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ORIGINAL RESEARCH • BREAST IMAGING

Dynamic contrast material–enhanced (DCE) MRI is 
used for the screening and diagnosis of breast cancer 

(1). Using radiomics, images from MRI examinations 
are condensed into a set of numerical features that de-
scribe the phenotype of the tumor. These features aim 
to characterize morphologic findings, enhancement, en-
hancement dynamics, and texture of tumors (2–5). More 
MRI features are published every year, but the biologic 
mechanisms that explain the clinical association of these 
features remain unexplored.

MRI features describe tumor characteristics that are the 
result of biologic processes in the tumor and hence can aid 
in investigating the mechanisms that drive tumor progres-
sion or therapy resistance. For example, tumor size, which 
can be measured with MRI, is the result of biologic pro-
cesses such as cell proliferation and cell death. Therefore, 

MRI features that show chance association with clinical 
outcome and do not validate in an independent data set are 
less likely to be associated with biologic processes. An MRI 
feature with a biologic interpretation is much more likely 
to validate successfully in an independent patient cohort 
and can be prioritized for validation.

Carcinogenesis occurs at the molecular level. It attains 
the hallmarks of cancer (6) by generating genetic and epi-
genetic aberrations. For genetic and epigenetic aberrations 
to be carcinogenic, they need to result in aberrant protein 
function. These are mediated through, or eventually pro-
duce, aberrant gene expression (RNA expression levels). 
Gene expression can be measured in tumor tissue obtained 
from biopsies or surgery specimens. It has been used for its 
diagnostic and prognostic value (7,8). Gene expression also 
reflects the biologic processes active in a tumor, which can 
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Background: Better understanding of the molecular biology associated with MRI phenotypes may aid in the diagnosis and treatment 
of breast cancer.

Purpose: To discover the associations between MRI phenotypes of breast cancer and their underlying molecular biology derived 
from gene expression data.

Materials and Methods: This is a secondary analysis of the Multimodality Analysis and Radiologic Guidance in Breast-Conserving 
Therapy, or MARGINS, study. MARGINS included patients eligible for breast-conserving therapy between November 2000 and 
December 2008 for preoperative breast MRI. Tumor RNA was collected for sequencing from surgical specimen. Twenty-one com-
puter-generated MRI features of tumors were condensed into seven MRI factors related to tumor size, shape, initial enhancement, 
late enhancement, smoothness of enhancement, sharpness, and sharpness variation. These factors were associated with gene expres-
sion levels from RNA sequencing by using gene set enrichment analysis. Statistical significance of these associations was evaluated 
by using a sample permutation test and the false discovery rate.

Results: Gene expression and MRI data were obtained for 295 patients (mean age, 56 years 6 10.3 [standard deviation]). Larger 
and more irregular tumors showed increased expression of cell cycle and DNA damage checkpoint genes (false discovery rate 
,0.25; normalized enrichment statistic [NES], 2.15). Enhancement and sharpness of the tumor margin were associated with ex-
pression of ribosomal proteins (false discovery rate ,0.25; NES, 1.95). Smoothness of enhancement, tumor size, and tumor shape 
were associated with expression of genes involved in the extracellular matrix (false discovery rate ,0.25; NES, 2.25).

Conclusion: Breast cancer MRI phenotypes were related to their underlying molecular biology revealed by using RNA sequencing. 
The association between enhancements and sharpness of the tumor margin with the ribosome suggests that these MRI features may 
be imaging biomarkers for drugs targeting the ribosome.
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be elucidated with a pathway analysis (9). This is a hypothesis-
generating approach (10).

We hypothesize that MRI phenotypes of breast cancer can 
be given a biologic explanation by integrating gene expression 
with DCE MRI. Therefore, by performing a pathway analysis 
on these data, we aim to discover the associations between MRI 
phenotypes of breast cancer and their underlying molecular bio-
logy derived from gene expression data.

Materials and Methods
We acquired matched breast DCE MRI and tumor gene ex-
pression data for 295 patients. DCE MRI and gene expres-
sion were jointly analyzed, and we used a pathway analysis to 
identify pathways that are associated with MRI features. These 
pathway associations allow the formulation of hypotheses re-
garding the biology underlying MRI features, which can help 
in their translation to clinical practice.

Cohort
After institutional review board approval and written informed 
consent, 598 patients with breast cancer were consecutively in-
cluded as part of the Multimodality Analysis and Radiologic 
Guidance in Breast-Conserving Therapy, or MARGINS, study 
between 2000 and 2008 at the Netherlands Cancer Institute 
(Amsterdam, the Netherlands). Patients in the MARGINS 
study were eligible for breast-conserving therapy based on con-
ventional imaging and clinical assessment and were recruited 
for additional preoperative breast MRI (11). Hence, MRI data 
were available for all these patients. Image-guided fine-needle 
aspiration or core biopsy was used to confirm the presence of 
breast cancer. Treatment plans were established by a multidisci-
plinary team of breast cancer specialists. Neoadjuvant systemic 
therapy was an exclusion criterion, because this is not com-
patible with analysis of treatment-naive tumor tissue. For 384 
patients (64%), breast DCE MRI could be matched to tumor 
material from surgical excision available for research purposes 
in the Netherlands Cancer Institute biobank. Tumor material 
was retrospectively acquired with institutional review board ap-

proval. Written consent was not required under Dutch regula-
tions (opt-out). For 303 patients (51%), the tumor material 
yielded enough high-quality RNA for sequencing. Among 
these patients, for 295 all MRI features could be computed.

