
Revisiting Langevin Monte Carlo Applied to Deep
Q-Learning: An Empirical Study of Robustness and

Sensitivity

Pablo Hendriks Bardaji1
Supervisor(s): Neil Yorke-Smith1, Pascal van der Vaart1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Pablo Hendriks Bardaji
Final project course: CSE3000 Research Project
Thesis committee: Neil Yorke-Smith, Pascal van der Vaart, Matthijs Spaan

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

Deep Reinforcement Learning has achieved superhuman performance in many
tasks, such as robotic control or autonomous driving. Algorithms in Deep Rein-
forcement Learning still suffer from a sample efficiency problem, where, in many
cases, millions of samples are needed to achieve good performance. Recently,
Bayesian uncertainty-based algorithms have gained traction. This work focuses
on providing a better understanding of the behaviour of Langevin Monte Carlo
algorithms for Bayesian posterior approximation applied on top of Q-learning. This
research builds on top of already existing algorithms, aiming to provide a better
understanding of the underlying mechanics that drive them. We provide empirical
experimentation with different hyperparameters in three different environments.
Our results suggest that hyperparameters that were previously thought not to have
a big impact on the algorithms are crucial for deep exploration.

1 Introduction

Reinforcement Learning (RL) is a subfield of machine learning focused on how an agent learns to
make decisions by interacting with an environment to maximise a reward signal. At the intersection
between RL and Deep Learning lies Deep Reinforcement Learning (DRL). By combining reinforce-
ment learning with deep neural networks, DRL has achieved super-human performance in tasks
ranging from Atari video games (Bellemare et al., 2013), to complex robotic control. Yet, sometimes
millions of steps are required to achieve performance at the human level, highlighting significant
challenges in sample efficiency.

One of the central problems of reinforcement learning is the dilemma between taking exploration
or exploitation actions (Sutton and Barto, 2020). One of the more naïve approaches to this problem
is ε-greedy, an exploration strategy that takes random actions with a probability ε. An alternative
solution to this problem could be to design clever exploration methods in which uncertain and
under-explored promising areas of the environment are actively visited to learn faster, instead of just
randomly choosing an action. However, quantifying and using this uncertainty is not a trivial task.

To attempt to solve this, recent algorithms include: random network distillation (Burda et al., 2019),
randomised prior functions (Osband et al., 2018), count-based exploration with hashing (Tang et al.,
2017), noisy networks (Fortunato et al., 2018), and Monte-Carlo dropout (Gal and Ghahramani, 2016)
- return intrinsic rewards or perturbed value estimates that favour novel states. These methods exhibit
remarkable performance in hard-exploration benchmarks, though they tend to have a lot of different
hyperparameters, and their sensitivity as well as performance in classical tasks, as bandits, remains
less clear.

An interesting line of research proposes approximating the Bayesian posterior using Markov Chain
Monte Carlo. The posterior offers inherent uncertainty quantification, and while in most cases it
is not feasible to infer, algorithms can rely on approximations of it. The present study focuses on
exploration via Langevin Monte Carlo (LMC) (Ishfaq et al., 2024). Concretely, the algorithms we
focus on are the Langevin Monte Carlo Least-Squares Value Iteration (LMC-LSVI) algorithm, which
performs noisy gradient descent updates, and the Adam Langevin Monte Carlo Deep Q-Network
(Adam LMCDQN) algorithm, a variant of LMC-LSVI based on the Adam SGLD optimiser (Kingma
and Ba, 2017; Ishfaq et al., 2024; Kim et al., 2020). We analyse the sensitivity to hyperparameters of
these algorithms and compare them with ε-greedy.

As part of the research, the study will also provide insights into the following questions:

1. Motivated by the proven theoretical guarantees of LMC-LSVI, we will research how well
Adam LMCDQN generalises to simpler contextual bandit settings.

2. Motivated by the design of LMC-LSVI and Adam LMCDQN, we will analyse the effect of
changing the number of updates per batch of data.

3. Motivated by the theory behind LMC, the effects of different hyperparameter choices for the
scale of the noise, the weight given to Adam in Adam LMCDQN and the learning rate will
be analysed in both exploration-heavy environments and exploitation-heavy environments.

1



4. Motivated by the brittleness of DRL algorithms, we will analyse what is the set of hyperpa-
rameters that generalises best across environments.

The rest of the paper is structured as follows: First, in Section 2, the related work to our contribution
is explained, followed by Section 3 where a comprehensible explanation of the topics necessary to
understand our contribution is explained. We then explain the algorithms analysed in this paper in
Section 4. After that, we delve into the experimental setup of our research in Section 5 to then show
the results of the conducted experiments in Section 6. Then we discuss the responsibility of our
research in Section 7. Finally, we conclude the paper in Section 8.

2 Related Work

Several epistemic-uncertainty exploration methods have been proposed. For example, there is a
line of research that proposes rewarding states that have not been visited often. Tang et al. (2017)
proposed Count-Based Exploration With Hashing and Burda et al. (2019) proposed Random Network
Distillation; both of these methods give an intrinsic reward proportional to the novelty of a state.
While methods in this line of research have shown remarkable performance in some tasks, in this
research, we focus on the line of research that uses Bayesian posterior approximation.

Posterior Approximation is a popular approach when trying to use the epistemic uncertainty, Osband
et al. (2013) pioneered using the posterior in Reinforcement Learning with Posterior Sampling for
Reinforcement Learning. One of the traditional approaches to using uncertainty is to use Bayesian
Neural Networks. Azizzadenesheli and Anandkumar (2019) proposed BDQN, where the last layer of
the neural network is replaced with a Bayesian probabilistic regression; or Benatan and Pyzer-Knapp
(2019) proposed a fully Bayesian Recurrent Neural Network for uncertainty quantification. Another
of the first approaches was Randomised Least Squares Value Iteration (Russo, 2019; Osband et al.,
2016b). This approach is provably efficient under the tabular MDP setting but does not generalise well
to larger problems. This approach was extended to the DRL setting with Bootstraped DQN (Osband
et al., 2016a), this approach estimates the posterior by training several independent networks. From
this idea of bootstrapping different networks, several algorithms have appeared (Osband et al., 2018;
Van Der Vaart et al., 2024). Another approach to posterior approximation is (Gal and Ghahramani,
2016), which proposed Monte Carlo Dropout to estimate the posterior.

Closer to our work is (Dwaracherla and Roy, 2021), who proposed the Langevin DQN algorithm,
which performs noisy updates to parameters. With empirical studies, they demonstrated that the algo-
rithm achieved deep exploration, though there was no experimentation in pixel-based environments.

Ishfaq et al. (2024) proposed the LMC-LSVI and Adam LMCDQN algorithms we analyse in this
paper. They provided a theoretical analysis of the regret bound of LMC-LSVI under certain conditions,
and motivated by those theoretical properties and ideas from AdamSGLD (Kim et al., 2020), they
developed the Adam LMCDQN algorithm. Apart from the theoretical analysis, they provided
extensive experimentation in pixel-based environments, namely, the Atari 2600 games. Given the
similarities with LangevinDQN, they also provided an empirical comparison of AdamLMCDQN
with it. They also showed some experimentation with different parameters in the Q*bert environment.
We revisit and extend that experimentation with different environments and parameters.

3 Background

In this section, we will introduce the necessary background for our contribution. First, we explain
Markov Decision Processes in 3.1, the foundation for Reinforcement Learning. Then, in 3.2 we
introduce the Deep Q Network algorithm. After, we continue with an explanation of the idea behind
the analysed algorithms in 3.3. Then we give an introduction to the Langevin Monte Carlo method in
3.4.

3.1 Markov Decission Process

A Markov Decision Process (MDP) is a mathematical framework used to model sequential decision
problems (Bellman, 1957). Formally, it is defined by the tuple (S,A, T,R, γ), where S is the set
of all possible states of the environment, A is the set of all possible actions, T : S ×A→ S is the

2



transition function, R is the reward function S × A → R, and γ ∈ [0, 1] represents the discount
factor. The MDP has the Markov property, which allows the model to focus only on the current state
for decision making, simplifying analysis and computation.

