TUDelft

Finding Robust Schedules in the Stochastic
Resource Constrained Project Scheduling
Problem using Probabilistic Inference

while using unmodified schedulers

Kasper van Duijne!
Supervisors: Sebastijan Dumancié¢!, Reuben Gardos Reid!, Issa Hanou!
'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfillment of the Requirements
For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Kasper van Duijne
Final project course: CSE3000 Research Project
Thesis committee: Sebastijan Dumanci¢, Reuben Gardos Reid, Issa Hanou, Merve Giirel

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Scheduling problems are present in many real-world situations, such as construction
projects, manufacturing processes, or train timetabling. One common formalization
is the Resource Constrained Project Scheduling Problem (RCPSP), where the goal is
to find an optimal schedule given limited resources. Traditional algorithms optimize
for project duration under deterministic assumptions, which could lead to poor perfor-
mance under uncertainty. This thesis explores how to create robust schedules, mean-
ing they can withstand uncertainty, for stochastic task durations. Robust schedules
minimize delays, measured as the difference between a task’s completion time and its
deadline. The method proposed uses probabilistic programming as a tool to accomplish
this. A robustness distribution over schedules is inferred using importance sampling,
and a robust schedule can be selected from that explored distribution. Importantly,
this approach presented in this thesis can be applied on top of existing scheduling and
simulation algorithms without requiring any knowledge or changes to themselves. Cre-
ated schedules can also be abstracted, thus do not need to be analyzed or seen. This
makes the proposed method general and easy to adopt in practice.

1 Introduction

Uncertainty is a major challenge in real-world project scheduling in many sectors [12].
Whether in transportation, manufacturing, or construction, the duration of individual tasks
often deviates from estimates due to unforeseen delays or variability. For example, a con-
struction project might be delayed by weather conditions, a manufacturing process might
be disrupted by equipment failure, or it is uncertain at what time a team needs to complete
a certain task. As a result, even optimized schedules can perform poorly in practice when
reality diverges from a predetermined schedule. This raises the question: how can we find
schedules that remain effective even when task durations are stochastic or uncertain?

The Stochastic Resource Constrained Project Scheduling Problem (stochastic RCPSP)
formalizes this challenge. It involves scheduling a set of tasks that require limited resources
to be executed. In the stochastic variant, task durations are not fixed but follow probability
distributions. This stochasticity can lead to significant variation in the execution times of
tasks. Improving the robustness of schedules, such that their robustness remains acceptable
under uncertainty, is an important goal.

This work investigates whether the approach of |Gardos Reid [3] and the code from
van den Houten et al| [I0] can be applied to the stochastic RCPSP. The former suggests
that inference approaches can be applied to black-box schedulers and simulators to find
robust schedules. This paper builds on that insight by asking:

Can we use probabilistic inference to obtain robust schedules for the
stochastic RCPSP, without modifying the underlying deterministic
scheduling algorithm?

Probabilistic programming is a paradigm where it is easy for users to define statistical
models, making it easy to work with uncertainty. These programs also do the work of
applying inference steps, so the user does not need to manually provide such code [9].

The earlier stated research question is addressed through the following sub-questions:

1. How can task duration uncertainty in the stochastic RCPSP be effectively modeled
using a probabilistic programming framework?

2. Can probabilistic inference using importance sampling generate a meaningful distri-
bution over schedules without modifying the underlying scheduler?

3. How can the resulting distribution be used to select robust schedules, and what metric
captures schedule robustness?

This paper applies this novel approach from |Gardos Reid| to robust planning in the
stochastic RCPSP. The underlying instance or base schedule does not need to be analyzed
or perturbed to find robust schedules. If successful, this methodology could be applied
to a wide range of scheduling domains. Since the scheduler and simulator are treated as
black-boxes, the approach is easily transferable and implementable across various scheduling
problems and algorithms.

The method is validated on a motivating example, where the inferred robust schedule
outperforms the base schedule under uncertainty. Specifically, the robust schedule achieves
a 100% deadline success rate, compared to 58% for the base schedule. These results confirm
that probabilistic inference over uncertain durations can successfully identify robust sched-
ules, even when using an unmodified deterministic scheduler. The rest of this paper explains
the approach, evaluates it, and discusses its limitations and potential extensions.

