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ABSTRACT The performance of Persistent Scatterer Interferometry (PSI) depends heavily on Persistent
Scatterer (PS) density. In order to increase PS density, we can apply Super-Resolution reprocessing
algorithms in PSI. Involving the reprocessing algorithms and the peak-detection-based Persistent Scatterer
Candidate points (PSCs) selectionmethod, the full PSI chain is referred to as Super-Resolution PSI (SR-PSI).
The implementation of the Super-Resolution reprocessing algorithm, however, is computationally intensive,
which makes SR-PSI time-consuming. In this work, we propose to improve the efficiency by constraining
the Capon-based reprocessing to the non-homogeneous areas (e.g., urban areas). We notice that the Capon
algorithm performs similarly as the Fourier-based algorithm for homogeneous regions (e.g., grassland), thus
we can use Single Look Complex (SLC) images for these areas. With the Coefficient of Variation (CV) as
the index, we divide the full image into two classes: homogeneous areas, for which we select PSCs from the
original stack, and non-homogeneous areas, for which we extract PSCs from the Capon-based reprocessed
images. Then we combine the PSCs of both cases for further PSI processing. We applied the combination
method to a stack of TerraSAR-X data. The results show that the proposed approach is more computationally
efficient than the original SR-PSI with the effectiveness uncompromised, especially for applications aiming
at the urban deformation.

INDEX TERMS Homogeneous area, super-resolution, SAR, PSI.

I. INTRODUCTION
Since it was first proposed by [1], [2] in 2000, Persistent
Scatterer Interferometry (PSI) has been intensively used for
the estimation of relative surface deformation in various
areas, e.g., landslide monitoring [3], building deformation
assessment [4], with accuracy down tomillimeter scale. Since
higher PS density enables us to retrieve more details con-
cerning the deformation phenomena, the performance of PSI
depends heavily on the PS density. The PS density is roughly
proportional to the bandwidth of the SAR system (the wider
the bandwidth, the finer the resolution) [5], thus data from
higher-resolution SAR systems such as TerraSAR-X [6],
[7] and Cosmo-Skymed [8], [9] provides higher PS density.
Amore feasible and economical approach, though, is through
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the application of super-resolution reprocessing algori-
thms [10]. The corresponding processing chain, which is
called Super-Resolution PSI (SR-PSI), is also proposed
by the reference [10]. Compared with the regular PSI
chain, the main change of SR-PSI is that it involves the
Super-Resolution reprocessing algorithms and applies the
peak-detection-based Persistent Scatterer Candidate (PSC)
selection method.

The idea of SR-PSI comes from the applications of modern
spectral estimation algorithms in improving the resolution
and suppressing sidelobe levels [11]–[13]. A range of spectral
estimation algorithms are available, and the Capon algorithm
seems to be the most promising one concerning PSI [10].
Thus we only focus on the Capon algorithm in SR-PSI.
The Capon algorithm, however, is computation-consuming,
which may make it difficult to deploy in practice, especially
when a large number of SAR images are involved. One
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attribute of the Capon algorithm is that the performance
is similar as the original SLC for homogeneous regions
(agricultural area, for example) [13]. Therefore, we are able
to identify and filter out these areas in the Capon-based
reprocessing, to save computation. First, we segment the full
image into overlapped square-shaped chip images, which
are classified into two groups: homogeneous areas and non-
homogeneous areas. For the homogeneous areas, we select
PSCs from the original images. For the non-homogeneous
ones, we run the Capon-based reprocessing algorithm on
the chip images, followed by a peak-detection based PSC
selection approach [10]. We combine PSCs in both cases
for further PSI processing, mainly including PSC network
construction, temporal ambiguity resolution, spatial ambi-
guity resolution and atmosphere phase estimation. Finally,
we obtain the time-series deformation, the deformation veloc-
ity and the height of each Persistent Scatterer (PS).

A range of literature, e.g., [14]–[18], have studied the issue
of identifying the homogeneous areas. Previous research has
proven that the simple Coefficient of Variation (CV), which
is defined as the division between the standard deviation and
mean of the amplitudes, can be used as an effective index of
homogeneous areas [14], [15]. If we set a specific threshold
of CV, the images with lower CV will be labelled as homo-
geneous areas. In order to calculate the threshold, we shall
analyze the distribution of the squared mean amplitude and
the distribution of the standard deviation of the amplitudes,
respectively. Then both their ranges and the threshold can be
readily derived.

