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ABSTRACT

We discuss how threshold detectors can be used for a direct measurement of the full counting statistics (FCS)
of current fluctuations and how to implement Josephson junctions in this respect. We propose a scheme to
characterize the full counting statistics from the current dependence of the escape rate measured. We illustrate
the scheme with explicit results for tunnel, diffusive and quasi-ballistic mesoscopic conductors.

Keywords: Full counting statistics, quantum noise, Josephson junction

1. INTRODUCTION

Quantum noise in electron transport is an actively developing field. Noise measurements provide exclusive
information about microscopic mechanisms of the transport that can hardly be obtained by other means.1, 2

Still, the experiments in the field neither match the intensive theoretical development nor gather all information
about electric fluctuation. Indeed, the concept of full counting statistics pioneered in3 allows one to predict the
non-Gaussian distribution function of the current measured during a time interval τ , Pτ (I). This distribution is
characterized by an infinite set of cumulants � In �. A traditional noise measurement only assesses the second
cumulant of this set discarding the rest. Recent pioneering work reports a successful measurement of the third
cumulant,4 but there is a long way to go if one measured the cumulants one by one. It would be advantageous
to measure the distribution function directly and thus to get all cumulants at once, thereby collecting the wealth
of information being currently discarded.

Why is such a measurement difficult? The probabilities to measure correspond to big deviations of the current
from its average value, |I − 〈I〉| � 〈I〉, and are therefore exponentially small. For instance, in the shot noise
regime Pτ (I) � exp (−〈I〉G(I/〈I〉)τ/e), G(I/〈I〉) � 1 being the function to characterize. One has to concentrate
on very rare measurement outcomes that occur with probability exp(−〈I〉τ/e) ≈ 0. Such measurements can
only be carried out with threshold detectors that discriminate these rare events. Let us discuss an ideal threshold
detector that measures the current during the time interval τ , and gives a signal if the current measured exceeds
the threshold current Ith. The signal probability will then be proportional to Pτ (Ith). To give a realistic
illustration, a detector that measures a tunnel junction with 〈I〉 = 10 pA in the time interval τ = 10−6s would
go off once an hour if Ith = 2〈I〉 and once in 10−4s if Ith = 1.5〈I〉. Therefore, if one measures the rate of the
detector signals as a function of Ith, one directly assesses the full counting statistics.

Albeit realistic detectors are not ideal. There are three important factors that can either hinder the inter-
pretation of such a measurement or even prevent the measurement: (i) a realistic detector hardly measures the
current averaged over a certain time interval τ . It is dispersive, being usually more sensitive to longer and smaller
current fluctuations rather than to bigger and shorter ones. (ii) The detector may produce a significant feedback
on the system measured when it starts to signal, thereby disrupting its noise properties. (iii) The detector could
just go off by itself, for instance, due to quantum tunneling.

A Josephson junction seems to be a natural threshold detector for current fluctuations. It can be viewed as a
particle in a washboard potential,5 the superconducting phase difference φ across the junction corresponding to
the particle’s coordinate. The junction is in zero-voltage state provided the current does not exceed the critical
value corresponding to the critical tilt of the washboard potential. φ is trapped in one of the minima of the
potential, which is separated by a barrier from the neighboring one. A current fluctuation that exceeds the
critical threshold sets φ into motion and the junction gives a signal—a voltage pulse that lasts till φ is retrapped
in a different minimum.

In this paper we address the feasibility of Josephson junction systems for measuring the FCS of a mesoscopic
conductor. Our results are as follows. The Josephson junction is a realistic detector, all three factors mentioned
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Figure 1. A voltage biased mesoscopic conductor with conductance G provides the noise source for a threshold detector
which is characterized by its threshold current Ith. Ib is an additional current bias.

are in play. Albeit one can measure FCS provided the width of the barrier φ0 � 1. This can be realized by
connecting several Josephson junctions in series. Under these conditions, the third factor is of no importance
and the first and second factor do not hinder the unambiguous correspondence between FCS and the escape rate
of the junction as a function of Ith. These theoretical results open the way to direct experimental observation of
FCS.

