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ABSTRACT

The aim of this research is to extend the classical LMM to a multi-curve framework and to analyze the impact
of this extended model on the most liquid exotic interest rate derivatives. A possible parametrization for
the instantaneous volatility and correlation structure is presented and the (log-)normal dynamics of the OIS
rates under different measures are obtained. The forward LIBOR rates are modeled at a constant additive
spread over the OIS curve. An analytical closed-form approximation of the European swaption volatility in
the multi-curve framework is derived and its accuracy is verified by comparing the Monte Carlo prices of a set
of European swaptions with the corresponding prices obtained using the approximation. It is demonstrated
that the approximation reaches the highest accuracy for swaptions characterized by short underlying tenors
and strikes close to the swap rate. The multi-curve LIBOR Market Model is calibrated to the swaption market
applying this approximation. Using the calibrated model distinct Bermudan swaptions are priced by means
of Monte Carlo. These prices are compared to the corresponding prices obtained using the one-factor Hull-
White model and the impact of the model selection is analyzed.
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INTRODUCTION

This thesis focusses on the multi-curve (MC) LIBOR Market Model (LMM) that belongs to the class of market
models. While plain vanilla swaps are priced by simple cash flow discounting and the value of caps/floors and
swaptions is determined by means of Bachelier’s or Black's model, more exotic instruments require the use
of term structure models. Short rate models and market models are the two most frequently used classes of
models for this purpose. The popularity of the latter derives from the modeling of market observable interest
rates in contrast to the former, which instead specifies the dynamics of the unobservable short rate.

The classical LMM, proposed by Brace et al. (1997) and Miltersen et al. (1997), describes the evolution of
a non-overlapping set of simply compounded LIBOR rates. These rates are assumed to follow a log-normal
distribution. The model admits a wide use of volatility functions and correlation structures between the for-
ward rates. It is derived in the so-called single-curve (SC) framework, which prevailed before the credit crisis
of 2007.

Differences between same-currency rates of distinct index tenors have always been present in the market,
also prior to 2007. Before the most recent crisis, for example, the LIBOR rates and the Overnight Indexed
Swap (OIS) rate with the same maturity would closely track each other, keeping a distance (spread) of a few
basis points. Similarly, swap rates with the same maturity, but based on LIBOR rates with different tenors,
would be quoted at a relatively small non-zero (basis) spread. These spreads were in general assumed to
be zero when constructing zero-coupon curves or pricing interest rate derivatives. Because of the neglected
spreads, the forward rates and discount factors could be represented by the same curve. This considera-
tion characterizes the SC framework, in which LIBOR rates could be seen as risk-free and forward rates were
obtained by replication with risk-free discount bonds.

T T T ;
00k 3m EUR LIBOR-0IS (EOMNIA) spread
——— 3 year EUR 3mi3m Basis Swap Spread

basis points
g

205

Figure 1.1: Spread development from January 2004 to April 2014 (Grbac et al., 2015).



2 1. INTRODUCTION

After August 2007, market rates that had always been consistent with each other suddenly revealed a degree
of incompatibility that worsened with time. The spreads started to evolve randomly over time and became
too large to be considered negligible. For instance, the spread between the three-month LIBOR rate and the
corresponding EONIA rate drastically widened after the credit crunch, as can be observed in Figure 1.1. Like-
wise, the swap rate based on semiannual payments of the six-month LIBOR rate became different from the
same-maturity swap rate based on quarterly payments of the three-month LIBOR rate (see again Figure 1.1).
The implicit assumption that the market is free of default risk was not valid anymore and the LIBOR rates
stopped being seen as risk-free. Consequently, these rates could no longer be replicated by risk-free discount
bonds.

The notion that one curve could be used for both generating and discounting cash flows was challenged,
which led to the rise of the so called MC framework. Within this new framework, plain vanilla interest rate
derivatives are priced by calculating the forward rates on a curve representing the LIBOR rates, whilst the dis-
count factors are computed using a curve that reflects the funding cost. In order to price exotic interest rate
derivatives, the term structure models have to be extended to incorporate the new market conditions. Two
main approaches are identified in literature. The first assumes a deterministic spread between the discount
and the forward curves, whereas the second models the evolution of the spread as a stochastic process.

The first research objective consists in extending the classical LMM to accommodate the MC framework.
In this thesis a constant spread is considered between the forward LIBOR curve and the OIS curve that is
used for discounting. Similarly to the SC LMM case, the forward OIS/LIBOR rates and the swap rates cannot
be jointly (log-)normal. In order to be able to price a swaption analytically, the dynamics of the correspond-
ing swap rate are approximated by a (log-)normal formulation. The approximated swap rate instantaneous
volatility can be used in Bachelier’s or Black’s model to price the swaption. The accuracy of this volatility
approximation is tested by comparing the Monte Carlo prices of a set of European swaptions with the corre-
sponding prices obtained using the approximation.

The second research objective is to investigate the impact of the MC LMM on exotic interest rate deriva-
tives. In this thesis Bermudan swaptions are considered. The Bermudan swaption prices computed with the
MC LMM are compared to the ones generated by the one-factor Hull-White (IFHW) model. The most no-
ticeable difference is that the IFHW assumes perfectly correlated interest rates, while the MC LMM admits
more involved correlation structures among the forward rates. The prices of 30 distinct Bermudan swaptions,
whose underlying payer or receiver swaptions have different underlying tenors and strikes, are compared.

This resport is structured as follows. Chapter 2 presents the fundamentals of interest rate modeling. Discount
bonds are introduced and the definition of the forward LIBOR rate is given under the SC and MC frameworks.
The valuation of swaps is addressed and subsequently market pricing formulas for caps/floors and swaptions
are presented for both the SC and the MC setups. Chapter 3 is devoted to the description of the LMM. The
first half of this chapter describes the LMM in the SC framework, defining the dynamics of the forward LI-
BOR rates and presenting a possible parametrization for the instantaneous volatility and for the correlation
structure. The second half focuses on the MC LMM, explaining potential model extensions and detailing the
model formulation. It also illustrates how Monte Carlo can be used to pricederivatives and it shows how to
price swaptions under the MC LMM using the swaption volatility approximation. Before being able to price
exotic derivatives, the model has to be calibrated to market data. In Chapter 4 the MC LMM is calibrated to the
swaption market, in particular to implied swaption volatilities. The use of the analytical closed-form swap-
tion volatility approximation ensures a fast calibration as the swaption volatilities can be determined rapidly
without Monte Carlo. Results are shown for 15 different sets of implied swaption volatilities, each charac-
terized by volatilities corresponding to swaptions with different underlying tenors and strikes. In Chapter 5
the price impact of the MC LMM on the Bermudan swaption prices is investigated. Chapter 6 presents the
conclusions of this research.



FUNDAMENTALS OF INTEREST RATE
MODELING

The purpose of this chapter is to give the reader a complete overview of the mathematical framework of in-
terest rates derivative pricing. The first section is devoted to the presentation of a short selection of concepts
from stochastic calculus that are required to understand the subsequent parts. A special relevance will be
given to the changing of numéraire technique. The sections that follow focus on interest rate modeling. Zero
coupon bonds are introduced in Section 2.2. These type of bonds are considered to be the building blocks for
the pricing formulas of the interest rate products that are analyzed in this thesis. Furthermore, the interest
rates that play a fundamental role throughout this thesis will be addressed. Section 2.3 describes Bachelier’s
and Black’s model, which offer a tool for pricing interest rate options. The classical single-curve interest rate
modeling framework is presented in Section 2.4, together with the multi-curve approach used after the credit
crisis. The last section of this chapter will introduce the pricing formulas for some basic interest rate instru-
ments including swaptions and swaps. Swaptions will be used in the calibration of the LMM in Chapter 4,
whereas swaps are relevant for the definition of Bermudan swaption instruments, as will be seen in Chap-
ter 5. The vanilla interest rate products will be valuated under both the single-curve and the multi-curve
frameworks.

2.1. PRELIMINARIES

Consider a financial market on the finite time horizon [0, T] where d financial assets are traded. It is assumed
that the market is continuous and frictionless such that a market participant can enter into bids or offers
at any time during a trading day with no transaction costs and no taxation. The prices of the traded assets,
denoted as the d-dimensional stochastic process X (¢) = (X; (),..., Xg4 ()7, are Itd processes:

dX(t):,u(t,X(t))dt+a(t,X(t))dW®(t), (2.1)

where u(t,X(1)) € RdX1, o(t,X(1) € R4*P and with W@ (1) = (W@ (t))tz() representing a p-dimensional Brow-
nian motion under a probability measure Q.

Let N (f) be a strictly positive, non-dividend-paying asset following an It6 process. N (?) is said to be a
numéraire if the asset prices X (#) in the market are denominated in terms of this process. X" (1) = (X; (£) /N (z),
o Xg(IN e’ represent these normalized prices. Associated with each numéraire N (¢) there exists a
probability measure QN such that X" () is a martingale under this measure. Q" is said to be a probability
measure induced by N.

Consider a derivative security whose payoff at time T is given by the random variable V (T). According to
the fundamental pricing formula the following holds:

v =NOEY

@] . @2)

N(T)
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Let M (t) and N (f) be two numéraires with associated equivalent martingale measures Q™ and QV, respec-
tively. From (2.2) follows

~ M [ V(D] oV [ V(D)
V()= M(DE; [—M(T) =NOE | T |
that can be rewritten as V(T VT M(T) /M
v =£" Y =" (1) MIT)/M(®) | 2.3)
M(T) M(T) N(T)/N(p)

The relation in (2.3) shows how to obtain the price of a derivative security under different equivalent martin-
gale measures by changing numéraires. This changing of numéraire technique is often used in practice when
complex expectation functions of derivatives with multiple sources of risk are considered. With a properly
chosen numéraire, the technique allows the applicant to reduce the number of sources of risk and there-
fore it simplifies the computations involved in the pricing of a particular derivative (Benninga et al., 2002).
Formula (2.2) will be used in Section 2.5 to price swaps, swaptions and caps/floors. For a more extensive
discussion on the change of numéraire technique, see (Andersen and Piterbarg, 2010a), (Brigo and Mercurio,
2007) and (Pelsser, 2000).

2.2. DISCOUNT BONDS AND INTEREST RATES

Interest rates play a prominent role in the economy. They reflect the cost of borrowing or the profit from
lending money and can be seen as a measure of the time value of money. The dependence of the rates on
time is shown in the term structure of interest rates. This concept is represented as a curve where a specific
interest rate (or discount bond, see below) is assigned to every future date.

Consider a money-market account (B (f));»9. This account represents a risk-less investment with value 1
at initial time 0, which accrues a continuously compounded risk-free interest rate r. It satisfies the ordinary
differential equation

dB(t)=r(t)B(t)dt, B(0)=1,

which implies
B(t) = ehords, (2.4)

Let D (t, T) be a quantity at time ¢ that is equivalent to one unit of currency at time 7. This quantity is known
as the stochastic discount factor and is defined as

D, )= B0 _ s rods, 2.5)
B(T)

A zero coupon bond with maturity T, also called a discount bond, is an asset that guarantees the holder a
payment of a unit amount at some future date T and without intermediate cash flows occurring. Let P (¢, T)
denote the value of such a bond at time ¢, hence P (7, T) = 1 by definition. Zero coupon bonds are fictitious
financial securities as their prices are not directly observable. They are considered to be the building blocks
for pricing formulas of all interest rates products since each fixed income security can be represented in terms
of those discount bonds. The forward price at time ¢ of a zero coupon bond spanning [T, S], where0< T < S,
is given by the no-arbitrage relation

P(t,S)

P(t,T,9) = )
P(t,T)

(2.6)
or equivalently P (¢,S) =P (¢, T)P(¢t,T,S).

Each payoff has its own convention for measuring the time between two instances, including a different set of
days in the calculation. Define 7 (7, S) as the difference between T and S, expressed in year fractions. A typical
day count convention is for example 7 oc7/365 (T, S) = (S— T) /365. For more details on different conventions
the reader is referred to (Brigo and Mercurio, 2007).

The two quantities D (¢, T) and P (t, T) are linked by relation (2.2) where the money market account is chosen
as numeéraire:

P(t,T)=B(E? [ =2 [e_f,Tr(s)ds] =D, 7)1,

ol
B(T)
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with Q standing for the equivalent martingale measure induced by the numéraire B (¢), also known as the risk
neutral measure. In particular, if r is deterministic, D (¢, T) = P (¢, T) holds. In the case that r is stochastic,
D (¢, T) represents a random quantity while P (z, T) is deterministic.

The market distinguishes between fixed and floating interest rates. The former refers to a constant rate fixed
at initiation time of a contract and that does not change over the instrument’s lifetime. The latter represents
avariable rate that is based on a reference rate.

The reference rate that will be considered in this thesis in relation to floating rate derivative products is the
London Inter-bank Offered Rate (LIBOR). This rate represents the filtered average of bank estimates of inter-
est rates at which a bank is willing to borrow for a given term in the interbank money market, the market in
which banks provide unsecured short-term credits to one another. The LIBOR rate is quoted daily for differ-
ent maturities ranging from 7 days to 1 year and it is fixed for the currencies EUR, USD, GBP, JPY and CHE

An Overnight Indexed Swap (OIS) rate is an interest rate that banking institutions charge to other institu-
tions in the overnight market, the market consisting of overnight transactions.! As the probability of default
of one of the parties involved in the transaction is assumed to be very low due to the short loan period, an
overnight rate has equally a low level of risk. It is considered by the market as the best proxy for a risk-free
rate. The overnight rates for the currencies EUR, USD and GBP are, respectively, the Euro Overnight Index
Average (EONIA), the effective Federal Funds Rate and the Sterling Overnight Index Average (SONIA).

2.3. BACHELIER’S MODEL AND BLACK’S FORMULA

Bachelier’s model serves as an industry-standard method for pricing European options on forward contracts,
relying on the sole assumption of normality of the underlying at expiry under a relevant measure. Because of
this assumption, the model admits negative values of the underlying. Black’s model, also known as Black-76,
forms an alternative pricing model for European options. Contrary to Bachelier’s model, the underlying at
expiry is assumed to be originating from a log-normal process. These two models will be used in Subsec-
tion 2.5.1 to price swaptions and caps/floors.

Consider a European option with maturity T on a specific underlying with value X (¢), where 0 < ¢t < T. Let
Fr (t) be the forward price of X (T) at ¢ such that Fr(f) = [E? [X (T)]. Q represents the equivalent measure
induced by a numéraire N (¢). Let K be the strike price of the option and M the notional of the contract.

The value of a European option can typically be simplified to
V(1) = MN (O E] [w (X (T) - K)], 2.7)

where w = 1 refers to a call option and w = —1 to a put option.
When assuming that X (7) is normally distributed with mean Fr () and standard deviation ov' T — ¢, the
expectation of (2.7) can be computed by means of Bachelier’'s model:

V)= MN(t)Bachelier(t, T.Fr(t),K,0VT—1, w),
= MN () (w(FT(t) —K) N (~wd) +oVT = m(d)),
where

_K-Fr (1)
ovT—t

1 Formally, an Overnight Indexed Swap (OIS) is an interest rate swap whose floating leg is indexed to an overnight rate, daily compounded
over a specific term. The floating rate of an OIS is referred to as the OIS rate. The concept of a swap will be explained in Subsection 2.5.1.
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However, if log-normal dynamics are assumed for X (7)), then Black’s model can be used:

V)= MN(t)Black(t, T,Fr(0),K,oVT—1, w]
=MN (t) (w (Fr (&) N (wdy) = KN (wdy))),

where

_log(Fr()/K)+oVT—1t/2
ovT—t '

dy=di—oVvT—-t(1).

The implied Bachelier or Black volatility ¢ (¢) is the value of the volatility of the underlying financial security
such that, respectively,

dq

MN(t)Bachelier(t, T,Fr (8),K, 0 (O)VT - l‘) = Vinarker (),

or
MN (1) Black (1, T, Fy (1), K,5 () VT~ 1) = Vinarer (1).

2.4. THE SINGLE-CURVE AND MULTI-CURVE FRAMEWORKS

Before the credit crunch of 2007, LIBOR rates were seen as risk-free rates and consequently, forward rates
could be replicated by discount bonds. Interest rates of different index tenors would closely track each other,
keeping a distance of a few basis points. As an example, the spread between the three-month LIBOR and the
corresponding EONIA rate had (almost) always been well below 10 bp (see Figure 1.1). These spreads were
considered to be negligible, which justified the use of a single curve to value interest rate instruments. This
curve served both in the generation of future cash flows and in the calculation of their present value. This
methodology is known as the single-curve (SC) framework.

After August 2007, the spread between market rates that had until then been equivalent widened, which led
to a segmentation of the interest rate market along distinct tenors. Consequently, different forward LIBOR
curves related to distinct tenors were required in order to project cash flows. The implicit assumption that
the market is free of default risk broke and the LIBOR rates could not be considered risk-free anymore. For
collateralized derivatives this meant that the LIBOR rate was no longer a suitable proxy for the discount rate.
In the current market conditions the OIS rate can be regarded as the best available proxy for risk-neutral rates
and is therefore used for discounting. This approach, which uses multiple forward LIBOR curves to generate
cash flows and one curve to discount it, is knows as the multi-curve (MC) framework.

As mentioned above, the SC framework considers a single curve C that is used for both discounting and for-
warding cash flows, given by
C={T—-PT),T=1}?

The simply-compounded spot LIBOR rate prevailing at time T for maturity S > T is defined as

1 (1—P(T,S))

L(T,S) =
T(T,S\ P(T,S)

(2.8)

Furthermore, the simply-compounded forward LIBOR rate prevailing at time ¢ for expiry T > ¢ and maturity
S > T is given by
S
F(;T,9 =EY [L(T,9)],

where @S denotes the S-forward measure induced by the numéraire P (£, S). Note that F (T;7T,S) = L(T,S) is
valid and that F (#; T, S) is a martingale under QS since it holds that

BV (11,9 =B [EY (L(7,9)1],

1Only fully collateralized derivatives are considered in this thesis.
2strictly speaking, this curve is in the form of a zero rate representation, which can be translated into discount bonds by applying specific
transformations.



2.5. INTEREST RATE INSTRUMENTS 7

=2 (L(T,9)],
=F(;T,S).

Moreover, because quantity (2.8) is deflated by a zero coupon bond having maturity S, it follows that it is a
martingale under the measure Q3. Hence, the forward LIBOR rate can be replicated by discounts bonds:

FT.S) = 1 (P(t,T)—P(t,S))'

(2.9)
7(T,S) P(,S)

Throughout this thesis, the MC framework consisting of two distinct curves will be considered. Let C? be the
curve used for discounting future cash flows, expressed as a continuous term structure of discount factors.
As pointed out previously, in this research the discount curve with reference date ¢ is represented by the OIS
Z€ero-coupon curve

Cdz{T—»Pd(t,T),th},

stripped from OIS swap rates and defined for all maturities 7. Let F d(t; T, T + x) be the forward rate defined
on C%, having tenor x. This rate is referred to as the forward OIS rate and is given by

T+x
FUGTT+0 =6 [19(TT+v), (2.10)

with Q)Z;” induced by P9 (¢, T+ x),' and L% (T, T + x) representing the simply-compounded spot rate with
tenor x, computed on C? as

LYT, T+x) =

1 1-PUT, T+x)
(I,T+x)| PI(T.T+x) |

Since L4 (T, T + x) is deflated by pd (T, T+ x), it is a martingale under @5” . From (2.10) follows that the
forward OIS rate in the MC framework can be replicated by risk-free discount bounds:

FYHET, T+x) =

d _ pd
1 (P (t,T)— P (t,T+x)). o1

(T, T + x) Pa(t, T+x)

Furthermore, denote by C* the forward yield curve corresponding to a specific tenor x, where commonly
x € {IM, 3M, 6M, 12M}. This curve at time ¢ is composed by

C={x—=F' (T, T+x),T=1},

where the forward LIBOR rates in the MC framework assume the definition

T+x
F*(1; T,T+x)=[E?d [L(T, T+ x)], (2.12)
with L* (T, T + x) representing the simply-compounded spot LIBOR rate having tenor x. As, in the MC frame-
work, the LIBOR rate is not considered to be a risk-free rate anymore, L* (T, T + x) cannot be replicated by
risk-free bonds. For this reason the forward LIBOR rate cannot be expressed in zero coupon bonds as was
done in the SC setup. However, using the same line of reasoning as above, it can be shown that F* (¢; T, T + x)
is a martingale under Qﬁ” . Furthermore, from (2.12) follows that F* (T; T, T+ x) = L* (T, T + x).

It can be observed that the SC framework is a special case of the MC setup as the latter approach collapses to
the SC scenario when considering C* = C and ¢? =C.

2.5. INTEREST RATE INSTRUMENTS

This section provides an overview of the fundamental fixed income instruments that define the interest rate
market. In practice, these basic derivatives often serve as calibration tools in the parametrization of the LI-
BOR Market Model, while more complex and exotic derivatives are ultimately priced by the calibrated model.

1From now on, the measures in the MC framework will adopt the notation Qf,, where the subscript y (mainly d) identifies the underlying
yield curve and the subscript z defines the measure in question.
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The reader will get acquainted with securities that involve the simply-compounded LIBOR rates introduced
earlier. It is first shown how interest rate swaps are priced under the MC framework and later how the valua-
tion expressions of these instruments is simplified in order to accommodate the SC setup. Market formulas
for caps/floors and swaptions are given for both frameworks.

Consider a finite set of tenor dates {Tm}ln\i:0 such that 0 = Ty < T; < ... < Ty, and denote by 7, the length
of the period [T}, Trn+1], expressed in year fractions. Denote the forward LIBOR rate over [T;, Ti+1] as of
time ¢ by F; () := F(t; T;, T;+1) in the SC setup and by Fl?‘(t) := F*(t; T;, T;+1) in the MC framework. Let
F(t) = (Fo(),...,Fn—1 ()" and F* () = (Fé‘ (t),...,Fj\‘,_1 (z‘))-r be N-dimensional vectors of forward rates in
the SC and MC case, respectively. Note that F; () and F’ lx (1) solely exist when 0 <t < T;.

Furthermore, for simplicity of notation, denote by P; (¢) := P (t, T;) the time ¢ value in the SC setup of a zero
coupon bond with maturity T;, for i € {0,..., N}, where ¢ < T;. Similarly, P¢ (1) := P4 (£, T;). Define the

N + 1-dimensional vectors P (¢) = (Py (£),..., Py (£)) T and P% (¢) = (Pg (t),...,Pl‘f, (t))T for, respectively, the SC
and MC frameworks.

2.5.1. PLAIN VANILLA INTEREST RATE SWAPS

An interest rate swap is a contract in which two parties agree to exchange streams of cash flows at future pre-
defined dates. These streams are known as the legs of the swap. A plain vanilla fixed-for-floating swap, from
now on referred to as a swap, involves a leg consisting of fixed rate payments and a leg of floating rate pay-
ments. Throughout this thesis the floating leg will be indexed to the LIBOR rate.

The frequency of the payment periods of the legs can be different but for simplicity of notation it is assumed
that the frequency is the same. In this thesis the generalization is made that the payments are denoted in
the same currency and that all cash flow exchange dates of the fixed and floating legs coincide. Furthermore
the legs are based on the same notional amount which is never physically exchanged but serves as a basis for
determining the interest payments. Moreover, in practice only the difference of the two cash flows at each
payment date is paid out by one of the two parties.

The terminology of a swap refers to the fixed leg. The contract in which a fixed leg is paid and a floating
leg is received is referred to as a payer interest rate swap, while the opposite case is known as a receiver interest
rate swap.

Consider a swap over the time interval [T, Tn], with payment dates Tj1, i € {r,..., N — 1}. At each time instant
T;+1 the fixed leg pays an interest on the notional M based on the fixed rate K while the floating leg payments
rest on the LIBOR rate set at the previous time instant 7;. The LIBOR rate resets at dates T,..., Ty—; and the
payments occur at dates Ty41,..., Ty. The swap tenor is defined as the time distance between T, and Ty,
expressed in year fractions. Commonly, a T, x (Ty — T;) swap refers to a swap with settlement date 7, and
swap tenor Ty — T;.

Let T),, T and Ty be time instants such that T, < T, < Tn. In the MC framework, the value of an inter-
est rate swap over [T}, Tn] at Ty,;, depending on the states P4 (Typ)and F* (Ty,), is determined by summing
over all the swap’s payments and discounting the cash flows to time T,:

N-1 Tjw1

Q
Stoaw (T P9 (T B (1)) = X PRy (T)ESY (M0 (17 (13, Tye) = K],
j=r
N-1 4 @Tj+1
=M Z TPy (T w|Ep [LY(T), Tin)| - K|,
j=r
N-1
=M} 7P, (Ty) w(Fj-‘(Tm) —K), (2.13)
j=r
where ng ! is the Tj+1-forward measure related to numéraire P;.’l+1 (t) and w is an indicator function with

w =1 denoting a payer swap and w = —1 a receiver swap. Note from (2.13) that the value of a swap at time
T, is solely dependent on the term structure of interest rates observed at that time. Expression (2.13) can be
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rewritten as

N-1 YN 1P (Ti)
Sira) (Tm,Pd(Tm),F"(Tm)) =M Y 1P (Ty) w( I F;‘(Tm)—K),
j=r Yo, TiPj (Tm)
= MAN (T P (T)) w0 Ry (T P9 (T B (T)) = K, (2.14)

where
4 N-1 p
A (T P4 (T = X 73P4 (T,
j=r
is known as the annuity of the swap and
N-1 d
Z]’:r ijj+1 (Tm) X
No1 7 Fj (Tm),
Yo, TG (Th)

L5 TP (Tn)
= ), (2.15)
AN (T, P4 (Thy))

Rirovt (T P (To) B () =

is called the swap rate. The latter is interpreted as the fixed rate K such that the value of the swap at time T,
is equal to 0. It can be seen as the weighted average of the forward LIBOR rates. Furthermore, the swap rate
is a martingale under the annuity measure Q;’N , induced by A, (£, P9 (1)).

In the SC framework, equation (2.13) can be simplified as the forward LIBOR rate can be replicated by zero-
coupon bonds. The adapted formulation becomes:

N-1
StrN) (Tpo P(T) ,JF(Ty)) =M Y T Pj1 (Tr) w(Fj (Ty) — K),
j=r
N-1 Pj(Ty)—Pji1 (T,
=M Tij(Tm)w(i( iU =Py ”’))— )
i= Tj Pji1(Tm)

.

N-—
M )" w(Pj(Tm) = Pjs1(Tn) =T KPjs1 (Tm),
j=r

=Muw

N-1
Pr(Tp) —Pn(Tm) —K Z TjPjs (Tm)), (2.16)
j=r

where the second equality follows from (2.9). Note from (2.16) that the floating leg of the swap is independent
from the LIBOR rate tenor, contrary to the floating leg in the MC case. Furthermore, the swap rate expression
in the SC framework assumes the following form:

Pr (Tm) _PN(Tm)
AN (T, P(T))

Rir, Ny (Trn, P(Ti) , F(Ti)) =

2.5.2. EUROPEAN SWAPTIONS

The actively traded swap options, commonly referred to as swaptions, are a large class of vanilla interest rate
derivatives. As the name does suggest, swaptions are options on interest rate swaps. A European swaption is
an option granting its holder the right, but not the obligation, to enter into a plain vanilla interest rate swap at
a future date, the swaption’s settlement date, at a given fixed rate. The market distinguishes payer and receiver
swaptions, which have, respectively, payer and receiver swaps as underlying securities.

Consider a T, x (Ty — T;) swaption with notional M and fixed strike K, where T, < T. The holder of a swap-
tion will exercise the option at time T; if the value of the underlying contract is positive, otherwise the swap-
tion will expire without being exercised, resulting in a value equal to zero. In the MC framework, the value
§[r_ N (Tr,Pd (Ty),F* (Tr)) of a European swaption over [T, Ty] at time T, , depending on the states PA(T )
and F* (T}), is determined using the result of (2.14):

St (TP (T B (1) = (Spe (T P2 (1), B (1))
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= (MAyx (1,9 (1)) w Ry (T, P9 (1), B (1) —K))+,

= M (122 (1) (w By 17,24 (1), F* (1) - K])

with w =1 denoting a payer swaption and w = —1 representing a receiver swaption. For any time T}, such
that Ty < Ty, < Ty, the no-arbitrage relation (2.2) gives:

- | MAp ) (Tr, P4 T (w (R (T, P4 () B (T1)) - K +
Strnl (Tm’Pd (Tm)'Fx(Tm)) = AN (Tmde (Tm)) [Eg,{i r ( r : )A([r,l\[f] (;r,IEdITr)) r : ) ))

= MA N (T, P (Tm))[E%riN [ (Rir (77,2 (1), B (1) —K))+] : 2.17)

Clearly, a swaption depends on the joint distribution of the spanning forward LIBOR rates. Note that a
payer swaption can be interpreted as a European call option on the swap rate with strike K. Likewise, a
receiver swaption is expressed as a European put option on Ry, n; (T, - PA(T,), F* (T;)) struck at K. Hence,

the expectation of (2.17) can be computed by means of Bachelier’s or Black’s model, see Section 2.3. If
Ry (T, P4 (T,),F* (T,)) is assumed to be normally distributed under Q);’N withmean Ry;, ny (Trm, P (T,,), F* (Tm))
and standard deviation o, Ny VT — Tpy, it follows that

St (T P (T0) B (1)) = MAyy (T, P (T30)

Bachelier (T, Ty, Ry,ny (T, B (Tyn) B (Tyn)), K, 015,/ Ty = Ty ).

