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Abstract

Motivated by environmental concern, the industry has been developing an alternative marine
seismic source, in particular the marine vibrator. By spreading the emitted energy out over
time, vibrator sources are perceived to be less intrusive to marine mammals. It is also be-
lieved that vibrators have greater control of the emitted source wavelet than can be achieved
with traditional airguns. With the added control, it is possible to only emit portions of
the frequency spectrum, which in turn allows for many applications such as deblending and
the ability to avoid masking mammal communications. To effectively implement these, two
methodologies are proposed to interpolate the frequency data that are not emitted. The first
is a deep learning approach utilizing a U-Net architecture, with a custom frequency loss func-
tion. The second is a sparse optimization method that approximates the reflectivity series
of the subsurface using known frequency content. By assuming that the signal can be rep-
resented sparsely and that all frequencies interact with the subsurface interfaces similarly at
all frequencies, the frequency spectrum can be reconstructed. Both of the presented methods
are tasked to interpolate the missing frequency band(s) in North Sea shot data. It is found
that both methods are able to interpolate narrow 2.5 Hz bands, but are unable to accurately
reconstruct wider (ex. 10 Hz), frequency bands. Overall, the U-Net shows better results than
the sparse optimization method when the frequency gaps are positioned closely.
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Chapter 1

Introduction

For years the industry standard for acquiring offshore seismic lines has been with large airgun
arrays towed by seismic surveying vessels. The main benefit of using such airguns is that they
are both repeatable and reliable, however, concerns have been raised about their potential
negative environmental impact. Motivated by this, the industry is considering a viable alter-
native source design, for example, the marine vibrator. Whilst an airgun emits energy in a
short-intense impulse, a marine vibrator will emit the energy over time as a so-called sweep.
Both wavelets can be seen in Figure 1-1, where a standard airgun wavelet is shown on the
left and a synthetic vibrator sweep is shown on the right. As these vibrator sources spread
the emitted energy over time, they are perceived to be less intrusive to the environment.
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Figure 1-1: lllustrations comparing the emitted wavelet of a traditional airgun (@) and a vibrator
source (b). Notice that the amplitude is plotted on the y-axis, and is not the same
in each figure.

Furthermore, it has been theorized that vibrators can achieve greater control of the emitted
source (Southall et al., 2019), which leads to several interesting geophysical applications. One
example of such an application is by altering the phase of the emitted waveform to remove
residual noise from the data (Laws et al., 2019). This thesis, in particular, will look into the
interpolation of missing frequency bands.

August 5, 2022



2 Introduction

Possessing a tool to accurately interpolate missing frequency bands has various advantages,
such as deblending and the avoidance of masking marine mammal communication, both of
which are only possible with the control of the emitted waveform of a vibrator. Furthermore,
interpolating missing frequency bands is also useful to potentially remove the ghost-notch
and merge the bandwidth of a low and high-frequency source. A short description of the
mentioned applications are described below.

e With deblending it is possible to improve the efficiency and/or sampling of seismic
surveys by means of blended acquisition, whereby multiple shots/sweeps are emitted in
near succession. With traditional airguns, deblending these shots is typically enabled in
one of two manners. The first is by means of dithering the shot/sweep times (Tomishin
and Chizhik, 1982) and the second is by means of phase encoding (Robertsson, 2016)
and (Laws et al., 2019) where each source is phase encoded to allow for the sources to
later be discerned/separated from one another. With vibrators we also have a third
option; By taking advantage of the high-fidelity control of the emitted waveform, we
can separate the data in the frequency domain by having each vibrator emit interleaved
non-overlapping frequencies. Deblending is then reduced to applying a simple frequency
filter. However, the missing frequency bands for each vibrator will still need to be
interpolated.

e [t is believed that mammals’ communication does not get masked, as long as we do not
emit over more than a third of an octave (Hawkins et al., 2014). However, the missing
bandwidth then needs to be interpolated.

e Another situation where frequency must be interpolated is when a survey consists of
several marine vibrators whereby each source focuses its energy on specific regions of
the frequency spectrum. In this situation, the sources could potentially emit non-
overlapping frequency bandwidth, resulting in a missing frequency band in the total
bandwidth of the sources.

e Traditional marine seismic data contains a so-called ghost notch, caused by the signal
reflecting on the sea surface. The removal of this notch from the recorded data has
proven to be a challenge since the beginning of marine acquisition. Although this specific
task is outside of the scope of this thesis, perhaps the proposed frequency interpolation
methods will prove to be beneficial when addressing this problem.

In this thesis, I propose two methods to interpolate the missing frequency bands. The first
is a deep learning approach whereby a network is trained on a dataset that is similar to
the problem being solved. The main benefit of deep learning/Neural Networks (NN) is their
ability to learn a specific problem, without explicit instructions (LeCun et al., 2015). It is for
this reason that the use of deep learning has steadily increased over the last few years and seen
numerous geoscientific applications (Dramsch, 2020). For example, deep learning approaches
have been demonstrated for fault detection (Ma et al., 2018), earthquake magnitude prediction
(Panakkat and Adeli, 2007) and land cover classification with remote sensing data (Kussul
et al., 2017). Works more related to this thesis are a deep learning application wherein low-
frequency data is extrapolated (Ovcharenko et al., 2019), the interpolation of missing traces
from seismic data (Wang et al., 2019) and seismic interference noise removal (Sun et al., 2020).
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1-1 Research Aim 3

Clearly, deep learning has shown to be a promising approach for complex problems, such as
the one presented.

The second method that will be considered is a sparse optimization method that is inspired by
compressed sensing approaches. The method approximates the reflectivity of the subsurface
using the known frequency content. By then assuming that all frequencies interact in with
the subsurface in the same way, that is, by reflecting off the same interfaces, the frequency
spectrum is reconstructed. Originally, the method was first presented by Taylor et al. (1979)
and later implemented to seismic data by Wang and Herrmann (2016) to extrapolate low fre-
quency data. I then also hypothesize that with an additional 7-p transform, spatial continuity
in the reconstruction can be implemented.

However, as there is unfortunately no vibrator data available for the purposes described in
this thesis, one must speculate as to what can be expected in such vibrator data. Throughout
this thesis, it is assumed that the emitted waveform is known and can be used to deconvolve
the vibrator data and replaced with with an alternative waveform by means of a filtering
algorithm, for example, Wiener filtering. The new waveform could then be one that resembles
the waveform of an airgun, for example. This way, the vibrator data will essentially be pseudo
airgun data, which is the data type used for the tests in this thesis.

1-1 Research Aim

Being able to interpolate missing frequency bands is beneficial from an environmental per-
spective, as well as for the efficiency of marine acquisition. The goal of this study is to
compare the presented methods’ ability to reconstruct missing frequency bands in seismic
shot gathers. The hypothesis is that both the neural network and sparse solver are able to
reconstruct the missing frequency bands in the spectrum, whereby the accuracy of the sparse
solver is expected to be better.

The research question then becomes: ”What differences are there between a deep learning
approach and a sparse optimization method when tasked to interpolate missing frequency
bands?” Whereby a secondary research question, ”Are specific frequency ranges harder to
reconstruct than others?” will also be looked into.

Being able to answer these questions will bring insight as to whether the high fidelity control
of the vibrator, in particular its ability to emit particular frequency ranges, can be employed
to enhance acquisition efficiency and sampling, as well as minimize negative environmental
impacts.

1-2 Research outline

The structure of the thesis is as follows. First, in Chapter 2, I will describe the basic com-
ponents of Artificial and Convolutional Neural Networks, such that the components of the
employed network are understood. I will then also explain the data preparation and training
process for the network to learn the problem. In Chapter 3 I will briefly explain the 7-p/slant
stank transform, such that it can later be implemented into the sparse solver, whereafter then
present the sparse solver. Chapter 4 will present the results of the research and Chapter 5
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4 Introduction

will discuss those presented results. The final chapter, Chapter 6, of this thesis sums up the
main findings and concludes the thesis.
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Chapter 2

Deep Learning Approach

This chapter looks into the first method for interpolating missing frequency bands in seismic
data using a deep learning approach. Deep learning is a subfield of machine learning that
uses Deep Neural Networks (DNN), which are a type of Artificial Neural Network (ANN) that
consists of many layers and are hence referred to as 'deep’. Such ANNs take inspiration from
biological neural networks, whereby a number of artificial neurons are arranged into a series of
layers that can receive and send signals in the form of a real number to and from other artificial
neuron layers through connections. Each neuron and connection has an associated weight and
bias, which is tuned when training the network for a specific task. Through training, ANNs
are able to learn how to perform certain tasks, extract information and/or understand the
relationships in complex datasets, without explicit programming (LeCun et al., 2015).