2 Background

Before proceeding to Chapter [3| (Methodology|), it is necessary to establish a clear under-
standing of the problem instance in Section [2.I] go over related work in Section 2.2} and

lastly provide a motivating example of a scheduling instance in Section [2.3]

2.1 Scheduling problem instance

Formally, the stochastic RCPSP instance contains the following elements:

Let T ={1,2,...,n} be the set of tasks, and let R be the set of resources.
For each task t € T

o Let d; € Z>(denote the estimated (mean) duration.
e Let D; be a random variable modeling the uncertain duration of task ¢
o Let 0, € Z>o U {00} denote the deadline, where d, = oo indicates no deadline.

e Let S; C T be the set of successors of task ¢, that can only start after task ¢ has
completed.

e For each resource r € R, let a¢,, € Z>(denote the number of machines of resource r
required by task t.

For each resource r € R:
o Let ¢, € Z~(denote its capacity, i.e., the number of machines available.

A resource can execute multiple tasks concurrently, provided that the total number of
machines in use at any given time does not exceed its capacity.

The RCPSP consists of constructing a schedule that includes all tasks, satisfies all con-
straints, and minimizes the total project duration, which is the time at which all tasks have
been completed, also known as the makespan. It is not needed for the purpose of this re-
search what a schedule looks like under the hood, as a goal of this research is to keep a
schedule abstracted.

2.2 Related Work

This paper builds upon the probabilistic inference methodology proposed by |Gardos Reid| [3].
Their work demonstrated that robust schedules can be inferred from black-box schedulers
and simulators by using probabilistic programming. In their case, various inference tech-
niques were used to find robust shunting schedules under delay uncertainty. They hy-
pothesized that the densest region in the posterior robustness distribution over schedules
corresponds to more robust schedules. This insight is crucial to this paper’s work: adapting
Gardos Reid’s probabilistic modeling approach to a new domain, the stochastic Resource
Constrained Project Scheduling Problem. The method demonstrates that robustness can
still be inferred without analyzing the schedule or modifying the simulation or scheduling
programs.

Another paper by van den Houten et al.| [I0] approaches the stochastic RCPSP domain
from a learning perspective. They propose a Decision-Focused Learning (DFL) approach
that learns to predict schedule-relevant parameters (task durations) using historical data,
and repairs schedules to reduce post-hoc regret. In contrast to our method, their approach
requires a training set of historical task durations. Our approach does not require training
data or a differentiable pipeline. It can be applied directly to any black-box scheduler and
simulator, making it usable for settings where domain data is scarce or unavailable.

Further robust scheduling techniques for stochastic RCPSP are explored by [Fu et al.|[2],
who minimize expected makespan by analyzing instance-specific properties. Their method
and others like it depend on interpreting the internal structure of the schedule and model.
In contrast, this paper proposes a method in which no knowledge of the schedule’s internal
representation is required. Schedules are sampled, evaluated via simulation, and selected
based on empirical robustness.

Finally, [Yeganeh and Zegordil [14] presents a scenario-based heuristic using a relaxation
of constraints to find robust schedules under duration uncertainty. While their method
incorporates scenario data, it requires direct modification of the schedule search process.
Again, this contrasts with this paper’s black-box belief. The proposed method uses inference
to operate over the output of an existing scheduler and simulator, without modifying their
internals.

In summary, the novelty of this paper is that it uses a probabilistic inference technique to
infer robustness directly from observed outcomes, requiring neither training data nor access
to the generated schedules, scheduler, and simulator logic. By evaluating sampled schedules
under simulation and weighting them by performance, we construct a posterior over sched-
ules from which robust ones can be selected. This general method is potentially applicable
across scheduling domains, wherever uncertainty exists, if a scheduler and simulator are
available.

2.3 Motivating Example

Consider a scenario with:

e One resource with two machines.

Three independent tasks: t1, t2, and t3, with no precedence constraints.