We have reported on the MRI data of the MARGINS study 
before (Appendix E1 [online]), but these were not aimed at ra-
diogenomic analysis.

DCE MRI and MRI Features
The MRI protocol was described previously (12). Briefly, images 
were acquired by using a 1.5-T scanner (Magnetom; Siemens, Er-
langen, Germany) with a dedicated double-breast array coil (CP 
Breast Array, four channels; Siemens) (C.L., a dedicated breast 
radiologist with more than 15 years of experience). A coronal 
fast low-angle shot three-dimensional T1-weighted series were ac-
quired consisting of one image before contrast material injection 
and four images obtained after contrast material injection. Imag-
ing parameters were as follows: acquisition time, 90 sec; repetition 
time, 8.1 msec; echo time, 4.0 msec; flip angle, 20°; voxel size, 
1.35 3 1.35 3 1.35 mm3; field of view, 310 mm. Images from 
one examination were registered to each other by using deform-
able registration (13), after which the breast area was segmented 
automatically in three dimensions and the tumor was segmented 
in four dimensions (14).

A representative set of 21 MRI features that quantify lesion 
characteristics was computed by using previously published 
methods (3,15). These features are often used for computer-
aided diagnosis in breast cancer and include features for tumor 
morphology and enhancement dynamics. The features were cal-
culated with in-house software in C++ by using the equations 
listed in Table E1 (online).

Factor Analysis of MRI Features
Correlation between MRI features (16) partly reflects de-
pendencies between the features that have a purely technical 
origin. For example, the correlation between tumor size and 
almost every other feature can be explained by the statistical 
dependence between tumor size and the number of voxels 
these features are computed on. This is even true for features 
that seem to be invariant to tumor size because they are com-
puted and averaged over all voxels in a tumor. The number of 
voxels inside the tumor grows proportionally with the cube of 
the tumor diameter, while the number of voxels at the edge of 
the tumor grows proportionally with the square the of tumor 
diameter. Therefore, their proportion is correlated to tumor 
volume, which affects the calculation of tumor features. For 
example, if only the voxels at the edge of a tumor are affected 
by partial volume effects, the influence of these effects will 
depend on tumor size. Such statistical dependencies between 
MRI features do not reflect the biologic processes captured by 
the MRI features. Therefore, these dependencies pose a prob-
lem for integrating MRI features and data representative of the 
biologic processes in a tumor, such as gene expression data. 
For example, as tumor size is strongly associated with prolifera-
tion (shown below), the correlation between tumor size and 
almost every other feature leads to an association between pro-
liferation and almost all features. These trivial associations can 

Abbreviations
DCE = dynamic contrast enhanced, NES = normalized enrichment 
statistic

Summary
MRI-derived radiomics features were associated with protein expres-
sion related to the ribosome (targeted in anticancer drugs) and genes 
related to the extracellular matrix (involved in cancer progression).

Key Results
 n The MRI phenotypes low initial enhancement, increased smooth-

ness of enhancement, and low sharpness are associated with the 
expression of proteins that are part of the ribosome (normalized 
enrichment statistic [NES], 1.95), a target of anticancer drugs un-
der active investigation.

 n Increased smoothness of enhancement, smaller tumor size, and 
a more irregular tumor shape are associated with the expression 
of genes related to the extracellular matrix (NES, 2.25), which is 
involved in breast cancer progression and metastasis.
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a single MRI factor determine a ranking of all genes, with the 
most strongly associated genes at the top. Based on this rank-
ing, the pathway analysis scores the enrichment of every gene 
set. For example, if all genes of a given gene set are ranked at 
the top, then such a gene set will be scored as enriched, indi-
cating a strong association between the gene set, or biologic 
process it represents, and the factor.

In addition to statistical significance, the pathway analysis 
results in three scores for every MRI factor-gene set pair to quan-
tify the different aspects of the association between a factor and 
a gene set. First, the normalized enrichment statistic (NES) is 
the effect size of the gene set enrichment that is comparable be-
tween gene sets. The larger the NES, the stronger the association 
of a factor with a gene set. Second, the maximum enrichment 
statistic at measures the proportion of genes that are at least as 
strongly correlated with the MRI factor as the genes that contrib-
ute to the enrichment. It could be that a statistically significant  
enrichment is achieved, but of all the genes correlated with 
the factor, only a small fraction is in the gene set. In this case, 
the maximum enrichment statistic at is high, indicating there 
might be more biology associated with the factor than that de-
scribed by the gene set. Third, the leading edge is the propor-
tion of genes in a gene set that contribute to the enrichment. It 
could be that a statistically significant enrichment is achieved, 
but only a small fraction of the genes in a gene set contribute 
to that enrichment. In this case, the leading edge is low, indi-
cating that the name of the gene set may be not descriptive of 
the enrichment.

