately after failures since cables and pipes have a vital 66 

function for a country and its citizens (Tscheikner-Gratl 2016). Failure can be caused by excavation 67 

activities. In 2015 more than 530,000 excavation requests and 32,858 damages from excavation 68 

works were reported in the Netherlands alone which is 5.7% of all cable and pipe failures (Kabel- en 69 

Leiding Overleg 2016). Excavation damage and third-party damage of cables and pipes refers to any 70 

damage caused by a person which is not directly associated to the network (Wei and Han 2013). The 71 

direct repair costs of the excavation damages are over € 26 million per year, and the indirect costs 72 

are estimated to be €100 million per year in the Netherlands alone (Van Mill et al. 2013). Despite the 73 

extra guideline and the close spatial proximity between cables and pipes in cities, it is still unexplored 74 

what the effect of spatial interdependencies is on the probability of failure from excavation works. 75 

This paper aims to address this gap. 76 

Failures or damages are modelled as dichotomous events, where failure or damage is denoted by 77 

one and zero denotes non-failure (non-damage). Logistic regression (LR) is, in this setting, often 78 

selected as the modeling approach, i.e., Hosmer et al. (2013), Kleinbaum and Klein (2010). Logistic 79 

regression accounts for the influence of the so-called independent variables on the probability of a 80 

given event, i.e., the probability of failure, and it has been shown to have good performance in 81 

general (Ariaratnam et al. 2001). The failure or damage is regarded as the dependent variable.  82 
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Predicting the probability of failures is widely applied in the engineering sector. In contrast, in the 83 

subsurface utility sector a scarce number of applications appear to have used logistic regression. For 84 

example, logistic regression has been applied to relate scouring potential in a channel to certain 85 

independent variables in a study conducted by water resource engineers to enable developing a risk-86 

based design (Tung 1985). Furthermore, the likelihood that a particular infrastructure system (sewer) 87 

is in a deficient state was predicted by logistic regression in a setting to demonstrate that the use of 88 

logistic regression enables decision makers to prioritize what sewer sections should be inspected 89 

(Ariaratnam et al. 2001).  90 

The data used in this case study have been provided by Evides Water Company, the second largest 91 

water distribution company in the Netherlands, located in Rotterdam. The data have revealed that 92 

there were 181 water main failures as compared to 107,500 non-failures, as registered by Evides 93 

from 2010 until 2017 in the municipality of Rotterdam. The data on cable and pipe failures from 94 

excavation works are therefore very imbalanced. The failures are regarded as a minority, whereas 95 

the non-failures as a majority of the data. This phenomenon is often referred to as rare event data or 96 

imbalanced data. In practice, numerous engineering sectors, as well as research fields deal with data 97 

where the events of interest (failures or damages) are scarce and therefore make the data 98 

imbalanced. An extensive list of application domains has been provided by Haixiang et al. (2017). It is 99 

noteworthy that none of these reviewed studies have been applied in the subsurface utility sector.  100 

Modelling rare event data has been proven to pose significant challenges to standard statistical 101 

techniques. In particular, predicting rare events proves to be a challenging endeavor, since standard 102 

methods, such as logistic or Bayesian logistic regression fail to accurately predict rare events 103 

(Haixiang et al. 2017). Predicting rare events is challenging due to several reasons. Firstly, general 104 

accepted performance metrics, such as accuracy and precision induce bias toward the majority class. 105 

Secondly, models treat rare events as noise occasionally, and consider them exceptional patterns in 106 

the data space and reversely, noise can be incorrectly regarded as minority patterns. A detailed 107 

discussion about the challenges posed by the rare event data can be found in Haixiang et al. (2017).  108 
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Numerous approaches have been proposed over the years to adequately model rare event data. The 109 

strategies involve resampling techniques, such as over- and under-sampling methods, as well as 110 

hybrid methods. Oversampling methods create new minority samples. One of the best known 111 

methods is the synthetic minority over-sampling technique (SMOTE), developed by Chawla et al. 112 

(2002). Under-sampling methods discard majority (non-event) samples. The simplest method 113 

involves random elimination and has been proposed by Tahir et al. (2009). Hybrid methods entail a 114 

combination of over- and under-sampling methods. These approaches are usually referred to as data 115 

level methods. Other approaches focused on adapting the techniques or algorithms for the 116 

imbalanced data. King and Zeng (2001) have proposed logistic regression for rare event data via the 117 

maximization of a weighted log-likelihood function. Other methods have been developed for 118 

imbalanced data, for example decision trees and neural networks, which are collectively referred to 119 

as classification algorithms for imbalanced learning (Haixiang et al. 2017). An exhaustive review of 120 

methods is provided in Haixiang et al. (2017).  121 

This study will unveil the challenges of applying standard logistic regression and Bayesian logistic 122 

regression to rare event data in the subsurface utility sector. To the authors’ best knowledge, logistic 123 

regression for rare event data has not been applied in the subsurface utility sector so far. This paper 124 

aims to fill this gap in modelling and predicting failures. Moreover, the paper aims to provide 125 

guidelines of employing logistic regression with rare event data. Both data and algorithm approaches 126 

which accommodate the imbalanced data are considered. The methods are evaluated with respect 127 

to standard measures, such as area Under the Receiver Operating Characteristic (ROC) Curve (AUC) 128 

and balanced accuracy. Furthermore, since the aim of the study is to predict damages resulting from 129 

excavation works, the prediction performance is evaluated on a validation dataset.  130 

The remainder of this paper is structured as follows. Further details on the study design and data 131 

collection process are presented. The methodology introduced the modelling approaches and 132 

discusses the assumptions employed by the methods. Afterwards, the performance of the various 133 
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rare event data approaches is compared. Lastly, the concluding section provides the summary, 134 

discusses the results and recommends future research.    135 

 136 

Study design 137 

Case Study Area 138 

All subsurface utility operators control Critical infrastructure systems (CISs), which indicates that the 139 

network’s “incapacity or destruction would have a debilitating impact on the defense and economic 140 

security of a nations state” (Ouyang 2014, p. 44). One measure to prevent failures are mandatory 141 

excavation requests from which risk assessments follow to analyze conflicts between cables and 142 

pipes. In 2015 more than 530,000 excavation requests, from which 32,500 failures from excavation 143 

works followed were reported in the Netherlands alone (Kabel- en Leiding Overleg 2016), resulting in 144 

