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Designing a recommendation function for semantic merging of middle-of-life 
data streams
Fatima-Zahra Abou Eddahab-Burke

Faculty of Technology, Policy and Management, Delft University of Technology, Delft, The Netherlands

ABSTRACT
This paper addresses the challenge of handling large and diverse data streams from connected 
products during middle-of-life use. Current data analytics tools struggle with such data, 
necessitating the development of a crucial function in next-generation data analytics tools 
that semantically merges and analyzes these streams collectively. The proposed function, 
recommendation for semantic merging of middle-of-life, acquires, pre-processes, and merges 
data from various streams, providing designers with enhanced product information. Tested on 
simulated data streams of a washing machine enhancement case, the function offers more 
comprehensive product insights than individual sensor analysis. Implementation of such 
a function could improve fidelity in reflecting product conditions, reduce sensor analysis 
time and effort, and deliver an actionable plan for product improvement. Being design- 
focused, this article addresses the functional validity and the proof of concept of the recom
mendation function. Full computational analysis is out of this paper’s scope and will be 
addressed in future research.
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1. Introduction

Traditional data analytics tools cannot be applied 
directly to big data [1] or to managing big data to 
extract practical knowledge from them [2]. This points 
to the need for novel and sophisticated data analytics 
tools. In a broader sense, what is actually needed is to 
add smartness and learning capabilities to a wide 
range of computer systems (including data analytics 
tools and toolboxes) [3]. To cope with the knowledge 
gap found in the literature concerning smart data 
analytics toolboxes (SDATB), we integrated the find
ings of a questionnaire-based interrogation (QBI) pre
sented in [4] and the synthetic theory devised using 
the axiomatic theory fusion (ATF) methodology pre
sented in [5] whose combination provides require
ments needed to build a SDATB. While the QBI 
explored what white goods designers missed related 
to the use and outputs of the marketed data analytics 
tools in the context of possible product improvements, 
its objective was to determine the data analytics 
approaches and tools used by the participants and 
for what purpose, as well as which of these tools they 
found useful. The study also investigated designers’ 
expectations related to new data analytics tools and 
the extra technical support they would like to have via 
these tools. The ATF, a practical approach to theorizing 
in a deductive manner [6] was used to merge five 
independent theories needed to build 
a comprehensive conceptual basis for a knowledge 

platform for a next-generation data analytics toolbox 
for white goods designers. These theories are: a theory 
describing white goods designers’ needs [4], a theory 
describing advanced technological enablers [7], 
a theory explaining the evolution of data analytics [8], 
a theory of combined creative problem solving [9] and 
decision-making [10], and a theory about functional 
and structural interoperability [11]. This integral body 
of knowledge from the QBI and the theory deducted 
from the application of the ATF was used to formulate 
operational requirements for a next-generation data 
analytics toolbox.

On the one hand, the QBI revealed that product 
designers need SDATB that allow (i) step-by-step assis
tance, (ii) advice in selecting means, (iii) multifold data 
visualization, (iv) multichannel data management, (v) 
blending middle-of-life (MoL) datasets, (vi) combining 
qualitative and quantitative data, (v) permanent acces
sibility, (vi) adaptation to users, (vii) case-based reason
ing, and (viii) learning from applications. On the other 
hand, the devised synthetic theory was more concrete 
about the needs and the requirements for the SDATB. 
This theory suggested that the SDATB should include 
(i) context-driven decision-making, (ii) proactive deci
sion-making, and (iii) algorithms able to process com
plex data. In addition, it should (iv) allow semantic 
interpretation, (v) blend MoL data (MoLD) and data
sets, (vi) merge multiple MoL data streams (MoLD-S), 
(vii) allow high-speed and high-volume storage, (viii) 
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provide permanent accessibility, (ix) deliver advice to 
designers based on their work context, (x) allow case- 
based reasoning, (xi) process structured, semi- struc
tured, and multi-structured MoLD, (xii) propose solu
tions to solve difficult design problems, (xiii) predict 
future outcomes, and (xiv) derive actionable insights.

The listed needs should all be included in the design 
of an all-embracing SDATB that is tailored to designers 
needs. In this perspective, we decided to start with 
targeting the needs related to semantic interpretation 
of data analytics outputs, merging of multiple MoLD-Ss 
from different sources, predicting outcomes, and 
deriving actionable insights. All of these needs can be 
supported by one function of the SDATB that allows 
semantic merging of middle-of-life data streams. This 
function should not only computationally fuse MoLD- 
Ss but should also provide recommendations to the 
designer on what to do with the to-be-merged and 
merged data streams and how to do it. Therefore, we 
call it “recommendation for merging MoLD-Ss”, symbo
lized by FSB1, as it is the first conceptualized function. 
The script “SB” stands for “smart basic” function. The 
basic functions are considered operational functions 
that are directly related to data analytics. Accordingly, 
they are derived from fundamental requirements that 
need to be fulfilled by the SDATB.

During recent decades, data fusion has evolved 
rapidly in various application fields [12,13]. Data fusion 
is a synthesis of incomplete information about envir
onmental features provided by multiple data sources. 
The goal is to establish a relatively consistent and 
complete description through a more complete and 
accurate set of information [14]. Processing multiple 
concurrent data streams is an obvious task for the 
SDATB. By including a multisource data fusion technol
ogy, an SDATB can (i) eliminate redundant and contra
dictory data obtained from various sources, (ii) reduce 
the uncertainty of provided information, (iii) develop 
a nearly complete description of the monitoring envir
onment, and (iv) enhance the accuracy of decision- 
making by intelligent systems [14]. It can also build 
better situational awareness and reasoning capabil
ities, as well as reduce its response time [15].

2. Literature study: collecting knowledge for 
designing the recommendation function for 
merging MoLD-Ss

Data merging is one aspect of data management [16]. 
Traditionally, it is interpreted as the total of theories, 
techniques, and tools used to combine sensor data 
into a common representational format [17]. Its main 
purpose is to combine data from heterogeneous data 
sources [18]. It is widely used in many application 
domains, such as robotics, industrial manufacturing 
systems, smart buildings, and healthcare [19]. Data 
merging is a wide-ranging subject that gave root to 

many different terminologies, which are often used 
interchangeably [19]. It can be found in the literature 
under different names, such as data fusion, data con
solidation, or entity resolution [20].

The ultimate objective of data merging is to 
improve the performance of a system by merging 
complementary and/or redundant information to 
reduce the uncertainties of measurements and to 
obtain information that cannot be perceived within 
one data source [21]. In some publications, the term 
information fusion is considered a synonym for data 
merging or fusion [22], whereas in other sources a clear 
distinction is made between them. Data merging is 
employed for raw data (not processed), and informa
tion fusion is used to define processed data [23]. 
Accordingly, information implies a higher semantic 
level than data [24]. Several types of data merging 
and fusion have been the focus of many research 
projects, such as decision fusion, data combination, 
data aggregation, sensor fusion, and multi-sensor 
data fusion [25].