Software Availability
All code used to generate the results in this article is available 
(https://github.com/NKI-CCB/imagene-analysis). The flexgsea 
package for pathway analysis is also available (https://github.
com/NKI-CCB/flexgsea-r).

Statistical Analyses
In the pathway analysis, for the linear regression step, we used 
limma-voom (open source) (19) because standard linear regres-
sion is inappropriate for RNA-seq data (19). For the gene-set 
enrichment analysis (9), we used version 1.1 of the flexgsea 
R package (open source; https://zenodo.org/record/1182639#.
XblfePco9cU). We used two gene set collections from the Mo-
lecular Signatures Database, version 5.2 (9): one containing 
experimentally derived gene sets (c2.cgp; n = 3400) and one con-
taining gene sets from pathway databases curated by molecular 
biology experts (c2.cp; n = 1329). Combined, these two sets 
are comprehensive without including too many gene sets that 
are highly similar. The genes in the gene sets can be looked up 
on the Molecular Signatures Database website (https://software.
broadinstitute.org/gsea/msigdb/). Importantly, enrichment scores 
were tested for significance by using a sample permutation test 
(false discovery rate ,0.25).

All other statistical analyses were performed in Python with 
the scipy (version 0.19.0; open source; https://www.scipy.org/) and 
statsmodels (version 0.8.0; open source; https://www.statsmodels.
org/) packages. Correlations were measured by using Pearson cor-
relation and a P value cutoff of .05 was used. Significance of the 

obscure biologically relevant associations and need to be dealt 
with in a radiogenomic analysis.

To address this problem, we performed a factor analysis to 
remove correlation between MRI features (17) by using Py-
thon (version 3.6.0; Python Software Foundation, Wilming-
ton, Del; open source; https://www.python.org/). It consists of 
four steps. Similar features, such as length and volume, are 
measured on scales that are nonlinear transformations of each 
other, such as millimeters and cubic millimeters. Therefore, 
the first step transforms all features to comparable scales by 
taking the square root of features that measure variance to 
match the scale of features that measure the mean, by taking 
the cubic root of features that describe volume to match fea-
tures describing length, and by linearly normalizing all features 
to equal variance. The second step of the factor analysis is a 
principal component analysis of the rescaled features with the 
scikit-learn package (version 0.18; open source; https://scikit-
learn.org/). We chose principal component analysis because of 
its simplicity and stability compared with other factor analysis 
methods. In the third step, we chose the number factors based 
on not including factors adding very little (,1%) additional 
variation, as the rest is likely to contain mostly noise. The 
fourth step of the factor analysis rotates the factors by using 
the varimax, quartimin, quartimax, or equamax rotations with 
the factor_rotation package (open source; https://github.com/
mvds314/factor_rotation). These rotations increase the inter-
pretability of the factors by minimizing the number of features 
associated with a factor. Different rotations often give similar 
results, and we quantified their similarity by using the Pearson 
correlation of factors. All factor rotation methods result in al-
most equal factors (Pearson correlation .0.999; P , .001), so 
we chose to continue with the results of only one of them, the 
varimax rotation.

Gene Expression
Gene expression was measured by using RNA sequencing, as 
described previously (18). Briefly, RNA was extracted from 
fresh-frozen surgical excision specimen from the Netherlands 
Cancer Institute biobank. Samples with low tumor percent-
age (,30%) or low RNA quality (Bioanalyzer 2100; Agilent 
Technologies, Santa Clara, Calif ) (RNA integrity number 
,6) were excluded, leaving 304 patients with material for 
RNA sequencing. RNA was sequenced on the Hiseq 2500 
(Illumina, San Diego, Calif ) with single-end 65 base-pair 
reads. RNA sequencing reads were aligned with STAR 2.5.0a 
(open source; https://github.com/alexdobin/STAR) to the hu-
man genome (GENCODE 23; number of genes is 60 669) 
and read counts per gene were determined.