A deadline of time 8 for t3.

e An assumed distribution for each task’s duration. Here assumed to be normally dis-
tributed around each task’s expected durations, with a standard deviation o = 0.8.
This is further motivated in Section A1l

In Table[l] one can find the expected durations and resource requirements of the tasks.

Task | Expected Duration | Resource Demand
t1 2 1 machine
to 4 1 machine
t3 4 2 machines

Table 1: Expected durations and resource demands.

Using this instance together with the given expected task durations, the scheduler pro-
duces what this paper calls the ‘base schedule‘. In the base schedule (Figure 7 t1 and to
start at time 0, each on one machine. t3 starts at time 4, when both machines are free.

M2 \ i \ ts \

| f f f Time

=
—
N
w
['°N
w4
o
-
o0
©

Figure 1: Base schedule. 3 starts at time 4.

However, when introducing the uncertainty in the task durations, this schedule is vul-
nerable: delays in durations of ¢y, ts, or t3, can postpone the finish time of t3, risking a
missed deadline.

An alternative schedule improves robustness by prioritizing t3 (Figure . tg starts first,
ensuring its deadline of 8 is always met (except if ¢3’s duration is longer than 8 units itself,
which, assuming the current uncertainty, is highly unlikely). This robust schedule improves
deadline reliability: t3 is no longer affected by other delays, only itself, and finishes earlier.
The goal of this paper’s proposed method is that this robust schedule can be found.

M2 | ts | ta |

M1 ‘ i ‘ "

t t t t t t t t t t Time

Figure 2: Robust schedule. t3 starts first.

3 Methodology

With the background in place, the method of this paper can be discussed. The first section
will give a high-level overview of the process, and the subsequent sections will explain the
individual steps in detail.

3.1 Delay and Robustness Definition

The first step in inferring robust schedules is to define robustness. This paper defines
robustness as the empirical success rate of a given schedule under simulated uncertainty in
task durations. Let

1. 7 be an arbitrary schedule.
2. T be the list of all tasks.

3. d= (di,da, ... 7dm) be a randomly sampled vector of durations for each task.

4. S be a simulator that, given a schedule 7w and durations CZ: returns a finish time f; for
each task t € T.

Then the delay vector of a schedule m under duration vector d is defined as:
defay(m@ = (ft - 5t)t67’7

where f; is the finish time of task ¢ obtained by simulating 7 with a duration vector J; and
0¢ 1s the deadline of task t.

We say that a schedule 7 is successful in simulation ¢ if all components of the delay
vector are less than or equal to zero:

success; (m,d) =

= |1 ifdelay,(m,d) <0 forallteT,
0 otherwise.

Let N be a number of simulations. The robustness of a schedule 7 is defined as the
fraction of successful simulations:

N
1
robustness(7) = i Z success(m).
i=1

It is important to note that the delays in the delay vector can be negative. This is useful
for plotting a delay distribution for a given schedule, to analyze its performance under
uncertainty.

3.2 Method Overview

The methodology consists of constructing a probabilistic framework that models uncertainty
in task durations, calling a scheduler on sampled durations, and evaluating the created sched-
ules using a simulator. By writing this pipeline in a probabilistic programming framework,
we apply importance sampling to infer which schedules are most robust under the given
uncertainty.

At a high level, each iteration of the inference algorithm, importance sampling in par-
ticular, performs the following steps:

1. Sample a vector of task durations from the uncertainty distributions.
Call the scheduler to compute a schedule for those sampled durations.
Simulate how this schedule performs across multiple uncertain scenarios.

Assign a weight to the schedule based on the average delay of its delay vectors.

oo N

Return a trace (consisting of a schedule and its corresponding weight).

Importance sampling is repeating this process many times. The resulting weighted
traces form an empirical distribution over schedules. This distribution is then cumula-
tively weighted for each unique schedule, giving a robustness distribution over all schedules.
Finally, the highest cumulatively weighted schedule is selected as the inferred robust sched-
ule.

Figure3|illustrates this pipeline, showing the interaction between the model, importance
sampling, and the post-processing step, where the most promising schedule is selected.