If, instead, the dynamics of the swap rate are assumed to be driven by alog-normal process under the measure
induced by A, N (t, P4 (t)), the price of a European swaption is computed as
S (T P (o) ¥ (T) ) = MA i (T, P (To))

Black (T, Ty, Ry (T P4 (Tn) B (o)), K, 01180V Ty = Ty ).

In the SC framework, the pricing formula of a swaption is given by

Sir,N) (T, P (Ty) , B (Tn)) = M ANy (T, P (Ty))

Bachelier (T, Tr, Ry, (T, P(Tn) F (T)), K, 0153y T = Ty w),

or

§[r,N] (Tm»P(Tm)»F(Tm)) = MA[r,N] (Tm,P(Tm))

BLack (T, Ty, RNy (T (Tn)  E (T), K, 0150V Tr = Ty )
depending whether the swap rate follows, respectively, a normal or log-normal distribution.

The prices of the European swaptions can be expressed in terms of their implied Bachelier/Black volatili-
ties &[r,N] .

To define the moneyness of a swaption, let Karm = Ryr,n; (To, P (To) , F(To)) and Karm = Ry, (To, P4 (To) , F* (Tp))
in, respectively, the SC and MC frameworks. Both payer and receiver swaptions are said to be at-the-money
(ATM) if K = Karm. When w = 1, the swaption is in-the-money (ITM) for K < Kamr and out-of-the-money
(OTM) if K > Karm. The reverse is true for a receiver swaption.

The concept of co-terminal swaptions will be relevant in Chapter 4, when the approach for calibrating the
MC LMM will be explained. It refers to a strip of swaptions {7y, x (In —Tr,):i =1,...,n}, where 0 < T, <
. < Ty, < Tyand {Ty,}7_ < {Tp}gzo. These instruments have the same maturity Ty but different settlement
dates T,.
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2.5.3. CAPS AND FLOORS

Another class of liquid interest rate vanilla options are caps and floors. These instruments may be used for
calibration purposes. An interest rate cap is a financial security that allows the holder of an asset paying the
floating rate to benefit from floating rates below a certain reference rate and to protect the holder from higher
rates. For an investor with an asset receiving the floating rate, an interest rate floor is designed to protect him
from rates under a predetermined fixed level and to allow him to benefit from higher rates.

A cap/floor can be decomposed into a series of European call/put options on successive LIBOR rates, known
as capletsl floorlets, spanning the lifetime of the cap/floor in question. Consider a T-caplet/floorlet defined
on the time interval [Tj, Tj ], for j €{0,..., N —1}. Furthermore, let M be the notional amount of the contract
and K the predetermined fixed rate. Under the MC framework, the payoff at time T} of the caplet/floorlet
amounts to:
+
M (w(L*(T), Tjn) - K)) ",

where w is an indicator function with w = 1 denoting a capletand w = —1 afloorlet. The price of a caplet/floor-
let at time T, where T, < T}, is determined by discounting the cash flow to T};:
Tj+1

¢ (Tn P () B (1)) = Mo PY, (TR [ (w0 (L5 (77, Ty) - K)) ]

Now consider three time instants T}, T, and Ty such that Tj, < T, < Ty. As mentioned before, a cap/floor
is a strip of caplets/floorlets on successive LIBOR rates, each with notional M and same strike K. Hence, the
value Cj;, N (Tm, P4 (T,,),F* (Tm)) of a cap/floor over [T}, Ty] at time T}, depending on the states P4 (T,,) and
F* (T},), is given by the sum of the individual caplets/floorlets at T,:

N-1
Cirvt (T P4 (Ton) B (T)) = Y- 5 (T PO (To) B (T,

~.

=r
N-1 QTj+1

=M Y 1P (TE  [(w((T), Tjs) - K))
j=r

+

(2.18)

The marginal distributions of the forward LIBOR rates spanning the lifetime of the derivative security are
sufficient to establish the price of caps/floors. In contrast to European swaptions, their joint distribution does
not play a role in computing the expectation. Recalling that L* (T}, Tj+1) = F i (T;), (2.18) can be expressed as

Clrawt (T P (To) B (Ti) | = MNZ_I 7P, (Ty) [E%EM [(w (F2 (1)) - K))+] . (2.19)

j=r

This expectation can be computed by means of Bachelier's model when assuming normal dynamics for
all forward LIBOR rates F]x (T;), j € {r,..., N—1}, with respective means F]x (T),) and standard deviations

0j+/Tj— Ti. The price of a cap/floor then becomes
d N o
Curnt (T P () B ()| = MY 7P, (T) Bachelier (T, Tj, Ff (T)  K,0jy /T = Ty, ).
j=r

If the forward rates are assumed to follow a log-normal distribution, the price of a cap/floor is given by

N-1
Cirn (Tm,Pd (Tn) , F* (Tm)) =M Y ;P9 (Tm)Black(Tm, T}, F¥ (Ty), K, 07/ Tj = T, w)
j=r

The price at time T}, of a cap/floor over [T, T] evaluated under the SC setup can be determined by either

N-1

C[r,N](TmrP(Tm)yF(Tm)):M Z ijj+l (Tm)BaChelier TerT])F](Tm))K)U] T]_Tmrw ’
| Vo= Ta)
or
N-1

Cir,N) (T P(Ty) B (Ty)) = M Y. 7 P41 (Tya) Black (T, T, Fj (Ton) , K, 01/ Tj = Ty w),
j:r ( )
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depending whether normality or log-normality of the forward LIBOR rates is assumed.

Let ¢ ; denote the implied Bachelier/Black volatility corresponding to the j th caplet/floorlet. A cap/floor can
be quoted in terms of its implied flat volatility &. This is the constant implied volatility that provides the exact
market price of the option when inserted for 5, j € {r,..., N -1}, in each caplet/floorlet valuation formula.
This flat volatility is constant for each caplet/floorlet and varies per cap/floor depending on the maturity of
the derivative.

To define the moneyness of a cap and a floor, let Karm = Ry, n (To, P (To) , F(Tp)) and Karm = Rjr N (TO, P4 (Ty),
F* (Ty)) in, respectively, the SC and MC frameworks. Both instruments are said to be ATM when K = Karym. In
the case of w =1, the cap is ITM when K < Karm and OTM if K > Karym. For the floor the reverse is true.



THE LIBOR MARKET MODEL

This chapter is devoted to an extensive discussion on the LIBOR Market Model (LMM). The classical, single-
curve LMM will firstly be introduced in Section 3.1 as its model formulation will later be extended in order
to accommodate the use of multiple curves. The SC LMM models the dynamics of the forward LIBOR rates,
which are fully characterized by the specification of the correlation and instantaneous volatility functions.
Possible parametrizations of these structures are treated in Subsection 3.2.1. To be able to simulate the for-
ward LIBOR rates in practice, their dynamics have to be specified under one common measure. In Section 3.3
the characterization of the LMM under the spot measure is presented, whereafter the rank reduction tech-
nique to speed up the simulations is introduced in Section 3.4. Section 3.5 presents the formulation of the
LMM in the multi-curve framework. A complete description of the application of the Monte Carlo method
to price interest rate instruments is given in Section 3.6, together with an empirical test on the identification
of the appropriate time step and a suitable number of simulations. In order to be able to calibrate the MC
LMM to the swaption market, it is important to price swaptions under the model. To this end, an approxima-
tion formula for the swap rate volatilitiy is derived in Section 3.7, whose accuracy is tested in Section 3.8. For
completeness, the valuation formulas for caps/floors under the MC LMM are included in Section 3.7 as well.

3.1. MODEL DYNAMICS

Consider a finite set of tenor dates {Tm}%zo such that 0 = Ty < T; < ... < Ty, and denote by 7, the length
of the interval [T}, T)n+1], expressed in year fractions. Let Fy (f) be the forward LIBOR rate prevailing over
the interval [Ty, Tj.1], where 0 < t < T}, and denote by F(f) = (Fy (£),...,Fy_1(£)) T the N-dimensional vec-
tor consisting of these rates. Introduce « () as the time index such that a (¢) = min (k: Ty = ¢) holds. Hence,
Tan-1 < t < Ty with T_; = 0is valid. This parameter represents the first upcoming reset moment with re-
spect to time ¢, if ¢ is not equal to a fixing date. In the case of ¢ coinciding with a reset date T, a (f) represents
this particular fixing date.

Once the fixing time Ty, k € {1,..., N — 1}, of a certain rate F. (t) has been reached, the forward rate will remain
constant for all # = Ty. Consequently, there is no need to model the rates the fixing date of which has already
expired. Only the forward rates Fy 1) (£), Fa(+1 (£),..., Fn—1 (t) need to be simulated. As shown in Section 2.4,
the forward LIBOR rate Fy (f) has to be a martingale in the Ty -forward measure Q”++1. According to the
Martingale Representation Theorem (Shreve, 2004), it then holds that

AFe(t) = ¢ (F (D) sk (0T AW (1), 0=t<Ty, kela(d,...N-1},

where WO'*! (1) is a R"-valued, element-wise independent Brownian motion under Q7¢! and s (¢,) is a
h-dimensional vector that is allowed to depend on the current time ¢, but that has to be deterministic and
bounded.! The function ¢ (Fy ()) appears in different parametrizations, depending on the desired distribu-
tion of the forward LIBOR rate dynamics. The formulation ¢ (F ()) = 1 models normally distributed forward

1n theory, s (£) can be a stochastic process. This type of diffusion coefficient give rise to the so-called stochastic volatility market
models, whose main advantage is the capacity to reproduce the implied volatility smiles and skews as can be seen in the market.
However, this is not the scope of this thesis and therefore a deterministic function sy (¢) will be considered throughout this thesis.

13
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rates, while ¢ (Fy (t)) = Fx (#) specifies log-normal dynamics. The value h, 1 < h < N, represents the number
of independent driving Brownian Motions, also called factors. If & = N, the forward rates are said to be mod-
eled under full rank, whereas for h < N they are modeled under reduced rank.

Under the measure @Tk+1 only the forward LIBOR rate Fy () will be a martingale. In order to develop an
arbitrage-free framework, it is required that all forward rates are martingales under a specific measure. When
modeling the forward rate processes in Q’¥+1, the dynamics must be described as

dF,»(r)=¢(Fi(t))si(r)T(p,-(t,F(t))dew@T"“(r)), 0<t<Ti, iefa(®,..N-1}, 3.1

with the drift parameters given by

ko TioED)s; @)

_Zj:i+1 1+7;F; (1)

i (5, F(£)40, fori=k,
vk 7;0(F;(0)s; (1)

j=i+l l+Tij([) ’

fori<k,

fori> k.
See (Brigo and Mercurio, 2007) for a proof.

The term s; () in (3.1) determines both the volatility and the correlation structure. A common representa-
tion for the diffusion coefficient is

si()=0; () A; (1), (3.2)
where o; (f) represents the total (deterministic) volatility of the i* forward LIBOR rate and A; (#) is abounded,

h- dimensional vector-valued deterministic function defined as A; (#) =s; () / [Is; (#)|l (a proofis found in (Re-
bonato, 2002)).

The correlation among two forward rate increments dF; (t) and dF, (t), where i,m € {0,..., N —1}, has the
form!

si (1) sm (1)
Isi (D)l lIsp (DI
=A@ A (D),

p (dF;i(t),dFy (1) =

with ||-|| representing the Euclidean norm. For simplicity of notation, let p; ,,, (£) := p (dF; (t),dFy, (1)).

pi,m (1) = 1 always holds for & = 1, resulting in perfectly correlated forward rates. When more Brownian mo-
tions are added, the ability to capture complicated correlated structures improves. This phenomenon is re-
ferred to as decorrelation. On the downside, the model becomes more complex and the computational effort
increases.

The representation (3.2) formally separates the correlation and the volatility structures. To fully characterize
the dynamics of the forward rates in the LMM, the function o; (f) and the matrix p (¢), whose entries are given
by p; m (£), have to be exogenously specified. A choice for a possible volatility and correlation parametrization
is given in Section 3.2, where h = N is assumed. The implications of modeling the reduced rank dynamics for
the correlation matrix are explained in Section 3.4.2

3.2. SPECIFICATION OF THE MODEL INPUTS

One of the main advantages of the LMM is the high degree of freedom to choose distinct volatility and cor-
relation structures. Each characterization gives rise to a different version of the model. The simultaneous
specification of the time-dependent volatility and correlation entirely determines the dynamics of the for-
ward rates. In this chapter, a way to describe the instantaneous volatility function o; () and the correlation
function p (?) is presented.

(dF;(1),dFm (1))

V{AdF;(OY(dFpm ()

2Simulating the forward LIBOR rates under reduced rank has no influence on the function o; (¢) as it does not depend on h.

LThis expression follows from the correlation definition p (dFi (t),dFm (t)) =
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3.2.1. INSTANTANEOUS VOLATILITY PARAMETRIZATION

A variety of choices and possibilities exists for modeling the instantaneous volatility o; (¢) of a specific for-
ward rate F; (t). Volatilities show a complex functional dependence on a set of different drivers, the calendar
time ¢ and the expiry date T; of the rate being the most common ones. Through the dependence on maturity
T;, different forward rates respond in distinct ways, at the same point in time, to the same Brownian shock. In
a similar way, different values of T; — ¢, representing the residual time to maturity, lead to distinct responses
of one specific rate to Brownian shocks of the same magnitude.

When choosing a particular shape of the instantaneous volatility, it is important to have a view on the evolu-
tion of the term structure of the caplet implied Bachelier/Black volatilities &; (¢), which are directly connected
to the instantaneous volatilities o; (f). This term structure is expressed at a particular time T; by the graphical
representation consisting of the points

{(Ti11,6i11 (17), (Ti32,0 142 (T3)), ..., (Tn-1,6 n—1 (T},

where
[ (@ m (s)2 ds

6m(t)= T P
=

, m=i+1,...,N—1,

represents the implied Bachelier/Black volatility. Hence, the term structure of volatilities at time T; is the
graphical representation of the reset dates T}, m =i +1,..., N — 1, against the average volatilities &, (T;) of
the instantaneous volatilities o, () over the period [T;, T,,]. Figure 3.1 presents an example of a term struc-
ture of implied Bachelier volatilities at Tj. See (Brigo and Mercurio, 2007) for more details on this topic.
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Figure 3.1: Example of the term structure of implied Bachelier volatilities.

According to Rebonato (2002), it is plausible to assume that the current term structure of implied Bache-
lier/Black volatilities can approximately be reproduced at a future date, meaning that its shape does not
change significantly over time (see Figure 3.2). This phenomenon is known as time-homogeneity. The pres-
ence of this property in the term structure is a reason to impose a similar characteristic on the shape of the
instantaneous volatility curve. A modeler thus believes that forward rates with a specific residual time to ma-
turity have the same levels of volatility as forward rates at a future date with that same residual maturity time.
Sporadically, the term structure of volatility can undergo some changes in its shape over time. The instanta-
neous volatility function should be flexible enough to take such changes into account.

Other noticeable features of the term structure of implied volatilities are the steep increase in implied volatil-
ities from the very short maturities up to approximately 2 or 3 years and the monotonically decrease after
this maturity. The volatility functions should have a flexible form in order to be able to reproduce either a
humped or monotonically decreasing instantaneous volatility shape. The latter type of shape is appropriate
if high levels of volatility are expected for the earliest-expiring rates in the near future. Note that the presence
of a hump in the term structure of implied volatilities is not a direct reason for imposing a similar shape on
the instantaneous volatility curve. Rebonato (2002, 2005) provides a financial justification for the humped-
shaped instantaneous volatility.
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Figure 3.2: Example of the evolution of the term structure of implied Bachelier volatilities.

One distinguishes two main methods for specifying the instantaneous volatility. The first involves a piecewise-
constant form where the instantaneous volatility of a particular forward rate is assumed to be constant be-
tween two reset dates. Usually, this type of volatility includes a number of parameters to be estimated that is
many times larger than the number of instruments considered in the calibration set. The calibration proce-
dure is said to be overparametrized, which may lead to an overfit of the volatility structure.

In order to avoid this problem, the instantaneous volatility function can be represented by some paramet-
ric form, thus reducing the number of parameters to be estimated. This will eventually result in a more stable
calibration routine. Rebonato (2002) argues that functions of the general form

o ()=g(T) f(T;—-1),

display several desirable financial and computational features. The dependency on the remaining time to
expiry T; — t of the forward rate F; (f) ensures that the instantaneous volatility behavior modeled today is the
same as its behavior modeled in the future, satisfying the time-homogeneous property (see (Brigo and Mer-
curio, 2007)). In what follows, the actual functional forms of the different functions f and g will be specified.

CHARACTERIZATION OF THE FUNCTIONAL FORM OF [ (T; — f)

The time-homogeneous component f of the instantaneous volatility should conform to the following fea-
tures:

¢ Tt should be flexible enough to be able to reproduce the humped or a monotonically decreasing shape.
¢ Its parameters should have a clear and transparent econometric interpretation.

¢ One should be able to easily integrate its square analytically, when evaluating the variance. In this way
computationally expensive numerical integration schemes in the calibration procedures are avoided.

Rebonato (2002, 2005) proposes the parametric form
f(Ti-t)=(a+b(T;—t)e 7D+ 4, (3.3)

where a, b, ¢ and d are constant parameters, and shows that it satisfies the above criteria to an acceptable
degree. Joshi (2003a) agrees that this functional form allows an initial steep rise followed by a slow decay,
producing the most common shape observed in the market, the humped one.

Typically the parameters lie in the ranges —0.02 < a < 0.02, —0.02< b <0.02,0<c<5and 0 < d < 0.01.!
To show the individual impact of the parameters on the instantaneous volatility curve, the base scenario

1See http://docs.fincad.com/support/ developerFunc/mathref/LIBORMarketModel.htm for the parameters’ values in the log-normal
LMM. In this model the diffusion coefficients s; (¢) are given by (3.2), with ¢ (F; (¢)) = F; (¢). In order to obtain the values in the normal
LMM, where the diffusion coefficients are represented as (3.2) where ¢ (F; (1)) = 1, the function f obtained through the ‘log-normal’
values should be scaled down by a factor with the same order of magnitude of F; (¢). This translates into scaling down a, b and d.
Parameter ¢ remains intact. In this way the levels of the diffusion coefficients in the normal and log-normal LMM are comparable. A
scaling factor equal to 0.02 is chosen, representing the current approximated average level of the forward rates for the USD currency.
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a = -0.002, b = 0.003, ¢ = 0.50 and d = 0.002 is considered. Four cases are analyzed, each characterized
by the alteration of one single parameter, see Figure 3.3. The parameter a influences the short end of the
volatility curve, determining whether a humped or monotonically decreasing shape will occur. Parameter b
primarily impacts the humped shape, where a greater value of b results in a more pronounced hump. The
exponent decay parameter ¢ controls both the magnitude of the hump and its position whereas d determines
the level of the instantaneous volatilities.

Impact of Parameter a Impact of Parameter b
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Figure 3.3: Impact of the instantaneous volatility parameters.

Note that a + d reflects approximately the values given by the shortest-maturity implied volatilities since the
instantaneous volatilities coincide with the average volatilities when T; — ¢ converges to zero. Furthermore,
parameter d represents the level of the longest-maturity implied volatilities as f (7; — #) tends to d when
T; — t goes to infinity. It follows that, in order to preserve the desired short and long term behavior of the term

structure and to assure a well-behaved instantaneous volatility function, the following constraints must be
satisfied:

e a+d>0,
e d>0,
e c>0.

Throughout this thesis it is assumed that the instantaneous volatility function will show a humped shape,
more frequently observed in the market than the opposing monotonically decreasing form. In order to ensure
this shape, it is necessary to take into account the first derivative of the function at the origin, given by b—ac,
and the location of the extreme (b — ac) / bc, be # 0. The extreme will be a maximum if and only if b > 0 holds.
Furthermore, a < b/c provides the function to rise for small values of T; — ¢, given that b > 0. Usually, the top
of the hump occurs in the last three years before maturity is reached, leading to the condition (b — ac) / bc < 3.
Hence, the functional form f should also satisfy the additional constraints

e b>0,

«a<kt,

b—ac
bc

<3.

The parametric specification f is then able to preserve the qualitative shape of the instantaneous volatility
curve.



18 3. THE LIBOR MARKET MODEL

CHARACTERIZATION OF THE FUNCTIONAL FORM OF g(Ty)

Function (3.3) can be extended to a richer parametric form by multiplying it with a function g, which solely
depends on the maturity date T;. Rebonato (2002) and Brigo et al. (2005) model this functional form by

g(Ty)=ki, i=0,...,N-1,

where k; = 1+¢(T;) is positive and ideally close to one in order to preserve the time-homogeneous property of
the instantaneous volatilities. The parameters k; introduce a degree of flexibility that allow, in specific cases,
an exact calibration to the swaption market, as shown in the next chapter.

The instantaneous volatility function
oi () =ki((a+b(T;—-1)e D7 1+ q), (3.4)

is represented as a parametric core f (7; — t) that is locally altered by the parameter k; at each maturity date
T; (Brigo and Mercurio, 2007). These modifications do not destroy the dependence on the time to maturity,
providing they are small, and maintain the desirable qualitative features of the instantaneous volatility curve.

By introducing the parametric form (3.4) for the instantaneous volatilities, one succeeds to reduce the num-
ber of parameters to be estimated in the calibration routine. The set of volatility parameters that has to be
determined is then limited to a, b, ¢, d and k;, i =0,...,N—1.

An extensive overview of additional volatility functions used in practice can be found in (Brigo and Mercurio,
2007).

3.2.2. CORRELATION PARAMETRIZATION

Having specified the instantaneous volatilities of the forward rates in the previous subsection, one is half-way
to fully describe their dynamics. What remains is the specification of the correlation structure between these
forward rates.

Before explaining how p () can be constructed, it is important to mention that this matrix should satisfy
some mathematical requirements in order to ensure that is a viable correlation structure. It should hold that:
(Al) p;;(H)=1 forie{0,...,N—-1},
(A2) -1<p;;(H=1 fori,je{0,...N-1},
(A3) pi,j (1) =pj,i (D),
(A4) p (1) is positive definite.

Besides the above minimum requirements that must hold for any general valid correlation matrix, it is desir-
able that the forward rate correlation matrix exhibits the following features:

(B1) i~ p;,; () is decreasing for i = j,
(B2) i~ pjyp,i(2)is increasing for a fixed p.

The first property comes down to the observation that the farther apart two forward rates lie, the more decor-
related they should be. This results in a monotonically decreasing pattern when moving away from the '1’
diagonal entry along any column or row. Furthermore, according to Brigo and Mercurio (2007) and Rebonato
(2002), it is usually expected that the rates with a constant time distance between the fixing dates are more
correlated on the long end of the curve compared to the short end. For example, the forward rates maturing
in 1Y and 3Y should be more decorrelated than the rates expiring in 17Y and 20Y. This property leads to the
second feature, stating that the entries along the sub- diagonals should increase.

Two different approaches exist to construct p (¢). First, one can estimate the historical correlations, when
possible. If time series of the forward rates are available, the correlations can be statistically estimated from
these data sets using different basic techniques as explained in (Morini and Brigo, 2003), (Brigo and Mercurio,
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2007) and (Andersen and Piterbarg, 2010b). Unfortunately, in practice this procedure often proves to contain
noise in the data and it is difficult to use. Additionally, Rebonato and Jackel (2011) point out that historically
estimated correlations encounter problems caused by outliers and possible discontinuities in the correlation
surfaces. Lastly, the N —1 x N —1 historical correlation matrices have (N —1) (N —2) /2 entries that have to
be estimated, taking into account symmetry and the ones on the diagonal. This number is often too high for
practical purposes and generally, no reliable estimates are obtained (Brigo, 2002).

To overcome the complications mentioned above, Rebonato (2002) proposes the use of a parametric func-
tion to represent the correlations between the forward rates. This function must be able to reproduce the
most salient correlation features seen in the market. By using a parametrization, the correlation surfaces are
smoother and the number of parameters to be estimated is significantly reduced. Rebonato (2002) addition-
ally points out that it is a realistic choice to impose dependency of the correlation matrix on the remaining
time to maturity:

pi,j (1) =pi,j (T,‘ -1,Tj— t), i,j€{0,..., N—1}.

According to Lutz (2010b), it is sufficient to consider the initial correlation matrix
pij (1) =pi,;(0),

forall f € [0, Tiy—1]. In other words, the correlation matrix is assumed to be constant across time. For simplic-
ity of notation one can therefore define

pi,j=pi,j (D).

Throughout this thesis the so-called simple exponential parametric form
pi,j = e_ﬁ|(Ti_t)_[Tj_t)|’
= e AITi-Tj|, (3.5)

with 8 > 0, will be considered. Rebonato (2005) assures that matrix p, whose entries are given by (3.5), satisfies
requirements (Al)-(A4) for any positive § and hence, it is a valid correlation matrix. Furthermore, property
(B1) is satisfied but unfortunately, parametrization (3.5) does not handle feature (B2) well as all entries of a
particular sub-diagonal attain the same constant value. It does not give any information about the speed of
decorrelation between two rates with a constant time distance T; — T; between the fixing dates. Nevertheless,
even though parametrization (3.5) does not satisfy property (B2), this function is often used in practice be-
cause of its flexible form involving one degree of freedom.

The simplicity of the parametric functions of o; (¢) and p allows analytical integration of the covariance inte-
gral [0 (t)o(t)p;jdt, where p; j can be taken out of the integral since it does not depend on the calendar
time. The precise evaluation can be found in (Rebonato, 2002). Since a closed form solution exists and no
cumbersome numerical integration methods has to be applied, the computation of the indefinite integral
will be significantly faster. This will have a computational advantage in the calibration routine, as the integral
plays a crucial role in this procedure. This will become apparent in Chapter 4.

It is essential to specify the volatility and the correlation structures underlying the LMM realistically in or-
der to obtain accurate exotic derivatives prices. While it is relatively easy to extract information about the
rate volatilities from the market prices of caps and swaptions, this task is more delicate when dealing with
correlations. For this reason it has been decided that throughout this thesis the parameter g will be fixed
prior to calibration. This LMM formulation is sufficiently flexible to be able to be calibrated to a subset of the
swaption market. The calibration procedure comes down to estimating volatility parameters a, b, ¢, d and
ki,i=0,...,N—1.

3.3. THE SPOT MEASURE

When simulating a set of forward rates in the LMV, it is required to specify their dynamics under one single
measure. A convenient choice in practice is the spot measure Q7 ". Under this measure, the bias resulting
from the discretization of the drift is more distributed among the different forward rates than when using
other measures (Brigo and Mercurio, 2007). Furthermore, when simulating independent paths of a set of
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forward rates through time, the drift terms can be implemented in a recursive fashion, thus reducing the
computational effort. This will be explained in more detail in Subsection 3.6.2.

The spot measure is induced by the discrete-time equivalent of the continuously compounded money market
account. The numéraire B* (Ty,), called the rolling over bank account, is the value at time T}, m € {1,..., N},
of an investment of one unit of currency at Ty and it is formed by the following trading strategy:

1. Attime Tj, invest one unit of currency in ﬁ units of T7-maturing zero coupon bonds.

. . 1 . . . 1 . .
2. ét tldme Ty, receive D1 (T0) units of currency and reinvest in P (T0) B3 (1) units of T>-maturing zero coupon
onds.

. . 1 . . . 1 . _ .
3. At time T>, receive BT P> (Th) units of currency and reinvest in P To P (TP D) units of T3-maturing
zero coupon bonds.