€ 26 million direct and € 100 million indirect damage. 145 

This research has been conducted within the Evides Water Company, the second largest water 146 

distribution company in the Netherlands, serving safe and clean drinking water to 2.5 million 147 

consumers and businesses in three provinces. Evides only had around 500 pipeline failures in 2016, 148 

causing an average unplanned downtime of 6.8 minutes per customer (i.e., household) per year. This 149 

research focuses on the municipality of Rotterdam within Evides’ Rijnmond area. This is, first of all, 150 

due to the availability of other cable and pipe data. Moreover, this is because city centers and old 151 

residential areas have a high population and building density, which result in a larger probability of 152 

failure from excavation works (Vloerbergh and Beuken 2011). 153 

Data resources and processing 154 

Many aspects were considered in the data collection process. The study mainly focuses on spatial 155 

interdependencies, as these are regarded as important for collocated infrastructures when these are 156 

considered for rehabilitation or renewal (Islam and Moselhi 2012). Cable and pipe networks are 157 

spatial interdependent, since the state of one network can affect the state of another network by a 158 
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bidirectional relation (Rinaldi et al. 2001; Utne et al. 2011). From an extensive literature review and 159 

three expert interviews within Evides, a list of important variables concerning spatial 160 

interdependencies has been considered for data preparation and further analysis. The list is included 161 

in Table 1. The variables include information about the horizontal position, diameter and wall 162 

material. These variables were collected from different data resources, which are described in the 163 

following subsections. A commonality between the databases is that these all use Geographical 164 

Information System (GIS), whereby location data is available. This enabled linking the various 165 

databases to each other.  166 

Excavation data 167 

Each data entry is obtained from an excavation request, which is mandatory by the Kadaster in the 168 

Netherlands before any mechanical excavation activity is started (Kadaster, n.d.). An excavation 169 

request contains information such as the location, the type of work, the contractor and the client. 170 

Three types of requests are distinguished, that is, orientation-, regular- and emergency requests. 171 

Orientation requests are only informing and do not allow parties to start excavating until a regular 172 

excavation request is done (Kadaster, n.d.), therefore orientating requests are filtered out of the 173 

main analysis. Furthermore, the Kadaster allows KLIC-requests (Cable and Pipe Information Center) 174 

up to a polygon of 500 x 500 meters. For clarification, it should be noted that a KLIC-request is 175 

defined as the obligatory request that is done before mechanical excavation takes place. It is very 176 

likely that the size of the polygon and the number of assets located in it are related. As large 177 

polygons will contain multiple assets, it becomes hard to predict what cables or pipes are affected by 178 

the planned excavation work. Excavation activities are mostly very local. Therefore, a maximum size 179 

(25,000 m2) for the KLIC-polygon is set. Figure 1 depicts the KLIC-requests for this study case.   180 

 181 

Evides pipes 182 

All network operators possess databases including assets, such as cables or pipes, and so does 183 

Evides. Firstly, service connections are removed from the dataset as these are assumed to be right-184 
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angled on the distribution cables and pipes, creating a problematic situation when mutual distances 185 

between various network types are determined later on. Service connections concern all cables and 186 

pipes between the distribution networks and clients’ property, both private individuals and 187 

companies. Furthermore, the cables or pipes are visualized as ‘lines’ within GIS, whereby line length 188 

can vary from up to 300 ‘meters’ to only a few centimeters. A minimum length of 15 meters has been 189 

chosen  is set to ensure loose connections at for example crossings are removed.  190 

 191 

Other cables and pipes 192 

Data from other network operators are of importance as this study focused on spatial 193 

interdependencies between cables and pipes. The municipality of Rotterdam made available a 3D 194 

city model to enable multiple parties to use their unique database, including cables and pipes. The 195 

availability of data is not self-evident, as cables and pipes data are mostly confidential, aiming to 196 

prevent malicious damage. For the analysis the foreign assets’ locations, the type of the network and 197 

the associated diameter were collected. 198 

Buildings 199 

Furthermore, the nearest buildings were linked to ensure whether the other networks were crossing 200 

the service connections. Service connections are relevant as failures often occur on smaller crossing 201 

connections. The Kadaster possesses such a database called Basic Registration and Buildings (BAG), 202 

which includes all building locations in the Netherlands.  203 

 204 

Failures 205 

In this study, the variable of interest, or the dependent variable, of each sample entry is registered as 206 

the failure (one) or non-failure (zero) of an Evides pipe due to a third party. Failures are stored in an 207 

Evides database. To identify failures from excavation works, network operators need a method to 208 

classify various types of failure, as well as the failure date which indicates whether the failure was in 209 

a certain period after the excavation request.  210 
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 211 

Data processing 212 

Each individual data source has been cleaned already prior to the processing of all the databases into 213 

a suitable dataset for the study. During the processing, data were filtered if it could not be connected 214 

to the other databases.  215 

 216 

Data Integration  217 

The most important variables used for linking are the geometry data, possessed by all used 218 

databases. failures were linked to the nearest networks within 10 meters. Linking the assets and 219 

failures succeeded for all failures. Additionally, the asset’s construction date should be before the 220 

failure date, which has to be before the asset’s removal/out of use date.  221 

Second, failures are connected to excavation requests. Where failures are “points”, the excavation 222 

requests are polygons, whereby a point must be inside the polygon for linking. Furthermore, the 223 

failure must have occurred after the excavation request date, but no more than 3 months after. An 224 

excavation activity must start within 20 days after application, but not earlier than 3 days after. 225 

Considering the duration of maintenance or construction work, the duration of the period may be 226 

adapted. The 3-month period follows from an assessment of various maximum periods for 227 

connection. Considering the duration of maintenance or construction work, the duration of the 228 

period could be adapted. In this way, 256 failures out of the total of 500 excavation failures were 229 

connected to an excavation polygon.  230 

Third, all items that followed from the prior linking of assets and failures were connected to 231 

excavation requests. The connections are made based on similarities in location and date. As a result, 232 

often, multiple pipes were linked to one excavation request, as it is likely in a densely populated 233 

urban area such as Rotterdam, that multiple pipes are in an area when excavation polygons are up to 234 

25,000 m2.  235 
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Because multiple pipes (or cables) could be linked to one KLIC-polygon, the criteria for linking must 236 

be considered. For example, should the assets be entirely inside the polygon, is a small intersection 237 

enough, or is a combination of both preferred. This optimal situation will differ per network 238 

operator, but they all have to consider the same aspect; on the one hand, it is preferred to model 239 

balanced data. On the other hand, network operators should try not to lose too much data.  240 

Once previous links are succeeded, the relation between the different networks is examined. 241 

Therefore, a virtual point on the middle point of each Evides pipe within an excavation polygon is 242 

created. From that virtual middle point, the mutual distances to the other surrounding networks and 243 

buildings is calculated. To prevent misleading calculations of mutual distances, the short “lines” were 244 

filtered as all shapes smaller than 15.0 meters were excluded during the asset preparation already.  245 