In our research, we are interested in benefiting from 
processing MoLD, since research has shown interest in 
analyzing such rich use, service and maintenance data 
[26]. This data is collected when the product is cur
rently in use by the consumer. It includes failure, per
formance, product age, operating environment, usage 
intensity, refund and replacement data as well as main
tenance reports [27]. Such data allows observation of 
conditions and behaviors of products during use by 
the costumer [28]. Collecting MoLD encourages 
a lifecycle-oriented approach to incremental product 
design that continuously enhances products and ser
vices [29]. Collecting MoLD allows for improvement of 
a product or product operations in various ways, such 
as design enhancements and the optimization of 
maintenance operations [30]. Consequently, the mer
ging concerns data collected from product sensors 
while the product is in use. This type of merging is 
called multi-sensor data fusion [31] or multi-sensor 
data merging (MSDM) [32], which is part of multi- 
source data fusion [33]. MSDM is rapidly evolving 
[33]. It refers to the process of integrating and combin
ing information from multiple sensors to achieve 
a more comprehensive and reliable insights than 
what individual sensors can provide on their own 
[25]. Accordingly, its essence is combining data from 
multiple sources, and it helps provide access to infor
mation that cannot be provided by a single sensor or 
whose quality exceeds that of the information drawn 
from a single sensor [34]. The core principles of MSDM 
include sensor integration, data preprocessing, feature 
extraction, and fusion algorithms [35]. Sensor integra
tion involves employing diverse types of sensors con
currently, each contributing distinct information about 
the target system. The combination of data from multi
ple sensors enables a more comprehensive 
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understanding of the system, thereby enhancing accu
racy and reliability across different applications [36]. 
Data preprocessing is about preparing the data col
lected from the sensors for the merging by applying 
cleaning, filtering, then normalization techniques. This 
allows removal of noise, outliers and inconsistencies in 
the data [37]. Feature extraction involves determining 
relevant features from the preprocessed sensor data. 
These features represent informative inputs for the 
fusion algorithms, that support pattern recognition 
and decision-making tasks [38]. Finally, the fusion/mer
ging algorithm that operates on 3 levels, data-level 
also called signal or sensor-level, feature level and 
decision-making level [39]. These levels refer succes
sively to low, middle and high levels [40]. Low-level 
merging applies to raw data coming directly from 
sensors and is used for knowledge construction or for 
cooperating with other nodes on complementary 
activities. It can be realized by a low-level abstraction 
or by performing local operations in a temporal 
domain [41]. It’s primary advantage is its ability to 
fully utilize the source data and mitigate information 
loss [42]. However, the processing of large volumes of 
raw data can be computationally demanding, leading 
to long processing time. If the aim is to analyze real- 
time data, then this low-level merging should not be 
chosen due to the extensive processing requirements 
of large datasets. Also, having a variety of sensors with 
potentially different characteristics, data types etc. 
makes the fusion task even more challenging. 
Methods of sensor-level fusion include Kalman filter 
[43], weighted average [44], machine-learning based 
fusion schemes [45], and deep-learning-based fusion 
schemes [46]. Middle-level merging works with the 
features of datasets and flows [47]. It is performed on 
preprocessed data or on information obtained by low- 
level merging of data. It can be realized by implement
ing feature extraction, pattern matching, or redundant 
computation operations [48]. This type of merging 
extracts relevant features from raw data obtained by 
individual sensors and the best ones are then merged 
as input to the output layer. Examples of techniques 
used for this type of merging are principal component 
analysis [49], canonical correlation analysis [50], and 
deep learning-based fusion methods [51]. In compar
ison with the previous type of fusion, this one allows 
the loss of less information. This makes feature-level 
fusion a favorite approach when it comes to situations 
where accurate and informative features are crucial for 
faults identification and characterization [52]. 
However, merging various features can result in 
a feature vector with high dimensionality, which may 
significantly increase the demand for computational 
resources, making the merging process resource inten
sive [53]. Also, not all features contribute equally to the 
merging outcome, potentially causing information 
loss. Accordingly, it is important to employ careful 

feature selection and weighting methods to optimize 
the merging outcomes and minimize information loss 
[35]. High-level entails unifying decisions obtained 
from various sensors to achieve a final decision or 
inference [54]. This type of merging is a sophisticated 
process that is implemented by performing semantic 
inference, executing complex reasoning, learning from 
and making decisions on sensor data, or exploiting 
cooperative patterns [55]. It provides significant flex
ibility, which stands out as one of its primary advan
tages [56]. It facilitates the use of different merging 
rules and algorithms based on specific application 
requirements, allowing the merging process to adjust 
to various scenarios and accommodate the different 
sensors characteristics and data sources [35]. 
Furthermore, it has robust anti-inference performance 
as it can handle conflicting information extracted from 
various sensors. By combining decisions from various 
sources, it can derive relatively reliable conclusions 
even when individual sensors produce inconsistent or 
contradictory outputs [57]. Approach of decision-level 
fusion includes fuzzy logic [58], neural networks [59] 
and Dempster-Shafer theory [60]. High-level data mer
ging is computationally challenging and is difficult to 
realize for two reasons [61]. First, inferring semantic 
knowledge requires transforming a low-level represen
tation of data and information into a higher-level 
representation. This transformation, however, typically 
suffers from the so-called information deficit. Second, 
having a system understand semantics assumes the 
system has (i) some manifestation of consciousness, 
(ii) a purpose, and (iii) an awareness of its surrounding 
and the state of knowledge. These characteristics are 
strongly related to human beings. Moreover, in such 
fusion, the decision-making system or the classifier are 
not allowed to train on the entire data simultaneously, 
as it relies only on the decisions provided from the 
individual sensors. This limitation can lead to a less- 
optimal performance if the decision-making systems 
has no access to the full dataset [62].

MSDM have replaced traditional information fusion 
systems, which involved user-owned and controlled 
sensor networks. In addition, they established systems 
and information architectures that are used for sensor 
tasking, data acquisition, fusion, dissemination, and 
decision-making [63]. It has been proved that using 
MSDM approaches is the only way to get the required 
amount of information with an expected level of intel
ligence [19]. MSDM approaches allow (i) an increased 
probability of detection, (ii) extension of spatial and 
temporal coverage, (iii) reduction of ambiguity, and (iv) 
improvement of system reliability and robustness [64]. 
Despite its multiple advantages, MSDM presents sev
eral challenges related to data imperfection, outliers 
and counterfeit data, conflicting data, data modality, 
data correlation, data alignment and registration, data 
association, processing framework, operational timing, 
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static versus dynamic phenomena, data dimensional
ity [65].

In our research, the objective was to elaborate 
a support function (FSB1) for merging MoLD-Ss. It 
should merge computationally, semantically interre
lated MoLD-Ss obtained from different sensors. In 
doing so, it helps the user gain additional information 
and knowledge from the streams to support decision- 
making in various contexts of product enhancement. 
After merging, the synthesized MoLD-S can be used to 
infer additional semantic information that initially was 
not conveyed by any one of the separate MoLD-Ss. 
Streams may complement each other and may provide 
additional semantic information when appropriate 
inference techniques are applied. The proposed func
tion, FSB1, adopts the principles of high-level MSDM. It 
contextualizes the information conveyed by MoLD-Ss 
and analyzes the information’s meaning in that con
text. In fact, it extends to one level higher since it 
generates recommendations about possible enhance
ments. This knowledge can be deduced by analyzing 
the merged data streams in a specific context and can 
be delivered to the designer as a displayed message. 
Such a function is a genuine enabler of the smartness 
of the SDATB.