We obtained 43 TerraSAR-X images around Rotterdam,
the Netherlands as test data. We then applied the proposed
approach to the data to evaluate the proposed workflow.
Section II presents the combination of SR-PSI and traditional
PSI, using CV as the index of homogeneous areas. Section III
discusses the results of the experiment which applied the
proposed method to TerraSAR-X data. Section IV draws the
main conclusions.

II. METHODOLOGY
A. COEFFICIENT OF VARIATION AS THE INDEX OF
HOMOGENEOUS AREAS
Homogeneous areas are the regions with consistent spatial
statistical characteristics. Usually, homogeneous areas are
comprised by distributed scatterers, which can be explained
in Figure 1. In Figure 1, the reflected echo is the sum of
echoes from a large number of small discrete scatterers illu-
minated by the beam:

Aexp(jφ) =
N∑
k=1

Akexp(jφk ), (1)

where A φ indicate the amplitude and the phase respectively,
N is the number of discrete scatterers. The in-phase compo-
nent Acosφ and orthogonal component Asinφ can be modeled
as a normal distribution with a mean value of 0 and a standard
deviation of σ [19], where σ indicates the characteristic of
distributed scatterers.

FIGURE 1. Illustration of distributed scatterers.

The CV has been used as an effective indicator of scene
heterogeneity [14], [15], which is defined as

C =
σA

µA
, (2)

where σA and µA are the standard deviation and mean of the
amplitudes. It is easy to conclude that the chip images with
lower CV can be recognized as homogeneous areas:

C ≤ C0. (3)

In the following subsection, we shall analyze the distribution
of σA and µA, followed by the derivation of the range. Then
the threshold C0 can be readily calculated.
The intensity I of homogeneous areas is the sum of

two squared independent normal distribution, thus the
probability density function of I can be modeled by an
exponential distribution. Furthermore, I can be modeled
by:

pI (I ) =
1

2σ 2 exp(−
I

2σ 2 ), I ≥ 0, (4)

with E(I ) = 2σ 2, Var(I ) = 4σ 4. In the case of L-look
processing, i.e., averaging L independent observations for the
each individual sample is performed, the averaged intensity I
is gamma distributed ( [19], [20]):

pI (I ) =
1

0(L)

(
L
2σ 2

)L
IL−1exp

(
−
LI
2σ 2

)
, I ≥ 0, (5)

where 0(·) is the gamma function, 0(L) = (L − 1)!. The
mean and variance of intensity I can be expressed by E(I ) =
2σ 2, Var(I ) = 4σ 4/L. Then the amplitude is characterized by
the square root of the gamma distribution. Using the variable
relation,

PA(A) = 2API (A2), (6)

where A denotes the amplitude, and inserting (5) into (6),
yields the distribution of A:

pA(A)=
2

0(L)

(
L
2σ 2

)L
A2L−1exp

(
−
LA2

2σ 2

)
, A≥0. (7)

It’s a Nakagami distribution [21]. We calculated the proba-
bility density (PSD) function with different L and σ , which
is presented in Figure 2. We can see that the PSD of the
amplitude is related to the number of looks and the stan-
dard deviation σ . The mean and variance of A can be
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FIGURE 2. Probability density function of the amplitude.

FIGURE 3. Illustration of the chipping and mosaicking strategy. The chip images are overlapped by 50%. We usually
apply a higher oversampling rate in the reprocessing.

expressed by

E(A) =
0(L + 1

2 )

0(L)

(
2σ 2

L

)1/2

,

Var(A) = 2σ 2

(
1−

1
L

0(L + 1
2 )

0(L)

)
. (8)

A typical size of the chip images is 16 × 16 pixels. Hence,
suppose the number of samples contained in the individual
chip images is N , which usually satisfy N � 30. CV can be
expressed by

C =

√
1
N

∑N
i=1(Ai − Ā)2

Ā
=

√
1
N

∑N
i=1 A

2
i

Ā2
− 1, (9)

where Ā = 1
N

∑N
i=1 Ai. Thus according to the Central Limit

Theory, we can express
∑N

i=1 A
2
i as normal distribution,

knowing the mean and variance of I = A2i from (4):

N∑
i=1

A2i ∼ N (2Nσ 2, 4Nσ 4). (10)

Likely, we can obtain

Ā ∼ N (E(A),
Var(A)
N

), (11)

where E(A),Var(A) can be expressed by (8). The distribu-
tions of

∑N
i=1 A

2
i and Ā are given by (10) and (11), respec-

tively. With significance level set as 0.01, the range of

FIGURE 4. The combination of SR-PSI and the traditional PSI. The main
improvement with respect to the SR-PSI is that we restrict the Capon
based reprocessing to the non-homogeneous chip images.

