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COMMUTATOR ESTIMATES FOR NORMAL OPERATORS IN FACTORS WITH
APPLICATIONS TO DERIVATIONS

ALEKSEI F. BER, MATTHIJS J. BORST, AND FEDOR A. SUKOCHEV

ABSTRACT. For a normal measurable operator a affiliated with a von Neumann factor M we show:
If M is infinite, then there is Ag € C so that for € > 0 there are ue = u¥, ve € U(M) with

ve|la, ue]|vi > (1 —€)(la — Xol| 4+ uec|a — Aollue).
If M is finite, then there is Ag € C and u,v € U (M) so that
V3

v|a, u]|v* > T(|a —Xol| 4+ ula — Aol|u®).

These bounds are optimal for infinite factors, II;-factors and some I,,-factors. Furthermore, for finite
factors applying || - |[1-norms to the inequality provides estimates on the norm of the inner derivation
da : M — Li(M, ) associated to a. While by [3, Theorem 1.1] it is known for finite factors and
self-adjoint a € L1(M,T) that |[dallam— 1, (Mm,7) = 2minzec|la — 2|1, we present concrete examples of
finite factors M and normal operators a € M for which this fails.

1. INTRODUCTION

Derivations are linear maps § that satisfy the Leibniz rule é(zy) = 0(x)y + x6(y). They play an
essential role in the theory of Lie algebras, Cohomology, the study of Semi-groups and in Quantum
Physics, see [17,19,24]. A classical result on derivations is due to Stampfli [25] which asserts that for
a € B(H), a bounded operator on a Hilbert space H, the derivation d, : B(H) — B(H) defined by the
commutator d,(z) = [a,2] = ax — xa has operator norm ||d,]| = 2inf,cc ||a — 21]||. Through the work
of [13,18,27], the result of Stampfli has been extended to derivations on arbitrary von Neumann algebras
M (see also [21] for more in this direction). More precisely, the result of Zsidé [27, Corollary] asserts
that for M a von Neumann algebra and a € M, the derivation §, : M — M associated to a satisfies the
distance formula:

1 Oa =9 i —z||,
(1) 6l M zenzli%"a z||

where Z (M) denotes the center of M.

Our research aims to obtain results similar to (1) for derivations that map M into the predual M,.
Indeed, the predual M, is a M-bimodule (see Section 7) and therefore it is possible to consider derivations
6 : M — M,. Important work on such derivations was done in [2, 7, 14] and particularly the result
of [14, Theorem 4.1] showed that all these derivations are inner (i.e. of the form ¢ = 4, for some a € M,,
defined by 6,(z) = ax —xa). These studies arose after Connes proved in [¢] that all amenable C*-algebras
are necessarily nuclear. Haagerup proved in [14] that the reverse implication is also true.

In [3] the norms of these derivations were studied and results analogouos to (1) were found in certain
cases: for M properly infinite it was shown that some form of formula (1) holds true and for M finite
the same was proved under the condition that a is self-adjoint. The proofs of these results were based on
improvements of the operator estimates obtained in [4, 5], see below:

Theorem 1.1. [/, Theorem 1] Let M be a factor and let a = a* € S(M) (here S(M) is the algebra of
measurable operators attached to M ).

(1) If M s a finite factor or else a purely infinite o-finite factor, then there exists A9 € R and
up = uy € U(M), such that
[[a, uo]| = uola — Mo Z|ug + |a — Ao 1]

where U(M) is the group of all unitary operators in M;
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(2) there exists Ao € R so that for any € > 0 there exists u. = uf € U(M) such that
2) ayul > (1= &)la — o1

This theorem was extended to arbitrary von Neumann algebras in [5] with the replacement of A\g1 by
an element from the center. In [3, Theorem B.1] inequality (2) was extended to:
3) o, ]l > (1= £)(Ja — o] + uela — Moljuz).

The question arises: is such an inequality as (3) true for arbitrary a € S(M)? More precisely, are
there such A\g € C, u,v,w € U(M) and a constant C' > 0 such that
4) [[a,u]| > C(v]a — Aol|v* +wla — Ao1|w™)

holds true? In this paper, we give an answer to this question in the case when a is a normal operator
(see Theorems 5.6, 6.4). It turns out that if M is an infinite factor, then the constant C' can be chosen
arbitrarily close to 1, just as in the case of self-adjoint a. However, in the case when M is a finite
factor, the situation changes. For II;-factors the optimal constant C' turns out to be equal to \/Tg and for
I,,-factors appropriate upper and lower bounds on the optimal constant are given by A,, < C < %T\n (see
(10) and (11) for definitions of these constants and (12) for estimates). We summarize above results in

the following theorem.
Theorem 1.2 (see Theorems 5.6, 6.4). Let M be a factor and let a € S(M) be normal. Then there is
a Ao € C and unitaries u,v,w € U(M) such that
(5) [la, u]] > C (vla — Xo1|v™ + wla — Ag1|w™)
for some constant C > 0 independent of a. Moreover

(1) when M is a I,-factor, n < oo, the optimal constant satisfies A, < C <

(2) when M is a I -factor, the optimal constant is C' = @
(8) when M s an infinite factor, we can choose C arbitrarily close to 1.

A,

1
2

This theorem can be applied to obtain norm estimates for derivations § : M — M., and extend results
of [3]. Specifically, we consider the case that M is finite, and 7 is a faithful normal tracial state on M. In
this case M, is isomorphic to L1 (M, T) (see e.g. [20, Lemma 2.12 and Theorem 2.13]). As an application
of inequality (3), it was proved in [3, Theorem 1.1] that, for a = a* € L1(M, 1), we have

) IBellsirann =2 goin ) o ==l

(here Z(S(M)) denotes the center of S(M)) and that the minimum is attained at a self-adjoint element
co =i € Li(M,7)NZ(S(M)). In the present paper, using Theorem 1.2, we show that for a finite factor
M and for an arbitrary normal measurable a € L1(M, ), the estimate

7) VBmin fla = 2l < 10l s oty < 2min la — 2l

holds (see Theorem 7.3). In Section 7 we show that the estimates given in (7) are sharp. In particular,
in Theorem 7.3 we demonstrate that for any finite II;-factor M there exists a normal a € M such that
the derivation d, is non-zero and satisfies ||da || p—r, (M, r) = V3 min.cc ||a — 2|1, whereas it follows from
Theorem 6.4 and [3, Theorem 3.1] that for any infinite factor M formula (6) holds for an arbitrary normal
a € Li(M,T1).

Finally, we remark that (7) is in fact an estimate for the Li-diameter of the unitary orbit O(a) =
{uau™ :u e U(M)} of a as Diamp, (pm,7)(O(a)) = |[0all pm— L, (Mm,7), see end of Section 7.

1.1. Structure and overview. In Section 2 we introduce standard terminology, recall the definitions
of (locally) measurable operators and prove Proposition 2.1 and Theorem 2.2 that extend some results to
locally measurable operators. In Section 3 we introduce the constants A, and A, for n € NU {o0} that
will be used throughout the paper. In Section 4 our main result is Theorem 4.3, which is closely related to
the constants A,, and to the operator inequality (4). In Section 5 we use this result to obtain Theorem 5.6
which establishes the operator inequality of Theorem 1.2 for normal elements in finite factors. In Section 6
we obtain the inequality of Theorem 1.2 for normal locally measurable operators affiliated with an infinite
factor, see Theorem 6.4. In Section 7 we apply our results to obtain the estimate (7) for the norm of
derivations 6, : M — L1(M, ) for normal a € L1(M,7), and we show the given bounds are optimal
in some cases. In the Appendix we prove two technical results regarding the constants A, and Kn In
particular, Theorem A.l determines the exact value of A,, for n # 4.
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2. PRELIMINARIES

We establish notation on von Neumann algebras and (locally) measurable operators (for a thorough
discussion of these topics we refer to [10,12]). Furthermore, we prove two results, Proposition 2.1 and
Theorem 2.2, which generalize a known result (a type of triangle inequality for operators) to locally
measurable operators.

Let M be a von Neumann algebra on a Hilbert space H with unit 1. We let U (M) be the group of
unitaries in M, let P(M) be the lattice of projections in M and let Z(M) be the center of M.

Recall that two projections e, f € M are called Murray-von Neumann equivalent (denoted by e ~ f)
if there exists an element v € M such that u*u = e and uwu* = f. A projection p € M is called finite, if
the conditions ¢ < p and ¢ ~ p imply that ¢ = p.

Let x : dom(z) — H be a densely defined closed linear operator (the domain dom(z) of x is a linear
subspace in H). Then z is said to be affiliated with M if yx C xy for all y from the commutant M’ of the
algebra M. A linear operator z affiliated with M is called measurable with respect to M if x(x o0)(|7])
is a finite projection for some A > 0. Here X (x oc)(|2|) is the spectral projection of || corresponding to
the interval (A, +00). We denote the set of all measurable operators by S(M). Clearly, M is a subset of
S(M). It is clear that if M is a factor of type I or I1] then S(M) = M.

Let 2,y € S(M). It is well known that x + y and zy are densely-defined and preclosed operators [10].
We define the strong sum respectively the strong product of z and y as the closures of these operators,
which we simply also denote by z+y and zy respectively. When S(M) is equipped with the operation of
strong sum, operation of strong product, and the x-operation, it becomes a unital x-algebra over C. It is
clear that M is a *-subalgebra of S(M). Moreover, in the case that M is finite, every operator affiliated
with M becomes measurable. In particular, the set of all affiliated operators then forms a x-algebra,
which coincides with S(M). Following [19,20], in the case when the von Neumann algebra M is finite,
we refer to the algebra S(M) as the Murray-von Neumann algebra associated with M.

Let M be semi-finite and let 7 be a faithful normal semi-finite trace on M. A linear operator z affiliated
with M is called 7-measurable with respect to M if 7(x(x,00)(|2])) < oo for some A > 0. We denote the
set of all 7-measurable operators by S(M, 7). The set S(M, 7) is a x-subalgebra of S(M) that contains
M. Consider the topology ¢, of convergence in measure or measure topology on S(M, ), which is defined
by the following neighborhoods of zero:

N(g,0)={x € SM,7):Te € P(M), 7(1 —e) <0, ze € M, |lxze|jpm < e},

where ¢, 0 are positive numbers. The algebra S(M, 7) equipped with the measure topology is a topological
x-algebra and F-space [10].