The circuit under consideration consists of a normal coherent conductor with conductance G in series with
the Josephson junction(system) (Fig. 1). The system is biased with voltage source V � kBT/e. This assures
that the normal conductor is in the shot noise regime. In addition, we inject extra current Ib that controls the
slope of the Josephson washboard potential.

If fluctuations are neglected, this system can be described with the celebrated model of resistively shunted
junction.5 The normal conductor is a source of non-gaussian current fluctuations that instantly tilt the wash-
board potential and can lead to an escape of φ from the minimum. The escape gives rise to an observable
voltage pulse. The escape rate in the same or similar systems has been studied for a variety of noise sources
and potentials.6–9 To our knowlegde, the non-Gaussian noise sources that are characterized by FCS were not
adressed yet.

To proceed, we begin with the fully quantum mechanical description of the system in terms of a Keldysh
action for a single variable φ,9, 10 that incorporates information about FCS of the normal conductor and the
properties of the Josephson junction. We calculate the escape rate by considering saddle-point trajectories of the
action, A, that connect the potential minimum with the nearest potential maximum. With exponential accuracy,
the rate is given by Γ � exp(−ImA/h̄).

The action consists of two terms, A = AJ + AN, corresponding to the elements of the circuit. We denote by
φ± the phases on the forward/backward parts of the Keldysh contour and also use symmetrized combinations
of these φ, χ = (φ+ ± φ−)/2. The junction part reads in a standard way10:

AJ =
∫

dt

(
U(φ+(t)) − h̄2C

8e2
φ̇+2(t)

)
− {φ+ ↔ φ−}, (1)

C being the self-capacitance of the junction, U(φ) being the Josephson energy with the current bias term
included: −U(φ) = (h̄/2e)(Ic cos φ+ Ibφ) for a single junction. Further we concentrate on overdamped junctions
where C � G2h̄/(2eIc) and neglect the capacitance term. The normal conductor part we write following11 in
quasi-stationary approximation

AN =
ih̄

2e
G

∫
dt(V − h̄

2e
φ̇(t))S(χ(t)); (2)
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where S characterizes the FCS and the preceding factor is just the voltage drop over the normal conductor. A
coherent conductor can be presented by a set of transmission eigenvalues Tn and S is given by Levitov’s formula3

S(χ) =
GQ

G

∑
n

ln
(
1 + Tn(eiχ − 1)

)
, (3)

GQ being the conductance quantum. Concrete forms of S(χ) for specific conductors will be given below. At
χ → 0, S can be expanded in χ, S ≈ iχ−χ2F/2, F being the Fano factor that describes the suppression of shot
noise in comparison with the Poisson value.1

This quasi-stationary approximation is only valid if the typical time τ of the motion along the saddle-point
trajectory is long in comparison with h̄/eV , that is, eV τ � h̄. To check the validity of this, we precede the
results with simple qualitative estimations.

Let us consider an arbitrary barrier with the width φ0 and height U0 � (h̄/e)Ithφ0. The detection time
can be estimated equating the potential energy term and the term with φ̇, Gφ0(h̄/e)2χ/τ � U0χ/φ0, χ being a
typical value along the trajectory. This gives τ � (h̄/eV )φ0(If/Ith). The quasi-stationary approximation thus
holds provided If ≡ GV � Ith/φ0. Let us estimate χ by equating the term which is quadratic in χ and the
potential term. This gives χ � Ith/If if Ith � If , χ � 1 otherwise. We see that if φ0 ≤ 1 then χ � 1. The latter
implies that S(χ) can be expanded near χ = 0 and only the first two cumulants are relevant: no chance to see
the effect of FCS. However, if φ0 � 1, χ can become of the order of unity without violating the quasi-stationary
approximation, and one can observe the FCS. The quasi-stationary approximation remains valid for χ ≤ φ0.