Inference Pipeline Overview

create schedule

Importance Sampling Model in Gen.jl
/2 2 2
: Y : (A

Start (G i call model | &
| Loopi =1...N | “| Ssample task durations
: (. J : | J
1 1
1 1
1 1 \ A
1 () 1 ()
' uu o o
! Compute weight E Call scheduler and
1 _ Y, 1
1 1
\ 7

=t
Simulate 20x
under uncertainty

schedules + weights

Post-processing

\
&
Compute
average delay

Lt
Aggregate schedules

G

e e e e — = - —

. schedule + delay

Figure 3: Inference pipeline layout. The program starts with importance sampling. This
repeatedly calls the model. The model samples durations, creates a schedule, simulates
the schedule, and then assigns a weight to it. After the importance sampling loop, post-
processing is done to select the potential robust schedule.

AW N e

© ®w N o

N o w oA W N e

@gen function rcpsp_model (expected_durations)

sampled_durations = []
for i in 1:n_tasks
sampled_durations[i] = @trace(distribution(expected_durations/|[
il), (:duration, 1i))
end
schedule = create_schedule(sampled_durations)
mean_delay = estimate_delay(schedule, n_sim=20)

@trace (normal (max (0, mean_delay), 0.1), :delay)
return schedule, mean_delay
end

Listing 1: Model for stochastic RCPSP

@gen function importance_sampling(num_iters)
observations = Gen.choicemap ()
observations [:delay] = 0
traces, log_norm_weights, _ = Gen.importance_sampling(
rcpsp_model, observations, num_iters)

return traces, log_norm_weights

end

Listing 2: Importance sampling loop.

3.3 Generative Model

To model uncertainty, we use the Gen.jl probabilistic programming framework [I]. The
generative model samples task durations from a prior distribution, calls the scheduler, and
estimates the schedule’s average delay via some simulations. That average delay is later
used to assign a weight to that generated schedule.

As seen in Listing [I] pseudocode for this model is shown. The estimate_ delay function
runs 20 simulations on the schedule and returns the average delay. The distribution function
can be an arbitrary uncertainty or distribution.

3.4 Inference via Importance Sampling

Importance sampling is used to infer robust schedules [8]. Each trace generated by the model
includes a schedule and a corresponding normalized log-likelihood. This log-likelihood is
determined by how close the schedule’s average delay is to zero. The observation ‘:delay
= 0 encourages the model to favor traces with a simulated average delay closest to zero.
Thus, schedules with a lower simulated average delay receive a higher corresponding weight.

3.5 Post-Processing and Schedule Selection

After importance sampling, we obtain a set of weighted traces, each containing a potential
schedule and its normalized log-weight.
To use these traces to find a robust schedule, we proceed as follows:

1. Extract all the distinct schedules from the traces.

2. For each unique schedule, sum the weights of all traces that contain that schedule.

3. Select the schedule with the resulting highest cumulative weight as the most robust
schedule.

This aggregation process approximates the posterior robustness distribution over sched-
ules. This informed distribution (due to importance sampling) assumes a "robustness" value
for each given unique schedule. We hypothesize that the densest region in this posterior cor-
responds to the most robust schedule.

Finally, we simulate the selected robust schedule and compare its robustness (success
rate) to that of the base schedule, which is computed using the expected durations. This
determines whether the inferred schedule is an improvement.

4 Results

Having introduced our methodology, we now present the experimental setup and the result-
ing data. First, we describe how the experiment is structured so it can be reproduced. We
then show results on the motivating example problem instance.

4.1 Experimental setup

The problem instance chosen is the one discussed in Section

The process is run on a i5-6400 Intel processor with 16 GB of memory. There are no time
limits for the runtime of the algorithm. The scheduler and simulator are used from jvan den
Houten et al.JI0], and an IBM CPLEX CP solver version 12.9 is used [5]. Python version
3.11.4 is used (https://www.python.org/), and Julia version 1.11.5 (https://julialang.org/).
It is important to note that the scheduler and simulator used work with discrete task duration
lengths. Thus, after sampling durations, they are rounded to the nearest integer.