A linear operator x affiliated with M is called locally measurable with respect to M if there exist
increasing central projections (p,) in P(Z(M)) converging strongly to 1, and such that zp, € S(M).
The set LS(M) of locally measurable operators forms a #-algebra with respect to the operations of a
strong sum and a strong product. It is clear that if M is a factor then LS(M) = S(M).

Let z € LS(M). Denote by 1(z) - the left carrier of z, by r(z) - the right carrier of z and s(z) =
I(z) Vr(z). If z = u|z| is the polar decomposition of z, then 1(z) = uu* and r(z) = u*u. We denote

R(z) = ””JFQZ and (z) = zgf for respectively the real and imaginary part of x. For a self-adjoint
x € LS(M) we denote by x4 (respectively, x_) its positive (respectively negative) part, defined by
Ty = %‘z‘ (respectively, z_ = f%m) We note that x_ and z are orthogonal, that is z_x = 0.

We require Theorem 2.2 which states a triangle inequality for operators € LS(M). The statement
is similar to [1, Theorem 2.2] where for operators x € M the result was shown with partial isometries
instead of isometries (see also [12, Lemma 4.3] and [15, Lemma 4.15]). To prove Theorem 2.2, we will
need the following statement which is similar to [I, Proposition 2.1]. Here, v € M is called an isometry
if v*v = 1.

Proposition 2.1. For each x € LS(M) there is an isometry v € M such that R(x)y < v]z|v*.

Proof. Let p =s(R(x)+), a = p(x + |z]). Then clearly 1(a) < p. We show p =1(a). Put r = p —1(a) so
that 0 = ra = rar = rar + r|z|r. Taking the real part of this equation gives 0 = rR(x)r + r|z|r. Since
r < p we have rR(x)_r = 0 and therefore rR(x)r = rR(z);r. Then 0 = rR(x)r+r|x|r = rR(z)4r+r|z|r
and hence rR(z)4r = 0. Then as (?R(z)_%r)*(?}%(z)_%r) = rR(z)r = 0, we obtain %(x)é_r = 0 and hence
R(z)4+r = 0. Therefore, R(x)4+ (1 —r) = R(x); which shows (1 —r) > s(R(z)+) = p and we conclude
r=0,1ie p=1a).

Let a = w|a| be the polar decomposition of a. Then ww* = p. Put ¢ = w*w and s = (1 — q) A p. We
show s = 0. Indeed as = ags = 0, thus s(x + |z|)s = sas = 0 and taking the real part of this equation
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gives sR(x)s + s|lz|s = 0. As s < p we have sR(x)_s = 0 so that sR(x)s = sR(z),s. Again, by the same

arguments as before, this implies sR(z),s = 0 and subsequently (1 — s) > p. Thus s < (1 —p) Ap =0.
Let (1—p)(1—q) = wo|(1L—p)(1—q)| be the polar decomposition of (1 —p)(1—gq). Then wows < 1—p

and wiwy < 1—q. Moreover, if t =1—q—wiwy =1—¢—r((1 —p)(1—q)) then we see (1 —¢)t =t and

1-pt=((1-p)1-g)ht=0=t<p=t<s=0.

Thus we obtain the equality wjwy = 1 — ¢ and obtain that v = w + wp is an isometry in M.
The inequality R(z); < v|z|v* is proved in the same way as in the proof of [I, Proposition 2.1] (the
monotonicity of the square root function follows from [10, Corollary 2.2.28]). O

The proof of Theorem 2.2 is exactly the same as the proof of [I, Theorem 2.2], but instead of [I,
Proposition 2.1] we use Proposition 2.1 above. We include the proof for completeness.

Theorem 2.2. For any x,y € LS(M) there are isometries v,w € M such that
|z +yl < vlz|v” + wlylw”.

Proof. We write the polar decomposition & + y = u|z + y|. Then
1 * * * *
(8) |z +yl = 5w (@ +y) + (2 +y)"u) = R(u"z) + R(u"y)

Furthermore, |u*z| = (z*u*uz)z < ||ul/(z*z)? < |z| and similarly |u*y| < |y|. Now apply Proposition 2.1
to u*z and to u*y to obtain isometries v, w € M so that

9) [z +yl = R(uz) + R(u"y) <vluzp” +wluylw” <ovlel” +wlylw”

3. CONSTANTS A,, AND /N\n

For n € N we denote by (Qy,, utn,) the set {1,2,...,n} equipped with the normalized counting measure,
and by (Qeo, fieo) We denote the interval [0, 1] equipped with Lebesgue measure. We will moreover write
S(£2,) for the set of complex measurable functions on ,,, which is simply the collection of all n-tuples
of complex numbers. We write Aut,, for the automorphism group of (2, u,), n € NU {oco}, where
automorphism is defined as follows:

Definition 3.1. Let (X1, 1) and (Xz, pu2) be measure spaces. We will say that a map T is an isomor-
phism between X1 and Xo if T is a measurable bijective map T : N7 — No between two sets Ny C X1 and
Ny C Xo of full measure, and such that moreover T~ is also measurable, and 1 oT-1 = po. Whenever
(X1, 1) = (Xao, p2) we will call T an automorphism.

Let n € NU {oo}. We now introduce two constant A,, and A,, as follows. Let g € S(,), T € Aut,,
z € C, and put
lg—goT|
lg—z|+|goT — 2|

A(g, T, z) = essinf
where we assume % = 1. By the triangle inequality we have |g —goT| < |g — 2|+ |g o T — z| which shows
A(g,T,z) <1 forall g,T,z. We put

A(g) =sup{A(g,T,2): T € Aut,,z € C}
and define A,, by

10 A, = inf A(g).
(10) ﬁgmﬂ(m

For n > 1 we define A, by setting

2 ifn=2 n=4
V3 if n = 3k,
23 ;
~ —=vs ___ ifn=3k+1, n#4
(1) R, = { Vit ram e
23 e
TS if n =3k + 2,
3k+2 3k+2
V3 if n = oo.
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In the Appendix we will prove two results on the constants A,, and A,,. In Theorem A.1 we will precisely
determine A,, for all values except for n = 4. It turns out that

(12) Ai=Ar=1 and ? <Ay <1, and An:§ for n & {1,2,4}.

We observe that this implies that 2A,, < /:\n for n > 1 with equality when n =0 mod 3 or n = oo and
that moreover lim,,_,« 2A, = V3 = lim A,,.

n—oo

We denote the diameter of a set A C C by Diam(A) := sup, ,ca |2 —w|. In Lemma A.2 we will show

for n > 1 that there exists g € Loo(€2,) with Diam(g(£,)) = 1 and A, = SUp,ec m, which will be
used throughout the text.

4. TECHNICAL RESULT

This section is devoted to the proof of Theorem 4.3, which is closely connected to the operator inequality
(4) and to the constants A,,. To fully state the result we first give the following definition:

Definition 4.1. Let z € C, 0 < a < 7. The sets A, B C C will be called (z,a)-conjugate if there are
two lines in C that intersect at the point z at an angle o, such that the sets A and B lie in opposite closed
corners with the vertex z and the magnitude o (see Fig. 1)

0P 0

FIGURE 1. Two (z, a)-conjugate sets A and B are depicted.

Remark 4.2. Let the sets A, B be (z,«)-conjugate, a € A, b € B. Tt is easy to see that
la—b] > (la— 2| + |b—z|)cos%.
Indeed, it is enough to consider the projections of points a,b on the bisector of the angle «.

Theorem 4.3. Let g € S(2,), n € NU{oco}. Then there exists a zo € C and an automorphism T of §,
such that

(13) Igonglz?(IQ*ZOIJrIgoT*ZoI)-
(14) M) = L2,

Moreover, the set £, can be partitioned into disjoint measurable sets as follows:

(i) if n is even or n = oo then there is a partition {X;} U {XJ"" : 1 < m,1 < i < 2} so that
g(X1) C {20}, pn(XPY) = pn(X3%) and the sets g(X3™Y), g(XJ"?) are (20, §)-conjugate for
m=1,2,...; Moreover, denoting Xo = Q, \ X1 we have that T*|x, = 1dx, for k=1,2.

(i3) if n is odd then there is a partition X1, X2, X3, X5, so that T*|x, = Idx,, k=1,2,3,5.

If n < oo then there exists zg € C and T € Aut,, so that

The above theorem relates to the operator inequality (4) through functional calculus. This is best
visible in the case of finite-dimensional factors, see Theorem 5.1. Furthermore, we note that Theorem 4.3
provides a lower bound on the constants A,. Indeed, given g € S(€,,) the obtained zg, T' are such that
A, T, z) > ‘/Tg Hence A,, > @ for all n € NU {oco}. In the Appendix, Theorem A.1, it is proved that

in fact A,, = @ for n = 3 and n > 5. This means that, for these values of n, the constant @ in the

above theorem is best possible (i.e. maximal so that for all g € S(,,) there exist zo, T satisfying (13)).
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The proof of Theorem 4.3 is somewhat technical and requires two lemmas, Lemma 4.4 and Lemma 4.5
We give a sketch of the proof. Given a measurable function g : 2,, — C we first use Lemma 4.5 to locate a
point zg € C, and divide the plane into 6 components by drawing 3 lines intersecting in zy making angles
of %’T. The way we do this is such that the measure of the inverse image of g of opposing components
is equal. We can then construct an automorphism 7" by just mapping the inverse image of g of each
component to the inverse image of its opposing component. For all w € ), we then obtain the estimate
Zg(w), z0,g(T(w)) > & for the angle. Lemma 4.4 will then imply that (13) holds true. In the actual
proof of Theorem 4.3 some difficulties arise with the boundaries of the components, and particularly for
the case that we are dealing with the measure space €2,, with n odd. Because of this reason, it is necessary
to consider multiple cases in the proof.