4. Repeat this trading strategy at each date in the tenor structure up to time T;,_;.

Hence, by re-investing the received amount at each time instant Tj, i € {0,..., m — 1} in zero coupon bonds
maturing at the subsequent date T;,1, the asset price process B* (Ty;) can be defined as

1

B* (Tp)= ———,
" P (T)

or equivalently as
m-1
B*(T) =B* (F(Ty) = [[ A+1:F; (1)),
i=0

with B* (Tp) = 1.
Under the spot measure, the LMM specifies a system of stochastic differential equations of the form

dFi(t):(p(Fi(t))si(t)T(,Lti(t,F(t))dt+dWQB*(t)), 0<t<T; ie{a(n,..,N-1}, (3.6)

where W@B* (1) is a R"-valued, element-wise independent Brownian motion under @B*, s; (1) is defined as
(3.2) and the drift parameter must be given by

T (Fi (1)s;j (1)

i
wiEO)= 2 e

Jj=a(n)

See (Andersen and Piterbarg, 2010a) and (Fries, 2007) for a proof.

3.4. RANK REDUCTION

In practice, one aims for a fast and computationally viable simulation for the LMM. One way to achieve this is
to diminish the number of driving Brownian motions. Formulations (3.1) and (3.6) allow the number of fac-
tors to be less than the number of forward LIBOR rates to be modeled. As explained in Section 3.1, reducing
the number of driving factors decreases the ability to describe more complex correlation structures. Hence,
the correlation matrix implied by the h, h < N, number of factors will differ from the full-rank correlation
matrix. In this section it is shown how to use principal component analysis (PCA) to form such a reduced-
rank correlation matrix, following the theory presented in (Andersen and Piterbarg, 2010b) and (Rebonato
and Jackel, 2011).

Consider a full-rank matrix p € RV*N, whose entries are determined by (3.5) in this thesis. As p is symmetric
and positive definite, it can be diagonalized as

p=EAE!,

where A € RNV s the diagonal matrix containing the eigenvalues of p in ascending order, E € RV*N is the
matrix composed by the corresponding eigenvectors and E~! is the inverse matrix of E. If p is believed to be
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well-represented by a rank-m representation, PCA can be applied to the correlation matrix, retaining the m
largest eigenvalues and the corresponding vectors. This procedure yields:

P =EmAmEy,,

with E,, € RVN*™ and A,, € R™ . However, the formulation of p,, does not ensure a unit diagonal, a neces-
sary requirement for a correlation matrix. To achieve this, the entries of p,, are normalized. In this way, the
rank-m reduced correlation matrix is a valid approximation of the full-rank matrix p:

PPy
= e, EmAnmE;,} e,
where e, is a N x N diagonal matrix with elements (e,); ; = \/ (EmAmEy!); ;i =1,...,N.

When assuming rank-reduced dynamics, the challenging task is choosing how many factors to retain such
that the most salient features of the full-rank correlation matrix are preserved. To make this decision, the
computational speed and the product to be priced have to be considered.!

3.5. MODEL FORMULATION IN THE MC FRAMEWORK

The classical SC LMM is based on modeling the joint evolution of a set of consecutive forward LIBOR rates
corresponding to a given tenor structure under a common pricing measure. As Mercurio (2010a) explains,
one encounters two types of complications when moving to a MC framework. The first is the need to jointly
model as many forward LIBOR rates as forward curves together with the forward rates corresponding to the
discount curve. The second is the non-validity of the classical assumption that forward LIBOR rates can be
replicated by risk-free bonds.

The first issue is straightforward and can be tackled by adding multiple dimensions to the vector of rates
to be modeled. The second point can be addressed by formulating a new definition of the forward LIBOR
rates that is compatible with the existence of different curves. This extention of the definition to a MC setting
is represented by (2.12).

For simplicity of notation, the theory of this subsection is restricted to the use of two curves, ¢? and C*, but
the concepts can be extended to a case considering n curves. Define a finite set of tenor dates {Tm}lr\r]lzo, com-
patible with curve C* and where 0 = Ty < T} < ... < Ty. Denote by 7, the length of the interval [T, Tr+11,

expressed in year fractions. Let the N + 1-dimensional vector P4 (1) = (Pg @3] ,...,Pl‘\l, (1.‘))T be composed by
the zero coupon bonds computed on ¢, Define the forward OIS rate over [T;, T;.1] as of time ¢ by Fl.d (1),
with 0 < r < T;, and write the N-dimensional vector of these rates as Fi(p) = (Fg (t),...,FI‘\i[ (t))T. F*(¢) =
(Fé“ (1,...,F j\“, (t))T represents the N-dimensional vector of forward LIBOR rates.

3.5.1. POSSIBLE MC LMM EXTENSIONS

The MC LMM is characterized by the modeling of the joint evolution of the forward LIBOR rates and the
forward rates corresponding to the discount curve. As mentioned in Section 2.4, the spread between the
forward OIS and LIBOR rates referring to the same time interval widened after the credit crunch of 2007
and it became important to model those spreads in a realistic way, reflecting the current market conditions.
Several types are proposed in literature:

» Additive spreads, as in Fujii et al. (2011), Mercurio and Xie (2012) and Mercurio (2010a):
Gi():=F'(t)-F'(r), 0<t<T; iefa(®,...N-1}. 3.7)

¢ Multiplicative spreads, as in Cuchiero et al. (2016b) and Henrard (2010):
1+71;F lx ()

Gi(f):= ———L——,
’ 1+7:F4 (1)

O0<t=<T;, i€{al(t),....N-1}. (3.8)

nterest rate instruments that have a high correlation sensitivity will require more factors than products that are less sensitive to the
correlation structure.
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¢ Instantaneous spreads, as in Andersen and Piterbarg (2010b):
T
Pr(y=Pl (el 80 0<i<T;, icfa(n),..N-1}. (3.9)

See (Castagna et al., 2015) for more details on the modeling of the basis spreads.

The MC LMM accommodates both deterministic and stochastic spreads. When considering stochastic spreads,
the SC LMM can be extended to the MC setting in three different fashions, depending whether the spread is
modeled implicitly of explicitly. These cases are characterized by:

1. Modeling the joint evolution of the forward LIBOR rates le (1) and the OIS rates F' l.d (t), where0<t=<T;
andie€{a(t),...,N—1}, asin (Mercurio, 2010a,b).

2. Modeling the joint evolution of the forward LIBOR rates F lx (#) and the spreads g (t) or G; (¢) (depending
on the definition of the spread), where 0< t < T; and i € {a (?),..., N—1}.

3. Modeling the joint evolution of the OIS rates Fl.d (#) and the spreads g () or G; (t) (depending on the
definition of the spread), where 0 <t < T; and i € {a (¢),..., N —1}.

By modeling the dynamics of two out of the three processes F; (1), F, l.d (#) and g (t) or G; (¢) (depending on the
definition of the spread), the dynamics of the third process will be uniquely identified by one of the relations
(3.7), (3.8) or (3.9). In the first possible extension of the LMM, the spreads are determined implicitly, while in
the remaining two they are modeled explicitly. Mercurio (2010a) reflects on the advantages and drawbacks of
the three different extensions.

In a deterministic basis spread model, a given forward or discount curve represents the reference curve. Its
evolution is modeled by a stochastic process, as was done in the classical single-curve LMM. The other curve
is consequently modeled at a deterministic spread over the reference curve.

3.5.2. MODEL DYNAMICS

For this particular extension of the LMM it is chosen to consider a constant spread and to model the forward
OIS rates explicitly. The theory of Section 3.1-3.4 can now exclusively be applied to F’ ,‘j (£). Under the measure

@;"“ only the forward OIS rate F' ]‘f (#) will be a martingale by definition, while others will not. In order for the

LMM to be an arbitrage-free model, the dynamics of the other forward OIS rate processes under @5’“” must

be given by
T+
dFl.d(r):¢(F,.d(t))s,~(r)T(p,-(r,Fd(t))dew@dkl(r)), 0<t<T, icfa(®,..N-1},  (3.10

with the drift parameters defined as

7j(Fd(0))s; (0

_vyk i
Zj:i+1 1+Tij<i(r) » fori<k,
d .
,ui(t,F (t)) 0, fori=k,
d
P CIO) ,
Zj:i+1 1+er7(:¢) ’ fori>k,

where
si(®)=0; (A (1), A;(D)=s;@®)/]s;(DI.

As mentioned earlier in Section 3.3, the simulation of a set of forward OIS rates requires the specification
of their dynamics under one single measure. To this end, define the spot measure Q°, induced by the

numéraire B* (Fd (t)). Under this measure, the MC LMM specifies a system of stochastic differential equa-
tions of the form

aFf ()= (Ff )]s 07 (i (t,Fd(t))dew@ff (1), 0st<Ti, iefa(n,..N-1, (3.11)
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where the drift parameter must be given by

i Tip(FL]sj (@)
Hi(ter(t))z Z %
j=an L+ TE7(D)

This system is equivalent to the one in the SC framework defined by (3.6).

The selection of the spread will influence the type of distribution of the forward LIBOR rates. In Chapter 4
and Chapter 5 the normal forward OIS rates are modeled and hence it is desirable to use Bachelier’s model
to price caps/floors and swaptions. Bachelier's model can be applied in the MC framework if the forward
LIBOR rates are also normally distributed, as is shown in Section 3.7. This can be achieved by considering the
constant additive spread defined by (3.7). Throughout this thesis the spread assumes the form

Gi (1) = G; (To),
=FX(Tp)-FY(Ty), 0<t<T;, i€la(®),...N-1}. (3.12)

The evolution of the forward LIBOR rate process is then uniquely identified by (3.7) and it is represented by
the relation

FF=F'()+Gi(Tp), 0<t<T; iela(d),...,N-1}. (3.13)

Fl.d (#) is a martingale under Qgi“ since, recalling definition (2.11), it is deflated by Pﬁrl (t). With this choice
of spread, the same is true for F lx (1).

3.6. MONTE CARLO IMPLEMENTATION

In Subsection 3.5.2 the arbitrage-free simultaneous dynamics of a set of forward OIS rates under the spot
measure were presented. These forward rates are related to the forward LIBOR rates through the spread de-
fined in (3.12). Ideally, it is desirable to find a closed-form solution to the differential equation that can be
used to price a derivative security, but in some cases this equation may be too complex to solve analytically.

In general, when it is not possible to find an analytical solution to a differential equation, one can resort
to two different ways of computing a derivative security price:

1. Using Monte Carlo simulation to generate paths of the underlying securities under a specific measure
and estimating the expected discounted payoff under the same measure using these paths.

2. Solving numerically a partial differential equation, for example using finite differences.

See (Shreve, 2004) for more details on both methods.

The LMM involves a large number of forward rates to be modeled. Because of the high dimensionality and
the stochastic drift, finite differences are rarely applicable and the model is typically implemented using the
Monte Carlo method. In order to apply the latter, it is necessary to simulate all rates under a common mea-
sure. Throughout this thesis the spot measure will be considered because of its advantages mentioned in
Section 3.3.

3.6.1. DISCRETIZATION OF THE FORWARD RATE DIFFERENTIAL EQUATION

As mentioned in Subsection 3.5.2, in this specific MC extension of the LMM the forward OIS rates are sim-
ulated as stochastic processes. In order to evolve the discount curve in time, the differential equation (3.11)
has to be discretized. In particular, suppose one stands at time ¢, having the knowledge of all forward rates
with maturity dates Ty(s), Ta(n+1, --- In-1. To generate the forward OIS rate paths, the corresponding curve
has to be moved to time ¢ + dt, dt > 0, by creating the samples

Fd

d
a(t+dt) (t+dt)’Fa

(t+d)+1 (t+dt)y---,Ff\i,_1 (t+drp).
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The Euler scheme is applied to discretize (3.11) as this method is straightforward and easy to implement. The
approximated dynamics are given by

Fé(t+dn=F ) +<p(13;1 (t))si 7 (,u,' (t,Fd(t))dt+ \/Ee), 0<t<Ti,, icla(t+ds),....N—1},
(3.14)
where € is an h-dimensional standard normal random variable, i.e. € ~ A (0, I) with 0 an h-dimensional zero
vector and I the h x h identity matrix, and with

i Tip|FL@)|s; (D)
Hi(t,Fd(t))z Y %.
j=a(t) 1+Tij (1)

In Chapter 4 and Chapter 5 the forward OIS rates will be specified by the normal formulation of (3.11), which
also admits non-positive solutions of the SDE. The Euler scheme is a suitable discretization method as the
the increments of this scheme are Gaussian, implying a non-zero probability of the rates crossing zero and
becoming negative.

After determining F9 (¢ + d1), the forward LIBOR rates still existing at time ¢ + dt are obtained by
Ef(t+dp=F(t+dt)+G;(Ty), 0=st<Ti_y, iefa(t+ds),...,N-1}. (3.15)

The possibility exists that a (t + dt) exceeds a (£). In that case, a particular set of rates on the front-end of the
forward OIS and LIBOR yield curve will expire. Consequently, there is no need to model these rates, as they
will drop off the curves when moving to time ¢ + dt.

Given the initial forward curves F4 (Ty) and F* (Tp), the full paths {F% (T}) : i =0,..., N — 1} and {F* (T;) : i =0,...

N — 1} are created by repeating the single-period stepping scheme introduced above on a time-grid fy, f3,....
This time line is referred to as the simulation grid and it can possibly be non-equidistant. In this thesis, how-
ever, a grid is considered with a constant time step dt. In Subsection 3.6.4 it is explained how to choose dr.
As the forward OIS rates are modeled under the spot measure, it is desirable that the simulation grid include
the tenor structure dates Ty, 11, ..., Ty-1. In this way one can keep track of the spot numéraires computed on
the curve without having to use inter- or extrapolation.

Keeping the forward rates between two subsequent simulation grid points constant will give rise to a dis-
cretization error. Making the grid finer by adding more simulation points will decrease this error to the
expense of an increased computational load. According to Andersen and Piterbarg (2010b), considering a
simulation grid that exactly coincides with the tenor structure, i.e. which ¢; = T; holds for all i € {0,..., N -1},
gives an acceptable discretization error, unless the accrual periods 7; are unusually long or the volatilities
reach unusually high levels.

3.6.2. ANALYSIS OF THE COMPUTATIONAL EFFORT

The computational effort involved in advancing the forward OIS and LIBOR rates one step forward in time is
dominated by the computation of the drift coefficients of (3.11). To evolve the forward OIS rates one single
time step, these drift coefficients have to be determined for each forward rate i, i € {a (t + A),..., N — 1}. Since
the terms in the summation of the drift depend on a (¢) and 7, one needs to compute i — a () + 1 terms for
every value of i. Each of these terms consists of roughly & multiplications. Consequently, the computation of
a drift term involves approximately & (i — a (t) + 1) = O (hi) operations for a given i.

Advancingall N —a (¢ + A) forward OIS rates still alive across a step requires @ (hN?) operations. The compu-
tational effort of generating a full path of yield curves scenarios from time 0 to time Ty_; amounts to @ (hN3),
assuming that the simulation grid precisely coincides with the tenor structure. Hence, the drift computations
are growing at rate h N3, rapidly becoming the main bottleneck in terms of computational time when N is
large. The simple application of the first-order Euler scheme requires considerable computing resources in
these cases.

A way exists, though, next to the rank reduction technique to reduce the computational effort since there
is no need to perform O (hN) operations on the computation of each drift coefficient. All drift terms can
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be determined by an @ (hN)-step iteration, invoking the following recursive relationship for y; (¢,F4 (1)),
ie{a(t+A),..., N—1}: _
T (F4 (1) s; (1)

i (1 F @) = i (18 0) + 1+7;F4 (1)

(3.16)

starting from
a(t+A) Tj(,b(ﬁ’.i (t))sj (1)
d o) _ j
Ha(HA)(tyF (t)) = —_—
j=a(n) 1+Tij (1)

Moving the OIS yield curve across a single time step requires now € (hN) operations and, consequently, the
computational effort of advancing the full OIS and LIBOR curves from time 0 to time Ty—; will be @ (hN?)
compared to the @ (th) operations needed without using (3.16).

For more details on this topic, see (Joshi, 2003b), (Joshi and Liesch, 2007) and (Andersen and Piterbarg,
2010b).

3.6.3. PRICING FINANCIAL INSTRUMENTS

This subsection illustrates how the Monte Carlo method is used to determine the price of an interest rate

instrument. Let V (Tr,Fd (T+),F*(T};)) be the price of this instrument at time T, r € {1,..., N — 1}, depending

on F4 (Ty) and F* (T;). When working in the spot measure, the value of the product at time Ty is given by

V (T, F*(T,), F*(T}))
B* (F4(T}))

.
A
To

v (To, B4 (To) F* (1)) = E (3.17)

To determine the Monte Carlo price of (3.17), the following steps are performed:

1. Draw an h-dimensional vector € from the multivariate standard normal distribution.

2. Simulate the sample paths {Fz (Ty):i= 0,...,r} and {F; (Ty):i :O,...,r} using (3.14) and (3.15), re-
spectively.!

3. Compute the value of the interest rate security at Tj as

V(T B (1), B (1))

d —
v (To, i (T0) B (T0)) = —— ]
p

4. Repeat steps 1-3 for p =1,..., H and form the Monte Carlo estimate
. J 1 & d
V (T, B4 (T) F* (Ty) ) = 7L v (To, By (To)  F (Ty), (3.18)

which is an approximation of (3.17).

Optionally, one can construct the 95% confidence interval of the Monte Carlo price by

0, 0/, 0 . ) 0 0/, 0 . ) .
\/_ \/_

with Std representing the sample standard deviation, computed as

1 & -
Std = J 71 Y (V(To, B4 (To) B (To)) - V (To, B4 (To), B (Tp)) .
15

In this setting one is exposed to a second type of error, the statistical Monte Carlo error, which depends on
the number of Monte Carlo iterations H. The bias of the estimator (3.18) decreases, and consequently the ac-
curacy of the approximation increases, for larger values of H. Subsection 3.6.4 shows how to select a suitable
value for H.

See (Glasserman, 2003) for more information about the application of Monte Carlo in the field of Financial
Engineering.

LFor clarity, the subscript p does not refer to a specific forward rate. It is linked to a particular simulated path.
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3.6.4. DETERMINATION OF THE TIME STEP AND THE NUMBER OF SIMULATIONS

Smaller step sizes result in lower discretization errors and with higher numbers of simulations a more ac-
curate Monte Carlo price (3.18) is achieved. However, these desirable features come at the price of a higher
computational effort. Hence, a trade-off between accuracy and speed has to be made when establishing dt
and H. In this subsection suitable values for dt and H are chosen that will be used throughout this thesis. To
this end, the following test is carried out.

1. The finite set of tenor dates {Tm}?ﬂszo is considered, such that 0 = Ty < T} <... < Tgs and 1, = 0.25 for
all m. The instantaneous volatility parametrization (3.4) is used with a = 0.0013, b = 0.0145, ¢ = 0.5028,
d =0.0056 and k; =1.13,i € 10,...,64}1.! These values are chosen to ensure a realistic evolution of the
term structure of volatilities. The correlation among the distinct forward rates is given by (3.5) with
B =0.20.

2. The dynamics of the forward OIS rates (3.11) are assumed to be driven by a normal process, with as
many driving Brownian motions as forward rates to be modeled. Given the initial OIS and LIBOR rate
curves presented in Appendix A, a Monte Carlo evaluation of the strip of co-terminal, quarterly-annual
paying swaptions {1Y15Y,2Y14Y,3Y13Y,4Y12Y,5Y11Y,6Y10Y, 7Y9Y,8Y8Y,9Y7Y, 10YEY,
11Y5Y,12Y4Y,13Y3Y, 14Y2Y, 15Y1Y} with strike K = 2.1% is performed according to the methodology
explained in Subsections 3.6.1-3.6.3 for a particular d¢ and H. The values of the swaptions are ex-
pressed in terms of their implied Bachelier volatilities. The 95% confidence intervals of these 15 Monte
Carlo implied volatilities are computed and the width of the intervals is calculated. The total CPU time
needed to perform this step is recorded.

3. Step 2 is performed for the three step sizes dt = 0.25, dt = 0.1 and dt = 0.01 and for the eight numbers
of simulations H = 500, H = 1,000, H = 5,000, H = 10,000, H = 50,000, H = 100,000, H = 500,000 and
H =1,000,000. Hence, 18 distinct cases are considered in total.?

Tables B.1-B.3 in Appendix B present the results for d¢ = 0.25, dt = 0.10 and d ¢t = 0.010, respectively. For each
specific H, the Monte Carlo implied Bachelier volatilities of the swaptions contained in the strip are denoted,
together with their 95% confidence intervals and the corresponding interval widths. The results are expressed
in terms of basis points. The required CPU time for each case, measured in hours, is listed. Furthermore, for
a given step size, the impact of increasing the number of simulations on the accuracy of the Monte Carlo
implied volatility estimates is analyzed. This is done by calculating the percentage change of the implied
volatilities of the swaptions, determined using a specific H, with respect to the implied volatilities corre-
sponding to the ‘previous’ H. If the percentage change of a specific swaption tends to 0%, the Monte Carlo
implied volatility is considered to be an accurate estimate of the true, unknown, implied Bachelier volatility,
as the Monte Carlo estimate is almost fully converged to this value.

From the tables in Appendix B one can see that, for a given H, the use of very small step sizes does not
improve the accuracy of the Monte Carlo estimates. In fact, considering a value of d = 0.25 results in a dis-
cretization error of the same order of magnitude as the ones corresponding to step sizes of 0.10 and of 0.010,
which is in line with the observation of Andersen and Piterbarg (2010b) that a simulation grid consisting of
exactly the tenor dates is sufficient. From an initial analysis the value of 0.01 has equally proven not to lead
to an increased accuracy, while, on the other hand, requiring extremely long computational times. In view of
the current high volatility environment considered in this study, a step size of 0.10 has been selected in order
to ensure that it would be applicable to all cases under consideration.

Furthermore, since, for a given step size, the percentage variation of the Monte Carlo implied volatility value
tends to zero for a large number of simulations, the corresponding estimates are considered to bear a high
degree of accuracy. In particular, the Monte Carlo prices generated with 1,000,000 simulations are consid-
ered to be almost fully converged, as the widths of the corresponding Monte Carlo windows are remarkably
small. For this reason the value of H = 1,000,000 is used in all simulations, despite the drawback on the
computational load.

1See Subsection 4.4.3 for a justification of the choice of the values of @, b, ¢ and d. The constant value 1.13 of the parameters k; is the
average over the corresponding parameters presented in that same subsection.

2The simulation grid corresponding to each of the three step sizes include the dates on which the payments of the swaptions take place
so that no inter- or extrapolation is required.

3To make a fair comparison of the required CPU time, the same PC is used for each case.
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3.7. VALUATION OF INTEREST RATE DERIVATIVES IN THE MC LMM

In this section it is shown how to price interest rate caps/floors and European swaption in the MC LMM.

3.7.1. PRICING OF CAPS AND FLOORS

The pricing of caps and floors in the MC LMM is straightforward. As mentioned in Subsection 2.5.3, the value
Cir,N (Tm,Pd (Tr),F* (Tyy)) of a cap/floor over [Ty, Ty] at time Ty, with Ty, < T < Ty, is given by

Gl (T2 ) 5 10) =3 Y 7,28 1% (w7 (1) - )
j=r

’

where w = 1 represents a cap and w = —1 denotes a floor. If the LMM assumes either normal or log-normal
dynamics of the forward LIBOR rates, this expectation can be computed by, respectively, Bachelier’s or Black’s
model:

N-1 T;
C[er\l’[\,l]\/[(Tm,pd(Tm),FX(Tm)) =M Z TjP]‘.iH(Tm)Bachelier(Tm,Tj,F]’F(Tm),K, . a?(t)dt, w),
j=r m
or
LMM d RS T
Cirv) (Tm’P (Tm)’Fx(Tm))ZMZTij+1(Tm)Black T, Tjy Ff (Ti) , K, . o2 (nd,w|,
j=r m

with ¢ (#) characterizing the instantaneous volatility corresponding to F ]‘.i (). The implied Bachelier/Black
volatility corresponding to the j* caplet or floorlet is determined as

T,
Jr, 050 dt
Tj—Tm

3.7.2. PRICING EUROPEAN SWAPTIONS

In Subsection 2.5.2 it is discussed that the value §[r, N (T P4 (T, F* (Tm)) of a European swaption over
[T, Tn] at time Ty, with T}, < T < T, is determined as

nN
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with w = 1 denoting a payer swaption and w = —1 representing a receiver swaption. To compute the ex-
pectation by means of either Bachelier’s or Black’s model, it is required that the swap rate be, respectively,
normally or log-normally distributed. However, if the LMM assumes that the forward OIS/LIBOR rates are
(log-)normally distributed, resulting in non (log-)normal swap rate dynamics by definition (2.15). It is in-
consistent to jointly model the forward rates and the swap rates as if they both derived from a (log-)normal
distribution.! Nevertheless, multiple empirical studies in literature have shown that swap rates obtained from
(log-)normal forward OIS/LIBOR rates are not far from being (log-)normal themselves under their relevant
measure. In the LMM, the swap rate dynamics under the corresponding swap measure can be accurately
approximated by exact (log-)normal dynamics. Mercurio (2009) proposes an approach for achieving this in
the MC framework. The rest of this subsection is devoted to the derivation of the approximated swap rate
dynamics in the MC LMM.

Let Ty < t < T, < Tn. The swap rate is represented as a weighted average of the underlying forward LIBOR
rates

Y-1rpd (1)
j=r Jj+1 F)-C(t),

R t,Pd H,Fo|=——m—m—7-—
[r,N]( (8),F* ( )) Arm (P2 0)

IThe interested reader can find a more in depth discussion about the importance of the inconsistent distributional assumptions in
(Brace et al., 2001), (Brigo and Liinev, 2005) and (Rebonato, 1999).
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N-1
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with weights w; (t,Pd (). To lighten the notation, the dependence of the swap rate on P? () and F* (1) is

suppressed in this section. Recall that Ry, (f) is a martingale under @;’N , by definition. The application of
It6’s lemma to (3.21) yields
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where ¢ (x) = 1 specifies the normal model formulation, whereas ¢ (x) = x defines the log-normal formula-
tion. The swap rate instantaneous volatility is clearly a stochastic quantity and consequently, the swap rate
is not (log-)normally distributed.! In order to approximate this diffusion coefficient by a deterministic, time-
depending variant, the following approximation is performed:

ORy, N (2) d
_ ~ . t,P Dl.
GF]‘.’ (1) ( ( ))

Strictly speaking, this is not correct since the weights w; (1, pd (1)) depend on the forward OIS rates. How-
ever, in practice this has proven to be an acceptable approximation for yield curves that are not remark-
ably steep (see (Jackel and Rebonato, 2000) and (Rebonato, 2002)). The weights are then frozen at their time
Tm, To < Ty < Ty, value. This is admissible since the variability of the weights is significantly lower than
the one of the forward rates (see (Brigo and Mercurio, 2007) and (Rebonato, 2002)). Furthermore, accord-
ing to Andersen and Andreasen (1998), for considerably flat curves it is reasonable to assume that the ratio
10) (F]d (t)) / 1) [R[r, N (t)) is nearly constant.? For this reason, it is also justified to freeze the ratio at its time T},
value. One obtains the approximated (log-)normal swap rate dynamics

o(Fd 1)
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where the swap rate instantaneous volatility is deterministic and time-dependent. The expectation of (3.20)
can now be computed by means of Bachelier's model if the forward OIS rates are modeled as coming from a
normal distribution:

SN (T P (To) ¥ (T)) = MAy (T, P (To)| Bachelier Ton, Ty, Ry (T B (Tn) B (T ) K vpg, )
(3.22)
while, if the forward rates are log-normally distributed, Black’s formula can be applied, yielding

SN (T, P (To) ¥ (T)) = MA s (Ton, P (To)| Black (T, Ty, Ry (T P4 (L) B (T)), K, 0170, ),

(3.23)
where
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with the second equality following from p; ; = A; 0’ j (©). This correlation term is taken out of the integral
as it does not depend on the calendar time ¢. In practice, (3.24) is known as the Rebonato’s swap rate volatility

Fé)
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The swap rate instantaneous volatility is given b ———< g i (1).
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2For the case in which ¢ (x) =1, the ratio is always constant by definition.
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approximation. The implied Bachelier/Black volatility is determined by

~ Uir,N]
o =\ 3.25
(nN] =1/ -1, (3.25)

= h(Tm; Try TN’ a, b) c, d;ﬁy kr’kr+1;---»kN—1)y

where the notation h (Tm, T, Tn,a,b,c,d, B, kr, kri1,..., kKn- 1) is introduced to show the explicit dependence
on the model parameters. This representation will be useful in Chapter 4.

