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Designing a recommendation function for semantic merging of middle-of-life

data streams
Fatima-Zahra Abou Eddahab-Burke

Faculty of Technology, Policy and Management, Delft University of Technology, Delft, The Netherlands

ABSTRACT

This paper addresses the challenge of handling large and diverse data streams from connected
products during middle-of-life use. Current data analytics tools struggle with such data,
necessitating the development of a crucial function in next-generation data analytics tools
that semantically merges and analyzes these streams collectively. The proposed function,
recommendation for semantic merging of middle-of-life, acquires, pre-processes, and merges
data from various streams, providing designers with enhanced product information. Tested on
simulated data streams of a washing machine enhancement case, the function offers more
comprehensive product insights than individual sensor analysis. Implementation of such
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a function could improve fidelity in reflecting product conditions, reduce sensor analysis
time and effort, and deliver an actionable plan for product improvement. Being design-
focused, this article addresses the functional validity and the proof of concept of the recom-
mendation function. Full computational analysis is out of this paper’'s scope and will be

addressed in future research.

1. Introduction

Traditional data analytics tools cannot be applied
directly to big data [1] or to managing big data to
extract practical knowledge from them [2]. This points
to the need for novel and sophisticated data analytics
tools. In a broader sense, what is actually needed is to
add smartness and learning capabilities to a wide
range of computer systems (including data analytics
tools and toolboxes) [3]. To cope with the knowledge
gap found in the literature concerning smart data
analytics toolboxes (SDATB), we integrated the find-
ings of a questionnaire-based interrogation (QBI) pre-
sented in [4] and the synthetic theory devised using
the axiomatic theory fusion (ATF) methodology pre-
sented in [5] whose combination provides require-
ments needed to build a SDATB. While the QBI
explored what white goods designers missed related
to the use and outputs of the marketed data analytics
tools in the context of possible product improvements,
its objective was to determine the data analytics
approaches and tools used by the participants and
for what purpose, as well as which of these tools they
found useful. The study also investigated designers’
expectations related to new data analytics tools and
the extra technical support they would like to have via
these tools. The ATF, a practical approach to theorizing
in a deductive manner [6] was used to merge five
independent theories needed to build
a comprehensive conceptual basis for a knowledge

platform for a next-generation data analytics toolbox
for white goods designers. These theories are: a theory
describing white goods designers’ needs [4], a theory
describing advanced technological enablers [7],
a theory explaining the evolution of data analytics [8],
a theory of combined creative problem solving [9] and
decision-making [10], and a theory about functional
and structural interoperability [11]. This integral body
of knowledge from the QBI and the theory deducted
from the application of the ATF was used to formulate
operational requirements for a next-generation data
analytics toolbox.

On the one hand, the QBI revealed that product
designers need SDATB that allow (i) step-by-step assis-
tance, (ii) advice in selecting means, (iii) multifold data
visualization, (iv) multichannel data management, (v)
blending middle-of-life (MoL) datasets, (vi) combining
qualitative and quantitative data, (v) permanent acces-
sibility, (vi) adaptation to users, (vii) case-based reason-
ing, and (viii) learning from applications. On the other
hand, the devised synthetic theory was more concrete
about the needs and the requirements for the SDATB.
This theory suggested that the SDATB should include
(i) context-driven decision-making, (ii) proactive deci-
sion-making, and (iii) algorithms able to process com-
plex data. In addition, it should (iv) allow semantic
interpretation, (v) blend MoL data (MoLD) and data-
sets, (vi) merge multiple MoL data streams (MoLD-S),
(vii) allow high-speed and high-volume storage, (viii)
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provide permanent accessibility, (ix) deliver advice to
designers based on their work context, (x) allow case-
based reasoning, (xi) process structured, semi- struc-
tured, and multi-structured MolLD, (xii) propose solu-
tions to solve difficult design problems, (xiii) predict
future outcomes, and (xiv) derive actionable insights.

The listed needs should all be included in the design
of an all-embracing SDATB that is tailored to designers
needs. In this perspective, we decided to start with
targeting the needs related to semantic interpretation
of data analytics outputs, merging of multiple MoLD-Ss
from different sources, predicting outcomes, and
deriving actionable insights. All of these needs can be
supported by one function of the SDATB that allows
semantic merging of middle-of-life data streams. This
function should not only computationally fuse MoLD-
Ss but should also provide recommendations to the
designer on what to do with the to-be-merged and
merged data streams and how to do it. Therefore, we
call it “recommendation for merging MoLD-Ss”, symbo-
lized by Fsgy, as it is the first conceptualized function.
The script “SB” stands for “smart basic” function. The
basic functions are considered operational functions
that are directly related to data analytics. Accordingly,
they are derived from fundamental requirements that
need to be fulfilled by the SDATB.

During recent decades, data fusion has evolved
rapidly in various application fields [12,13]. Data fusion
is a synthesis of incomplete information about envir-
onmental features provided by multiple data sources.
The goal is to establish a relatively consistent and
complete description through a more complete and
accurate set of information [14]. Processing multiple
concurrent data streams is an obvious task for the
SDATB. By including a multisource data fusion technol-
ogy, an SDATB can (i) eliminate redundant and contra-
dictory data obtained from various sources, (ii) reduce
the uncertainty of provided information, (iii) develop
a nearly complete description of the monitoring envir-
onment, and (iv) enhance the accuracy of decision-
making by intelligent systems [14]. It can also build
better situational awareness and reasoning capabil-
ities, as well as reduce its response time [15].

2. Literature study: collecting knowledge for
designing the recommendation function for
merging MoLD-Ss

Data merging is one aspect of data management [16].
Traditionally, it is interpreted as the total of theories,
techniques, and tools used to combine sensor data
into a common representational format [17]. Its main
purpose is to combine data from heterogeneous data
sources [18]. It is widely used in many application
domains, such as robotics, industrial manufacturing
systems, smart buildings, and healthcare [19]. Data
merging is a wide-ranging subject that gave root to

many different terminologies, which are often used
interchangeably [19]. It can be found in the literature
under different names, such as data fusion, data con-
solidation, or entity resolution [20].

The ultimate objective of data merging is to
improve the performance of a system by merging
complementary and/or redundant information to
reduce the uncertainties of measurements and to
obtain information that cannot be perceived within
one data source [21]. In some publications, the term
information fusion is considered a synonym for data
merging or fusion [22], whereas in other sources a clear
distinction is made between them. Data merging is
employed for raw data (not processed), and informa-
tion fusion is used to define processed data [23].
Accordingly, information implies a higher semantic
level than data [24]. Several types of data merging
and fusion have been the focus of many research
projects, such as decision fusion, data combination,
data aggregation, sensor fusion, and multi-sensor
data fusion [25].