∑N
i=1 A

2
i is (2Nσ 2

− 2.58
√
4Nσ 2, 2Nσ 2

+ 2.58
√
4Nσ 2).

Likely, the range of Ā is (E(A) − 2.58
√
Var(A)/N ,E(A) +

2.58
√
Var(A)/N ). Thus, with significance level of 0.01,
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FIGURE 5. Squared mean intensity image of the original TerraSAR-X stack. We can observe several kinds of terrain, including urban areas, water, and
grassland, from the varied scattering characteristics. The part marked by the dashed line is shown in detail in Figure 11.

the threshold can be set as

C0 =

√
2σ 2 + 2.58

√
4/Nσ 2

(E(A)− 2.58
√
Var(A)/N )2

− 1, (12)

where E(A),Var(A) are given by (8). From (8) and (12),
we can observe that the threshold is related to the number
of looks and the number of samples. In the case of L =
1,N = 256, E(A) = σ

√
π/2, Var(A) = σ 2(4 − π )/2, and

C0 = 0.89. Similarly, we can calculateC0 as 0.79 and 0.75 for
significance level 0.05 and 0.1, respectively.

B. COMBINATION OF SR-PSI AND TRADITIONAL
PSI WITH CV-INDEX
A detailed discussion of SR-PSI has been presented
in [10]. By applying the Capon-based reprocessing algo-
rithm, it obtains the stack of super-resolution images. The
output of the Capon algorithm can be given by

α̂(ω1, ω2) =
aH(ω1, ω2)R̂−1g(ω1, ω2)

L1L2aH(ω1, ω2)R̂−1a(ω1, ω2)
, (13)

where H represents the Hermitian operator, a is the 2-D
Fourier matrix, L1,L2 is the number of snapshots, R̂ is the
sample covariance matrix, which is given by

R̂ =
1

L1L2

L1−1∑
l1=0

L2−1∑
l2=0

zl1,l2z
H
l1,l2 , (14)

and g can be expressed by

g(ω1, ω2) =
L1−1∑
l1=0

L2−1∑
l2=0

zl1,l2e
−j(l1ω1+l2ω2), (15)

where zl1,l2 represents the vectorization of sub-matrices of the
2-D data matrix.

(13), (14), (15) define the computation of the complex-
valued estimation for each frequency pair (ω1, ω2). While
a direct implementation of the Capon estimator is computa-
tionally demanding, several computationally efficient algo-
rithms have been proposed to lighten the computational
burden [22]–[24]. These available efficient schemes gener-
ally exploit the structure of the involved matrix, followed
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FIGURE 6. Average CV of the full area.

by fast calculation through means of the 2-D fast Fourier
transform (FFT). Nevertheless, even if we take the existence
of these algorithms into account, Capon based re-focusing
remains computationally intensive.

We propose to combine the SR-PSI and the traditional PSI
by identifying the homogeneous areas, which is based on two
nationalities:

1) The performance of the Capon algorithm is similar to
the Fourier transform for homogeneous areas [13].

2) The corresponding objects of PS are usually artificial
features, which are not distributed in homogeneous
areas. Thus we cannot select PSCs or can only select
sparse PSCs from homogeneous areas.

Therefore, we can filter out these homogeneous areas in the
Capon-based reprocessing.

Since the Capon algorithm is memory-intensive, we usu-
ally employ a chipping andmosaicking strategy in the Capon-
based reprocessing [11], [13]. It is demonstrated in Figure 3,
where an overlapping rate of 50% is typically used to mitigate
the edge effects [13]. We adapt the chipping and mosaicking

FIGURE 7. Scatter plot of the chip images. The gray dashed line is the
reference line of the function (18).

processing by classifying the individual chip images into
homogeneous area and non-homogeneous areas. Since the
traditional PSC selectionmethod cannot be applied directly to
the super-resolution reprocessed images, we can use the peak-
detection-based PSC selection method proposed by [10].

181644 VOLUME 8, 2020
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FIGURE 8. The left subplot and the right subplot show the statistics of the
Capon-ineffective chip images and Capon-effective chip images,
respectively.