We model task durations using a normal distribution centered around each task’s ex-
pected duration, with a standard deviation of 0.8. The reason for a normally distributed
uncertainty is that given enough samples of task durations from real-world execution, it
should follow a normal distribution [6]. Thus, the uncertainty of task durations can be
modeled using that distribution. The standard deviation of 0.8 was chosen arbitrarily, large
enough to see a wide range of potential unique schedules, but low enough to make sure
the expected task duration is most common. With this standard deviation, approximately
50% of the sampled task durations will lie within +0.54 of the expected duration. As task
durations are rounded to the nearest integer, this ensures that around half of the sampled
durations are equal to the expected task duration.

Each schedule is evaluated in the Gen.jl model using 20 simulations to estimate the
average delay. Importance sampling runs for 2000 iterations, which is sufficient to explore
the schedule space and see recurring schedules appear multiple times. This indicates enough
coverage of the high-density regions in the posterior schedule distribution. The number of
simulations is a tradeoff between speed and performance, as the total number of times the
scheduler is called grows by the number of iterations that importance sampling is doing,
multiplied by how often the schedule is simulated in the Gen.jl model. Finally, the base
schedule and the robust schedule are compared using 2000 simulations.

4.2 Example Instance

We apply our method to the example from Section where a more robust schedule is
known to exist. This serves as proof of concept of our method. To confirm our results, the
resulting schedule distribution of our experiment is plotted. This is done to verify that the
posterior schedule distribution is sufficiently explored. As seen below in Figure [} that is
the case, as we see some schedules occur over 150 times. We assume the robust schedule
is in the densest region of the robustness posterior distribution, or the highest cumulative
weighted schedule.

Histogram of Schedules (raw count)

Count
Ng

N N D X 9 6 MA > o
TP P L

Robustness Distribution over Schedules

Robustness
(cumulatively weighted)
o

O ~N g% %) ™ %) © A > O
© DR LR CAOR-L SR LR O AR -3

Schedule
Figure 4: Schedule posterior distributions over 2000 iterations of importance sampling. The

empirical distribution (raw schedule counts) is shown above. The robustness distribution
over schedules (cumulative weighted distribution) is shown below.

As shown in Figure[f] the selected highest cumulative weighted schedule was indeed the
robust schedule as discussed in Section [2.3] This robust schedule schedules 5 first.

M2 | s \ t |

M1 \ i \ t \

f t t t t t t t t f Time

0 1 2 3 4 5 6 7 8 9

Figure 5: Robust schedule selected from the robustness distribution over schedules. t3 starts
first.

The robust schedule can also be compared with the base schedule. The base schedule
is the schedule that is generated deterministically using the estimated task durations. The
following result is shown in Figure @ Just as theorized, the robust schedule has a 100%
success rate, while the base schedule fails under certain sampled task durations. This is also
seen in the delay distribution on the right-hand side. Here, the robust schedule’s delay is
always negative (and depends solely on the sampled task duration of ¢3). The reason that
the delay can only be an integer value is that the scheduler and simulator work with integer
task durations.

Delay Distribution per Schedule

Success Rate Comparison
® Mean
| | -
[«5]
= - 0.0
aet m
[
@ Q-25
[«]
]
=
h =5.0
Base Schedule Robust Schedule
Base Schedule Robust Schedule Schedule

(a) Comparing robustness of schedules (Success (b) Delay distribution violin plot, using the sum
rate for meeting t3’s deadline). of the delay vector per simulation, as defined in

EL

Figure 6: Comparison of base schedule to robust schedule under uncertainty, using 2000
simulations.

5 Discussion

Now that the results are shown, it is possible to analyze them. First, the general results are
discussed, after which the limitations of the method are looked at.