In a standard RL setting, an agent observes a state st each time step t, and based on some policy
π : S → A, takes an action at and receives a reward rt = R(st, at). The goal is to find a policy π to
maximise the expected cumulative discounted reward.

A key concept is the Q-function (or action value function), which quantifies the expected return when
starting from state x at time step t, taking action a, and then following policy π until some time
horizon T . Concretely, it is defined by

Qπ
t (x, a) = Eπ

[
T∑

t′=t

γt′−trt′(xt′ , at′)|xt = x, at = a

]
(1)

Based on this function, the Q-learning algorithm was proposed (Watkins, 1989). The goal of
this algorithm is to learn the optimal action selection policy by repeatedly interacting with the
environment without the need of having a model of it. The core Q-learning algorithm maintains a
Q-table, consisting of Q-values for every pair of states and actions, and it updates them based on
the Q-function. Essential to this update process is the Temporal Difference Loss, which captures
the difference between the current Q-value estimate and the one-step Bellman target. Formally, it is
defined by:

TD Loss(θ) = E[(rt+1 + γmax
a′

Q(st+1, a
′; θ)−Q(st, at; θ))

2] (2)

3.2 Deep Q Network

Based on the Q-function and following the Q-learning approach, the Deep Q Network (DQN)
algorithm replaces the Q-table with Neural Networks (NNs). This approach allows handling of much
higher-dimensional inputs such as images. Mnih et al. (2013) first proposed the idea of using NNs
to estimate the Q-function, achieving better performance than a human expert in three Atari games.
Mnih et al. (2015) refined the idea and achieved human-level comparable performance in 49 Atari
games without fine-tuning the algorithm or its parameters. It also introduced two key ideas that are
central for the empirical performance of DQN and the algorithms based on it:

• The experience buffer, which stores past interactions in a replay memory. This enables
agents to learn from a diverse, decorrelated set of experiences rather than just the most
recent trajectory. This mechanism stabilises learning, improves policy convergence, and
mitigates forgetting past interactions (Liu and Zou, 2017).

• The target network, which maintains a delayed set of weights used to calculate targets for the
Temporal Difference error. This technique decouples the changing Q estimates generated by
the network, stabilising learning. By having a separate set of weights fixed for computing
target values, it prevents feedback loops that can lead to the network chasing its estimates
(Fan et al., 2020).

3.3 Posterior Sampling In Reinforcement Learning

Bayesian statistics is a statistical framework in which some initial beliefs are systematically updated
with the perceived evidence. This takes the form of a prior distribution (the initial beliefs) and a
likelihood function, where the priors are updated by multiplying them with the likelihood function,
resulting in the posterior distribution.

Based on the famous Thomson Sampling (Thompson, 1933), a line of research proposes using the
posterior of the Q-function to update parameters (Strens, 2001). In each episode, Posterior Sampling
In Reinforcement Learning samples new parameters from the posterior, uses them for the rest of the
episode, and acts optimally according to the policy specified by them.

Inferring the posterior is generally not feasible; to enjoy the different benefits that the posterior
offers, algorithms need to rely on approximations of it. Making these approximations is in itself

3



a challenging task. Two different approaches are commonly used: Variational Inference, where a
model is used to represent the posterior, and Markov Chain Monte Carlo methods, where samples
are approximated directly from the posterior (Van Der Vaart et al., 2024). Each of these approaches
comes with added challenges, and in some cases, the theoretical guarantees they offer are based on
assumptions that can not be met in practice.

3.4 Langevin Monte Carlo

Langevin Monte Carlo (LMC) is a Markov Chain Monte Carlo (MCMC) method. MCMC methods
are computational algorithms designed to sample from complex probability distributions, especially
in situations where analytical solutions are infeasible. LMC belongs to this family of algorithms. The
iterative update rule for LMC is given by:

Xt+1 = Xt − ηt∇L(Xt) +
√

2ηtξt (3)

where ηt is the step size at time step t, ∇L(Xt) is the gradient of the value function; which in RL
typically will be the negated loss function, and ξt, which is drawn from a multivariate Gaussian
distribution in each time step t. This process will generate a Markov Chain that converges to a
distribution ∝ exp(∇(L)) under certain assumptions (Roberts and Tweedie, 1996; Bakry et al.,
2014).

4 LMC-LSVI and Adam LMCDQN

In this section, we aim to give the reader a thorough understanding of the analysed algorithms. First,
we delve into the mechanics of LMC-LSVI, and then, building on top of some of the concepts from
LMC-LSVI, we explain how Adam LMCDQN works. For the full pseudocode of the algorithms, we
refer the reader to Appendix A.

4.1 LMC-LSVI

The LMC-LSVI (Langevin Monte Carlo Least-Squares Value Iteration) algorithm is an RL method
designed to improve exploration by directly sampling from the posterior distribution of the Q-function
using LMC. LMC-LSVI does not rely on approximations of the posterior, which is a key component
of the algorithm, as Gaussian distributions are not great surrogates in many cases, in addition to the
difficulty of estimating the mean and variance.

In each episode, the algorithm updates the Q-function parameters for every time step of the episode
by running several iterations of a noisy gradient descent. More concretely, the iterative parameter
update is given by:

wk,j
h = wk,j−1

h − ηk∇L̃k
h(w

k,j−1
h ) +

√
2ηkβ

−1
k ϵk,jh (4)

Where the index k represents the current episode training process, and each episode corresponds to a
complete trajectory from an initial state to a terminal state in the environment. The index h represents
the time step within an episode, corresponding to different decision points along the trajectory where
the agent must choose actions. The index j denotes the gradient update step within the current episode
k, as the algorithm performs a determined number J of parameter updates during each time step to
better estimate the Q-function.

While being very similar to Equation 3, there are some differences worth noting. First, the inverse
temperature β−1

k term is introduced. This allows control of the scale of the injected noise, which can
play a key role in exploring or exploiting. It is important to realise that higher values of β−1

k lead to a
smaller scale of noise. Then, L̃k

h represents the estimate of Lk
h made with a batch of data.

Each noisy gradient step consists of a standard gradient descent move on a regularised temporal
difference error, plus an added Gaussian noise term scaled by a factor named inverse temperature.

4



Under the linear MDP setting (Jin et al., 2020), this algorithm has been proven to give a regret of
Õ(d3/2H3/2

√
T ) (Ishfaq et al., 2024), where d is the feature dimension, H is the planning horizon,

and T is the total number of steps.

4.2 Adam LMCDQN

Adam LMCDQN (Adam Langevin Monte Carlo Deep Q Network) builds on top of the theoretical
guarantees of LMC-LSVI and combines it with Adam SGLD (ASGLD) (Kim et al., 2020) by
replacing the LMC step with ASGLD when estimating the posterior. This combination leverages
the adaptive learning rates from Adam and its momentum to stabilise training while maintaining
exploration benefits from LMC.

wk,j
h = wk,j−1

h − ηk

(
∇L̃k

h(w
k,j−1
h ) + a momentum term +

√
2ηkβ

−1
k ϵk,jh (5)

This equation is very similar to Equation 3 but it adds the extra term a momentum term, where a is the
bias factor and determines how much of the Adam momentum is used in the parameters optimisation.
For a detailed explanation, we refer the reader to (Kingma and Ba, 2017), and to (Ishfaq et al., 2024),
for the concrete adaptation for reinforcement learning.

It is important to note in Equation 5 that setting the bias factor a = 0 results in the update from the
LMC-LSVI algorithm, and that these updates are done Jk times with the same batch of data for the
estimation of∇L̃k

k.

5 Experimental Setup

This work aims to give a better understanding of the LMC-LSVI and Adam LMCDQN algorithms.
We analyse the robustness of these algorithms by conducting empirical experiments with different
hyperparameters. In this section, we introduce the different components of the conducted experiments.
We first introduce the analysed environments in 5.1, then we explain the baseline used in our study in
5.2, and we then give an extensive overview of the parameters used in our study in 5.3. Finally, we
explain the concrete details of our implementation in 5.4.