On the non-homogeneous chip images, we run the Capon-
based reprocessing algorithm, followed by a peak-detection
based PSC selection [10]. For the homogeneous chip images,
we can select PSCs from the original SLC (or SLCwindowed
by some functions to taper the sidelobe levels), by setting
an upper limit on the normalized amplitude dispersion [2].

Additionally, we need to include the neighboring chip images
of the non-homogeneous areas in the actual Capon-based
reprocessing.

We present the full workflow in Figure 4, which includes
a regular InSAR process, PSC selection, and other PSI pro-
cessing. The regular InSAR process includes master image
selection, image coregistration and reference phase subtrac-
tion. In the last step, the extracted PSCs are exported for
PSC network construction, temporal ambiguity resolution,
spatial ambiguity resolution and atmosphere phase estima-
tion [2], [25]. Finally, we can obtain the time-series defor-
mation, the deformation velocity and the height of each PS.
Compared with the workflow of the original SR-PSI in [10],
the main improvement is that we constrain the Capon-based
reprocessing to the non-homogeneous areas.

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. DATA DESCRIPTION
To evaluate the performance of the proposed method,
we chose a test site around Rotterdam, the Netherlands.
We obtained 43 TerraSAR-X images, corresponding to
43 epochs ranging from January 15, 2016 to May 22, 2018.
Choosing the image of January 1, 2017 as the master image,
we processed these images with the Delft Object-oriented
Radar Interferometric Software (DORIS) [26] and acquired
a stack of interferometric images with size of 2048 × 2048
pixels. Figure 5 shows the squared temporal mean of the
intensity, from which we can observe several kinds of terrain,
including the urban area, water, and grassland.

B. CV AS THE INDEX OF HOMOGENEOUS AREAS
With the size of the chip image set to 16 × 16, we divided
the full image into 128 × 128 chip images. We calcu-
lated the temporal average CV for each individual chip
image, which is shown in Figure 6. We can see that most

FIGURE 9. The comparison of deformation velocities using the traditional approach and the combined approach. The background shows the squared
mean intensity image of the original stack.
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FIGURE 10. The plots (from top to bottom) indicate the joint 2-D
histogram of the deformation velocities, the STD, the heights for the
common PS. The gray dashed line is the reference line with slope 1.0.

of the grassland and water are indicated by lower average
CV. We can also observe high average CV in the urban
areas.

Since homogeneous chip images usually has a lower image
entropy [27], we use image entropy to cross validate the
effectiveness of CV. For any given vector

−→
Y , the image

entropy is defined as

S(
−→
Y ) =

∑
k

p[k]logp[k], (16)

where

p[k] =
Y [K ]Y ∗[K ]∑
l Y [l]Y ∗[l]

. (17)

We calculated the image entropy. Subsequently, we drew
the scatter plot of the chip images using the CV and the
image entropy as the x-axis coordinate and y-axis coordinate,
respectively, as shown in Figure 7. From the scatter plot,
we can observe the CV and the image entropy are highly
negative correlated, which is further confirmed by their cor-
relation coefficient, -0.98. We calculated the linear function
between the CV and the image entropy through the least
square approach. The relationship is expressed by:

S = −0.68C + 2.57, (18)

where S is the image entropy and C represents the CV. Both
Figure 7 and (18) show that the chip images with lower CV
have high image entropy, which suggests that CV can be used
as an effective index of homogeneous areas.

C. COMBINATION OF SR-PSI AND TRADITIONAL
PSI USING CV-INDEX
To exploit the relationship between the PSC number and
the average CV, we reprocessed the images by the Capon-
based reprocessing algorithm and calculated the PSC number
for individual chip images. With the threshold of nor-
malized amplitude dispersion set to 0.25, we can select
9480 PSCs from the Capon-based reprocessed stack com-
pared to 5557 PSCs from the original stack, which attains
a 71% increment. We refer to the chip images where the
PSC number increase as the Capon-effective chip images.
Conversely, we refer to other chip images as Capon-
ineffective chip images. The histograms of the average CV
are presented in Figure 8. From the left subplot, we note that
the average CV of the Capon ineffective chip images mostly
fall into lower value section, which indicates that most of
them are homogeneous areas. In the right subplot, the average
CV of the Capon effective chip images are relatively higher.