This was done as the smaller shape lengths are mostly located at crossings where the average mutual 246 

distances are hard to determine. The mutual distance has been calculated for all networks within 10 247 

meters from the middle point. If any further, it is considered as irrelevant when considering 248 

excavation damages, since it is not very likely that for example an excavator deviates that much 249 

(>10m) from the actual excavation location.  250 

In this way, 107,500 entries were collected from which only 181 resulted in a failure. Less than 10% 251 

of all data was found to be entirely complete, which is explained by the maximum distance that has 252 

been set for linking.  In other words, only 10% of all streets in the sample contain all assessed 253 

networks. Because LR only includes complete samples, empty entries have been imputed. Even 254 

though a common approach is to use the average of the available observations for missing data, this 255 

study requires a differentf approach. As discussed earlier, not availables (NAs) are not necessarily 256 

missing, it only refers to the absence of a network type within the maximum measure distance. 257 

Therefore, imputing a variable’s mean would be inappropriate for this dataset. Instead, a value not 258 

present in the dataset should be chosen to use for imputation. Therefore, mutual distance NAs were 259 

imputed by 12, whereas 10 meters was the maximum connection range and NA diameters were 260 

replaced with 1 (meter). As the cable ‘side’ is a categorical variable (0 and 1), the NAs will be replaced 261 
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with number 2. Last, other categorical data, such as responsible party and type of work also contain 262 

NA entries. This happens when these variables are not traceable. When that happens, the empty 263 

samples are labeled ‘unknown’.  264 

Note on the case study 265 

The way in which data have been collected is worthwhile discussing, since it has a large influence on 266 

the sample set and therefore on the analysis and results. Firstly, there are various manners in which 267 

multiple databases can be linked, as all kinds of criteria for the linking can be used, such as linking all 268 

intersecting pipes or only the one pipe with the largest intersection and everything in between. This 269 

research aims to retain as many unique situations, while considering the percentage of failures 270 

within the sample set which resulted in the selected linking method. Secondly, some data were 271 

unavailable, for example the vertical position of the cables and pipes, which is very relevant 272 

according to literature (e.g., Riley & Wilson, 2006) and experts. Lastly, the validity of the data is 273 

questionable, whereby the actual locations are sometimes not corresponding to the data’s location. 274 

This was also confirmed when the foreign location data were compared to Evides’ own data, from 275 

which it was found that more than 5% of the compared data deviated more than 0.4m from the 276 

comparable data points in the other data source. Less than 75% had the same location data. 277 

PROPOSED METHODOLOGY 278 

This study aims to employ logistic regression in order to predict failures from excavation works. Since 279 

logistic regression is not able to cope with rare event data, several approaches have been 280 

considered. To overcome the class-imbalance problem, data level and algorithm level techniques can 281 

be used (Chawla et al. 2004). The data level technique prepares the data by rebalancing the data 282 

before the modelling is done. Examples of re-sampling techniques are under-, over- and hybrid 283 

sampling (Chawla et al. 2002 2004; He and Garcia 2009; Xiong and Zuo 2018). At the algorithm level, 284 

the logistic regression has been adapted via a weighted log-likelihood function (King and Zeng 2001). 285 

In general, at the algorithm level, the costs of misclassifying the classes, i.e. cost sensitive learning, 286 
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allocates high cost for the rare event by adding a weight, to improve the learning ability of the 287 

classifiers (Chawla et al. 2004; He and Garcia 2009; King and Zeng 2001; Xiong and Zuo 2018).   288 

In this study, three distinct approaches were used to model and predict cable and pipe failures from 289 

excavation works These approaches have been validated and their predictive performance has been 290 

compared in order to determine the best approach for the data at hand. Moreover, characteristics of 291 

the data at hand have been emphasized in order to provide guidelines for the cable and pipe sector, 292 

as well as other sectors within the construction or maintenance industry.  293 

The implementation and analysis for this study have been done using programming language R.  294 

 295 

Theoretical background 296 

Logistic regression 297 

As already described in the introduction section, logistic regression is generally accepted for binary 298 

outcome statistics (Hosmer et al. 2013) and has been already applied for network operators 299 

(Ariaratnam et al. 2001; Tung 1985). Logistic regression assumes that the dependent variable follows 300 

a Bernoulli distribution  having only two possible outcomes, 0 or 1, where 1 usually denotes failure 301 

and 0 non-failure with the probability  302 

 𝑌𝑌𝑖𝑖~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑌𝑌𝑖𝑖|𝜋𝜋𝑖𝑖) (1) 

 𝑃𝑃(𝑌𝑌𝑖𝑖 = 1 ) = 𝜋𝜋𝑖𝑖  (2) 

 𝑃𝑃(𝑌𝑌𝑖𝑖 = 0 ) = 1 − 𝜋𝜋𝑖𝑖 , (3) 

for 𝐵𝐵 = 1, … ,𝐵𝐵 observations and where 303 

 𝜋𝜋𝑖𝑖 =
1

1 + 𝐵𝐵−𝑋𝑋𝑖𝑖𝛽𝛽
 , (4) 

where 𝑋𝑋𝑖𝑖 denotes the vector of independent variables, for each observation 𝐵𝐵 and 𝛽𝛽 denotes the 304 

vector of parameters. Then 𝑃𝑃(𝑌𝑌𝑖𝑖|𝜋𝜋𝑖𝑖) = 𝜋𝜋𝑖𝑖𝑌𝑌𝑖𝑖(1 − 𝜋𝜋𝑖𝑖)𝑌𝑌𝑖𝑖  is the random variable that represents the 305 

probability of failure (King and Zeng 2001; Monroe 2017). The parameters are estimated by 306 

maximum likelihood, where the log-likelihood function simplifies  307 
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 ln 𝐿𝐿(𝛽𝛽|𝑦𝑦) =   � ln (𝜋𝜋𝑖𝑖)
𝑌𝑌𝑖𝑖=1

+ � ln (1 − 𝜋𝜋𝑖𝑖)
𝑌𝑌𝑖𝑖=0

 

          = −  � ln�1 + 𝐵𝐵(1−2𝑌𝑌𝑖𝑖)𝑋𝑋𝑖𝑖𝛽𝛽� .
𝑛𝑛

𝑖𝑖=1

 

(5) 