The following lemma gives for complex numbers zg, 21, 22 a sufficient condition for

V3
(16) |21 — 22| > 7(|Zl — 20| + |22 — 20])

to hold, namely when the angle satisfies Zz12¢20 > %’T Equation (16) can also be described geometrically

as saying that the point zg lies in the ellipse with foci z; and zo and eccentricity ‘/75

Lemma 4.4. Let zg, 21,22 € C be points in the plane, and consider the triangle Nzoz12z2. Denote
a=|z1— 2|, b= |21 — 20|, c = |22 — 20|, and a = Lz12029. If @ > %’T then

Proof. According to the cosine theorem we have
a®? =b> + ¢® — 2bccosa.
Since cosa < —% and b2 + ¢2 > 2be we obtain
4a® > 4(b* + ¢® + be) > 3b* + 3¢ + 6bc = 3(b + ¢)?
which shows the result. 0

The following lemma is used, for a given function g € S(€2,,), to choose the point zg € C adequately
such that (13) holds for some automorphism 7' that we will later determine. The point zp € C should
be thought of as the center (or rather a center) of the image of g. In Lemma 4.5 we have identified C
with R? and the point zg € C is represented as a vector zg € R2. This vector zg is chosen together with
three affine hyperplanes (i.e. lines) through zg that are represented by unit vectors v, va, vs orthogonal
to those affine hyperplanes. The unit vectors vi,va, vy moreover make angles /v;0v; for ¢ # j of 2?”
(this means that the affine hyperplances intersect at angles of %’T) To each of the affine hyperplanes
correspond two closed halfspaces. The lemma tells us that zg, vi, va, v3 can be chosen in such a way that
the inverse image of g of each of these closed halfspaces has measure larger or equal to % This explains
why we think of zg as a center of the image of g. Namely, for all three affine hyperplanes it must hold that
an equal portion of the domain is mapped to each side (or possibly on the affine hyperplane). However,
we remark that such a ‘center point’ zg with the above properties does not need to be unique.

Lemma 4.5. Let (Q, ) be a probability space and let g be a measurable R%-valued function. Then, there

erists a point zg € R2, unit vectors vi,va, vy € R? with angles Zv10ve = £Lvo0vy = Lvs0vy = 2r go

3
that for i =1,2,3, denoting a; := (2o, V;), we have
1 1
mk = ,u({w €N: (g(w),vi) < ai}) > 2 mi .= ,u({w €N (g(w),v;) > ai}) > 7"

Fori=1,2,3 we point out that m¥ +mP =1 holds if and only if u({w € Q: (g(w),v;) = a;}) = 0.

Proof. We first prove the result for the case that g is bounded. Denote T = R/277Z and for ¢t € T set
v(t) = (cos(t),sin(t)) and define

Qt,r) ={weQ: (gw),v(t)) <r}, reR,

A(t) = {r eR: % < u(Q(t,r))},
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If ry, L a(t) and § < p(Qt, 7)) then Q(t,71) D Q(t,72) D ... and Q(¢,a(t)) =, Q(t, 7). Hence,
1
(17) 5 < Ut al?)))-

If r,, 1 a(t) then 3 > p(Qt, 7)) and Qt,71) C Qt,r2) C ... and {w € Q : (g(w),v(t)) < a(t)} =

U,, Q(t, 7). Hence,

(18) (w2 () <an ) < 3 < € 2 ) v(0) < ()

and therefore

(19) (w2 o) v} 2 o)) 2
We note that it follows from the definition of a that

< ul{w € Q: {glw), V(1) > r}>}

N |

|~

(20) a(t +m) =— sup{r eR:
since
Qt+m,r)={weN: (gw),v(t)) > —r}, reR.
Hence, we obtain by (19), (20) and by properties of the supremum that a(t) < —a(t+ 7) for allt € T
since a(t) € {r € R: 3 < p({w € Q: (g(w), v(t)) > r})} Moreover, in the second inequality of (18),
replacing t by ¢t + 7 we obtain

(21) 3 <0 € 2 (g0 v(0) 2 ~alt + 1) ).
Hence, for any t € T, and any b € [a(t), —a(t + 7)] we obtain using (18) and (21) that
@) g u(wenvw.vm <o) 5 <0l e lg) vy 2 1)),

We show that the function @ is continuous. Indeed, let € > 0, and choose § > 0 such that ||v(t) —
v(s)|l2 < € for all ¢t,s € T with dist(s,t) < §. Now, fix t,s € T with dist(¢,s) < §. Then for w € Q we
have

[(g(w), v(t)) — (g(w), v(s))] < [lgllscl[V(t) = v(s)ll2 < ellglloo-
But this means for r € R that

{weQ: {glw),v(t) <r} C{we: (gw),v(s)) <7 +elgllo}-

This implies in particular that

5 <0 0 v) <o) ) < ({5 (o) < a0 + el

so that a(s) < a(t) + €||g]lco- By symmetry of s and ¢ we obtain similarly a(t) < a(s) + €||g||c0, Which
implies |a(t) — a(s)| < €]|g||co and shows the continuity of a.
Now, for t € T and b € R consider the line

L(t,b) = {w € R?: (w,v(t)) = b} = bv(t) + Rv(t + g>.

For s # t mod m, the lines L(s) and L(t) intersect at a unique point w(L(s,b), L(t,c)). In particular
there is a 7 € R such that

w(L(s,b), L(t,c)) = bv(s) +rv(s+ g)

Therefore ¢ := (w(L(s,b), L(t, ¢)), v(t)) = b(v(s),v(t)) + r(v(s + 3),v(t)) so that r = SN and
)
thus

w(L(s,b), L(t, ¢)) = bv(s) + =2V o Ty
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Let t € T. We are interested in finding values by, by, b € R such that the lines L(t — %’T, b1), L(t+ %“, b2)
and L(t,bs) intersect at a single point. This is to say that the intersection point w(L(t — 2F,by), L(t +
%’r, b)) must lie on the line L(t,b3). From this we obtain the expression for b3, namely:

byzm@@—%mmL( b2)), v(t))

i 2T brb1<V(t V) T

= bi(v(t = ). v(1) + NE—T) vt ) (v(t = 5),v(®))
o by — by cos(4X) T

= b cos(?) + TE}?)B COS(E)
27 47

=b COS(?) - <b2 - b COS(?))

= —b; — ba.

This shows that the lines L(t — 2%, by), L(t + 2%, ba) and L(t, bs) intersect precisely when by + by + bg = 0.

Definec: T — Ras ¢(t) = a( —2—“)—1—@( )+a(t+2"), which is a continuous function. Now, we note that,
similar to a, we have ¢(t) < —c(t+m) for all ¢, so that [ ¢(t)dt < — [ c(t+m)dt = — [ ¢(t)dt, and hence
that fT t)dt < 0. We can thus find a ¢; such that ¢(t1) < 0 If also 0 < —c(t1 + 7) then we set tg := t3.
If instead —c(t1 + 7) < 0, we set ty :=t1 + 7 and obtain —c(ta +7) = —c(t1) > ¢(t; + 7) > 0. By the
intermediate value theorem, we then find a ty € T such that —c(tg+7) = 0. Then ¢(tg) < —c(to+7) = 0.

In both cases, we found tg € T with ¢(tg) < 0 < —c(tg + 7). Now, as moreover a(t) < —a(t+ ) for all
t € T, we can determine

b, € [a(to — 2%); 7a(t0 + g)]v

by € lalto + =), ~alto — 3,
bs € [a(to), —a(to + )]

such that by + b2 + b3 = 0. Indeed, this is possible as the sum of the left-endpoints of the intervals
equals c¢(tp), whereas the sum of the right-endpoints of the intervals equals —c(tg + 7). We now set

vy = v(tp — %”), Vg 1= v(to + 2“) and vz := v(tg) and let zy be the unique intersection point of the
lines L(to — 2F,by), (to + o, b2) and L(to,b3) . As zg lies on each of the three lines, we obtain that
a; = (z9,v;) = b; for i = 1,2,3. By the choice of the b;’s in the intervals, it (see (22)) now follows

that the properties of the lemma are fulfilled. The last line of the lemma follows from the fact that
my +mft = p(Q) + p{w € Q: (g(w), vi) = a;})

The result for unbounded ¢ follows by the following reduction to the case of bounded functions.
For j € N let Q; C ) be a measurable subset for which gxq, is bounded and with Q; 1 2. Denote
= ﬁu and g; := gla,; € Loo(€j, ;). Applying the result of the lemma to g;, we find zo ; and v; ;

J
and a; ; = (20,4, Vi ;) with the stated properties. The sequence zg ; must be bounded. Indeed, otherwise
there is an ¢ € {1, 2, 3} such that for a subsequence of (a; ;);j>1 we have a; ; = +o0o. However, this would
contradict § < ; ({w €Q;: (g9j(w),vi;) > a;;} ). Thus, by boundedness of the sequences (zg ;);>1
and (v; ;);j>1, we have for some strictly increasing sequence (jx)r>1 in N, that the limits zg := klim Zo,j,,
- - —»00
and v; := lim v, exist. Setting a; := (2o, Vv;) we also have a; = lim a; j,. Using (reversed) Fatou’s
k—o0 k—o0

lemma, we now obtain for ¢ = 1,2, 3 that

w(twee: v <on) 2u( () Ute: ) <a))

K=1k>K

> limsupu({w € Q0 (g(w), vij) < aijy, })

k—o0

> lim sup Hy, <{w € ij : <gjk (w), Vivjk> < i, jy })

le?r

>
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can be shown. The last line of the lemma follows as

In the same way u<{w € Ql{g(w), v4) > ai}) > 1

before. This proves the lemma.
O

We are now fully equipped to prove Theorem 4.3.

Proof of Theorem 4.3. By identifying C with R?, we can apply Lemma 4.5, to obtain zg and vi, va, Vs
and aq, as, a3 which we will use to prove the result. Without loss of generality we can moreover assume
that vi,vo and vs are orientated counter-clockwise. In the proof, we distinguish cases, depending on n.
We prove the result separately for the cases: (1) for n even, or n = co and (2) for n odd,

(1). n is even, or n = oo.

First, suppose that n € N is even. Then, by the choice of the point zy and of v1, va, vs (see Lemma 4.5)
and the fact that n is even, we can for j = 1,2, 3 create partitions {I;r, I;} of Q,, such that un(I;“) =
W = pn(I;) and such that (g(w),v;) < a; whenever w € I} and (g(w), v;) > a; whenever w € I
If instead n = oo then the same is true, because of the fact that u, is atomless in that case. We can now
define the sets

Pr=I'nl; NIy, Pf =1 nIynI,

Pf=I nlinNl;, Py =1 NI, NI,

Pr=I nIynIf, Pr=I'nIynlI;,

Pr=I'ninn, P =I nI;NnI;
that partition §2,,.