It is easy to conclude that choosing the threshold of CV
implies balancing the overall computation efficiency against
the effectiveness of the Capon algorithm. We refer to the
number of increased PSC for each chip image as PSC incre-
ment. Subsequently, we calculated the PSC increment and the
number of the reprocessed images using different CV thresh-
olds, as summarized in Table 1. We use the PSC increment in
the case of SR-PSI as the reference. The minimum average
CV of the Capon-effective chip images is 0.56. By setting
the threshold to 0.56, we can maintain the full effectiveness
of SR-PSI. In this case, we need to reprocess 83% of the
chip images. With the threshold of CV set to 0.75 (in the
case of significance level set as 0.1), we need to reprocess
approximately 52% of the chip images while maintaining
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FIGURE 11. The deformation velocities of PSs in the region indicated by the white dash line in Fig.5. The background of the left subplot and the right
subplot show the squared mean intensity image of the original stack and the squared mean intensity of the Capon-based reprocessed stack,
respectively. The oversampling factor is 8.

TABLE 1. The performance of different CV thresholds.

97% of the effectiveness. As indicated by Table 1, a higher
threshold of CV may lead to the degradation of the PSC
increment while improving the efficiency. We should choose
the threshold of CV according to the specific applications.
We will make back to this in the final discussion. For the rest
of this section, we set the CV threshold to 0.75. Moreover,
we can observe that some chip images which are mixed by
grassland and water also have high CV in Figure 6. However,
the effect is negligible due to the relatively minor amount.

D. DEFORMATION ESTIMATION
We calculated the deformation results of the proposed combi-
nation. We did a full PSI time-series analysis to the detected
PSCs using DePSI [28], obtaining the estimates of the linear
deformation rate. To retain as many PSs as possible, we relax
the normalized dispersion threshold to 0.45. For the final PS
selection, we use the ensemble coherence as a quality estima-
tor, setting the lower limit for selection to 0.8. We obtained
15676 PSs from the original stack and 21759 PSs using the
combination method, which are shown in Figure 9. We can
observe that most of PSs are distributed in the urban area in
both cases, which accords with the nature of PS. The amount
of PSs increases by approximately 39%.

The reference paper [10] has validated that the quality of
the PSs extracted from the Capon-based reprocessed images
are maintained. The main assumption is that the behaviour of
the common PSs extracted in both cases should be consistent
if the quality is maintained compared with the regular PSI.
We found 13950 common PSs through a point matching
process [10]. We then compared the deformation velocities,
standard deviation (STD) of the residuals between the defor-
mation model and the deformation time series and the heights
of the common PSs. The joint 2-D histograms are shown
in Figure 10. In the Figure 10, we can observe that most of the
common PSs are concentrated along the reference line, which
suggests that the quality level is maintained in the application
of the combination method.

To visualize the details, we show the deformation velocities
of the PSs in the region indicated by the dashed line in
Figure 5. In Figure 11, we found 1771 PSs from the original
stack and 2562 PSs using the combination method, which is
an increment of 45%. Moreover, we can also see some PSs
with new deformation velocities, which implies the advan-
tages of the Capon-based reprocessing algorithm.

IV. CONCLUSION
In this paper, we propose to improve the efficiency of SR-PSI
by the identification of homogeneous areas. In achieving the
results shown in this paper, we used a CV threshold of 0.75,
finding that it provided a good balance between the effective-
ness of the method, measured in terms of the fraction of all
possible newborn PSs that were recovered, and the compu-
tational cost. The optimum point is, of course, dependent on
the application and on the available computational resources.
It is nevertheless interesting to highlight different scenarios
that would lead to different re-processing strategies:
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• For applications targeting the building environment
and emphasizing local deformations, we may, indeed,
choose a CV threshold aiming at recovering most of
potential newborn PSs, knowing that most of these new
PSs will appear in areas that already show a high PS
density.

• If we are studying larger scale deformation signals, for
example, subsidence bowls of some nature, we may
actually be starved for PSs in low-PS density areas,
which typically have a low associated CV index. In such
a case, where a handful additional PS may have a very
significant impact, we could choose to lower the CV
threshold, but at the same time limit the reprocessing to
chip-images with a low number of PSs.

The approach proposed in this work provides a path for
an efficient use of super-resolution algorithms in combina-
tion with PSI analyses. For the particular example shown,
the improvement in efficiency was limited as large portions
of the TerraSAR-X images used correspond to the built envi-
ronment. The gain of efficiency can be expected to be much
higher when dealing with wider and more sparsely urbanized
areas.
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