In image-related problems, one shortcoming of a traditional ANN is that a large number of
input parameters are necessary to feed the image into the network, and thus there are a large
number of weights and biases that need to be tuned. This issue is circumvented with the
help of a Convolutional Neural Network (CNN), which is a class of ANN that contains a
so-called convolutional layer. Rather than connecting every neuron in each layer to those in
the subsequent layers, the convolution layer uses a convolution operation to sample regions of
the image. This aspect makes CNNs powerful tools as they reduce the number of parameters
in the network and thus reduce the training time required to tune those parameters. CNNs
are also great tools for detecting local features, which is very applicable in image-related
problems.

In this thesis, I use a U-Net, which is a specific type of DNN that consists of several encoder-
decoder pairs arranged into a characteristic U-shape. However, before I elaborate on this
particular network architecture, I will first explain the necessary components to construct a
U-Net. Thereafter, I will explain the training procedure as well as the data preparation steps.
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6 Deep Learning Approach

2-1 Basic neural networks

In this section of the thesis, I will present the components of ANNs that are necessary to
understand the architecture and inner workings of the final network used.

2-1-1 Forward Propagation

An ANN is comprised of several neuron layers wherein each neuron is connected to neurons
in successive layers. The first layer of the network is referred to as the input layer, whilst
the last layer of the network is referred to as the output layer. All layers between the input
and output layers are called hidden layers. The more hidden layers that make up a network’s
architecture, the deeper the network is considered to be. As the name suggests, the input
layer is where the network is presented with the input parameters, for example, all pixel
values of an image. This information is then fed through the network following a feed-
forward /forward propagation algorithm with the hopes that the network is able to produce
an accurate approximation ¥ of the ground truth y. What the ground truth is, of course,
depends on the particular application. The forward propagation algorithm is the process of
computing the values of each neuron in a layer, by using the output of the previous neuron
layer. This process starts at the input layer and continues through to the output layer.

If we temporarily consider a single node, typically the input vector for this neuron is denoted
by x. So, if an input to this neuron has n number of features, then x = [z1,x9, ..., Zy].
Furthermore, each of the input features contained in the vector x has a corresponding weight
w;, which are the elements of the weights vector w. These can be viewed as the weights of
the connections between two neurons. The output of the neuron, z, can then be computed

by:

z=wlx+b, (2-1)
where x is a column vector, w’ is a row vector and b is a bias that is added to deter dead
(zero value) neurons. For a layer consisting of multiple neurons, we can rewrite (2-1) as

z=WTx+b, (2-2)

where W7 is the weights matrix. Furthermore, with an ANN we tend to require a certain
degree of complexity to solve most problems and as (2-2) is a linear operation, it has a reduced
complexity compared to nonlinear operations. Hence, the above output z is typically passed
through a so-called nonlinear activation function g(z), which will be expanded on in Section
2-1-2, to introduce an added degree of complexity to the network. Then, the output a of a
given layer is given by:

a=g(W'x+b)=g(z). (2-3)

The above procedure is computed for every layer of the network, ending at the output layer,
which also concludes the forward propagation algorithm.
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2-1 Basic neural networks 7

2-1-2 Activation functions

ANNSs are very powerful tools that are able to find relationships in complex datasets, which
is why they are often employed for highly complex problems. However, without a nonlinear
activation function, the network is a system of linear operations and will struggle to approx-
imate such problems. Activation functions are a means to add additional complexity to the
network that can not be obtained with solely linear operations and is hence essential in most
ANN applications (Sibi et al., 2013).

There are various nonlinear activation functions and one can implement different activation
functions for every layer of the network. Though, within the layers, each neuron is typically
given the same activation function. In the past, the most commonplace activation functions
were the logistic sigmoid and hyperbolic tangent:

1 e* —e*?

= 1re= (2-4) Guann(2) = —— - (2-5)

gsigmoid(z)

Each activation function has it’s characteristics, for example, the sigmoid will always output
a value between 0 and 1, and is therefore useful for applications where a probability is desired.
The hyperbolic tangent, on the other hand, outputs values in the range of [—1,1], and for
that reason is often preferred over the sigmoid (Karlik and Olgac, 2011). In modern-day
applications, the most popular activation function is Rectified Linear Unit (ReLU), which
returns zero for any negative input value and returns the input for any positive input value:

9rerv(z) = max{0,z}. (2-6)

The rationale behind choosing ReLLU over an alternative activation function is that it and its
derivative are cheap and fast to compute, which in turn greatly reduces the required training
time (Goodfellow et al., 2017). For this reason, ReLU has also been implemented in all
hidden layers in the network created for this thesis. Despite that, ReLU is not perfect. One
shortcoming is that the derivative is undefined at z = 0. However, in practice this fortunately
rarely impacts results. For completeness, another shortcoming is that it is possible for dead
neurons to occur during training, as the gradient, at = < 0 is zero. In some cases, a modified
ReLU, called a leaky ReLU, is implemented to circumvent such inactive neurons. It is defined
as

gLeakyReLU(z) = HlaX{CLZ, Z}7 (2_7)

where a is a small constant, which allows for the gradient for z < 0 to be non-zero.

2-1-3 Loss function
The loss/cost function of an ANN is a measure that is used to quantify the network’s per-
formance. The choice of loss function is case specific and can vary greatly depending on

the application. For example, if the ANN is tasked with a classification problem, then a
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8 Deep Learning Approach

completely different loss function is chosen than what would be optimal for a regression-
type problem. The choice of loss function has a direct impact on the rate of convergence of
the network. In regression-type problems, Mean Absolute Error (MAE) and Mean Square
Error (MSE) are the most commonly used loss functions, due to their simplicity and high
adaptability. In the case of image processing, they work by comparing each pixel value of the
ground truth y and the output ¥ by means of an 1 and ¢2 norm, respectively:

Lyae =y =¥l (2-8)

Lyse = |ly —§ll2- (2-9)

In general, both loss functions produce satisfactory results, however in the case of interpo-
lating missing frequency bands, the MSE loss alone was insufficient to accurately reconstruct
the frequency spectrum. This stems from the fact that MSE loss is sensitive to outliers and
tends to produce over-smoothed results (Li et al., 2021a). Conversely, MAE is less sensitive
to outliers and penalizes high errors less. Neither of these is ideal for frequency band inter-
polation, so a custom loss function L consisting of two components is considered. The first is
a Huber loss function, which is formulated as:

wer § (ly —§|—36), otherwise,

where 0 = 1. As can be seen in (2-10), the Huber loss behaves quadratically for small values
of y — ¥ and linearly for large values of y —§. This has the benefit of being sensitive to small
changes, whilst also penalizing large errors. The second component of L is a MAE loss and
evaluates the difference between y and ¥ in the FK domain:

Lyap =7 — 32 (2-11)

where ¥ and § are the FK transforms of y and §, respectively. By combining (2-10) and
(2-11) into one loss function we obtain L:

L = Lyyper + LAk, (2-12)

which is the loss function used throughout this thesis.

2-1-4 Backpropagation

Where forward propagation represents the forward flow of information to compute a loss,
the backpropagation algorithm (Rumelhart et al., 1986) will use the loss function and flow
backwards through the network to compute the gradient (Goodfellow et al., 2017). Finding
the gradient is a necessary part of the process that enables the network to update its weights
and biases in a meaningful way and is, therefore, a crucial step in the network’s learning
process.
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2-1 Basic neural networks 9

Nielsen (2015) describes the backpropagation algorithm as follows. Consider a modified ver-
sion of (2-2) that contains multiple layers in a network,

a = g(W)Tx' +b') = ¢(2), (2-13)

where the superscript [ represents the layer number in the ANN. Next, we compute the
gradient of the loss function with respect to the weights and biases: % and g—bLj, where
subscripts j and k are the node number in the layer [ and the node number in the previous
layer [ — 1, respectively. Furthermore, let 5;- be the error! in the j*" neuron of the I*! layer.

Then,

0l 0l (9al< o

l l

6j - 0zt - dal 7825 - 78@%9,(8%’) (Z-14)
J J J J

dal

where 8z§- is the weighted input to a node and aé. = g(@zé), meaning that 6—2{ =4 (825)
j

Initially, (2-14) is evaluated at | = L, where L is the last layer of the network and should not

be confused with the loss function. In a vectorized form we then have

ol =v.L o4 (zh), (2-15)

where ® represents an element-wise multiplication. Then, (2-15) can be rewritten into a
general form representing the backward moving error from layer [ + 1 to [ as

5l — ((WlJrl)T(lerl) ®gl(zl). (2—16)

Lastly, as mentioned, when training a network we adjust the weights and biases such that the
output of the ANN closely resembles the target. Fortunately, we can find the rate of change
of the loss function w.r.t. every the weight and bias in the network with (2-17) and (2-18),
respectively:

oC _ s (2-17)

oC — (l_l)(sl‘
abl' 77
J

a .
7 k j
ﬁugk

(2-18)

As we know 5; from (2-16), we can find how each weight and bias should be adjusted to
improve the network’s performance.