In our research, we are interested in benefiting from
processing MoLD, since research has shown interest in
analyzing such rich use, service and maintenance data
[26]. This data is collected when the product is cur-
rently in use by the consumer. It includes failure, per-
formance, product age, operating environment, usage
intensity, refund and replacement data as well as main-
tenance reports [27]. Such data allows observation of
conditions and behaviors of products during use by
the costumer [28]. Collecting MoLD encourages
a lifecycle-oriented approach to incremental product
design that continuously enhances products and ser-
vices [29]. Collecting MoLD allows for improvement of
a product or product operations in various ways, such
as design enhancements and the optimization of
maintenance operations [30]. Consequently, the mer-
ging concerns data collected from product sensors
while the product is in use. This type of merging is
called multi-sensor data fusion [31] or multi-sensor
data merging (MSDM) [32], which is part of multi-
source data fusion [33]. MSDM is rapidly evolving
[33]. It refers to the process of integrating and combin-
ing information from multiple sensors to achieve
a more comprehensive and reliable insights than
what individual sensors can provide on their own
[25]. Accordingly, its essence is combining data from
multiple sources, and it helps provide access to infor-
mation that cannot be provided by a single sensor or
whose quality exceeds that of the information drawn
from a single sensor [34]. The core principles of MSDM
include sensor integration, data preprocessing, feature
extraction, and fusion algorithms [35]. Sensor integra-
tion involves employing diverse types of sensors con-
currently, each contributing distinct information about
the target system. The combination of data from multi-
ple sensors enables a more comprehensive



understanding of the system, thereby enhancing accu-
racy and reliability across different applications [36].
Data preprocessing is about preparing the data col-
lected from the sensors for the merging by applying
cleaning, filtering, then normalization techniques. This
allows removal of noise, outliers and inconsistencies in
the data [37]. Feature extraction involves determining
relevant features from the preprocessed sensor data.
These features represent informative inputs for the
fusion algorithms, that support pattern recognition
and decision-making tasks [38]. Finally, the fusion/mer-
ging algorithm that operates on 3 levels, data-level
also called signal or sensor-level, feature level and
decision-making level [39]. These levels refer succes-
sively to low, middle and high levels [40]. Low-level
merging applies to raw data coming directly from
sensors and is used for knowledge construction or for
cooperating with other nodes on complementary
activities. It can be realized by a low-level abstraction
or by performing local operations in a temporal
domain [41]. It's primary advantage is its ability to
fully utilize the source data and mitigate information
loss [42]. However, the processing of large volumes of
raw data can be computationally demanding, leading
to long processing time. If the aim is to analyze real-
time data, then this low-level merging should not be
chosen due to the extensive processing requirements
of large datasets. Also, having a variety of sensors with
potentially different characteristics, data types etc.
makes the fusion task even more challenging.
Methods of sensor-level fusion include Kalman filter
[43], weighted average [44], machine-learning based
fusion schemes [45], and deep-learning-based fusion
schemes [46]. Middle-level merging works with the
features of datasets and flows [47]. It is performed on
preprocessed data or on information obtained by low-
level merging of data. It can be realized by implement-
ing feature extraction, pattern matching, or redundant
computation operations [48]. This type of merging
extracts relevant features from raw data obtained by
individual sensors and the best ones are then merged
as input to the output layer. Examples of techniques
used for this type of merging are principal component
analysis [49], canonical correlation analysis [50], and
deep learning-based fusion methods [51]. In compar-
ison with the previous type of fusion, this one allows
the loss of less information. This makes feature-level
fusion a favorite approach when it comes to situations
where accurate and informative features are crucial for
faults identification and characterization [52].
However, merging various features can result in
a feature vector with high dimensionality, which may
significantly increase the demand for computational
resources, making the merging process resource inten-
sive [53]. Also, not all features contribute equally to the
merging outcome, potentially causing information
loss. Accordingly, it is important to employ careful
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feature selection and weighting methods to optimize
the merging outcomes and minimize information loss
[35]. High-level entails unifying decisions obtained
from various sensors to achieve a final decision or
inference [54]. This type of merging is a sophisticated
process that is implemented by performing semantic
inference, executing complex reasoning, learning from
and making decisions on sensor data, or exploiting
cooperative patterns [55]. It provides significant flex-
ibility, which stands out as one of its primary advan-
tages [56]. It facilitates the use of different merging
rules and algorithms based on specific application
requirements, allowing the merging process to adjust
to various scenarios and accommodate the different
sensors characteristics and data sources [35].
Furthermore, it has robust anti-inference performance
as it can handle conflicting information extracted from
various sensors. By combining decisions from various
sources, it can derive relatively reliable conclusions
even when individual sensors produce inconsistent or
contradictory outputs [57]. Approach of decision-level
fusion includes fuzzy logic [58], neural networks [59]
and Dempster-Shafer theory [60]. High-level data mer-
ging is computationally challenging and is difficult to
realize for two reasons [61]. First, inferring semantic
knowledge requires transforming a low-level represen-
tation of data and information into a higher-level
representation. This transformation, however, typically
suffers from the so-called information deficit. Second,
having a system understand semantics assumes the
system has (i) some manifestation of consciousness,
(i) a purpose, and (iii) an awareness of its surrounding
and the state of knowledge. These characteristics are
strongly related to human beings. Moreover, in such
fusion, the decision-making system or the classifier are
not allowed to train on the entire data simultaneously,
as it relies only on the decisions provided from the
individual sensors. This limitation can lead to a less-
optimal performance if the decision-making systems
has no access to the full dataset [62].

MSDM have replaced traditional information fusion
systems, which involved user-owned and controlled
sensor networks. In addition, they established systems
and information architectures that are used for sensor
tasking, data acquisition, fusion, dissemination, and
decision-making [63]. It has been proved that using
MSDM approaches is the only way to get the required
amount of information with an expected level of intel-
ligence [19]. MSDM approaches allow (i) an increased
probability of detection, (ii) extension of spatial and
temporal coverage, (iii) reduction of ambiguity, and (iv)
improvement of system reliability and robustness [64].
Despite its multiple advantages, MSDM presents sev-
eral challenges related to data imperfection, outliers
and counterfeit data, conflicting data, data modality,
data correlation, data alignment and registration, data
association, processing framework, operational timing,
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static versus dynamic phenomena, data dimensional-
ity [65].

In our research, the objective was to elaborate
a support function (Fsg;) for merging MolLD-Ss. It
should merge computationally, semantically interre-
lated MoLD-Ss obtained from different sensors. In
doing so, it helps the user gain additional information
and knowledge from the streams to support decision-
making in various contexts of product enhancement.
After merging, the synthesized MoLD-S can be used to
infer additional semantic information that initially was
not conveyed by any one of the separate MolLD-Ss.
Streams may complement each other and may provide
additional semantic information when appropriate
inference techniques are applied. The proposed func-
tion, Fsgy, adopts the principles of high-level MSDM. It
contextualizes the information conveyed by MoLD-Ss
and analyzes the information’s meaning in that con-
text. In fact, it extends to one level higher since it
generates recommendations about possible enhance-
ments. This knowledge can be deduced by analyzing
the merged data streams in a specific context and can
be delivered to the designer as a displayed message.
Such a function is a genuine enabler of the smartness
of the SDATB.