5.1 Environments

In this subsection, we present the different environments that will be later analysed to derive results.
First, we present the chosen bandits, along with a short explanation of their design. Then we present
the three chosen DRL environments. For an extensive explanation of the environments and their
reward structures, we refer the reader to Appendix B.

The bandit settings analysed in this paper are the Gaussian Bandit (Lange and Sprekeler, 2022),
the MNIST Bandit (Osband et al., 2020), and the Bernoulli Bandit (Wang et al., 2017). These
multi-armed bandits exhibit different reward structures.

The Gaussian Bandit is a bandit with two arms, where one arm has a fixed reward of 0 and the
other one has a reward drawn from a Gaussian distribution N(µ, σe), where σe remains constant
across episodes and µ is sampled at the beginning of each episode from N(−1, σp). The length
of the episodes is fixed to 100 steps. We choose to use the default values provided by Gymnax:
σe = 0.1, σp = 1.

The MNIST Bandit is a contextual bandit with 10 different arms, each representing a digit [0-9]
and a 28x28 image representation of a digit as context. A reward of 1 is observed when correctly
choosing the number, and otherwise, a reward of -1 is perceived.

The Bernoulli Bandit is a bandit where each arm k has a probability pk of giving a reward of 1,
otherwise it gives a reward of 0.

We have chosen three different DRL environments in this paper. First, the Cart Pole Environment
(Barto et al., 1983), which has been chosen as it is an example of an exploitation-heavy environment.
In this environment, a cart moves along a frictionless track, trying to balance a pole attached to it.

5



Figure 1: Cart Pole Environment (left), Freeway Environment (middle), Deep Sea Environment
(right).

Second, the Deep Sea Environment (Osband et al., 2020), which is a very exploration-heavy
environment where an agent has to choose to go towards the left or the right for N − 1 steps. We use
the deterministic version without randomised actions of the environment.

Lastly, the third chosen environment is Freeway, the MinAtar version (Young and Tian, 2019). This
environment represents the Freeway Atari game, part of the Atari 2600 game suite (Bellemare et al.,
2013), but with simplified graphics. In the game, a chicken needs to cross a ten-lane street with
cars crossing horizontally. This environment has a sparse reward structure, making it an exploration
environment, though not as much as Deep Sea.

5.2 Baseline

In this study, we have chosen as a baseline the ε-greedy exploration strategy. This is considered to be
one of the most naïve exploration strategies, yet it can show good performance in some environments.
ε-greedy balances exploration and exploitation by taking a random action with probability ε and the
best known action otherwise (probability of 1 − ε). Typically, this ε value decays as the training
progresses. We choose to linearly decay during a specified annealing time, starting at ε = 1 and
ending at ε = 0.05.

5.3 Parameters Used

In this study, we focus on changing the hyperparameters that are specific to our algorithm, namely,
inverse temperature, bias factor a, number of updates Jk and learning rate.

Since Reinforcement Learning algorithms are often highly sensitive to the hyperparameters used, we
aim to give a detailed overview of the setup and the chosen hyperparameters in Appendix C. These
will remain constant across experiments unless stated explicitly. We also do not change the network
architecture, which we keep unmodified across experiments, runs and agents.

The chosen architecture for the Neural Network is defined as follows: First, there is a fully connected
layer with 120 neurons, followed by a ReLU activation. Then, there is another fully connected layer
with 84 neurons, again followed by a ReLU activation. Lastly, there is a last fully connected layer
whose size is defined by the dimension of the action space (one neuron for each possible action).

5.4 Implementation Details

For the implementation of the algorithms, we used Python coupled with the JAX framework (Bradbury
et al., 2018). JAX offers several key features, such as automatic differentiation and just-in-time
compilation, that improve the performance of the agents.

DRL algorithms are bug-prone and difficult to implement from scratch, so we base our agents on
the DQN algorithm implemented by PureJaxRL (Lu et al., 2022). Slight modifications have been
made to the algorithm related to seed handling. We refer to our GitHub repository for concrete

6



0 100000 200000 300000 400000 500000
Time Step

60

50

40

30

20

10

0

10

Re
tu

rn
s

Gaussian Bandit

0 100000 200000 300000 400000 500000
Time Step

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Re
tu

rn
s

MNIST Bandit

0 100000 200000 300000 400000 500000
Time Step

0

20

40

60

80

Re
tu

rn
s

Bernoulli Bandit

AdamLMCDQN E-Greedy LMC-LSVI

Figure 2: Bandit Returns for LMC-LSVI, Adam LMCDQN and ε-greedy. Environments, from left
to right, Gaussian Bandit, MNIST Bandit and Bernoulli Bandit. All the lines represent the mean
return over 10 runs, while the shaded area is the standard deviation. LMC-LSVI and Adam LMCDQN
with an inverse temperature of 108.

implementation details. For the implementation of the environments, we chose the implementations
provided by Gymnax (Lange, 2022).

6 Results

In this section, we present the results necessary for answering the research questions presented in
the introduction by showing empirical results in different environments. Note that it is mentioned in
several cases that results come from N runs from base seed x; this means that seed x is split into N
seeds, and then for each of those, a run is made.

In addition to the presented plots, we include the same results plotted over time steps in Appendix D.

First, in 6.1, we will present the results of the bandit setups proposed in 5.1. Then we show results
from different experiments conducted in the different environments to answer what is the effect of
the number of updates J in 6.2, what is the effect of the noise scale, Adam weight, and learning rate
in 6.3, and finally, in 6.4, what is the most robust set of hyperparameters.

6.1 Bandit Setups

In this subsection, we present the performance of LMC-LSVI and Adam LMCDQN in bandit settings.
Since bandits are generally simpler than DRL environments, we run ε-greedy with decay through the
first 100,000 steps. We also use 10 seeds for the bandit results since it is computationally feasible.

In Figure 2 (Left), we see that LMC-LSVI, Adam LMCDQN, and ε-greedy perform very similarly
in the Gaussian Bandit. LMC-LSVI and Adam LMCDQN converge very quickly to the optimal
strategy, choosing the bandit with a fixed reward of 0, while ε-greedy has a bigger learning time
due to the annealing time. ε-greedy also shows some noisy behaviour due to the minimum value of
epsilon being 0.05.

In contrast, in Figure 2 (Middle) we observe how in the MNIST Bandit Adam LMCDQN and ε-greedy
perform similarly while LMC-LSVI performs much worse. This might be due to the algorithm not
being able to correctly capture the dimensionality of the context and learn from it.

Finally, in Figure 2 (Right) we observe how ε-greedy outperforms Adam LMCDQN, and performs
much better than LMC-LSVI in the Bernoulli Bandit. When looking at the individual runs of Adam
LMCDQN, we see that in some cases it converges to rewards of around 80, while in other runs it
presents very noisy returns (± 20, approximately) centred around 50, causing the standard deviation
to be quite large.

7



1 2 3 4 5 6 7 8
J Value

0

100

200

300

400

500

Re
tu

rn
s

Cart Pole Returns Over Different J values

Adam LMCDQN Normal
LMC-LSVI Normal

Adam LMCDQN Corrected
LMC-LSVI Corrected

Figure 3: Cart Pole Average Returns of LMC-LSVI (circle) and Adam LMCDQN (square) over J
values of 1, 4 and 8, with dashed lines representing runs with corrected learning rate, and solid lines
without learning rate correction (normal). Points represent the mean of 5 seeds (base seed 42) with
500.000 step runs, while the shaded area is a single standard error. Hard lines connect points.

6.2 Effect of the number of updates J

In this subsection, we present the effect of increasing the number of updates Jk in the LMC-LSVI
and Adam LMCDQN algorithms. For the sake of this study, we keep Jk constant across steps k,
making J = Jk for all k. The J parameter defines the number of times that each batch of data will
be used to update the weights.

We consider three different cases, first J = 1, meaning we only perform one update for each sampled
batch of data. Then we consider the cases J > 1 and J > 1, but adding a correction to the learning
rate. Performing several updates with the same batch of data might lead to instabilities in training;
therefore, we correct the learning rate in the following way: lr′ = lr/J .