2-1-5 Optimization function

In both deep learning as well as machine learning in general, the minimization of the loss
function is a key part of the learning process. The role of the optimizer is to use the informa-
tion from the backpropagation algorithm to adjust the weights and biases and minimize the

1Tt will become clear shortly why we can refer to an error, even if it is not the last layer of the network.
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10 Deep Learning Approach

loss. There are numerous algorithms to choose from, however, each method works under the
same principle: to adjust the weights and biases in an increasingly negative direction along
the gradient of the loss function. The most fundamental optimization function is gradient
descent and is the basis for many minimization algorithms. It is defined as

Gt == 915,1 /N VgtL(Bt), (2—19)

where 6 represents the weights and biases in the ANN, n the learning rate and L the loss
function. One drawback of this straightforward scheme is that selecting a proper learning rate,
which controls the step size of the descent, is challenging. As a result, numerous alternative
optimization algorithms have been developed, each having benefits and drawbacks of their
own. Examples of other optimization algorithms are: Stochastic gradient descent, Momentum
(Qian, 1999), Adagrad (Duchi et al., 2011), RMSprop and Adaptive Moment Estimation
(Adam) (Kingma and Ba, 2014). For further reading, Ruder (2016) shows a comprehensive
list of gradient descent algorithms.

As it is the most well-established and widely used, I opted to use the Adam optimizer through-
out this thesis, which as the name suggests, is an adaptive-learning algorithm. It works by
computing learning rates for each parameter and storing a weighted average of the past
squared gradients v¢, as well as a weighted average of past gradients m¢, such that:

my = Bimy—1 + (1 — B1)gt, (2-20)
vp = Bovg—1 + (1 — Ba)g?, (2-21)
where v; and my are estimates of the mean and uncentered variance of the gradients, re-
spectively (Ruder, 2016). However, it has been observed that v; and m; are initially biased

towards zero, especially at early time steps. Kingma and Ba (2014) propose bias-corrected
mean and uncentered variance estimates, which are defined as:

myg

iy = — (2-22)
1=5
. Ut
Vy = ——m. 2—23
Thereafter, (2-22) and (2-23) are used to to update the parameters by
_ §
(9,54.1 = 9t - my, (2—24)

Vi, +e

where the learning rate £ is typically chosen to be 0.001, 8; = 0.9, 32 = 0.999 and € = 1078,

2-2 Convolutional Neural Networks

While DNN refers to any ANN with many hidden layers, a CNN is a class of ANN that
includes at least one convolutional layer in the network’s architecture (Goodfellow et al.,
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2-2 Convolutional Neural Networks 11

2017). Such convolutional layers are powerful tools that are capable of significantly reducing
the amount of memory required compared to a fully connected network, particularly when
working on image-related problems. In the case of seismic data, an event’s fluctuation in
amplitude has a relationship with the spatial variation and thus possessing a tool that learns
to interpret the spatial dependencies in the data is greatly beneficial. This section of the
thesis discusses layers that are specific to CNNs.

2-2-1 (Transpose) Convolutional layer

Convolutional layers are the main building blocks of the CNN and in a broad sense, allow
the convolution layer to generalize the features of an image by only considering sections of a
given image at a time. The motivation behind this is that, typically, the information content
of one region of an image provides little to no information about another distant region of the
image, so it does not make sense for these opposing sections to influence the same neuron.
The convolutional layer is able to separate the regions by using a filter, often called a kernel,
that iterates from the top left to the bottom right of the input image. Here, the input
image refers to the input into the convolutional layer, rather than the input into the CNN.
Typically, the iterating kernel has a size of 3x3 (which is what is used in this thesis) or 5x5,
but could theoretically have any dimension the user specifies. An example of the workings
of a convolutional layer is showcased in Figure 2-1, where it can be seen that a dot product
of the kernel and the considered section of the input image is performed, which is then filled
into the corresponding element of the feature map (output) until all elements of the output
have been computed. Furthermore, each element in the kernel is a trainable parameter, which
means that it is tuned during training to optimize the network’s performance.

Input

| eedl . —
Feature map
Bias
...................... ) )
) <
/ u
C $
N k
>
>
——
Filter Movement

Figure 2-1: Visualization of a convolutional layer operation (Slang, 2019).

There are two other components in the convolution operation that need to be considered,
namely the stride and the padding. The stride refers to the number of pixel values the kernel
is moved along in each step. The padding refers to the number of zero cells that are added
around the input image prior to performing the convolution operation and has been indicated
in grey in Figure 2-1. Together, the kernel size, stride and padding determine the dimensions
of the convolutional layer’s output by m = %’Hk + 1, where n is the dimension in the input,
p is the padding, k is the dimension of the kernel, s is the stride and m is the dimension of
the output.

August 5, 2022



12 Deep Learning Approach

The reverse operation of the convolutional layer is the transpose convolutional layer. The
transpose convolution will multiply each given element of the input by the elements in the
kernel to produce an up-sampled version of the input. Naturally, like the convolution kernel,
the parameters of the transpose convolution layer are trainable.

Lastly, it is possible for the input and output to consist of multiple channels. With multiple
channels, it is possible to further incorporate an additional degree of information. For exam-
ple, one could include particular transforms of the data. Regardless, when multiple channels
are present in the data, the kernel will need to be adjusted accordingly by matching the num-
ber of channels in the kernel to the number of channels in the input. Naturally, the elements
of all channels of the kernel are trainable parameters.

2-2-2 Pooling layer

Pooling layers reduce the dimension of feature maps, which in turn reduces the number of
parameters in the CNN and reduces training time. Additionally, by implementing a pool-
ing layer the number of neurons and connections are reduced, which reduces training time.
Furthermore, through a simplified feature map, the CNN also becomes more robust to small
spatial variabilities, which in turn also reduces over-fitting Yu et al. (2014). The three most
common types of pooling layers are minimum pooling, average pooling and maximum pool-
ing. The latter of which has been employed in this thesis. Furthermore, like the convolutional
layer, the pooling layer samples sections of the input and reduces those to a single number by
either taking the maximum, minimum or average within that section, depending on the type
of pooling layer used. However, unlike the convolutional layer, a pooling layer’s parameters
are not trainable and thus the exact same operation is performed in every loop.

2-2-3 U-Net

The CNN architecture used in this thesis is a U-Net. Originally, the U-Net was published
as a network for biomedical image segmentation (Ronneberger et al., 2015), however, it has
since shown good results in previous works relating to seismic data. For example, Fang et al.
(2021) show an implementation to interpolating missing traces, Sun et al. (2020) use a U-Net
to denoise a seismic image and Li et al. (2021b) show a U-Net based seismic multiple removal
scheme. The main benefit of such a U-Net over a standard CNN, is that it has a reduced
number of parameters making it more efficient to train while requiring less memory, without
any loss in prediction accuracy (Sun, 2022).

Figure 2-2 shows the U-Net employed for this thesis. Here, it can be seen that the U-Net
consists of several encoding and decoding blocks, each containing two convolutional layers
and a max pooling/transpose convolutional layer. These blocks are also connected through
'skip” connects (yellow in Figure 2-2) that take the feature maps from the encoder blocks
and concatenate them with the output of the decoder blocks. It is believed that through the
encoding-decoding route the network is able to learn the structure of the seismic data, whilst
the skip connection allows the network to preserve the high-frequency detail (Hlebnikov,
2022). The numbers above each layer represent the number of channels in that layer.
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Figure 2-2: U-Net is used for frequency interpolation. The network consists of two encoding-
decoding block pairs that make up the characteristic U-shape.

2-3 Preparing the data and Training the network

The main drawback of an ANN is the need for training data from which the network is able
learn how to perform the given task. For our purposes, the CNN is trained on a North Sea
airgun dataset. Ideally, we wish for the network to estimate the full frequency bandwidth of a
gather when given a shot gather where certain frequency bands are missing. The training data
is generated by taking several shots and removing the same frequency bands from each shot.
This is considered to be the input for the network. Furthermore, the network is also given
a ’label’ or target gather, which is the same gather, but unfiltered. By giving the network a
lot? of these training samples and by following the above-described training algorithm, the
network is able to learn the specific task.