We show that g(P4Jr UP, ) C {zo}. We have that vi + vy + vs = 0 and therefore a; 4+ az + a3 = 0. For
we IF N LF NI we have (g(w),vi) > a;,i=1,2,3, and Z?:1<g(w),vi) = 0. Hence, (g(w),v;) = a;,i =
1,2,3. But this means precisely that g(w) = z¢. Similarly g(P; ) C {zo}. For benefit of the reader, we
have visualized the partition sets in Fig. 2.

9(I3)

V2

o—> V]

g(I7) = = g(I}) Ve

FIGURE 2. The partition sets are visualized for a universal example (any example is like
this, except for shifting zy and rotating the lines). The 3 lines intersect in a single point
zg. For every line, the set €2, is partitioned in two sets I;r and I, so that g([f) and
g(I;) lie only on one side of this line. The partition sets PjjE are then such that g(Pji)
lies in one connected component (or its boundary). The sets g(P;") and g(P; ) are not

visualized. For these we must have g(P;” U P;") C {zo}.

We have
(23) pin (P U Py U Py UPS) = pin (1)) = pn(I7) = pn (PT U P U P U PY),
(24) 1 (P UPF UP; UPH) = pn(I) = pa(ly) = pa(PF U Py UPF UPY),

(25) pin(PT U Py UPS UPS) = pin(I3) = pn(I3) = pn (P U Py U Py UPY),
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(23)+(24):

pn(Py) + Mn(P4+) = Mn(P?j_) + pn(Py ),
(23)+(25):

pn(Py7) + Mn(sz) = Mn(PQJr) + pn(Py),
(24)+(25):

Nn(Pf) + Mn(Pz:r) = Mn(PlJr) + :un(P47)'
We thus obtain that ¢ := [Ln(PjJr) — pn(P;") is independent of j = 1,2,3,4.
Let us assume that ¢ > 0 so that [Ln(PjJr) > t. Choose A; C PjJr with p,(A4;) = t. We denote
X1 = (P4+UP4_)\A4 and
XP = P\ A X = Py, X3 = PP\ Ay X37 = P X = PP\ Ay, X3 = Py

First, suppose that n € Nis even. Then A; = {a;1,...,a;:}, j=1,2,3,4, l=tn. Fixk=1,...,l. In
each triple (a1 k, gk, as,i) there will be such 4, j € {1, 2, 3} that 2% < Zg(air), 20, 9(ajx) < (see Fig. 2).
Let {¢} = {1,2,3}\ {¢,7}. Then {g(air)} and {g(a;x)}, and also {g(aqr)} and {g(as )} form pairs of
(20, §)-conjugate sets. We put XQ%H’1 ={air}, XQ%H’2 = {a; 1}, XQ%H”1 = {aq i}, X;IHB’Q = {as 1}
and X3! = X% = () for m > 21 + 4.

We assume now that n = oo. Let ¥; = {Y;',Y?,...} be a maximal system of pairwise disjoint
measurable subsets of A;, j = 1,2,3,4, such that poo(Y}) = teo (V) = f10o (YF) = p1oo (Y4) > 0 and the
four (g(YF), g(Y5), g(Y4), g(YF)) is divided into two pairs of (zo, 5 )-conjugate sets for k =1,2,....

Put B; = A4; \ U, ij. Then pioo(B1) = floo(B2) = poo(B3) = pioo(Ba) = to. Suppose that tg > 0.
If the sets g(B1),9(Ba2),g(Bs) are located on three rays emanating from zy and forming angles %’T then
9(B1),9(B2) are (zo, § )-conjugate sets and the same for g(B3), g(Bs). This contradicts the maximality
of the above set systems ;.

Otherwise, there will be such by € By, by € By, i,j € {1,2,3}, i # j, that Zg(b1), 20, g(b2) > 2F
and g(b1),g(b2) are essential values of g|p,up,. Then there will be such neighborhoods Vi and V; of
the points g(b;) and g(b2), respectively, that Vi, Vs are (zo, §)-conjugate sets. Therefore there exist sets
Y1 C By, Yo C Bjsothat poo (Y1) = pieo(Y2) > 0and g(Yx) C Vi, k = 1,2. Hence, g(Y1), g(Y2) are (2o, §)-
conjugate sets. Let {q} = {1,2,3}\ {4,7}. There exists Y3 C By, Y4 C Ba, f100(¥3) = ttoo (Y1) = too(¥Y1).
It is clear that g(Y3),g(Y1) are (zo, §)-conjugate sets. The presence of sets Y1, Y3, Y3, Yy contradicts the
maximality of the above systems >J;.

The contradiction obtained in both cases shows ¢p = 0. Therefore the system
{X1PU{XJ"" :1<m <3,1<i<2} can be completed using 3;, j =1,2,3,4.

It remains to define T so that Tx, = Idx,, T(Xy"") = X3, T(X3"?) = X5 for m =1,2,... and
such that 7% = Idg,. Then the inequality (13) follows from the Lemma 4.4.

The case that ¢t < 0 is similar, by changing the roles of Pj+ and P;.

(2). n is odd.

We can for i = 1,2,3 instead build partitions {I;", {w;}, I;} of Q,, with (1) = pn(I;7) and such
that (g(w), v;) < a; whenever w € I, and (g9(w), v;) > a; whenever w € I'™ and (g(w;), v;) = a;. Indeed,
such w; exist because [{w € Q, : (g(w),vi) < a;}],[{w € U : (g(w),vi) > a;}| > 2L and therefore
{w ey, : (glw),vi) <a;}N{weQ,: (g(w),vi) > a;} # 0. Denote Yy = {w1,ws,ws}.

Now, suppose that zg € g(Q,). Then we could have chosen w; = ws = ws all equal and such that
g(w;) = zo. Then |Yp| = 1 and the sets {I;, I, } are all partitions of 2, \ Y similar to (1), and we can
build the corresponding automorphism T of €2, \ Yp. This completes the proof for that case by setting
T(wl) = Ww1i.

We can thus assume that zg ¢ g(£2,) so that in particular g(w;) # g(w;) for ¢ # j and |Yy| = 3.
Now suppose first that zg € Conv(g(Yp)). For all i € {1,2,3} we then have that Yo N I;" and Yo N I,
both consist of 1 element. Hence, u,(I;” \ Yo) = un(I; \ Yo) and the partitions {I;" \ Yo, I; \ Yo} of
Q. \ Yy satisfy the same properties as (1). We thus obtain a measure preserving automorphism 7' of
Q,, \ Y with the same properties. Now we can set T(w1) = wa, T'(w2) = ws and T'(ws) = w1, so that
29(wi), 20, 9(T(w;)) = Z*. This finishes the proof by Lemma 4.4

Now suppose that zg & Conv(g(Yp)). Then it can be seen geometrically (for intuition see Fig. 3), that
there is a unique choice of (distinct) indices 41, i2,43 € {1, 2,3} such that

(26) {wiy=YonI; {wi}=YonI}.

Now, suppose that w;, & I;g Then as w;, # w;, we get w;, € Ii;. But then as w;, € {w;, } N Ii; N Ii; we
would get g(w;,) = zo by the same argument as why g(P,” U P;") C {zo} in (1). However, zy € g(2,)
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by our assumption so this cannot be the case. We conclude that we must have w;, € I} +. By a same
argument we find that we must have w;, € I;, (Indeed, otherwise w;, € I;% so that w;, € I+ NI N{wi, },
which would imply ¢(w;;) = 2o, which gives a contradiction). Furthermore, we claim that Wi, € I;g .
Indeed, if w;, € I;, then we could rearrange the indexes as i} = iz, i5 = 43 and i3 = iy, so that we
get {wy } = {wi,} = YoN I =YoN I, and {wy} = {w;,} = Yo N I = Yo N 1I}. This contradicts
2 2
the uniqueness of the choice 1,19, i3 satisfying (26). We conclude that indeed w;, € I;g . By the same
argument we find w;, € I;; (Indeed, if w;, € I;: we could take the rearrangement ) = i3, i5 = i; and
Zg = i2 to obtain {wz’l} = {wZB} = YO N Iz: = YO N 1172 and {’wzg} = {ww} = YO N 1:1_ = YO N IZ, which
contradicts the uniqueness). For clarity we summarize the results:
{wil}:YoﬂI; {wis}:YbﬂI;g,
{wiz,wis}:Yoﬂlg {wil,wiz}:YoﬂI;g.
We now obtain

L I+ﬂf L)+ b IJFQIJF \{wiy }) = pn I;:)a

fn
I~

unl+ml )+ fin “ I7)— =

12 12

) ( ( ) = pn (I (
(28) ( (L, N 1,) = pn(Li, \{win }) = pin(
(29) pn (L5 NVI) A+ (L, O 1) = o (I \ {win }) = pin(Iy)
(30) (Z; ( ) (15 \wis }) = pn (L) — =
Hence, by (27) 4 (28) we obtain p, (I N I}) = + + p,(I;; N1;) and by summing up (29) with (30) we
obtain (I, N I;,) = Ly un(I;g NI;"). We conclude the existences of wy € I;" N I;} and ws € I}, N I, .
Now, for the sets P, := I' N I;} N I;" and P :=I;_ NI, NI, we have that g(P;" U P; ) C {2} (same
as in (1)), and hence P;" U Py = () as zg & g(€,,) by assumption. This means that wy ¢ I;} and ws & I,
Also, as wi, € I, and w;, € I} we get that wy # w;, and ws # w;,. As {I;7,{w;},I; } are partitions of
Q,,, we conclude that wy € I: ﬂIi‘g N1;, and ws € I: N1;, N1I;, Denote Y1 = {w;,wa, w3, ws,ws}, so that
by the above we have |Y;1| = 5 and moreover:

YiN I, = {wi,,wis }, YinI, ={wi,,ws}, Y1 NI, = {ws,ws},
Y1 ﬂ[jl_ :{CU4,(U5}, Y1ﬁ1+ —{wZB,w4} Ylﬂllt :{wil,w@}.

pn (I NI) + pn (I NI = i

g(wiz ) 4

9(I,) < - g(I})

F1GURE 3. The 5 points are depicted for an example.