In Figure 3 we observe how in the CartPole environment LMC-LSVI does not perform good, and
only manages to achieve some returns when using J > 1 without learning rate correction. We see
that Adam LMCDQN performs quite well, achieving the maximum returns possible (500) when used
with J = 1.

From these results, we can conclude that pairing Adam LMCDQN with J > 1, with or without
learning rate correction, does not yield an improved performance in the Cart Pole environment. In
contrast, LMC-LSVI manages to achieve relatively good performance with J > 1 without learning
rate correction, suggesting that this algorithm might benefit from bigger learning rates.

In Figure 4 we see the effects in returns of changing J in the Freeway environment. Here, we only
run Adam LMCDQN, and consider the case J = 1 and J > 1 without learning rate correction, as
running these experiments is computationally expensive.

We see how increasing J degrades the performance of Adam LMCDQN in the environment, sug-
gesting that J = 1 is the best choice for this environment. We also highlight that a higher J leads to
more updates, making the algorithm computationally more expensive. This makes J = 1 not only
the best performer but also the most computationally efficient.

Finally, in Figure 5, we observe LMC-LSVI achieves some results when used with J = 1 and J > 1
with learning rate correction. This does not happen for Adam LMCDQN, which achieves the best
results when J = 1 and similar results with J > 1 without learning rate correction.

In this occasion, we observe that correcting the learning rate does slightly improve the performance
of LMC-LSVI, though in contrast, it does not happen for Adam LMCDQN.

Based on the experimentation, we find that increasing J does not lead to a performance boost in the
Adam LMCDQN algorithm; J = 1 achieves the best results across all the compared settings. For
LMC-LSVI, we find substantial performance improvements in the CartPole environment when using

8



0 1 2 3 4 5
Time Step 1e6

0

10

20

30

40

50

Re
tu

rn
s

Freeway Returns for Different Values of J

Adam LMCDQN J=1) Adam LMCDQN J=4) Adam LMCDQN J=8)

Figure 4: Freeway Returns for different values of J (without learning rate correction). We run Adam
LMCDQN for 5 million steps with an inverse temperature of 108. Hard lines are the means over 5
seeds (base seed 42), and the shaded areas represent single standard errors. We smooth lines and
standard errors over windows of 100.

LR Correction Normal
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
tu

rn
s

LMC-LSVI

LR Correction Normal
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Re

tu
rn

s
Adam LMCDQN

Deep Sea Returns

J Value
J=1 J=4 J=8

Figure 5: Deep Sea (Size 20) Average Returns for LMC-LSVI (left) and Adam LMCDQN (right)
with an inverse temperature of 1000. Each box represents the mean return over 5 returns, and the
whiskers are a single standard error. Each value of J has a different colour (1: blue, 4: red, and 8:
green).

J > 1 without learning rate correction, though when looking at the other environments, we do not
see any remarkable difference in performance that suggests that J > 1 is consistently better.

6.3 Effect of Noise Scale, Adam Weight and Learning Rate

In this subsection, we analyse the effect of changing the inverse temperature (βk), which controls
the scale of the injected noise, changing the bias factor (a), which controls the scale of the Adam
momentum, and modifying the learning rate.

In the Deep Sea results from Figure 6, we observe that for this exploration-heavy environment, the
choice of inverse temperature is very important, while the choice of a also affects the performance,
but in a smaller way.

Having large inverse temperature values (greater than 108) leads to not being able to find rewards in
most cases. We only manage to find some rewards when pairing these large temperatures with a high
value for a as we can observe in the bottom row (a = 5).

9



1.0
e+

00

1.0
e+

03

1.0
e+

05

1.0
e+

08

1.0
e+

12

1.0
e+

20

0.
0

0.
1

0.
5

1.
0

5.
0

a

 0.296
± 0.151

 0.096
± 0.099

 0.095
± 0.099

-0.005
± 0.001

-0.005
± 0.001

-0.005
± 0.001

 0.197
± 0.132

-0.004
± 0.001

 0.097
± 0.099

-0.004
± 0.001

-0.003
± 0.001

-0.003
± 0.001

 0.396
± 0.162

 0.692
± 0.152

-0.001
± 0.000

 0.099
± 0.099

-0.000
± 0.000

 0.099
± 0.099

 0.395
± 0.162

 0.990
± 0.000

 0.097
± 0.099

-0.000
± 0.000

-0.001
± 0.001

-0.001
± 0.000

 0.592
± 0.162

 0.692
± 0.152

 0.592
± 0.162

 0.095
± 0.099

 0.394
± 0.162

 0.295
± 0.152

Deep Sea - Size 20

1.0
e+

00

1.0
e+

03

1.0
e+

05

1.0
e+

08

1.0
e+

12

1.0
e+

20

Inverse Temperature

0.
0

0.
1

0.
5

1.
0

5.
0

a

 0.197
± 0.132

 0.195
± 0.132

-0.004
± 0.001

-0.005
± 0.001

-0.005
± 0.001

-0.005
± 0.001

 0.196
± 0.132

 0.095
± 0.099

-0.002
± 0.000

-0.003
± 0.001

-0.003
± 0.001

-0.003
± 0.001

 0.297
± 0.151

 0.295
± 0.152

-0.002
± 0.000

-0.000
± 0.000

-0.000
± 0.000

 0.099
± 0.099

 0.296
± 0.151

 0.891
± 0.099

-0.002
± 0.000

-0.001
± 0.000

-0.001
± 0.000

 0.098
± 0.099

 0.493
± 0.166

 0.294
± 0.152

 0.493
± 0.166

 0.393
± 0.162

 0.294
± 0.152

 0.394
± 0.162

Deep Sea - Size 25

1.0
e+

00

1.0
e+

03

1.0
e+

05

1.0
e+

08

1.0
e+

12

1.0
e+

20

IT

0.
0

0.
1

0.
5

1.
0

5.
0

a

 9.430
± 0.076

 9.420
± 0.063

 9.420
± 0.063

 9.420
± 0.063

 9.420
± 0.063

 9.420
± 0.063

 33.750
± 20.931

 85.820
± 51.180

 155.460
± 74.348

 154.420
± 73.822

 110.780
± 57.222

 122.330
± 59.508

 15.340
± 5.929

 447.940
± 48.775

 445.870
± 48.704

 449.860
± 48.951

 450.330
± 48.996

 449.920
± 48.957

 9.430
± 0.076

 444.660
± 32.253

 498.330
± 1.670

 464.920
± 24.669

 464.810
± 20.823

 498.450
± 1.550

 12.120
± 2.643

 404.690
± 40.048

 369.390
± 49.460

 461.910
± 16.862

 341.310
± 50.154

 413.730
± 39.060

Cart Pole Returns

Figure 6: Deep Sea Returns and Cart Pole Returns for different values of a and inverse temperature.
Deep Sea environments of size 20 and 25 (left and middle) and CartPole (right). Results presented as
the mean from 10 seeds (5 from base seed 42, 5 from base seed 33) achieved after 500.000 steps ± a
single standard error. Note that in the top row, a = 0.0, represents the LMC-LSVI algorithm.

2.50e-06 2.50e-05 7.50e-05 1.25e-04 2.50e-04 5.00e-04 1.00e-03
Learning Rate

0

100

200

300

400

500

Av
er

ag
e 

Re
tu

rn
s

LMC-LSVI

2.50e-06 2.50e-05 7.50e-05 1.25e-04 2.50e-04 5.00e-04 1.00e-03
Learning Rate

0

100

200

300

400

500
Av

er
ag

e 
Re

tu
rn

s
Adam LMCDQN

Cart Pole Returns

2.50e-06 2.50e-05 7.50e-05 1.25e-04 2.50e-04 5.00e-04 1.00e-03
Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Re
tu

rn
s

LMC-LSVI

2.50e-06 2.50e-05 7.50e-05 1.25e-04 2.50e-04 5.00e-04 1.00e-03
Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Re
tu

rn
s

Adam LMCDQN
Deep Sea Returns

Figure 7: Cart Pole Returns (above) and Deep Sea (Size 20) Returns (below) for different learning
rates, results presented as the average over 5 seeds (base seed 42) with the whiskers being a single
standard error. All the runs ran for 500.000 steps with an inverse temperature of 108 for Cart Pole
and of 104 for Deep Sea.