Jackel and Rebonato (2000) have tested the accuracy of the SC variant of (3.24) by comparing the Monte
Carlo prices of a particular strip of ATM co-terminal payer swaptions with the corresponding prices obtained
using the approximation. This has been done for a flat yield curve at 7% and the GBP curve of August 10*",
2000. The results corresponding to the flat yield curve show that the swaptions are priced with a remarkable
degree of accuracy when using the approximation: the maximum difference between the prices determined
by Monte Carlo and by Rebonato’s approximation amounts to 2.50 basis points (bp). When considering the
non-flat GBP curve, the approximation worsens and the price obtained using Rebonato’s swap rate diverges
from the Monte Carlo price up to 10 bp. In Section 3.8 a similar test to the one of (Jackel and Rebonato, 2000)
will be performed to analyze the accuracy of (3.24) in the MC LMM.

3.8. TESTING THE ACCURACY OF REBONATO’S APPROXIMATION

3.8.1. TEST DESCRIPTION

In the previous section the MC variant of Rebonato’s swap rate approximation was derived, which depended
only on the forward OIS rate curve at time T,,. In this section a proof of the validity of (3.24) is given by
checking actual European swaption prices. The following test is carried out.

1. The finite set of tenor dates {Tm}‘,‘)fzo is considered, such that 0 = Ty < T} < ... < Tys and 7,, = 0.25 for
all m. The instantaneous volatility parametrization (3.4) is used with a = 0.0013, b = 0.0145, ¢ = 0.5028,
d =0.0056 and k; = 1.13, i €{0,...,44}.! These values are chosen so that the current levels of volatilities
can be reproduced by the model. The correlation among the distinct forward rates is given by (3.5) with
B =0.20.

2. The dynamics of the forward OIS rates (3.11) are assumed to be driven by a normal process, where
as many driving Brownian motions are retained as forward rates to be modeled. The implied Bachelier
volatilities (3.25) of the strip of co-terminal, quarterly-annual paying ATM swaptions {1Y10Y, 2Y9Y, 3Y8Y,
4Y7Y,5Y6Y,6Y5Y,7Y4Y,8Y3Y,9Y2Y, 10Y1Y} are determined, whereafter the corresponding approximated
Bachelier payer swaption prices are computed.

3. Given the initial OIS and LIBOR rate curves presented in Appendix A, a Monte Carlo evaluation of the
chosen payer swaption prices is carried out with d¢ = 0.1 and H = 1,000, 000.

4. The Bachelier payer swaption prices obtained using (3.25) are compared to the corresponding Monte
Carlo prices.

The setup considered in steps 1-3 specifies the reference scenario.? As, in Chapter 4, Rebonato’s swap-

tion volatility approximation will be applied to price swaptions involving other underlying swap tenors and
strikes, itis of interest to analyze if (3.24) also performs well under these circumstances. The individual impact
of these two elements on the approximation is identified by creating new scenarios, in which only one single
element at a time is modified with respect to the reference setup. Steps 1-4 are again performed, considering
these new scenarios. The additional setups involve the following sets of payer swaptions to be priced:

e Scenario 1: ATM swaption strip {1Y5Y,2Y4Y,3Y3Y,4Y2Y,5Y1Y},

¢ Scenario 2: ATM swaption strip {1Y15Y,2Y14Y,3Y13Y,4Y12Y,5Y11Y,6Y10Y, 7Y9Y,8Y8Y,9Y7Y, 10Y6Y,
11Y5Y,12Y4Y,13Y3Y,14Y2Y,15Y1Y},

IThe same values of a, b, ¢ and d are chosen as the ones presented in Subsection 4.4.3. The constant value 1.13 of the parameters ki is
the average over the corresponding parameters shown in that same subsection.
2For clarity, the reference scenario involves the ATM swaption strip {1Y10Y, 2Y9Y, 3Y8Y,4Y7Y,5Y6Y,6Y5Y, 7Y4Y, 8Y3Y,9Y2Y, 10Y1Y}.
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¢ Scenario 3: ATM — 1% swaption strip {1Y10Y,2Y9Y, 3Y8Y,4Y7Y,5Y6Y,6Y5Y, 7Y4Y, 8Y3Y,9Y2Y, 10Y1Y},
¢ Scenario 4: ATM + 1% swaption strip {1Y10Y,2Y9Y,3Y8Y,4Y7Y,5Y6Y,6Y5Y,7Y4Y,8Y3Y,9Y2Y, 10Y1Y},
¢ Scenario 5: ATM + 2% swaption strip {1Y10Y,2Y9Y,3Y8Y,4Y7Y,5Y6Y,6Y5Y,7Y4Y,8Y3Y,9Y2Y, 10Y1Y},
e Scenario 6: ATM + 3% swaption strip {1Y10Y,2Y9Y,3Y8Y,4Y7Y,5Y6Y,6Y5Y,7Y4Y,8Y3Y,9Y2Y, 10Y1Y}.

In Subsection 3.8.2 the empirical results of the reference scenario are presented, while the ones of the other
setups can be found in Appendix C. The results come in the form of a table, in which the approximated
Bachelier prices for all payer swaptions in the considered strip are shown, together with the corresponding
Monte Carlo prices. The difference between these two prices are included as well. All prices and differences
are expressed in basis points, choosing a notional of 10,000 units of currency.

3.8.2. EMPIRICAL RESULTS FOR THE REFERENCE SCENARIO

Maturity Tenor Strike LMM Rebonato price | LMM MC price | Difference

(in years) | (inyears) (in bp) (in bp) (in bp)
1 10 0.01974 364.61 359.42 -5.19
2 9 0.02092 473.03 468.77 —-4.26
3 8 0.02170 521.30 517.92 -3.38
4 7 0.02224 533.14 530.63 -2.51
5 6 0.02265 518.97 516.32 -2.65
6 5 0.02298 483.47 481.34 -2.14
7 4 0.02323 428.20 426.37 -1.82
8 3 0.02342 352.64 351.48 -1.16
9 2 0.02354 255.58 255.19 -0.39
10 1 0.02369 136.99 137.09 0.10

Table 3.1: Results for reference scenario, K = ATM.

3.8.3. DISCUSSION OF THE EMPIRICAL RESULTS

From the results shown in Table 3.1 one can see that shorter underlying swaps produce better results, as the
approximation involves less forward OIS rates. In the most unfavorable cases of the 1Y10Y and 2Y9Y, with
respectively 40 and 36 forward rates in the underlying swap, the differences between the Monte Carlo prices
and and the approximated Bachelier prices increase, with a maximum error amounting to 5.19 bp. For the
current test, a USD LIBOR yield curve has been used, that is relatively flat. This has produced an error that is
twice as large as that of the flat yield curve considered in (Jackel and Rebonato, 2000) but that is closer to the
results provided by the GBP non-flat curve, also addressed in the same article. Given the non perfectly flat
nature of the USD LIBOR curve used, the results appear in line with those of the referenced paper.

Table C.1 and Table C.2, presented in Appendix C, form additional support to the conjecture that larger un-
derlying swap tenors lead to a decrease in the accuracy of the approximation. Indeed, the maximum error
of the strip involving swaptions with a maximum underlying tenor of 5Y amounts to —2.11 bp, whereas the
errors observed for the strip of swaptions with a maximum underlying 15Y tenor are up to —7.59 bp. Further-
more, the results of both tables show larger errors for the first few swaptions of the strips.

Table C.3 shows that, for ITM strikes, the differences between the approximated prices and Monte Carlo prices
at the front end of the strip are larger than those for the ATM strike. It is indeed seen that the approximated
price diverges from the Monte Carlo price up to 8.60 bp for payer swaptions with strike ATM — 1%, while the
maximum difference observed for the ATM case amounts to —5.19 bp.

For increasing OTM strikes, the differences at the front end of the strip first decrease significantly, compared
to those in the ATM reference scenario, whereas they marginally increase afterwards. Table C.4 shows that
the Rebonato approximation is extremely accurate when considering ATM + 1% payer swaptions, as the max-
imum difference amounts to 0.90 bp. For deeper OTM strikes this difference starts to increase, as is observed
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for the ATM + 2% and ATM + 3% payer swaptions. In these cases the approximated Bachelier payer swaption
prices differ from the Monte Carlo ones by a maximum of, respectively, 1.38 and 2.02 bp, but this can still be
considered very accurate according to (Jackel and Rebonato, 2000).

The above observations are in line with the consideration of Andersen and Piterbarg (2010b) that the Rebon-
ato approximation is in general less accurate for strikes further away from the swap rate. Research on the
cause of this behavior, though, is beyond the scope of this work.






CALIBRATION OF THE LMM IN THE MC
FRAMEWORK

In order to use the MC LMM for option pricing, the model parameters have to be calibrated. A calibration
procedure can be described as the routine in which the free parameters are estimated such that model-prices
match the market quoted prices of specific instruments as closely as possible. It ensures that the set of cal-
ibration instruments is priced back by the the model. Calibration instruments are chosen that are closely
related to the exotic derivatives to be priced. As, in this research, the ultimate goal is to value Bermudan
swaptions, the MC LMM is calibrated to the underlying swaptions.

This chapter first presents the general calibration strategy for determining the model parameters, whereafter
the minimization problem is introduced. Subsequently, it is explained how the MC LMM is calibrated to real
market data, the results of which are given in Section 4.4. In Section 4.5, the calibration results are discussed,
followed by a short conclusion of the chapter.

4.1. GENERAL CALIBRATION STRATEGY

In the calibration procedure the MC LMM swaption prices have to be determined in a quick and efficient way;,
after which they are compared to the corresponding market prices. The brute-force approach to determine
these model prices involves carrying out a Monte Carlo simulation of the forward OIS rate processes, using an
initial set of model parameters and varying these parameters until an optimal solution is reached. In practice
this is not a viable method since the Monte Carlo method is computationally expensive. Instead, the ana-
lytical closed-form swap rate volatility approximation derived in Subsection 3.7.2 can be used for calibration
purposes. Fixing the correlation parameter 8 in advance, the calibration procedure comes down to deter-
mining the model parameters a, b, ¢, d and k;, i € {0,..., N — 1}, such that the model implied volatilities of a
certain set of European swaptions given by (3.25) are in line with their corresponding current market volatil-
ities. Recalling from Subsection 2.5.2 that G\ defines the T; x (Ty — T;) swaption implied Bachelier/Black
volatility provided by the market, a, b, ¢, d and k;, i € {0,..., N — 1}, have to be found that solve

6?]{%{ = h(TO) Tr; TNr a; br Crd;ﬁ) krr kr+l;-~rkN—l))

for each swaption in the set of calibration instruments.

The calibration routine can be divided into two different phases. During the first phase an optimal set of
the parameters a, b, ¢ and d is found that gives the best possible fit to a set of model implied volatilities
of European swaptions to the market. Subsequently the parameters k;, i =0,..., N —1 are determined in a
bootstrap fashion such that the market implied volatilities of the calibration instruments can be priced back
precisely by the MC LMM. This procedure constitutes the second phase.

This calibration strategy is outlined in the following general algorithm. Further details and a more in depth
discussion on this routine can be found in the subsequent sections.

33
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1. Choose a set of p co-terminal swaptions with maturities 0 < Ty, <...< T, {Tmi }le c {T,-}i.\i‘ll, where
the underlying swap corresponding to the i swaption, i € {1,..., p}, has strike K; and final payment

date Ty.!
2. Setk;=1forallie{0,..., N—1}.

3. Calibrate parameters a, b, ¢ and d so that the model implied volatilities of the set of swaption instru-
ments match the corresponding market volatilities as close as possible. Denote these optimal parame-
ters a*, b*, c* and d*.

4. Consider the swaption corresponding to the last option maturity date Ty,,. Determine the parameters
{ki}Nilp such that

I=m

e = 0(To Ty T 5" By K11 it =, @.1)

under the constraint
kmp = kmp+1 =...=kn_1.

N-1

Equation (4.1) is solved using a numerical root-finding algorithm.? Let {kl* }l._m be the set of parame-
=mp

ters that gives an exact fit to the market implied swaption volatilities.

5. To determine the parameters k; for the remaining maturities, proceed according to the following. As-
sume that the MC LMM is able to exactly price back the swaptions with maturities { T, }f’ _, i-€. one has
the knowledge of {kz*}i\:nl; . In order to match the model implied volatility of the Ty, , x (Tn — Trm,,_,)
mp—1
i=Mmp-

swaption to its corresponding market volatility, find {k;} such that

~MKT
U[mn—l,N] -h (TOr Tmn_l; TNr a*v b*) C*rd*),Br km,,_l» kmn_1+1r-- ] kmn—l; k;knny . --)k;/',l) =0,

under the constraint
km, . =km, ,+1=-..=km,-1-
Define these parameters as {k; }T”_l )
1=Mp-1
6. Repeat the previous step until the first swaption can exactly be priced back by the model, i.e. until n =2
is reached.

ﬂnfl

Note that, following this procedure, the set {k;},_, ~ will remain equal to 1.

4.2. MINIMIZATION PROBLEM

A key element of the calibration procedure is the algorithm for identifying the values of the parameters a, b, ¢
and d from the market data. This consists in the determination of the set of model parameters that minimizes
the difference between the market volatilities of the swaptions in the calibration set and the corresponding
implied volatilities predicted by the model.? It is chosen to consider volatilities rather than outright prices
from a time-saving perspective as this avoids the need to apply (3.22) or (3.23) in the calibration procedure.
The most important advantage however is that the relative scaling of the individual swaptions is more natu-
ral when working with implied volatilities. If calibration was done to prices, long- dated trades would tend
to be overweighted relative to short-dated trades. The difference between the model and market implied
volatilities of the calibration instruments, measured in the Euclidean norm, represents the objective function
that has to be minimized. By introducing the exogenously specified weights w,, n = 1,..., p, the function

IThe MC LMM is calibrated to co-terminal swaptions as these instruments are the underlyings of a Bermudan swaption. The calibration
approach described cannot be generalized for swaptions that do not have the same final payment date as it only works for co-terminal
products.

2Throughout this thesis a combination of bisection, secant and inverse quadratic interpolation methods is used. See (Forsythe et al.,
1977) for more details.

3This is done while keeping k; =1foralli €{0,..., N—1}.
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is flexible enough to include the possibility of assigning unequal weights to the distinct calibration instru-
ments. Considering the above, the core of step 3 of the general calibration strategy is defined by the following
minimization problem:

P 2

C ~MKT

minimize ) wn(a[mmN]—h(To,Tmn,TN,a,b,c,d,,B,km”,kmn+1,...,kN_l)) ,
a,n,c, n=1

subjectto —0.02<a=<0.016,
0< b=<0.06,
0<c<l,
0<d=<0.008,
a+d>0,
a< —,

c

b—ac

<3.
bc

The appropriate constraints on the model parameters were discussed in Subsection 3.2.1. A note of precau-
tion is due at this point: by imposing strict bounds on a, b, ¢ and d, one can force the term structure of
implied volatilities to adopt any desirable form, this however, will be at the expense of a good fit to the market
volatilities. On the other hand, looser bounds will put more emphasis on obtaining an improved fit to the
data than on recovering a realistic term structure. Considering the bounds described in the minimization
problem, the MC LMM is in general able to fit the target prices to an acceptable degree of accuracy, while
preserving a realistic term structure of volatilities.

Choosing the algorithm to solve the minimization problem requires a trade-off between the speed of the rou-
tine and the accuracy of the fit. As in this thesis a fast calibration is preferred, the local optimization method
based on the interior-point algorithm as presented by Byrd et al. (2000) is chosen. This algorithm is a large-
scale algorithm, meaning that it uses linear algebra that does not need to store, nor handles full matrices.
Instead, sparse linear algebra is used for computation whenever possible and sparse matrices are internally
stored. This leads to the most favorable characteristic of this method: low memory usage and the ability
to solve this optimization problem quickly. This algorithm also guarantees that bounds and constraints are
satisfied at all iterations. These desirable features were the decisive factors for choosing this interior point
approach. Since the scope of this research does not include a thorough analysis of this algorithm, exact de-
tails are not presented in this text. The reader is referred to (Byrd et al., 1999) and (Waltz et al., 2006) for an
extensive description of the method.

4.3. CALIBRATION TO MARKET DATA

In the previous sections a general calibration strategy of the MC LMM was presented together with a more
detailed description of the minimization problem. The algorithm that solves this problem requires several
inputs, such as the value of the constant parameter § and the initial estimate for the model parameters a,
b, c and d. In Subsection 4.3.1 it is explained how to determine these values. Before starting the calibration
routine, it is also essential to specify the set of calibration instruments the prices of which will serve as target
values. This is done in Subsection 4.3.2. Furthermore, it is important to determine which degree of influence
each of those instrument should have on the outcome of the calibration. To this end, the weight factors have
to be carefully assigned, see Subsection 4.3.3 for more details. At this point, one is ready to calibrate the model
to real market data. Subsection 4.3.4 explains how the calibration procedure is carried out and presents the
format in which the results are recorded.

4.3.1. CHOICE OF PARAMETERS

CHOICE OF CONSTANT PARAMETER [

The decay constant S reflects the sensitivity of the correlation between two forward rates to the difference
between their fixing dates. According to Rebonato (2002), European swaptions are mildly dependent on the
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Figure 4.1: Correlation surface for = 0.20.

intricate features of the shape of the correlation surface and consequently, calibration to the swaption market
is not suitable for determining B. For this reason, it is chosen to fix § prior to calibration. As mentioned in
Subsection 3.2.2, it is required that § > 0 in order to have a valid correlation matrix. From literature it is seen
that § € [0.05,0.35] is a common choice. Unless otherwise stated, § = 0.20 will be selected. Figure 4.1 shows
the correlation surface generated with this value of S.

CHOICE OF INITIAL ESTIMATES FOR THE MODEL PARAMETERS

The interior point algorithm discussed in Section 4.2 requires initial estimates for the volatility parameters a,
b, ¢ and d. As this algorithm is a local optimizer method, it is possible for the algorithm to converge to a local
optimum. From our experience, the initial guesses

init _

1 o1 1 |
it = 5 (@min + Amax) , ™ = E (bmin + bmax), ¢ = 5 (Cmin + Cmax) » amt = E (dmin + dmax) »

a
where dmip, . .., dmax Tepresent the lower- and upper bounds on the corresponding parameters, have proved
to be adequate starting points.! With this choice of initial values, the algorithm converged to an optimum
that resulted in a good fit of the calibration instruments and that retrieved a realistic term structure of the
implied volatilities. There exists a probability that the algorithm may have not reached the global minimum
but, as the results obtained using the calibrated parameters are satisfactory, this is not considered relevant.

4.3.2. CHOICE OF CALIBRATION INSTRUMENTS

Three distinct strips of co-terminal swaptions are considered, each characterized by a different maximum
underlying tenor. These strips are composed of the following swaptions:

Strip 1: {1Y5Y, 2Y4Y, 3Y3Y, 4Y2Y, 5Y1Y},
Strip 2: {1Y10Y, 2Y9Y, 3Y8Y, 4Y7Y, 5Y6Y, 6Y5Y, 7Y4Y, 8Y3Y, 9Y2Y, 10Y1Y},
Strip 3: {1Y15Y, 2Y14Y, 3Y13Y,4Y12Y, 5Y11Y, 6Y10Y, 7Y9Y, 8Y8Y, 9Y7Y, 10Y6Y, 11Y5Y, 12Y4Y, 13Y3Y, 14Y2Y, 15Y1Y}.

5 different strike levels are considered for each strip. Defining the at-the-money level of the xYzY swaption
as ATM)ZC%{(, the fixed strikes of the swaptions to which the model is calibrated are:

Strikes of strip 1: ATM3Y + {—100,0, +100, +200, +300} bp,
Strikes of strip 2: ATM;Y +{~100,0, +100, +200, +300} bp,
Strikes of strip 3: ATMIYY +{~100,0,+100, +200, +300} bp.

The MC LMM is calibrated for each different strip and distinct strike, resulting in 15 calibration procedures.
Each of these requires the market volatilities of the swaptions contained in the respective strip and with the
corresponding strike. In Chapter 5 the reader will see that these sets of co-terminal swaptions are related to
the swaps underlying the Bermudan swaptions under consideration. In order for the MC LMM to realistically
price these exotic interest rate derivatives, it must be able to price back the underlying swaptions with a
certain degree of accuracy and, for this reason, the model is calibrated to these instruments.

L min, - - -» dmax can be found in Section 4.2.
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4.3.3. CHOICE OF THE WEIGHT FACTORS

As mentioned previously, it is possible to attribute more emphasis to certain calibration instruments in the
objective function, such that these instruments have more weight in the optimization. This is done by assign-
ing the weights { wi}le, where p represents the number of swaptions contained in the calibration set. As all
swaptions underlying the Bermudan swaptions considered in Chapter 5 should be priced back as accurately
as possible by the MC LMV, in this research it is chosen to use equal weight factors:

wy=wz=...=wp=1
4.3.4. CALIBRATION OF THE MC LMM TO REAL MARKET DATA

In this subsection the model will be calibrated to real market data. The most liquid tenor for quoting prices
of vanilla instruments for the USD currency is the 3M index. Throughout this research, the USD 3M LIBOR
rate will represent the floating benchmark rate. The historical data of 30 January 2015 is considered. The 3M
OIS discount curve and the 3M forward LIBOR curve, both as of this date, are shown in Appendix A. For a
graphical representation, see Figure 4.2 and Figure 4.3.

OIS Discount Curve
T 1 0.025;

0.95

0.9
0.85
0.015
0.8

0.75]
0.01

OIS Discount Factor

0.7

3M USD LIBOR Forward Rate

065 0.005

06

0% 5 10 20 % 30 0 5 20 2 30

15
Maturity (Years)

15
Maturity (Years)

Figure 4.2: OIS discount curve. Figure 4.3: 3M USD LIBOR curve.

The past years are marked by a sharp decline in interest rates resulting in exceptionally low, and even negative
rates these days. This decline has caused the log-normal volatilities to surge to high levels, as the uncertain-
ties in the market have increased. The usual convention to quote prices in terms of implied Black volatilities
has become obsolete, since negative interest rates cause a break down of this model. The quoting convention
for implied volatilities has now shifted to, for example, Bachelier implied volatilities (Cuchiero et al., 2016a).
Simulating normal dynamics rather than log-normal under the MC LMM reflects the reality of today in a
more accurate way, partly because the rates are allowed to become negative. For the calibration this means
that model parameters a, b, ¢, d and k;, i =0,..., N — 1, are determined such that the market implied Bache-
lier volatilities of a set of specific instruments can be reproduced by the MC LMM.

The instruments in the calibration sets are priced back in two different ways using the calibrated model.
First, the model implied volatilities are computed with the normal version of Rebonato’s approximation (3.24)
considering the full-rank correlation matrix given by (3.5). If the calibration approach is implemented cor-
rectly, these prices coincide with the market implied volatilities of the corresponding instruments. Second,
the prices are determined using the full-rank, normal MC LMM, employing the Monte Carlo approach as de-
scribed in Section 3.6. To ensure convergence of this method, an equidistant step size of 0.1 years is taken
and 1,000,000 simulations are used.

In Section 4.4 the results of 3 out of the 15 different calibration procedures are presented. As mentioned
previously, each calibration approach is characterized by the use of a different set of calibration instruments.
To show the impact of the maximum underlying tenor on the calibration accuracy, the results corresponding
to the sets consisting of the following swaptions are listed in Section 4.4:

e Strip 1 with fixed strike ATM“;’%,

e Strip 2 with fixed strike ATM}%Y,



38 4. CALIBRATION OF THE LMM IN THE MC FRAMEWORK

* Strip 3 with fixed strike ATM13Y.

The calibration results of the other cases are presented in Appendix D.

For each calibration procedure related to a specific set of instruments, a table with calibration results in terms
of implied volatilities is included. In this table the observed market volatilities are listed for each instrument
together with the corresponding volatilities computed with Rebonato’s swap rate approximation. The differ-
ences between these two volatilities, expressed in basis points, can also be found in the results table. These
differences are computed by:

ARPMKT 210000 x (R (To, Ton, T @*,b*, 0% d*, B, o Kyt ) =~ TR ),

where AReb~MKT denotes the discrepancy between the two implied volatilities related to the n'", n=1,...,p,
instrument in the calibration set. Furthermore, the Monte Carlo implied volatilities are given together with
the differences in basis points between these volatilities and the observed market volatilities, which are cal-

culated as:

MC-MKT _ ~MC _ ~MKT
AL = 10000 x (a[mmN] a[mmN]).

To assess the degree of accuracy of the calibration results for each swaption type, these results are also ex-
pressed in terms of payer and receiver swaption prices that are included in a second and third table.! These
tables are presented to demonstrate how well the MC LMM prices back the payer and receiver swaptions
underlying, respectively, the payer and receiver Bermudan swaptions considered in Chapter 5. A notional of
10,000 units of currency is considered so that all prices and differences are expressed in basis points.
Additionally to these tables another table is included, listing the calibrated values of the volatility parame-
ters a, b, c and d. A graphical representation of k; is given. Moreover, to see if the instantaneous volatilities,
with the set of calibrated parameters, show a humped shape and feature the time-homogeneous property,
the evolution of a selected set of volatilities o, (?), t € [0, T,], is plotted against the residual maturity time
T, — t of the respective forward OIS rate. The extent to which the time-homogeneous property is present is
identified by inspecting if the distinct instantaneous volatility curves coincide. If this is the case, the forward
OIS rates with a specific residual time to maturity have the same levels of volatility as OIS rates at a future
date with that same residual maturity time, satisfying the time- homogeneous property. Furthermore, a plot
of the term structure of implied Bachelier volatilities is included to evaluate if it can be approximately repro-
duced across time and to analyze if the curve steeply increases for the very short maturities up to 2 years and
monotonically decreases after this maturity.

