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The BRCA1ness signature is associated
significantly with response to PARP
inhibitor treatment versus control in the
I-SPY 2 randomized neoadjuvant setting
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Lodewyk Wessels5,7, Carlos Caldas4, René Bernards5, Iris M. Simon3, Annuska M. Glas3, Sabine Linn1,8,9*†

and Laura van ‘t Veer3†
Abstract

Background: Patients with BRCA1-like tumors correlate with improved response to DNA double-strand break-inducing
therapy. A gene expression-based classifier was developed to distinguish between BRCA1-like and non-BRCA1-like
tumors. We hypothesized that these tumors may also be more sensitive to PARP inhibitors than standard treatments.

Methods: A diagnostic gene expression signature (BRCA1ness) was developed using a centroid model with
128 triple-negative breast cancer samples from the EU FP7 RATHER project. This BRCA1ness signature was then tested in
HER2-negative patients (n= 116) from the I-SPY 2 TRIAL who received an oral PARP inhibitor veliparib in combination
with carboplatin (V-C), or standard chemotherapy alone. We assessed the association between BRCA1ness and pathologic
complete response in the V-C and control arms alone using Fisher’s exact test, and the relative performance between
arms (biomarker × treatment interaction, likelihood ratio p < 0.05) using a logistic model and adjusting for hormone
receptor status (HR).

Results: We developed a gene expression signature to identify BRCA1-like status. In the I-SPY 2 neoadjuvant setting the
BRCA1ness signature associated significantly with response to V-C (p = 0.03), but not in the control arm (p = 0.45). We
identified a significant interaction between BRCA1ness and V-C (p= 0.023) after correcting for HR.

Conclusions: A genomic-based BRCA1-like signature was successfully translated to an expression-based signature
(BRC1Aness). In the I-SPY 2 neoadjuvant setting, we determined that the BRCA1ness signature is capable of predicting
benefit of V-C added to standard chemotherapy compared to standard chemotherapy alone.

Trial registration: I-SPY 2 TRIAL beginning December 31, 2009: Neoadjuvant and Personalized Adaptive Novel Agents to
Treat Breast Cancer (I-SPY 2), NCT01042379.
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Background
Histological subtype information in breast cancer is
clinically relevant for treatment purposes but insufficient
to describe all tumor heterogeneity [1]. The basal-like
molecular subtype, which typically expresses cytokeratins
5/6 and EGFR, frequently overlaps with the histological
subtype of triple-negative (TN) breast cancer [2, 3]. TN
breast cancer is described by the absence of ERα/PR and
HER2 expression and poor overall prognosis [4, 5].
Because of the lack of available targeted therapies for this
subtype, the clinical impact of target discovery for patients
with TN breast cancer is potentially significant.
Hereditary germline BRCA1 mutations are found in

around 12% of all TN breast cancers [6–8]. BRCA1 plays
a critical role in error-free DNA double-strand break re-
pair via homologous recombination, and deficiency can
result in genomic instability [9, 10]. Differential gene ex-
pression patterns in BRCA1 mutant tumors versus non-
mutant tumors have been identified previously [11–14].
Because of the relative rarity of BRCA1 mutation in the
general breast cancer population [15], however, these
studies are often underpowered, making clinical impact
for mutation carriers limited. Furthermore, the capacity
of these signatures to predict response to targeted treat-
ments such as PARP inhibitors has not been thoroughly
explored in the randomized clinical trial setting.
BRCA1-mutated/promoter-methylated TN tumors

with a specific pattern of copy number alterations are
termed BRCA1-like [16–20]. ‘BRCAness’ describes
tumors with molecular features of BRCA1-mutated
tumors [21, 22]. Interestingly, the whole group of
BRCA1-like tumors responds well to DNA double-
strand break-inducing agents and intensifying chemo-
therapy regardless of their BRCA1 mutation/promoter
methylation status [16, 23, 24]. These findings suggest
that a relatively large portion of TN breast cancers may
be susceptible to targeted therapies such as PARP inhibi-
tors. The efforts of many groups have resulted in various
classifiers for BRCAness, typically based on mutation
[13, 14, 25] or homologous recombination repair
deficiency (HRD) markers [26] and using gene expres-
sion data as an input. Recent work has found that an
assay designed to detect BRCAness using HRD as a
biomarker failed to predict for carboplatin response [27],
illustrating the challenges of generating a signature with
the capacity to predict treatment effect [28].
Molecular subgroups within the TN subtype have dif-