3. Conceptualization of the recommendation
function for merging MoLD-Ss

The computational implementation of the function
Fsgi for merging data streams has three elements.
Symbolically, they can be expressed as

Fsg1 = Fsgi1(Dlsg1, CPsg1,SOsg1), (M

where Fsg; is the basic function providing recommen-
dations for merging MoLD-Ss, Dlsg; are the inputs by
the designer (MoLD-Ss), CPsg; is the computational
mechanism, and SOsg; represents the outputs
expected from the SDATB after execution of Fsgq (i.e.
messages displayed to the designer about the results
of the MoLD-Ss merging). The necessary computa-
tional procedures can be defined if Fsg;, as a main
basic function, is decomposed to lower-level functions
and related requirements are considered. The inter-
mediate lower-level functions of Fsg; were already
presented in the previous section. The underlying pro-
cess is as follows. First, the SDATB acquires the MoLD-
Ss selected for merging from the corresponding sen-
sors in real time. Then, after the designer choses
streams for further analysis, those streams are prepro-
cessed individually based on their data. The prepro-
cessed MoLD-Ss are then fused together. The following
step focuses on detecting anomalies in the merged
data streams and determines what might be wrong
with the product based on data. Once the meaning is
given to the fused MoLD-Ss, the SDATB derives recom-
mendations on what should be done with the product

(such as enhancement possibilities). Finally, this
recommendation is sent to the designer as a message
appearing on the computer screen.

The procedural steps of merging MoLD-Ss (function
Fsgq) are shown in Figure 1. This function decomposes
to five sub-functions. A lower-level functional decom-
position of Fsg; is summarized in Figure 2. We have
assumed that the designer specifies for the SDATB
what data streams will need to be merged. Another
assumption is that only temporally finite data streams
are handled by the SDATB. This latter assumption facil-
itates the application of machine learning. The sub-
function Fegq 1 locates the considered sensors on the
product and forwards the data streams provided by
them to the SDATB. Our assumption is that the for-
warded MoLD-Ss may be stored not only on the back-
ground storage devices of the SDATB host computer
but also on a separate storage device. To get
a reconfirmation from the designer, sub-function
Fsg1,2 presents the data streams to the designer using
various means to visualize the MoLD-Ss (for example,
plots or histograms). In addition, the sub-function pre-
processes the single-modality data streams by select-
ing particular processing rules. As an example, some
rules can eliminate parts or the whole of redundant
data streams that are not likely to affect the merging.
To avoid the need to transfer and process vast
amounts of idle information, the rules may operatio-
nalize up/down sampling of values, value transforma-
tion, and reducing noise in the data to decrease
unnecessary variance of the data to be processed.
The sub-function Fsg;, applies a kind of configured
data processing, which is required because of the time-
consuming nature of processing the data. In this con-
text, “configured” indicates that, for complicated data
streams with unknown patterns, comprehensive struc-
tural preprocessing (filtering or ordering) is applied,
whereas for less complicated data streams, preproces-
sing is simply data normalization.

The computational merging of data streams is done
by sub-function Fsg, 3. The principle of fusion is corre-
lation based on the time stamps of data in the streams.
First, the sub-function generates intermediate repre-
sentations to reduce time-dependent data to

1 Fspu,1: Acquire real-time sensor MoLD-Ss

[~ Fsp1,2+ Pre-process selected MoLD-Ss individually

Fgg; Fgp13: Merge information from chosen MoLD-Ss

[ Fsp1,4 Derive recommendation based on anomalies

— Fsp1,5: Message derived recommendation to designer

Figure 1. High-level functional decomposition of Fsg;.
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Figure 2. Low-level functional decomposition of Fsg;.

a compact fixed-length vector. Then it combines the
data streams and generates a behavior descriptor
based on the merged MoLD-Ss. To facilitate the appli-
cation of machine learning, subfunction Fsg; 3 embeds
the fused sensor data streams into a so-called latent
space (also called a hidden space). In this space, data is
mapped in such a manner that similar data points are
close to each other. In the case of neural network-
based machine learning, features are extracted
through a number of layers of the network architec-
ture, and the operation (function) that maps the input
before the last layer projects into the latent space. In
other words, the features lie in the latent space. The
latent space representations can be used to transform
complex forms of raw data into simpler forms that are
easier to analyze. Mapping to the latent space also
helps in clustering similar cases.

The data streams may contain anomalies regarding
the operation of the product in question. The sub-
function Fsgq 4 (i) detects anomalies in the merged
data streams, (ii) matches the anomalies to pre-
programed knowledge in the SDATB, (iii) orders the
anomalies based on their similarity, (iv) makes a report
on all of the ordered anomalies based on the merged
MoLD-Ss, and (v) converts the outcome into a specific
recommendation. The last sub-function, Fsgqs, (i)
retrieves a template for message construction, (ii) con-
structs a message for the designer according to the
recommendation, (iii) uses the retrieved template to
construct the message to be delivered to the designer,
and (iv) communicates the message to the designer

relating what is improper with the product according
to the merged data. In the case of the SDATB, this can
also be followed by a recommendation for actions to
take to solve detected anomalies in product operation,
although this step is not indicated in Figure 2.

To realize the function of Fsgq 1, the SDATB needs to
(i) locate the sensors producing the MoLD-Ss, (ii) iden-
tify and access the data streams to be merged, and {iii)
import these streams from their storage place (for
example, the cloud) to the SDATB. Moving MoLD-Ss
from external storage into the SDATB is a common
procedure (several commercial tools allow retrieval of
data streams from external storage). However, current
software tools do not allow the collection of real-time
data streams. Consequently, realization of Fsgq 4
requires the development of new algorithms. Since
we had no opportunity to have access to an appro-
priate sensor network and the multiple data streams
generated by its nodes, we provided the necessary
data files using computational simulation. The con-
structed files were used both in the algorithm devel-
opment stage and in the validation of the algorithms.
What it means is that we are not dealing with function
Fsg1,1 here, since the data streams have been included
in the toolbox database directly. We assumed that, in
a real-life situation, the SDATB would have access to
sensors and would be able to receive multiple MoLD-
Ss. These data streams are checked before they are
used for merging. The SDATB offers the option of
visualizing all data streams received, and the designer
can select varying numbers of the MoLD-Ss for analysis
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and merging by the SDATB. The basis of merging is the
“internal” affordance (semantic cohesion potential).
Anomalies detected in the fused streams are identified
and included in the results.

Form a software engineering point of view, the main
functions of the SDATB are provided by various mod-
ules. Specification of the modules and determining the
computational algorithms included in the modules is
the task of architecting. For instance, two external com-
ponents are needed for the architecture of the main
function Fsgy. One of them is a system user interface,
which enables communication between the designer
and the SDATB. It also transfers the inputs and outputs
to and from the toolbox. Another component is the
database, also referred to as the knowledge warehouse.
In addition to data, it stores the rules and conditions for
analyses, as well as the results of merged data streams.

Figure 3 shows the overall conceptual architecture of
the MoLD-Ss merging module of the SDATB. The main
constituents are (i) the search engine, (ii) the database,
(iii) the preprocessing unit, (iv) the merging unit, (v) the
recommendation unit, (vi) the explorer, (vii) the query
manager, and (viii) the user interface. The lower-level
components of the units are shown in Figure 3. The
MoLD-Ss explorer, used for exploring the data streams
to be analyzed, is a kind of entry point to this module.
The MoLD-Ss preprocessing unit communicates with
the designer and receives and processes the individual
MoLD-Ss in the toolbox. The MoLD-Ss manager visua-
lizes the data streams stored in the database and makes
them available for the search engine. The preprocessing
configurator determines the preprocessing rules and
conditions to be applied to the individual streams by
the preprocessing executor. These two components use
knowledge already existing in the database. The pre-
processed MoLD-Ss are transferred to the merging unit,
which is composed of four components: (i) the merging

executor, (ii) the anomalies detector, (iii) the semantic
similarity calculator, and (iv) the anomalies organizer.
These components are closely related to the knowledge
stored in the database. The semantic similarity calcula-
tor compares the explored anomalies with those stored
to determine resemblances. The anomalies organizer
manages the weights and filters and organizes the
anomalies to be used by the recommendation unit.
The recommender agent converts the information gen-
erated by the above components into recommendation
contents. The message generator produces messages to
the designer using the recommendation contents.
Finally, the query manager converts the produced mes-
sage to human language and communicates it to the
designer as a recommendation via the user interface.