3. Conceptualization of the recommendation 
function for merging MoLD-Ss

The computational implementation of the function 
FSB1 for merging data streams has three elements. 
Symbolically, they can be expressed as 

where FSB1 is the basic function providing recommen
dations for merging MoLD-Ss, DISB1 are the inputs by 
the designer (MoLD-Ss), CPSB1 is the computational 
mechanism, and SOSB1 represents the outputs 
expected from the SDATB after execution of FSB1 (i.e. 
messages displayed to the designer about the results 
of the MoLD-Ss merging). The necessary computa
tional procedures can be defined if FSB1, as a main 
basic function, is decomposed to lower-level functions 
and related requirements are considered. The inter
mediate lower-level functions of FSB1 were already 
presented in the previous section. The underlying pro
cess is as follows. First, the SDATB acquires the MoLD- 
Ss selected for merging from the corresponding sen
sors in real time. Then, after the designer choses 
streams for further analysis, those streams are prepro
cessed individually based on their data. The prepro
cessed MoLD-Ss are then fused together. The following 
step focuses on detecting anomalies in the merged 
data streams and determines what might be wrong 
with the product based on data. Once the meaning is 
given to the fused MoLD-Ss, the SDATB derives recom
mendations on what should be done with the product 

(such as enhancement possibilities). Finally, this 
recommendation is sent to the designer as a message 
appearing on the computer screen.

The procedural steps of merging MoLD-Ss (function 
FSB1) are shown in Figure 1. This function decomposes 
to five sub-functions. A lower-level functional decom
position of FSB1 is summarized in Figure 2. We have 
assumed that the designer specifies for the SDATB 
what data streams will need to be merged. Another 
assumption is that only temporally finite data streams 
are handled by the SDATB. This latter assumption facil
itates the application of machine learning. The sub- 
function FSB1,1 locates the considered sensors on the 
product and forwards the data streams provided by 
them to the SDATB. Our assumption is that the for
warded MoLD-Ss may be stored not only on the back
ground storage devices of the SDATB host computer 
but also on a separate storage device. To get 
a reconfirmation from the designer, sub-function 
FSB1,2 presents the data streams to the designer using 
various means to visualize the MoLD-Ss (for example, 
plots or histograms). In addition, the sub-function pre
processes the single-modality data streams by select
ing particular processing rules. As an example, some 
rules can eliminate parts or the whole of redundant 
data streams that are not likely to affect the merging. 
To avoid the need to transfer and process vast 
amounts of idle information, the rules may operatio
nalize up/down sampling of values, value transforma
tion, and reducing noise in the data to decrease 
unnecessary variance of the data to be processed. 
The sub-function FSB1,2 applies a kind of configured 
data processing, which is required because of the time- 
consuming nature of processing the data. In this con
text, “configured” indicates that, for complicated data 
streams with unknown patterns, comprehensive struc
tural preprocessing (filtering or ordering) is applied, 
whereas for less complicated data streams, preproces
sing is simply data normalization.

The computational merging of data streams is done 
by sub-function FSB1,3. The principle of fusion is corre
lation based on the time stamps of data in the streams. 
First, the sub-function generates intermediate repre
sentations to reduce time-dependent data to 

Figure 1. High-level functional decomposition of FSB1.
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a compact fixed-length vector. Then it combines the 
data streams and generates a behavior descriptor 
based on the merged MoLD-Ss. To facilitate the appli
cation of machine learning, subfunction FSB1,3 embeds 
the fused sensor data streams into a so-called latent 
space (also called a hidden space). In this space, data is 
mapped in such a manner that similar data points are 
close to each other. In the case of neural network- 
based machine learning, features are extracted 
through a number of layers of the network architec
ture, and the operation (function) that maps the input 
before the last layer projects into the latent space. In 
other words, the features lie in the latent space. The 
latent space representations can be used to transform 
complex forms of raw data into simpler forms that are 
easier to analyze. Mapping to the latent space also 
helps in clustering similar cases.

The data streams may contain anomalies regarding 
the operation of the product in question. The sub- 
function FSB1,4 (i) detects anomalies in the merged 
data streams, (ii) matches the anomalies to pre- 
programed knowledge in the SDATB, (iii) orders the 
anomalies based on their similarity, (iv) makes a report 
on all of the ordered anomalies based on the merged 
MoLD-Ss, and (v) converts the outcome into a specific 
recommendation. The last sub-function, FSB1,5, (i) 
retrieves a template for message construction, (ii) con
structs a message for the designer according to the 
recommendation, (iii) uses the retrieved template to 
construct the message to be delivered to the designer, 
and (iv) communicates the message to the designer 

relating what is improper with the product according 
to the merged data. In the case of the SDATB, this can 
also be followed by a recommendation for actions to 
take to solve detected anomalies in product operation, 
although this step is not indicated in Figure 2.

To realize the function of FSB1,1, the SDATB needs to 
(i) locate the sensors producing the MoLD-Ss, (ii) iden
tify and access the data streams to be merged, and (iii) 
import these streams from their storage place (for 
example, the cloud) to the SDATB. Moving MoLD-Ss 
from external storage into the SDATB is a common 
procedure (several commercial tools allow retrieval of 
data streams from external storage). However, current 
software tools do not allow the collection of real-time 
data streams. Consequently, realization of FSB1,1 

requires the development of new algorithms. Since 
we had no opportunity to have access to an appro
priate sensor network and the multiple data streams 
generated by its nodes, we provided the necessary 
data files using computational simulation. The con
structed files were used both in the algorithm devel
opment stage and in the validation of the algorithms. 
What it means is that we are not dealing with function 
FSB1,1 here, since the data streams have been included 
in the toolbox database directly. We assumed that, in 
a real-life situation, the SDATB would have access to 
sensors and would be able to receive multiple MoLD- 
Ss. These data streams are checked before they are 
used for merging. The SDATB offers the option of 
visualizing all data streams received, and the designer 
can select varying numbers of the MoLD-Ss for analysis 
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Figure 2. Low-level functional decomposition of FSB1.
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and merging by the SDATB. The basis of merging is the 
“internal” affordance (semantic cohesion potential). 
Anomalies detected in the fused streams are identified 
and included in the results.

Form a software engineering point of view, the main 
functions of the SDATB are provided by various mod
ules. Specification of the modules and determining the 
computational algorithms included in the modules is 
the task of architecting. For instance, two external com
ponents are needed for the architecture of the main 
function FSB1. One of them is a system user interface, 
which enables communication between the designer 
and the SDATB. It also transfers the inputs and outputs 
to and from the toolbox. Another component is the 
database, also referred to as the knowledge warehouse. 
In addition to data, it stores the rules and conditions for 
analyses, as well as the results of merged data streams.

Figure 3 shows the overall conceptual architecture of 
the MoLD-Ss merging module of the SDATB. The main 
constituents are (i) the search engine, (ii) the database, 
(iii) the preprocessing unit, (iv) the merging unit, (v) the 
recommendation unit, (vi) the explorer, (vii) the query 
manager, and (viii) the user interface. The lower-level 
components of the units are shown in Figure 3. The 
MoLD-Ss explorer, used for exploring the data streams 
to be analyzed, is a kind of entry point to this module. 
The MoLD-Ss preprocessing unit communicates with 
the designer and receives and processes the individual 
MoLD-Ss in the toolbox. The MoLD-Ss manager visua
lizes the data streams stored in the database and makes 
them available for the search engine. The preprocessing 
configurator determines the preprocessing rules and 
conditions to be applied to the individual streams by 
the preprocessing executor. These two components use 
knowledge already existing in the database. The pre
processed MoLD-Ss are transferred to the merging unit, 
which is composed of four components: (i) the merging 

executor, (ii) the anomalies detector, (iii) the semantic 
similarity calculator, and (iv) the anomalies organizer. 
These components are closely related to the knowledge 
stored in the database. The semantic similarity calcula
tor compares the explored anomalies with those stored 
to determine resemblances. The anomalies organizer 
manages the weights and filters and organizes the 
anomalies to be used by the recommendation unit. 
The recommender agent converts the information gen
erated by the above components into recommendation 
contents. The message generator produces messages to 
the designer using the recommendation contents. 
Finally, the query manager converts the produced mes
sage to human language and communicates it to the 
designer as a recommendation via the user interface.