The influence of a number of independent variables on the dependent variable is depicted via a logit 308 

transformation. Therefore the model does not require a linear relationship between the independent 309 

variables and the dependent variable, as in the linear regression models. It assumes, nonetheless, 310 

linearity of independent variables and the log odds. Moreover, the residuals do not need to be 311 

normally distributed. The observations are however assumed to be independent. Furthermore, the 312 

independent variables should not exhibit multicollinearity. Multicollinearity entails that one 313 

independent variable can predict another independent variable with a certain accuracy (Hosmer et 314 

al. 2013; Xiong and Zuo 2018). 315 

As mentioned in the introduction section, logistic regression does not perform well with rare event 316 

data. Results will be nevertheless provided, for comparison reasons in the results section.  317 

 318 

Weighting and under sampling 319 

The first proposed rare event data approach is by employing weighting, as well as under-sampling. 320 

This approach addresses therefore the rare event issue both at the data level and at the algorithm 321 

level. This method has been developed for rare event data in political science, related social science 322 

and public health research, and have been proposed by King and Zeng (2001). A major advantage of 323 

the weighting approach is that it is relatively simple to employ. At the algorithm level, instead of 324 

maximizing the standard log-likelihood function, as in the regular logistic regression, a weighted log-325 

likelihood function is maximized as in equation 6. Then 326 

 
𝐵𝐵𝐵𝐵 𝐿𝐿(𝛽𝛽|𝑦𝑦) =  −  �𝝎𝝎𝒊𝒊 ln (1 + 𝐵𝐵(1−2𝑌𝑌𝑖𝑖)𝑋𝑋𝑖𝑖𝛽𝛽)

𝑛𝑛

𝑖𝑖=1

 (6) 

With equation 1, the weights 𝝎𝝎𝒊𝒊 can be determined by 327 
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 𝝎𝝎𝒊𝒊 =  𝜔𝜔1 𝑌𝑌𝑖𝑖 +  𝜔𝜔𝑜𝑜 (1 − 𝑌𝑌𝑖𝑖), (7) 

where 𝜔𝜔1 =  𝜏𝜏
𝑦𝑦�

 and 𝜔𝜔0 =  (1−𝜏𝜏)
(1−𝑦𝑦�)

, and 𝜏𝜏 is the population fraction and 𝑦𝑦� as the sample fraction (King 328 

and Zeng 2001). The population fraction is calculated by the number of failures divided by all 329 

available data. On the other hand, the sample fraction is the number of included failures divided by 330 

the entire sample size.  331 

At data level, it is proposed to include two to five times more zeros than ones, “since the marginal 332 

contribution to the explanatory variables’ information content for each additional zero starts to drop 333 

as the number of zeros passes the number of ones” (King and Zeng 2001, p. 143). This weighting 334 

method has been applied in multiple studies. Similar to King and Zeng (2001), Maalouf et al. (2018) 335 

found that weighting has a higher discriminative performance than regular logistic regression. The 336 

former predicted wars for political purposes, whereas the latter predicted network intrusions for 337 

military networks. Within GIS-based (Geographic Information System) applications, Xiong and Zuo 338 

(2018) used the proposed under sampling and prior correction (which is very similar to weighting) to 339 

map prospective mineral locations (King and Zeng, 2001). The method has been implemented in the 340 

R package ReLogit. A disadvantage of the available package for statistical software R is that it does 341 

not allow for any goodness of fit tests of the models. 342 

 343 

SMOTE 344 

The second approach for rare event data is the Synthetic Minority Oversampling Technique (SMOTE), 345 

which has been proposed by Chawla et al. (2002). SMOTE addresses the rare event issue at data 346 

level. Chawla et al. (2002) suggest over-sampling of the minority with “synthetic” examples instead of 347 

over-sampling with replacement. The synthetic samples are generated “along the line segments 348 

joining any/all of the k minority class nearest neighbors” (Chawla et al. 2002, p. 328). The required 349 

number of over-sampling determines how many neighbors from the k nearest neighbors are 350 

randomly chosen. The new samples are generated by taking one vector under consideration and its 351 

nearest neighbor, whereby a random point along the line segment between the two points is 352 
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selected. In this way, a random point within the correct region is selected, which enlarges the 353 

minority class, whereby it becomes more general in the sample set (Chawla et al. 2002; He and 354 

Garcia 2009). A combination of both, over- and under sampling is recommended, as it reverses the 355 

initial bias of the learner towards the majority class into the favor of the minority class. The use of 356 

both techniques could improve the classification of data (Chawla et al. 2002).  357 

SMOTE has proven to be successful in various applications, such as for mammography, diabetes and 358 

oil slicks (Chawla et al. 2002) and because of its success, it has been further improved over the years. 359 

For example Borderline-SMOTE, whereby the over sampling is conducted between the borderline 360 

minority class samples instead of all minority samples (Han et al. 2005) has been developed. Another 361 

example is SMOTE and Tomek, which cleans data by applying Tomek links to the over sampled 362 

training set, whereby also majority class examples are removed that form Tomek links (Batista et al. 363 

2004). However, this study applied the basic version of SMOTE. A disadvantage of the SMOTE 364 

method is the incapacity to include categorical independent variables, since the synthetic  generated 365 

data is different than the variable’s categories. Nonetheless, SMOTE has been generalized to handle 366 

both continuous and categorical data. The algorithm is called SMOTE-NC, Synthetic Minority Over-367 

sampling Technique-Nominal Continuous (Chawla et al. 2002).  368 

 369 

Bayesian Logistic Regression 370 

Lastly, Bayesian logistic regression (BLR) was tested. Firstly, the standard Bayesian logistic regression 371 

was employed for the entire dataset. Afterwards, Bayesian logistic regression was combined with 372 

under sampling. Bayesian logistic regression entails a Bayesian approach to the multivariate logistic 373 

regression model. That is, it starts with a prior distribution on the logistic regression parameters. The 374 

posterior distribution is then obtained by multiplying the prior with the likelihood.   375 

Bayesian logistic regression naturally compensates for rare event data by adjusting the estimates 376 

toward the null hypothesis to reduce the bias in rare event data. If no common pattern is detected 377 

within subgroups, Bayesian logistic regression will perform little partial averaging across issues 378 
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(DuMouchel 2012). BLR has been applied for rare event data before to assess clinical safety data, 379 

such as the occurrence of a specific adverse event and other safety related issues (DuMouchel 2012). 380 