During the training, a certain percentage of the training data is used as a validation dataset,
typically 20%, which is data that the CNN has not been trained on. This is used to quantify
how well the network is able to generalize what it has learned and to avoid over-fitting to the
training dataset. Furthermore, a network is trained for a certain number of epochs, which is
the number of times the network trains on the entire training dataset. Although there is no
correct number of epochs that a network should be trained for, one typically trains until no
further improvement in the network’s performance is observed.

In the case of the network employed in this thesis, due to the limited availability of RAM,
the network is trained the network on 80 gathers, which will be shown to correspond to 4860
samples, for 20 epochs.

2Tt is preferable to give the network as much training data as possible, for the network to perform best.
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2-3-1 Windowing

Naturally, prior to feeding the data into the CNN, the training data must be prepared. For
example, an entire shot gather is typically too large to be fed into the CNN at once. As a
result, the gather either needs to be cropped, or more computational memory needs to be
made available. In this thesis, I have opted to 'window’ each shot gather so that the input
size into the network is 512 x 64 samples. Each window can then be combined into a single
shot gather after the frequency spectrum has been interpolated for each window individually.
An illustration showcasing the windowing algorithm can be seen in Figure 2-3. Here, the
number below each segment corresponds to the window number, where n is the last window
of each line. Notice that each window consists of two parts: an inner and outer window, where
all the outer windows have a 25% overlap with the neighbouring windows. The motivation
behind using two windows, rather than simply cropping the data, is to avoid edge effects that
might occur during interpolation. Following interpolation, the inner windows are combined
to reconstruct the original shot gather.

1 2 n n+1

Figure 2-3: Illustration of the windowing algorithm used to reduce the required memory of the
neural network.

It should be noted that some windows purely contain noise, particularly the windows prior
to the first arrival. These have been removed from the training dataset, as it was found
that without these noisy training samples, the network is able to learn the dataset in fewer
epochs. In summary, each gather is split into 80 training windows/samples, so in total for
80 gathers there are 6400 training samples. However, as we remove those with insufficient
Signal-to-Noise Ratio (SNR) there are only 4860 training samples in total.
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Chapter 3

Sparse Optimization Approach

The second method used to interpolate the missing frequency bands is a scheme related to
compressed sensing and convex optimization. The underlying optimization approach was first
suggested by Taylor et al. (1979), however, the first application to seismic data was presented
by Wang and Herrmann (2016), whereby a comparison is shown between the originally pre-
sented scheme, as well as a modified version that accounts for spatial similarity to extrapolate
low-frequency data. Although having knowledge of the low frequencies is important for per-
forming modern processing techniques, e.g. stabilizing Full Waveform Inversion (FWI) and
avoiding cycle skipping, this goes beyond the scope of the thesis and I will restrict myself to
the interpolation of arbitrary missing frequency bands. Moreover, I will investigate the possi-
bility of using the presented sparse optimization approach as a scheme for interpolating these
missing frequency bands and later compare it to the previously discussed CNN approach. The
structure of this chapter is as follows: first, the slant-stack transform will be introduced for
later use. Then, the sparse solver will be presented in a general form and a reconstruction of
a single trace will be showcased. Thereafter, it will be shown that with the additional slant
stack transform, spatial continuity of the reconstruction can be reassured.

3-1 Slant stack transform

It is possible to describe a gather in the tau-p domain using a slant stack/tau-p transform.
The benefit of using this domain is that the linear events are collapsed into points, whilst
hyperbolic events become ellipsoidal, making them very effective at removing certain types
of noise in the data. In particular, slant stack transforms are very powerful tools and have
become a standard part of a processing flow, for example when removing seismic interference
noise generated by nearby seismic surveys. In this work, however, I take advantage of the
transform’s ability to spread the measured energy over multiple p values and enhance the
trace-to-trace continuity of a 2D reconstruction. However, conceptually, an alternative 2D or
potentially 3D transform could have been applied, but 7-p was chosen because it was easily
available and well understood in a seismic setting.
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In its essence, a slant stack transform is performed by summing up the energy of the gather
at various slanted paths. As explained by Yilmaz (2001), the data is Linear Moveout (LMO)
corrected using a coordinate transformation (Claerbout, 1978) defined as:

T=1-pzx, (3-1)

where t is the two-way traveltime, p is the ray parameter, x is the offset, and 7 is the intercept
time at x = 0. Thereafter, the energy is summed along the offset axis by:

S(p, 1) = Z P(x, 7+ px), (3-2)

where S(p,7) is a plane wave with ray parameter p = sin%. It should be noted that a
slant-stack transform is not a true plane-wave decomposition, but such ideas/processes can
be made more precise by considering linear Radon transforms and true 3D sampling. This
process is then repeated for a number of p values until all dip components within the desired

range have been computed and a complete slant stack gather is obtained.

The reverse process, or inverse slant stack transform is obtained by rewriting (3-1) and (3-2)
to obtain (3-3) and (3-4), respectively:

t=17+pzx, (3-3)

P(z,t) =Y _S(p,t — px). (3-4)

To illustrate the procedure, Figure 3-1 shows three events in the time domain and the equiva-
lent event in the 7-p domain. Here it is illustrated how the energies of the events are summed,
according to (3-2). First, consider the horizontal line representing p = 0, which corresponds
to a single point in the 7-p domain. The hyperbolic event will intersect with several slopes,
which will result in the energy being spread over several p values. Finally, the upper-most
linear event again corresponds to a single point, as all the energy along it can be summed
up with along one plane wave. Note that in practice, the 7-p transform is often computed
through a least-squares formulation (Foster and Mosher, 1992).

3-2 1D Sparse Interpolation

Wang and Herrmann (2016) demonstrate the ¢1-minimization scheme as follows. Assuming
a situation with no dispersion or attenuation, it can be said that a single trace d; can be
written as
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Figure 3-1: Examples of slant stack/7-p transformations of simple events. Left shows the gather
in the time domain and right shows the gather in the 7-p domain.

1
Gi(t) = alx(t—t]), i=1,..m (3-6)
=1

where ¢(t) is the time signature of the source wavelet, G;(t) is the reflectivity series at the
J-th receiver, n is the number of receivers, x(t¢ — t;) is a spike corresponding to a seismic
event at time ¢; and a’ is the reflection coefficient, or in other words each spike’s amplitude.
Furthermore, ¢(t), G;(t) and d; are assumed to be discretised, and are thus vectors in RY.

Moreover, we can define frequency regions €1y that contain all frequencies except for the
missing frequency band(s). The frequencies for which information must be interpolated can
be written as €2,. Then, Q4 (), = (2 represents the full spectrum. By taking the temporal
Fourier transform, we can rewrite (3-5) in the frequency domain as

dj(w) = §(w)G;(w), w e Q. (3-7)

Next, with d; and ¢ it is possible to estimate the reflection series using an ¢1-minimization
scheme:

>

4(w)
G(w)

where Gj“ is the estimated reflection series. Using the estimated G;St, we can find djSt(Q)
by

G5* = argmin [|G|]; subject to G(w) = ; w e Qy, (3-8)
G

d5! (w) = (w)GE (W), w € Q. (3-9)

It is preferable to add the reconstructed signal in the frequency region §2; to the original signal
in the frequency region {1y rather than using d;“ in expression (3-9) as our final estimate.

This is done to avoid any unwanted side-effects in d;St inside the frequency band €. For this,
we can apply a zero-phase bandpass filter Wy(w) that is ideally 1 inside £ and 0 outside,
although, in reality, a filter will have some roll-off. Then we have:

dieM(w) = dj(w) + d5™ (w) Wy () (3-10)
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In a test example, we can start with a seismic gather with no frequency band gap and
as a benchmark filter it with a stopband filter 1 — Wj(w). Additionally, we add noise to
the frequencies where the stopband is located and then use the bandpass zero phase filter
Wh(w) in our reconstruction and reconstruct the filtered frequency band. This would allow
us to compare the reconstructed signal with the benchmark. Clearly 1 — Wy(w) + Wp(w) =
1, meaning that we are trying to preserve the amplitudes in our benchmark test. In the
benchmark test we will have:

4" (w) = (dy(w) + n(w)) (1 = Wy(w)) + d5" () Wh(w). (8-11)

The standard deviation of the added noise n(w), and its type, can be discussed as a parameter.
One method to apply a zero-phase filter is to apply a nonzero-phase filter using forward-
backward filtering. MATLAB function ’filtfilt’ can be used for this purpose. In the latter,
the phase of the filter is introduced in the forward filtering and then is subtracted in the
backward filtering step, resulting in a zero-phase filter, but squared magnitude response.