4. Algorithm-level specification of the 
recommendation module for merging 
MoLD-Ss

The recommendation module for merging MoLD-Ss is 
reasonably novel. To realize it, three algorithms are 
needed for its sub-function FSB1,1. The first (algorithm 
A1 “request list of sensors”) is responsible for requesting 
from the designer the list of sensors to be analyzed by 
the SDATB. The second (algorithm A2 “request a subset 
of devices supporting provided sensors”) requests 
access to data streams and their locations. The third 
(algorithm A3 “fetch MoLD-Ss to the SDATB”) is respon
sible for acquiring MoLD-Ss from remote storage (for 
example, a cloud environment) and moving them to the 
SDATB and its local storage. For sub-function FSB1,2, two 
algorithms are needed. One is responsible for providing 
means for visualizations (plotting) to comprehend data 
despite their raw format (algorithm A4 “plot sensors’ 
data streams as time series for selected data streams”). 
The second one (algorithm A5 “apply time-series 

Figure 3. Overall conceptual architecture of the recommendation module for merging middle-of-life data streams.
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normalization for each MoLD-S”) is responsible for the 
normalization of MoLD-Ss so the data streams can be 
properly used for further analyses. This algorithm is 
needed to remove anomalies that might complicate 
the analysis, such as by (i) deleting data (e.g. removing 
correlated time series), (ii) inserting more information 
(e.g. applying one hot encoding for categorical fea
tures), or (iii) updating existing information (e.g. clipping 
outliers).

For sub-function FSB1,3, four algorithms are needed. 
Algorithm A6 “process single stream time series with 
statistical model” is responsible for processing normalized 
single MoLD-Ss time series using a statistical model. This is 
needed to generate length-invariant representations of 
MoLD-Ss to reduce computation costs in the upcoming 
steps. Algorithm A7 “estimate sensors’ importance” calcu
lates or estimates the importance of the sensors to ana
lyze. This is only needed when a large number of sensors 
are to be merged and analyzed. By considering a lower 
number of relevant data streams, the interpretation of 
predictions is improved. The outcomes of this steps are 
used in Algorithm A8 “Merge MoLD-Ss based on fusion 
weights,” which is an algorithm run in Matlab. This algo
rithm has been constructed to merge data streams that 
are obtained from various sensors, but which are cap
tured in the same time frame. The developed algorithms 
are for semantic fusion based on estimating anomalies 
and performing similar descriptor searches in the data
base. Algorithm A8 considers the weights allocated to 
sensors and selects only those with the highest weight 
values for merging. This means we order the sensors 
according to their estimated fusion weights and consider 
a portion of the most relevant MoLD-Ss in the merging. 
Algorithm A9 “estimate behavior descriptor based on 
merged MoLD-Ss representation” processes the MoLD-S 
jointly and embeds information into a new latent space 
(or representation). In such a space, a distance reflects the 
degree of semantic similarity. The behavior descriptor is 
sensor independent and describes the behavior indepen
dently from the source.

To realize sub-function FSB1,4, six algorithms are 
needed. Algorithm A10 “estimate probability of anom
aly” is responsible for estimating anomalies probabil
ity. It is a preliminary step to a more thorough search 
through the knowledge database containing a list of 
pre-programmed anomalies. It consists of calculating 
the distance to knowledge anomalies in the database. 
Algorithm A11 “perform similar descriptor search in 
database” gathers similar past anomalies from the 
database. It performs a search for similar descriptors, 
iterating through the pairs of the detected anomalies 
and the past ones. Algorithm A12 “calculate distance 
between anomalies” calculates the pairwise distance 
between the detected and the past anomalies. These 
anomalies are ranked via Algorithm A13 “rank anomaly 
descriptors by their distance from a requested one” 
and then retrieved using Algorithm A14 “retrieve 

relevant anomalies based on ranking as well as their 
corresponding sensors.” Algorithm A15 “merge rele
vant anomalies into an action plan (recommendation)” 
executes the semantic merging of the retrieved 
anomalies and generates a recommendation, which 
contains an action plan detailing what needs to be 
done with the product. Realizing sub-function FSB1,5 

requires five algorithms. Algorithm A16 “select recom
mendation message template” selects the template for 
the recommendation message from the database. 
Algorithms A17 “convert individual anomalies into 
recommendation message component” and A18 “con
vert the action plan into recommendation message 
component” successively convert the detected anoma
lies and the action plan into components of the recom
mendation message. Algorithm A19 “order 
recommendation message components” executes the 
ordering of the appearance of individual anomalies 
and includes an action plan in the recommendation 
message. Algorithm A20 “integrate recommendation 
message components according to template” inte
grates the ordered components of the message into 
the template to provide the recommendation message 
to be presented to the designer.

5. Implementation of the recommendation 
module for merging MoLD-Ss

To realize the merging MoLD-Ss recommendation 
module, the algorithms presented previously need to 
be implemented. Some of these algorithms (A1, A2, A3, 
A6, etc.) are either developed by software tools such as 
Matlab, Python, or SPSS, or they are described in detail 
in the literature. To avoid redundances, in this paper, 
we are detailing only the new algorithms that we 
designed to realize the proposed function.

Algorithm 4. Plot sensors data streams as time series for selected data 
streams.

Inputs: I1 = D

I2 = SensorNames function
I3 = RequestIds function. UI method to request a subset of 

sensors
I4 = PlotTimesseries

Outputs: PlotTimeseries(A, SensorNames)
1: sel  RequestIds SensorNamesð Þ; % obtains sensors selected by user

3: if numel selð Þ ¼¼ 0
4:  break;

5: end
6: A zeros numel selð Þ; 256ð Þ; % output matrix to pass into UI method

7: for i  1 : numel selð Þ

8:   t18 randi 1; 2½ �ð Þ; % randomly select either time series are 
faulty or not

9:   t17 randi 1; S½ �ð Þ; % randomly select one of S time series 
instances

10:   A i; :ð Þ  squeeze D i; t18; t17; :ð Þð Þ;

11: end
12: Return PlotTimeseries(A, SensorNames)
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Algorithm A4 has been developed to generate an 
interface for MoLD-Ss visualization. For this algorithm, 
we need to define the following: (i) Matrix D of M × 2× 
S x T dimension with instances of sensors’ time-series 
data. The first dimension M corresponds to sensor 
number, the second dimension corresponds to either 
normal behavior (−1) or faulty behavior (−2), and the 
third dimension corresponds to S = 256 instances of 
different windows of sensor data, each of which has 
T = 256 time steps (representing the fourth dimension). 
(ii) SensorsNames is a function providing sensor 
descriptions for each of the M available sensors. (iii) 
The RequestIds function is responsible for visualizing 
a chosen set of sensors at the same time. Once the 
visualization is finished, the function returns an empty 
set (nothing to visualize). (iv) The PlotTimeseries func
tion is a user interface method to display multiple 
sensor data streams within the same window in 
a certain time range.