4. Algorithm-level specification of the
recommendation module for merging
MoLD-Ss

The recommendation module for merging MoLD-Ss is
reasonably novel. To realize it, three algorithms are
needed for its sub-function Fsg; 1. The first (algorithm
A, “request list of sensors”) is responsible for requesting
from the designer the list of sensors to be analyzed by
the SDATB. The second (algorithm A, “request a subset
of devices supporting provided sensors”) requests
access to data streams and their locations. The third
(algorithm A; “fetch MoLD-Ss to the SDATB") is respon-
sible for acquiring MoLD-Ss from remote storage (for
example, a cloud environment) and moving them to the
SDATB and its local storage. For sub-function Fsg; 5, two
algorithms are needed. One is responsible for providing
means for visualizations (plotting) to comprehend data
despite their raw format (algorithm A, “plot sensors’
data streams as time series for selected data streams”).
The second one (algorithm As “apply time-series

[ System user interface j
B S -

80 [ )
g Query ) (—~ !
2@+ ( MoLD-S manager for < i
g ! explorer recommendation °§ % }
& il
g ) ) Merging unit e8| 8 |
=R MoLD-S pre-processing unit E }
%’ 5 3 MoLD-S Pre-. Pre-_ Merging Anomalies ssl(:;?ﬁlnr:g Anomalies T a |
g0 ! il processing processing executer detector SRR organizer & !
£ 2 g configurator executor S ||
§ ! y 7 ™ © S| = !
2 2E| & |
- o | B
B ! [ Search engine J e ]
s S

Database j

Figure 3. Overall conceptual architecture of the recommendation module for merging middle-of-life data streams.



normalization for each MoLD-S") is responsible for the
normalization of MoLD-Ss so the data streams can be
properly used for further analyses. This algorithm is
needed to remove anomalies that might complicate
the analysis, such as by (i) deleting data (e.g. removing
correlated time series), (ii) inserting more information
(e.g. applying one hot encoding for categorical fea-
tures), or (iii) updating existing information (e.g. clipping
outliers).

For sub-function Fsg; 3, four algorithms are needed.
Algorithm Ag “process single stream time series with
statistical model” is responsible for processing normalized
single MoLD-Ss time series using a statistical model. This is
needed to generate length-invariant representations of
MoLD-Ss to reduce computation costs in the upcoming
steps. Algorithm A “estimate sensors’ importance” calcu-
lates or estimates the importance of the sensors to ana-
lyze. This is only needed when a large number of sensors
are to be merged and analyzed. By considering a lower
number of relevant data streams, the interpretation of
predictions is improved. The outcomes of this steps are
used in Algorithm Ag “Merge MoLD-Ss based on fusion
weights,” which is an algorithm run in Matlab. This algo-
rithm has been constructed to merge data streams that
are obtained from various sensors, but which are cap-
tured in the same time frame. The developed algorithms
are for semantic fusion based on estimating anomalies
and performing similar descriptor searches in the data-
base. Algorithm Ag considers the weights allocated to
sensors and selects only those with the highest weight
values for merging. This means we order the sensors
according to their estimated fusion weights and consider
a portion of the most relevant MoLD-Ss in the merging.
Algorithm Ag “estimate behavior descriptor based on
merged MoLD-Ss representation” processes the MolLD-S
jointly and embeds information into a new latent space
(or representation). In such a space, a distance reflects the
degree of semantic similarity. The behavior descriptor is
sensor independent and describes the behavior indepen-
dently from the source.

To realize sub-function Fsg; 4, Six algorithms are
needed. Algorithm A;, “estimate probability of anom-
aly” is responsible for estimating anomalies probabil-
ity. It is a preliminary step to a more thorough search
through the knowledge database containing a list of
pre-programmed anomalies. It consists of calculating
the distance to knowledge anomalies in the database.
Algorithm A;; “perform similar descriptor search in
database” gathers similar past anomalies from the
database. It performs a search for similar descriptors,
iterating through the pairs of the detected anomalies
and the past ones. Algorithm A;, “calculate distance
between anomalies” calculates the pairwise distance
between the detected and the past anomalies. These
anomalies are ranked via Algorithm A;3 “rank anomaly
descriptors by their distance from a requested one”
and then retrieved using Algorithm A, “retrieve
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relevant anomalies based on ranking as well as their
corresponding sensors.” Algorithm A;5 “merge rele-
vant anomalies into an action plan (recommendation)”
executes the semantic merging of the retrieved
anomalies and generates a recommendation, which
contains an action plan detailing what needs to be
done with the product. Realizing sub-function Feg; 5
requires five algorithms. Algorithm A;¢ “select recom-
mendation message template” selects the template for
the recommendation message from the database.
Algorithms A;; “convert individual anomalies into
recommendation message component” and A,z “con-
vert the action plan into recommendation message
component” successively convert the detected anoma-
lies and the action plan into components of the recom-
mendation message. Algorithm A, “order
recommendation message components” executes the
ordering of the appearance of individual anomalies
and includes an action plan in the recommendation
message. Algorithm A, “integrate recommendation
message components according to template” inte-
grates the ordered components of the message into
the template to provide the recommendation message
to be presented to the designer.

5. Implementation of the recommendation
module for merging MoLD-Ss

To realize the merging MoLD-Ss recommendation
module, the algorithms presented previously need to
be implemented. Some of these algorithms (A;, A, As,
Ag, etc.) are either developed by software tools such as
Matlab, Python, or SPSS, or they are described in detail
in the literature. To avoid redundances, in this paper,
we are detailing only the new algorithms that we
designed to realize the proposed function.

Algorithm 4. Plot sensors data streams as time series for selected data
streams.

Inputs: 11 =D
12 = SensorNames function

13 = Requestlds function. Ul method to request a subset of
sensors

14 = PlotTimesseries
Outputs: PlotTimeseries(A, SensorNames)
1: sel < Requestlds(SensorNames); % obtains sensors selected by user
3: if numel(sel) == 0
4:  break;
5:end
6: A — zeros(numel(sel), 256); % output matrix to pass into Ul method
7:for i — 1 : numel(sel)

8: t18 « randi([1,2]); % randomly select either time series are
faulty or not

9: t17 — randi([1, 5]); % randomly select one of S time series
instances

10:  A(i,:) < squeeze(D(i, t18,t17,:));
11: end
12: Return PlotTimeseries(A, SensorNames)
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Algorithm A, has been developed to generate an
interface for MoLD-Ss visualization. For this algorithm,
we need to define the following: (i) Matrix D of M x 2x
S x T dimension with instances of sensors’ time-series
data. The first dimension M corresponds to sensor
number, the second dimension corresponds to either
normal behavior (-1) or faulty behavior (-2), and the
third dimension corresponds to S =256 instances of
different windows of sensor data, each of which has
T =256 time steps (representing the fourth dimension).
(ii) SensorsNames is a function providing sensor
descriptions for each of the M available sensors. (iii)
The Requestlds function is responsible for visualizing
a chosen set of sensors at the same time. Once the
visualization is finished, the function returns an empty
set (nothing to visualize). (iv) The PlotTimeseries func-
tion is a user interface method to display multiple
sensor data streams within the same window in
a certain time range.