A major disadvantage is that this approach entails a very large computational performance as it has a 381 

high model complexity (Grzenda 2015). Nonetheless, the results of this study show the limitation of 382 

the Bayesian logistic regression and points out the need to consider methods for rare event data, 383 

similarly to the logistic regression.  384 

 385 

Methodology approach for the study case 386 

One of the assumptions implied by the logistic regression is that the independent variables should 387 

not show multicollinearity. If the independent variables are correlated, this poses the issue of 388 

multicollinearity, which can be easily tested with the Variance Inflation Factor (VIF). Along with 389 

multicollinearity, the dataset is checked on complete separation, especially as it often occurs in rare 390 

events data (Rainey 2016). Complete separation arises when a dependent variable can be perfectly 391 

predicted by one variable or a combination of independent variables (Field 2013). Thirdly, in logistic 392 

regression it is recommended for the sample size to satisfy the relation  393 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 𝑠𝑠𝐵𝐵𝑠𝑠𝐵𝐵 = 10 ×
𝑘𝑘
𝑆𝑆

 (8) 

where k is the number of independent variables and p the proportion of ‘positive’ cases (Peduzzi et 394 

al. 1996). The outcome of the sample size is a rule of thumb, which is kept in mind without any 395 

further action.  396 

The model selection is a step in the analysis which will help to determine what variables are 397 

irrelevant and can be removed, in order to also overcome a too small sample size. Model selection 398 

will be done based on goodness of fit test and by employing a stepwise backward elimination 399 

procedure based on Akaike Information Criterion (AIC). The goodness of fit of the statistical model is 400 

considered, while accounting for the simplicity of the model. Model selection is of importance to 401 

prevent the model from being overfitted or underfitted. The former occurs when the model tries to 402 
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follow noise patterns whereas the latter occurs when the model is not capable to follow the data 403 

points tightly enough.  404 

The performance of the model is evaluated firstly using the Area Under the Receiver Operating 405 

Characteristic (ROC) Curve (AUC), which is a traditionally accepted performance metric in logistic 406 

regression. AUC assesses the performance between true positive (sensitivity) and false positive 407 

(specificity) error rates (Lee 2000; Swets 1988).  408 

Given the objective to predict rare events on cable and pipe networks, the model is also evaluated 409 

from a predictive point of view rather than from a fitting perspective. Therefore, a validation step is 410 

undertaken by considering a validation set along with a training set. The training set is used to fit the 411 

model, which is afterwards used to make predictions for the variable of interest in the test set. The 412 

model predictions can subsequently be compared with the values of the variable of interest in the 413 

test set. A standard approach in the validation analysis is to use a k-fold cross validation, which uses 414 

k-1 folds for training and the remaining fold for validation (Han et al. 2005; Rodríguez et al. 2010). 415 

When k=5, this translates to using 80% of the data for training and 20% of data for testing.  The k-fold 416 

cross validation typically makes use of randomly selected training and test sets and the procedure 417 

can be repeated numerous times. The prediction error can then be averaged over all the training sets 418 

to account for the predictive power of the statistical model.  Finally, stratified random sampling 419 

needs to be applied, in order to ensure that the rare data are equally split over the training set and 420 

the validation set. 421 

The output of the validation step is a confusion matrix, which is used to determine the accuracy, 422 

kappa, sensitivity and specificity of the model. Cohen’s kappa denotes a measure of agreement. 423 

Sensitivity accounts for the proportion of the observed failures that were predicted as failures. 424 

Specificity denotes the proportion of the observed non-failures that were predicted as non-failures. 425 

The sensitivity and specificity determine the balanced accuracy  426 

 𝐵𝐵𝑆𝑆𝐵𝐵𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑆𝑆𝐵𝐵𝑦𝑦 =
1
2

(𝑠𝑠𝐵𝐵𝐵𝐵𝑠𝑠𝐵𝐵𝑠𝑠𝐵𝐵𝑠𝑠𝐵𝐵𝑠𝑠𝑦𝑦 × 𝑠𝑠𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑦𝑦) (9) 



19 
 

The balanced accuracy measures the average accuracy from both the minority and majority class. A 427 

high standard accuracy and a low balanced accuracy indicates that the standard accuracy is high 428 

because of the classifier distribution (Akosa 2017). Lastly, the sensitivity of both the data and the 429 

model is tested. The former depends on the sample size, therefore the performance of the model for 430 

samples of different sizes is investigated. Moreover, the sensitivity of the model explores how the 431 

performance of the model is affected by the number of independent variables.  432 

RESULTS 433 

The models following from the proposed rare event techniques, that is the weighting, SMOTE, as well 434 

as Bayesian logistic regression are compared on various aspects with respect to a standard logistic 435 

regression model. The standard model was also used to test the basic assumptions, as well as for the 436 

model selection.  437 

Logistic regression 438 
The original dataset that was identified from the literature review and from interviews accounted for 439 

27 independent variables (Table 1), which include 107,000 non-failures and 181 failures. Employing 440 

the logistic regression model for the statistical analysis of the original dataset would require almost 441 

160,000 samples according to Peduzzi et al. (1996). Therefore, backward elimination based on 442 

Akaike’s Information Criterion (AIC) was applied to select the variables that were considered 443 

statistically significant. In the end, ten significant variables were left in the model (Table 2), which 444 

agreed with the proposed sample size of Peduzzi et al. (1996). The basic model has been tested 445 

comparing a model including all independent variables and a model with the 10 significant variables. 446 

From the Log Likelihood Ratio, which indicates how much of the data is explained by the model, a 447 

Chi-square score of 0.40 followed, which is above the significance level (p < 0.10) whereby the null 448 

hypothesis is accepted (Table 2). The mutual dependence of the variables, called multicollinearity 449 

was tested by the Generalized Variance Inflation Factor (GVIF), whereby all variables with a GVIF 450 

larger than 2.5 were removed.         451 
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An overall model performance of the logistic regression resulted in an AUC of 0.60, which is regarded 452 

as a poor performance and as failing model (Tape, n.d.). Afterwards, the validity of the model was 453 

tested by repeated K-fold cross validation for various test train group ratios. It was found that no 454 

failure was predicted at all, resulting in a balanced accuracy of 0.50 and specificity of 1.00 for both 455 

models, the all-encompassing model and the model with only 10 significant variables included. This 456 

finding is similar to the conclusion of Akosa (2017), also for imbalanced data. To improve the 457 

balanced accuracy and hence the model’s predictive performance, the rare event techniques 458 

introduced in the proposed methodology section, are considered.  459 

 460 

Weighting and under sampling 461 
By employing the sampling strategy of King and Zeng (2001), a new sample dataset has been 462 

constructed. Different ratios of non-event/event have been considered and the results have been 463 

compared. For example a ratio non-event/event of 2 means that there are twice as many non-events 464 

(zeros) than events (ones or failures). All suggested ratios that are integer numbers were tested (2, 3, 465 