ferential benefit from therapies [29–31]. In addition,
previous work in TN tumors has determined that differ-
entially expressed genes between BRCA1-like and non-
BRCA1-like tumors center around DNA repair [29, 32, 33]
and may lead to new information for clinical therapeutic
decisions. A test based on gene expression levels may also
lead to insight into the mechanisms which result in tumors
with BRCA1-like features. We developed a 77-gene
signature to identify samples with a BRCA1-like gene
expression pattern we term BRCA1ness with a sensitivity
and specificity of 96.7% and 73.1%, respectively. We
explored this signature’s ability to predict response to the
PARP inhibitor veliparib in combination with carboplatin
(V-C) in the I-SPY 2 TRIAL, a phase 2, multicenter,
adaptively randomized trial designed to screen multiple
experimental regimens in combination with standard
neoadjuvant chemotherapy for breast cancer, where V-C
graduated in the TN signature [34–36]. Investigation of the
BRCA1ness signature was part of a further evaluation of
additional biomarkers in this setting. In this study, we
aimed to answer the clinical question in the I-SPY 2 exter-
nal validation set of whether to treat with PARP inhibition
based on the well-studied mechanism of HRD (identified
by our biomarker BRCA1ness).

Methods
Discovery set patient characterization and microarray
data generation
The collaborative European Union-funded effort FP7
RATHER project (Rational Therapy for Breast Cancer)
aims to integrate gene expression profiling, copy number
variation, kinome variation and kinase activation status
in an effort to identify new targets for therapy of
difficult-to-treat breast cancer subtypes, including TN
breast cancer (www.ratherproject.com). The RATHER
project retrospectively identified 128 TN breast cancer
patients with long-term follow-up in total: 70 from
Netherlands Cancer Institute (NKI), Amsterdam, the
Netherlands and 58 from Addenbrooke’s Hospital,
Cambridge, UK.
The primary inclusion criterion for the RATHER co-

hort was availability of sufficient isolated frozen RNA
tissue in the tissue bank and diagnostic information
indicative of TN breast cancer. We enriched for frozen
tumors with 30% or greater tumor content (2 x 8-μm
serial sections, hematoxylin and eosin stained). The
local medical ethics authorities of both centers ap-
proved the collection protocols. Sectioning of tumor
tissue and RNA isolation were performed as described
previously [37].
Samples with RIN value > 5 according to 2100 Bioana-

lyzer (Agilent Technologies) assessment were selected
for further analysis. Gene expression data were gener-
ated as described previously [37]. Briefly, feature signal
intensities were processed and extracted using the
‘limma’ R package with background subtraction using an
offset of 10 and log2 transformed data. Probe intensities
were quantile normalized with in-house R scripts and
missing values (including probes with signal intensities < 1
after preprocessing) were imputed by the 10 nearest-
neighbor method. A biobank batch effect was adjusted

http://www.ratherproject.com/
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using ComBat [38]. Genes with multiple probes were
summarized by the first principal component of a correl-
ating subset.

BRCA1-like classification
The multiplex ligation-dependent probe amplification
(MLPA) method was used to generate copy number
profiles for the determination of the BRCA1-like status of
the tumors. The assay was performed, fragments analyzed
and data normalized according to the manufacturer’s
protocol (MRC-Holland). Class prediction (BRCA1-like/
non-BRCA1-like) was carried out on the normalized data
according to published instructions [16].

Gene signature development
Signature development was performed using Partek Gen-
omics Suite (partek.com) (categorical signature) and
Matlab (https://mathworks.com/) (translation to continu-
ous score) on 128 samples. Top variable genes (variance
>1 across all samples) were used for the model input (N =
2049). The classification model of diagonal linear discrim-
inant analysis (DLDA) with equal prior probabilities was
run to select the signature genes. Groups of genes ranked
by their significance in a univariate ANOVA examining
the BRCA1-like/non-BRCA1-like MLPA status were
tested (groups from 1 to 100, in increments of 1). Single-
level leave-one-out cross validation (LOOCV) with the
maximum number of partitions was used to internally
validate and calculate the performance of the model.
The significant number of genes in the model (n = 77,