To provide a recommendation based on a multi- 
stream dataset D,’ we specify annotations to past 
anomalies. Descriptions of past anomalies need to be 
specified. Let us consider a window of aligned multi- 
modal features X = {X(t, k)}, where t = [a, b] and k = [1, 
M]. M is the total number of selected sensors. The 
interval [a, b] represents the time boundaries of the 
anomalous behavior of the historical data of some 
device. Since we considered the triplet loss function 
for the ANN used for clustering a predefined set of 
classes, we assigned unique labels to the anomalies. 
Furthermore, we defined a set of incidents for each 
anomaly to allow the model to have sufficient data 
during the training and to avoid overfitting. The triplet 
loss training can fit a dataset of 8 million unique labels 
and achieving >95% classification accuracy [66]. The 
neural networks architecture that was considered for 
this purpose can be described as the algorithm respon
sible for sensor importance weight predictions A7 (see 
Appendix) for forward pass (which refers to the calcu
lation process and values of the output layers from the 
input data). To build the algorithm, we needed to 
define a real = valued matrix X with B x M x T size, 
where M represents multimodal features of each win
dow of frames (sliding window), T represents the time 
frame, and B is the batch size.

To train the model, we used a specific triplet loss 
algorithm, A9 (see Appendix), known in the literature 
as a hinge triplet loss algorithm [67]. This algorithm 
uses a hinge function to create a fixed margin between 
the anchor-positive difference and the anchor- 
negative difference. The following inputs had to be 
defined: (i) H, a real-valued matrix of B x 3 × 
L dimension, where B is the batch size, 3 represents 
two triplets of same label behavior representations 
and one outlier, and L is a latent representation dimen
sion. H must be constrained within the boundaries 
[−1, 1]; otherwise, either a tanh(.) activation function 

can be applied, or rescaling of the vector values can be 
considered. (ii) B’, a separation margin to control how 
much nonrelevant behavior should be embedded in 
the latent space according to cosine similarity distance. 
The triplet loss presented in Algorithm A9 has been 
optimized using stochastic gradient descent (SGD) 
[68]. This algorithm optimizes the triplet loss by chan
ging the parameters of the neural network. During the 
stochastic gradient descent procedure, we sampled 
a batch of triplets to perform the optimization step.

After introducing the behavior descriptors of multi
ple sensor data streams, we developed Algorithm A10 

(see Appendix) to select potential candidates for an 
anomaly. For this purpose, three inputs have to be 
defined: (i) h, a matrix of size N × L3 of behavior descrip
tors to analyze; (ii) q, a matrix of size M × L3 of behavior 
descriptors in the database of past anomalies; and (ii) 
tau, the upper bound of the confidence interval. Given 
the vector p, we select as candidates only those entries 
for which pi > τ, where τ is the upper bound of con
fidence interval for normal behavior. Algorithm A10 

filters out normal cases based on the large number of 
descriptors, which are generated by the sliding win
dow approach working on time-series data. A10 was 
also intended to detect anomalies. Another algorithm 
was developed for similarity-based searching A11, 
which is based on similarity estimation. This was 
done because, in addition to detecting an anomaly, 
we must also retrieval a ranked list of relevant anoma
lies for the computational processing. To develop 
Algorithm A11 (see Appendix), the following inputs 
were defined: (i) h, a matrix of size N × L3 of behavior 
descriptors to find similar past cases; (ii) q, a matrix of 
size M × L3 of behavior descriptors in the database of 
past anomalies; and (iii) tau, the distance threshold for 
descriptor retrieval.

After determining the possible anomaly candidates, 
we used Algorithm A12 (see Appendix) to calculate the 
distances between these anomalies. This algorithm 
requires the following inputs: (i) h, a matrix of size 
N × L3 of behavior descriptors for anomaly candidates; 
(ii) q, a matrix of size M × L3 of behavior descriptors in 
the database of past anomalies; (iii) index, identifiers of 
past anomalies; (iv) the offset of the first entry for each 
of the N anomalies; and (v) the number of relevant past 
cases discovered for each of the N anomalies. Given 
the distances of past cases, they can be sorted to 
generate a ranked list of anomalies. This is achieved 
with Algorithm A13 (see Appendix). This algorithm 
needs four inputs: (i) d, distances between anomalies 
(expressing the degree of similarity between anoma
lies and the past cases relevant to them); (ii) index, 
identifiers of past anomalies; (iii) offset of the first 
entry for each of the N anomalies; and (iv) the total 
number of relevant past cases found for each of the 
N anomalies. It represents the similarity between 
anomalies and past cases relevant to them.
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To generate a recommendation, we need to 
obtain the top K anomalies per descriptor using 
a ranked list of their identifiers. This can be done 
with Algorithm A14 (see Appendix). The inputs for 
this algorithm are as follows: (i) r, a ranked list of 
the identifiers of relevant anomalies; (ii) index, iden
tifiers of anomalies in the distance vector d; (iii) off
set of the first entry of each of the N anomalies; (iv) 
C, an M × L4 causality matrix of past anomalies 
related to L4 sensors; and (v) K, the total number of 
the (most) relevant anomalies to be found for each 
of the N candidate anomalies. The database contains 
“if . . . then” type rules, which are used in mapping 
between anomalies and possible recommendations. 
Algorithm A15 (see Appendix) is used to determine 
the best match and what to extract. This algorithm 

requires the following inputs: (i) d, distance between 
anomalies; (ii) sensors, sensor identifiers for each past 
anomaly; (iii) sensor_offset, offset of each past anom
aly sensors list; (iv) sensors_amount, number of each 
past anomaly sensors, (v) anomaly, anomaly identi
fiers with up to K entries for each of N anomaly 
candidates; (vi) anomaly_new_index, anomaly identi
fiers within retrieved distances of vector d; (vii) 
anomaly_offset, offset of each anomaly group; (viii) 
anomaly_amount, size of each anomaly group; and 
(ix) sensors_importance, matrix of size N × L4 of 
importance weights extracted from attention layer 
for each anomaly candidate. The other algorithms 
not presented in this section are used during the 
functional validation of the merging MoLD-Ss recom
mendation module, discussed in Section 6.

Figure 4. Computational workflow of the merging of middle-of-life data streams recommendation module.
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In addition to the developed algorithms, the compu
tational workflow (CWF) is also an important character
istic of this recommendation module for merging 
MoLD-Ss. Ordering all computational steps, the CWF of 
this module is shown in Figure 4. After the sensors are 
located and the data streams for analysis and merging 
are selected, the data contents of the MoLD-Ss are 
transferred to the SDATB, as a step that completes the 
analysis and the merging. In the next step, the data 
contents are visualized and presented in various plotted 
forms to the designer. The designer is given the oppor
tunity to visualize the stream plots more than once. 
Towards the merging, the sliding window algorithm is 
used to iterate over the MoLD-Ss. The algorithm selects 
a consequent time frame of data and normalizes the 
data along the time axis. After this, the single-stream 
encoder part of the used neural network is applied, and 
single-sensor latent representation is generated in the 
attention layer of the neural network.

In the next step of the data processing, the single- 
sensor representation is rescaled according to the impor
tance weights. These rescaled representations are conca
tenated into a two-dimensional matrix, and the behavior 
encoder part of the neural network is applied. 
Furthermore, the toolbox queries the database to find 
the past anomalies that are closest to the current descrip
tor. If the distance to past anomalies stored in the data
base is small, then a confidence interval including the 
current time window and its descriptor is selected as an 
anomaly candidate. Otherwise, it is skipped. When the 
algorithm finds no additional windows to analyze, it starts 
a similarity search. In this context, the descriptors are 
compared to those stored in the SDATB database. The 
distances between the anomaly pairs are estimated, and 
the matches are sorted according to the distances.