For a values, we observe that a = 1 gives the best performance, while a = 0.5 and a = 5 also give
similar results. For a values lower than 0.5 and including LMC-LSVI, we do not observe any relevant
returns. Something similar happens with Cart Pole, suggesting that low a values can lead to very low
performances.

In contrast, the CartPole returns show that for this exploitation-heavy environment, the inverse
temperature is not as relevant. We do not observe big differences with a = 0.5 and a = 1 for the
chosen inverse temperature values (ranging from 103 to 1020).

10



1.0
0e

+03

1.0
0e

+04

1.0
0e

+05

1.0
0e

+06

1.0
0e

+08

1.0
0e

+12

Inverse Temperature

1.
0

1.
5

2.
0

3.
0

a

 41.130
± 2.333

 52.850
± 3.390

 44.550
± 5.020

 45.980
± 4.018

 47.260
± 3.466

 49.500
± 1.354

 48.340
± 1.125

 49.130
± 3.823

 42.930
± 2.122

 35.010
± 5.640

 38.730
± 4.720

 47.310
± 1.936

 49.310
± 1.548

 37.850
± 4.202

 34.590
± 5.143

 36.620
± 3.341

 40.890
± 4.347

 45.660
± 2.900

 49.790
± 1.597

 38.290
± 4.486

 43.400
± 2.426

 43.770
± 2.063

 38.140
± 2.332

 36.400
± 3.684

FreeWay Returns

Figure 8: Freeway Returns for different values of a and inverse temperature. Every cell represents
the average over 10 seeds (5 from base seed 42 and 5 from base seed 33) ± a single standard error.
Each run with 5× 106 steps.

Figure 7 shows that when changing the learning rate for LMC-LSVI, bigger values (10−3) can lead
to the algorithm achieving some results in the Cart Pole environment. This is in line with the findings
of 6.2. In contrast, the algorithm does not exhibit a lot of change in the Deep Sea environment. We
find Adam LMCDQN to be quite robust against different learning rate values, showing that the Adam
LMCDQN algorithm carries some of the nice properties that the Adam optimiser offers. We also
observe that, contrary to what the theory behind LMC suggests, smaller learning rates do not lead to
better empirical results.

6.4 Most Robust Set of Hyperparameters

In this subsection, we build upon the results of the other subsections in order to find hyperparameters
that yield good performance across environments.

First, we find that Adam LMCDQN outperforms LMC-LSVI in the analysed environments, except for
the Gaussian Bandit, where they exhibit a very similar performance. For this reason, from this point
onwards, we focus on Adam LMCDQN. Secondly, in 6.2 we find that J = 1 gives the best results,
and that increasing it does not improve the performance even when correcting the learning rate. Lastly,
in 6.3 we see how, while the choice of a good set of hyperparameters is environment-dependent, there
is a range of hyperparameters that give similar performance to the best set. We observed that the
algorithm was robust against different learning rates; we therefore chose to continue with 2.5× 10−4.

We propose the following set of hyperparameters as a robust set:

Parameter Values
Inverse Temperature 103, 104, 105, 106, 108, 1012
a 1, 1.5, 2, 3

Table 1: Proposed set of robust hyperparameters.

Since most of our hyperparameter experimentation has been derived from the Deep Sea and Cart
Pole environments, we test the proposed set of hyperparameters in the Freeway environment. Figure
8 shows the performance of the selected set of hyperparameters in the Freeway environment. For

11



reference, ε-greedy has returns of 20.160 ± 6.211, ran across 5 seeds with an annealing time of
2× 106 and a single standard error. We observe that there is a big gap between all the results from
the proposed set of hyperparameters and the baseline, showing that this set of hyperparameters is
robust in this environment.

7 Responsible Research

In this section, we reflect on the reproducibility and ethical implications of the conducted research.
In this research, no human or sensitive data have been used, mitigating possible biases and reducing
the direct ethical implications.

During this study, several measures have been taken to ensure reproducibility. First, we give an in-
depth explanation of the components of our algorithm in this paper, and we also publish the concrete
implementation as we make our code publicly available1. This allows the reader to check concrete
details and reuse the implementation for the reproduction of the results. Additionally, we detail all
the hyperparameters used as well as the network architecture used. Second, we put special care into
seed handling, ensuring that the results received from our code are consistent and reproducible across
runs. We also include logic in our code to split a single seed into as many as requested by the user,
making the process of reproducing results straightforward.

Of central importance in modern research is the use of AI. In this research, we leverage AI tools
for spell checking in the process of writing this paper. We also utilise AI to efficiently navigate
documentation of the different libraries used, for example, JAX or matplotlib.

We also highlight the limitation in computing power. This has been a key factor in the overall research
progress, limiting the feasible number of combinations of hyperparameters, seeds and length of
experiments that can be run.

8 Conclusion and Future Work

In this paper, we set out to empirically research the robustness and sensitivity of the LMC-LSVI and
Adam LMCDQN algorithms. We revisit the hyperparameters proposed in the original paper and
provide experimentation in three different environments.

We researched the application of LMC-LSVI and Adam LMCDQN to bandit settings, with results
showing that Adam LMCDQN generalises well to such settings even though in some cases it performs
worse than ε-greedy. LMC-LSVI does not exhibit very good performance in most cases. We also
provided empirical results for different hyperparameters. In our experiments, Adam LMCDQN
consistently outperforms LMC-LSVI. For Adam LMCDQN we find J = 1 to give the best results, for
inverse temperature (βk) we find the range of 103 to 1012 to be the most robust across environments,
with exploration heavy environments benefiting from lower ranges (103 to 108) and exploration heavy
environments exhibiting good results in a wider range of values (103 to 1020). We also show the
robustness of Adam LMCDQN against different learning rates, with values ranging from 7.5× 10−5

to 1× 10−3 exhibiting very similar returns, we recommend 2.5× 10−4.

Following this study, there are several interesting lines of research. First, it would be interesting to
research the application of Adam LMCDQN to real-world environments, for example, autonomous
driving environments or financial environments. Second, experimenting with whether the application
of other Markov Chain Monte Carlo methods, such as Hamiltonian Monte Carlo or Gibbs sampling,
to Deep Reinforcement Learning can also yield good results. Finally, it would be interesting to
bootstrap the LMC-LSVI and Adam LMCDQN algorithms and analyse the difference in performance
with the results presented in this paper.

1Our code is available at https://github.com/PabloHendriks/AdamLMCDQN

12



References
Azizzadenesheli, K. and Anandkumar, A. (2019). Efficient exploration through bayesian deep

q-networks.

Bakry, D., Gentil, I., and Ledoux, M. (2014). Analysis and Geometry of Markov Diffusion Operators,
volume 348. Springer.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-13(5):834–846.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279.

Bellman, R. (1957). A markovian decision process. Indiana University Mathematics Journal,
6:679–684.

Benatan, M. and Pyzer-Knapp, E. O. (2019). Fully bayesian recurrent neural networks for safe
reinforcement learning.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke,
A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable transformations
of Python+NumPy programs.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. (2019). Exploration by random network
distillation. In Proceedings of the 7th International Conference on Learning Representations
(ICLR).

Dwaracherla, V. and Roy, B. V. (2021). Langevin dqn.

Fan, J., Wang, Z., Xie, Y., and Yang, Z. (2020). A theoretical analysis of deep q-learning.

Fortunato, M., Azizzadenesheli, K., Tang, Y., et al. (2018). Noisy networks for exploration. In
Proceedings of the 6th International Conference on Learning Representations (ICLR).

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In Proceedings of the 33rd International Conference on Machine
Learning (ICML).

Ishfaq, H., Lan, Q., Xu, P., Mahmood, A. R., Precup, D., Anandkumar, A., and Azizzadenesheli, K.
(2024). Provable and practical: Efficient exploration in reinforcement learning via langevin monte
carlo. In International Conference on Learning Representations.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. (2020). Provably efficient reinforcement learning with
linear function approximation. In Abernethy, J. and Agarwal, S., editors, Proceedings of Thirty
Third Conference on Learning Theory, volume 125 of Proceedings of Machine Learning Research,
pages 2137–2143. PMLR.