Pathway Analysis
We used pathway analyses of gene expression data to identify 
the biologic processes that are associated with an MRI factor. 
The pathway analysis starts by regressing the MRI factors on 
the expression of all genes. This regression determines, for a 
given MRI factor-gene pair, the strength of the association be-
tween a gene and a factor. This is quantified by the regression 
coefficient and the associated t statistic (19). The t statistics of 
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tumor size as it has substantial loadings for the MRI features 
volume (0.45), volume where initial enhancement is larger than 
100% (0.41), volume where late enhancement is smaller than 
0% (0.36), largest diameter (0.39), largest diameter where initial 
enhancement is larger than 100% (0.38), and largest diameter 
where late enhancement is smaller than 0% (0.39). Factor 2 is re-
lated to initial enhancement as it has substantial loadings for the 
MRI features uptake speed (20.63) and top initial enhancement 
(20.77). Factor 3 is related to smoothness as it has substantial 
loadings for the MRI features maximum mean and variation of 
smoothness (20.54, 20.47) and mean and variation of smooth-
ness at uptake (20.53, 20.46). Factor 4 is related to late en-
hancement, as it has substantial loadings for the MRI features 
top late enhancement (0.54), signal enhancement ratio (20.59), 
and washout (20.54). Factor 5 is related to variation of sharp-
ness, as it has substantial loadings for the MRI features variation 
of sharpness at uptake (20.69) and variation of sharpness maxi-
mum (20.71). Factor 6 is related to shape as it has substantial 
loadings for the MRI features circularity (20.79) and irregular-
ity (0.54). Finally, factor 7 is related to mean sharpness as it has 
substantial loadings for the MRI features mean of sharpness at 
uptake (20.68) and mean of sharpness maximum (20.71).

Pathway Analysis
Having established a compact representation of the MRI fea-
tures in terms of MRI factors, we can turn to the main purpose 
of this work, namely to establish associations between MRI 

difference between tumors or patients with and without gene 
expression was tested with the Wilcoxon rank-sum test.

Results
We obtained gene expression and MRI data for 295 patients, a 
subset of the whole cohort of 598 with DCE MRI data avail-
able (Fig 1). The clinical characteristics between patients with 
and those without gene expression were not significantly differ-
ent (Table 1). From the DCE MRI data we calculated a repre-
sentative set of 21 MRI features. The MRI features and factors 
between tumors with and those without gene expression show 
differences (Table 2; Table E2 [online]). The largest difference 
is in tumor size, as measured by volume, which is larger in 
tumors with gene expression.

Factor Analysis
The MRI features were designed to quantify a wide range of spa-
tial and temporal characteristics of the tumor. Hence, our data 
show a strong degree of correlation between many of the features 
(Fig 2a). Therefore, the MRI features were condensed into fac-
tors, which minimizes the correlation between them. We found 
that a minimum of seven factors are necessary to describe the 
data (Fig 2b). The size factor is a linear combination of diameter 
and cubic root–transformed volume features. The MRI factors 
are related to the MRI features by the loadings (Fig 2c; Tables 3, 
4). The loadings can be used to calculate the MRI factors from 
the MRI features by taking the dot product between the MRI 
features and the loadings. The loadings measure the association 
between MRI factors and MRI features. The factors summarize 
groups of correlated MRI features, which is clearly reflected by 
the fact that the loadings of correlated features are typically simi-
lar within the factor summarizing them. Factor 1 is related to 

Table 1: Clinical Characteristics

Parameter Full Cohort
With Gene  
Expression

No. of patients 598 295
Mean age (y)* 56 (26–84) 58 (31–84)
Mean tumor size (mm)* 21 (5–90) 22 (6–90)
Grade
 1 195 (33) 89 (30)
 2 250 (42) 135 (45)
 3 148 (25) 77 (26)
Lymph node status
 Negative 389 (66) 191 (64)
 1 103 (18) 49 (16)
 2 42 (7) 29 (10)
 3 18 (3) 8 (3)
 4+ 33 (6) 23 (8)
IHC subtype
 ER positive 433 (75) 238 (79)
 ER negative and HER2 positive 74 (13) 30 (10)
 Triple negative 69 (12) 33 (11)
Radiation therapy 512 (85) 266 (88)
Adjuvant chemotherapy 179 (30) 94 (31)
Hormonal therapy 222 (37) 128 (42)
HER2-positive targeted therapy 25 (4) 13 (4)

Note.—Unless otherwise specified, data are numbers, with per-
centages in parentheses. ER = estrogen receptor, HER2 = receptor 
tyrosine-protein kinase ERBB2, IHC = immunohistochemistry.
* Data in parentheses are ranges.

Figure 1: Flow diagram shows patient exclusion. DCE = dynamic con-
trast enhanced, RIN = RNA integrity number.
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and proliferative pathways cannot be explained by the estro-
gen receptor–positive and triple-negative subtypes. Although 
triple-negative tumors are highly proliferative and tend to be 
larger (Fig E1 [online]; P , .01; Kruskal-Wallis test) than are 
estrogen receptor–positive tumors, this does not explain the 
association, because we observe the same when analyzing only 
estrogen receptor–positive tumors (Figs E2, E3 [online]).