After this step, a ranked list of anomaly candidates is 
retrieved from the database. In combination with this, 
the sensors relevant to past anomalies are obtained 
based on the causality matrix. The anomaly candidate 
that has the shortest distance to its first relevant past 
anomaly is selected. In terms of the best candidate, this 
module of the SDATB presents a ranked list of past 
anomalies, as well as the sensors related to the past 
anomalies ordered according to the importance 
weights of the sensors. As a next step, the module 
selects a template for generating a recommendation 
message about the faulty sensors and possible 
improvement patterns. Then, the fault descriptions 
for each selected sensor and the improvement (or 

maintenance) actions for each anomaly are retrieved. 
These are subsequently arranged according to the 
importance of the sensors and the anomaly distance 
values and are used to generate the final recommen
dation message, which includes both the identified 
faults and the action plan. As the final computational 
action, this message is displayed to the designer.

6. Validation of the recommendation module 
for merging MoLD-Ss

To computationally implement the merging MoLD-Ss 
module and test its functionality, we used our reference 
application case of enhancing a connected washing 
machine by white goods designer. Accordingly, we con
sidered that this device has 13 sensors: S1 “force gauge on 
the axle bearings of the washing drum,” S2 “force gauge 
on transmission belt,” S3 “brake shoes position sensor,” S4 

“force gauge on brake spring,” S5 “spinner time control 
clock,” S6 “washing timer control clock,” S7 “detector of 
spinning R.P.M setting,” S8 water level indicator, S9 “inside 
temperature sensor in the housing,” S10 “solid deposition 
indicator in the outlet of the waste water pipe,” S11 

“switch on/off detector counter,” S12 “heater temperature 
thermometer,” and S13 “heating time counter.” Since we 
do not have access to real data streams, we built fake 
data streams (some streams have anomalies, others do 
not) that do not assume multidimensional values for 
single-sensor streams. To improve the performance of 
the function, a model capable of reasoning on multi
dimensional time series is needed. However, this requires 
the adoption of a more complex neural network. In addi
tion, we incorporated prior knowledge for product 
anomalies in the data streams. This directed the focus 
of the implemented function toward maintenance kind 
of action plans. This was done to demonstrate how the 
semantics from different sensors can be captured and 
worked into an action plan. Developing algorithms able 
to automatically generate rules and to be aware of the 
dynamic changes in context and data streams will reduce 
time and effort dedicated to scenario building and algo
rithm training.

For the sake of the functionality testing, five anomalies 
(Anx, where x is the anomaly number) and their possible 
action plans were built and described. We created 
a mapping between the anomalies, related sensors, and 
recommendation messages. Examples of the mapping 
are presented in Table 1. Regardless of the anomaly 
type, if a particular sensor must exhibit a faulty signal, 

Table 1. Mapping sample between anomalies, sensors, and recommendation messages.
Anomaly 
code Description

Related 
sensors Recommended action

An1 Mechanical wear out of most-used components in the washing machine (washing drum, 
brakes to stop the drum, and related components).

S1 or S2 or  
S3 or S4

Mechanical control, adjustment, 
or replacement of components 
is needed

An5 Abnormal temperature values and heating time deviation, with potentially sporadic 
device terminations. This can be caused by overheating or under-heating issues.

S11, S12, S13 Water heater element should be 
cleaned or replaced
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we manually engineer anomalous sensor activity. For 
testing purposes, we generated more complex but con
sistent MoLD-Ss. The logic behind data stream genera
tion is presented in Table 2. To test the functionality of 
the merging MoLD-Ss recommendation module, we 
implemented the mentioned reasoning and learning pro
cedures as hidden operations behind a graphical user 
interface (GUI) developed in Matlab. We adopted the 
definition that refers to it as a software platform designed 
with visual components (icons, windows, menus, etc.) 
allowing a user to easily navigate and interact with inputs 
and outputs requirements [69]. We decided to imple
ment a simple GUI to visualize this module for the 
designer from his or her point of view (of course the 
interface of the actual data analytics toolbox will be 
much more sophisticated). The main screen of this mod
ule includes two actions (two possible buttons to press 

by the designer): (i) “Data” containing one option called 
“Select Sensors” for choosing which sensors to analyze, 
since our sensors are already located in the platform, and 
(ii) “About,” which displays general information about the 
function. A designer who clicks on “Select Sensors” is 
moved to the next screen, which displays available 
MoLD-Ss with their corresponding codes and a short 
description of each. At this level, the designer chooses 
which sensors to merge (the option “Select all” is also 
available), or chooses one sensor if he or she only wants 
to analyze a particular sensor, and then presses “OK” to 
continue with the visualization or “Cancel” to return to 
the initial screen. After the designer’s choice (we assume 
that the designer selects S11, S12, and S13), the MoLD-Ss 
are transferred to be analyzed. The following screen is 
called “Visualization,” see Figure 5. Once the inspection of 
represented plots is completed, the designer needs to 

Table 2. Sample of normal and faulty behaviors for each of some sensors.
Sensor 
code Normal behavior Faulty behavior

S1 Constant force during the whole washing 
cycle.

Abnormal force at some moments during the washing cycle.

S4 Steadily increasing force during the brake 
application.

A large Gaussian noise is added to the force value. It models a loose contact between the 
brake shoe and the surface.

Figure 5. “Select data stream(s)” screen of the recommendation module for merging MoLD-Ss.
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press “×” to return to the previous window to select the 
button to merge data streams.

The merging is performed in the background of the 
GUI. The designer is only presented with a final textual 
recommendation within seconds. The recommenda
tion message contains an explanation of detected 
anomalies and their sensors, as well as the recommen
dation (or action plan) semantically related to 
anomalies from different sensors. The message com
municated based on the assumed choices presented 
above is displayed in Figure 6. As can be seen in this 
figure, S11 is not mentioned in the message. This 
means that no anomalous behavior was detected 
related to that specific sensor, but its semantic mean
ing was used in delivering the recommendation. If the 
user of the washing machine had turned on and off the 
device more often than, S11 would have reflected that, 
and consequently serious measures and different 
recommendation would be advised. Perhaps not only 
the water heater element is an issue but the whole 
electrical system of the machine is failing. To check the 
relevance of the analyses, we repeated the merging 
three times for the same sensors, and we obtained the 
same anomalies with the same recommendation.

To sum up, the functionality testing proved that 
the objective set for this module was achieved. From 
a computational point of view, the algorithms 
designed for this function and the ones taken from 
the literature were able to be converted, showing no 
computational errors. It was observed that the rea
soning and learning from MoLD-Ss played 
a significant role in the formulation of the recom
mendation message to be delivered to the designer. 
The message covers not only the detected anomalies 
but also recommends certain actions to be consid
ered by the designer. We concluded that, at the 
beginning of the implementation, the conditions 
set for the conversion of faulty behaviors of the 
MoLD-Ss into a concrete action plan for the designer 
were correctly elaborated.

7. Discussion

The functionality testing proved that the computa
tional mechanism was correctly implemented. From 
a computational point of view, the integration of the 
newly designed algorithms and the ones taken from 
the literature did not lead to any inconsistences. Based 
on the results shown in Figure 6, it was observed that 
reasoning with and learning from the MoLD-Ss, as 
semantic operations, played a significant role in the 
formulation of the recommendation messages deliv
ered to the designer. The message could cover not 
only the detected anomalies but could also recom
mend certain actions for the designer. Here, the con
ditions concerning the conversion of faulty behaviors 
of the MoLD-Ss into a concrete action plan for the 
designer were correctly incorporated in the computa
tional mechanism. The function for merging MoLD-Ss 
(i) provides more information than that is conveyed by 
the sensors’ data individually, (ii) reflects the condition 
of the product more realistically, (iii) communicates 
information about the product while it is in use by 
the customer (iv) reduces the time and effort of sensor 
analyses, and (v) provides recommendation as an 
action plan for the product at hand. Offering this func
tion to product designers will allow them to continu
ally analyze the behaviors of their products and to 
come up with enhancement solutions in a short while.