Additional file 1: Table S1) was selected based on the
ROC area under the curve (AUC as specified by Partek).
After the model is run, each sample is allocated a poster-
ior probability for each class (BRCA1-like and non-
BRCA1-like) and the sample is assigned to the class with
the highest posterior probability (BRCA1ness). This cat-
egorical signature was then transferred to the diagnostic
setting to better comply with quality and regulatory
requirements using a nearest centroid model; a robust
method with both reasonable and favorable characteris-
tics for many measurements on a modest amount of
patients [39]. Briefly, raw full genome data were normal-
ized and class centroids were calculated (median per
gene) for each of the 77 genes for each class (BRCA1-
ness/non-BRCA1ness) using the discovery set. These
calculated centroids were used as the template for
BRCA1ness/non-BRCA1ness. Pearson correlations of
each new sample with the BRCA1ness/non-BRCA1ness
templates were calculated (Additional file 1: Table S1)
and combined into a single continuous score by
subtracting the correlation to the non-BRC1Aness
template from the correlation to the BRC1Aness tem-
plate. In order for a sample to be classified as BRCA1-
ness, a threshold was established with a high sensitivity
while preserving specificity close to 0.75. The classifica-
tion threshold was set at –0.3; that is, a sample with a
BRCA1ness score > –0.3 was classified as BRCA1ness
and a sample with a score < –0.3 was classified as non-
BRCA1ness.

I-SPY 2 TRIAL
The I-SPY 2 TRIAL is a standing multicenter, phase 2
platform trial to screen experimental regimens in
combination with standard chemotherapy in the neoad-
juvant treatment of breast cancer. Patients are adaptively
randomized into one of four experimental arms or a
control arm (Fig. 1) [35]. In this portion of the I-SPY 2
TRIAL, eligible patients received weekly paclitaxel at
80 mg/m2 (T) i.v. for 12 doses alone (control), or in
combination with an experimental regimen. Patients
randomized to V-C received 50 mg of veliparib by
mouth twice daily for 12 weeks and carboplatin at AUC
6 on weeks 1, 4, 7 and 10 concurrent with weekly pacli-
taxel. Following paclitaxel ± V-C, all patients received
doxorubicin 60 mg/m2 and cyclophosphamide 600 mg/m2

(AC) i.v. every 2–3 weeks for four doses with myeloid
growth factor support as appropriate per protocol
followed by surgery that included axillary node sampling.
The V-C arm was open to HER2-negative patients; and
was graduated in the TN group. The BRCA1ness signature
was one of the qualifying dichotomous biomarkers
assessed as a predictor of response to V-C relative to
standard chemotherapy.
To assess the BRCA1ness signature in this validation

set as a specific biomarker of V-C response, gene expres-
sion data from 116 HER2-negative patients (V-C, n = 72
and concurrent controls, n = 44) were analyzed. A
Customized Agilent 44 K array (Agendia) was used to
evaluate the 77-gene signature BRCA1ness classification.
The association between BRCA1ness classification and
response in the V-C and control arms alone was assessed
using Fisher’s exact test, and the relative performance
between arms (biomarker × treatment interaction, likeli-
hood ratio test) using a logistic model. We included ad-
justment for hormone receptor status (HR/TN) and
tumor size in our model. Our sample size is small, and
thus statistical calculations (p values) are descriptive
rather than inferential. This analysis does not adjust for
multiplicities of other biomarkers evaluated in the trial
but outside this study.

Results
Signature development
We developed a BRCA1ness signature using whole
genome gene expression data. The signature has been
developed on fresh frozen (FF) breast tumors that were
categorized as either BRCA1-like or non-BRCA1-like
using a DNA copy number MLPA-based classifier [16],

https://mathworks.com/


Fig. 1 CONSORT diagram. CONSORT diagram indicating how patients were randomized for the I-SPY 2 TRIAL
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and endeavors to predict BRCA1-like tumors with a high
sensitivity/specificity rate.
Forty-eight percent of the tumors (61/128) in the

discovery cohort were classified as BRCA1-like and the
remainder was assigned to the non-BRCA1-like class.
We employed the gene expression profiles of the tu-
mors, DLDA and the labels assigned by the MLPA-
based classifier to train a classifier that distinguishes
between the two classes. Using the ROC area under the
curve model (AUC) as the performance criterion we
identified a 77-gene signature that resulted in the high-
est performance (Table 1).
Unsupervised hierarchical clustering of the genes in

the 77-gene signature indicates separation between the
classes (Fig. 2). We transferred the signature to a
diagnostic setting using a nearest centroid-based algo-
rithm. The sensitivity and specificity for detecting
BRCA1-like status as defined by MLPA were 96.7% and
73.1%, respectively. Using Ingenuity Pathway Analysis
(Qiagen) to identify key biological processes associated
with the 77 genes in the BRCA1ness 77-gene signature,
we found cellular assembly and control and DNA
replication, recombination and repair to be among the
Table 1 Sensitivity and specificity for detecting BRCA1-like
status samples using BRCA1ness