5.1 Analysis of Results

The main result is that the proposed method successfully inferred a more robust schedule
in the motivating example. First, looking at Figure[4] it is shown that the robustness distri-
bution over schedules is sufficiently explored. In the raw count histogram above, recurring
schedules are seen. The distribution over all schedules does not match the robustness distri-
bution, which is good, as this means certain schedules have received higher weights during
importance sampling. From this posterior robustness distribution, the densest schedule
was selected (or highest cumulatively weighted). Under stochastic task durations, the base
schedule failed in a significant fraction of simulations (58% success rate), while the robust
schedule found by the inference method achieved a 100% success rate in meeting the deadline
of task t3. A high-risk task seems to be prioritized in this method and scheduled earlier. The
reason for this can be explained due to importance sampling. Whenever sampled durations
cause the generated schedule to have a makespan larger than 8, task t3 will be scheduled
first. The scheduler prefers to create a schedule where the delay constraint is followed, thus

10

meaning t3 needs to start first. These schedules also receive a higher weight, as their simu-
lated delay is lowest. This can be verified by Figure[dl In the top graph, it is seen that the
most occurring schedule is not the same as the highest cumulative weighted schedule. The
reason is that only the schedules that schedule t3 first receive a high weight from importance
sampling. Thus, importance sampling explores the robust schedule distribution effectively,
such that a robust schedule is found.

5.2 Limitations

First, going over the validity of the proposed method [I3]. The external validity is difficult
to verify precisely, as the method has not been tested on larger or multiple instances. This
is further proposed as an area of further research in Section

The biggest theorized limitation of this method would be that under larger schedules,
the resulting posterior distribution would be extremely sparse. This could mean the same
schedule is never found twice, thus rendering our robustness distribution over schedules
unexplored. A solution, however, would be to group schedules together that are closely
related, allowing for a potential posterior distribution that is sufficiently explored. This
could be done by eliminating symmetry (schedules that are effectively equal, but differ only
by the assignment of tasks to identical machines). A drawback is that an algorithm needs
to be developed that compares the schedules with each other. This loses two major benefits
of this research. The first being that this method could be applied to existing software, as
a new algorithm needs to be developed. The second being that the generated schedules can
no longer be treated as a black-box, as they need to be looked at.

The second theorized major limitation is the performance of the method. The relatively
small example instance took two minutes to run. Depending on the time complexity of the
scheduler and simulator, the method proposed can become infeasible on real-world schedules
as the size grows. Larger schedules also mean importance sampling needs more iterations to
sufficiently explore the posterior distribution, potentially increasing the run time even more.

6 Responsible Research

6.1 Ethical Concerns

This research was done following the Netherlands Code of Conduct for Research Integrity
[7]. The following principles were adhered to: honesty, scrupulousness, transparency, inde-
pendence, and responsibility.

This research presents minimal ethical concerns. The proposed method aims to improve
schedule robustness using existing scheduling and simulation algorithms. In principle, a
malicious actor could exploit the method to identify and avoid robust schedules for sabotage
purposes. However, such an actor would already require the control to select or influence
schedules, in which case they could simply choose non-robust schedules anyway, without
relying on this method. Therefore, any ethical concerns or risks introduced by this research
are negligible.

6.2 Reproducibility

The reproducibility of this method is high. The probabilistic programming framework used,
Gen, is an open-source project[I]. The IBM CPLEX solver is not open source, but is free

11

for students and people working in academics[4]. All algorithmic parameters are described
in Subsection The instance used is a self-constructed example and described in detail
in Section [2.3] and thus can be recreated. The scheduling algorithm and simulator used are
from [10], which is also open-source. The code containing the proposed method is shared
and open source as well [11].

7 Conclusions and Future Work

This chapter summarizes the findings of this thesis by answering the research questions,
discussing the main conclusions, and proposing directions for future research.

7.1 Answering the Research Questions

1. How can task duration uncertainty in the stochastic RCPSP be effectively
modeled using a probabilistic programming framework? Task duration uncertainty
can be represented using prior probability distributions over task durations. This thesis
used normal distributions centered on the expected task durations. These distributions
were embedded into a probabilistic model written in Gen.jl. Importance sampling then
proceeds to use this model.

2. Can probabilistic inference using importance sampling generate a mean-
ingful distribution over schedules without modifying the underlying scheduler?
Yes. Importance sampling using the probabilistic model yielded a weighted collection of
schedules, where higher weights were assigned to schedules with lower average delays under
simulation. The method effectively built a robustness distribution over schedules, despite
using an unmodified and black-box deterministic scheduler and simulator.