1For clarification, the payer and receiver swaption prices are obtained by inserting the implied volatilities of the first table into (3.22)
together with the inputs w = 1 and w = -1, respectively.
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4.4. CALIBRATION RESULTS

4.4.1. STRIP 1 WITH STRIKE ATM?}{

Maturity Tenor Market || LMM Rebonato | Difference || LMM MC | Difference
(inyears) | (inyears) vol. vol. (in bp) vol. (in bp)

1 5 0.00838 0.00838 0.0 0.00826 -1.2

2 4 0.00864 0.00864 0.0 0.00853 -1.2

3 3 0.00902 0.00902 0.0 0.00891 -1.1

4 2 0.00917 0.00917 0.0 0.00907 -1.0

5 1 0.00937 0.00937 0.0 0.00932 -0.5

Table 4.1: Strip 1 with strike K = 1.679%: calibration results in terms of implied volatilities.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference
(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)

1 5 161.41 161.41 0.00 159.12 2.29

2 4 223.04 223.04 0.00 220.51 2.53

3 3 222.81 222.81 0.00 220.75 2.06

4 2 176.14 176.14 0.00 174.67 1.47

5 1 100.03 100.03 0.00 99.61 0.43

Table 4.2: Strip 1 with strike K = 1.679%: calibration results in terms of payer swaption prices.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference
(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)

1 5 161.41 161.41 0.00 159.68 1.73

2 4 155.06 155.06 0.00 153.24 1.82

3 3 139.19 139.19 0.00 137.39 1.81

4 2 105.70 105.70 0.00 104.65 1.05

5 1 59.57 59.57 0.00 59.36 0.21

Table 4.3: Strip 1 with strike K = 1.679%: calibration results in terms of receiver swaption prices.

a b c d
0.0030 | 0.0187 | 0.7611 | 0.0033

Table 4.4: Strip 1 with strike K = 1.679%: calibrated parameters a, b, c, d.
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4.4.2. STRIP 2 WITH STRIKE ATM}%¥

Maturity Tenor Market || LMM Rebonato | Difference || LMM MC | Difference
(inyears) | (inyears) vol. vol. (in bp) vol. (in bp)
1 10 0.00833 0.00833 0.0 0.00822 -1.1
2 9 0.00839 0.00839 0.0 0.00829 -1.0
3 8 0.00850 0.00850 0.0 0.00842 -0.8
4 7 0.00858 0.00858 0.0 0.00851 -0.8
5 6 0.00865 0.00865 0.0 0.00858 -0.8
6 5 0.00859 0.00859 0.0 0.00851 -0.8
7 4 0.00859 0.00859 0.0 0.00853 -0.7
8 3 0.00861 0.00861 0.0 0.00856 -0.6
9 2 0.00864 0.00864 0.0 0.00861 -0.3
10 1 0.00874 0.00874 0.0 0.00873 -0.1
Table 4.5: Strip 2 with strike K = 1.974%: calibration results in terms of implied volatilities.
Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference
(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 10 307.00 307.00 0.00 303.09 3.91
2 9 440.87 440.87 0.00 436.05 4.82
3 8 501.50 501.50 0.00 497.28 4.22
4 7 514.56 514.56 0.00 510.67 3.89
5 6 494.69 494.69 0.00 491.14 3.55
6 5 445.84 445.84 0.00 442.24 3.60
7 4 381.22 381.22 0.00 378.80 243
8 3 302.15 302.15 0.00 300.75 1.40
9 2 211.12 211.12 0.00 210.55 0.57
10 1 110.85 110.85 0.00 110.75 0.11
Table 4.6: Strip 2 with strike K = 1.974%: calibration results in terms of payer swaption prices.
Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference
(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 10 307.00 307.00 0.00 301.82 5.18
2 9 343.57 343.57 0.00 338.17 5.40
3 8 359.57 359.57 0.00 354.46 5.11
4 7 357.24 357.24 0.00 353.10 4.14
5 6 339.25 339.25 0.00 336.41 2.85
6 5 303.26 303.26 0.00 301.18 2.08
7 4 259.53 259.53 0.00 257.82 1.71
8 3 206.86 206.86 0.00 205.93 0.93
9 2 146.26 146.26 0.00 145.72 0.54
10 1 77.51 77.51 0.00 77.31 0.20

Table 4.7: Strip 2 with strike K = 1.974%: calibration results in terms of receiver swaption prices.

a b c

d

0.0018 | 0.0180 | 0.6116

0.0048

Table 4.8: Strip 2 with strike K = 1.974%: calibrated parameters a, b, c, d.
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4.4.3. STRIP 3 WITH STRIKE ATM}?{Y

Maturity Tenor Market || LMM Rebonato | Difference || LMM MC | Difference

(inyears) | (inyears) vol. vol. (in bp) vol. (in bp)
1 15 0.00823 0.00823 0.0 0.00807 -1.5
2 14 0.00818 0.00818 0.0 0.00805 -1.2
3 13 0.00815 0.00815 0.0 0.00803 -1.2
4 12 0.00821 0.00821 0.0 0.00810 -1.1
5 11 0.00827 0.00827 0.0 0.00816 -1.0
6 10 0.00822 0.00822 0.0 0.00814 -0.8
7 9 0.00815 0.00815 0.0 0.00808 -0.7
8 8 0.00806 0.00806 0.0 0.00799 -0.7
9 7 0.00797 0.00797 0.0 0.00790 -0.7
10 6 0.00789 0.00789 0.0 0.00782 -0.7
11 5 0.00775 0.00775 0.0 0.00768 -0.6
12 4 0.00767 0.00767 0.0 0.00761 -0.5
13 3 0.00754 0.00754 0.0 0.00750 -04
14 2 0.00739 0.00739 0.0 0.00736 -0.3
15 1 0.00738 0.00384 0.0 0.00736 -0.2

Table 4.9: Strip 3 with strike K = 2.105%: calibration results in terms of implied volatilities.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference

(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 15 433.48 433.48 0.00 425.45 8.04
2 14 620.33 620.33 0.00 611.57 8.76
3 13 720.10 720.10 0.00 710.99 9.11
4 12 774.82 774.82 0.00 766.09 8.73
5 11 794.84 794.84 0.00 786.28 8.57
6 10 780.92 780.92 0.00 774.06 6.86
7 9 744.60 744.60 0.00 739.14 5.45
8 8 691.88 691.88 0.00 686.92 4.96
9 7 627.12 627.12 0.00 622.56 4.56
10 6 554.23 554.23 0.00 549.77 4.46
11 5 470.09 470.09 0.00 466.85 3.25
12 4 382.44 382.44 0.00 380.31 2.13
13 3 288.92 288.92 0.00 287.58 1.34
14 2 192.84 192.84 0.00 192.03 0.80
15 1 98.16 98.16 0.00 97.88 0.28

Table 4.10: Strip 3 with strike K = 2.105%: calibration results in terms of payer swaption prices.
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Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference

(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 15 433.48 433.48 0.00 426.69 6.80
2 14 510.06 510.06 0.00 501.68 8.38
3 13 552.37 552.37 0.00 543.99 8.38
4 12 579.06 579.06 0.00 570.22 8.84
5 11 588.54 588.54 0.00 580.32 8.22
6 10 575.26 575.26 0.00 568.94 6.32
7 9 547.84 547.84 0.00 541.94 5.91
8 8 509.78 509.78 0.00 504.51 5.27
9 7 463.93 463.93 0.00 460.02 3.91
10 6 411.27 411.27 0.00 408.55 2.72
11 5 349.43 349.43 0.00 347.03 2.40
12 4 287.55 287.55 0.00 285.91 1.64
13 3 220.03 220.03 0.00 219.07 0.96
14 2 148.26 148.26 0.00 147.71 0.55
15 1 76.27 76.27 0.00 76.11 0.17

Table 4.11: Strip 3 with strike K = 2.105%: calibration results in terms of receiver swaption prices.

a b c d
0.0013 | 0.0145 | 0.5028 | 0.0056

Table 4.12: Strip 3 with strike K = 2.105%: calibrated parameters a, b, c, d.
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4.5. DISCUSSION OF THE CALIBRATION RESULTS

In the previous section and in Appendix D the calibration results of the MC LMM were presented for 15 dif-
ferent sets of implied swaption volatilities. In this section we will take a closer look at these results, evaluating
the effectiveness of the calibration routines considered. This means analyzing whether the generated values
of the model parameters give a good fit to the market prices of the calibration instruments and inspecting
whether the instantaneous volatility curves feature the humped shape and possess the time-homogeneous
property. Additionally, it will be observed if the term structure of implied Bachelier volatilities can be repro-
duced across time and if it shows a steep increase at the front end of the curve, followed by a monotonic
decrease.

4.5.1. QUANTITATIVE ASSESSMENT

It can be noted that larger differences between the implied volatilities determined by (3.24) do not necessarily
result in larger differences in terms of payer or receiver swaption prices. Since it is of importance for the MC
LMM to price back the swaptions underlying the Bermudan swaptions considered in Chapter 5, the analysis
will be done in terms of prices rather than implied volatilities. As it was expected beforehand, the market
prices of all payer and receiver swaptions are exactly fitted by the model, when using Rebonato’s volatility
approximation. However, when pricing these swaptions with the MC LMM using Monte Carlo, it can be seen
from the various calibration results that some errors between the Monte Carlo prices and the market prices
are present. From now on, these errors will be referred to as calibration errors. Note that, in general, the
calibration error becomes larger as the underlying tenor increases. This translates into (3.24) becoming a less
accurate approximation for prices of the payer and receiver swaptions with long tenors, as the double sum in
(3.24) contains more terms involving approximated values. In particular, when considering a specific strip at
a fixed strike, Monte Carlo usually prices the first swaptions of this strip with the greatest degree of inaccu-
racy, as they have the longest tenors. This phenomenon becomes particularly noticeable for strips 2 and 3,
strip 1 shows some exceptions as it contains swaptions with relatively short tenors.

Furthermore, the results for the first strip clearly show that payer and receiver swaptions are priced very accu-
rately with calibration errors up to 2.5 bp for all strikes. When considering the second strip, one sees that the
MC LMM prices the swaptions with a reasonable degree of accuracy. In general, the maximum calibration er-
rors lie between 1.7 and 3.7 bp. Some outliers are seen for strikes K = ATM19Y and K = ATM]Y — 1% where the
maximum errors are in the range of 4.8 and 6.5 bp. The calibration errors related to the swaptions contained
in strip 3 increase, with maximum errors between 8.0 and 17.5 bp. An extreme case is observed for the payer
and receiver swaptions struck at K = ATM%S{Y + 3%, where the approximated Bachelier prices diverge from
the Monte Carlo prices up to 20.9 bp. Only the payer and receiver swaptions with strike K = ATMhS(Y +1%
are priced accurately by the MC LMM as the corresponding maximum errors are, respectively, 3.5 and 2.6
bp. Overall, it can be observed that the Rebonato approximation achieves the highest degree of accuracy for
strikes close to the ATM level of the first swaption of the strip. As one moves away from these strikes, the
calibration errors increase. Improving the accuracy of the Rebonato approximation, though, is beyond the

scope of this research.

4.5.2. REALIZED INSTANTANEOUS VOLATILITY CURVES AND TERM STRUCTURES OF IMPLIED
VOLATILITIES

For every strip and strike, the calibrated model parameters result in a humped-shape instantaneous volatility
curve and a term structure of implied volatilities that features a steep increase for the early maturities, fol-
lowed by a monotonic decrease. Regarding the preservation of the time-homogeneous property, the values
of kj, i =0,...,N —1, oscillate neatly around 1 for strip 1 with values between 0.9 and 1.2. For strips 2 and
3 the parameters k; are in the ranges 0.8 — 1.9 and 0.7 — 2.0, respectively, and are thus farther away from the
desired level of 1. The number of instruments in the calibration sets can be accounted for this phenomenon.
When the LMM is calibrated to a larger number of swaptions, the calibrated parameters a, b, ¢ and d will
in general result in a less accurate global fit to the market prices of the swaptions in question. Therefore,
the values of k; have to be adjusted more with respect to their original levels of 1 in order to ensure an exact
fit. Including more swaptions in the calibration sets, consequently, leads to a loss of the time-homogeneity.
This becomes apparent in the plots showing the evolution of the instantaneous volatilities and the evolu-
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tions of the term structures of implied Bachelier volatilities. Consider for example the extreme case of strip
3 and strike K = ATM%%Y + 3%, the results of which are given in Appendix D.12. Figure D.34 shows that the
parameters k; can attain values between 0.7 and 2.0. Figure D.35 presents the evolution of the instantaneous
volatilities o, (£), n =8,36,60 and ¢ € [0, T};], corresponding to the OIS rates F4(£:2.00,2.25), F% (¢£:9.00,9.25)
and F% (¢:15.00,15.25), respectively. Note that the curves do not coincide, meaning that these OIS rates for a
given residual time to maturity do not have the same level of volatility. Furthermore, Figure D.36 shows that
the term structure is not equally reproduced across time as its shape changes and the top of the hump de-
creases. This indicates that, in this particular case, adjusting the values of k; in order to ensure an exact mar-
ket fit destroys the essential dependence on the time to maturity. Opposite observations can be made for strip
1 and strike K = ATM%, see Subsection 4.4.1 for the corresponding results. The values of k; oscillate around
1, and consequently the instantaneous volatility curves of, for example, og (1), 016 (f) and 024 (f)belonging to
the OIS rates F¥ (¢:2.00,2.25), F% (¢:4.00,4.25) and F4 (¢ :6.00,6.25), respectively, coincide (see Figure 4.5).
For the term structure of implied volatilities shown in Figure 4.6 this means that it can be correctly repro-
duced across time, as its hump shape is approximately preserved.

Note furthermore that, for a specific strip, the distances between the parameters k; and the desirable value of
1 become larger as the strike moves away from the ATM level of the first swaption of that strip. Consequently,
increasing and decreasing the strike with respect to this reference level destroys the dependence on the time
to maturity. In particular, it can be seen that the case involving the strike K = ATMg + 3% results in values
of k;, i =0,..., N—1 that lie the farthest away from 1 compared to the values determined for the other cases
involving the strip in question. As an example consider the parameters k; corresponding to strip 3 and strikes
K =ATM}}Y and K = ATM}}Y + 3%. In the first case the values lie within the range 0.7 — 1.4 while in the latter
the parameters k; assume values between 0.7 and 2.0 (as mentioned earlier). This phenomenon may be a
consequence of Rebonato’s approximation being less accurate for deeper ITM and OTM strikes.

4.6. SUMMARY

In this chapter the MC LMM is calibrated to 15 distinct sets of implied Bachelier swaption volatilities that
correspond to the payer and receiver swaptions underlying the Bermudan swaptions analyzed in Chapter 5.
The closed-form approximation (3.24) for the swaption volatility is used in the calibration procedure, which,
in the single-curve framework, has proven to be remarkably accurate for yield curves that are (close to) flat
(Jackel and Rebonato, 2000). The correlation parameter f is fixed prior to calibration as swaptions have a low
dependency on the correlation structure. The volatility parameters a, b, ¢ and d are calibrated to the mar-
ket implied volatilities contained in the calibration set, whereafter the parameters k; are adjusted from their
level of 1 to achieve an exact fit. The market payer and receiver prices corresponding to the implied swaption
volatilities in the calibration sets are then compared to the MC LMM prices obtained using Monte Carlo.

We have seen from the calibration results that, in all 15 cases considered, the instantaneous volatility curves
feature a humped shape and the term structures of implied volatilities show a steep increase for the early
maturities, followed by a monotonic decrease. Furthermore, adding more instruments to the calibration sets
leads to aloss of the time-homogeneous property.

The results also show that, for the cases of short underlying tenors and strikes near the ATM level, the cal-
ibrated model parameters give a good fit to the market prices of the payer and receiver swaptions contained
in the calibration sets. The maximum observed calibration errors are up to 2.53 bp. However, the calibration
performance decreases when considering swaptions having a combination of long underlying tenors and
strikes that are deep ITM or OTM. The calibration error increases for these particular cases and can reach lev-
els up to 20.85 bp. The errors will have an impact on the Bermudan swaption as the prices of the underlying
swaptions are not in line with the corresponding market prices.






PRICING OF BERMUDAN SWAPTIONS

After successfully calibrating the MC LMM to the swaption market, as illustrated in Chapter 4, the model is
now able to price more complex and exotic derivatives. This chapter is devoted to the pricing of Bermudan
swaptions, an important subset of the Callable LIBOR Exotic (CLE) class. Bermudan swaptions are actively
traded and among the most liquid exotic interest rate derivatives having an early exercise feature.

The main purpose of this chapter is to analyze the impact of the MC LMM on the option value of Bermu-
dan swaptions. The pricing results will be compared to the one-factor Hull-White (1IFHW) model. The most
important advantage of the MC LMM above the IFHW model is the ability to exhibit decorrelation among the
forward rates and hence, to reproduce different modes of deformation of the yield curve. The IFHW model, in
contrast, assumes that the rates are perfectly correlated at every time instant and consequently only parallel
movements of the interest rate curve can be achieved, a shock to the curve at time ¢ being equally transmit-
ted to all maturities. By calibrating both the MC LMM and the 1FHW model to the same set of underlying
swaptions, a fair comparison can be made between the Bermudan prices generated by these models. One
can then investigate the impact of the model selection.

This chapter starts with the definition of a Bermudan swaption, an explanation follows how these exotic in-
struments are valued. Subsequently, the test strategy is presented. In this section the details of the considered
test deals are given, along with the identification of the numerical methods used for determining the Bermu-
dan swaption prices. It is illustrated how the impact of the model choice on the Bermudan swaption prices
can be assessed. In Section 5.3 the MC LMM and the 1FHW prices of the considered deals are highlighted
and the pricing results are discussed. Finally, a short conclusion of the chapter is given.

5.1. DEFINITION AND VALUATION

Consider the finite set of tenor dates I := {Tm}%:(), suchthat0= Ty < T) <... < Ty and denote by 7, the year
fraction corresponding to the time interval [T}, Trn+1]. A Bermudan swaption allows the holder to enter into
a swap at different times.! The set of possible exercise dates is denoted as & := {E| i}ls':l’ suchthat E; <...< Ej
and where & <€ 9 \ {Ty, Tn}. The final payment of all swaps takes place at Ty. The non-call period refers to
the interval [ Ty, E1) in which the holder is not allowed to exercise the Bermudan.? The tenor of the option is
defined as 7 (E1, ES).

To determine the optimal exercise strategy, at each exercise time the holder of the Bermudan must decide
whether to exercise or keep the option. This decision is based on the comparison between the payoff from
immediate exercise with the expected payoff from continuation. The Bermudan is exercised at a certain call
date if the hold value is greater than or equal to the continuation value. To value a Bermudan at time Tj, the

1 This right to exercise is referred to as the call right.
2For simplicity, a Bermudan refers to a Bermudan swaption.
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optimal stopping time E;, with E; € &, has to be found that maximizes the expected payoff of the option;

V(Ty) = maxg% | S (Er, P4 (Ey), F* (Ey))
0 _Ereé" To B* (Fd (Er))

In this thesis the optimal stopping time is estimated within the Monte Carlo framework by the Longstaff
& Schwartz (LS) algorithm, in which the difference between the hold and continuation value is regressed
along a path on a set of monomials evaluated in a selection of explanatory variables. The accuracy of the
approximation depends on the choice of the explanatory variables and on the degree of the monomials. As
this method is extensively discussed in literature, a detailed description is not given here. The interested
reader is referred to (Longstaff and Schwartz, 2001).

5.2. TEST STRATEGY

This section is devoted to a description of the test strategy. First, the trade characteristics of 30 test deals
are given. Subsequently, the models used to price the Bermudans are discussed and the set of calibration
instruments are identified. Thereafter, the numerical methods for pricing the interest rate derivatives are
determined. In the last subsection, the impact on the model choice on the Bermudans is assessed.

5.2.1. TRADE CHARACTERISTICS

To value the Bermudans under consideration, the market data of 30 January 2015 is used. Further charac-
teristics of the test deals are shown in Table 5.1. The payment schedules treated in the MC LMM are based
on calendar days, while the ones considered in the 1IFHW model take into account business days. In total 30
deals are in scope. Each payer and receiver Bermudan starting in 1Y and with a specific tenor zY, z € {5,10, 15},
is valued for the following fixed payment rates K:

K € ATMZ +{~100,0, +100, +200, +300} bp, (5.1)

where ATMfg represents the swap rate of the plain vanilla swap with the same start date (in the considered
cases always 1Y) and tenor as the deal.!

Currency [UNYD)
Product Bermudan swaption
Notional 10000

Start date in 1Y

Tenor 5Y, 10Y or 15Y
Swap type Payer or receiver
Fixed leg

Payment index Fixed K
Coupon frequency Quarterly
Day count convention Actual 365

# coupons 20, 40 or 60
Floating leg

Coupon type Floating
Payment index LIBOR
Coupon frequency Quarterly
Day count convention Actual 365

# coupons 20, 40 or 60
Callable right

Exercise schedule Annual

Table 5.1: Trade characteristics.

1A payer/receiver Bermudan swaption refers to a Bermudan swaption with underlying payer/receiver swaps.
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5.2.2. MODELS AND CALIBRATION

All Bermudan deals are priced using the MC LMM and the 1FHW model, for the latter a fixed mean reversion
rate is used together with a piecewise constant volatility. For a detailed description of the 1IFHW model, the
reader is referred to (Brigo and Mercurio, 2007). Prior to pricing these interest rate derivatives, the model
parameters have to be calibrated. In order to make a fair comparison between the Bermudan prices ob-
tained under the MC LMM and under the 1IFHW model, the two models are calibrated to the same set of
instruments. As the co-terminal swaptions matching the time to maturity on each exercise date and with the
same strike as a particular test trade are the natural hedging instruments of that Bermudan, these swaptions
are selected as the calibration instruments. Since the models are calibrated to implied volatilities instead of
prices, no distinction is made between underlying payer and receiver swaptions.! Consequently, 15 calibra-
tion procedures are carried out, each characterized by a distinct set of calibration volatilities.> Chapter 4 and
Appendix D present the calibration results of the MC LMM.

5.2.3. VALUATION

To value the Bermudans with the MC LMM, the Monte Carlo method based on the LS algorithm is used. A
time step of 0.10 is considered and 1,000,000 simulations are performed. The forward OIS rates are modeled
with normal, full rank dynamics, which are discretized by means of the Euler scheme. The initial OIS and
LIBOR curves, both from 30 January 2015, are presented in Appendix A. The Bermudan prices computed
with the 1IFHW model are externally provided.

5.2.4. IMPACT ANALYSIS

For each test deal, the impact of the MC LMM is analyzed. To this end, the difference between the Bermudan
prices computed under the MC LMM and the 1IFHW model is determined by

Difference = VMCIMM (7y _ /IFHW (y (5.2)

This difference may contain some noise factors and it can be decomposed into the following three compo-
nents:

1. A contribution from the choice of the model,
2. A contribution from the slightly different payment schedules,
3. A contribution from the calibration error in the MC LMM.

A clarification on component 3 is in order here. As mentioned in Subsection 5.2.2, it is desired that the MC
LMM and the 1FHW prices of the swaption underlying the Bermudans coincide. However, Rebonato’s ap-
proximation is not always accurate, as was seen in Chapter 4, and consequently the MC LMM using Monte
Carlo does not always price back the calibration instruments’ market prices consistent with the correspond-
ing market prices. These sets of calibration instruments are priced differently by both models, leading to a
noise component in (5.2). In this research it has been decided not to take into account noise component
2 as the differences between the payment dates corresponding to the MC LMM and the 1IFHW model are
only marginal, see Appendix E. The payment schedules corresponding to Bermudans with a 5Y tenor show
differences that lie in the range of 0.001 —0.005 (expressed in year fractions), while the maximum observed
difference related to the MC LMM and the 1IFHW model schedules of Bermudans with a 10Y tenor is 0.011.
The differences in the payment schedules of Bermudans with a tenor of 15Y are in general between 0.001
and 0.012, with two outliers of 0.014 and 0.016. From these results it can be seen that the payment schedules
considered in the MC LMM and in the IFHW model only slightly differ.

Furthermore, the MC LMM impact on the option value can be compared to the 1IFHW vega of the option

1As in the current low volatility environment swaption volatilities should be interpreted as normal volatilities, the models are calibrated
to implied Bachelier volatilities rather than to implied Black volatilities.

2To clarify, the calibrated model parameters obtained by a specific calibration procedure can be used to price both a payer and receiver
Bermudan swaption, which, respectively, have the payer and receiver swaptions, whose implied volatilities are contained in the cali-
bration set, as underlyings.
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value. The 1IFHW vega is computed by a 1 bp parallel shift of the implied volatilities corresponding to the
swaptions underlying the Bermudan:

vega 1IFHW = V[ ' (To) = Vi Y (To) . (5.3)
V;EEW (Tp) represents the Bermudan price at time T determined by the IFHW model, the model parameters

of which are calibrated to a set of implied swaption volatilities that have undergone a parallel shift of x bp.
Using (5.3), the MC LMM impact on the Bermudans can be expressed in terms of multiplier x vega.

5.3. EMPIRICAL RESULTS OF THE TEST DEALS

In this section the results of the test deals described in Section 5.2 are presented. For each test deal, the prices
computed using the MC LMM and the 1IFHW model are given, together with the difference between these
prices as defined in (5.2). Additionally, the IFHW vega is included along with the maximum underlying Euro-
pean swaption market price and the maximum observed absolute calibration error. All prices and differences
are expressed in basis points. The results are shown in Table 5.2.!

Non-call period Tenor Fixed | ATMlevel | Relstrike | Abs strike 1FHW | MC LMM Difference Vega Max Max abs cal
(in years) (in years) rate (in %) (in %) (in %) price price MCLMM-1FHW | 1FHW || European error
1 5 Pay 1.68 -1.00 0.68 544.72 568.93 24.21 1.94 496.66 2.00
1 5 Pay 1.68 0.00 1.68 282.04 308.50 26.46 2.71 223.04 2.53
1 5 Pay 1.68 +1.00 2.68 141.98 161.03 19.05 2.36 107.83 1.42
1 5 Pay 1.68 +2.00 3.68 71.52 83.16 11.64 1.64 53.19 0.89
1 5 Pay 1.68 +3.00 4.68 36.89 43.80 6.91 1.10 28.64 0.43
1 5 Receive 1.68 -1.00 0.68 55.51 63.16 7.65 1.81 38.01 1.36
1 5 Receive 1.68 0.00 1.68 217.81 237.24 19.43 2.71 161.41 1.82
1 5 Receive 1.68 +1.00 2.68 542.87 563.41 20.54 1.88 516.10 0.47
1 5 Receive 1.68 +2.00 3.68 979.22 990.57 11.35 0.73 971.19 1.14
1 5 Receive 1.68 +3.00 4.68 1452.47 1456.94 4.47 0.19 1449.60 0.80
1 10 Pay 1.97 -1.00 0.97 1128.03 | 1267.39 139.36 5.44 990.48 6.47
1 10 Pay 1.97 0.00 1.97 659.24 798.11 138.87 6.84 514.56 4.82
1 10 Pay 1.97 +1.00 2.97 389.00 508.63 119.63 6.22 285.13 2.56
1 10 Pay 1.97 +2.00 3.97 239.12 328.30 89.18 5.03 169.16 3.04
1 10 Pay 1.97 +3.00 4.97 156.27 226.33 70.06 3.94 110.45 3.68
1 10 Receive 1.97 —-1.00 0.97 188.68 246.92 58.24 5.09 125.71 5.60
1 10 Receive 1.97 0.00 1.97 505.32 607.79 102.48 6.49 359.57 5.40
1 10 Receive 1.97 +1.00 2.97 1091.91 | 1206.38 114.47 4.81 988.44 1.68
1 10 Receive 1.97 +2.00 3.97 1898.17 | 1992.46 94.29 2.31 1861.23 2.58
1 10 Receive 1.97 +3.00 4.97 2790.16 | 2863.81 73.65 1.04 2774.99 2.41
1 15 Pay 2.10 ~1.00 1.10 1680.33 | 1972.25 291.92 9.62 1440.68 14.50
1 15 Pay 2.10 0.00 2.10 1023.58 | 1316.88 293.30 11.84 794.84 9.11
1 15 Pay 2.10 +1.00 3.10 629.71 892.02 262.31 10.89 457.80 3.45
1 15 Pay 2.10 +2.00 4.10 413.12 642.44 229.32 9.10 283.83 12.25
1 15 Pay 2.10 +3.00 5.10 296.40 488.40 192.01 7.44 195.48 20.85
1 15 Receive 2.10 -1.00 1.10 334.72 473.52 138.80 8.84 228.49 10.75
1 15 Receive 2.10 0.00 2.10 794.91 1005.80 210.89 10.76 588.54 8.84
1 15 Receive 2.10 +1.00 3.10 1600.86 | 1836.96 236.10 7.98 1404.36 3.69
1 15 Receive 2.10 +2.00 4.10 2724.88 | 2936.59 211.71 3.87 2655.77 17.47
1 15 Receive 2.10 +3.00 5.10 3990.83 4131.94 141.11 1.32 3965.05 20.00

Table 5.2: Bermudan pricing results.

5.4. DISCUSSION OF THE RESULTS

In this section the pricing results presented in Section 5.3 are discussed. From Table 5.2 it is seen that the MC
LMM overprices all Bermudan deals relative to the 1IFHW prices. For increasing Bermudan tenors, the order
of magnitude of the differences between the MC LMM and the 1IFHW Bermudan prices becomes larger.

Furthermore, the impact of the choice of the model on the Bermudan price, considering the same tenor, is in
general larger for strikes around the ATM level of the first underlying swap. This is expected since, for K — oo,
the receiver Bermudan value will converge to its maximum underlying swap price, which, for this strike, will

1The third column identifies if the fixed rate K is payed or received by the swaps underlying the Bermudan. The fourth column refers to
the ATM level of the underlying swap with the same start date and tenor of the deal. The relative strike is measured with respect to this
ATM level and it assumes values in {—100, 0, +100, +200, +300} bp. The absolute strike K is defined as in (5.1).
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coincide with the maximum European swaption price. The price of a payer Bermudan will converge to zero
for the strike going to infinity. This is also reflected in the behavior of the IFHW vega, that converges to zero
for K — oo. Consequently, in these extreme cases, the risk related to the model selection becomes very small
and the Bermudans become more independent of the model choice. In these circumstances, for Bermudans
that have low model risk, the difference between their MC LMM and 1FHW price should be around zero.
Nevertheless, if this is not the case, this difference can be attributed to calibration errors of the underlying
swaptions. If, however, a Bermudan is not fully converged to its maximum underlying European swaption or
to zero and the underlying MC LMM swaptions are priced with a significant calibration error, it is difficult to
discriminate the component related to the calibration errors from that of the selection of the model.

5.4.1. BERMUDANS WITH A TENOR OF 5 YEARS

Observing that the calibration errors of all swaptions underlying the Bermudan deals with a tenor of 5Y are
smaller than or equal to 2.53 bp, it can be concluded that the differences between the prices of the MC LMM
and 1FHW Bermudan prices, that lie in the range of 4.47 — 26.46 bp, are primarily related to the selection of
the model. The model impact on the Bermudans in terms of vega is between 5 x vega and 10 x vega.