However, based on the analysis of the research 
activities and the testing of the implemented function 
some limitations were recognized: The lack of publica
tions concerning a comprehensive understanding of 
the procedure of semantic inferring in the context of 
product enhancement made it difficult to select and 
deploy the best algorithms and techniques. The need 
to incorporate prior knowledge about product anoma
lies resulted in an inclination in the implementation 
toward maintenance type of action plans. The devel
opment of algorithms which are able to automatically 
generate rules and to be aware of the dynamic 

Figure 6. Recommendation message communicated to the designer.
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changes in context and data streams, was supported 
by preprogrammed means. This reduces the time and 
efforts needed for building scenarios and training the 
algorithms. Although using simulated MoLD-Ss 
allowed us to meet the objective of testing the pilot 
implementation’s functionality, the stimulated MoLD- 
Ss could not fully substitute for or replicate real-life 
MoLD-Ss, as they did not account for the actual beha
vior of sensors in their intended environment. 
Consequently, the performance or robustness of the 
computation during the functionality testing was not 
evaluated. This means that the pilot implementation 
was not exposed to the unexpected data patterns. 
With real data streams, it is possible that the proces
sing takes longer time or exhibits inconsistencies. 
Transitioning from simulated to real-world data pre
sents several challenges, primarily due to: (1) dynamic 
variation in data streams, where differences between 
simulated and real-world datasets can cause reduced 
model performance due to sample selection bias [70]; 
(2) sensor noise and data quality, as real-world data 
often contains noise and artifacts that are absent in 
simulations [71]; and (3) patterns relevance, where 
patterns that are significant in simulated data may 
lose their importance in real-world settings [71]. To 
address these issues, fine-tuning pre-trained algo
rithms with a small subset of real-world data can 
enhance their ability to generalize while retaining the 
insights learned from simulations [71]. For sensor noise 
and missing data, employing preprocessing and noise 
reduction techniques is crucial [72,73]. To tackle pat
terns relevance, reevaluating pattern selection and 
extraction methods is necessary [74]. The literature 
on bridging the gap between simulated and real- 
world scenarios highlights the value of using simulated 
data to build predictive models, especially when real- 
world data is limited or difficult to collect [71]. 
Available articles provide a step-by-step guide for tran
sitioning from simulated to real-world data [75,76]. For 
this research, the transition will be documented in 
follow-up research.

Another limitation concerns the usage of the deep 
learning toolbox of Matlab for the implementation of 
the computational function. The fact of the matter is 
that it made implementation process more time- 
consuming in comparison with other computational 
solutions such as offered by Python in which pre- 
defined operations can be adapted or even directly 
used. The last observed limitation of this work is its 
focus solely on functionality testing that reflects also 
on the feasibility of the function, with limited attention 
to the performance, computational robustness, and 
efficiency of the chosen algorithms. The algorithms 
selected were considered adequate for demonstrating 
functional viability, but their selection did not prioritize 
metrics such as execution speed, scalability, or resili
ence under different conditions. Given more time, 

additional validation dimensions such as structural, 
performance, applicability and utility could have been 
considered. In addition, the validation approach could 
be expanded to incorporate properness or automated 
validation, further ensuring the reliability, consistency, 
and replicability of the results across multiple settings.

8. Conclusions

In this paper, we presented the functional, architectural, 
algorithmic, and computational considerations in imple
menting the recommendation function for merging 
MoLD-Ss. This function is one of the functions for a next- 
generation SDATB that we are busy developing. First, we 
identified, listed, and detailed the algorithms. We then 
collected, from the literature and the web, information 
about the prototype-level implementation and the com
putational techniques to build the SDATB functions. This 
set of knowledge was enough to realize and implement 
these functions. Then, we validated the functionality and 
execution of the algorithms. We built an application case 
involving enhancement of white goods (a connected 
washing machine) by product designers and used it in 
computationally implementing the function in Matlab 
software. This not only allowed us to test the function
ality of the module but also provided information about 
the feasibility of the components of the function.

The recommendation function for merging MoLD- 
Ss offers two levels of semantic inferring (i) the level of 
merging, and (ii) the level of decision-making. 
Technically, the former was fulfilled by employing 
a proper neural network architecture, using its atten
tion layer, and clustering past knowledge with triplet 
network embedding. The reasoning by the computa
tional function provides opportunities for constructing 
implicit knowledge graphs, learning the statistical 
model, and separating related and unrelated behavior 
patterns. The multidimensional latent space captures 
the similarity considering multiple criteria, and 
exploration of knowledge clusters can happen in 
a non-constrained way. The recommendation function 
is a data-driven function, capable of capturing seman
tics. It can be seen as a knowledge construction with 
the help of behavior encoder. It is useful for helping 
designers understand unsupervised data and for asses
sing large volumes of sensor information, and is able of 
processing vast amounts of data streams to discover 
unusual behavior in MoLD-Ss.

The implementation of such a function will 
reduce decision-making time for product mainte
nance, repair, and enhancement. It not only identi
fies anomalies related to products but also provides 
a recommended action plan with the next steps to 
adjust the product. The implemented function is 
capable of deriving a simple yet efficient knowl
edge representation with the assistance of 
a triplet network. Furthermore, by merging MoLD- 

JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING 13



Ss, more comprehensive information can be pro
vided than by each sensor individually. Therefore, 
the implementation of the proposed recommenda
tion function offers practical benefits. It renders the 
actual state and condition of the product transpar
ent and communicates that information to the 
designer while the product is in use by its owner. 
The realized function provides a semantically cor
rect recommendation to the designer based on 
product anomalies. It minimizes the time and effort 
required for processing data streams and facilitates 
a swift decision-making process for product 
enhancements.

Being design-focused, this conducted study pri
marily focuses on the functional validity, and proof 
of concept of the recommendation function rather 
than an exhaustive computational performance ana
lysis. The primary goal is to validate the feasibility 
and the usability of the proposed function, particu
larly in supporting product designers in decision- 
making based on sensor data. While computational 
methods are employed to support the function’s 
operation, an in-depth evaluation of computational 
efficiency, algorithmic complexity, and optimization 
aspects is beyond the scope of this paper. These 
technical aspects will be comprehensively analyzed 
in future research.
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Appendix. Some of the algorithms used for the recommendation module for merging MoLD-Ss

Algorithm 10. Estimate probability of the anomaly

Inputs: I1 = h

I2 = q
I3 = tau

Outputs: O1 = p, N dimensional vector specifying the probability that N exhibits anomalous behavior

1: for i ¼ 1 : N

2:   p ið Þ  0:0;

3:   for j ¼ 1 : M

4:    cur p ¼ σ hi � qj
0

� �
;

5:    if cur p> p ið Þ

6:     p ið Þ  cur p;

7:    end
8:    if p ið Þ> tau

9:     break;
10:    end
11:  end
12: end
13: Return struct(‘p,’ p)

Algorithm 7. Estimate sensors importance

Inputs: I1 = Matrix X
I2 = B

Outputs: O1= h, latent representation of behavior described by the current window of features