3. How can the resulting distribution be used to select robust schedules,
and what metric captures schedule robustness? The highest weighted schedule from
the robust schedule distribution is selected. This corresponds to the densest region of this
distribution. Robustness of this schedule was compared to the base schedule, generated
from expected task durations. Robustness was measured as the empirical success rate:
the fraction of simulations in which all task deadlines were met. This robustness metric
effectively captured schedule quality under uncertainty and guided the selection of a robust
schedule, outperforming the base schedule in success rate.

7.2 Main conclusions

This thesis aimed to answer the following main research question:

How can we obtain robust schedules for the stochastic Resource-Constrained
Project Scheduling Problem (RCPSP) using probabilistic inference, without mod-
ifying the underlying scheduling algorithm?

This thesis demonstrates that robust schedules can be inferred for stochastic RCPSP
instances with black-box schedulers and simulators using probabilistic programming. The
key contributions are:

e A method that treats both the scheduler and simulator as black-box components.

e No knowledge or analysis of the created schedules is needed.

12

e A generative model and inference setup in Gen.jl that integrates scheduling, uncer-
tainty modeling, and evaluation.

e Validation of the method on a small example instance where the known robust schedule
was successfully recovered.

e The possibility to apply the method to any scheduling domain, provided the needed
scheduling and simulator programs exist, to find robust schedules.

e The possibility to define a custom robustness measure, given that the simulator can
be used to calculate the given robustness.

7.3 Future work

There are many trivial potential avenues for future research. First, robustness was defined
here as the success rate of a schedule completing all tasks before their deadlines, under
uncertain task durations. Depending on the user and use case, a robust schedule might hold
different properties. For example, these could entail a lowest expected makespan or a lowest
worst-case delay. This could be useful in high-risk projects that are expensive if they are
delayed. This can be researched further to see what robustness measures are possible to
optimize.

Second, uncertainty could be introduced not only in task durations but also in other
aspects of the RCPSP, like resource availability. For instance, the number of machines (or
employees) available might be uncertain. A robust schedule in such a context may aim to
minimize peak resource usage to remain feasible under more variable conditions.

Third, future work should be done on testing this method on larger and real-world
RCPSP instances. This paper successfully applied the method to a small example, but
larger or real-world schedules remain untested. The performance of the proposed method
can be explored on those larger problems to see if robust schedules can be found.

References

[1] Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mans-
inghka. Gen: A general-purpose probabilistic programming system with programmable
inference. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, pages 221-236, New York, NY,
USA, 2019. ACM. ISBN 978-1-4503-6712-7. doi: 10.1145/3314221.3314642. URL
http://doi.acm.org/10.1145/3314221.3314642,

[2] Fang Fu, Qi Liu, and Guodong Yu. Robustifying the resource-constrained project
scheduling against uncertain durations. Fxpert Systems with Applications, 238:122002,
2024. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2023.122002. URL https:
//www.sciencedirect.com/science/article/pii/S0957417423025046.

[3] Reuben Gardos Reid. Inferring Robust Plans with a Rail Network Simulator. Master’s
thesis, TU Delft, Delft, July 2023.

[4] IBM. Ibm academic initiative, 2025. URL https://www.ibm.com/academic/. Ac-
cessed: 2025-06-10.

13

http://doi.acm.org/10.1145/3314221.3314642
https://www.sciencedirect.com/science/article/pii/S0957417423025046
https://www.sciencedirect.com/science/article/pii/S0957417423025046
https://www.ibm.com/academic/

5]

[6]

17l

8]

19]

[10]

[11]

[12]

[13]

[14]

A

IBM ILOG CPLEX Optimization Studio Userds Manual. IBM Corporation, Incline
Village, NV, 2017. Used version 12.9.

Sang Gyu Kwak and Jong Hae Kim. Central limit theorem: the cornerstone of modern
statistics. Korean journal of anesthesiology, 70(2):144, 2017.