To provide a recommendation based on a multi-
stream dataset D,” we specify annotations to past
anomalies. Descriptions of past anomalies need to be
specified. Let us consider a window of aligned multi-
modal features X ={X(t, k)}, where t=[a, b] and k=[1,
M]. M is the total number of selected sensors. The
interval [a, b] represents the time boundaries of the
anomalous behavior of the historical data of some
device. Since we considered the triplet loss function
for the ANN used for clustering a predefined set of
classes, we assigned unique labels to the anomalies.
Furthermore, we defined a set of incidents for each
anomaly to allow the model to have sufficient data
during the training and to avoid overfitting. The triplet
loss training can fit a dataset of 8 million unique labels
and achieving >95% classification accuracy [66]. The
neural networks architecture that was considered for
this purpose can be described as the algorithm respon-
sible for sensor importance weight predictions A, (see
Appendix) for forward pass (which refers to the calcu-
lation process and values of the output layers from the
input data). To build the algorithm, we needed to
define a real = valued matrix X with B x M x T size,
where M represents multimodal features of each win-
dow of frames (sliding window), T represents the time
frame, and B is the batch size.

To train the model, we used a specific triplet loss
algorithm, Ag (see Appendix), known in the literature
as a hinge triplet loss algorithm [67]. This algorithm
uses a hinge function to create a fixed margin between
the anchor-positive difference and the anchor-
negative difference. The following inputs had to be
defined: (i) H, a real-valued matrix of B x 3 X
L dimension, where B is the batch size, 3 represents
two triplets of same label behavior representations
and one outlier, and L is a latent representation dimen-
sion. H must be constrained within the boundaries
[-1, 1]; otherwise, either a tanh(.) activation function

can be applied, or rescaling of the vector values can be
considered. (ii) B’, a separation margin to control how
much nonrelevant behavior should be embedded in
the latent space according to cosine similarity distance.
The triplet loss presented in Algorithm Ag has been
optimized using stochastic gradient descent (SGD)
[68]. This algorithm optimizes the triplet loss by chan-
ging the parameters of the neural network. During the
stochastic gradient descent procedure, we sampled
a batch of triplets to perform the optimization step.

After introducing the behavior descriptors of multi-
ple sensor data streams, we developed Algorithm A;q
(see Appendix) to select potential candidates for an
anomaly. For this purpose, three inputs have to be
defined: (i) h, a matrix of size N x L; of behavior descrip-
tors to analyze; (ii) g, a matrix of size M x L3 of behavior
descriptors in the database of past anomalies; and (ii)
tau, the upper bound of the confidence interval. Given
the vector p, we select as candidates only those entries
for which p; > 1, where T is the upper bound of con-
fidence interval for normal behavior. Algorithm A;q
filters out normal cases based on the large number of
descriptors, which are generated by the sliding win-
dow approach working on time-series data. A;q was
also intended to detect anomalies. Another algorithm
was developed for similarity-based searching A;;,
which is based on similarity estimation. This was
done because, in addition to detecting an anomaly,
we must also retrieval a ranked list of relevant anoma-
lies for the computational processing. To develop
Algorithm A;; (see Appendix), the following inputs
were defined: (i) h, a matrix of size N x L3 of behavior
descriptors to find similar past cases; (ii) g, a matrix of
size M x Lz of behavior descriptors in the database of
past anomalies; and (iii) tau, the distance threshold for
descriptor retrieval.

After determining the possible anomaly candidates,
we used Algorithm A, (see Appendix) to calculate the
distances between these anomalies. This algorithm
requires the following inputs: (i) h, a matrix of size
N x L3 of behavior descriptors for anomaly candidates;
(i) g, a matrix of size M x L5 of behavior descriptors in
the database of past anomalies; (i) index, identifiers of
past anomalies; (iv) the offset of the first entry for each
of the N anomalies; and (v) the number of relevant past
cases discovered for each of the N anomalies. Given
the distances of past cases, they can be sorted to
generate a ranked list of anomalies. This is achieved
with Algorithm A;; (see Appendix). This algorithm
needs four inputs: (i) d, distances between anomalies
(expressing the degree of similarity between anoma-
lies and the past cases relevant to them); (ii) index,
identifiers of past anomalies; (iii) offset of the first
entry for each of the N anomalies; and (iv) the total
number of relevant past cases found for each of the
N anomalies. It represents the similarity between
anomalies and past cases relevant to them.



To generate a recommendation, we need to
obtain the top K anomalies per descriptor using
a ranked list of their identifiers. This can be done
with Algorithm A, (see Appendix). The inputs for
this algorithm are as follows: (i) r, a ranked list of
the identifiers of relevant anomalies; (ii) index, iden-
tifiers of anomalies in the distance vector d; (iii) off-
set of the first entry of each of the N anomalies; (iv)
C, an MxL, causality matrix of past anomalies
related to L, sensors; and (v) K, the total number of
the (most) relevant anomalies to be found for each
of the N candidate anomalies. The database contains
“if ... then” type rules, which are used in mapping
between anomalies and possible recommendations.
Algorithm A;s (see Appendix) is used to determine
the best match and what to extract. This algorithm
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requires the following inputs: (i) d, distance between
anomalies; (ii) sensors, sensor identifiers for each past
anomaly; (iii) sensor_offset, offset of each past anom-
aly sensors list; (iv) sensors_amount, number of each
past anomaly sensors, (v) anomaly, anomaly identi-
fiers with up to K entries for each of N anomaly
candidates; (vi) anomaly_new_index, anomaly identi-
fiers within retrieved distances of vector d; (vii)
anomaly_offset, offset of each anomaly group; (viii)
anomaly_amount, size of each anomaly group; and
(ix) sensors_importance, matrix of size NxL, of
importance weights extracted from attention layer
for each anomaly candidate. The other algorithms
not presented in this section are used during the
functional validation of the merging MoLD-Ss recom-
mendation module, discussed in Section 6.
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Figure 4. Computational workflow of the merging of middle-of-life data streams recommendation module.
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In addition to the developed algorithms, the compu-
tational workflow (CWF) is also an important character-
istic of this recommendation module for merging
MoLD-Ss. Ordering all computational steps, the CWF of
this module is shown in Figure 4. After the sensors are
located and the data streams for analysis and merging
are selected, the data contents of the MoLD-Ss are
transferred to the SDATB, as a step that completes the
analysis and the merging. In the next step, the data
contents are visualized and presented in various plotted
forms to the designer. The designer is given the oppor-
tunity to visualize the stream plots more than once.
Towards the merging, the sliding window algorithm is
used to iterate over the MoLD-Ss. The algorithm selects
a consequent time frame of data and normalizes the
data along the time axis. After this, the single-stream
encoder part of the used neural network is applied, and
single-sensor latent representation is generated in the
attention layer of the neural network.