Tumors with lower initial enhancement (factor 2), low 
sharpness of the border (factor 3), or with smooth enhance-
ment (factor 7) show enrichment for a gene set of the ribosome 
(gene set VII; NES: 1.90, 1.59, and 1.86 for factor 2, 3, and 7, 
respectively) and a gene set of peptide chain elongation (gene 
set VIII; NES: 1.86, 1.57, and 1.86), which indicates a higher 
expression of protein coding genes of the ribosome (Fig 4; false 
discovery rate ,0.25). The gene sets shown in Figure 4 have 
some of the strongest associations with these factors, and are 
sensitive and specific to them, compared with other gene sets 
from expert-curated databases (Fig 4, A). A low sharpness of 
the border means that neighboring voxels at the tumor border 
have similar intensities (Fig 5). A high smoothness of enhance-
ment means the enhancement seen after administration of the 
contrast agent has a gradient that points on average away from 
the tumor center (Fig 6); it is also known as the radial gradient 
index (3).

Finally, smaller (factor 1), less smoothly enhancing (factor 
5), and more irregular and less circular (factor 6) tumors show 

phenotypes of breast cancer and their underlying molecular 
biology derived from gene expression data. To this end, we use 
pathway analysis of the genes whose gene expression values 
show association with MRI features.

Pathway analysis shows that tumor size, as represented by 
factor 1, is associated with a gene set of doxyrubicin treatment 
in a retinoblastoma transcriptional corepressor 1–positive cell 
line (gene set I in Fig 3; NES, 1.73), a gene set of basal-like 
breast cancer (gene set II; NES, 1.70), a gene set of lumi-
nal A breast cancer (gene set III; NES, 1.65), two gene sets 
of cell cycle (gene sets IV and V; NES, 2.05 and 1.95), and 
a gene set of DNA damage repair genes (gene set VI; NES, 
1.93) (Fig 3; false discovery rate ,0.25). Based on the con-
ditions under which these gene sets show regulation, we can 
conclude that they collectively represent regulation of the cell 
cycle and DNA damage pathways. The gene sets shown in 
Figure 3 have some of the strongest associations with tumor 
size (high NES), and are sensitive (high maximum enrich-
ment score at) and specific (high leading edge) to tumor size 
(Fig 3, A) compared with other experimentally derived gene 
sets. The two pathways share many genes, such as those re-
lated to cell cycle checkpoints. This link between tumor size 
and proliferation is also seen at histopathologic analysis, as tu-
mor size is positively correlated with tumor grade (P , .001;  
Kruskal-Wallis test), which is strongly associated with prolif-
eration (20). Importantly, the association between tumor size 

Table 2: Mean, Standard Deviation, 25% Quantiles, and 75% Quantiles of MRI Features for the Group of Patients with MRI  
Features Available and for the Group of Patients with Gene Expression Data Available

Full Cohort with MRI Feature (n = 566) With Gene Expression (n = 295)

MRI Feature Mean
Standard 
Deviation

25%  
Quantile

75%  
Quantile Mean

Standard 
Deviation

25%  
Quantile

75%  
Quantile

Volume (mm3) 1951 2209 642 2518 2158 2208 801 2845
Diameter (mm) 20.49 7.81 14.83 25.20 21.00 7.03 15.83 25.34
Volume initial enhancement greater than  
 100 (mm3)

1234 1648 304 1475 1432 1816 418 1744

Diameter initial enhancement greater than  
 100 (mm)

19.21 7.89 13.62 23.68 19.82 7.07 14.61 23.91

Volume late enhancement less than 0 (mm3) 784 1150 164 928 941 1294 218 1165
Diameter late enhancement less than 0 (mm) 18.56 7.81 13.07 23.07 19.12 7.12 14.04 23.52
Smoothness uptake (mean) 0.57 0.03 0.54 0.59 0.57 0.03 0.55 0.59
Smoothness uptake (variation) 3.40 1.40 2.32 4.41 3.48 1.32 2.49 4.45
Smoothness maximum (mean) 0.57 0.03 0.54 0.59 0.57 0.03 0.55 0.60
Smoothness maximum (variation) 3.42 1.42 2.33 4.44 3.62 1.36 2.61 4.57
Sharpness uptake (mean) 4.91 0.80 4.43 5.46 4.93 0.78 4.52 5.44
Sharpness uptake (variation) 6.54 2.70 4.66 7.92 6.46 2.55 4.66 7.65
Sharpness maximum (mean) 4.90 0.80 4.41 5.46 5.00 0.71 4.56 5.45
Sharpness maximum (variation) 6.58 2.64 4.80 7.81 6.55 2.48 4.83 7.66
Uptake speed 1.69 0.56 1.32 2.05 1.72 0.53 1.35 2.05
Top initial enhancement 2.38 0.77 1.85 2.81 2.37 0.72 1.84 2.82
Top late enhancement 20.25 0.10 20.32 20.18 20.25 0.10 20.32 20.18
Signal enhancement ratio 1.37 0.39 1.11 1.57 1.37 0.37 1.12 1.58
Washout 0.13 0.11 0.05 0.20 0.13 0.11 0.06 0.20
Circularity 0.76 0.10 0.71 0.83 0.78 0.08 0.72 0.84
Irregularity 0.44 0.08 0.38 0.48 0.43 0.07 0.38 0.49
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Discussion
We used a set of previously defined dynamic contrast ma-
terial–enhanced (DCE) MRI radiomics features and gene 
expression profiling of our patient cohort. We derived a set 
of factors as a compact representation of the DCE MRI fea-
tures. These factors show strong association with specific gene 
expression patterns, and we identified the biologic processes 
underlying these gene expression patterns. These associations 
establish links between the molecular biology of three key 