As in compressed sensing, one of the driving assumptions is that the data can be represented
sparsely, which in this case is accomplished by means of the reflectivity G;. Another assump-
tion is that the reflectivity at each frequency is similar, i.e. the interface in the subsurface
reflects all seismic frequencies of interest. This likely holds for most earthly geology.

Furthermore, an intuitive interpretation of the procedure is that by knowing the reflectivity
series, the system is able to ’add’ the required energy at the correct times, as opposed to
spreading the energy randomly. This in turn preserves the phase, as it is related to time by
% = T relative to every reflection. This is how the scheme is able to estimate the phase
of the missing frequency bands. In speech recognition, data is divided into smaller time
windows using a similar approach inside each time window (Abdelmalek et al., 2022). This is
interesting to consider since speech data consists of single tones and their harmonics in small
time windows, which is more similar to uncorrelated marine vibrator data than broadband

airgun data.

It should be mentioned that one of the main drawbacks of this scheme is that there is a
potentially reduced resolution. For example, two spikes that are located closer than the
smallest wavelength will not be resolved if they have opposing polarity. Fortunately, this
issue is local to where two spikes are too close (Donoho et al., 1992; Wang and Herrmann,
2016).

In principle, the above £1-minimization scheme can be used successively along each trace in a
gather to interpolate the missing frequency content of the whole gather. However, in this case
the reconstruction along each trace will lack information from neighbouring traces and as a
consequence, the final interpolated gather can/may show reduced trace-to-trace continuity. In
practice, the arrivals will not always smoothly align as they are normally expected to behave
in a shot-gather.

3-3 2D Sparse Interpolation

As mentioned, attempting to interpolate the missing frequency content of each individual
trace of a shot-gather separately may result in an image with a reduced horizontal continuity.
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Therefore, a method that considers multiple traces is necessary. Wang and Herrmann (2016)
add trace continuity through a minimization scheme that takes spatial similarity into account.
Although this scheme has shown to accurately approximate low frequencies when working on
extrapolation problems on a simple dataset, I opted to use an alternative approach, inspired
by conventional seismic processing, to account for trace continuity: by implementing a 7-
p (slant stack) transform prior to interpolating the missing frequencies. In this manner,
the spatial information will be spread over multiple p values, thus causing the traces to be
spatially dependent and possibly more continuous on inverse transform. Another benefit of
the 7-p transform is that it does not alter the frequency content of the data, however, it does
assume that each trace is missing the same frequency data. Figure 3-2 shows the frequency
interpolation workflow of a shot-gather with the 7-p transform.

Forward tau-p

Time gather Tau-p gather
(missing frequency band)
1 Sparse Solver

Time reconstructed Tau-p reconstructed
gather gather

Figure 3-2: Workflow of the 2D frequency interpolation. Initially, the shot-gather is transformed
into the 7-p domain, where the missing frequency bands are interpolated for each
p value. Once the frequencies are interpolated, the shot-gather is transformed back
into the time domain and the interpolation procedure is completed.

Once the input shot-gather with missing frequency content is transformed into the 7-p do-
main, we successively interpolate the missing frequency content for each p value, similar to
the interpolation procedure described in Section 3-2. Thereafter the interpolated data is
transformed back into the time domain.
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Chapter 4

Results

This section of the thesis presents both the CNN and sparse solver interpolation results for
various missing frequency bands. Naturally, we wish for the interpolated band(s) to closely
match the original signal (target) in that/those band(s). However, as perfectly predicting
the energy in the band is practically very difficult (if not impossible), there will be an error
that must be quantified. For this, I consider several different metrics to quantify the error
such as: relative difference/error in amplitude, average difference in phase and Normalized

Root Mean Squared (NRMS). The relative difference in amplitude spectrum is computed

D -D ~ ~
by ]W\, where Dygrget and Dyecon are the FK transforms of the target and recon-
target

structed gathers. Furthermore, the NRMS is chosen as it is a well-established error measure in
a 4D seismic setting. For example, in marine seismics, different surveys will encounter changes
in the surroundings, such as a shift in temperature, salinity, water flow, as well as changes in
receiver /source locations, etc. Depending on how severe the changes are, the seismic data can
be (un)suitable for a time-lapse. The NRMS is the most commonly used measure to quantify
whether these changes are within acceptable boundaries (Kazemi et al., 2011). The NRMS is
formulated as:
RMS(A - B)

RMS(A)+ RMS(B)’

NMRS =2 (4-1)

where RM S is the root mean square operator, A and B are the target and reconstructed
gathers, respectively. The output of NRMS will be between 0 and 2, where 0 for our purposes
means a perfect reconstruction. In this thesis, the NRMS has been used to quantify the
reconstruction accuracy in both the time domain as well as the frequency domain.

Two other commonly used measures are the Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index Measure (SSIM). The PSNR is a measure to quantify the image
quality and although it is typically used to compare a compressed image to the original, it is
also used in seismic trace interpolation. PSNR is expressed in dB, where a higher dB is more
favourable. The SSIM is also used to determine the loss due to compression and is a measure
that quantifies how similar one image is to another. The output is a number on a scale from
0 to 1, where 1 is a perfect match.
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For the sake of clarity, the same shot-gather (Figure 4-1) is used to illustrate the effects of
the missing band gaps and different interpolations. As is usual with North Sea data, most
shots are fairly similar due to the very flat subsurface bedding and thus using a single shot
is deemed representative of the data set as a whole. Since the interest of this research is
the interpolation of frequencies specifically, Figure 4-1 also includes the FK transform of the
target gather, which can be used to compare the reconstructions in the remainder of the

chapter.
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Figure 4-1: Target shot-gather for all further interpolation results in the time-domain (a) and
FK domain (b).

The input/test data that each method is tasked to reconstruct is generated by filtering the
target gather. For this, the well-known Butterworth filter is used with an order n = 7.
Furthermore, each result presented below contains the same added random noise for a fair
comparison and naturally, the CNN is trained on data with different noise, so that it does
not learn the behaviour of the noise. To illustrate the filtering effect, it is helpful to show
the Fourier transform of a single trace, together with the Fourier transform of the same trace
that has been filtered. This is shown in Figure 4-2 where amplitude and phase spectrum of
a trace located at 1250 m from the source can be seen. Here, the target is plotted in black,
together with the same trace that has been band-pass filtered in orange.

The results have been divided into several sections. The first section looks into the reconstruc-
tion of a single frequency band, whereby a visual comparison between the different methods
is performed and the frequency dependency of the reconstructions is quantified. The second
section compares the reconstruction results of two missing frequency bands. The third section
presents the reconstruction of six missing frequency bands, as a more realistic scenario and a
stress test for each method. In the fourth section, the results from two additional interpola-
tion schemes are shown. The first is a modification to the neural network whereby the input
data consists of 3 channels to provide the network with more spatial information. The second
is the 7-p transformation described in Section 3-3.
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Figure 4-2: Amplitude (a) and phase (b) spectrum of a trace located at an offset of 1250 m
from the source, to illustrate the missing frequency band. Notice that (b) is only
plotted for frequencies 38-60 Hz.

4-1 One missing frequency band

We first consider a situation where a single frequency band must be interpolated, which may
occur when merging two non-overlapping frequency bandwidths. Typically, one can expect
such a gap to be fairly narrow, spanning for example 2.5 Hz. However, as this problem is
not commonplace, certain applications could require the gaps to span more frequencies. In
particular, I will consider the interpolation of band gaps spanning 2.5 Hz, 5 Hz and 10 Hz.
Each gap is created using a Butterworth filter, whereupon 10% normally distributed noise
is added, to dissuade the interpolation schemes from merely amplifying the dampened, but
not completely zero, frequencies. Figure 4-3 shows the results where frequency bands have
been filtered from the data, together with each method’s corresponding interpolation result.
As we are interested in the reconstruction of the frequency domain components, it is most
straightforward to observe differences in the FK spectra. The first column in Figure 4-3
shows the input data, the second shows the CNN reconstruction and the third column shows
the sparse solver reconstruction. Furthermore, it should also be mentioned that tests were
performed where the frequency gaps were completely zeroed and similar results were achieved
as those shown below. In the experiments below, the CNN was trained for 20 epochs with 80
shot-gathers, totalling 4640 training samples. The training curves of these networks can be
referenced in Appendix A-1 of this thesis.