Now, as all these sets have size 2, we must have that
2 _ 2 _
pn(LAYY) = pn(IF) = = = pn(I7) = — = pa (L7 \ Y1)
This means that the partitions {I;7\ Y1, \ Y1} of Q,, \ Y7 satisfy the same properties as in (1). We can
therefore find a transformation T of ,,\ Y7 with the same properties. We can now define T on Y7 by setting
T(wi,) = wa, T(wa) = wiy, T(wi,) = ws, T(ws) = wy, and T(wi,) = wi,. Then Zg(w;), zo, g(T'(w;)) > &
for all . Appealing to Lemma 4.4 this impies |g(w) — g(T'(w))| < ‘/T§(|g(w) — zo| + |g(T(w) — zg|) for all
w € Q, which shows that (13) holds true. The inequality (14) follows from it. Furthermore, in each of
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the considered cases it clear how to split £2,, into the parts X1, Xo, X3, X5 (note that by construction we
have T*(w) = w for some k € {1,2,3,5} for w € Q). We prove the final statement.
Let n < oo and let (Ty,), (zm) be sequences such that 0 < A(g, Tin, 2m) T A(g). Then
A(gva,Zm)71|g(w> - g(Tm(w))| > |g(w) - Zm| + |g(Tm(w>> - Zm| > |g(w> - Zm|
for any w € Q,,. Let wg € Q,. Then
|9(wo) = 2m| < A(g, Tm, 2m) ™" Diam(g(Q)) < A(g, T1, 21) ™" Diam(g(Qn))-
Since card(Aut,) = n! < co and since {z € C: |g(wo) — 2| < A(g, Ty, 21)" ! Diam(g(2,))} is compact,
there exists a sequence (my) and a zg € C such that

zozliirlzmk, To =T, =Tmy = =T, = ... .

Then A(g, To, z0) = A(g). O

5. COMMUTATOR ESTIMATES FOR NORMAL OPERATORS IN FINITE FACTORS

The main result of this section, Theorem 5.6 below, establishes the commutator inequality (4) for
normal element a € S(M), where M is a finite factor, and provides upper and lower bounds on the
optimal constant Cy. This yields a version of [3, Theorem 1.1], suitable for normal elements. We

consider the case of I,,-factors (n < co) in Theorem 5.1) and the case of II;-factors in Theorem 5.4 and

show that the commutator inequality holds for the constant \/Tg The proof for II;-factors requires two

additional results, Theorem 5.2 and Lemma 5.3. Furthermore, in order to prove the upper bounds in
Theorem 5.6 we provide Proposition 5.5.

Theorem 5.1. Let M = B(H) be an I,-factor for n € N. For an arbitrary normal operator a € M
there is a unitary u € U(M) and a zo € C such that

3
(31) [[a, u]| > 7(|a7201|+u|a7201|u*).
Moreover, u can be chosen so that

e when n is even there are projections p1,ps such that p1 +p2 = 1
e when n is odd there are projections p1,pa, 3, Ps such that p1 +ps+p3s+ps =1

so that
pru = upr, uFpr =p, k=1,2,3,5.
If a € M s such that its spectrum o(a) lies on a straight line, then we can obtain true equality:
(32) [[a,u]| = |a — z01| + u|a — zoL|u, for some u* =u € U(M),z € C.
We remark that when n = 1,2 every normal a € M satisfies this extra condition.
Proof. Since a is a normal element on an n-dimensional Hilbert space, it follows from the spectral mapping
theorem that there is a unitary U : H — L2(£2,,) such that a = U*MyU, where M, is the multiplication

operator on Lo(2,,) for some g € Loo(2,,). Applying Theorem 4.3 to g, we find a transformation T and
a zg € C such that

V3
(33) IgoT—glz7(Ig—zo|+|goT—zol)

together with the given partition of Q,, consisting of the sets X, Xo (when n is even) or X7, Xs, X3, X5
(when n is odd) and that satisfy T%|x, = Idx,. Now let ur be the Koopman operator on La(2,)
corresponding to T', i.e. upf = foT. Denote u = U*urU. Then

o ]| = fu(uan - a)
= |uau® — a|
= U lurMguy — My|U
= U*|Mgor — My|U
= U"Mgor—g U
> A, (U My — 20|U + U*|Mgor — 20|U)
= An (U |My = 20|U + Uur|Mg — zolupU) .
= A, (Ja — 20| + ula — zo|u™)

We now define the projections by setting pr = U*xx,U which clearly satisfy the statements.
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If o(a) lies on a straight line, then there exist scalars o, 8 € C, || = 1, such that a; := a(a—f1) € M
is self-adjoint. It follows from Theorem 1.1 that there exist zp € R and u = u* € U(M) that

[a, u]| = |[a1,u]| = a1 — 201| + ular — zol|u = |a — (B + 2o 1)1| + ula — (B + 200 ) 1|u.
([

We need the following result, which for a diffuse semi-finite von Neumann algebra (M, 7) and a normal
measurable a € S(M) establishes an injective x-homomorphism F between S[0,1] and S(M) which
preserves measure and is such that a lies in the image of F'. Special cases of the result which follows for
positive bounded elements of M and positive elements of Li(M,7) can be found in [I1, Lemma 9] and
in [9, Lemma 4.1] respectively.

Theorem 5.2. Let M be a diffuse (i.e. atomless) von Neumann algebra with a faithful normal tracial
state T, let a € S(M) be a normal operator. There exists such an injective x-homomorphism F : S[0,1] —
S(M) such that a € Tmage(F) and m(A) = 7(F(xa)) for any measurable subset A C [0,1] (here m is
the Lebesgue measure on [0,1]).

Proof. Let e be a spectral measure of the operator a defined on the o-algebra B(o(a)) of Borel subsets in
o(a). Then 7(e(-)) yields a probability measure on B(c(a)). By the spectral theorem (see [22, Theorem

13.33]), we have
a :/ Ade(A).
o(a)

Let X be a set of eigenvalues a. It is clear that X C o(a) and card(Xp) < Ng. Indeed, if ¢t € X then
e({t}) # 0 and ), ., T(e({t})) = 7(e(Xo)) < 1. Let t € Xo. Since M is diffuse, it follows that in M
there is such a chain of projections f! 14 e({t}) such that 7(f!) = s, s € Y; := [0, 7(e({t}))].

Denote by f; the spectral measure by B(Y;) given by the equality

Fills1,92)) = £, = £,
We have 7(ft(A)) = m(A) for any a € B(Y:). Let us now set

X =(o(a)\ Xo)U | | v2.

teXo

On B(X), we define a spectral measure g such that

91B(o(a)\X0) = €lB(o(a)\X0)s lB(V:) = ft, t € Xo,
and a scalar measure
x(A) = 7(e(AN (o(a) \ Xo)) + 3 u(ANYe).
teXo
It follows that (X, B(X), pux) is a Lebesgue space with an atomless probability measure. Hence, it is
isomorphic to the segment [0, 1] equipped with Lebesgue measure m, see e.g. [6, Theorem 9.5.1].
A linear mapping F : S(X, B(X), ux) — S(M) is defined by

Fg) = /X o(@)dg(z)

for any ¢ € S(X,B(X), ux) (see [10, Definition 1.5.6]). We remark that F(x4) = g(A) for measurable
A C X and that pux(A) = 7(F(xa)). Furthermore F(xaxs) = F(xanB) = 9(AN B) = g(A)g(B) =
F(xa)F(xp) for measurable sets A, B C X. Therefore, as F' is continuous with respect to the topologies
of convergence in measure in S(X, B(X), px) and S(M, 7) and since simple functions in S(X, B(X), ux)
are dense with respect to the measure topology, it follows that F(py) = F(p)F(v) for all ¢ €
S(X,B(X),px). Moreover, F(7) = [y o(z)dg(z) = F(p)* so we find that F is a x-homomorphism.
Now, suppose ¢ € S(X,B(X),ux) is such that F(¢) = 0 and B C X is such that ¢(z) # 0 for a.e.
x € B. Then ¢g(B) = F(xB) = F(iXB)F(gp) = 0, thus ux(B) = 7(g(B)) = 0. This shows that F' is
injective.

Finally, let us define the function f by setting f(t) = t for t € B(o(a) \ Xo) or t € Y;. Then
feSX,B(X),pux) and F(f) =a. O

Lemma 5.3. Let M be a finite von Neumann algebra, let a,b € S(M) be normal operators, zy € C, 0 <
a <7 and let o(a), o(b) be (20, )-conjugate sets. Then

(34) vla — blv* > (|a—zol|+|b—zol|)cos%
for some v € U(M).
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Proof. Since o(a) and o(b) are (zg,x)-conjugate, the shifted sets o(a) — zo and o(b) — zo are (0,a)-
conjugate. We can then obtain a pair of lines as in Fig. 1, intersecting at the origin with an angle a. By
rotating the complex plane around the origin we can assure that these lines are symmetric with respect
to the real axis. This is to say that there exists a function f(z) = ¢(z — z9) with |¢| = 1 so that

flo(@) C{z: =5 < Arg(z) < 5}, flo(b) C {z: 7= 5 < Arg(s) <7+ 3},
Let a1 = f(a), by = f(b). We have
|a1|cos% < Raq, |b1|cos% < —%Rby.
Therefore
(85)  (la— =201l + b= z01))cos 5 = (Jar| + [ba]) cos T < Ray — Ry = Rlar — b) < Rlar = by)+
By Proposition 2.1, we obtain
(36) R(a1 — b1)+ < vl|ag — b1|v" = v|a — blv*.

for some v € M with v*v = 1. Since 1 is a finite projection it follows that vv* = 1, i.e. v € U(M).
Combining (35) and (36) establishes (34) O

We now prove a version of Theorem 5.1 for II;-factors. Equation (37) below is slightly different from
(31) as it involves a second unitary w € U(M).

Theorem 5.4. Let M be a factor of type II, a € S(M) be normal. Then there exists a zp € C,
u=u*€UM) and w € U(M) so that

V3

(37) wl[a, u]|w* > > (la — z01] + ula — zo 1|u).
If o(a) lies on a straight line then
(38) lla,u]| = |a — z01| + ula — zo1|u.

Proof. Let T be a faithful normal tracial state on M and let F' : S[0,1] — S(M) be an injective -
homomorphism from Theorem 5.2 satisfying a € Image(F) . Let g = F~!(a).

It follows from Theorem 4.3 that there exists zp such that [0, 1] can be divided into disjoint measurable
parts {X1} U{XJ"" :m > 1,1 < i < 2} so that g(X1) € {z0}, w(X5"") = u(X5"?) and the sets
g(X3h), g(X52) are (20, % )-conjugate for m = 1,2,... (where p is the Lebesgue measure on [0, 1]).