In the next step of the data processing, the single-
sensor representation is rescaled according to the impor-
tance weights. These rescaled representations are conca-
tenated into a two-dimensional matrix, and the behavior
encoder part of the neural network is applied.
Furthermore, the toolbox queries the database to find
the past anomalies that are closest to the current descrip-
tor. If the distance to past anomalies stored in the data-
base is small, then a confidence interval including the
current time window and its descriptor is selected as an
anomaly candidate. Otherwise, it is skipped. When the
algorithm finds no additional windows to analyze, it starts
a similarity search. In this context, the descriptors are
compared to those stored in the SDATB database. The
distances between the anomaly pairs are estimated, and
the matches are sorted according to the distances.

After this step, a ranked list of anomaly candidates is
retrieved from the database. In combination with this,
the sensors relevant to past anomalies are obtained
based on the causality matrix. The anomaly candidate
that has the shortest distance to its first relevant past
anomaly is selected. In terms of the best candidate, this
module of the SDATB presents a ranked list of past
anomalies, as well as the sensors related to the past
anomalies ordered according to the importance
weights of the sensors. As a next step, the module
selects a template for generating a recommendation
message about the faulty sensors and possible
improvement patterns. Then, the fault descriptions
for each selected sensor and the improvement (or

maintenance) actions for each anomaly are retrieved.
These are subsequently arranged according to the
importance of the sensors and the anomaly distance
values and are used to generate the final recommen-
dation message, which includes both the identified
faults and the action plan. As the final computational
action, this message is displayed to the designer.

6. Validation of the recommendation module
for merging MoLD-Ss

To computationally implement the merging MoLD-Ss
module and test its functionality, we used our reference
application case of enhancing a connected washing
machine by white goods designer. Accordingly, we con-
sidered that this device has 13 sensors: S; “force gauge on
the axle bearings of the washing drum,” S, “force gauge
on transmission belt,” S “brake shoes position sensor,” S,
“force gauge on brake spring,” Ss “spinner time control
clock,” Sg “washing timer control clock,” S; “detector of
spinning R.P.M setting,” Sg water level indicator, So “inside
temperature sensor in the housing,” Sy, “solid deposition
indicator in the outlet of the waste water pipe,” Sq;
“switch on/off detector counter,” S;, “heater temperature
thermometer,” and S;3 “heating time counter.” Since we
do not have access to real data streams, we built fake
data streams (some streams have anomalies, others do
not) that do not assume multidimensional values for
single-sensor streams. To improve the performance of
the function, a model capable of reasoning on multi-
dimensional time series is needed. However, this requires
the adoption of a more complex neural network. In addi-
tion, we incorporated prior knowledge for product
anomalies in the data streams. This directed the focus
of the implemented function toward maintenance kind
of action plans. This was done to demonstrate how the
semantics from different sensors can be captured and
worked into an action plan. Developing algorithms able
to automatically generate rules and to be aware of the
dynamic changes in context and data streams will reduce
time and effort dedicated to scenario building and algo-
rithm training.

For the sake of the functionality testing, five anomalies
(An,, where x is the anomaly number) and their possible
action plans were built and described. We created
a mapping between the anomalies, related sensors, and
recommendation messages. Examples of the mapping
are presented in Table 1. Regardless of the anomaly
type, if a particular sensor must exhibit a faulty signal,

Table 1. Mapping sample between anomalies, sensors, and recommendation messages.

Anomaly Related
code Description SeNnsors Recommended action
An, Mechanical wear out of most-used components in the washing machine (washing drum, S; or S, or  Mechanical control, adjustment,
brakes to stop the drum, and related components). SsorS, or replacement of components
is needed
Ang Abnormal temperature values and heating time deviation, with potentially sporadic Sq11, S12. S13 - Water heater element should be

device terminations. This can be caused by overheating or under-heating issues.

cleaned or replaced
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Table 2. Sample of normal and faulty behaviors for each of some sensors.
Sensor
code Normal behavior Faulty behavior
Sy Constant force during the whole washing  Abnormal force at some moments during the washing cycle.
cycle.
Sa Steadily increasing force during the brake A large Gaussian noise is added to the force value. It models a loose contact between the

application. brake shoe and t

he surface.

we manually engineer anomalous sensor activity. For
testing purposes, we generated more complex but con-
sistent MoLD-Ss. The logic behind data stream genera-
tion is presented in Table 2. To test the functionality of
the merging MoLD-Ss recommendation module, we
implemented the mentioned reasoning and learning pro-
cedures as hidden operations behind a graphical user
interface (GUI) developed in Matlab. We adopted the
definition that refers to it as a software platform designed
with visual components (icons, windows, menus, etc.)
allowing a user to easily navigate and interact with inputs
and outputs requirements [69]. We decided to imple-
ment a simple GUI to visualize this module for the
designer from his or her point of view (of course the
interface of the actual data analytics toolbox will be
much more sophisticated). The main screen of this mod-
ule includes two actions (two possible buttons to press

by the designer): (i) “Data” containing one option called
“Select Sensors” for choosing which sensors to analyze,
since our sensors are already located in the platform, and
(i) “About,” which displays general information about the
function. A designer who clicks on “Select Sensors” is
moved to the next screen, which displays available
MoLD-Ss with their corresponding codes and a short
description of each. At this level, the designer chooses
which sensors to merge (the option “Select all” is also
available), or chooses one sensor if he or she only wants
to analyze a particular sensor, and then presses “OK” to
continue with the visualization or “Cancel” to return to
the initial screen. After the designer’s choice (we assume
that the designer selects Sq4, S15, and S;3), the MoLD-Ss
are transferred to be analyzed. The following screen is
called “Visualization,” see Figure 5. Once the inspection of
represented plots is completed, the designer needs to
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Figure 5. “Select data stream(s)” screen of the recommendation module for merging MoLD-Ss.
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4. Recommendation message

The following anomalies have been detected:

-S12: Heater is cold and does not correctly warm up water
- S13: Heater is on quite often
Please consider the following recommendation:

- Water heater element should be cleaned or replaced

OK

Figure 6. Recommendation message communicated to the designer.

press “X" to return to the previous window to select the
button to merge data streams.

The merging is performed in the background of the
GULI. The designer is only presented with a final textual
recommendation within seconds. The recommenda-
tion message contains an explanation of detected
anomalies and their sensors, as well as the recommen-
dation (or action plan) semantically related to
anomalies from different sensors. The message com-
municated based on the assumed choices presented
above is displayed in Figure 6. As can be seen in this
figure, S;; is not mentioned in the message. This
means that no anomalous behavior was detected
related to that specific sensor, but its semantic mean-
ing was used in delivering the recommendation. If the
user of the washing machine had turned on and off the
device more often than, S;; would have reflected that,
and consequently serious measures and different
recommendation would be advised. Perhaps not only
the water heater element is an issue but the whole
electrical system of the machine is failing. To check the
relevance of the analyses, we repeated the merging
three times for the same sensors, and we obtained the
same anomalies with the same recommendation.

To sum up, the functionality testing proved that
the objective set for this module was achieved. From
a computational point of view, the algorithms
designed for this function and the ones taken from
the literature were able to be converted, showing no
computational errors. It was observed that the rea-
soning and learning from MolLD-Ss played
a significant role in the formulation of the recom-
mendation message to be delivered to the designer.
The message covers not only the detected anomalies
but also recommends certain actions to be consid-
ered by the designer. We concluded that, at the
beginning of the implementation, the conditions
set for the conversion of faulty behaviors of the
MoLD-Ss into a concrete action plan for the designer
were correctly elaborated.