MLPA BRCA1-like MLPA non-BRCA1-like

BRCA1ness positive 59 18

BRCA1ness negative 2 49

Sensitivity Specificity

96.7% 73.1%

MLPA multiplex ligation-dependent probe amplification
top associated pathways and functions (Fig. 3a). In
addition, we observed serine and glycine biosynthesis to
be associated with the 77-gene signature genes, indicat-
ing that these genes may be responsible for reprogram-
ming of metabolic processes, which can lead to tumor
progression (Fig. 3a). Supporting the pathway and
molecular function results, network analysis revealed a
network centered upon cell the cycle control regulator
cyclin A (Fig. 3b).

I-SPY 2 TRIAL
The BRCA1ness signature was applied to 116 HER2-
negative patients (V-C, n = 72 and concurrent controls,
n = 44). Fifty-five patients were classified as BRCA1ness.
Fourteen percent of these patients were hormone
receptor-positive (ERα/PR) and HER2-negative. The dis-
tribution of pathological complete response (pCR) rates
among BRCA1ness and non-BRCA1ness groups is
shown in Fig. 4a [36] and Table 2. Association between
the BRCA1ness classification and patient response was
seen in the V-C arm (OR = 3.2, p = 0.03) but not in the
control arm (OR = 0.39, p = 0.45) (Fig. 4b). A significant
biomarker × treatment interaction (p = 0.025) was also
observed. Although there is enrichment for TN samples
in the BRCA1ness group in univariate analysis (Table 2),
this interaction remains significant upon adjusting for
HR (p = 0.023) (Fig. 4c).
In addition we found that the interaction also re-

mains significant when adjusting for tumor size and
HR (p = 0.038). We use the likelihood ratio test to
formally demonstrate that the logistic regression
with the addition of the HR (and tumor size) terms
does not provide a better fit to the data. When the



Fig. 2 Unsupervised hierarchical clustering of 77 genes in the 128 discovery set samples. The 77 genes were derived from a supervised analysis
to identify those genes most informative in distinguishing BRCA1-like from non-BRCA1-like TN breast cancers [33]. Scaled expression value denoted as
Z score (red–blue scale: red indicates high expression and blue indicates low expression). Information bar indicates MLPA BRCA1-like status: true (green)
or false (brown). MLPA multiplex ligation-dependent probe amplification (Color figure online)

Fig. 3 The 77-gene signature network analysis. a Significant canonical pathways (top) and molecular functions (bottom). Negative log p value is
on the x axis. b Network analysis of the 77 genes in the BRCA1ness signature. Grey shading indicates genes found in signature, solid lines show direct
relationships between proteins and dashed lines show indirect relationships
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Fig. 4 I-SPY 2 TRIAL. a Mosaic plot depicting the number of patients with pathological complete response (pCR) in each treatment group and signature
group. Top row indicates patients in the trial enrolled in the control arm and bottom row indicates patients in the V-C arm. Number of patients with pCR is
shown in green and number of patients without pCR is shown in tan. Black outlined boxes indicate the patients with a non-BRCA1ness status (left), red out-
lined boxes depict those with BRCA1ness status (right). b Histological subtype of the patients in the trial divided by treatment arm (V-C) and control arm
and pCR rate per group. c Odds ratio (OR) and likelihood ratio test (LR) for treatment and control arms of the trial and the biomarker x treatment interaction
test. HER2 human epidermal growth factor receptor 2, HR hormone receptor status, TN triple-negative, V/C veliparib-carboplatin (Color figure online)
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hormone receptor-positive BRCA1ness classified
patients are added to the graduating TN subset, the
OR associated with V-C is 4.03. This is comparable
to that of the TN alone (OR = 4.04), while increasing
the prevalence of ‘biomarker-positive’ predicted V-C
sensitive patients by 8%.
Table 2 Patient characteristics

Variable Non-BRCA1ness BRCA1ness p value

(N = 61) (N = 55)

Treatment

Control 27 (44.3) 17 (30.9) 0.198a

Veliparib/carboplatin 34 (55.7) 38 (69.1

Hormone receptor status

HR+ 48 (78.7) 8 (14.5) <0.05a

TN 13 (21.3) 47 (85.5)