Let e = F(xx,), Pm = F(XX;M), Gm = F(XXZm,z), m = 1,2,.... Then p,, ~ q¢m, m = 1,2,...,

since 7(pm) = p(X5"") = w(X3"?) = 7(gm). Besides e + 3, - (pm + ¢m) = 1. Hence, there exists such
u=u" €U(M) that
UE =€, UPm = qmt, m =1,2,....

Note also that p,,u = ug,, since u self-adjoint. It is clear that

[[a,u]le = |[a — z01,ulle =0 = (la — z01| + u|a — zo1|u)e.
For any m = 1,2,... o(apm) coincides with the set A,, of essential values of the function g| xyot and
o(uaupy,) = o(agy) coincides with the set B, of essential values of the function g|,mz> (here the
2

operators ap., and uaup,, are considered as elements of the algebra p,, Mp,,). The sets A,, and B,, are
(20, § )-conjugate sets. It follows from the Lemma 5.3 that

3
(39) Um|a — wau|vy, pm = vmla — vau|pmuy, > 5 (la — z01| 4+ ula — zo1|w)pm

for some vy, € U(PrmMpm).
Applying the automorphism « - u to (39), and noting that u|a — vau|u = |a — uaul|, we obtain

V3

(40) (wvmu)|a — vau|(womu)* qm > > (la = z01| 4+ ula — z01|w)Gm.

To complete the proof, it remains to define

w=e+ Z(vn + uvpu)

n=1
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which is a unitary (the series converges in the strong operator topology) (note here that uv,u €
U(gmMqpm)). We observe that

(41) wlla, ul|w*pp = wl[a, ul|pnvypn = wpnlla, ul|vypn = vala — vaulv;py

and similarly, wl|[a, u]|lw*q, = (vv,u)|a — vau|(uvv,u)*q, and w|[a, u]|w*e = |[a,u]le = 0. Summing up
the inequalities (39) and (40) in the measure topology we arrive at

wlla, ulw* = wlla, ul|w*e + Y wlla, ul|w* (pa + ga)

n=1

oo
= Z Upla — vau|vip, + (uopu)la — vau|(wv,u)*gp

~ /3
5

Y

(la = 20| + ua — zo1|u)(pn + qn)

3
Il
—

| %

(la — 201| + u|a — zo1|u)

which proves (37). Regarding the proof of equality (38), see the end of the proof of the Theorem 5.1.
O

We have now established in Theorem 5.1 and Theorem 5.4 that for finite factors the commutator
estimate (4) holds with the constant \/_ However, this may not be the best constant for which, for all
normal a € M, the inequality holds. We will now establish upper bounds on the best possible constant
and we will in particular show that é is in fact the best possible constant when M is a II;-factor or a
I,-factor (n < co) with n = 0 mod 3, . To do this we need the following proposition, which is partly
motivated by the proof of [16, Theorem 1]. Here, for a given algebra A we denote by Mat,, (A) the set of

all n X n matrices with entries in A.

Proposition 5.5. Let N be a finite factor with a faithful normal tracial state 7o, M, = Mat,,(C), n € N,
M =M, @ N = Mat,(N), T = %TT ® a7 be a tracial state on M. Denote UL" C M, for the group
of permutation matrices and D,, C M,, for the set of diagonal matrices.

If a € D, ® 1n then

sup |la —uaullz = max |la —u*au|2
u€U(M) uEUR "R 1N

(The isomorphism (identification) of Mat,,(N) — M, @N is given by the mapping (ai;); ;=1 — ZZJ‘:1 a;;®
a;; where ay; are matriz units of M,,.)

Proof. Write a = Diag(a;)j-; ® 1y with a; € C and let u = (ui;)7 ;=1 €UM), u; €N, i,j=1,...,n.
We note that

lla —uau*||5 = Tm((a — uau*)(a* — ua*u)) = 27a(|al?) — 2R (T4 (aua*u*)).

We are interested in finding a unitary element u € M for which the scalar

R(u) := —R(tm(aua*u*)) = —— Z% v (aiuijagug;)) = —— Z% aiay) T (wijug;)
irj irj
attains its maximum. For convenience, let (d;;) € M, be the matrix given by d;; = —iR(a;a;), so that

R(u) =37, dijTar (uzuf;). Denote Wy = {(Tar(vijv};))ij € Min @ v = (v55) € U(Mat,(N))}. We observe
for w = (7ar(vijv;))ij € Wa and every j such that 1 < j < n, we have }_ wi; = 7n (3, vijvy;) =
Tn(1y) = 1. Similarly, for every 1 < i < n we have that >, w;; = 7a(32;viv];) = v(ly) = 1.
Furthermore, as v;;v;; > 0 in N, it is clear that w;; > 0 for all i, j. Now, denote by X,, the set of all
elements z = (x;;) € M, satisfying

Vj: inj =1, Vi:zwzj =1, Vij:ray; >0
- -

so that W,, C X,,. Considering &X,, as a subset of R"z, we see that X, defines a closed convex polytope.
By [16, Lemmal, the vertices of X, are the permutation matrices. Hence the maximum of the linear form
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(zij) = i dijzi; on X, is attained for some permutation matrix u = (u;;) € UR". As u € UFT" C
Mat,, (V) we have that 7y (u;;u;;) = u;; and so
R(ﬁ) = ZdijTN(aija?j) = Zdijaij = mg{x Z dijl'ij > sup Zdij’wi]‘ = sup R(u)
¥ ¥ e weWn ueU(M)

Thus, sup,eym) la — v aul2 < lla — (@ ® 1y)*a(u @ 1y)[|2 and the claim follows. O

Combining Theorem 5.1 and Theorem 5.4, we estimate the maximal constant Ca that satisfies the
commutator estimate (4) for finite factors M in Theorem 5.6 below. For the definitions of the constants

A, and A,, we refer to (10) and (11) and for the exact values of A,, we refer to Theorem A.1.

Theorem 5.6. Let M be a finite factor with M # C. Then there is a constant C > 0 with the property
that:

(¥) For any normal a € S(M) there exists a complex number zo € C and unitaries u,v,w € U(M)
such that
(42) [[a,u]| > C(v|a — zo1|v* +w|a — zp1|w™).

Moreover, a mazximal constant Cnq with this property exists and it satisfies A, < Cpy < %T\n when M is
a I,-factor (1 <n < o), and Crq equals %\/5 when M is a I -factor.

Proof. Combining Theorem 5.1 and Theorem 5.4 we obtain for any finite factor that the constant C' =
%\/g is admissable for (x). By Theorem A.1 we have that A,, = %\/g when n =3 or 5 <n < oco. Let
n < co. To see that C' = A,, is admissible for all n we note that by Theorem 4.3 we have for g € S(,,)
that there exist zp € C, T € Aut,, such that A(g, T, 20) = An(g) > A, which means

(43) lgoT —g| > Awn(lg — 20| + |go T — 20).

Repeating the proof of Theorem 5.1, replacing (33) with (43), we obtain that C' = A,, is also an admissible
constant for (x). We will later see that the maximal admissible constant C'yq actually exists. First we
prove upper bounds on constants C satisfying (x) for M. Let 7 be a tracial state on M.

Let M be a I,-factor with 1 < n < co. Let g € S(€2,) be the the function from Lemma A.2 and let
a = Diag(g(1),...g9(n)) € M. Let zp € C, u,v,w € U(M) such that (x) is satisfied for a with constant C.
It follows from Proposition 5.5 (M = C) that

e ullly < Wlla, ulllz = fla — waulls < max_[la —ugauollz < Diam(c(a)).
uo n
Hence,
2C|a — zol|l1 = Cljv]a — zo1|v* + w|a — zo1|w*||1 < ||[a,u]]]s < Diam(o(a)).
Now, choosing ¢ as in the assertion of Lemma A.2 we obtain
1 > Diam(o(a)) > 2C||a — zo1|1 > 2C|lg — 20]j1 > 2CA; "
Hence, C' < %T\n
Let M be of type II;. Then M = Mat3(C) @ N for some II;-factor . Let the function g € S(03)

be as in Lemma A.2 and let a; = Diag(g(1),9(2),9(3)) € Mat3(C) and a = a1 ® 1y € M. Let 2y € C,
u, v, w € U(M) be such that (x) holds for a with constant C. We have

lla,ullly < lla,u]llz = lla v aulls < max @ —wugauol2 = max la; —ugaiuo||2 < Diam(co(ar)).
uo€u§ RLAr uo Z/lg

Hence,
2C|a1 — z01||1 = 2C||la — z01|]1 = C|jv|a — 201|v™ + w|a — zo1|w*||1 < ||[a, u]|]1 < Diam(o(a1)) < 1.
It follows from Lemma A.2 that
1 > Diam(o(a1)) > 2C||g — z0]1 > 2075
Hence, C' < %/N\3 = @ For M a II;-factor, this shows that in fact C'x4 exists and that Cphq = %\/g
We now show that the maximal constant Cxq also exists when M is a I,,-factor (1 < n < c0). Let
(C;)i>1 be an increasing sequence of positive constants admissible for () and set C = sup C; < A,,. For

a normal a € M there exists corresponding u; € U(M) and z,; € C such that the equation (43) holds
with the constant C;. Now by

2llalls > [l[a, willlx > 2Cilla — 20,:1[l1 > 2Ci(|20,i| — [lall1)
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1+C

(e
as M is finite-dimensional, we can assume these sequences converge in norm to some u € U(M) and some
zo € C (otherwise restrict to a subsequence). Now the elements d; := |[a, u;]| — Ci(Ja — z0,:1| + us|la —
z0,:1|uf) are all positive and converge to d = |[a, u]| — C(Ja — 21| + u|a — zo1|u*). As the cone of positive
elements in M is closed in the norm, we obtain d > 0. This shows that |[a, u]| > C(la—z01|+u|a—zol|u*)
holds, and therefore C' is admissible for (x) as well. Hence, the supremum of all admissible constants

we obtain |z;| < Lall; < %Ha”l. Therefore, as the sequences (u;); and (z;); are bounded and

(which is finite), is again admissible, and this shows that C'yq exists. It now follows that A, < Cpy < %/N\n
O

6. COMMUTATOR ESTIMATES FOR NORMAL OPERATORS IN INFINITE FACTORS

We shall now obtain the commutator estimate (4) for normal elements in an infinite factor. We show
in Theorem 6.4 that for such factors the constant C' in this estimate can be chosen arbitrary close to
1. For infinite factors, this extends the result of [3, Theorem B.1] to normal elements. The proof of
Theorem 6.4 extensively uses the geometry of projections. Before we start its proof, we state and prove
three short technical lemmas.