4 and 5 times) and the results are presented in Table 3. 466 

 The results are obtained by performing a validation step, where the size of the training set was 467 

approximately 80% of the entire original dataset. It can be concluded that the best ratio, which is 468 

based on the balanced accuracy resulted from dataset where the ratio non-event/event was four. 469 

This represents the data sensitivity. The selected ratio also results in a sample set of 905 samples 470 

from which only 182 are selected for the test set. In the test set 37 failures are included (20%). Table 471 

3 also includes the weights used in maximizing the weighted log-likelihood function.    472 

Because of the weighting, the confusion matrix is affected in the desired way. Through the weights, 473 

29 percent moved from true negative to other positions since the (rare) failures are considered more 474 

important by the model, as shown in Figure 2. Therefore, failures will be predicted more frequently 475 

with weighting rather than without weighting, which increases the sensitivity of the model.  476 



21 
 

The validation analysis confirmed that the weighted model predicts failures more accurately than the 477 

standard logistic regression model. The specificity was 0.94 and the sensitivity was 0.38, meaning 478 

that 38% of the failures were accurately predicted. The specificity and sensitivity result in a balanced 479 

accuracy of 0.66 and the AUC, following from the ROC was 0.71. In order to investigate whether the 480 

model selection for the standard logistic regression has influenced the results, different models, with 481 

different sets of independent variables were considered. No noteworthy differences were found 482 

when models with different included variables were considered.  483 

 484 

SMOTE 485 

With SMOTE, the dataset will be adjusted by over- and under sampling before the method 486 

(presented in the subsection methodology approach for the study case) is employed. Hereby, it is 487 

important to realize that the ratio non-failure versus failure should not flip over as this would be 488 

opposite to the real situation. Therefore, the non-failure versus failure ratio should be at least one 489 

and this is also recommended by Chawla et al. (2002). In Table 4, the ratio of the sample set is shown 490 

for different combinations (%) of over- and under sampling. For example, when considering a 100 491 

percent under sampling and 100 percent over sampling, one obtains a ratio of 2, meaning twice as 492 

many non-failures than failures are included in the sample set. The sample sets that were balanced 493 

perfectly (1.00) are bold.  494 

For the various ratios, the resulting AUC of the model has been computed. The AUC metric depends, 495 

of course, on the sampled data set. Different samples hence provide different results. Therefore, the 496 

average AUC of five samples for every over/under sample percentage has been chosen. Considering 497 

the previous example (100% over- and under sampling), it would follow that the AUC is 0.68. Table 5 498 

covers all the resulting AUC values for all possible combinations of under- and over- sampling. The 499 

smallest AUC values is 0.58, whereas the largest AUC values is 0.72. This is attained when the 500 

minority class is 200% oversampled, whereas the majority class is under-sampled 250%.  501 
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Without ‘flipping’ the dataset’s balance and considering the AUC, 200% under sampling and 100% 502 

over sampling were selected for the modelling, resulting in an equally balanced training set of 604 503 

samples. To validate the model’s performance based on the rare event sampling, a validation analysis 504 

was also performed. Whereas the training set is balanced, the exceptional quality of SMOTE is that 505 

the validation set reflects the real situation with more than 21,000 non-failures and only 31 failures 506 

included (0.15%).  507 

From the validation analysis, an AUC of 0.74 was found. The K-fold cross validation gave a specificity 508 

of 0.63 and a sensitivity of 0.58, meaning that 52 failures out of 90 were accurate predicted. 509 

Together, the balanced accuracy of the SMOTE model is 0.58.  510 

 511 

Bayesian Logistic Regression 512 

Furthermore, Bayesian logistic regression (BLR) has been tested on the entire dataset, whereby all 513 

107,500 non-failure observations were included. It was found that there was no noteworthy 514 

difference between the results of standard logistic regression and Bayesian logistic regression on the 515 

predictive performance. This means that the balanced accuracy was also 0.50, whereas the 516 

sensitivity was zero.  517 

As a consequence of the low predictive performance, the BLR model was tested on a smaller sample 518 

set, similar to the weighted model as this did also increase the predictive performance of the 519 

standard logistic regression model. Once this more balanced sample set of the weighted model is 520 

used (4:1 non-failure/failure ratio) for the BLR model, the predictive accuracy increases. The K-fold 521 

cross validation step resulted in an increased balanced accuracy of 0.60 and a sensitivity of 0.24.   522 

 523 

Models comparison 524 

Considering logistic regression as the first statistical approach enables the comparison of the four 525 

models with respect to the standard performance measures, such as AUC, specificity, sensitivity and 526 

balanced accuracy. Comparing these results supports decision making on what model should be used 527 
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for predicting failures resulting from excavation works. It is important to realize that all models 528 

included the same independent variables, namely the 10 variables found through the model 529 

selection. Using the same variables is essential to compare the models.  530 

Table 6 contains these results for all the employed methods. Firstly, with respect to the P-values of 531 

the individual variables, the SMOTE and weighted model perform very well, with values equal to 0.02 532 

and 0.04 respectively. A disadvantage of the R package for weighting is the disability to perform 533 

goodness of fit tests on the model, whereby it becomes more complicated to compare it to other 534 

models.  535 

As this study aimed to accurately predict cable and pipe failures from excavation works, the 536 

validating tests are considered most important. The standard logistic regression model, as well as the 537 

Bayesian logistic regression model were found to have a balanced accuracy of 0.50, indicating no 538 

predictive accuracy at all for failure. Therefore, the SMOTE, the weighted and under sampled BLR 539 

models, which perform better than the other two standard models on most aspects are compared. 540 

The SMOTE model was able to accurately predict most failures with a sensitivity of 0.58. Conversely, 541 

it has the worst specificity, with 0.63, meaning 37% of all non-failures are predicted as failures. The 542 

weighted model under sampled to a 4:1 ratio has a good specificity whereas it predicts 94% of the 543 

non-failures correctly. However, this model predicts failures less accurate than the SMOTE model as 544 

the sensitivity is 0.38. Lastly, the under samples BLR model has the best specificity (0.97) but the 545 

worst sensitivity (0.28).  546 

When looking at the ‘overall’ score, the balanced accuracy, the models score quite similar within a 547 

range from 0.60 to 0.66. Based on a subsurface utility operator’s requirements, the most preferred 548 

model can be selected. If preventive measures for a subsurface utility operator are relatively simple 549 

and cheap and the cost of failure is large, then the SMOTE model is recommended. On the other 550 

hand, when precautionary actions are expensive and complicated it is recommended to use the 551 

under sampled BLR model. Therefore none of the models is pointed out as the ‘best’ model, under 552 

any circumstance.  553 
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CONCLUSION 554 