When comparing the two approaches in Figure 4-3, we can see that in all cases the reconstruc-
tions slightly underestimate the amplitude. We can also see that the CNN tends to produce
an over-smoothed result, whereas the sparse solver’s interpolation respects the behaviour of
the spectrum. However, in regions of the FK spectrum with no signal, the sparse solver adds
sharp, low amplitude noise, which is absent in the CNN’s reconstruction. Furthermore, both
methods appear to most accurately find the high amplitudes of the FK spectra. Visually, the
best interpolation is the 2.5 Hz band gap produced by the sparse solver, which will also be
confirmed by the statistics shorty.
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Figure 4-3: FK transforms of the reconstructed gathers. The first column shows the FK plot
of the input data where one band has been filtered. The second column shows the
CNN reconstruction and the sparse solver reconstruction. From top to bottom 2.5
Hz, 5 Hz and 10 Hz missing frequency bands are considered, each of which starts

at 40 Hz.
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The next step is to examine the reconstruction of the phase, which is equally important as
the estimation of the amplitude spectrum. However, due to the wrapped nature of the phase
(Figure 4-2b), it is difficult to illustrate the phase error of the reconstruction in a meaningful
manner. This is because the phase of the phase spectrum lacks structure and typically appears
random. As a compromise, I have opted to show the absolute difference between the phase
of the target gather and the phase of the reconstructed gather. This yields the phase error
of the reconstruction in degrees. For each method, a total of six error plots are shown to
illustrate the amplitude and phase error for each different frequency band gap. Figure 4-4
and Figure 4-5 show the error plots for the CNN and sparse solver, respectively. The first
row of each figure shows the relative difference in amplitude spectrum and the second row is
the difference in phase. The columns represent the three different filtered bands: 2.5 Hz, 5

Hz and 10 Hz.
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Figure 4-4: Error plots showing the relative error in amplitude and phase error of the CNN's

reconstruction. These plots correspond to the reconstruction from Figure 4-3, where
from left to right each band is 2.5 Hz, 5 Hz and 10 Hz wide.

Little difference is observable in the reconstructions of the 2.5 Hz and 5 Hz bands. For the
10 Hz gap, the error is significantly higher compared to the 2.5 Hz and 5 Hz missing bands.
Similarly to what was observed in Figure 4-3, regions of the FK spectra with little to no signal
are more erroneous in the sparse solver’s interpolation than the CNN’s interpolation.

Table 4-1 shows statistics corresponding to the reconstructions of Figure 4-3. Here, the average
NRMS of the traces, the NRMS of the amplitude spectrum, the average phase error, PSNR
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Figure 4-5: Error plots showing the relative error in amplitude and phase error of the sparse

solver's reconstruction. These plots correspond to the reconstruction from Figure
4-3, where from left to right each band is 2.5 Hz, 5 Hz and 10 Hz wide.

and SSIM are shown. In general we observe that the NRMS and phase error increase for
wider band gaps and that the PSNR and SSIM decrease for wider band gaps. Furthermore,
we observe that the results are fairly similar for both interpolation methods. It can also be
confirmed that the 2.5 Hz sparse solver reconstruction is the most similar to the target of the
reconstructions shown in Figure 4-3, based on the PSNR and SSIM.

Finally, to observe the frequency dependency of the reconstruction schemes, frequency bands
are sequentially filtered and reconstructed to gauge whether certain frequency bands result in a
more accurate reconstruction. Figure 4-6 shows a bar graph of the NRMS of each interpolated
band gap. In this figure, for example, the 25-30 Hz bin corresponds to the interpolation error
of a 25-30 Hz band gap in the spectrum. The first bar graph shows the average NRMS of
the traces in the time domain, the second graph shows the average NRMS of the amplitude
spectrum of each trace and the third plot shows the error in phase. In each plot, the CNN
results have been plotted in blue and the sparse solver in brown.

In Figure 4-6 we can see that for almost all 5 Hz frequency gaps, the sparse solver’s ap-
proximation is more accurate than the reconstruction of the CNN. We can also see, that
although it is faint, the reconstruction error decreases with increasing frequency, especially
for the sparse solver. The CNN, initially increases in error until around NRMS gives similar
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results for time and amplitude.

Table 4-1: Table showing the accuracy of the reconstructions of both methods when reconstruct-
ing three different band gaps.

CNN CNN CNN  Sparse Solver Sparse Solver Sparse Solver
2.5 Hz 5 Hz 10 Hz 2.5 Hz 5 Hz 10 Hz
NRMS Time 0.0753  0.1005 0.2148 0.0789 0.1381 0.2816
NRMS Frequency 0.0583 0.0751  0.1691 0.0556 0.0971 0.1966
Average Phase 21.0631 22.0279 33.744 25.3978 32.170300 46.5060
Error (Degrees)
PSNR (dB) 57.4427 55.3932 48.5277 58.0281 53.3782 47.9270
SSIM 0.9988  0.9983  0.9947 0.9989 0.9973 0.9935
Time domain error Error in amplitude spectrum 60 s E?n'"o'r m p'h'as'e """"
o e e I e S
EECNN EECNN N CNN
[ Sparse Solver [ Sparse Solver 50 | [EEEE Sparse Solver
0.15f 0.15f -
S 40t
2 ®
I 1 I =30
0.1 E 0.1 5
5 20 ¢
0.05 0.05
10t
Frequency gap [Hz] Frequency gap [Hz] Frequency gap [Hz]
(a) (b) (c)

Figure 4-6: Bar plots showing the average NRMS for each trace (a), average NRMS (b) and
average error phase (c) of the frequency band interpolation for various 5 Hz gaps.
Here the CNN approach has been shown in blue and has been trained for 20 epochs.
The sparse solver has been shown in brown. For a fair comparison, the same normally

distributed noise is
1% error.

added for all interpolations, which corresponds to an additional

4-2 Two missing frequency bands

In the previous section, we investigated how the width of a missing frequency band influences
the reconstruction. Here, we analyse the influence of multiple missing frequency bands on the
reconstruction. As was done previously, three different bandwidths of the gaps are considered:
2.5 Hz, 5 Hz and 10 Hz. Furthermore, as shown in Figure 4-7, the first gap starts at 20 Hz,

the second at 40 Hz.

The first column of Figure 4-7 shows the FK transform of the input data

for the three cases, the second column shows the CNN reconstruction and the third column
shows the sparse solver reconstruction. For each test, the network was trained for 20 epochs
on 80 individual shots, of 4640 training samples.
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Figure 4-7: FK transforms of the reconstructed gathers. The first column shows the FK plot of
the input data where two bands have been filtered. The second column shows the
CNN reconstruction and the sparse solver reconstruction. From top to bottom a 2.5
Hz, 5 Hz and 10 Hz missing frequency bands are considered, each of which starts

at 20 and 40 Hz.
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Focusing on the second column of Figure 4-7, i.e. the CNN reconstruction, it is evident
that much of the energy removed by the filter is not fully recovered after reconstruction,
particularly in the low amplitude regions. For the 2.5 Hz gap (first row), little to no frequencies
are recovered. In contrast, the high amplitude energy is successfully interpolated, even for the
10 Hz band gap. If we also consider the sparse solver reconstruction, we see that the estimated
amplitudes bare a closer resemblance to the target data than the CNN approach, most notably
when reconstructing the 2.5 Hz band gap. In the 5 Hz and 10 Hz band gaps however, the
high amplitudes are reasonably well reconstructed. However, in the low amplitude regions,
the reconstructed spectrum roughly has the same amplitude, but does not accurately estimate
the structure of the target spectrum.

Figure 4-8 and Figure 4-9 show error plots of the CNN and sparse solver, respectively. The
first row shows the relative errors in the amplitude spectra and the second row shows the error
in the phase spectra. In Figure 4-8 specifically, we again clearly see that the large amplitudes
are recovered in both amplitude and phase. However, low amplitudes are relatively less
accurately reconstructed by the network but do find a close estimate of the phase. In Figure
4-9, we again see that the reconstructions of the high amplitudes are successful, while the low
amplitudes in turn are relatively less accurate.
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Figure 4-8: Error plots showing the relative error in amplitude and phase error of the CNN's

reconstruction. These plots correspond to the reconstruction from Figure 4-7, where
from left to right each band is 2.5 Hz, 5 Hz and 10 Hz wide.

Table 4-2 shows various interpolation statistics to quantify the accuracy of the reconstruction.
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Figure 4-9: Error plots showing the relative error in amplitude and phase error of the sparse

solver's reconstruction. These plots correspond to the reconstruction from Figure
4-7, where from left to right each band is 2.5 Hz, 5 Hz and 10 Hz wide.

Here, it can be seen that overall, both methods are able to produce an accurate reconstruction
for narrow bands, but become less accurate with larger missing frequency bands as was also
previously observed. It can also be seen that for missing bands with the same width, a slight
increase in error occurs when the number of bands increases. However, the increase is fairly

small.