enrichment for two gene sets of collagens (gene set IX; NES: 
1.47, 1.97, and 2.24 for factor 1, 5, and 6, respectively and 
gene set X; NES: 1.56, 2.00, and 2.12) and a gene set of pro-
teoglycan (gene set XI; NES: 1.57, 1.91, and 1.80), which in-
dicates higher expression of genes involved in the extracellular 
matrix (Fig 7; false discovery rate ,0.25). The gene sets shown 
in Figure 6 have some of the strongest associations with these 
factors, and are sensitive and specific to them, compared with 
other gene sets from expert-curated databases (Fig 7, A).

Figure 2: Images show MRI features are correlated and can be summarized in small number of factors. (a) Heat map of Pearson correlation between MRI features. 
Groups of similar features are annotated with their common property. Groups of strongly anticorrelated and correlated features are visible as blue and red blocks. (b) Total 
explained variation (proportion of MRI feature data that MRI factors capture), explained variation of single factor and difference in explained variation with preceding fac-
tor, all shown as function of number of selected factors. After inclusion of seven factors, almost no additional variance is explained (,1%), indicating that number of factors 
can be limited to seven without losing important information. (c) Heat map of loadings of MRI factors shows relationships between MRI features and MRI factors. Bright blue 
and red values in heat map represent large negative and positive contributions (loadings) of MRI features to MRI factors. Groups of features with similar loadings, indicating 
they are summarized by the same factor, correspond to correlated groups of features depicted in a.
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Table 3: Loadings of MRI Features in MRI Factors

Factor

MRI Feature 1 2 3 4 5 6 7
Circularity 0.068 20.015 20.003 0.022 20.008 20.792 0.069
Irregularity 0.190 20.056 20.032 0.023 20.021 0.535 0.107
Volume 0.450 0.030 20.026 0.053 20.014 20.087 0.043
Diameter 0.391 0.012 0.034 0.055 20.008 0.086 0.036
Uptake speed 0.026 20.626 0.002 20.006 0.033 20.062 20.094
Washout 0.016 20.039 0.009 20.536 20.001 20.048 0.009
Signal enhancement ratio 20.033 0.063 20.016 20.588 0.050 0.069 20.013
Top initial enhancement 20.019 20.765 20.002 20.000 20.020 0.036 0.061
Top late enhancement 0.004 0.056 20.019 0.542 0.054 20.012 20.016
Volume initial enhancement greater than 100% 0.412 20.069 20.031 0.044 0.009 20.145 20.081
Diameter initial enhancement greater than 100% 0.385 20.004 0.037 0.0601 0.035 0.077 20.057
Volume late enhancement less than 0% 0.360 0.061 20.022 20.235 20.004 20.129 20.035
Diameter late enhancement less than 0% 0.385 0.0120 0.012 20.058 20.013 0.083 0.041
Sharpness maximum (mean) 20.001 0.009 0.007 0.017 20.001 0.028 20.705
Sharpness maximum (variation) 20.001 20.006 20.000 20.000 20.713 0.004 0.016
Sharpness uptake (mean) 0.006 0.004 20.009 20.016 20.008 0.024 20.676
Sharpness uptake (variation) 0.001 0.005 0.002 0.004 20.693 20.007 20.026
Smoothness maximum (variation) 20.047 0.019 20.468 0.006 20.027 20.037 20.006
Smoothness maximum mean) 0.015 20.005 20.538 0.034 20.0002 0.049 0.004
Smoothness uptake (variation) 20.034 0.006 20.456 20.032 20.005 20.061 0.002
Smoothness uptake (mean) 0.045 20.016 20.527 20.013 0.026 0.035 20.002

Note.—See Figure 2c.

Table 4: Loadings of MRI Features in MRI Factors Calculated on Estrogen Receptor–Positive Tumors