Over the past years, network operators have moved their focus towards pro-active approaches. 555 

Despite the initiative, they were not able to accurately predict excavation failures for unique 556 

situations because these failures are rare events. For other sectors, techniques to handle rare event 557 

data were already developed and applied. Therefore, rare event data techniques are proposed to 558 

network operators in order to enhance the predictive power of the logistic regression models, that 559 

are used to predict excavation failures. To overcome the class-imbalance problem, rare event 560 

approaches at data and algorithm level have been tested.  561 

The proposed method has been applied in a test case concerning predictive modelling for cable and 562 

pipe failures from excavation works in Evides, a water distribution company in The Netherlands. At 563 

data level, it was found that the application of SMOTE did increase the balanced accuracy of the 564 

model by 0.11 as compared to a model based on the initial data. At the algorithm level, combined 565 

with under-sampling, weighting was tested and found to improve the balanced accuracy to 0.66. The 566 

under sampled BLR model has a balanced accuracy of 0.62.  567 

It should be mentioned that the applied techniques which handle rare event data (weighting and 568 

SMOTE) have been developed in 2001 and 2002. More advanced techniques have been developed 569 

over the past years which could improve the predictive power of logistic regression models even 570 

further. An exhaustive overview of all (recent) rare event data techniques has been published by 571 

Haixiang et al. (2017). However, the application of the methods in this case study demonstrates the 572 

potentials of logistic regression modelling with rare event approaches.  573 

 574 

Employing LR revealed interesting insights into the effect of spatial interdependencies on the 575 

probability of failure due to excavation works. Two variables were found to influence the probability 576 

of failure from excavation works the most. Firstly, emergency KLIC-requests influence the probability 577 

of failure the most. However, it is not startling that immediate repairs increase the probability of 578 

failure more than planned maintenance, since the latter enables one to prepare for ease. Secondly, 579 
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the distance to telecom cables, especially on the building side, also increases the probability of 580 

failure considerably. With this respect, it is expected that crossing service connections which are 581 

closer to the surface cause the increased probability of failure.  582 

Another interesting yet expected finding of this study is the statistical insignificance of the age of 583 

pipes, which is found in many studies concerning interdependent critical infrastructures (e.g., Atef 584 

and Moselhi 2014; Hokstad et al. 2012) to be a statistically significant variable for failure prediction. 585 

Nonetheless, for our case study, it is somewhat to be expected that pipes’ age is not expected to be 586 

of significant influence for failures due to excavation works, since most mechanical equipment is 587 

powerful and will cause damage regardless the pipe’s age.  588 

Finally, this case study also entail a number of limitations. First of all, despite the novelty of methods 589 

in the setting of network operators, the employed sampling techniques are fairly standard. More 590 

advanced, recent, techniques might improve the predictive performance of the methods; as 591 

mentioned beforehand, a good overview of the most recent developments is included in Haixiang et 592 

al. (2017).  593 

Furthermore, this study reveals that parties are using emergency KLIC-requests above average. An 594 

emergency KLIC-request should, in principle, only be used when excavation work is so urgent that it 595 

cannot wait. This could indicate unnecessary use of the requests, which probably occurs because one 596 

can start excavation immediately instead of waiting for three days. Currently, emergency KLIC-597 

requests can be used in areas of up to 250,000 m^2 meters. The authors recommend that the issue 598 

of whether emergency KLIC-requests that apply to polygons with areas of up to 250,000 m2 be 599 

revisited to determine whether they serve an useful purpose. Network operators can probably 600 

determine, within a much smaller area, where a failure has occurred. Therefore, it would be 601 

advisable to consider a standard size for the KLIC-polygon, so network operators should only point 602 

the precise location after which automatically an area of, e.g., 20x20 meters is drawn around it. 603 

Furthermore, it is recommended to further study the effect of altering the outcome from failure or 604 

non-failure into a numerical value and the implementation of possible consequences. In this way the 605 
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outcome indicates the ‘size’ of the probability, whereas it is clear obvious that, e.g., 0.75 indicates a 606 

larger probability than 0.51. In the current study, both examples are indicated similarly, namely as 607 

failure. Moreover, if possible consequences would be also accounted for, a complete overview of the 608 

overall risk analysis would emerge. 609 

Finally, it is recommended to do further research on the locations of telecom cables as the model 610 

proved that it has a large effect on the probability of failure. Especially the side (street side or 611 

building side) where the cables or pipes are located seemed to be very important. It is expected that 612 

crossing the service connections, which are closer to the surface causes the high probability of 613 

failure. Adjusting the distance from telecom cables to houses could prevent a lot of failures. 614 
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TABLES 729 

 Table 1: Coefficient estimates, z-values and p-values of the full data model, 
including all (not completely separated) variables.  

Name of variable Category β coef. z value Pr(>|z|) 

(Intercept)  -20,34 -0,03 0,98 

Size of KLIC polygon  0,00 -0,60 0,55 

Type of KLIC request (everything else 

than Emergency  is a regular request) 

Gardening -0,21 -0,33 0,74 

Cables and 

pipes 

0,69 1,54 0,12 

Other -0,37 -0,70 0,48 

Piling/drilling 0,01 0,02 0,99 

Emergency 2,20 4,96 0,00 

Age Evides pipe  0,01 1,31 0,19 

Diameter of the (own) pipe  -0,01 -6,00 0,00 

Shape length Evides pipe (virtual 

length) 

 0,00 0,38 0,71 

Difference between the two 

databases 

 1,58 2,30 0,02 

Diameter of the sewer pipes  -1,19 -2,81 0,00 

Distance to gas pipes  -0,07 -1,90 0,06 

Gas side 
Building 0,19 0,37 0,71 

Street 0,38 0,81 0,42 

Diameter district heating  0,34 0,75 0,45 

Distance to electricity cables  -0,06 -1,33 0,18 

Distance to telecom cables  0,05 1,35 0,18 

Distance to cable cables  0,02 0,59 0,56 
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Total length of Evides pipes in KLIC 

polygon 

 0,00 0,11 0,91 

KLIC requested by 

Electricity -0,05 -0,11 0,91 

Gas 0,29 0,97 0,33 

District 

heating 

0,81 2,29 0,02 

Sewer 0,42 1,63 0,10 

Telecom -0,38 -0,90 0,37 

Water 0,23 0,68 0,50 

Material Evides pipe 

AC 14,21 0,02 0,99 

GGIJ 13,58 0,02 0,99 

HPE -0,25 0,00 1,00 

PE 13,16 0,02 0,99 

PVC 14,77 0,02 0,99 

ST 15,01 0,02 0,99 

Distance to buildings  -0,01 -0,59 0,55 

Intersection length of Evides pipe in 

KLIC polygon 

 0,00 0,20 0,84 

Distance to sewers  -0,03 -0,90 0,37 

Sewer side 
Building -1,45 -2,12 0,03 

Street -1,50 -2,20 0,03 

Diameter gas pipe  1,63 2,24 0,03 

Distance to district heating  0,01 0,28 0,78 

District heating side 
Building 0,53 0,91 0,37 

Street 1,05 2,39 0,02 

Electricity side Building -0,65 -1,16 0,25 
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Street -0,96 -1,81 0,07 