4-3 Six missing frequency bands

To illustrate a more realistic deblending scenario, six frequency bands that are 2.5 Hz wide are
filtered from the data, where each band’s centre frequency is spaced 5 Hz from the previous
band’s centre frequency. This scenario, together with the reconstructions is shown in Figure
4-10. The first and last missing bands span 15-17.5 Hz and 40-42.5 Hz, respectively.

Unlike previous examples, however, the CNN was trained for 80 epochs rather than 20 epochs,
which was the case in previous tests. This change is due to the problem at hand being
more complex and needing more training to be solved accurately. The training curves for
this network are shown in Appendix A-3. Furthermore, the relative amplitude error w.r.t.
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Figure 4-10: FK spectra of the interpolation of six missing frequency bands. (a) shows the
target gather, (b) shows the input gather with six missing frequency band, (c)
shows the CNN reconstruction and (d) shows the sparse solver reconstruction.

the target gather and phase error are shown in Figure 4-11 and absolute error plots of the
amplitude spectrum can be referred to in Appendix B-3.

From Figure 4-10 and Figure 4-11 we see that the reconstruction obtained through the network
is more accurate in both amplitude and phase and it is able to recover the high amplitudes
is most accurately. The sparse solver’s reconstruction in contrast lacks much of the energy in

all regions of the FK plots.

Table 4-3 shows a table with the various interpolation statistics to quantify the accuracy
of the reconstruction. Here, it can be seen that the CNN is able to produce an accurate

reconstruction, whereas the sparse solver does not.
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Table 4-2: Table showing the accuracy of the reconstructions of both methods when reconstruct-
ing two missing frequency bands with varying width.

CNN CNN CNN  Sparse Solver Sparse Solver Sparse Solver
2.5 Hz 5 Hz 10 Hz 2.5 Hz 5 Hz 10 Hz
NRMS Time 0.1277 0.1760  0.2911 0.1270 0.2211 0.4490
NRMS Frequency 0.1092  0.1417  0.2209 0.0927 0.1588 0.3238
Average Phase 20.4940 23.3963 28.6676  24.5458 32.4613 45.6851
Error (Degrees)
PSNR (dB) 53.4121 50.6793 46.9006  54.9750 50.2043 44.6652
SSIM 0.9973  0.9959  0.9921 0.9980 0.9950 0.9867
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Figure 4-11: Error plots showing the relative error in amplitude and phase error of the sparse
solver’s reconstruction. These plots correspond to the reconstructions from Figure
4-10, where six 2.5 Hz frequency bands have been filtered and reconstructed.
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Table 4-3: Table showing the accuracy of the reconstructions of both methods when reconstruct-
ing three different band gaps.

CNN  Sparse Solver ‘

NRMS Time 0.1722 0.4981
NRMS Frequency 0.1311 0.3683
Average Phase
Error (Degrees)

PSNR (dB) 51.4819 44.1452

SSIM 0.9960 0.9832

17.7303 51.6092

4-4 7 — p Interpolation

In this section we will review the 7-p interpolation scheme that was considered in the thesis.
The principle is that energy will be spread out over multiple p-values and introduce spatial
dependency into the reconstruction. Figure 4-12 shows the interpolation of a single 5 Hz
frequency band located at 40-45 Hz. The reconstruction shows that although the energy is
recovered, a lot of the energy over the entire FK spectrum is amplified. Furthermore, in Table
4-4, we can see that there is a large error, as the NRMS is close to 2. Moreover, the PSNR
is low and the SSIM is also low.

Table 4-4: Table showing the accuracy of the reconstruction using the sparse solver accompanied
by a 7-p transform.

T-p Sparse Solver ‘

NRMS Time 1.9993
NRMS Frequency 1.9992
Average Phase
Error (Degrees) 56.5274

PSNR (dB) 33.4479

SSIM 0.9363
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Figure 4-12: FK plots of the 7-p reconstruction. Notice that above 60 Hz, there is noticeable
noise spreading across the data.
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Chapter 5

Discussion

In this thesis, we have considered two methods for frequency band reconstruction. The first
is a deep learning approach that uses a particular neural network architecture called a U-Net
to learn how to interpolate frequency bands based on training data. The second method
is a sparse optimization approach that approximates the reflectivity series of the subsurface
such that the approximation matches the known frequency content. In this chapter, we will
review the interpolation results of each method, starting with the deep learning approach
and then considering the results of the sparse solver. Thereafter, we present a comparison of
both methods, highlighting each method’s strengths and shortcomings. The following section
will then emphasize the limitations of this research, whereafter potential concepts for further
research are suggested.

5-1 Deep Learning results

The initial experiment is the reconstruction of a single missing frequency band with three
different bandwidths (2.5 Hz, 5 Hz and 10 Hz) and is shown in Figure 4-3, where the results
of the CNN interpolation are those in the second column. This, in combination with the
results from Table 4-1, show that for the CNN it can be said that larger band gaps are more
difficult to interpolate, which makes sense as there is a greater degree of uncertainty. Large
gaps, i.e. 10 Hz, still manage to find the sea-bottom reflections (highest amplitude event in
the data) but struggle to find the lower amplitude reflection information.

When interpolating two frequency bands, the CNN is again able to accurately reconstruct
the sea-bottom reflection, but the energy of the lower amplitude reflections is lacking. The
best interpolation here, naturally, is the narrow 2.5 Hz band gap. Based on the NRMS, the
error is slightly too high in a 4D seismic setting (which is ideally below 0.1), however, the
remaining statistics, such as the PSNR and SSIM are promising. Furthermore, as is the case
when a single frequency band is removed from the data, wider frequency bands result in less
accurate interpolations.
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So far, one may assume that the above simply indicates that more missing frequency data
results in a less accurate reconstruction, which is true when only increasing the width of a
single frequency gap. However, when looking at the reconstruction of six narrow frequency
bands (Figure 4-10 and Table 4-3), we see that the reconstruction is more accurate than a
single 10 Hz band reconstruction, even though more frequency information is removed from
the data. This is in turn shows that it is possible to remove more frequency data from the
gather, so long as there is sufficient information within the missing band gaps.

When considering the frequency dependency of the CNN’s interpolation (Figure 4-6), we
observe that the reconstruction becomes less accurate between 25 and 75 Hz, but still within
reasonable boundaries. It should be noted that in the interest of time, the networks used to
estimate the error for each frequency were only trained for 20 epochs each and could have
likely been improved with more training. For this reason, the values presented in Figure 4-6
should be taken as an indicator of the frequency dependency of the reconstruction, rather
than fact.

In each result, the most accurately reconstructed parts of the spectrum are the highest am-
plitude events in the data. It is likely because of their high amplitude that these events will
also have the largest error after being filtered. In turn, the loss function of the network will
focus on correcting these errors until they are in the same order as the error in the remaining
data, whereafter the network will focus on both regions. Perhaps it would be interesting to
see how the network is able to perform when the lower amplitudes have been boosted with a
reversible gain.

5-2 Sparse optimization results

From the results presented Table 4-1 and Table 4-2, it can be observed that the sparse solver is
capable of producing good results when interpolating single frequency bands that are narrow,
as can be seen in Figure 4-3 and Table 4-1. However, it is sensitive to the width of the band
gaps. When the band gap has a width of 10 Hz, interpolation becomes unsatisfactory and
the solution is both inaccurate in amplitude and phase.

Furthermore, the interpolation of six missing frequency bands is inaccurate even though the
band gaps are narrow, presumably because the missing energy is too closely packed for the
solver to accurately fit a curve. To illustrate, during tests, it was observed that the optimizer
designed for the sparse solver prioritizes the clusters of known data, over sparsely sampled
data, which as consequence impedes the solver from reconstructing the high amplitudes for
a majority of the data. Figure 5-1 shows the amplitude spectrum of a trace where this
effect is particularly noticeable. The yellow markers show the data points that are provided
to the optimizer for interpolation. The black curve is the target amplitude spectrum and
the red curve is the solver’s approximation. Note that this approximation is not the same
as the reconstruction. Instead, this curve corresponds to dj“’t(w) from (3-9). Clearly, the
approximation is able to perfectly fit the densely sampled portion of the spectrum but fails
to fit through the sparsely sampled frequencies between the missing frequency bands. Since
this is where the amplitude is high, much of the high amplitude information is lost in the
reconstruction.
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Figure 5-1: Example where the sparse solver is unable to estimate the sparsely sampled region of
the spectrum. In this example the sparse solver is tasked to interpolate six missing
frequency bands (2.5 Hz each). Note that the '"Approximation’ curve corresponds to
dj“(w) from (3-9) and not the full reconstruction.