Tumor size (cm)

0–1 0 (0) 0 (0) 0.496a

>1–2 0 (0) 1 (1.8)

>2–5 40 (65.6) 31 (56.4)

>5 19 (31.4) 22 (40.0)

Data presented as number (%)
HR hormone receptor status, TN triple-negative
aPearson’s chi-squared test
Discussion
At around 15% of all breast cancers, the TN breast
cancer subtype impacts a significant proportion of
women [7, 40]. TN breast cancer tends to be aggressive
independent of other known prognostic factors [5, 41].
Current guidelines indicate that standard therapy for TN
breast cancer is chemotherapy [2]. Unfortunately, these
tumors typically metastasize early despite therapy [5, 41].
This poor response to treatment may be due to the fact
that the TN subtype itself is made of molecular subgroups.
Conversely, molecular data from these subgroups may
indicate a targeted therapy, which is likely to benefit
patients.
Because of results in preclinical models, BRCA1 muta-

tion carriers of multiple tumor types have been enrolled
in clinical trials with PARP inhibitors [27, 32, 42–44].
Currently, there are no other predictive biomarkers for
PARP inhibitors other than the germline BRCA1
mutation status, and the issue with that biomarker is
that it only captures a small subgroup of all patients that
may benefit from carboplatin/veliparib [8]. Previous
work has shown that genomic instability patterns are
related to BRCA1 mutation/methylation and that these
patterns can be used to classify tumors are BRCA1-like
or non-BRCA1-like [16–20, 24]. These BRCA1-like
tumors make up a larger group than BRCA1 mutant
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or methylated alone, and importantly they respond
well to DNA double-strand break-inducing chemo-
therapies [17, 23, 24]. We have developed a gene ex-
pression signature that is capable of identifying
BRCA1-like samples with a high sensitivity/specificity
rate (BRCA1ness).
Pathway analysis reveals that the genes in this signa-

ture are associated closely with cell cycle and cancer
networks. We also observed a significant association
with serine and glycine biosynthesis pathways with the
genes of the signature. This is of particular interest
because it has been recently shown that aerobic glycoly-
sis signaling can promote tumor growth in breast cancer
cell lines that are TN [45], indicating that the poor out-
come for patients with a BRCA1ness tumor may be
partially explained in this manner. Serine biosynthesis
has been identified to be essential to tumorigenesis in
estrogen receptor-negative breast cancer cell lines [46].
We identified serine biosynthesis to be related specifically
to the genes found in the BRCA1ness gene expression
signature, suggesting that tumors having BRCA1-like fea-
tures may have particular vulnerabilities to drugs that
interfere with serine biosynthesis. It would be interesting
to test whether high expression of genes involved in serine
and glycine biosynthesis can confer sensitivity to drugs
which interfere with this biosynthesis in breast cancer cell
lines. In addition, we found that the signature is capable of
predicting response to the PARP inhibitor veliparib in
combination with carboplatin compared with a control
treatment regimen.

Conclusion
The sample size in the I-SPY 2 TRIAL is small, but our
prespecified analysis suggests that the BRCA1ness signa-
ture shows promise for predicting response to V-C
combination therapy relative to control. We focused on
the experimental arm of the study that contains DNA-
damaging agents because the BRCA1ness test is meant
to identify patients that may derive substantial benefit
from these agents. We observed a proportion of patients
who were hormone receptor-positive that benefited from
the V-C treatment. It is unlikely in a regular clinical
setting that hormone receptor-positive patients would be
tested for BRCA1ness, but our data indicate that these
patients could derive benefit from specific tailored treat-
ments like PARP inhibitors and/or platinum agents.
Concurrently reported results studying carboplatin in
TN breast cancer have indicated it may be difficult to
translate the pCR rate to longer benefit such as
recurrence-free survival (RFS) [47–50]. It should be
noted that, for this trial, we used a surrogate endpoint
(pCR) for RFS and longer follow-up is required to inves-
tigate the BRCA1ness classifier in relation to long-term
benefit. In the event that downsizing of the tumor is
required to facilitate conversion from mastectomy to
breast-conserving therapy, this classifier may already
have value. If verified in a larger trial, this signature may
contribute to the selection criteria of PARP inhibitor
trials in the future.

Additional files

Additional file 1: BRCA1ness signature genes. (XLSX 40 kb)

Additional file 2: I-SPY 2 Trial participating sites and institutional review
boards (IRB). (XLSX 48 kb)
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