Telecom side 
Building 1,00 1,91 0,06 

Street 1,86 3,68 0,00 

Cable side 
Building  0,17 0,42 0,68 

Street -0,05 -0,11 0,91 

Note 1: The variables below the significance level (p ≤ 0.10) are in bold.  730 
Note 2:  AC (asbestos cement), GGIJ (grey cast iron), HPE (Hard polyethylene), PE (polyethylene), PVC 731 
(polyvinyl-chloride), ST (steel). 732 
  733 
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 Table 2. Ten variables selected for inclusion in models with corresponding P-values and 
GVIF as followed from the basic model.  

Name of variable Category β coef. Pr(>|z|) GVIF^(1/(2*Df)) 

Type of KLIC-request 

 

Regular 0,68 0,13 1,20 

Emergency 2,22 0,00 1,20 

Diameter of the (own) pipe  -0,01 0,00 1,08 

Difference between the two databases  1,46 0,03 1,02 

Diameter of the sewer pipes  -0,68 0,01 1,67 

Distance to gas pipes  -0,02 0,20 2,17 

Excavation work on type 

 

District 

heating 

0,81 0,10 1,04 

Sewer system 0,43 0,30 1,04 

District heating  side 

 

Building -0,61 0,08 1,67 

Street -0,70 0,00 1,67 

Electricity side 

 

Building 0,33 0,04 1,60 

Street 0,70 0,01 1,60 

Telecom side 

 

Building -0,90 0,00 1,48 

Street -0,93 0,00 1,48 

Material   

 

Polyethylene -1,18 0,20 1,02 

Steel 0,73 0,30 1,02 

Note: The values of the categorical variables shown in the table are the most extreme values. 734 

  735 
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 739 

 740 

 741 

 742 

 743 

 744 

  745 

Table 3: Weights following from non-failure/failure ratio and corresponding 

AUC and balanced accuracy. 

Ratio  

non-event / event 

Weight AUC Balanced 

accuracy Event (1) Non-event (0)  

2 0.005 1.50 0.69 0,65 

3 0.006 1.33 0.69 0.64 

4 0.008 1.25 0.76 0.66 

5 0.010 1.20 0.66 0.60 
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746 Table 4. Non-failure/failure ratio of sample set for different 

over- and under-sampling percentages. 

Note: The sample sets that are perfectly balanced are in bold. 

  Over sampling [%] 

Under sampling [%] 0 50 100 200 300 

0           

50   5,67 4,00 3,00 2,67 

100   3,00 2,00 1,50 1,33 

150   2,00 1,33 1,00 1,13 

200   1,50 1,00 0,75 0,67 

250   1,22 1,27 0,60 0,54 

300   1,00 0,67 0,50 0,45 
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  747 
 748 

 749 

 750 

 751 

 752 

 753 

 754 

Note: The sample sets that are balanced are in bold.  755 

Table 5. Area Under Curve (AUC) for various over and 

under-sampling percentages. 

  Over sampling [%] 

Under sampling [%] 0 50 100 200 300 
0 0,58       0,65 

50   0,65 0,63 0,65 0,66 
100   0,62 0,68 0,68 0,66 
150   0,66 0,68 0,70 0,69 
200   0,68 0,70 0,70 0,69 
250   0,63 0,68 0,72 0,67 
300 0,64 0,64 0,67 0,67 0,69 
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 758 

  759 

Table 6. The five assessed alternatives compared. Above the dotted line are standard and 

goodness of fit tests, underneath is validation. 

Model / test 

Full data  SMOTE 
Weighted 

  
BLR 

Under 

sampled 

BLR 

Average P-values 0.08 0.02 0.04 0.28 0.42 

Average |z-score| |2.64| |3.12| NA |1.85| |1.16| 

LLR (Chi squared) 0.40 6E-11 NA 0.37 0.41 

Coefficient determination 0.09 0.07 NA 0.01 0.14 

AIC 2070 795 434 1950 656 

AUC of ROC 0.60 0.74 0.70 0.72 0.74 

Specificity 1 0.63 0.94 1 0.97 

Sensitivity 0 0.58 0.38 0 0.28 

Balanced accuracy 0.50 0.61 0.66 0.50 0.62 
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Double-spaced list of figure captions 760 

1. Figure 1. The KLIC-requests for the Evides study case in the Rotterdam area. Adapted from 761 

Evides (2017). 762 

2. Figure 2. Result of weighting the model; (a): because of weighting, 29% of the predictions 763 

moved away from true negative. (b): expected value of the weighted model is larger. 764 

Double-spaced list of table captions 765 

1. Table 2: The estimate, z-value and p-value of the full data model, including all (not 766 

completely separated) variables. The variables below the significance level (p ≤ 0.10) are 767 

bold.  768 

2. Table 3. The ten variables that were selected to be included in the models with the 769 

corresponding P-values and GVIF as followed from the basic model. The values of the 770 

categorical variables shown in the table are the most extreme values. 771 

3. Table 3. The weights following from the non-failure/failure ratio and the corresponding AUC 772 

and balanced accuracy. 773 

4. Table 4. The non-failure/failure ratio of the sample set for different over- and under-774 

sampling percentages. 775 

5. Table 5. The Area Under Curve (AUC) for the various over and under-sampling percentages. 776 

6. Table 6. The five assessed alternatives compared. Above the dotted line are standard and 777 

goodness of fit tests, underneath is validation. 778 

 779 


	ABSTRACT
	KEYWORDS
	INTRODUCTION
	Study design
	Data resources and processing
	Data processing

	PROPOSED METHODOLOGY
	Theoretical background
	Methodology approach for the study case

	RESULTS
	Logistic regression
	Weighting and under sampling
	SMOTE
	Bayesian Logistic Regression
	Models comparison

	CONCLUSION
	DATA AVAILABILITY
	ACKNOWLEGEMENTS
	REFERENCES
	TABLES