Kim, S., Song, Q., and Liang, F. (2020). Stochastic gradient langevin dynamics algorithms with
adaptive drifts.

Kingma, D. P. and Ba, J. (2017). Adam: A method for stochastic optimization.

Lange, R. T. (2022). gymnax: A JAX-based reinforcement learning environment library.

Lange, R. T. and Sprekeler, H. (2022). Learning not to learn: Nature versus nurture in silico.

Liu, R. and Zou, J. (2017). The effects of memory replay in reinforcement learning.

Lu, C., Kuba, J., Letcher, A., Metz, L., Schroeder de Witt, C., and Foerster, J. (2022). Discovered
policy optimisation. Advances in Neural Information Processing Systems, 35:16455–16468.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller,
M. A. (2013). Playing atari with deep reinforcement learning. ArXiv, abs/1312.5602.

13



Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533.

Osband, I., Aslanides, J., and Cassirer, A. (2018). Randomized prior functions for deep reinforcement
learning. In Advances in Neural Information Processing Systems 31 (NeurIPS).

Osband, I., Blundell, C., Pritzel, A., and Roy, B. V. (2016a). Deep exploration via bootstrapped dqn.

Osband, I., Doron, Y., Hessel, M., Aslanides, J., Sezener, E., Saraiva, A., McKinney, K., Lattimore,
T., Szepesvari, C., Singh, S., Roy, B. V., Sutton, R., Silver, D., and Hasselt, H. V. (2020). Behaviour
suite for reinforcement learning.

Osband, I., Roy, B. V., and Wen, Z. (2016b). Generalization and exploration via randomized value
functions.

Osband, I., Russo, D., and Roy, B. V. (2013). (more) efficient reinforcement learning via posterior
sampling.

Roberts, G. O. and Tweedie, R. L. (1996). Exponential convergence of langevin distributions and
their discrete approximations. Bernoulli, 2:341–363.

Russo, D. (2019). Worst-case regret bounds for exploration via randomized value functions.

Strens, M. (2001). A bayesian framework for reinforcement learning. Proceedings of the Seventeenth
International Conference on Machine Learning.

Sutton, R. S. and Barto, A. (2020). Reinforcement learning: an introduction. Adaptive computation
and machine learning. The MIT Press, Cambridge, Massachusetts London, England, second edition
edition.

Tang, H., Houthuijzen, R., Flet-Berliac, Y., et al. (2017). #exploration: A study of count-based
exploration for deep reinforcement learning. In Advances in Neural Information Processing
Systems 30 (NIPS).

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25:285–294.

Van Der Vaart, P. R., Yorke-Smith, N., and Spaan, M. T. J. (2024). Bayesian ensembles for exploration
in deep q-learning. Proc. of the Adaptive and Learning Agents Workshop (ALA 2024).

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., Blundell, C.,
Kumaran, D., and Botvinick, M. (2017). Learning to reinforcement learn.

Watkins, C. (1989). Learning from delayed rewards. pages 44–54.

Young, K. and Tian, T. (2019). Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments.

14



A Pseudocode for LMC-LSVI and Adam LMCDQN

In this appendix, we present the full pseudocode for the Langevin Monte Carlo Least Squares Value
Iteration (LMC-LSVI) and Adam Langevin Deep Q Network (Adam LMCDQN) algorithms Ishfaq
et al. (2024).

Algorithm 1 LMC-LSVI Ishfaq et al. (2024)
Require: Step sizes {ηk > 0}k≥1, inverse temperature {βk}k≥1, loss function Lk(w)

1: Initialize w1,0
h = 0 for h ∈ [H], J0 = 0

2: for episode k = 1, 2, . . . ,K do
3: Receive the initial state sk1
4: for step h = H,H − 1, . . . , 1 do
5: wk

h,0 ← wk−1
h,Jk−1

6: for j = 1, . . . , Jk do
7: ϵk,jh ∼ N (0, I)

8: wk
h,j ← wk

h,j−1 − ηk∇Lh
k(w

k
h,j−1) +

√
2ηkβ

−1
k ϵk,jh

9: end for
10: Qk

h(·)← min(Q(wk
h,Jk

, ϕ(·, ·)), H − h+ 1)+

11: V k
h (·)← maxa Q

k
h(·, a)

12: end for
13: for h = 1, 2, . . . ,H do
14: Take action akh ← argmaxa∈A Qk

h(s
k
h, a), observe reward rkh(s

k
h, a

k
h) and next state

skh+1
15: end for
16: end for

Algorithm 2 Adam LMCDQN Ishfaq et al. (2024)
Input: step sizes {ηk > 0}k≥1, inverse temperature {βk}k≥1, smoothing factors α1 and α2,
bias factor a, loss function Lk(w).

2: Initialize w1,0
h from appropriate distribution for h ∈ [H], J0 = 0, m1,0

h = 0 and v1,0h = 0 for
h ∈ [H] and k ∈ [K].
for episode k = 1, 2, . . . ,K do

4: Receive the initial state sk1 .
for step h = H,H − 1, . . . , 1 do

6: wk,0
h ← w

k−1,Jk−1

h , mk,0
h ← m

k−1,Jk−1

h , vk,0h ← v
k−1,Jk−1

h
for j = 1, . . . , Jk do

8: ϵk,jh ∼ N (0, I)

wk,j−1
h ← wk,j−1

h −ηk(∇L̃k
h(w

k,j−1
h )+amk,j−1

h ⊘
√

vk,j−1
h + λ1)+

√
2ηkβ

−1
k ϵk,jh

10: mk,j
h = α1m

k,j−1
h + (1− α1)∇L̃k

h(w
k,j−1
h )

vk,jh = α2v
k,j−1
h + (1− α2)∇L̃k

h(w
k,j−1
h ⊙∇L̃k

h(w
k,j−1
h )

12: end for
Qk

h(·)← Q(wk,Jk

h , ϕ(·))
14: V k

h (·)← maxa∈A Qk
h(·, a)

end for
16: for step h = 1, 2, . . . ,H do

Take action akh ← argmaxa∈A Qk
h(s

k
h, a), observe reward rkh(s

k
h, a

k
h) and next state

skh+1.
18: end for

end for

15



B Explanation of the Environments

B.1 Cart Pole

Barto et al. (1983) first proposed the Cart Pole Environment. In this environment, an agent is tasked
with controlling a cart that moves along a frictionless, linear track. Attached to the centre of the cart is
a pole that can pivot and fall left or right. The objective is that the agent maintains the pole balanced
upright by applying discrete forces (left or right) while staying inside some predefined boundaries.

The reward structure of this environment is considered to be dense. The agent receives a positive
reward (+1) at every time step that the pole stays in a specified angular range of inclination, and the
agent stays inside the boundaries. After 500 time steps without termination, the game ends, making
the maximum achievable reward 500. The continuous reward signal provides rich feedback to the
agent, making it relatively easy to associate specific actions with outcomes.

The state space of this environment is continuous, with variables such as velocity, position, pole
angle, ... Because of this, the state space is of intractable size, thus requiring that the agent generalises
across similar states. The same does not apply to the action space, where there are only two possible
actions.

In terms of exploration, Cart Pole is not an exploration-heavy environment. Once a strategy is found
that works well, there is no benefit in trying a different action, as there are no possible bigger future
rewards. Therefore, while exploration is necessary in the early stages of the game to discover the
mechanics, after a good policy is found, trying new policies is penalised.

B.1.1 Deep Sea

The Deep Sea Environment is part of the bsuite benchmark suite Osband et al. (2020), it consists of
an agent that needs to navigate a NxN grid-like world where the agent is initialized in the top-left
corner, coordinate (1, 1), and at each time step it has to decide between taking the down left action or
the down right action. The episode ends once the agent has reached the bottom of the grid, which is
after N − 1 actions.