The resulting rate can be estimated as log Γ � φ0(G/GQ)χ. If φ0 ≤ 1, this reduces to log Γ � φ0(G/GQ)Ith/If .
In the opposite limit, the estimation for the rate reads log Γ � φ0(G/GQ)F (Ith/If), F being a dimensionless
function � 1. It is important to note that these expressions match the quantum tunneling rate log Γh̄ � U0τ/h̄ �
(G/GQ)φ2

0 provided eV τ � h̄. Therefore the quasi-stationary approximation is valid when the quantum tunneling
rate is negligible and the third factor mentioned in the introduction is not relevant. For equilibrium systems,
the situation corresponds to the well-known crossover between thermally activated and quantum processes at
kBTτ � h̄.9

We proceed with the quantitative solution. The trajectories we are looking at start at t → −∞ in the
minimum of the potential with φ = φmin, χ = 0 and approach the maximum φ = φmax, χ = 0 at t → ∞. They
obey the equations of motion

0 =
∂

∂χ

[
U(φ+(t)) − U(φ−(t)) +

ih̄

2e
G(V − h̄

2e
φ̇(t))S(χ(t))

]
, (4)

0 =
∂

∂φ

[
U(φ+(t)) − U(φ−(t))

]
+ i

(
h̄

2e

)2

Gχ̇
∂S

∂χ
. (5)

It is important to note that these equations have a simple integral of motion

i(U(φ+) − U(φ−)) +
h̄

2e
IfS(χ) = I (6)

I = 0 for saddle-point trajectories of interest. The full action along the trajectory then reads

− 2e2

h̄2G
A =

∫
dtφ̇S(χ) =

∫ φmax

φmin

dφS(χ(φ)) (7)

where in the last relation χ is expressed in terms of φ by means of Eq.6.

Let us start with the results for φ0 � 1. In this case, one expands the action in terms of χ keeping terms of
the first and second order only. This immediately yields χ = i4e(∂U/∂φ)/(h̄F If). The general answer for the
escape rate can be obtained at any shape of the barrier and reads:

Γ � exp
(
−Umax − Umin

kBT ∗

)
; kBT ∗ = eV F/2 (8)
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This is thermal activation with an effective temperature given by the noise in the normal conductor. A similar
effect of noise was envisaged in a recent article12 for the phase diffusion regime.

Let us now consider the more interesting case φ0 � 1. The simplest realization of such a barrier comprises
N � 1 Josephson junctions connected in series, this gives U(φ) = NIc sin(φ/N), φ0 � N . However, this system
is formally metastable: the vortices can traverse the junction providing phase slips ∆φ = 2π. To eliminate
this, one would increase the barrier for the vortex formation, for instance, by making several parallel chains of
junctions. This would further complicate the concrete function U(φ). We notice that any function U(φ) can be
approximated by a cubic parabola if the tilting of the washboard potential is close to the critical value. This is
why we choose the cubic parabola form

∂U

∂φ
=

h̄

2e
Ith

[
1 −

(
φ

φ0

)2
]

, (9)

for actual calculations. It is convenient to require that the barrier does not change if we change If . This can be
done by a corresponding change of Ib. To simplify this further, we notice that χ � φ0 so that

U(φ+) − U(φ−) ≈ χ
∂U

∂φ
. (10)

Substitution into Eq. 6 gives φ in terms of χ

φ = φ0

√
1 +

If

Ith

(
S(χ)
iχ

− 1
)

. (11)

Combining this with Eq.7, we obtain the escape rates as a function of Ith/If for any given FCS.

To stress similarities and differences with thermal activation, we present the results in the form of Arrhenius-
like plots. We plot log Γ in units of (G/GQ)φ0 versus the dimensionless Ith/If . Thermal activation with the
effective temperature given by (8) would give a straight line (dashed lines in the plot). By virtue of our approach,
the rates should exceed the quantum limit log Γh̄ � (G/GQ)φ2