The Netherlands Organisation for Scientific Research (NWO). Nether-
lands code of conduct for research integrity. https://www.nwo.nl/en/
netherlands-code-conduct-research-integrity, 2018. Accessed: 2025-06-20.

Surya T. Tokdar and Robert E. Kass. Importance sampling: a review. WIREs Com-
putational Statistics, 2(1):54-60, 2010. doi: https://doi.org/10.1002/wics.56. URL
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wics.56.

Jan-Willem Van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An intro-
duction to probabilistic programming. arXiv preprint arXiv:1809.10756, 2018.

Kim van den Houten, David M. J. Tax, Esteban Freydell, and Mathijs de Weerdt. Learn-
ing from Scenarios for Repairable Stochastic Scheduling. In Bistra Dilkina, editor, In-
tegration of Constraint Programming, Artificial Intelligence, and Operations Research,
pages 234-242, Cham, 2024. Springer Nature Switzerland. ISBN 978-3-031-60599-4.
doi: 10.1007/978-3-031-60599-4 15.

Kasper van Duijne. Finding robust schedules in the stochastic resource constrained
project scheduling problem using probabilistic inference, June 2025. URL https://
doi.org/10.5281/zenodo.15716001.

Peter M. Verderame, Josephine A. Elia, Jie Li, and Christodoulos A. Floudas. Plan-
ning and scheduling under uncertainty: A review across multiple sectors. Industrial &
Engineering Chemistry Research, 49(9):3993-4017, 2010. doi: 10.1021/i€902009k. URL
https://doi.org/10.1021/1e902009k.

Claes Wohlin, Per Runeson, Martin Host, Magnus C Ohlsson, Bjorn Regnell, Anders
Wesslén, et al. Ezperimentation in software engineering, volume 236. Springer, 2012.

Farnaz Torabi Yeganeh and Seyed Hessameddin Zegordi. A multi-objective opti-
mization approach to project scheduling with resiliency criteria under uncertain ac-
tivity duration. Annals of Operations Research, 285(1):161-196, February 2020.
doi: 10.1007/s10479-019-03375-z. URL https://ideas.repec.org/a/spr/annopr/
v285y202011d10.1007_s10479-019-03375-z.html.

Tools

A.1 Spellcheck

During the writing of this paper, Overleaf’s built-in spell checker was used to correct any

mis

spelled words.
The tool Grammarly (https://app.grammarly.com/) was also used as a browser plugin.

This was also used as a spell checker.

14

https://www.nwo.nl/en/netherlands-code-conduct-research-integrity
https://www.nwo.nl/en/netherlands-code-conduct-research-integrity
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wics.56
https://doi.org/10.5281/zenodo.15716001
https://doi.org/10.5281/zenodo.15716001
https://doi.org/10.1021/ie902009k
https://ideas.repec.org/a/spr/annopr/v285y2020i1d10.1007_s10479-019-03375-z.html
https://ideas.repec.org/a/spr/annopr/v285y2020i1d10.1007_s10479-019-03375-z.html

A.2 Generative Al
The following prompts were used on ChaptGPT’s 40 model. (https://chatgpt.com/):

1. On June 10th 2025, the current version of the paper was attached with the following
prompt:

"Give me a list of spelling and grammar mistakes in the following paper."

After which, the list of mistakes was manually looked at for spelling/grammar. Mis-
takes were fixed where necessary.

2. On June 22nd 2025, the current version of the paper was attached with the following
prompt:

"Give me a list of spelling and grammar mistakes in the following paper."

After which, the list of mistakes was manually looked at for spelling/grammar. Mis-
takes were fixed where necessary.

15

	Introduction
	Background
	Scheduling problem instance
	Related Work
	Motivating Example

	Methodology
	Delay and Robustness Definition
	Method Overview
	Generative Model
	Inference via Importance Sampling
	Post-Processing and Schedule Selection

	Results
	Experimental setup
	Example Instance

	Discussion
	Analysis of Results
	Limitations

	Responsible Research
	Ethical Concerns
	Reproducibility

	Conclusions and Future Work
	Answering the Research Questions
	Main conclusions
	Future work

	Tools
	Spellcheck
	Generative AI