Lemma 6.1. Let M be an infinite factor and p be a infinite projection from M. If p1,...,p, € P(M)
are pairwise commuting and p1,...,pn < p, then p1 V-V p, < p. (We understand the symbol “<X” as

({j 77')

Proof. Let ¢1 = p1 and giy1 =pet1(1—q1 —...qr) for k=1,...,n—1. Then g;q; =0 for i # j, g < p
fork=1,...,nand p;1 V---Vp, =qi + -+ ¢n < p (see [1, Lemma 2 (ii)]). O

Lemma 6.2. Let M be a factor, a be a normal operator from S(M), p,q € P(M), q < p. Suppose that
one of the following conditions holds:

(i). q is finite and there exists a sequence of finite projections (py) in M such that p,, T p and [a,pp] =0
for allm € N;

(i). q is an infinite projection and [a,p] = 0.

Then there exists a projection ¢ € M such that g1 ~ q, [a,q1] =0 and such that ¢ < p.

Proof. The proof follows along the lines of [4, Lemma 3] and is therefore omitted. O

Lemma 6.3. Let M be a von Neumann algebra, a,b € LS(M), ay,as >0, and
la| > a1 1, | 200 < a1, agl > |b|.
Then there exists v € U(M) such that

2
vla — blo* > (1 — Z22)|a| + |b].
aq

Proof. Let a,b € LS(M), a1, a2 > 0 satisfy the assumption of the lemma. By Theorem 2.2, we have that
la] < wvla — blv* 4+ w|b|lw*
for some v, w € M with v*v = w*w = 1. Then
vla = bjv* > |a] — w|b|lw* > |a| — agww® > |a] — a2l

20&2 20&2

> |al + [b] — 2021 = [a[ + [b] — a—llal = ( )lal + [b].

1222

aq
Since v]a — blv* > (1 — 20%2)|a| > (aq — 2a2)1, it follows
0= (1—vv")vja—>bv" (1 —ovv") > (a1 — 2a2)(1 —vv*) > 0.

Therefore, we have 1 — vv* =0, i.e. v € U(M). O

Theorem 6.4. Let M be an infinite factor, and let a € S(M) be normal. There is a Ao € C such that
for any € > 0 there exist u. = ul € U(M), w. € U(M) so that

(44) Wel[a, ug]|wi > (1 —€)(Ja — Ao 2| + uela — Ao I|ue).

Proof. Let e(-) be the spectral measure of a on C, in particular, e(X) = xx(a) for any X € B(C). Since
a € S(M) there exists a R > 0 so that e(Xg) is a finite projection, where Xp = {A € C: |\ > R}.
Then Yi := C\ Xp is compact and it follows from Lemma 6.1 that e(Yg) ~ 1. A point A € C will be
called a point of densification for a if e(V) ~ 1 for any neighborhood V of a point A. Denote by A the
set of all points of densification for a.
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We claim that A # 0. To see that the claim holds it is sufficient to show there exists a system of
nested sets B, = [an, an + “;—f) X [Bn, Bn + “;—f), with e(B,,) ~ 1. We put oy = 1 = —R so that
clearly Yr C B; and therefore e(B;) ~ 1. Now suppose a1, 51, - . ., Qn, O, are already constructed so that
e(By) ~ -+ ~e(By,) ~1. We can divide the rectangle B,, into 4 smaller rectangles by

SR

1
5R 5R 5R
B.= J [Oén-f—k'ﬁaan‘f—(k’"‘l)'ﬁ)x[5n+l'ﬁaﬁn+(1+1)'ﬁ)-
e, 1=0

It follows from Lemma 6.1 that one of the sets from this union can be taken for B,y; (which then
defines au, 41, Bnt1). This completes the induction. The point A := (sup,, &) + (sup,, 3, )¢ is a point of
densification for a since any neighbourhood V of A contains a set B,, for some n. Therefore A # (0.

We show that A is closed. Indeed, if A is a limit point of A and V is a neighborhood of A\, then V'
is also a neighborhood of some point from A. Hence e(V) ~ 1. This shows A € A. Thus A is closed.
Obviously, A C Yg. Therefore, A is a nonempty compact subset in C.

Let us consider three cases covering the full picture.

e 1. There is a point Ay € C such that e({\o}) ~ 1. Then e(C\{\o}) < e({\o}) and therefore there
is a v € M with v*v = e(C\ {Xo}) and vv* < e({Ao}). Let 's put u = v+ v* + (e({Ao}) — vv*).
Then u = u* € U(M). Since

(a—Aol)u(a — Ao1)" = (a — Ao1)u(l — e({Ao}))(a — Ao1)”
= (a— M1)v(1 —vv*)(a — Ao1)"
= (a—Xl)e({o})u(a— Ag1)* =0
and, similarly,
(a —Xo1)*u(a—Xgl) =0
then
[[a,u]| = |(@a — A1) — u(a — Aol)u| = |a — Ao1| + ula — Aol|u
which shows the result for this case with w, = 1.

In the following two cases, the scalar Ay € C will be found and for a fixed number € > 0 a sequence
of pairs of projectors {(pn, gn)}n>1 0of M will be constructed together with a sequence (7y,) of positive
numbers converging to zero satisfying the following conditions:

(1) PnGm = 0, PuPm = OnmPns nGm = Snmdn, [aapn] - [a, Qn] =0, pn ~ gn for all n,m;

(i)). gn < e(Wy,), pn < e(V,) for all n > 1;

(iii). vnzopn v vnzo gn =1 —e({Ao}),
where V;, := {X: |A = Xo| > vn} and Wy, := {A: [A = Xo| < S}

e 2. The set A has a limit point A\g. We can assume that £ < % We inductively construct the
sequences of positive numbers (7,,) (and hence the sets V,,, W,,), numbers (\,) from A, and sets

(45) Un = {)\ : |>\ — )\2n| < "ynJrl}
in such a way that U, C W,, N V,,41 and the set V41 \ UZ:1(Uk U Vk)) is a neighborhood of
the point Agj41. First, let Ay € A\ {Ao} and put v; = LQ)“)' Then V; is a neighborhood

of the point A\;. Next, in the set W; there will be different points A9, A from A\ {\o}. Put

Yo = %mln{|)\3 — )\Q|7 |A2 — A3|, %’yl - |>\2 - )\Q|7 |A2 - /\0|} and note that Yo < %|>\3 - )\0| < %

Note also that the set V5 \ (V4 U U7) is a neighborhood of the point A3 and that U; C Wi N

V5. We continue this process by induction. Let these sequences be constructed for the indices

1,...,n. Then in the set W, there will be different points Aon, Aopt1 from A\ {Ng}. Put

Y1 = smin{[A2nt1 — Aol, [A2n — A2nt1l, 590 — [A2n — Ao, [A2n — Ao|}. Then 4,41 < 2= and
Vi1 \ UZ:1(Uk U Vk)) is a neighborhood of the point Agy,41, and U,, € W,, N V,,41. Thus, the
above sequences are constructed. We remark that for n < m we have U, NU,, C W, N V,11 =0

Put p1 = e(Vh), ¢1 = e(U1); ¢n = e(Uy), pn = e(Vi \ UZ;;(Uk UVg)) for n > 1. Then we
have by the construction that p1,q1, p2, o, ... are pairwise orthogonal and p, ~ 1 ~ ¢, for any
n. Now since V,, = (Vi \ UpZ1 (Ux U Vi) UURZ; (U U VR)) and U2, Vi = €\ {Xo} we find
VisoPn V Visodn =1 —e({Ao}).

e 3. The set A is finite and e({\}) < 1 for any A € A. We can by assumption write A =
{Aos .., Am} for some m > 0 (note A is non-empty). When |[A| =1 put » = 1 and when |A| > 1
let 7 be the minimum distance between points in A. Consider the sets V() = C\ [J,_o{ :
N = Xp| <t} for 0 <t < . It is clear that V() T C\ A at t ] 0.
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We show that e(V(t)) < 1 for 0 < ¢t < 5. Indeed, for any point z € V(t) \ Xgr there is
a neighborhood U, of z with e(U,) < 1. Now as the set V(t) \ Xr is compact we can let
{U.,-.., Uy, } be a finite subcover for V(t) \ Xr. Then {Xg,U,,,...,U,,} is the coverage of the
set V(t). It follows from Lemma 6.1 that e(V(¢)) < 1.

There are now two possible cases:

3.1. All projections e(V(t)), t > 0, are finite. In this case, put 71 = .

3.2. Thereis a 0 < to < % so that the projection e(V (tp)) is infinite. In this case put v = to.

Set vn = zity, n > 1 (and hence V,, W,, are defined as well); We set p; := e(V(y1) U (A \
{M0})) < e(V4). It follows from Lemma 6.1 that p; < 1 and p := e(W7) ~ 1. If we put
q = p1, then for p,q the conditions Lemma 6.2 are met: condition (ii) is met if ¢ is an infinite
projection, and condition (i) is met in case 3.1 if ¢ is an finite projection (in this case, the set
Wi is covered by the system V(t), t > 0). Therefore, there is a projection ¢; < e(W7) such
that ¢1 ~ p1 and [a, 1] = 0. Now, suppose the projections p1,qi,...,Pn, ¢, < 1 are constructed.
We build projections pni1,¢ni1. We put ppy1 = e(V(vnt1)) - (1 — 30— (P + qx)). Then
Pnt+1 < 1 since ppy1 < e(V(vp41)). Furthermore, since e(W;,) ~ 1 and p1,q1, ..., 0n,qn < 1
we find e(W,,) - (1 — >°7_,(pk + qx)) ~ 1. Again using Lemma 6.2, we find such a projection
Qn+1 ~ Pn1 that gy < e(W,,) - (1= 37_, (pk +qr)) and [a, go11] = 0 (two cases are considered
again: ppy1 is a infinite projection; p,+1 is a finite projection and the condition 3.1 is met). As
P12 g1 (Petar) = e(V(ynt1)) and p1 > e(A\{o}) we conclude 777, (prtqr) = 1—e({Ao}).
Therefore, the projections p1, g1, p2, g2, . . . satisfy the conditions (i)-(iii).