0. This means that the rates should saturate at
this value provided If → 0. For each choice of S(χ) we plot two curves corresponding to two possible signs of
V with respect to the current via the junction. For forward bias, the barrier is crossed when the fluctuating
current is smaller than the average current. For backward bias, the barrier is crossed if the fluctuating current
is bigger than the average value. The difference between two curves thus reflects the asymmetry of the current
distribution with respect to the average current. In Fig. 2, left panel, we present the results for a tunnel junction
(St(χ) = eiχ−1) and a diffusive conductor (Sd(χ) = (1/4)arccosh2(2eiχ−1)).13 All curves approach the dashed
thermal activation lines at If � Ith. Since the tunnel junction is more noisy (F = 1 versus F = 1/3 for a
diffusive conductor), it generally provides higher escape rates. However, the difference in functional form of the
rates remains pronounced even upon rescaling with factor 3. The most pronounced feature of the backward bias
curves is a plateau at If → Ith with subsequent drop to very small escape rates � Γh̄ (beyond the vertical scale
of the plot). This is because the current distribution is restricted: shot noise current is always of the same sign
as the average current.

A quasi-ballistic conductor presents two peculiarities of this kind. We choose the transmissions of all channels
to be the same, T0 = 0.8, Sb(χ) = (1/T0) ln

(
1 + T0(eiχ − 1)

)
. In this case, the current distribution is restricted

from both sides: the maximum current fluctuation can not exceed the ballistic limit Il = If/T0. From this we
conclude that the barrier can not be crossed at forward bias if Ith > (1/T0 − 1)If = 0.25If , as seen in the right
panel of Fig. 2. The rate becomes increasingly smaller upon approaching this threshold.

There is an unambiguous correspondence between the rates as a function of If/Ith and S, that is given by
Eqs. (7), (11) and can be used to characterize the FCS from the rates measured. However, this relation is
implicit and more complicated than that of an ideal detector. Apparently, this complication is due to the first
and second factor mentioned in the introduction. To look at it in more detail, we compute the optimal current
and voltage fluctuations that switch the detector.
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Figure 2. Escape rates versus Ith/If for a tunnel (t), diffusive (d) and ballistic (b) mesoscopic conductor. “+”/“-” refers
to forward/backward bias respectively. Dashed lines correspond to the rates due to Gaussian noise.
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Figure 3. Optimal current fluctuations (left panel) and feedback voltage (right panel) versus time for different conductors
and different values of Ith/If . Each line corresponds to one point on the curves in figure 2. Note the different voltage
scales. The labels stand for (branch|Ith/If): (a) b+|1/5, (b) b+|1/10, (c) t-|1/3, (d) d-|1/3, (e) d-|2/3, (f) t-|2/3.
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The optimal current fluctuations are plotted in the left panel of Fig. 3 for different conductors and If . The
curves are symmetric owing to the symmetry of the cubic parabola potential. Common features are that they
all reach the threshold current at maximum and their time spread is of the order of τ . Still, the spread, shape,
and most importantly, the integral of the current over time, varies significantly from curve to curve. This proves
that the detector in use is dispersive and suffers from the first factor mentioned in the introduction.

The third factor is also in play. When φ moves, crossing the potential barrier, the resulting voltage changes
the voltage drop over the normal conductor thereby affecting the current fluctuations in there. This feedback
voltage Vfb is negative for forward bias and positive for negative one. We see from the evolution equations that

Vfb

V
≡ − h̄φ̇

2eV
=

S(χ(t))
χ(t)

∂χ

∂S(χ(t))
− 1, (12)

so the change in the voltage drop across the junction is quite significant if χ � 1. We check that the negative
feedback can never change the sign of the voltage for S(χ) in use. The right panel of Fig. 3 presents voltage
fluctuations corresponding to the current fluctuations on the left panel. Interestingly, the positive feedback can
be very big on the plateau at the backward bias (curves e, f). In this case, the detector seeks to optimize the
rare fluctuation where almost no current is flowing in the normal conductor. The probability of such fluctuations
is increased upon increasing the voltage drop over the conductor so that the detector provides the extra voltage
required. Eventually, the feedback can be reduced with an extra resistive shunt over the Josephson junction.
However, this would decrease τ and reduce the region of applicability of our results.

To conclude, we proved that Josephson junctions can be used as threshold detectors for non-Gaussian noise
produced by coherent conductors. Our theoretical results facilitate a new type of electric noise measurement:
direct measurement of full counting statistics of the transferred charge.

This work was supported by the Dutch Foundation for Fundamental Research on Matter (FOM).
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