Factor

MRI Feature 1 2 3 4 5 6 7
Circularity 0.007 20.055 0.017 20.017 0.010 0.804 0.044
Irregularity 20.007 20.193 0.007 20.021 0.018 20.493 0.074
Volume 20.011 20.458 0.044 20.055 0.007 0.116 0.032
Diameter 0.031 20.391 0.028 20.057 0.014 20.089 0.036
Uptake speed 20.008 20.032 20.624 0.008 20.028 0.046 20.077
Washout 0.013 20.013 20.076 0.528 20.006 0.062 0.048
Signal enhancement ratio 20.009 0.032 0.105 0.579 20.047 20.061 20.043
Top initial enhancement 0.004 0.021 20.761 20.007 0.016 20.044 0.053
Top late enhancement 20.013 20.019 0.051 20.543 20.055 0.037 20.005
Volume initial enhancement greater than 100% 20.018 20.412 20.079 20.041 20.018 0.172 20.160
Diameter initial enhancement greater than 100% 0.036 20.383 20.002 20.064 20.039 20.079 20.060
Volume late enhancement less than 0% 20.027 20.349 0.038 0.269 0.001 0.119 20.024
Diameter late enhancement less than 0% 20.025 20.387 20.011 0.055 0.031 20.126 0.082
Sharpness maximum (mean) 0.002 0.002 0.017 20.015 20.001 20.019 20.715
Sharpness maximum (variation) 20.002 20.002 20.002 20.000 0.716 20.000 0.016
Sharpness uptake (mean) 20.009 20.005 20.006 0.021 0.011 20.022 20.665
Sharpness uptake (variation) 0.003 0.002 0.001 20.003 0.691 0.009 20.027
Smoothness maximum (variation) 20.464 0.051 0.026 20.012 0.018 0.033 20.026
Smoothness maximum (mean) 20.545 20.016 0.012 20.036 0.003 20.057 20.005
Smoothness uptake (variation) 20.448 0.038 20.014 0.031 20.001 0.068 0.013
Smoothness uptake (mean) 20.532 20.047 20.022 0.017 20.017 20.029 0.018

Note.—See Figure E3, C (online).
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The strongest effect we observe is the well-known associa-
tion between proliferation and tumor size. This finding links 
two known associations. First, highly proliferative tumors 
are generally associated with poor outcome (21). Second, 

biologic processes in cancer (proliferation, protein synthesis, 
and the extracellular matrix) and four characteristics captured 
by the MRI factors (tumor size, smoothness, mean sharpness, 
and tumor shape).

Figure 4: Images of gene set enrichment analysis of MRI factors show that factor 2 (initial enhancement), factor 3 (smoothness), and factor 
7 (mean sharpness) are associated with ribosome. A, Waterfall plots show statistics for factor 3, used to select gene sets for display in heat 
map and table, for all gene sets in MsigDB c2.cp, with selected gene sets in green. Waterfall plots show three types of association statistics 
on y-axis calculated for all gene sets, which are ordered in increasing level of association along x-axis: normalized enrichment statistic (NES), 
maximum enrichment statistic at (Max. ES at), and leading edge. B, Heat map with false discovery rate (FDR) of positive (red) and negative 
(blue) associations between MRI factors and gene sets. Insignificant associations are shown in gray. C, Experiments that are source of gene sets.

Figure 3: Images of gene set enrichment analysis of MRI factors show that tumor size (MRI factor 1) is associated with proliferation. A, Waterfall 
plots show statistics for MRI factor 1 (tumor size) used to select gene sets for display in heat map and table, for all gene sets in MsigDB c2.cgp, with 
selected gene sets in green. Waterfall plots show three types of association statistics on y-axis calculated for all gene sets, which are ordered in in-
creasing level of association along x-axis: normalized enrichment statistic (NES), maximum enrichment statistic at (Max. ES at), and leading edge. Fill 
of maximum enrichment statistic waterfall plot is zero at middle, such that enrichment at top is shown downward and enrichment at bottom upwards. B, 
Heat map with false discovery rate (FDR) of positive (red) and negative (blue) associations between MRI factors and gene sets. Insignificant associa-
tions are shown in gray. C, Descriptions of publication, experimental system, and conditions associated with given gene set.
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pathway (24). The mTOR pathway can be targeted by drugs 
that have been approved or are under clinical development and 
is frequently deregulated in breast cancer through mutations in 
PIK3CA, PIK3R1, PTEN, and AKT (25).

Finally, we found that smoothness of enhancement and tumor 
shape are associated with expression of genes involved in the extra-
cellular matrix and collagen production. Collagens are produced 
by fibroblasts, which are contributors to cancer progression (26).

larger tumors have a worse prognosis than do smaller tu-
mors (22).

We found that initial enhancement, smoothness of enhance-
ment, and sharpness of the tumor boundary were found to be 
associated with expression of ribosomal proteins. Ribosomal 
proteins are required for ribogenesis, a target for anticancer drugs 
(23). Furthermore, through activation of ribosomal protein 
S6 kinase (RPS6KB1), ribogenesis is regulated by the mTOR 

Figure 5: Axial images show examples of variation in MRI factor 3 (smoothness). (a) MRI before contrast material injection in a 57-year-old patient with node-nega-
tive, estrogen receptor (ER)–positive, human epidermal growth factor receptor 2 (HER2)–negative, grade 2 invasive ductal carcinoma of 1.8 cm. Tumor has low MRI factor 
3 (22.35), hence high smoothness. (b) Subtraction between first MRI after and MRI before contrast material injection in the same patient. (c) MRI before contrast material 
injection in 64-year-old patient with node-negative, ER-positive, HER2-negative, grade 2 invasive ductal carcinoma of 1.7 cm. Tumor has high MRI factor 3 (2.29), hence 
low smoothness. (d) Subtraction between first MRI after and MRI before contrast material injection in the same patient.