7. Discussion

The functionality testing proved that the computa-
tional mechanism was correctly implemented. From
a computational point of view, the integration of the
newly designed algorithms and the ones taken from
the literature did not lead to any inconsistences. Based
on the results shown in Figure 6, it was observed that
reasoning with and learning from the MoLD-Ss, as
semantic operations, played a significant role in the
formulation of the recommendation messages deliv-
ered to the designer. The message could cover not
only the detected anomalies but could also recom-
mend certain actions for the designer. Here, the con-
ditions concerning the conversion of faulty behaviors
of the MoLD-Ss into a concrete action plan for the
designer were correctly incorporated in the computa-
tional mechanism. The function for merging MoLD-Ss
(i) provides more information than that is conveyed by
the sensors’ data individually, (ii) reflects the condition
of the product more realistically, (iii) communicates
information about the product while it is in use by
the customer (iv) reduces the time and effort of sensor
analyses, and (v) provides recommendation as an
action plan for the product at hand. Offering this func-
tion to product designers will allow them to continu-
ally analyze the behaviors of their products and to
come up with enhancement solutions in a short while.

However, based on the analysis of the research
activities and the testing of the implemented function
some limitations were recognized: The lack of publica-
tions concerning a comprehensive understanding of
the procedure of semantic inferring in the context of
product enhancement made it difficult to select and
deploy the best algorithms and techniques. The need
to incorporate prior knowledge about product anoma-
lies resulted in an inclination in the implementation
toward maintenance type of action plans. The devel-
opment of algorithms which are able to automatically
generate rules and to be aware of the dynamic



changes in context and data streams, was supported
by preprogrammed means. This reduces the time and
efforts needed for building scenarios and training the
algorithms. Although using simulated MolLD-Ss
allowed us to meet the objective of testing the pilot
implementation’s functionality, the stimulated MoLD-
Ss could not fully substitute for or replicate real-life
MoLD-Ss, as they did not account for the actual beha-
vior of sensors in their intended environment.
Consequently, the performance or robustness of the
computation during the functionality testing was not
evaluated. This means that the pilot implementation
was not exposed to the unexpected data patterns.
With real data streams, it is possible that the proces-
sing takes longer time or exhibits inconsistencies.
Transitioning from simulated to real-world data pre-
sents several challenges, primarily due to: (1) dynamic
variation in data streams, where differences between
simulated and real-world datasets can cause reduced
model performance due to sample selection bias [70];
(2) sensor noise and data quality, as real-world data
often contains noise and artifacts that are absent in
simulations [71]; and (3) patterns relevance, where
patterns that are significant in simulated data may
lose their importance in real-world settings [71]. To
address these issues, fine-tuning pre-trained algo-
rithms with a small subset of real-world data can
enhance their ability to generalize while retaining the
insights learned from simulations [71]. For sensor noise
and missing data, employing preprocessing and noise
reduction techniques is crucial [72,73]. To tackle pat-
terns relevance, reevaluating pattern selection and
extraction methods is necessary [74]. The literature
on bridging the gap between simulated and real-
world scenarios highlights the value of using simulated
data to build predictive models, especially when real-
world data is limited or difficult to collect [71].
Available articles provide a step-by-step guide for tran-
sitioning from simulated to real-world data [75,76]. For
this research, the transition will be documented in
follow-up research.

Another limitation concerns the usage of the deep
learning toolbox of Matlab for the implementation of
the computational function. The fact of the matter is
that it made implementation process more time-
consuming in comparison with other computational
solutions such as offered by Python in which pre-
defined operations can be adapted or even directly
used. The last observed limitation of this work is its
focus solely on functionality testing that reflects also
on the feasibility of the function, with limited attention
to the performance, computational robustness, and
efficiency of the chosen algorithms. The algorithms
selected were considered adequate for demonstrating
functional viability, but their selection did not prioritize
metrics such as execution speed, scalability, or resili-
ence under different conditions. Given more time,
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additional validation dimensions such as structural,
performance, applicability and utility could have been
considered. In addition, the validation approach could
be expanded to incorporate properness or automated
validation, further ensuring the reliability, consistency,
and replicability of the results across multiple settings.

8. Conclusions

In this paper, we presented the functional, architectural,
algorithmic, and computational considerations in imple-
menting the recommendation function for merging
MoLD-Ss. This function is one of the functions for a next-
generation SDATB that we are busy developing. First, we
identified, listed, and detailed the algorithms. We then
collected, from the literature and the web, information
about the prototype-level implementation and the com-
putational techniques to build the SDATB functions. This
set of knowledge was enough to realize and implement
these functions. Then, we validated the functionality and
execution of the algorithms. We built an application case
involving enhancement of white goods (a connected
washing machine) by product designers and used it in
computationally implementing the function in Matlab
software. This not only allowed us to test the function-
ality of the module but also provided information about
the feasibility of the components of the function.

The recommendation function for merging MolLD-
Ss offers two levels of semantic inferring (i) the level of
merging, and (ii) the level of decision-making.
Technically, the former was fulfilled by employing
a proper neural network architecture, using its atten-
tion layer, and clustering past knowledge with triplet
network embedding. The reasoning by the computa-
tional function provides opportunities for constructing
implicit knowledge graphs, learning the statistical
model, and separating related and unrelated behavior
patterns. The multidimensional latent space captures
the similarity considering multiple criteria, and
exploration of knowledge clusters can happen in
a non-constrained way. The recommendation function
is a data-driven function, capable of capturing seman-
tics. It can be seen as a knowledge construction with
the help of behavior encoder. It is useful for helping
designers understand unsupervised data and for asses-
sing large volumes of sensor information, and is able of
processing vast amounts of data streams to discover
unusual behavior in MoLD-Ss.

The implementation of such a function will
reduce decision-making time for product mainte-
nance, repair, and enhancement. It not only identi-
fies anomalies related to products but also provides
a recommended action plan with the next steps to
adjust the product. The implemented function is
capable of deriving a simple yet efficient knowl-
edge representation with the assistance of
a triplet network. Furthermore, by merging MoLD-



14 e F.-Z. A. EDDAHAB-BURKE

Ss, more comprehensive information can be pro-
vided than by each sensor individually. Therefore,
the implementation of the proposed recommenda-
tion function offers practical benefits. It renders the
actual state and condition of the product transpar-
ent and communicates that information to the
designer while the product is in use by its owner.
The realized function provides a semantically cor-
rect recommendation to the designer based on
product anomalies. It minimizes the time and effort
required for processing data streams and facilitates
a swift decision-making process for product
enhancements.