The rewards of this environment are extremely sparse. These are structured such that for each move
taken to the left diagonal, a reward of 0 is observed, and for each move to the right diagonal, a
reward of −0.01/N is given. Lastly, there is a big magnitude reward of 1 in the bottom right of the
environment. The optimal policy is then to go right bottom in every action, as there is no other way
of observing the big reward of 1, which will result in an episodic return of 0.99.

This reward structure makes it very hard for agents to discover the optimal policy; the apparent
short-term best action is to go towards the left, as that way there is no negative reward observed,
though to maximise returns, going right at every step yields the maximum reward.

This environment is a great example of the exploitation-exploration tradeoff, sacrificing short-term
rewards in favour of exploring with the hope of finding bigger long-term rewards later in the episode.
As the size N of the environment increases, the likelihood of discovering the optimal policy through
random exploration decreases exponentially.

B.1.2 FreeWay MinAtar

Freeway is an Atari 2600 game Bellemare et al. (2013). In this game, the player controls a chicken
whose objective is to cross a ten-lane road where there are cars crossing. If hit by a car, the chicken
returns to the start of the road, and if the chicken reaches the end of the road, a point is added to the
score.

In our study, we use the MinAtar Freeway implementation Young and Tian (2019). This is a simplified
version of the game, where the input size is greatly reduced, allowing agents to focus on the mechanics
of the game itself rather than on understanding the pixel representation of it. In this implementation,
the agent only has three possible actions: forward, back and do nothing. After reaching the end, the
speed and direction of the cars are randomised. The agent is restricted to only being able to move
every three frames, while car speeds vary from moving every frame to once every 5 frames. The
length of the episode is 2500 time steps, after which the reward of the episode is equal to the number
of times the agent reached the other end of the road.

16



The reward structure of this environment is considered to be sparse. The only reward that is observed
by the agent is when reaching the end of the road, which yields a +1 reward. When hit by a car,
no negative reward is observed, and the agent is simply returned to the beginning of the road. This
makes learning challenging, as agents do not receive a negative signal when hit by a car.

17



C Used Parameters

In this appendix, we include the detailed list of hyperparameters used.

Parameter Value
Num Envs 10
Buffer Size 10000
Buffer Batch Size 128
Total Timesteps 5.0× 105

Target Update Interval 500
Learning Rate 2.5× 10−4

Learning Starts 10000
Training Interval 10
Gamma 0.99
Tau 1.0
Seed 42
Num Seeds 5
eps 1.0× 10−8

ϵ-greedy Parameters
Epsilon Start 1.0
Eplsion Finish 0.05
Epsilon Anneal Time 2.5× 105

LR Linear Decay true
LMC-LSVI and Adam LMCDQN Parameters
alpha1 0.9
alpha2 0.999
Inverse Temperature 1.0× 108

J 1
a 1

Table 2: Experiment Parameters

18



D Results Over Time Steps

In this appendix, we include the results plotted over time steps. We do not include the plots that were
already plotted over time steps. We present all the plots with hard lines representing means over
different seeds and a single standard error.

0 100000 200000 300000 400000 500000
Time Step

0

100

200

300

400

500

Re
tu

rn
s

Cart Pole Returns for Different Values of J

AdamLMCDQN J=1 Normal
AdamLMCDQN J=1 LR Correction
AdamLMCDQN J=4 Normal
AdamLMCDQN J=4 LR Correction
AdamLMCDQN J=8 Normal
AdamLMCDQN J=8 LR Correction

0 100000 200000 300000 400000 500000
Time Step

0

50

100

150

200

250

300

350

400

Re
tu

rn
s

Cart Pole Returns for Different Values of J

LMC-LSVI J=1 Normal
LMC-LSVI J=1 LR Correction
LMC-LSVI J=4 Normal
LMC-LSVI J=4 LR Correction
LMC-LSVI J=8 Normal
LMC-LSVI J=8 LR Correction

Figure 9: Cart Pole Returns for different values of J. Results averaged from 5 seeds and presented
with a single standard error.

0 100000 200000 300000 400000 500000
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn
s

Deep Sea Returns for Different Values of J
LMC-LSVI J=1 Normal
LMC-LSVI J=1 LR Correction
LMC-LSVI J=4 Normal
LMC-LSVI J=4 LR Correction
LMC-LSVI J=8 Normal
LMC-LSVI J=8 LR Correction

0 100000 200000 300000 400000 500000
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn
s

Deep Sea Returns for Different Values of J
AdamLMCDQN J=1 Normal
AdamLMCDQN J=1 LR Correction
AdamLMCDQN J=4 Normal
AdamLMCDQN J=4 LR Correction
AdamLMCDQN J=8 Normal
AdamLMCDQN J=8 LR Correction

Figure 10: Deep Sea Returns of size 20 for different values of J. Results averaged from 5 different
seeds and presented with a single standard error.

19



0 100000 200000 300000 400000 500000
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn
s

Deep Sea Size 20 Returns a: 0.0
a=0.0, inv_temp=1.0e+00
a=0.0, inv_temp=1.0e+03
a=0.0, inv_temp=1.0e+05
a=0.0, inv_temp=1.0e+08
a=0.0, inv_temp=1.0e+12
a=0.0, inv_temp=1.0e+20

0 100000 200000 300000 400000 500000
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn
s

Deep Sea Size 20 Returns a: 0.1
a=0.1, inv_temp=1.0e+00
a=0.1, inv_temp=1.0e+03
a=0.1, inv_temp=1.0e+05
a=0.1, inv_temp=1.0e+08
a=0.1, inv_temp=1.0e+12
a=0.1, inv_temp=1.0e+20

0 100000 200000 300000 400000 500000
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn
s

Deep Sea Size 20 Returns a: 0.5
a=0.5, inv_temp=1.0e+00
a=0.5, inv_temp=1.0e+03
a=0.5, inv_temp=1.0e+05
a=0.5, inv_temp=1.0e+08
a=0.5, inv_temp=1.0e+12
a=0.5, inv_temp=1.0e+20

0 100000 200000 300000 400000 500000
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn
s

Deep Sea Size 20 Returns a: 1.0
a=1.0, inv_temp=1.0e+00
a=1.0, inv_temp=1.0e+03
a=1.0, inv_temp=1.0e+05
a=1.0, inv_temp=1.0e+08
a=1.0, inv_temp=1.0e+12
a=1.0, inv_temp=1.0e+20

0 100000 200000 300000 400000 500000
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn
s

Deep Sea Size 20 Returns a: 5.0
a=5.0, inv_temp=1.0e+00
a=5.0, inv_temp=1.0e+03
a=5.0, inv_temp=1.0e+05
a=5.0, inv_temp=1.0e+08
a=5.0, inv_temp=1.0e+12
a=5.0, inv_temp=1.0e+20

Figure 11: Deep Sea Returns (Size 20) for different values of a (one plot for each) and different
inverse temperature values. Plots without windowing and shown as the average over 10 seeds and
with a single standard error.

0 100000 200000 300000 400000 500000
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn
s

Deep Sea Size 25 Returns a: 0.0
a=0.0, inv_temp=1.0e+00
a=0.0, inv_temp=1.0e+03
a=0.0, inv_temp=1.0e+05
a=0.0, inv_temp=1.0e+08
a=0.0, inv_temp=1.0e+12
a=0.0, inv_temp=1.0e+20

0 100000 200000 300000 400000 500000
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn
s

Deep Sea Size 25 Returns a: 0.1
a=0.1, inv_temp=1.0e+00
a=0.1, inv_temp=1.0e+03
a=0.1, inv_temp=1.0e+05
a=0.1, inv_temp=1.0e+08
a=0.1, inv_temp=1.0e+12
a=0.1, inv_temp=1.0e+20

0 100000 200000 300000 400000 500000
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn
s

Deep Sea Size 25 Returns a: 0.5
a=0.5, inv_temp=1.0e+00
a=0.5, inv_temp=1.0e+03
a=0.5, inv_temp=1.0e+05
a=0.5, inv_temp=1.0e+08
a=0.5, inv_temp=1.0e+12
a=0.5, inv_temp=1.0e+20

0 100000 200000 300000 400000 500000
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn
s

Deep Sea Size 25 Returns a: 1.0
a=1.0, inv_temp=1.0e+00
a=1.0, inv_temp=1.0e+03
a=1.0, inv_temp=1.0e+05
a=1.0, inv_temp=1.0e+08
a=1.0, inv_temp=1.0e+12
a=1.0, inv_temp=1.0e+20

0 100000 200000 300000 400000 500000
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn
s

Deep Sea Size 25 Returns a: 5.0
a=5.0, inv_temp=1.0e+00
a=5.0, inv_temp=1.0e+03
a=5.0, inv_temp=1.0e+05
a=5.0, inv_temp=1.0e+08
a=5.0, inv_temp=1.0e+12
a=5.0, inv_temp=1.0e+20

Figure 12: Deep Sea Returns (Size 25) for different values of a (one plot for each) and different
inverse temperature values. Plots without windowing and shown as the average over 10 seeds and
with a single standard error.