Two potential methods to mitigating this issue and consequently improving multi-band in-
terpolation are:

1. Reducing the number of samples in the densely sampled frequency ranges such that
their perceived importance is equal to the sparsely sampled ranges. The downside of
this approach is that useful frequency information is discarded.

2. Alternatively, the samples can be weighted such that the sparsely sampled regions carry
equal weight as those in the densely sampled regions. Presumably, this can be achieved
with standard inverse distance weighting algorithms.

Lastly, the 7-p reconstruction is shown to be inaccurate, however, I believe this is due to an
error in the implementation of the transform, rather than an erroneous methodology. It was
observed that even without interpolating frequency data, an error would exist in the gather
that has been transformed back and forth to the 7-p domain. In an attempt to overcome
the interpolation error I tried interpolating the data, transforming and then removing the
interpolated points, however, this did not remove the error from the data. In the FK spectrum,
part of the error from the transform can be observed above 60 Hz in Figure 4-12.

5-3 Comparison of interpolation methods

From the figures and interpolations shown, it is believed that the CNN is capable of providing
a good estimate of the missing frequency information, given the missing frequency band is
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sufficiently narrow. The same is true for the sparse solver. Both methods produce comparable
results for each test, except for the six-band interpolation. Here, modifications to the sparse
solver’s optimizer are required for the interpolation to yield an accurate result.

It is interesting to notice that each method uses a different principle to reconstruct the
missing frequency gaps. The neural network will try to create a degree of prior knowledge
of the problem through the learning process. Another way to interpret the neural network’s
method is that it tries to approximate the inverse process. The sparse solver on the other
hand, only uses the knowledge it has available and instead by using assumptions of how the
wave behaves in the subsurface is it able to find a reconstruction.

From there, the main disadvantage of a CNN interpolation scheme is clear. Like with all ANN
implementations, there is a need for a large amount of training data. Thus, when selecting
either of the discussed methods, it is important to consider the availability of training data.
Although there is potential to use the sparse solver to generate the training data for the ANN,
this would not typically be beneficial, as the interpolation results would deteriorate due to
the network being trained on an already ’faulty’ dataset. In contrast, the sparse solver is, in
the case of seismic data, always applicable.

5-4 Limitations

One of the unfortunate compromises is that the network is trained on a fairly small dataset.
Ideally, we would wish to train with as much data as possible in order to achieve greater accu-
racy and improve the network’s ability to generalize in a broad array of situations. However,
due to a limitation in hardware, I opted to pre-train the network on one set of portion of
the data and followed by training it a second time on a different set of the data. However, I
found that this approach typically did not lead to a greater interpolation accuracy. Perhaps
an alternative approach to dealing with limited computational resources is possible.

The main assumption where this study is built upon is that it is possible to accurately decon-
volve the vibrator sweep followed by convolving with an airgun source signature. Although
it is possible if the sweep has been accurately sampled, in practice the process is not perfect
and errors are likely to occur.

Limited time was spent tuning the hyperparamters of the CNN, which would likely improve
the performance of the network. Parameters such as the starting values of the neurons and
learning rate often play a strong role in the network’s ability to minimize the loss function.

The frequency bands are removed by means of a butterworth filter, which is likely to be
inconsistent with real observations, but does sufficiently represent a situation where there
is a low SNR. It is possible that real-life observations will, however, measure energy in the
‘missing’ frequency band, perhaps from complex subsurface wave phenomena or particular
noise sources. In this situation the assumption that no signal is present in this band would
be invalid. Fortunately, in this situation, both methods are still able to function correctly
without adjustments to their underlying principles. For the CNN; so long that training data
is available that also inherits this property, little further action is required. For the sparse
solver, the energy in the frequency band can be excluded from fitting. The remaining question
is whether one would want to keep this additional data in the missing frequency gap.
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5-5 Further research

It should be noted that the work presented in this thesis is by no measure fully functioning and
ready to be implemented and should not be interpreted as such. Naturally, there are many
potential improvements to the CNN and sparse solver that would reduce the interpolation
error. Unfortunately, most of such improvements could not be implemented for this thesis,
but would still be interesting to see in future works.

As this exact problem has not often been undertaken in previous literature, this thesis can
serve as a type of benchmark and case study for future works. For example, it is possible
to compare alternative network architectures to the U-Net presented in this thesis. Recent
publications have shown positive results with so-called coordinate aware/attention networks
for interpolation seismic data (Li et al., 2021a) or a nested U-Net (Zhou et al., 2018). It
would be interesting to see how such networks perform on the problem at hand.

It is also possible to consider alternative algorithm all together. For example, in speech
recognition there are a number of studies showing that the advantages of using a Short-Time
Fourier Transform, which makes it possible to estimate the phase delay of each short-time
increment. Thereafter, the phase delays are plotted against frequency to show the frequency
dependency. The result will also show a band gap, which is then interpolated.

Furthermore, the problem can also be considered at a different stages in the processing work-
flow. One could perhaps consider the interpolation after CMP sorting, or even at an imaging
level.

Finally, real-life tests rarely produce exactly what was predicted in synthetic models and for
that reason this research would greatly benefit from real-life vibrator data, to observe any
unexpected features of the data, if present.
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Chapter 6

Conclusion

The goal of this research is to determine a methodology for the interpolation of missing
frequency bands. For this, two methodologies are proposed. The first is a deep learning
approach that implements a U-Net architecture. This is network is trained on 80 shot gathers
for 20-40 epochs with a custom frequency loss function. The second interpolation method is
a sparse solver that is inspired by compressed sensing approaches. The method approximates
the reflectivity of the subsurface using the known frequency content, which is then used to
add energy at the missing band(s).

The results found that both methods are capable of interpolating narrow frequency bands of
2.5 Hz with good accuracy (NRMS of <0.15). As the width of the frequency increases, the
reconstruction of the missing frequency band becomes more difficult and the reconstruction
error increases. When interpolating two missing frequency bands, the error also increases
compared to a single missing frequency band, but the reconstruction is still accurate, so long
as the band is narrow. For the interpolation of six narrow and closely spaced missing frequency
bands, the sparse solver is unable to reconstruct the frequency spectrum. The network on
the other hand is able to accurately reconstruct the spectrum in amplitude and phase. After
adding an additional 7-p transform to the sparse solver methodology, spatially continuity is
imposed, but the transformation proved to be unstable.

From the results, it can also be said that the sparse solver is more capable of determining
high frequencies than low frequencies. For the CNN, interpolation error is smallest on the
low and high frequencies but increases for 25 Hz to 75 Hz.
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Appendix A

Training curves of CNN
reconstructions

A-1 Training curves one missing band
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Figure A-1: Training curves of a single missing frequency band. (a) is 40-42.5 Hz, (b) is 40-45
Hz, (c) is 40-50 Hz.
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Training curves of CNN reconstructions

A-2 Training curves two missing bands

1 Gap 40-50Hz

1 Gap 40-50Hz

1 Gap 40-50Hz

Figure A-2: Training curves of a single missing frequency band. (a) is 20-22.5 Hz and 40-42.5
Hz, (b) is 20-25 Hz and 40-45 Hz, (c) is 20-30 Hz and 40-50 Hz.

A-3 Training curve six missing bands
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Figure A-3: Loss curves of CNN that has been trained for six missing frequency bands
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Appendix B

Absolute error plots of frequency
reconstruction

B-1 One missing band
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Figure B-1: Absolute error of amplitude spectra for the CNN's single band reconstruction. (a)

is the a 2.5 Hz band, (b) is a 5 Hz gap and (c) is a 10 Hz gap.
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Absolute error plots of frequency reconstruction
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Figure B-2: Absolute error of amplitude spectra for the sparse solver's single band reconstruction.
(a) is the a 2.5 Hz band, (b) is a 5 Hz gap and (c) is a 10 Hz gap.

B-2 Two missing bands
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Figure B-3: Absolute error of amplitude spectra for the CNN's reconstruction of two missing
frequency bands. (a) is the a 2.5 Hz band, (b) is a 5 Hz gap and (c) is a 10 Hz

gap.
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Figure B-4: Absolute error of amplitude spectra for the sparse solver's reconstruction of two

B-3 Six missing bands

missing frequency bands. () is the a 2.5 Hz band, (b) is a 5 Hz gap and (c) is a
10 Hz gap.
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Figure B-5: Absolute error of amplitude spectra for the CNN's
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Figure B-6: Absolute error of amplitude spectra for the sparse solver’s reconstruction of 6 missing
frequency bands, each of which is 2.5 Hz wide.
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