The results obtained for the receiver Bermudan with a 5Y tenor and with relative strike +3.00% show that
this Bermudan has low model-risk. As the calibration errors are up to 0.80 bp, the MC LMM prices the un-
derlying swaptions consistently with the IFHW model. It can be seen from Table 5.2 that both MC LMM and
1FHW Bermudan prices (respectively, 1456.94 and 1452.47 bp) have almost completely converged to the un-
derlying maximum European swaption market price (1449.60 bp). The choice of the model has an impact on
the Bermudan price that is limited to 4.47 bp.

5.4.2. BERMUDANS WITH A TENOR OF 10 YEARS

Analyzing the Bermudans with a tenor of 10Y and relative strikes +1.00%, +2.00% and +3.00%, one sees that
the MC LMM prices back the underlying swaptions with a high accuracy as the maximum observed calibra-
tion error amounts to 3.68 bp. The calibration error component of the difference between the MC LMM and
1FHW Bermudan prices is then considered to be marginal and the observed differences, that are in the range
of 70.06 — 119.63 bp, primarily represent the impact of the model choice. In terms of vega, the impact of the
model selection is around 20 x vega.

The swaptions underlying the ATM Bermudans and the Bermudans with relative strike —1.00% feature slightly
larger calibration errors that reach a maximum value of 6.47 bp. As the calibration errors are relatively small
compared to the observed differences between the MC LMM and the 1FHW Bermudan prices, which are
between 58.24 and 139.36 bp, the errors will have a slight impact on the Bermudan prices.

5.4.3. BERMUDANS WITH A TENOR OF 15 YEARS

Looking at the Bermudans with a tenor of 15Y, it can be seen that only in the case of relative strike +1.00%
the calibration errors corresponding to the underlying swaptions are small as they are up to 3.69 bp. For
this reason the differences between the MC LMM and 1FHW prices of the payer and receiver Bermudans (re-
spectively, 262.31 bp and 236.10 bp) are primarily attributed to the impact of the model choice. The model
impacts on these two deals expressed in vega are 25 x vega and 30 x vega.

When looking at different strikes, though, the calibration errors reach higher levels up to 20.85 bp and con-
sequently it is expected that the differences between the MC LMM and the 1IFHW Bermudan prices, which
are in the range of 138.80 —291.92 bp, do include a more substantial noise component related to these errors.
Considering for example the extreme case of the deep ITM receiver Bermudan with relative strike +3.00%,
the maximum observed calibration error related to the underlying swaptions amounts to 20.00 bp. As the
1FHW Bermudan price (3990.83 bp) is not yet fully converged to the maximum underlying European swap-
tion price (3965.05 bp), the price of the exotic derivative is not independent of the model choice. Hence, the
difference of 141.11 bp between the MC LMM and the 1IFHW Bermudan price can be decomposed into an
element related to the selection of the model and one due to the calibration errors. As the model impact on
the Bermudan with a tenor of 10Y and with the same moneyness amounted to approximately 73.65 bp, by
extrapolation it is expected that the model choice explains at least half of the amount of 141.11 bp.
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5.5. SUMMARY

In this chapter the impact of the model selection on the Bermudan swaption prices is investigated. 30 deals
are considered, each characterized by a different tenor, strike and underlying swap type. The impact is as-
sessed by comparing the MC LMM prices to the corresponding prices computed with the IFHW model. Both
models are calibrated to the co-terminal swaptions underlying the Bermudans. The difference between the
Bermudan prices determined under the two models can be decomposed into three components related to
the model choice, the calibration errors in the MC LMM and the slightly different payment schedules used
by the models. The impact of the latter component on the Bermudan prices is not taken into account in this
research as the differences between the payment dates are only marginal, with a maximum discrepancy of
0.016 (expressed in year fractions).

It is seen that the MC LMM always overprices the Bermudans relative to the 1IFHW prices. For increasing
Bermudan tenors, the difference between the MC LMM and the 1TFHW Bermudan prices increases.

All differences between the MC LMM and the IFHW Bermudans with a tenor of 5Y, which are in the range of
4.47 — 26.46 bp, are primarily explained by the model choice, as the calibration errors related to the underly-
ing swaptions are small (up to 2.53 bp). The model impact on these Bermudans expressed in terms of vega
is between 5 x vega and 10 x vega. For the Bermudans related to swaptions priced with a small calibration
error (up to 3.68 bp), the model selection will have an impact of 70.06 — 119.63 bp on the prices of the exotic
instruments. This is equivalent to a model impact of approximately 20 x vega. Considering Bermudans with
a tenor of 15Y, the MC LMM in general prices the underlying swaptions with a significant calibration error up
to 20.85 bp. These errors will have an impact on the Bermudan prices. Only two Bermudans are observed that
are accurately valued by the MC LMM with a maximum error of 3.69 bp. The differences 236.10 and 262.31
bp between the MC LMM and the 1IFHW Bermudan prices principally reflect the impact of the model choice.
In terms of vega, the model selection impacts for these Bermudans are 25 x vega and 30 x vega.



CONCLUSION

The main objectives of this research are to extend the classical LMM to a multi-curve framework and to inves-
tigate the impact of this extended model on exotic interest rate derivatives. It is chosen to analyze the impact
of the model selection on Bermudan swaptions, as these instruments are actively traded and among the most
liquid exotic IR derivatives with an early exercise feature. In order to be able to price Bermudan swaptions,
the extended LMM is calibrated to the swaption market.

In Chapter 3 the SC LMM is extended by assuming a constant additive spread between the OIS and the LI-
BOR curves, with the former used for discounting cash flows as this thesis only considers fully collateralized
derivatives. The adapted model formulation is derived, in which the evolution of the forward OIS rates is
modeled. The instantaneous forward rate volatility and the correlation structure are assumed to be specified
by two parametric functions. The volatility function involves four constant parameters, which are calibrated
to the swaption market. By introducing the additional volatility parameters k;, depending on the maturity
T; of the forward OIS rate, one assures a perfect fit of the swaption prices contained in the calibration set.
The volatility parameters control the shape of the term structure of implied volatilities and the instantaneous
volatility curve and the values of k; regulate the extend to which this time-homogeneous property is pre-
served. The choice of the correlation parametrization takes into account the fact that swaptions are only
mildly dependent on the shape of the correlation structure, making the swaption market not suitable for the
calibration of correlation parameters. For this reason a parametrization is chosen involving one constant pa-
rameter that is fixed prior to calibration.

The extended LMM assumes (log-)normal dynamics for the forward OIS rates. Consequently, the swap rates
cannot follow simultaneously a (log-)normal distribution under this model. In order to ensure a fast cali-
bration, an analytical, closed-form approximation for the swaption volatility is derived. The approximated
prices, obtained by inserting the swaption volatility approximation into Bachelier’s or Black’s model, are an
approximation of the true model implied swaption prices. The closed-form swaption volatility is based on
the assumption that the swap rate is well-approximated by a weighted sum of the underlying forward rates,
with constant weights. The accuracy of the approximation formula is tested by comparing the closed-form
swaption price with the Monte Carlo swaption price. This is done for different sets of swaptions, character-
ized by distinct underlying tenors and strikes. It is shown that the approximation reaches its highest degree
of accuracy for swaptions with shorter underlying tenor and with strikes around the swap rate.

In Chapter 4 the extended LMM is calibrated to market data from the the USD market using the closed-form
swaption volatility approximation. The model is calibrated to fifteen different sets of implied Bachelier swap-
tion volatilities, where each volatility is related to a swaption characterized by a distinct underlying tenor and
strike. Three different strips are considered and five distinct strikes. The payer/receiver swaptions related
to the volatilities contained in each set are exactly the swaptions underlying a specific Bermudan swaption
that is analyzed in Chapter 5. First the parameters a, b, ¢ and d are calibrated to the market implied swap-
tion volatilities contained in a set, whereafter the parameters k; are adjusted from their level of 1 to ensure
a perfect fit. The calibration results show that the instantaneous volatility curves and the term structures of
implied volatilities obtained feature a humped shape, which is often seen in the market. Adding more instru-
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ments to the calibration set leads to a loss of the time-homogeneity of the instantaneous volatilities and term
structures. Furthermore, in some cases the swaptions are priced accurately, with calibration errors up to 2.5
bp. This is especially apparent for swaptions with shorter underlying tenors and with strikes near the ATM
level. For swaptions with longer underlying tenors and with strikes not close to the ATM level, the accuracy
of the approximation decreases. In the extreme cases of deep OTM payer and deep ITM receiver swaptions
with a maximum underlying tenor of 15Y, calibration errors up to 20.9 bp are observed.

In Chapter 5 the impact of the normal MC LMM on the Bermudan swaption prices is investigated. This is
done by comparing the prices of these instruments computed using the MC LMM and the one-factor Hull-
White model. Thirty different deals are considered, each characterized by a distinct tenor, fixed strike and
underlying swap type. The difference between the Bermudan swaption prices computed by both models can
be decomposed into three components related to the model selection, the calibration errors and the slightly
different payment schedules used by the models. In this thesis, the impact of the third component is not
taken into account as the difference between the payment dates exhibits a maximum discrepancy of 0.016
(expressed in year fractions).

The pricing results show that the MC LMM overprices all Bermudan deals relative to the 1IFHW prices. This
overprice increases for increasing Bermudan tenors. Furthermore, as the swaptions underlying the Bermu-
dans with a tenor of 5Y feature small calibration errors up to 2.53 bp, the differences between the MC LMM
and the IFHW Bermudan prices, that lie between 4.47 bp and 26.46 bp, are primarily explained by the model
selection. In terms of vega, the model impact on these Bermudans is between 5 x vega and 10 x vega. Consid-
ering Bermudans with a 10Y tenor, for some deals it is seen that the calibration errors related to the underlying
swaptions are between 4.82 and 6.47 bp. Part of the differences between the Bermudans determined by the
two models, which are in the range of 58.24 — 139.36 bp, is attributed to these errors. For the other 10Y tenor
Bermudan cases, which have maximum calibration errors in the range of 1.68 — 3.68 bp, the component re-
lated to the calibration error will have a smaller impact on the Bermudan prices. The differences of the MC
LMM and the 1IFHW Bermudan prices, lying between 70.06 and 119.63 bp, are primarily explained by the
model choice. This is equivalent to a model impact of approximately 20 x vega. The calibration error of the
swaptions underlying the Bermudan deals with a tenor of 15Y increase and can reach levels up to 20.85 bp.
The calibration errors will have an impact on the MC LMM Bermudan price. Hence, part of the differences
between the MC LMM and the 1FHW Bermudan prices, which are in the range of 138.80 —291.92 bp, is ex-
plained by these errors. Only two deals with a tenor of 15Y feature small calibration errors up to 3.69 bp.
The differences of the Bermudan prices computed under both models (262.31 and 236.10 bp) are primarily
attributed to the selection of the model. Expressed in terms of vega, the model impacts on these Bermudans
are 25 x vega and 30 x vega.

POINTS OF FURTHER RESEARCH

During the execution of this thesis, it became apparent that some elements could not be fully addressed, as
they were beyond the scope of the present work. A list of these topics is provided, that could be used to further
expand this research.

¢ Improvement of the calibration accuracy.

In order to be able to price swaptions in the MC LMM, a former industry standard swaption volatility
approximation is extended to accommodate the MC framework. It is observed that the performance
of this approximation decreases for swaptions with longer underlying tenors and with strikes that are
not close to the swap rate. Consequently, these swaptions are priced by the MC LMM with a calibration
error. The investigation on a method to improve the calibration error is suggested. As part of this
research, alternative swaption volatility approximations could be extended to the MC framework and
their accuracy could be analyzed. The refined approximation discussed in (Jackel and Rebonato, 2000)
could, for example, be considered.

* Modeling different tenors simultaneously.
In this research the dynamics of the forward OIS rates presented in Section 3.5 were specified for one
particular tenor. By simulating the forward OIS rates with a given length, the implications on other
tenors were not considered. When modeling multiple tenors simultaneously, possible no-arbitrage
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relations that hold across different time-intervals have to be taken into account and the forward OIS
rates with different tenors cannot be simulated as being unrelated to each other. An investigation on
the joint simulation of forward OIS rates with different tenors is advised. The theory given in (Mercurio,
2010a) could provide a good starting point.

Analysis of the impact of rank reduction on Bermudan swaption prices.

In this thesis a full-rank correlation matrix is considered. However, in practice, considering as many
driving Brownian motions as the number of forward rates to be modeled may result in extremely time-
consuming computations. To overcome this problem, the number of factors can be decreased. An
investigation is proposed on the impact of rank reduction on the prices of Bermudan swaptions. In
Section 3.4 the popular rank reduction technique, the principal component analysis, is introduced. The
analysis of the influence of distinct rank reduction methods on the Bermudan swaptions is suggested.
(Andersen and Andreasen, 2001) and (Lutz, 2010b) could serve as starting points for this research topic.

Analysis of the impact of the correlation parametrization on Bermudan swaption prices.
Throughout this thesis, one of the most basic correlation parametrizations, involving a single constant
parameter, is considered. The correlation structure generated with this parametrization does not have
the property that rates with a constant time distance between the fixing dates are more correlated on
the long end of the curve compared to the short end. A more realistic correlation surface could be
obtained by considering more complex correlation parametrizations involving multiple parameters.
A research is proposed on the impact of different correlation parametrizations on the prices of the
Bermudan swaptions. The parametrizations discussed in (Lutz, 2010a) and (Schoenmakers and Coffey,
2005) could be taken into account.
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A. MARKET DATA USED

A.1.3M FORWARD LIBOR CURVE

F3(0;0.00,0.25) | 0.0025
F3(0;0.25,0.50) | 0.0031
FM(0;0.50,0.75) | 0.0043
FM(0;0.75,1.00) | 0.0058
F3(0;1.00,1.25) | 0.0075
F3M(0;1.25,1.50) | 0.0092
FM(0;1.50,1.75) | 0.0108
FM(0;1.75,2.00) | 0.0123
F3(0;2.00,2.25) | 0.0137
F3M(0;2.25,2.50) | 0.0148
FM(0;2.50,2.75) | 0.0157
FM(0;2.75,3.00) | 0.0166
F3(0;3.00,3.25) | 0.0173
F3M(0;3.25,3.50) | 0.0179
FM(0;3.50,3.75) | 0.0184
FM(0;3.75,4.00) | 0.0190
F3™(0;4.00,4.25) | 0.0194
F3M(0;4.25,4.50) | 0.0198
F*M(0;4.50,4.75) | 0.0201
FM(0;4.75,5.00) | 0.0205
FM(0;5.00,5.25) | 0.0208
F3M(0;5.25,5.50) | 0.0210
FM(0;5.50,5.75) | 0.0212
FM(0;5.75,6.00) | 0.0215
FM(0;6.00,6.25) | 0.0217
F3M(0;6.25,6.50) | 0.0219
FM(0;6.50,6.75) | 0.0221
FM(0,6.75,7.00) | 0.0223
FM(0;7.00,7.25) | 0.0225
F3M(0;7.25,7.50) | 0.0226
FM(0;7.50,7.75) | 0.0227
FM(0,7.75,8.00) | 0.0229
FM(0;8.00,8.25) | 0.0230
F3M(0;8.25,8.50) | 0.0231
FM(0;8.50,8.75) | 0.0233
FM(0;8.75,9.00) | 0.0234
F™(0;9.00,9.25) | 0.0234
F3(0;9.25,9.50) | 0.0234
F3(0;9.50,9.75) | 0.0234
F?(0;9.75,10.00) | 0.0234

F3(0;10.00,10.25) | 0.0235
F3(0;10.25,10.50) | 0.0236
F™(0;10.50,10.75) | 0.0237
F™(0;10.75,11.00) | 0.0239
F3(0;11.00,11.25) | 0.0240
F3M(0;11.25,11.50) | 0.0241
FM(0;11.50,11.75) | 0.0242
FM(0;11.75,12.00) | 0.0243
F3(0;12.00,12.25) | 0.0243
F3M(0;12.25,12.50) | 0.0243
FM(0;12.50,12.75) | 0.0242
FM(0;12.75,13.00) | 0.0242
F3(0;13.00,13.25) | 0.0242
F3M(0;13.25,13.50) | 0.0241
F™M(0;13.50,13.75) | 0.0241
FM(0;13.75,14.00) | 0.0241
F3M(0;14.00,14.25) | 0.0240
F3M(0;14.25,14.50) | 0.0240
FM(0;14.50,14.75) | 0.0240
F*M(0;14.75,15.00) | 0.0239
F™(0;15.00,15.25) | 0.0239
F3M(0;15.25,15.50) | 0.0239
FM(0;15.50,15.75) | 0.0239
FM(0;15.75,16.00) | 0.0239
F*M(0;16.00,16.25) | 0.0239
F3M(0;16.25,16.50) | 0.0239
F*M (0;16.50,16.75) | 0.0239
FM(0,16.75,17.00) | 0.0240
FM(0;17.00,17.25) | 0.0240
F3M(0;17.25,17.50) | 0.0240
FM(0;17.50,17.75) | 0.0240
FM(0,17.75,18.00) | 0.0240
F*M(0;18.00,18.25) | 0.0240
F3M(0;18.25,18.50) | 0.0240
FM(0;18.50,18.75) | 0.0240
FM(0;18.75,19.00) | 0.0240
F™(0;19.00,19.25) | 0.0240
F3(0;19.25,19.50) | 0.0240
F3(0;19.50,19.75) | 0.0240
FM (0;19.75,20.00) | 0.0240

Table A.1: 3M forward LIBOR curve as of 30 January 2015.

F3M(0;20.00,20.25) | 0.0240
F3M(0;20.25,20.50) | 0.0239
F™M (0;20.50,20.75) | 0.0239
F™ (0;20.75,21.00) | 0.0238
F3(0;21.00,21.25) | 0.0238
F3M(0;21.25,21.50) | 0.0237
FM(0;21.50,21.75) | 0.0237
FM(0;21.75,22.00) | 0.0236
F3M(0;22.00,22.25) | 0.0236
F3M(0;22.25,22.50) | 0.0235
FM(0;22.50,22.75) | 0.0235
FM (0;22.75,23.00) | 0.0234
F3(0;23.00,23.25) | 0.0234
F3M(0;23.25,23.50) | 0.0233
FM (0;23.50,23.75) | 0.0233
FM (0;23.75,24.00) | 0.0232
F3M(0;24.00,24.25) | 0.0232
F3M(0;24.25,24.50) | 0.0231
FM (0;24.50,24.75) | 0.0231
FM (0;24.75,25.00) | 0.0230
FM (0;25.00,25.25) | 0.0230
F3M(0;25.25,25.50) | 0.0231
F™M (0;25.50,25.75) | 0.0231
FM(0;25.75,26.00) | 0.0232
FM (0;26.00,26.25) | 0.0232
F3M(0;26.25,26.50) | 0.0232
FM (0;26.50,26.75) | 0.0233
F3M(0,26.75,27.00) | 0.0233
F™M(0;27.00,27.25) | 0.0234
F3M(0;27.25,27.50) | 0.0234
F™M (0;27.50,27.75) | 0.0235
F3M(0,27.75,28.00) | 0.0235
F?M (0;28.00,28.25) | 0.0235
F3M(0;28.25,28.50) | 0.0236
FM (0;28.50,28.75) | 0.0236
FM (0;28.75,29.00) | 0.0237
F™(0;29.00,29.25) | 0.0237
F3M(0;29.25,29.50) | 0.0238
F3M(0;29.50,29.75) | 0.0238
FM(0,29.75,30.00) | 0.0238
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A.2. OIS DISCOUNT CURVE

P%(0,0.00) | 1.0000
P%(0,0.25) | 0.9997
P%(0,0.50) | 0.9993
P%(0,0.75) | 0.9986
P%(0,1.00) | 0.9976
P%(0,1.25) | 0.9962
P%(0,1.50) | 0.9943
P%(0,1.75) | 0.9922
P%(0,2.00) | 0.9896
P7(0,2.25) | 0.9869
P%(0,2.50) | 0.9839
P%(0,2.75) | 0.9805
P%(0,3.00) | 0.9769
P%(0,3.25) | 0.9734
P%(0,3.50) | 0.9697
P%(0,3.75) | 0.9658
P%(0,4.00) | 0.9617
P%(0,4.25) | 0.9578
P4(0,4.50) | 0.9537
P%(0,4.75) | 0.9495
P%(0,5.00) | 0.9451
P%(0,5.25) | 0.9411
P%(0,5.50) | 0.9370
P%(0,5.75) | 0.9328
P%(0,6.00) | 0.9285
P%(0,6.25) | 0.9241
P%(0,6.50) | 0.9196
P%(0,6.75) | 0.9150
P4(0,7.00) | 0.9103
P%(0,7.25) | 0.9061
P%(0,7.50) | 0.9019
P%(0,7.75) | 0.8976
P%(0,8.00) | 0.8932
P%(0,8.25) | 0.8888
P%(0,8.50) | 0.8844
P%(0,8.75) | 0.8799
P%(0,9.00) | 0.8753
P%(0,9.25) | 0.8707
P%(0,9.50) | 0.8660
P%(0,9.75) | 0.8613
P%(0,10.00) | 0.8565

P%(0,10.25) | 0.8522
P%(0,10.50) | 0.8478
P%(0,10.75) | 0.8434
P%(0,11.00) | 0.8390
P%(0,11.25) | 0.8346
P%(0,11.50) | 0.8301
P%(0,11.75) | 0.8257
P9(0,12.00) | 0.8212
P%(0,12.25) | 0.8170
P%(0,12.50) | 0.8128
P%(0,12.75) | 0.8086
P%(0,13.00) | 0.8044
P9(0,13.25) | 0.8002
P%(0,13.50) | 0.7959
P4(0,13.75) | 0.7917
P%(0,14.00) | 0.7875
P%(0,14.25) | 0.7832
P%(0,14.50) | 0.7789
P%(0,14.75) | 0.7747
P%(0,15.00) | 0.7704
P%(0,15.25) | 0.7665
P%(0,15.50) | 0.7626
P4(0,15.75) | 0.7587
P%(0,16.00) | 0.7548
P%(0,16.25) | 0.7509
P%(0,16.50) | 0.7470
P%(0,16.75) | 0.7431
P%(0,17.00) | 0.7393
P9(0,17.25) | 0.7354
P%(0,17.50) | 0.7315
P4(0,17.75) | 0.7277
P%(0,18.00) | 0.7238
P%(0,18.25) | 0.7199
P%(0,18.50) | 0.7161
P%(0,18.75) | 0.7122
P%(0,19.00) | 0.7084
P%(0,19.25) | 0.7045
P%(0,19.50) | 0.7007
P%(0,19.75) | 0.6968
P%(0,20.00) | 0.6930

Table A.2: OIS discount curve as of 30 January 2015.