O2 = a, sensors importance
1: t2 conv1 Xð Þ;

2: t16 leaky relu t2; 0:2ð Þ;

3: t15 conv2 t16ð Þ;

4: t7 leaky relu t15; 0:2ð Þ;

5: t6 attention t7ð Þ;
6: t8 reshape t6; B;M; 1ð Þ:�t7;

7: t9 behavior conv1 t8ð Þ;
8: t10 tanh reshape sum t9; 2ð Þ; B; 1; Lð Þð Þ;

9: Return struct(‘h,’ t10, ‘a,’ t6)

Algorithm 9. The estimate behavior descriptor based on the merged MoLD-Ss representation

Inputs: I1 = H

I2 = B’
Outputs: O1= J, loss value that is to be minimized with a gradient descent algorithm

O2= Acc, separation accuracy of triplets within specified margin
1: t1 sum H :; 1; :ð Þ: � H :; 2; :ð Þ; 3ð Þ � sum H :; 1; :ð Þ: � H :; 3; :ð Þ; 3ð Þ � B0;

2: t2 sigmoid t1ð Þ;

3: t3 � log t2ð Þ; % we maximize likelihood of t2 probability to be equal to 1
4: t4 meanðt2 > 0:5Þ;

5: Return struct(‘J,’ mean(t3, 1), ‘Acc,’ t4)
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Algorithm 12. Calculate distance between anomalies

Inputs: I1 = h
I2 = q

I3 = index
I4 = offset

I5 = amount
Outputs: O1 = d, distance between each of N anomalies and past case relevant to them

1: d  ½�

2:  for i 1 : N

3:   for j 0 : amount ið Þ � 1

4:    k  index offset ið Þ þ jð Þ;

5:    cur d σ hi � qk
0ð Þ;

6:    d offset ið Þ þ jð Þ  cur d;

7:   end
8:  end
9: Return struct(‘d,’ d)

Algorithm 11. Perform search for similar descriptors in database

Inputs: I1 = h
I2 = q
I3 = tau

Outputs: O1 = index, identifiers of relevant past anomalies descriptors
O2 = index, N dimensional vector specifying an offset of descriptors retrieved for a particular anomaly candidate specified by 

the array index
(Note that Matlab handles every variable as an array that can hold numbers. In order to access selected elements of an 
array, indexing is used).

O3 = amount, N dimensional vector specifying the number of retrieved the descriptors per anomaly candidate
1: index  ½�

2: offset  ½�

3: amount  ½�

4: for i 1 : N

5:   offset ið Þ  numel indexð Þ þ 1;

6:   amount ið Þ ¼ 0;

7:   for j  1 : M

8:    d σ hi � qj
0

� �
;

9:    if d > tau

10:     index offset ið Þ þ amount ið Þð Þ  j;

11:     amount ið Þ  amount ið Þ þ 1;

12:    end
13:   end
14: end
15: Return struct(‘index,’ index, ‘offset,’ offset, ‘amount,’ amount);
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Algorithm 14. Retrieve relevant anomalies based on their ranking and the corresponding sensors

Inputs: I1 = r_

I2 = r_index
I3 = offset
I4 = amount

I5 = C
I6 = K

Outputs: O1 = sensors, sensor identifiers for each past anomaly
O2 = sensors_offset, offset of each sensor influenced by anomalies (representing what anomalies to remove or to keep)

O3 = sensors_amount, number of sensors influenced by anomalies
O4 = anomaly, anomaly identifiers with up to K entries per each of the N anomaly candidates
O5 = anomaly_new_index, anomaly identifiers within distance d

O6 = anomaly_offset, offset of each anomaly group
O7 = anomaly_amount, size of each anomaly group

1: for i 1 : N

2:   anomaly offset ið Þ  numel anomalyð Þ;

3:   anomaly amount ið Þ  0;

4:   t 1 anomaly offset ið Þ;

5:   for j  0 : min amount ið Þ; Kð Þ � 1

6:    k  r offset ið Þ þ jð Þ;

7:    anomaly amount ið Þ  anomaly amount ið Þ þ 1;

8:    t 3 t 1þ j;

9:    anomaly t3ð Þ  k;

10:    anomaly new index t3ð Þ  r index offset ið Þ þ jð Þ;

11:    sensors offset t3ð Þ  numel sensorsð Þ;

12:    sensors amount t3ð Þ  0;

13:    for l  1 : L4

14:     if C k; lð Þ ¼ 1

15:      t 4 sensors amount t 3ð Þ;

16:      sensors t4ð Þ  l;

17:      sensors amount t3ð Þ  sensors amount t3ð Þ þ 1;

18:    end
19:   end
20: end
21: Returns struct(‘sensors,’ sensors, ‘sensors_offset,’ sensors_offset,

22:    ‘sensors_amount,’ sensors_amount, ‘anomaly,’ anomaly,
23:    ‘anomaly_offset,’ anomaly_offset, ‘anomaly_amount,’

24:    anomaly_amount);

Algorithm 13. Rank anomalies

Inputs: I1 = d
I2 = index
I3 = offset

I4 = amount
Outputs: O1 = r, ranked identifiers of past anomalies

O2 = r_index, list of the identifiers of anomalies in the distance vector d
1: for i 1 : N

2:  a offset ið Þ : offset ið Þ þ amount ið Þ � 1ð Þ;

3:  b; i½ �  sort að Þ;

4:  c index offset ið Þ : offset ið Þ þ amount ið Þ � 1ð Þ;

5:  r offset ið Þ : offset ið Þ þ amount ið Þ � 1ð Þ  c ið Þ;

6:  r indexðoffset ið Þ : offsetðÞ þ amount ið Þ � 1Þ  i;

7: end
8. Return struct(‘r,’ r, ‘r_index,’ r_index)
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Algorithm 15. Identification of possible actions (recommendation)

Inputs:  I1 = d
I2 = sensors
I3 = sensor_offset

I4 = sensors_amount
I5 = anomaly

I6 = anomaly_new_index
I7 = anomaly_offset

I8 = anomaly_amount
I9 = sensors_importance

Outputs: O1 = faulty_sensors, identifiers of the sensors that most likely cause anomaly

O2 = anomaly_action: identification of possible actions (recommendation) matching the most relevant past anomalies 
with the smallest distance to the detected anomaly candidate

1: best match � 1;

2: best distance þInf ;

3:   for i 1 : N

4:   if anomaly amount ið Þ ¼ 0

5:    continue;

6:   end
7:   k  anomaly new index anomaly offset ið Þð Þ;

8:   if d kð Þ< best distance

9:    best match i;

10:   best distance kð Þ;

11:  end
12: end
13: if best match ¼ � 1

14:  Return structðfaulty sensors0; fg; anomaly action0; fgÞ;

15: if sensors amount anomaly offset best matchð Þð Þ> 0

16:  t 1 sensors offset anomaly offset best matchð Þð Þ;

17:  t 2 sensors amoun anomaly offset best matchð Þð Þ;

18:  t 3 sensors t 1 : t 1þ t 2 � 1ð Þ;

19:  t 4 sensors importance t 3ð Þ;

20:  t5; t6½ �  sort t4ð Þ;

21:  faulty sensors t3 flip t6ð Þð Þ;

22: end
23: t 7 anomaly offset best matchð Þ;

24: t 8 anomaly amount best matchð Þ;

25: anomaly action anomaly t7 : t7 þ t8ð Þ;

26: Return ðfaulty sensors0; faulty sensors; anomaly action0;

anomaly actionÞ;
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