Figure 6: Axial images show examples of variation in MRI factor 7 (sharpness). (a) MRI before contrast material injection in a 71-year-old patient with estrogen receptor 
(ER)–positive, human epidermal growth factor receptor 2 (HER2)–negative, grade 2 invasive ductal carcinoma of 2.4 cm. Four lymph nodes tested positive for malignancy. 
Cancer had high MRI factor 7 (2.17), hence low margin sharpness. (b) Subtraction between first MRI after and MRI before contrast material injection in the same patient. (c) 
MRI before contrast material injection in a 63-year-old patient with node-negative, ER-positive, HER2-negative, grade 1 invasive ductal carcinoma of 1.3 cm. This patient had 
low MRI factor 7 (23.00), hence high margin sharpness. (d) Subtraction between first MRI after and MRI before contrast material injection in the same patient.
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Figure 7: Images of gene set enrichment analysis of MRI factors show that factor 3 (smoothness) and factor 6 (shape) are associated 
with extracellular matrix. A, Waterfall plots show statistics for factor 6, used to select gene sets for display in heat map and table, for all gene 
sets in MsigDB c2.cp, with selected gene sets in green. Waterfall plots show three types of association statistics on y-axis calculated for all 
gene sets, which are ordered in increasing level of association along x-axis: normalized enrichment statistic (NES), maximum enrichment 
statistic at (Max. ES at), and leading edge. B, Heat map with false discovery rate (FDR) of positive (red) and negative (blue) associations be-
tween MRI factors and gene sets. Insignificant associations are shown in gray. C, Experiments that are the source of gene sets.

By linking DCE MRI features to biologic processes, we re-
veal their biologic underpinnings and clinical relevance. More 
specifically, the link between initial enhancement, smoothness 
of enhancement, and sharpness of the tumor boundary and the 
mTOR pathway suggests that these DCE MRI–derived factors 
can provide a noninvasive imaging biomarker that identifies tu-
mors susceptible to drugs that target ribosome biogenesis and 
the mTOR pathway.

Others have established a relationship between tumor size 
and prognostic gene expression signatures (27), as well as prog-
nostic gene expression signatures and proliferation (28). The 
association between tumor size and proliferation we have un-
covered agrees with these findings. Previously, highly enhanc-
ing parts of a mouse tumor have been reported to express RNA 
coding for ribosomal proteins at high levels (29). We confirm 
these findings by establishing a link between initial enhance-
ment, low margin sharpness, and smoothness of enhancement 
with expression of ribosomal proteins. In contrast to studies 
that linked DCE MRI features with gene expression signatures 
(27,30,31), we considered the complete transcriptome and not 
only a subset of genes contained in the signatures. In contrast 
to other studies (32,33), we perform the pathway analyses with 
gene set enrichment analysis and subject permutation. This 
approach does not feature the erroneous assumption of inde-
pendence between genes, but rather assumes independence be-
tween patients.

Our study also had some limitations. The choice of gene 
expression data over other molecular data types limited the de-
gree to which the biology of tumors is captured. DNA muta-
tion and copy number data would allow identification of causal 
drivers of DCE MRI phenotypes. Protein and phosphoprotein 
expression data would allow assessing signaling pathway acti-
vation. Also, gene expression was measured in a single piece of 

tumor, so it does not reflect the intratumor heterogeneity that 
DCE MRI can capture. For only half the patients, we could ac-
quire gene expression data, and this was biased toward patients 
with larger tumors, potentially limiting the applicability of the 
results for patients with very small tumors. A limited number 
of MRI features were chosen, and these were developed to sup-
port radiologists in making a diagnosis and do not capture all 
the information available in a DCE MRI.

Because the gene expression profile does not capture the 
full tumor heterogeneity, it would be of interest to relate 
spatially resolved molecular measurements such as topo-
graphic single cell sequencing (34) of tumors to the DCE 
MRI scans. In addition, more information could be ex-
tracted from the images by directly predicting the expres-
sion of cancer pathways from the images (using, for exam-
ple, deep learning). We expect that such an approach could 
reveal many additional relevant associations. Based on our 
results, we speculated that deregulation of the mTOR path-
way may lead to an increased smoothness of enhancement 
at DCE MRI. Because the activation of this pathway can-
not be determined from gene expression data, we propose 
to validate this finding on a data set with matched breast 
DCE MRI and tumor DNA sequencing or tumor phospho-
proteomics data.

From these three findings, we can conclude that the in-
tegration of gene expression with dynamic contrast mate-
rial–enhanced (DCE) MRI has been able to generate testable  
hypothesis regarding possible mechanisms by which MRI 
features attain their clinical benefit. Therefore, the gene ex-
pression data have added substantially to the biologic under-
standing of DCE MRI phenotypes. Hence, searching for sim-
ilar relationships in other cancer types, or with other imaging 
modalities, would be interesting.
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