P%(0,20.25) | 0.8522
P%(0,20.50) | 0.8478
P%(0,20.75) | 0.8434
P%(0,21.00) | 0.8390
P%(0,21.25) | 0.8346
P%(0,21.50) | 0.8301
P%(0,21.75) | 0.8257
P9(0,22.00) | 0.8212
P4(0,22.25) | 0.8170
P%(0,22.50) | 0.8128
P%(0,22.75) | 0.8086
P%(0,23.00) | 0.8044
P9(0,23.25) | 0.8002
P9(0,23.50) | 0.7959
P4(0,23.75) | 0.7917
P%(0,24.00) | 0.7875
P%(0,24.25) | 0.7832
P%(0,24.50) | 0.7789
P%(0,24.75) | 0.7747
P4(0,25.00) | 0.7704
P%(0,25.25) | 0.7665
P%(0,25.50) | 0.7626
P4(0,25.75) | 0.7587
P%(0,26.00) | 0.7548
P9(0,26.25) | 0.7509
P%(0,26.50) | 0.7470
P%(0,26.75) | 0.7431
P%(0,27.00) | 0.7393
P9(0,27.25) | 0.7354
P%(0,27.50) | 0.7315
P%(0,27.75) | 0.7277
P%(0,28.00) | 0.7238
P%(0,28.25) | 0.7199
P%(0,28.50) | 0.7161
P%(0,28.75) | 0.7122
P%(0,29.00) | 0.7084
P%(0,29.25) | 0.7045
P%(0,29.50) | 0.7007
P%(0,29.75) | 0.6968
P%(0,30.00) | 0.6930
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H 1Y15Y 2Y14Y 3Y13Y 4Y12Y 5Y11Y 6Y10Y 7Y9Y 8Y8Y 9Y7Y 10Y6Y 11Y5Y 12Y4Y 13Y3Y 14Y2Y 15Y1Y CPU Time
LMM MC 75.80 74.28 73.55 79.52 84.73 86.20 84.84 87.79 92.78 98.56 102.88 105.79 112.39 115.88 130.33
500 % Vol Change - - - - - - - - - - - - - - - 0.004
MC Window [66.82-84.78] | [65.1483.42] | [64.31-82.77] | [69.80—89.22) [77.89-97.68] [87.88—109.22] | [92.06—113.68] | [94.18—117.38] | (100.33 - 124.44] | [102.82—128.94] | [115.46—145.21]
Width MC Window 17.96 18.28 18.46 19.42 19.79 21.34 21.62 23.20 24.11 26.12 29.75
LMM MC 79.64 77.24 77.89 75.29 81.43 85.45 91.71 97.42 103.09 106.20 109.54
1,000 % Vol Change . 3.98 5.90 -5.31 X . =725 —8.60 -13.29 -10.85 =791 -8.28 —8.36 -15.96 0.009
' MC Window 72.78 - 86.50 70.61 - 83.87 71.22-84.55 68.75-81.83 68.27 - 81.45 70.59 - 83.79 74.69 - 88.16 77.83-91.77 78.15-92.75 84.12-99.30 89.44-105.39 94.62-111.55 97.34-115.05 99.87-119.20
‘Width MC Window 13.71 .25 13.32 13.08 13.19 13.21 13.47 13.94 14.60 15.18 15.95 16.93 17.71 19.33
LMM MC 76.47 77.45 76.44 76.76 77.40 78.53 81.98 86.50 90.62 95.26 99.36 104.77 109.03 114.15
5,000 % Vol f‘.hange 0.2 -1.86 1.95 39 1.73 0.68 2.01 6.04 3.86 .99 .63 X » 0.049
MC Window [73.48-79.40] | [73.80-79.73] | [74.42-80.38] | [75.56—81.49] (78.95-85.01] (83.35-89.66] 87.30-93.93] [91.74-98.78] 95.71-103.01] | [100.93-108.61] | [104.96—113.11] | [109.88 —118.43]
‘Width MC Window 5.91 5.93 5.95 5.93 6.05 6.31 6.64 7.04 7.29 7.68 8.15 8.55
LMM MC 76.54 76.64 76.54 78.14 83.02 86.02 88.09 91.69 96.19 100.36 103.62 108.16
10,000 % Vol Change K 0.13 -0.16 -1.12 -0.49 1.27 -0.55 —2.7¢ 74 -3.19 -4.21 -4.96 -5.25 0.116
" MC Window 72.97-76.97 74.44-78.64 74.56-78.72 74.47-78.60 76.06 - 80.23 80.84 - 85.20 83.78 - 88.26 85.78 - 90.40 89.24-94.14 93.62-98.77 97.66 - 103.07 100.79 - 106.45 105.18-111.14
‘Width MC Window 4.01 4.20 4.17 4.13 417 4.36 4.48 4.63 4.90 5.14 5.41 5.66 5.96
LMM MC 75.60 75.96 76.42 77.19 78.34 82.21 84.84 87.81 97.07 101.67 107.09 111.31
50,000 % Vol Change 0.84 0.87 -0.76 -0.29 0.85 0.25 0.47 -0.97 -1.38 -0.31 X 0.91 o .. . 0.614
MC Window 74.69-76.51 75.27-77.14 75.02 - 76.89 75.49-77.35 76.26 -78.12 77.40-79.28 79.27-81.16 81.24-83.18 83.84-85.83 86.78 - 88.85 91.18-93.34 95.93 - 98.20 100.47 - 102.88 105.82 - 108.36 109.98 - 112.65
‘Width MC Window 1.82 1.87 1.87 1.86 1.86 1.87 1.89 1.94 1.99 2.07 2.16 227 241 2.54 2.67
LMM MC 75.25 76.11 76.60 77.23 77.40 78.43 79.77 82.03 84.56 87.56 91.21 95.33 100.26 105.06 109.73
100,000 % Vol Change —0.46 -0.13 0.84 1.07 0.28 0.11 —0.56 -0. -0.29 -1.14 -1.79 -1.90 —1.42 1.158
MC Window 74.61 -75.88 75.45-76.77 75.94-77.26 76.57-77.89 76.74 -78.06 77.76 -79.09 79.10-80.44 81.35-82.72 83.85-85.26 86.83 -88.29 90.45-91.97 94.53 -96.13 99.41-101.10 104.16 —105.95 108.80-110.67
Width MC Window 1.28 1.32 1.32 1.32 . 1.34 1.37 1.41 1.46 1.52 1.60 X . 1.88
LMM MC 74.99 76.05 76.34 76.96 77.77 78.91 80.50 82.46 85.01 88.48 92.25 96.65 101.38 106.33 110.95
500,000 % Vol Change -0.34 -0.08 -0.34 -0.35 0.47 0.62 0.92 0.52 0.54 1.05 1.39 1.12 1.22 1.10 6.022
' MC Window 74.71-75.28 75.75-76.34 76.04 - 76.63 76.67-77.26 77.47-78.06 78.61 80.20 - 80.80 82.15-82.76 84.70-85.33 88.15-88.81 96.29-97.01 101.01-101.76 105.93 - 106.73 110.53-111.37
‘Width MC Window 0.57 0.59 0.59 .59 . 0.60 0.61 0.1 0.72 0.76 0.80 0.84
LMM MC 75.20 76.17 76.61 76.97 77.70 78.79 80.31 82.43 85.12 88.31 96.53 101.35 106.34 110.87
1,000,000 % Vol Change 0.28 0.17 0.35 0.02 -0.09 -0.15 -0.25 -0.03 0.13 -0.19 -0.13 -0.03 0.01 —0.06 11.880
’ ' MC Window 75.00 - 75.41 75.96 - 76.38 76.40-76.81 76.77-77.18 77.49-77.90 78.58 - 79.00 80.09 - 80.52 82.21 -82.65 84.90 - 85.35 88.08 - 88.55 91.92-92.41 96.28 - 96.78 101.08 - 101.62 106.06 — 106.62 110.58-111.17
‘Width MC Window 0.40 0.42 0.42 0.42 0.42 0.42 0.43 0.45 0.46 0.51 0.57 0.60
Table B.1: Results Monte Carlo test, dt = 0.25.
H 1Y15Y 2Y14Y 3Y13Y 4Y12Y 5Y11Y 6Y10Y 7Y9Y 8Y8Y 9Y7Y 10Y6Y 11Y5Y 12Y4Y 13Y3Y 14Y2Y 15Y1Y CPU Time
LMM MC 75.73 76.41 77.61 78.84 74.94 76.46 76.33 77.21 77.43 79.27 83.57 94.88 98.03 103.15 105.26
500 % Vol Change - - - - - - - - - - - - - - - 0.017
MC Window 66.57 —84.89 | 67.30-85.51 | 68.74—-86.45 | 69.67-88.00 | 66.05—-83.81 | 67.12—-85.78 | 67.29-85.36 | 67.97-86.42 | 67.89-86.95 | 69.23-89.29 72.90-94.23 83.44 -106.31 86.02-110.03 90.18 -116.10 92.12-118.39 :
Width MC Window 18.32 18.21 17.71 18.33 17.76 18.66 18.07 18.46 19.06 20.06 21.33 22.87 24.01 25.92 26.28
LMM MC 75.33 81.10 82.20 79.59 76.43 78.92 85.65 90.14 93.28 99.75 102.70 102.21 106.14 109.33
1,000 % Vol Change -1.41 4.51 » » —0.04 .. 10.94 16.41 17.67 .35 » » . . 0.037
" MC Window 68.71-81.94 | 74.40-87.80 | 75.30-89.10 | 72.74—-86.43 | 69.76—-83.10 | 72.26-85.57 | 78.68-92.61 | 82.86—-97.40 | 85.66—100.89 | 91.87-107.63 | 94.46-110.93 | 93.92-110.51 97.44-114.83 100.00 - 118.66 :
‘Width MC Window 13.22 13.40 13.80 13.70 13.34 13.31 13.93 14.54 15.24 15.76 16.47 16.59 17.38 18.66
LMM MC 75.90 77.49 79.55 81.01 80.63 81.13 84.18 86.66 89.77 93.04 95.15 100.25 106.52 111.46
5,000 % Vol Change 0.76 —4.46 -3.23 1.79 5.49 2.81 -1.72 -3.85 -3.76 -6.73 -7.35 -1.92 0.36 1.95 0.179
" MC Window 72.93-78.87 | 74.49-80.48 | 76.56—82.52 | 78.00—-84.02 | 77.61-83.65 | 78.08-84.19 | 81.06—87.29 | 83.47—89.85 86.47-93.07 89.63 -96.44 91.58 - 98.72 96.49 —-104.01 102.55-110.48 | 107.24-115.68
‘Width MC Window 5.94 5.99 5.96 6.02 6.05 6.11 6.23 6.38 6.60 6.82 7.15 7.51 7.94 8.44
LMM MC 76.88 76.26 75.87 76.87 77.55 79.42 81.45 84.11 88.08 92.27 96.55 103.83 107.56 112.98
10,000 % Vol Change 1.30 -1.58 —4.63 —5.11 -3.83 -2.12 -3.24 -2.94 -1.88 —0.82 1.47 3.57 0.98 1.36 0.338
' MC Window 73.97-78.07 | 74.77-78.99 | 74.16—-78.36 | 73.78 -77.95 | 74.79-78.96 | 75.47-79.62 | 77.30—-81.53 | 79.29-83.60 | 81.89-86.34 | 85.76 —90.40 89.83-94.71 93.98-99.11 101.10-106.57 | 104.66 —110.45 | 109.95-116.01 :
Width MC Window 4.10 4.22 4.20 4.17 4.17 4.16 4.22 4.31 4.45 4.64 4.89 5.13 5.47 5.79 6.06
LMM MC 74.98 76.07 76.53 7733 77.62 78.24 79.62 82.66 85.84 89.31 93.52 97.70 103.03 107.69 112.15
50,000 % Vol Change -1.36 -1.06 0.36 1.94 0.97 0.89 0.25 1.49 2.05 1.39 1.35 1.19 -0.77 0.12 -0.73 1.742
' MC Window 74.08-75.89 | 75.13-77.01 | 75.59—-77.47 | 76.40-78.27 | 76.69—78.55 | 77.30—-79.17 | 78.67—-80.57 | 81.69-83.64 | 84.83-86.84 | 88.26 -90.35 92.43-94.61 96.56 —98.84 101.82-104.24 | 106.42—-108.96 | 110.81 —113.48 :
‘Width MC Window 1.81 1.88 1.88 1.87 1.86 1.87 1.90 1.95 2.01 2.08 2.41 2.54 2,67
LMM MC 75.32 76.82 77.44 78.22 78.48 79.62 81.56 83.57 86.11 89.15 102.08 107.36 111.43
100,000 % Vol Change 0.45 0.99 1.19 1.15 1.11 1.77 1.10 0.32 -0.17 -0.93 -0.31 -0.64 3.591
' MC Window 74.68-75.96 | 76.16—-77.48 | 76.77-78.10 | 77.56-78.89 | 77.82—-79.14 | 78.95-80.28 82.88-84.26 | 85.40-86.82 88.42 -89.88 101.23-102.93 | 106.46-108.26 | 110.49-112.38
‘Width MC Window 1.28 1.42 1.47 1.70 1.80 1.89
LMM MC 75.19 85.51 88.80 101.84 106.67 110.90
500,000 % Vol Change -0.17 . X . . . —0.93 -0.99 —0.69 -0.39 . -0.23 —0.64 —0.48 17.309
' MC Window 74.91-75.48 | 76.03-76.62 | 76.64—77.23 | 77.17-77.76 | 77.85-78.44 | 78.89-79.49 | 80.50—-81.10 | 82.44-83.05 | 85.20-85.83 | 88.47-89.13 92.31-93.00 101.46 —102.22 | 106.27 -107.07 | 110.47-111.32 :
Width MC Window 0.57 0.59 0.60 0.61 0.63 .66 0.72 0.84
LMM MC 75.44 76.55 77.09 77.35 78.11 79.21 80.78 82.76 85.40 88.53 92.42 96.92 101.90 106.75 110.99
1,000,000 % Vol Change 0.32 0.29 0.20 -0.14 —0.05 0.02 —0.03 0.02 -0.13 —0.31 —0.25 -0.12 0.06 0.07 0.09 35.144
" " MC Window 75.24—-75.64 | 76.34-76.76 | 76.88—-77.30 | 77.15-77.56 | 77.90-78.32 | 79.00-79.42 | 80.57—-80.99 | 82.54-82.98 | 85.18-85.63 | 88.29-88.76 92.18-92.67 96.66 —97.17 101.63-102.17 | 106.46—-107.03 | 110.69-111.29
‘Width MC Window 0.41 0.42 0.42 0.42 0.42 0.42 0.43 0.43 0.45 0.46 0.49 0.51 0.54 0.57 0.60

Table B.2: Results Monte Carlo test, dt = 0.10.
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H 1Y15Y 2Y14Y 3Y13Y 4Y12Y 5Y11Y 6Y10Y 7Y9Y 8Y8Y 9Y7Y 10Y6Y 11Y5Y 12Y4Y 13Y3Y 14Y2Y 15Y1Y CPU Time
LMM MC 80.67 79.01 80.34 83.09 78.96 76.39 81.72 88.65 89.93 90.75 95.12 105.18 120.31 121.72 125.53
500 % Vol Change - - - - - - - - - - - - - - - 0.164
MC Window 71.01-90.33 | 69.47-88.53 | 70.96-89.71 | 73.51 -92.65 | 69.85-88.05 | 67.21 —85.56 | 72.13-91.29 | 78.66-98.62 | 79.75—100.10 | 80.53-100.97 | 84.36—105.86 | 93.45-116.90 | 107.08 -133.53 | 107.85-135.59 | 111.15-139.91
Width MC Window 19.33 19.07 18.75 19.15 18.20 18.35 19.16 19.96 20.36 20.44 21.50 23.44 26.45 27.74 28.75
LMM MC 70.65 70.89 72.91 78.58 83.15 84.13 87.32 88.49 89.08 90.47 90.05 92.06 95.94 106.81 112.47
1,000 % Vol Change —12.43 -10.27 -9.26 —5.43 5.31 10.13 6.86 -0.17 -0.94 -0.31 —-5.33 —12.47 -20.25 —-12.26 —10.41 0319
' MC Window 64.54-76.75 | 64.39-77.38 | 66.35—-79.45 | 71.72-85.43 | 76.13-90.17 | 77.13-91.11 | 80.36-94.27 | 81.31-95.67 | 81.75-96.41 82.89-98.05 82.23-97.87 | 83.94-100.17 | 87.48-104.41 97.59-116.02 | 102.77-122.16
‘Width MC Window 12.21 12.99 13.11 13.70 14.04 13.98 13.90 14.35 14.66 15.16 15.64 16.23 16.93 18.43 19.39
LMM MC 77.99 82.16 81.84 80.44 80.73 81.27 82.53 84.84 92.35 97.34 102.27 108.90 113.39
5000 % Vol Change 10.39 15.91 12.26 2.37 —4.04 -6.92 -6.73 -4.76 2.55 5.73 6.59 1.96 0.82 1373
' MC Window 75.05-80.92 | 79.10-85.23 | 78.77-84.91 | 77.42-83.45 | 77.09-83.02 | 77.73-83.72 | 78.24-84.30 | 79.49-85.58 | 81.68—-88.00 88.89-95.80 | 93.74-100.94 | 98.45-106.09 | 104.82—-112.98 | 109.10-117.68
‘Width MC Window 5.87 6.13 6.14 6.03 5.94 5.99 6.06 6.09 6.32 6.91 7.20 7.65 8.16 8.58
LMM MC 73.28 74.74 77.05 78.41 79.42 80.82 81.65 83.05 86.60 93.47 97.94 102.11 107.56 111.80
10,000 % Vol f:hange —6.04 -9.04 —5.85 —2.53 -0.79 0.12 0.47 X 2.08 1.84 1.22 0.62 -0.16 -1.22 -1.40 2872
’ MC Window 71.30-75.26 | 72.66-76.82 | 74.95-79.16 | 76.30-80.51 | 77.33-81.52 | 78.71-82.93 | 79.50-83.80 | 80.86—85.24 | 84.35-88.85 87.62-92.29 91.07-95.88 | 95.41-100.47 | 99.45-104.77 | 104.73-110.40 | 108.84 - 114.75
‘Width MC Window 3.96 4.16 4.22 4.21 4.19 4.22 4.30 4.37 4.51 4.68 4.82 5.06 5.32 5.67 591
LMM MC 75.04 76.86 7775 77.64 78.53 79.49 81.06 82.93 85.51 88.59 92.25 95.93 100.40 105.09 109.10
50,000 % Vol Change 2.41 2.84 0.91 -0.98 -1L12 -1.65 -0.73 -0.15 -1.26 -1.52 -1.31 —2.06 -1.67 -2.30 —2.41 14.503
. MC Window 74.14-75.95 | 75.92-77.81 | 76.81-78.70 | 76.70-78.58 | 77.60—79.47 | 78.55—80.44 | 80.10—82.02 | 81.96—83.90 | 84.50-86.51 87.55-89.63 91.16-93.33 94.79-97.07 99.21-101.59 | 103.83-106.35 | 107.78 —110.42 )
Width MC Window 1.81 1.89 1.88 1.88 1.91 1.95 2.01 2.17
LMM MC 74.86 75.77 76.84 77.34 77.89 79.30 80.81 82.71 85.34 88.86 92.96 97.10 101.72 106.18 110.21
100,000 % Vol Change -0.25 —1.42 -1.17 -0.38 —-0.83 -0.24 -0.30 -0.27 -0.19 0.31 0.77 . 131 1.03 . 30.140
. MC Window 74.22-75.50 | 75.11-76.43 | 76.18-77.51 | 76.68—78.01 | 77.22—-78.55 | 78.64—79.97 | 80.14—-81.49 | 82.02—-83.40 | 84.63-86.05 88.13 - 89.60 92.18-93.73 96.29-97.91 | 100.87-102.57 | 105.28—107.07 | 109.28 - 111.15 )
‘Width MC Window 1.32 1.33 1.3 1.88
LMM MC 75.51 76.71 77.28 77.73 78.44 79.58 81.18 83.25 85.89 89.24 93.08 97.46 102.32 107.28 111.61
500,000 % Vol Change 0.87 1.24 0.58 0.50 0.71 0.36 0.45 0.65 0.64 0.43 0.14 0.38 0.59 1.04 1.27 148.966
' MC Window 75.22-75.80 | 76.41-77.01 | 76.99-77.58 | 77.43-78.03 | 78.14-78.74 | 79.29-79.88 | 80.88-81.48 | 82.94-83.56 | 85.57-86.20 88.91-89.57 92.74-93.43 97.10-97.83 101.94-102.70 | 106.88-107.68 | 111.19-112.04
‘Width MC Window 0.57 0.59 0.60 0.59 0.59 0.60 0.61 0.64 0.66 0.72 0.76 0.81 0.85
LMM MC 75.58 76.77 7737 77.78 78.49 79.62 81.29 83.40 86.06 89.34 93.23 97.62 102.41 107.26 111.36
1,000,000 % Vol F;hange 0.10 0.08 0.11 0.07 0.07 0.05 0.14 0.18 0.20 0.11 0.16 0.16 0.09 —0.02 -0.23 296.874
T MC Window 75.38-75.79 | 76.56-76.98 | 77.16-77.58 | 77.57-77.99 | 78.28—-78.70 | 79.41-79.83 | 81.08-81.51 | 83.18—-83.62 | 85.84-86.28 89.11-89.58 92.99-93.47 97.37-97.88 | 102.14-102.68 | 106.98—107.55 | 111.06-111.66
Width MC Window 0.41 0.42 0.42 0.42 0.42 0.42 0.43 0.44 0.45 0.47 0.49 0.51 0.54 0.57 0.60

Table B.3: Results Monte Carlo test, dt = 0.010.
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C. ACCURACY OF REBONATO’S APPROXIMATION

C.1. SCENARIO 1

Maturity Tenor Strike LMM Rebonato vol | LMM MC vol | Difference
(inyears) | (inyears) (in bp) (in bp) (in bp)
1 5 0.01679 269.71 267.60 -2.11
2 4 0.01856 318.54 316.91 -1.64
3 3 0.01972 300.80 299.52 -1.28
4 2 0.02052 235.27 234.94 -0.33
5 1 0.02112 131.81 131.97 0.16
Table C.1: Results for scenario 1, K = ATM.
C.2. SCENARIO 2
Maturity Tenor Strike LMM Rebonato price | LMM MC price | Difference
(inyears) | (inyears) (in bp) (in bp) (in bp)
1 15 0.02105 404.83 397.32 -7.51
2 14 0.02195 535.30 527.71 -7.59
3 13 0.02254 605.81 598.97 -6.85
4 12 0.02296 642.33 636.52 -5.81
5 11 0.02326 656.78 650.74 -6.05
6 10 0.02350 655.56 650.54 -5.03
7 9 0.02369 642.28 637.91 -4.37
8 8 0.02382 618.72 615.02 -3.71
9 7 0.02392 585.60 582.75 -2.84
10 6 0.02402 542.82 539.70 -3.12
11 5 0.02409 489.38 486.93 —2.45
12 4 0.02407 423.60 421.89 -1.71
13 3 0.02400 343.18 341.93 -1.25
14 2 0.02395 245.88 24491 —-0.98
15 1 0.02393 130.81 130.51 -0.30
Table C.2: Results for scenario 2, K = ATM.
C.3. SCENARIO 3
Maturity Tenor Strike LMM Rebonato price | LMM MC price | Difference
(inyears) | (inyears) (in bp) (in bp) (in bp)
1 10 0.00974 998.35 992.50 -5.84
2 9 0.01092 995.20 986.56 -8.64
3 8 0.01170 962.91 954.89 —-8.02
4 7 0.01224 905.95 898.20 -7.76
5 6 0.01265 829.30 823.40 -5.90
6 5 0.01298 735.53 731.89 -3.63
7 4 0.01323 625.20 622.94 -2.26
8 3 0.01342 497.25 496.20 -1.05
9 2 0.01354 350.09 349.82 -0.27
10 1 0.01369 183.40 183.31 -0.09

Table C.3: Results for scenario 3, K = ATM — 1%.




C.4. SCENARIO 4
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C.4. SCENARIO 4

Maturity Tenor Strike LMM Rebonato price | LMM MC price | Difference
(inyears) | (inyears) (in bp) (in bp) (in bp)
1 10 0.02974 74.60 73.80 -0.81
2 9 0.03092 170.77 170.88 0.11
3 8 0.03170 236.68 236.78 0.10
4 7 0.03224 276.48 276.60 0.12
5 6 0.03265 294.99 294.20 -0.79
6 5 0.03298 294.70 294.11 -0.59
7 4 0.03323 276.10 275.39 -0.71
8 3 0.03342 238.12 237.22 -0.90
9 2 0.03354 179.17 178.88 -0.29
10 1 0.03369 98.84 98.85 —0.00
Table C.4: Results for scenario 4, K = ATM + 1%.
C.5. SCENARIO 5
Maturity Tenor Strike LMM Rebonato price | LMM MC price | Difference
(inyears) | (inyears) (in bp) (in bp) (in bp)
1 10 0.03974 7.33 7.65 0.32
2 9 0.04092 44.38 45.53 1.15
3 8 0.04170 87.64 89.02 1.38
4 7 0.04224 124.18 125.05 0.87
5 6 0.04265 150.54 150.97 0.43
6 5 0.04298 165.23 164.81 -0.42
7 4 0.04323 166.63 165.70 -0.93
8 3 0.04342 152.44 151.44 -1.00
9 2 0.04354 120.21 119.35 —-0.85
10 1 0.04369 68.72 68.30 -0.42
Table C.5: Results for scenario 5, K = ATM + 2%.
C.6. SCENARIO 6
Maturity Tenor Strike LMM Rebonato price | LMM MC price | Difference
(inyears) | (inyears) (in bp) (in bp) (in bp)
1 10 0.04974 0.31 0.39 0.08
2 9 0.05092 7.97 8.92 0.95
3 8 0.05170 25.87 27.71 1.84
4 7 0.05224 47.61 49.63 2.02
5 6 0.05265 68.29 69.61 1.32
6 5 0.05298 84.61 85.16 0.55
7 4 0.05323 93.63 93.39 -0.24
8 3 0.05342 92.17 91.46 -0.70
9 2 0.05354 76.96 76.45 -0.51
10 1 0.05369 45.92 45.68 -0.24

Table C.6: Results for scenario 6, K = ATM + 3%.
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D. CALIBRATION RESULTS

D.1. STRIP 1 WITH STRIKE ATM3Y — 1%

Maturity Tenor Market || LMM Rebonato | Difference || LMM MC | Difference
(in years) | (inyears) vol. vol. (in bp) vol. (in bp)

1 5 0.00729 0.00729 0.0 0.00707 2.2

2 4 0.00758 0.00758 0.0 0.00741 -1.7

3 3 0.00805 0.00805 0.0 0.00791 -14

4 2 0.00810 0.00810 0.0 0.00798 -1.2

5 1 0.00845 0.00845 0.0 0.00837 -0.7

Table D.1: Strip 1 with strike K = 0.679%: calibration results in terms of implied volatilities.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference
(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)

1 5 496.66 496.66 0.00 495.04 1.62

2 4 479.93 479.93 0.00 477.92 2.00

3 3 407.03 407.03 0.00 405.26 1.77

4 2 292.85 292.85 0.00 291.59 1.26

5 1 156.77 156.77 0.00 156.31 0.46

Table D.2: Strip 1 with strike K = 0.679%: calibration results in terms of payer swaption prices.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference
(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)

1 5 13.74 13.74 0.00 12.82 0.92

2 4 28.34 28.34 0.00 26.98 1.36

3 3 38.01 38.01 0.00 36.82 1.19

4 2 33.77 33.77 0.00 33.08 0.69

5 1 22.82 22.82 0.00 22.60 0.23

Table D.3: Strip 1 with strike K = 0.679%: calibration results in terms of receiver swaption prices.

a b c d
0.0030 | 0.0170 | 0.7766 | 0.0029

Table D.4: Strip 1 with strike K = 0.679%: calibrated parameters a, b, c, d.
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Figure D.3: Strip 1 with strike K = 0.679%:
evolution of the term structure of implied Bachelier volatilities.



D. CALIBRATION RESULTS

D.2. STRIP 1 WITH STRIKE ATM3Y + 1%

Maturity Tenor Market || LMM Rebonato | Difference || LMM MC | Difference
(inyears) | (inyears) vol. vol. (in bp) vol. (in bp)

1 5 0.00938 0.00938 0.0 0.00933 -0.5

2 4 0.00956 0.00956 0.0 0.00949 -0.7

3 3 0.00974 0.00974 0.0 0.00966 -0.8

4 2 0.00999 0.00999 0.0 0.00992 -0.7

5 1 0.01004 0.01004 0.0 0.00999 -0.5

Table D.5: Strip 1 with strike K = 2.679%: calibration results in terms of implied volatilities.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference
(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)

1 5 33.18 33.18 0.00 32.68 0.50

2 4 86.35 86.35 0.00 85.01 1.34

3 3 107.83 107.83 0.00 106.40 1.42

4 2 98.61 98.61 0.00 97.56 1.05

5 1 59.85 59.85 0.00 59.47 0.38

Table D.6: Strip 1 with strike K = 2.679%: calibration results in terms of payer swaption prices.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference
(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)

1 5 516.10 516.10 0.00 516.33 -0.23

2 4 401.98 401.98 0.00 401.62 0.36

3 3 309.62 309.62 0.00 309.15 0.47

4 2 216.81 216.81 0.00 216.63 0.19

5 1 112.88 112.88 0.00 112.85 0.02

Table D.7: Strip 1 with strike K = 2.679%: calibration results in terms of receiver swaption prices.

a

b c

d

0.0030

0.0197

0.7425

0.0036

Table D.8: Strip 1 with strike K = 2.679%: calibrated parameters a, b, ¢, d.
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D. CALIBRATION RESULTS

D.3. STRIP 1 WITH STRIKE ATM3Y + 2%

Maturity Tenor Market || LMM Rebonato | Difference || LMM MC | Difference
(inyears) | (inyears) vol. vol. (in bp) vol. (in bp)

1 5 0.01044 0.01044 0.0 0.01042 -0.2

2 4 0.01053 0.01053 0.0 0.01048 -0.5

3 3 0.01047 0.01047 0.0 0.01040 -0.7

4 2 0.01080 0.01080 0.0 0.01073 -0.7

5 1 0.01069 0.01069 0.0 0.01066 -0.3

Table D.9: Strip 1 with strike K = 3.679%: calibration results in terms of implied volatilities.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference
(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)

1 5 5.36 5.36 0.00 5.30 0.07

2 4 30.50 30.50 0.00 30.02 0.48

3 3 48.19 48.19 0.00 47.30 0.89

4 2 53.19 53.19 0.00 52.41 0.78

5 1 34.39 34.39 0.00 34.17 0.22

Table D.10: Strip 1 with strike K = 3.679%: calibration results in terms of payer swaption prices.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference
(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)

1 5 971.19 971.19 0.00 972.34 -1.14

2 4 729.74 729.74 0.00 730.50 -0.76

3 3 535.38 535.38 0.00 535.70 -0.32

4 2 360.04 360.04 0.00 360.35 —-0.31

5 1 180.91 180.91 0.00 181.03 -0.12

Table D.11: Strip 1 with strike K = 3.679%: calibration results in terms of receiver swaption prices.

a

b c

d

0.0029

0.0204 | 0.7194

0.0039

Table D.12: Strip 1 with strike K = 3.679%: calibrated parameters a, b, ¢, d.
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Figure D.9: Strip 1 with strike K = 3.679%:
evolution of the term structure of implied Bachelier volatilities.
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D. CALIBRATION RESULTS

D.4. STRIP 1 WITH STRIKE ATM3Y + 3%

Maturity Tenor Market || LMM Rebonato | Difference || LMM MC | Difference
(inyears) | (inyears) vol. vol. (in bp) vol. (in bp)

1 5 0.01159 0.01159 0.0 0.01166 0.8

2 4 0.01155 0.01155 0.0 0.01158 0.2

3 3 0.01127 0.01127 0.0 0.01123 -0.4

4 2 0.01166 0.01166 0.0 0.01160 -0.5

5 1 0.01138 0.01138 0.0 0.01134 -0.4

Table D.13: Strip 1 with strike K = 4.679%: calibration results in terms of implied volatilities.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference
(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)

1 5 0.85 0.85 0.00 0.90 —-0.05

2 4 10.72 10.72 0.00 10.83 -0.11

3 3 21.02 21.02 0.00 20.69 0.33

4 2 28.64 28.64 0.00 28.21 0.43

5 1 19.48 19.48 0.00 19.30 0.18

Table D.14: Strip 1 with strike K = 4.679%: calibration results in terms of payer swaption prices.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference
(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)

1 5 1449.60 1449.60 0.00 1449.38 0.22

2 4 1093.57 1093.57 0.00 1093.36 0.21

3 3 793.62 793.62 0.00 792.81 0.80

4 2 524.12 524.12 0.00 523.83 0.29

5 1 259.48 259.48 0.00 259.46 0.02

a

b c

d

0.0029

0.0210 | 0.6923

0.0042

Table D.15: Strip 1 with strike K = 4.679%: calibration results in terms of receiver swaption prices.