20



0 100000 200000 300000 400000 500000
Time Step

0

100

200

300

400

500

Re
tu

rn
s

Cart Pole Returns a: 0.0
a=0.0, inv_temp=1.0e+00
a=0.0, inv_temp=1.0e+03
a=0.0, inv_temp=1.0e+05
a=0.0, inv_temp=1.0e+08
a=0.0, inv_temp=1.0e+12
a=0.0, inv_temp=1.0e+20

0 100000 200000 300000 400000 500000
Time Step

0

100

200

300

400

500

Re
tu

rn
s

Cart Pole Returns a: 0.1
a=0.1, inv_temp=1.0e+00
a=0.1, inv_temp=1.0e+03
a=0.1, inv_temp=1.0e+05
a=0.1, inv_temp=1.0e+08
a=0.1, inv_temp=1.0e+12
a=0.1, inv_temp=1.0e+20

0 100000 200000 300000 400000 500000
Time Step

0

100

200

300

400

500

Re
tu

rn
s

Cart Pole Returns a: 0.5
a=0.5, inv_temp=1.0e+00
a=0.5, inv_temp=1.0e+03
a=0.5, inv_temp=1.0e+05
a=0.5, inv_temp=1.0e+08
a=0.5, inv_temp=1.0e+12
a=0.5, inv_temp=1.0e+20

0 100000 200000 300000 400000 500000
Time Step

0

100

200

300

400

500

Re
tu

rn
s

Cart Pole Returns a: 1.0
a=1.0, inv_temp=1.0e+00
a=1.0, inv_temp=1.0e+03
a=1.0, inv_temp=1.0e+05
a=1.0, inv_temp=1.0e+08
a=1.0, inv_temp=1.0e+12
a=1.0, inv_temp=1.0e+20

0 100000 200000 300000 400000 500000
Time Step

0

100

200

300

400

500

Re
tu

rn
s

Cart Pole Returns a: 5.0
a=5.0, inv_temp=1.0e+00
a=5.0, inv_temp=1.0e+03
a=5.0, inv_temp=1.0e+05
a=5.0, inv_temp=1.0e+08
a=5.0, inv_temp=1.0e+12
a=5.0, inv_temp=1.0e+20

Figure 13: Cart Pole Returns (above) and Deep Sea Size 20 Returns (below) for different values of
a (one for each plot) and different values of inverse temperature. Lines averaged from 10 seeds and
presented with a single standard error.

0 100000 200000 300000 400000 500000
Time Step

0

100

200

300

400

500

Re
tu

rn
s

Cart Pole Returns for Different Learning Rates
LMC-LSVI Learning Rate: 2.5e-06
LMC-LSVI Learning Rate: 2.5e-05
LMC-LSVI Learning Rate: 7.5e-05
LMC-LSVI Learning Rate: 0.000125
LMC-LSVI Learning Rate: 0.00025
LMC-LSVI Learning Rate: 0.0005
LMC-LSVI Learning Rate: 0.001

0 100000 200000 300000 400000 500000
Time Step

0

100

200

300

400

500

Re
tu

rn
s

Cart Pole Returns for Different Learning Rates
AdamLMCDQN Learning Rate: 2.5e-06
AdamLMCDQN Learning Rate: 2.5e-05
AdamLMCDQN Learning Rate: 7.5e-05
AdamLMCDQN Learning Rate: 0.000125
AdamLMCDQN Learning Rate: 0.00025
AdamLMCDQN Learning Rate: 0.0005
AdamLMCDQN Learning Rate: 0.001

0 100000 200000 300000 400000 500000
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn
s

Deep Sea Returns for Different Learning Rates
LMC-LSVI Learning Rate: 2.5e-06
LMC-LSVI Learning Rate: 2.5e-05
LMC-LSVI Learning Rate: 7.5e-05
LMC-LSVI Learning Rate: 0.000125
LMC-LSVI Learning Rate: 0.00025
LMC-LSVI Learning Rate: 0.0005
LMC-LSVI Learning Rate: 0.001

0 100000 200000 300000 400000 500000
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn
s

Deep Sea Returns for Different Learning Rates
AdamLMCDQN Learning Rate: 2.5e-06
AdamLMCDQN Learning Rate: 2.5e-05
AdamLMCDQN Learning Rate: 7.5e-05
AdamLMCDQN Learning Rate: 0.000125
AdamLMCDQN Learning Rate: 0.00025
AdamLMCDQN Learning Rate: 0.0005
AdamLMCDQN Learning Rate: 0.001

Figure 14: Cart Pole Returns for different learning rates. Hard lines represent averages over 5 seeds
and shaded areas a single standard error.

21



0 1 2 3 4 5
Time Step 1e6

0

10

20

30

40

50

60

Re
tu

rn
s

Freeway Returns a: 1.0
a=1.0, inv_temp=1.0e+03
a=1.0, inv_temp=1.0e+04
a=1.0, inv_temp=1.0e+05
a=1.0, inv_temp=1.0e+06
a=1.0, inv_temp=1.0e+08
a=1.0, inv_temp=1.0e+12

0 1 2 3 4 5
Time Step 1e6

0

10

20

30

40

50

60

Re
tu

rn
s

Freeway Returns a: 1.5
a=1.5, inv_temp=1.0e+03
a=1.5, inv_temp=1.0e+04
a=1.5, inv_temp=1.0e+05
a=1.5, inv_temp=1.0e+06
a=1.5, inv_temp=1.0e+08
a=1.5, inv_temp=1.0e+12

0 1 2 3 4 5
Time Step 1e6

0

10

20

30

40

50

60

Re
tu

rn
s

Freeway Returns a: 2.0
a=2.0, inv_temp=1.0e+03
a=2.0, inv_temp=1.0e+04
a=2.0, inv_temp=1.0e+05
a=2.0, inv_temp=1.0e+06
a=2.0, inv_temp=1.0e+08
a=2.0, inv_temp=1.0e+12

0 1 2 3 4 5
Time Step 1e6

0

10

20

30

40

50

60

Re
tu

rn
s

Freeway Returns a: 3.0
a=3.0, inv_temp=1.0e+03
a=3.0, inv_temp=1.0e+04
a=3.0, inv_temp=1.0e+05
a=3.0, inv_temp=1.0e+06
a=3.0, inv_temp=1.0e+08
a=3.0, inv_temp=1.0e+12

Figure 15: FreeWay Returns for different values of a (each value with its own plot) and different
inverse temperatures. Hard lines represent means over 5 runs and shaded areas a single standard error.

22


	Introduction
	Related Work
	Background
	Markov Decission Process
	Deep Q Network
	Posterior Sampling In Reinforcement Learning
	Langevin Monte Carlo

	LMC-LSVI and Adam LMCDQN
	LMC-LSVI
	Adam LMCDQN

	Experimental Setup
	Environments
	Baseline
	Parameters Used
	Implementation Details

	Results
	Bandit Setups
	Effect of the number of updates J
	Effect of Noise Scale, Adam Weight and Learning Rate
	Most Robust Set of Hyperparameters

	Responsible Research
	Conclusion and Future Work
	Pseudocode for LMC-LSVI and Adam LMCDQN
	Explanation of the Environments
	Cart Pole
	Deep Sea
	FreeWay MinAtar


	Used Parameters
	Results Over Time Steps