Being design-focused, this conducted study pri-
marily focuses on the functional validity, and proof
of concept of the recommendation function rather
than an exhaustive computational performance ana-
lysis. The primary goal is to validate the feasibility
and the usability of the proposed function, particu-
larly in supporting product designers in decision-
making based on sensor data. While computational
methods are employed to support the function’s
operation, an in-depth evaluation of computational
efficiency, algorithmic complexity, and optimization
aspects is beyond the scope of this paper. These
technical aspects will be comprehensively analyzed
in future research.
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Appendix. Some of the algorithms used for the recommendation module for merging MoLD-Ss

Algorithm 7. Estimate sensors importance

Inputs: 11 = Matrix X
2=8

Outputs: O1= h, latent representation of behavior described by the current window of features
02 = a, sensors importance

112 «— convi1(X);

: 16 — leaky_relu(t2,0.2);

1115 «— conv2(t16);

1 t7 «— leaky_relu(t15,0.2);

1 t6 «— attention(t7);

: t8 « reshape(t6,B,M, 1).xt7,

1 t9 < behavior_conv1(t8);

: t10 «— tanh(reshape(sum(t9,2),B,1,L));

: Return struct(‘h,’ t10, ‘a,’ t6)

O 0 N O L1 A W N =

Algorithm 9. The estimate behavior descriptor based on the merged MoLD-Ss representation

Inputs: 11 =H
2=P8
Outputs: O1=J, loss value that is to be minimized with a gradient descent algorithm
02= Acc, separation accuracy of triplets within specified margin
1081 — sum(H(:, 1, ). %« H(:,2,:),3) — sum(H(:, 1,:). x H(:, 3,:),3) — B';
2: 12 « sigmoid(t1);
3:t3 — —log(t2); % we maximize likelihood of t2 probability to be equal to 1
4: t4 — mean(t2>0.5);
5: Return struct('), mean(t3, 1), ‘Acc,’ t4)

Algorithm 10. Estimate probability of the anomaly

Inputs: 11 =h
2=q
13 =tau
Outputs: O1 = p, N dimensional vector specifying the probability that N exhibits anomalous behavior
T.fori=1:N
2 p(i) < 0.0;
3 forj=1:M
4 arp=o(hq);
5 if cur_p>p(i)
6: p(i) < cur_p;
7 end
8 if p(i)>tau
9: break;
10: end
11:  end

12: end
13: Return struct('p,’ p)
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Algorithm 11. Perform search for similar descriptors in database

Inputs: 11 = h
2=q
13 =tau

Outputs: O1 = index, identifiers of relevant past anomalies descriptors

02 = index, N dimensional vector specifying an offset of descriptors retrieved for a particular anomaly candidate specified by
the array index

(Note that Matlab handles every variable as an array that can hold numbers. In order to access selected elements of an
array, indexing is used).

03 = amount, N dimensional vector specifying the number of retrieved the descriptors per anomaly candidate

1t index — ||

2: offset — |]

3: amount « |]

4:forji—1:N

5: offset(i) < numel(index) + 1;

6: amount(i) = 0;

7: forj—1:M

8: d—o(hi-q);

9: if d>tau

10: index(offset(i) + amount(i)) < j;
11: amount (i) < amount (i) + 1;
12: end

13: end

14: end

15: Return struct(‘index,’ index, ‘offset,” offset, ‘amount,” amount);

Algorithm 12. Calculate distance between anomalies

Inputs: 11 = h

2=q

13 = index

14 = offset

15 = amount
Outputs: O1 = d, distance between each of N anomalies and past case relevant to them
1:d

2: fori—1:N

3 forj — 0 : amount(i) — 1
4 k « index(offset(i) + j);
5 curd — o(h; - qi’);

6: d(offset(i) + j) « cur_d,
7: end

8 end

9: Return struct(‘d,’ d)
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Algorithm 13. Rank anomalies

Inputs: 11 =d
12 = index
13 = offset
14 = amount

Outputs: O1 = r, ranked identifiers of past anomalies
02 = r_index, list of the identifiers of anomalies in the distance vector d
T.fori—1:N
2:  a(offset(i) : offset(i) + amount(i) — 1);
3: [b,i] « sort(a);
4: ¢« index(offset(i) : offset(i) + amount(i) — 1);
5. r(offset(i) : offset(i) + amount(i) — 1) « c(i);
6:  r_index(offset(i) : offset() + amount(i) — 1) — i;
7: end
8. Return struct(r, r, ‘r_index,’ r_index)

Algorithm 14, Retrieve relevant anomalies based on their ranking and the corresponding sensors

Inputs: 11 =r_
12 = r_index
13 = offset
14 = amount
I5=C
16 =K

Outputs: O1 = sensors, sensor identifiers for each past anomaly
02 = sensors_offset, offset of each sensor influenced by anomalies (representing what anomalies to remove or to keep)
03 = sensors_amount, number of sensors influenced by anomalies
04 = anomaly, anomaly identifiers with up to K entries per each of the N anomaly candidates
05 = anomaly_new_index, anomaly identifiers within distance d
06 = anomaly_offset, offset of each anomaly group
07 = anomaly_amount, size of each anomaly group
T.fori—1:N
2 anomaly offset(i) < numel(anomaly);
3 anomaly_amount(i) — 0;
4 t_1 — anomaly offset(i);
5: for j < 0 : min(amount(i),K) — 1
6 k — r(offset(i) +j);
7 anomaly_amount (i) <— anomaly_amount (i) + 1;
8

t3—t1+4j;
9: anomaly(t;) < k;
10: anomaly new_index(t;) < r_index(offset(i) + j);
11: sensors_offset(t;) < numel(sensors);
12: sensors_amount(t;) < 0;
13: for/ — 1:14
14 if C(k,/) =1
15: t_4 — sensors_amount(t_3);
16: sensors(ts) — I;
17: sensors_amount(t;) — sensors_amount(t;) + 1;
18: end
19: end
20: end
21: Returns struct(‘sensors,” sensors, ‘sensors_offset,” sensors_offset,
22: ‘sensors_amount,’ sensors_amount, ‘anomaly,” anomaly,
23: ‘anomaly_offset,” anomaly_offset, ‘anomaly_amount,’

24: anomaly_amount);
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Algorithm 15. Identification of possible actions (recommendation)

Inputs: 11=d
12 = sensors
13 = sensor_offset
14 = sensors_amount
15 = anomaly
16 = anomaly_new_index
17 = anomaly_offset
18 = anomaly_amount
19 = sensors_importance
Outputs: O1 = faulty_sensors, identifiers of the sensors that most likely cause anomaly

02 = anomaly_action: identification of possible actions (recommendation) matching the most relevant past anomalies
with the smallest distance to the detected anomaly candidate

1: best_match — —1;
2: best_distance «— +Inf;
3: fori—1:N

4 if anomaly_amount(i) = 0

5: continue;

6: end

7: k < anomaly_new _index(anomaly _offset(i));
8: if d(k) < best_distance

9: best_match — i;

10: best_distance(k);

11:  end

12: end

13: if best_match = —1

14:  Return struct(faulty_sensors’, { }, anomaly_action’, {});
15: if sensors_amount(anomaly _offset(best_match))>0

16:  t_1 < sensors_offset(anomaly_offset(best_match));
17:  t_2 « sensors_amoun(anomaly offset(best_match));
18 t3 « sensors(t_1:t1+t2—1);

19:  t_4 « sensors_importance(t_3);

20 [ts,tg] < sort(ts);

21:  faulty sensors — t;(flip(ts));

22:end

23: t_7 < anomaly_offset(best_match);

24: t_8 «— anomaly_amount(best_match);

25: anomaly_action < anomaly(t; : t; + tg);

26: Return (faulty sensors’, faulty_sensors, anomaly _action’,
anomaly_action);
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