Table D.16: Strip 1 with strike K = 4.679%: calibrated parameters a, b, ¢, d.
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D. CALIBRATION RESULTS

D.5. STRIP 2 WITH STRIKE ATM9¥-1%

Maturity Tenor Market || LMM Rebonato | Difference || LMM MC | Difference

(inyears) | (inyears) vol. vol. (in bp) vol. (in bp)
1 10 0.00763 0.00763 0.0 0.00740 -2.3
2 9 0.00761 0.00761 0.0 0.00740 -2.1
3 8 0.00774 0.00774 0.0 0.00755 -1.9
4 7 0.00779 0.00779 0.0 0.00761 -1.8
5 6 0.00784 0.00784 0.0 0.00768 -1.6
6 5 0.00772 0.00772 0.0 0.00760 -1.2
7 4 0.00768 0.00768 0.0 0.00760 -0.9
8 3 0.00783 0.00783 0.0 0.00775 -0.8
9 2 0.00804 0.00804 0.0 0.00797 -0.7
10 1 0.00840 0.00840 0.0 0.00836 -0.4

Table D.17: Strip 2 with strike K = 0.974%: calibration results in terms of implied volatilities.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference

(in years) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 10 955.07 955.07 0.00 951.62 3.45
2 9 990.48 990.48 0.00 984.78 5.70
3 8 967.43 967.43 0.00 960.96 6.47
4 7 904.22 904.22 0.00 897.79 6.43
5 6 815.47 815.47 0.00 809.82 5.65
6 5 702.52 702.52 0.00 698.38 4.14
7 4 578.75 578.75 0.00 576.07 2.68
8 3 448.47 448.47 0.00 446.55 1.92
9 2 308.57 308.57 0.00 307.37 1.19
10 1 160.60 160.60 0.00 160.23 0.38

Table D.18: Strip 2 with strike K = 0.974%: calibration results in terms of payer swaption prices.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference

(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 10 31.32 31.32 0.00 27.90 3.42
2 9 68.74 68.74 0.00 63.46 5.28
3 8 99.27 99.27 0.00 93.66 5.60
4 7 117.43 117.43 0.00 112.25 5.18
5 6 125.71 125.71 0.00 121.27 4.44
6 5 119.11 119.11 0.00 116.10 3.02
7 4 107.96 107.96 0.00 106.10 1.87
8 3 94.05 94.05 0.00 93.02 1.03
9 2 72.79 72.79 0.00 72.20 0.58
10 1 42.70 42.70 0.00 42.49 0.21

Table D.19: Strip 2 with strike K = 0.974%: calibration results in terms of receiver swaption prices.

a b c d
0.0021 | 0.0195 | 0.6874 | 0.0047

Table D.20: Strip 2 with strike K = 0.974%: calibrated parameters a, b, c, d.
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Figure D.15: Strip 2 with strike K = 0.974%:

evolution of the term structure of implied Bachelier volatilities.



D. CALIBRATION RESULTS

D.6. STRIP 2 WITH STRIKE ATM19Y + 1%

Maturity Tenor Market || LMM Rebonato | Difference || LMM MC | Difference
(inyears) | (inyears) vol. vol. (in bp) vol. (in bp)
1 10 0.00943 0.00943 0.0 0.00950 0.6
2 9 0.00933 0.00933 0.0 0.00939 0.6
3 8 0.00927 0.00927 0.0 0.00933 0.5
4 7 0.00939 0.00939 0.0 0.00944 0.6
5 6 0.00943 0.00943 0.0 0.00947 0.4
6 5 0.00939 0.00939 0.0 0.00942 0.3
7 4 0.00937 0.00937 0.0 0.00938 0.2
8 3 0.00929 0.00929 0.0 0.00930 0.2
9 2 0.00919 0.00919 0.0 0.00922 0.3
10 1 0.00925 0.00925 0.0 0.00930 0.4

Table D.21: Strip 2 with strike K = 2.974%: calibration results in terms of implied volatilities.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference

(in years) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 10 64.69 64.69 0.00 66.05 -1.36
2 9 163.92 163.92 0.00 166.30 —-2.38
3 8 230.67 230.67 0.00 233.04 -2.37
4 7 272.50 272.50 0.00 275.06 —-2.56
5 6 285.13 285.13 0.00 286.94 -1.81
6 5 272.91 27291 0.00 273.94 -1.04
7 4 243.31 243.31 0.00 243.91 -0.59
8 3 197.43 197.43 0.00 197.90 —-0.46
9 2 139.77 139.77 0.00 140.33 -0.56
10 1 75.22 75.22 0.00 75.66 —-0.45

Table D.22: Strip 2 with strike K = 2.974%: calibration results in terms of payer swaption prices.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference

(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 10 988.44 988.44 0.00 988.25 0.18
2 9 891.06 891.06 0.00 890.91 0.15
3 8 814.97 814.97 0.00 813.47 1.51
4 7 744.64 744.64 0.00 742.96 1.68
5 6 664.01 664.01 0.00 663.34 0.67
6 5 571.15 571.15 0.00 569.87 1.28
7 4 470.72 470.72 0.00 469.64 1.09
8 3 361.27 361.27 0.00 360.66 0.61
9 2 245.83 245.83 0.00 245.66 0.17
10 1 126.43 126.43 0.00 126.42 0.02

Table D.23: Strip 2 with strike K = 2.974%: calibration results in terms of receiver swaption prices.

a b c d
0.0018 | 0.0176 | 0.5671 | 0.0050

Table D.24: Strip 2 with strike K = 2.974%: calibrated parameters a, b, c, d.
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D. CALIBRATION RESULTS

D.7. STRIP 2 WITH STRIKE ATM %Y + 2%

Maturity Tenor Market || LMM Rebonato | Difference || LMM MC | Difference
(inyears) | (inyears) vol. vol. (in bp) vol. (in bp)
1 10 0.01098 0.01098 0.0 0.01118 1.9
2 9 0.01054 0.01054 0.0 0.01067 1.4
3 8 0.01021 0.01021 0.0 0.01031 0.9
4 7 0.01036 0.01036 0.0 0.01044 0.9
5 6 0.01037 0.01037 0.0 0.01042 0.5
6 5 0.01031 0.01031 0.0 0.01034 0.3
7 4 0.01019 0.01019 0.0 0.01020 0.0
8 3 0.01004 0.01004 0.0 0.01003 -0.1
9 2 0.00984 0.00984 0.0 0.00982 -0.2
10 1 0.01004 0.01004 0.0 0.01003 -0.1

Table D.25: Strip 2 with strike K = 3.974%: calibration results in terms of implied volatilities.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference

(in years) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 10 13.74 13.74 0.00 15.13 -1.39
2 9 60.48 60.48 0.00 63.39 -2.90
3 8 103.01 103.01 0.00 105.85 —2.84
4 7 144.72 144.72 0.00 147.76 —-3.04
5 6 166.12 166.12 0.00 168.09 -1.98
6 5 169.16 169.16 0.00 170.10 -0.95
7 4 155.57 155.57 0.00 155.70 -0.13
8 3 129.31 129.31 0.00 129.04 0.26
9 2 92.42 92.42 0.00 92.05 0.37
10 1 52.64 52.64 0.00 52.56 0.08

Table D.26: Strip 2 with strike K = 3.974%: calibration results in terms of payer swaption prices.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference

(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 10 1861.23 1861.23 0.00 1861.81 -0.57
2 9 1612.06 1612.06 0.00 1613.69 -1.63
3 8 1413.55 1413.55 0.00 1415.08 —-1.53
4 7 1246.34 1246.34 0.00 1248.36 —-2.03
5 6 1079.31 1079.31 0.00 1081.89 —2.58
6 5 908.24 908.24 0.00 910.00 -1.76
7 4 732.08 732.08 0.00 732.70 -0.62
8 3 552.27 552.27 0.00 552.43 -0.15
9 2 369.40 369.40 0.00 369.03 0.38
10 1 188.41 188.41 0.00 188.11 0.31

Table D.27: Strip 2 with strike K = 3.974%: calibration results in terms of receiver swaption prices.

a b c d
0.0019 | 0.0177 | 0.5303 | 0.0052

Table D.28: Strip 2 with strike K = 3.974%: calibrated parameters a, b, c, d.
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Figure D.19: Strip 2 with strike K = 3.974%: representation of k;.
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Figure D.21: Strip 2 with strike K = 3.974%:
evolution of the term structure of implied Bachelier volatilities.
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D.8. STRIP 2 WITH STRIKE ATM 1Y + 3%

Maturity Tenor Market || LMM Rebonato | Difference || LMM MC | Difference
(inyears) | (inyears) vol. vol. (in bp) vol. (in bp)
1 10 0.01278 0.01278 0.0 0.01325 4.7
2 9 0.01193 0.01193 0.0 0.01226 33
3 8 0.01130 0.01130 0.0 0.01148 1.8
4 7 0.01149 0.01149 0.0 0.01164 1.5
5 6 0.01148 0.01148 0.0 0.01160 1.1
6 5 0.01138 0.01138 0.0 0.01144 0.6
7 4 0.01111 0.01111 0.0 0.01112 0.2
8 3 0.01089 0.01089 0.0 0.01088 -0.2
9 2 0.01060 0.01060 0.0 0.01056 -0.4
10 1 0.01103 0.01103 0.0 0.01101 -0.1

Table D.29: Strip 2 with strike K = 4.974%: calibration results in terms of implied volatilities.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference

(in years) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 10 3.76 3.76 0.00 4.97 -1.21
2 9 24.94 24.94 0.00 28.67 -3.73
3 8 48.38 48.38 0.00 51.68 -3.30
4 7 81.75 81.75 0.00 85.42 —-3.68
5 6 102.83 102.83 0.00 105.92 -3.10
6 5 110.45 110.45 0.00 111.99 -1.53
7 4 102.66 102.66 0.00 103.03 -0.37
8 3 87.18 87.18 0.00 86.80 0.38
9 2 62.58 62.58 0.00 61.97 0.62
10 1 38.87 38.87 0.00 38.76 0.11

Table D.30: Strip 2 with strike K = 4.974%: calibration results in terms of payer swaption prices.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference

(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 10 2774.99 2774.99 0.00 2775.94 —-0.95
2 9 2400.96 2400.96 0.00 2403.37 -2.41
3 8 2085.15 2085.15 0.00 2086.90 -1.75
4 7 1812.83 1812.83 0.00 1814.22 -1.39
5 6 1550.34 1550.34 0.00 1551.51 -1.17
6 5 1290.36 1290.36 0.00 1289.74 0.62
7 4 1028.27 1028.27 0.00 1026.94 1.33
8 3 769.28 769.28 0.00 767.51 1.77
9 2 510.49 510.49 0.00 508.58 1.91
10 1 259.21 259.21 0.00 258.38 0.83

Table D.31: Strip 2 with strike K = 4.974%: calibration results in terms of receiver swaption prices.

a b c d
0.0018 | 0.0186 | 0.5066 | 0.0054

Table D.32: Strip 2 with strike K = 4.974%: calibrated parameters a, b, c, d.
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Figure D.22: Strip 2 with strike K = 4.974%: representation of k;.
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Figure D.23: Strip 2 with strike K = 4.974%:
evolution of the instantaneous volatility.
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evolution of the term structure of implied Bachelier volatilities.
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D.9. STRIP 3 WITH STRIKE ATM 1Y — 1%

Maturity Tenor Market || LMM Rebonato | Difference || LMM MC | Difference

(inyears) | (inyears) vol. vol. (in bp) vol. (in bp)
1 15 0.00772 0.00772 0.0 0.00739 -3.2
2 14 0.00758 0.00758 0.0 0.00728 -2.9
3 13 0.00748 0.00748 0.0 0.00722 2.7
4 12 0.00756 0.00756 0.0 0.00732 -2.4
5 11 0.00757 0.00757 0.0 0.00735 -2.3
6 10 0.00750 0.00750 0.0 0.00730 -2.0
7 9 0.00740 0.00740 0.0 0.00722 -1.7
8 8 0.00734 0.00734 0.0 0.00720 -1.4
9 7 0.00731 0.00731 0.0 0.00719 -1.2
10 6 0.00731 0.00731 0.0 0.00721 -1.0
11 5 0.00721 0.00721 0.0 0.00713 -0.9
12 4 0.00716 0.00716 0.0 0.00708 -0.8
13 3 0.00708 0.00708 0.0 0.00702 -0.5
14 2 0.00698 0.00698 0.0 0.00695 -0.3
15 1 0.00716 0.00716 0.0 0.00716 -0.1

Table D.33: Strip 3 with strike K = 1.105%: calibration results in terms of implied volatilities.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference

(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 15 1367.56 1367.56 0.00 1360.43 7.13
2 14 1437.10 1437.10 0.00 1425.31 11.78
3 13 1440.68 1440.68 0.00 1426.99 13.69
4 12 1412.95 1412.95 0.00 1398.57 14.38
5 11 1354.98 1354.98 0.00 1340.48 14.50
6 10 1271.84 1271.84 0.00 1258.84 13.00
7 9 1171.32 1171.32 0.00 1160.29 11.02
8 8 1062.15 1062.15 0.00 1053.47 8.68
9 7 945.50 945.50 0.00 938.53 6.97
10 6 824.70 824.70 0.00 819.36 5.34
11 5 692.62 692.62 0.00 688.69 3.93
12 4 557.23 557.23 0.00 554.23 3.00
13 3 418.24 418.24 0.00 416.64 1.60
14 2 278.45 278.45 0.00 277.94 0.52
15 1 142.09 142.09 0.00 141.99 0.09

Table D.34: Strip 3 with strike K = 1.105%: calibration results in terms of payer swaption prices.
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Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference

(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 15 46.83 46.83 0.00 40.79 6.04
2 14 105.41 105.41 0.00 95.77 9.64
3 13 149.74 149.74 0.00 139.20 10.53
4 12 190.74 190.74 0.00 179.99 10.75
5 11 217.38 217.38 0.00 207.13 10.25
6 10 228.37 228.37 0.00 219.44 8.93
7 9 228.49 228.49 0.00 221.49 7.00
8 8 223.93 223.93 0.00 219.15 4.78
9 7 214.40 214.40 0.00 211.48 2.92
10 6 200.20 200.20 0.00 198.08 2.12
11 5 174.98 174.98 0.00 174.08 0.90
12 4 148.14 148.14 0.00 147.94 0.21
13 3 116.22 116.22 0.00 116.79 —-0.56
14 2 80.14 80.14 0.00 80.81 -0.67
15 1 44.14 44.14 0.00 44.50 -0.36

Table D.35: Strip 3 with strike K = 1.105%: calibration results in terms of receiver swaption prices.

a

b

c

d

0.0013

0.0159

0.5665

0.0055

Table D.36: Strip 3 with strike K = 1.105%: calibrated parameters a, b, ¢, d.
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Figure D.25: Strip 3 with strike K = 1.105%: representation of k;.
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Figure D.26: Strip 3 with strike K = 1.105%:
evolution of the instantaneous volatility.
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Figure D.27: Strip 3 with strike K = 1.105%:
evolution of the term structure of implied Bachelier volatilities.
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D.10. STRIP 3 WITH STRIKE ATM[3Y + 1%

Maturity Tenor Market || LMM Rebonato | Difference || LMM MC | Difference
(inyears) | (inyears) vol. vol. (in bp) vol. (in bp)
1 15 0.00913 0.00913 0.0 0.00919 0.6
2 14 0.00900 0.00900 0.0 0.00906 0.6
3 13 0.00894 0.00894 0.0 0.00899 0.5
4 12 0.00895 0.00895 0.0 0.00899 0.4
5 11 0.00898 0.00898 0.0 0.00901 0.3
6 10 0.00893 0.00893 0.0 0.00895 0.2
7 9 0.00885 0.00885 0.0 0.00887 0.2
8 8 0.00875 0.00875 0.0 0.00876 0.1
9 7 0.00865 0.00865 0.0 0.00865 -0.0
10 6 0.00856 0.00856 0.0 0.00855 -0.1
11 5 0.00841 0.00841 0.0 0.00840 -0.2
12 4 0.00827 0.00827 0.0 0.00825 -0.2
13 3 0.00808 0.00808 0.0 0.00806 -0.2
14 2 0.00784 0.00784 0.0 0.00783 -0.1
15 1 0.00783 0.00783 0.0 0.00784 0.0

Table D.37: Strip 3 with strike K = 3.105%: calibration results in terms of implied volatilities.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference

(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 15 83.63 83.63 0.00 85.33 -1.70
2 14 216.46 216.46 0.00 219.68 -3.23
3 13 318.31 318.31 0.00 321.76 -3.45
4 12 391.54 391.54 0.00 394.52 -2.99
5 11 438.76 438.76 0.00 441.08 -2.32
6 10 457.80 457.80 0.00 459.45 —-1.65
7 9 456.54 456.54 0.00 458.07 -1.53
8 8 438.01 438.01 0.00 438.78 -0.77
9 7 407.47 407.47 0.00 407.45 0.02
10 6 368.33 368.33 0.00 367.47 0.86
11 5 317.42 317.42 0.00 316.53 0.89
12 4 260.17 260.17 0.00 259.37 0.80
13 3 196.70 196.70 0.00 196.07 0.63
14 2 130.67 130.67 0.00 130.44 0.22
15 1 67.49 67.49 0.00 67.52 -0.04

Table D.38: Strip 3 with strike K = 3.105%: calibration results in terms of payer swaption prices.
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Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference

(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 15 1404.36 1404.36 0.00 1405.66 -1.30
2 14 1327.61 1327.61 0.00 1329.65 —-2.05
3 13 1273.80 1273.80 0.00 1276.41 -2.61
4 12 1222.23 1222.23 0.00 1224.86 -2.63
5 11 1163.75 1163.75 0.00 1163.14 0.61
6 10 1089.95 1089.95 0.00 1088.70 1.25
7 9 1005.87 1005.87 0.00 1004.34 1.53
8 8 912.02 912.02 0.00 909.84 2.18
9 7 812.18 812.18 0.00 809.52 2.66
10 6 706.91 706.91 0.00 703.22 3.69
11 5 593.74 593.74 0.00 590.80 2.94
12 4 479.47 479.47 0.00 477.02 2.45
13 3 360.93 360.93 0.00 359.00 1.93
14 2 239.84 239.84 0.00 238.47 1.36
15 1 121.66 121.66 0.00 121.03 0.63

Table D.39: Strip 3 with strike K = 3.105%: calibration results in terms of receiver swaption prices.

a b c d
0.0016 | 0.0140 | 0.4564 | 0.0055

Table D.40: Strip 3 with strike K = 3.105%: calibrated parameters a, b, c, d.
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Figure D.28: Strip 3 with strike K = 3.105%: representation of k;.
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Figure D.29: Strip 3 with strike K = 3.105%:
evolution of the instantaneous volatility.
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Figure D.30: Strip 3 with strike K = 3.105%:
evolution of the term structure of implied Bachelier volatilities.
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D.11. STRIP 3 WITH STRIKE ATM 3" +2%

Maturity Tenor Market || LMM Rebonato | Difference || LMM MC | Difference
(inyears) | (inyears) vol. vol. (in bp) vol. (in bp)
1 15 0.01040 0.01040 0.0 0.01076 3.5
2 14 0.01009 0.01009 0.0 0.01040 3.1
3 13 0.00996 0.00996 0.0 0.01022 2.6
4 12 0.00993 0.00993 0.0 0.01016 2.2
5 11 0.00988 0.00988 0.0 0.01007 1.9
6 10 0.00979 0.00979 0.0 0.00994 1.5
7 9 0.00969 0.00969 0.0 0.00981 1.2
8 8 0.00958 0.00958 0.0 0.00967 0.9
9 7 0.00951 0.00951 0.0 0.00958 0.7
10 6 0.00949 0.00949 0.0 0.00954 0.4
11 5 0.00937 0.00937 0.0 0.00941 0.4
12 4 0.00912 0.00912 0.0 0.00913 0.1
13 3 0.00880 0.00880 0.0 0.00879 -0.1
14 2 0.00844 0.00844 0.0 0.00842 -0.1
15 1 0.00859 0.00859 0.0 0.00858 -0.1

Table D.41: Strip 3 with strike K = 4.105%: calibration results in terms of implied volatilities.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference

(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 15 14.32 14.32 0.00 17.44 -3.12
2 14 73.05 73.05 0.00 81.98 -8.93
3 13 140.20 140.20 0.00 151.78 —11.58
4 12 200.71 200.71 0.00 212.96 -12.25
5 11 245.03 245.03 0.00 256.67 —11.64
6 10 272.15 272.15 0.00 281.66 -9.51
7 9 283.83 283.83 0.00 291.43 —-7.60
8 8 282.98 282.98 0.00 288.47 -5.49
9 7 273.34 273.34 0.00 277.15 -3.80
10 6 257.07 257.07 0.00 259.49 —2.42
11 5 227.08 227.08 0.00 228.70 -1.62
12 4 184.98 184.98 0.00 185.52 -0.54
13 3 137.97 137.97 0.00 137.76 0.22
14 2 89.88 89.88 0.00 89.63 0.25
15 1 48.95 48.95 0.00 48.83 0.12

Table D.42: Strip 3 with strike K = 4.105%: calibration results in terms of payer swaption prices.
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Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference

(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 15 2655.77 2655.77 0.00 2662.78 =7.02
2 14 2405.61 2405.61 0.00 2418.46 -12.85
3 13 2218.90 2218.90 0.00 2234.62 -15.71
4 12 2057.85 2057.85 0.00 2075.32 -17.47
5 11 1901.32 1901.32 0.00 1918.36 -17.04
6 10 1742.11 1742.11 0.00 1758.81 -16.71
7 9 1579.24 1579.24 0.00 1593.91 —14.66
8 8 1413.09 1413.09 0.00 1424.86 -11.77
9 7 1245.96 1245.96 0.00 1255.99 —10.04
10 6 1077.19 1077.19 0.00 1085.10 -7.91
11 5 900.38 900.38 0.00 905.57 -5.18
12 4 718.47 718.47 0.00 722.12 -3.64
13 3 535.33 535.33 0.00 537.36 -2.03
14 2 352.79 352.79 0.00 353.73 -0.94
15 1 179.19 179.19 0.00 179.56 -0.37

Table D.43: Strip 3 with strike K = 4.105%: calibration results in terms of receiver swaption prices.

a b c d
0.0006 | 0.0169 | 0.4624 | 0.0059

Table D.44: Strip 3 with strike K = 4.105%: calibrated parameters a, b, c, d.
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Figure D.31: Strip 3 with strike K = 4.105%: representation of k;.
3
* 08 (t)
%
- ~o-0g6 (1)
2.5+ *
_ -8-060 (t)
g
= : PR
= % o7 0.
2 5. 7 o 2
= 2 ‘en
©
S *‘{ L
> o Xa
g15r.2 someg Sog 7
o ¥i o og o
o} [~ Sag "\o.e
S - o™ S0,
s ] oy, ®o0 R
sy “toq, °
7] 4 =
= / ﬂo—aﬂﬁgwsﬂg
05 0050000000 00000 000
0 1
0 10 15
Time to Maturity (Years)
Figure D.32: Strip 3 with strike K = 4.105%:
evolution of the instantaneous volatility.
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Figure D.33: Strip 3 with strike K = 4.105%:
evolution of the term structure of implied Bachelier volatilities.
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Maturity Tenor Market || LMM Rebonato | Difference || LMM MC | Difference
(inyears) | (inyears) vol. vol. (in bp) vol. (in bp)
1 15 0.01186 0.01186 0.0 0.01268 8.2
2 14 0.01136 0.01136 0.0 0.01205 6.9
3 13 0.01115 0.01115 0.0 0.01175 5.9
4 12 0.01111 0.01111 0.0 0.01165 5.4
5 11 0.01096 0.01096 0.0 0.01143 4.6
6 10 0.01083 0.01083 0.0 0.01123 4.0
7 9 0.01067 0.01067 0.0 0.01100 3.2
8 8 0.01057 0.01057 0.0 0.01083 2.6
9 7 0.01056 0.01056 0.0 0.01077 2.1
10 6 0.01064 0.01064 0.0 0.01084 2.0
11 5 0.01056 0.01056 0.0 0.01074 1.8
12 4 0.01015 0.01015 0.0 0.01027 1.2
13 3 0.00967 0.00967 0.0 0.00975 0.8
14 2 0.00915 0.00915 0.0 0.00919 0.4
15 1 0.00956 0.00956 0.0 0.00961 0.5

Table D.45: Strip 3 with strike K = 5.105%: calibration results in terms of implied volatilities.

Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference

(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 15 2.87 2.87 0.00 5.06 -2.19
2 14 27.21 27.21 0.00 37.34 -10.13
3 13 67.24 67.24 0.00 83.59 -16.35
4 12 111.82 111.82 0.00 132.51 -20.69
5 11 146.51 146.51 0.00 167.35 —-20.85
6 10 171.99 171.99 0.00 191.47 —19.48
7 9 186.22 186.22 0.00 202.41 -16.19
8 8 193.37 193.37 0.00 205.98 -12.62
9 7 195.48 195.48 0.00 205.55 -10.07
10 6 193.59 193.59 0.00 202.54 -8.96
11 5 176.08 176.08 0.00 183.09 -7.02
12 4 140.59 140.59 0.00 144.56 -3.96
13 3 101.99 101.99 0.00 104.00 —-2.00
14 2 64.18 64.18 0.00 64.88 -0.69
15 1 38.03 38.03 0.00 38.48 —-0.45

Table D.46: Strip 3 with strike K = 5.105%: calibration results in terms of payer swaption prices.
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Maturity Tenor Market price || LMM Rebonato price | Difference || LMM MC price | Difference

(inyears) | (inyears) (in bp) (in bp) (in bp) (in bp) (in bp)
1 15 3965.05 3965.05 0.00 3967.69 —2.64
2 14 3581.20 3581.20 0.00 3590.45 -9.25
3 13 3269.15 3269.15 0.00 3285.57 -16.42
4 12 2995.41 2995.41 0.00 3015.40 —20.00
5 11 2734.09 2734.09 0.00 2752.82 -18.72
6 10 2479.76 2479.76 0.00 2495.75 -15.99
7 9 2227.71 2227.71 0.00 2242.38 -14.67
8 8 1979.59 1979.59 0.00 1993.07 -13.47
9 7 1736.00 1736.00 0.00 1745.16 -9.16
10 6 1495.25 1495.25 0.00 1502.17 -6.92
11 5 1246.36 1246.36 0.00 1251.89 -5.54
12 4 988.28 988.28 0.00 991.79 -3.51
13 3 732.47 732.47 0.00 733.92 —1.45
14 2 480.84 480.84 0.00 481.53 —-0.69
15 1 244.33 244.33 0.00 244.71 -0.38

Table D.47: Strip 3 with strike K = 5.105%: calibration results in terms of receiver swaption prices.

a b c d
0.0029 | 0.0143 | 0.3868 | 0.0056

Table D.48: Strip 3 with strike K = 5.105%: calibrated parameters a, b, c, d.
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evolution of the instantaneous volatility.
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Figure D.36: Strip 3 with strike K = 5.105%:
evolution of the term structure of implied Bachelier volatilities.
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Tenor date | LMM 1FHW | Abs Diff .
Tenor date | LMM 1FHW | Abs Diff

T, 0.000  0.000 | 0.000
0 Ts, 7.750  7.753 0.003

T 0.250 0.247 | 0.003
Tso 8.000 8.011 0.011

T, 0.500 0.499 | 0.001
Tss 8.250  8.252 | 0.002

Ty 0.750 0.751 | 0.001
T34 8.500 8.510 | 0.010

T, 1.000 1.003 | 0.003
Tss 8.750  8.759 | 0.009

Ts 1.250 1.247 | 0.003
Ts6 9.000  9.008 | 0.008

Ts 1.500 1.499 | 0.001
Ts7 9.250  9.258 | 0.008

T, 1.750 1.751 | 0.001
Tss 9.500  9.507 | 0.007

Ty 2.000 2.008 | 0.008
Ts9 9.750  9.756 | 0.006

Ty 2250 2.247 | 0.003
Tao 10.000 10.008 | 0.008

Tho 2500 2.499 | 0.001
Ty 10.250 10.255 | 0.005

T 2.750 2.756 | 0.006
Tio 10.500 10.504 | 0.004

Tio 3.000 3.005 | 0.005
Tus 10.750 10.756 | 0.006

Tis 3.250 3.247 | 0.003
T 11.000 11.008 | 0.008

Tia 3.500 3.504 | 0.004
Tus 11.250 11.252 | 0.002

Tis 3.750 3.753 | 0.003
Tus 11.500 11.504 | 0.004

Ti6 4.000 4.003 | 0.003
Ty 11.750 11.756 | 0.006

Ty 4250 4.252 | 0.002
Tus 12.000 12.008 | 0.008

Tis 4500 4.501 | 0.001
Tuo 12.250 12.255 | 0.005

Tio 4750 4.753 | 0.003
Tso 12.500 12.507 | 0.007

Too 5.000 5.005 | 0.005
Ts1 12.750  12.759 | 0.009

Ty 5250 5.249 | 0.001
Tsp 13.000 13.016 | 0.016

Ty 5.500 5.501 | 0.001
Tss 13.250 13.255 | 0.005

Tos 5.750 5.753 | 0.003
Tsq 13.500 13.507 | 0.007

Toa 6.000 6.005 | 0.005
Tss 13.750 13.764 | 0.014

Tos 6.250 6.249 | 0.001
Tse 14.000 14.014 | 0.014

Tos 6.500 6.501 | 0.001
Ts7 14.250 14.255 | 0.005

Ty7 6.750 6.753 | 0.003
Tsg 14500 14.512 | 0.012

Tog 7.000 7.005 | 0.005
Tsg 14.750 14.762 | 0.012
Too 7.250 7.249 | 0.001 T 15000 15011 | o011

T30 7.500 7.501 | 0.001 60

Table E.1: Payment schedules of the MC LMM and the 1IFHW model.
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