In the cases (2) and (3) we can now find partial isometries v, € M so that v}iv, = pn, vaUS = gn, for
n=1,2,.... We put uc = e({\o}) + > (v +0}). Then u. = uf € UM), uce({No}) = e({No}) and
UePn = gnu for all n. We have

(46) la — Xol|pn = Ynpn, |a— Xol|gn < gvnqn, vn.

Therefore

(47) [ucae = Mllpn = tiela = Jollguuc € SYnticqntc = SYupns V.
Since [a, pn] = [ucaue, py] = 0 then

(48) la — ucauc|pn = (@ — Mo1)pn — (ucaue — Ao1)py|.

It follows from Lemma 6.3 that
Wpla — ucaue|prw;, > (1 —€)la — Aol| + |ucaus — Ao1|)pn

for some wy, € U(p, Mpy,).

Therefore
(49) wWpla — ueaue|w)py > (1 —¢€)(la — Aol| + |ucaus — Aol|))pn-
Applying the automorphism wu. - us to (49), and noting that u.|a — ucauc|us = |a — ucau|, we obtain
(50) (uewpue)|a — ueaue|(uewnte) qn = (1 —&)(la — Mol| + |ucaus — Xo1]))gn.
Recall that S(M) = M if M has type I or III. In this case, we denote by ¢ the strong operator topology
in M. If the factor M is of type II then S(M) = S(M, 1) for any faithful semi-finite normal trace 7
on M. In this case we let ¢ stand for the measure topology ¢, (this topology is defined in Section 2, the

need to use this topology is due to the fact that a can be an unbounded operator).
To complete the proof, it remains to set

we = e({No}) + Z(wn + UsWp e )
n=1
(the series converges in the strong operator topology) and sum up the inequalities (49) and (50) in the
topology t. (I

7. ESTIMATES FOR INNER DERIVATIONS ASSOCIATED TO NORMAL ELEMENTS

In this section we apply the operator estimates from Theorem 5.1 and Theorem 5.6 to extend the
result of [3, Theorem 1.1] and estimate the norm of inner derivations §, : M — L;(M,7) in the case
when M a finite factor with faithful normal trace 7 and a € Ly (M, 7) is normal.

We establish some notation first. Let M be a von Neumann algebra with predual M,. The Banach
space M, can be embedded into its double dual (M.,)** = M*. In this way we identify M, with the
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space of ultra weakly continuous linear functionals on M. The predual M, is a Banach M-bimodule
with the bimodule actions given by:

(51) (a-w)(z) =w(za), (w-a)(z) =w(azx), a,z € M, w € M,.

If there is a faithful normal semi-finite trace 7 on M, then the Banach M-bimodule M, is isomorphic
to L1 (M, T) (see e.g. 26, Lemma 2.12 and Theorem 2.13]).
A linear operator 6 : M — M, is called a derivation if

6(zy) = 0(x)y + x(y)
for all x,y € M. For each a € M, a derivation 6, : M — M, can be defined by the equality
do(x) = [a,2] = ax — za

(using the M-bimodule structure as defined in (51)). Such derivations are called inner. In fact it holds
true that any derivation 6 : M — M, is inner. Moreover, there exists a € M, so that § = §, and
lall . < 1] M=, see [14, Theorem 4.1] and [2, Corollary C]. We are interested in describing the norm
of the derivations ¢, : M — M, for a € M,. Is it true that a distance formula similar to (1) holds true?
This question has been fully settled in [3, Theorem 3.1] for infinite factors. Moreover, in [3] the following
theorem was proved:

Theorem 7.1. [3, Theorem 1.1] If M is a von Neumann algebra with a faithful normal finite trace T
and a = a* € L1(M,T), then there exists cq = ¢ € Li(M, 1) N Z(S(M)) such that

(52 el sty =2l = calh =2__ il =y

where Z(S(M)) stands for the center of the algebra of all measurable operators affiliated with M

We focus on the case that M is finite. For brevity, we will denote the norm || - [ v— 1, (M,7) bY | - [|oo,1-
For general a € L1(M,7) we do not know the relationship between [|d,],, and inf{[la -z, : 2z €
Z(S(M)). In Theorem 7.3, we shall give upper and lower estimates of this relation in the case when M
is a finite factor and a is a normal operator. We will see a substantial difference with the case of inner
derivations associated to self-adjoint elements. First we state Theorem 7.2 which is related and is used
in the proof of Theorem 7.3. Recall that when n =0 ( mod 3) or n = co we have 2A,, = v/3 = A,, and
that in addition,

lim /~\n =3,

n—oo
and
2A, =V3forn=3, orn>5.

For convenience, we define for a finite factor M the value

n Mis a l,-factor

(53) n(M) = {

oo M is a II-factor

Theorem 7.2. Let M be a finite factor with a faithful tracial state 7. Assume M # C. Then

(1) For every derivation 04 : M — Ly1(M,T) with a € M normal, there is a normal b € M such that
0, = 0p and H(SbHoo,l > 2An(M)HbH1-

(2) There exists a normal a € M for which the derivation 6 : M — L1(M,T) is non-zero and such
that for every b € M with dq = &, we have ||0p|lso,1 < Apag)l0]]1-

Proof. (1) Let a € M be normal. By Theorem 5.6 there exist u,w € U(M), zg € C satisfying the
commutator estimate (42), hence [|0q/co,1 > [[da(u)[l1 > 2An(aq)ll@ — 2011 This shows the result since
b:=a — z1 is normal and § = 6, = dp.

(2) Let M be a finite factor. When M is a I,-factor, we set m := n and we can write M =
Mat,, (N), with N' = C. When M is a II;-factor we set m = 3 and we can write M = Mat,,(N)
for some IIj-factor . We now let g € Loo(Qy) be non-constant and let a be the diagonal matrix
a = Diag(g(1),...,9(m)) @ 1 € Mat,,(C) @ N = M. Then §, : M — Li;(M,7) is a non-zero
derivation. To estimate ||dq|/c0,1 We recall that the Russo-Dye Theorem, [23, Theorem 1], asserts for a
unital C*-algebra that the closed unit ball equals the closed convex hull of all the unitaries. Now, for
x € Conv(U(M)) we can write z = Zf\il ciu; with N € N, u; € U(M) and ¢; > 0 with sz\; ¢ = 1.
Then clearly [[da ()|l < 30y eil[da(us)|l1 < maxi<icn [|8(ua)lli < SUPueryagy 18a(w)]l1- By continuity of
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04 this inequality holds for all = in the closed convex hull as well. By the Russo-Dye Theorem this shows
that

(54) [0alloc,s = sup  [|da(2)[i = sup  [[da(@)ll1 = sup [[0a(u)l:.
zeEM,||z||<1 zeConv(U(M)) u€U(M)

Using this and Proposition 5.5 we find
1dalloc,s = sup )H5a(U)||1

ueU (M

= sup Ju¥[a,ullly
w€eU (Maty, (N))

= sup lu*au — aly
weld (Mat.m (N))

< sup jutau—all;
weld (Mat.m (N))

= sup |utau—a|2
wEUR" 1N

= _sup  lgoT =gl
T: Qo — i,

permutation

The last step follows from the fact that, for u € UP" @17, we have u*au = Diag(goT'(1),...,90T(n))@1xr
for some permutation 7. By Lemma A.2 we can fix a ¢ so that Diam(g(€y,)) = 1 < Ay, inf.ec [lg — 2|11
(note that such g is non-constant). Take any b € M with d, = d;. Then a — b lies in the center of M, so
a—b =zl for some zy € C. Hence, ||b]1 = |la — 2011 = ||g — #0ll1 so that ||§]|co,1 < Diam(g(2,)) <
Aum||bll1. The result now follows. Indeed, when M is a I,-factor, we obtained 10]lco,1 < Kn(M)Hle and
when M is a II;-factor we obtained [|8]|so1 < As||blly = Aso|[b]l1 = /N\n(M)||b||1. O

The following theorem shows that for (most) finite factors the distance formula from (52) does not hold
for arbitrary normal a € L1(M, ), which shows a crucial difference with the classical result of Stampfli
and its generalisations describing the norm of derivations §, : M — M, as for these derivations the

distance formula (1) holds for all a € M. While the distance formula does not hold true, we are able to
l16alloo.1

n:ec la—21]1

with n =0 mod 3 these constants can not be improved.

Theorem 7.3. Let M be a finite factor with a faithful tracial state T and let a € Li(M, 1)\ Z(M) be
normal and measurable. Then the derivation §, : M — L1(M,T) satisfies:

obtain constant bounds on the ratio = . In the case of II;-factors and I,-factors (1 < n < o0)

sy
min.cc |l — 211

Moreover, when M # C there exist non-zero derivations dq,60, corresponding to normal a,b € M such
that ||0g|lec,1 < Kn(/\/l) minyec ||a — 211 and ||0p||co,1 = 2minec ||b — 21||1. We remark that
(1) When n(M) & {1,2,4} then the distance formula of (52) does not extend to arbitrary normal
measurable a € L1(M, 1)\ Z(M), since /N\n(M) < 2 in these cases.
(2) When M is a I -factor or a I,-factor with n =0 mod 3 then the constant bounds given in (55)
can not be improved as in these cases 2N, (aq) = V3= KH(M).

Proof. Let a € L1(M,7)\ Z(M) be normal and measurable. By Theorem 5.6 there exist u,w € U(M),
zp € C satisfying (42) so that ||dalloo,1 > [|0a(u)|l1 > 2A, M) lla — 2011, from which the first inequality
follows. The second inequality follows from the fact that ||d.(x)]|1 = [|[(a — z1)z — x(a — 21)|1 <
2|la — z1||1]]z|| holds for any z € M, z € C.

For the next statement, we note by (52) that ||p||co,1 = 2inf,ec ||b — z1||; holds for any self-adjoint
b € M, and that when M # C we can choose b so that moreover b ¢ Z (M), ensuring that d; is non-zero.
Moreover, by Theorem 7.2(2) we obtain a normal a € M such that J, is a non-zero derivation with
[allcon < Anirnlla — 21]1 for every z € C since 8 = 64—s1. Thus [|da]lec1 < Apr mingec [la — 21
(it is clear the minimum exists). The last two remarks follow directly. O

We remark that the above argument actually yields an estimate on the Li-diameter of the unitary
orbit O(a) = {uau* : v € U(M)} of a. Indeed, as we already showed in (54), we obtain by the Russo-Dye
Theorem [23, Theorem 1] that |[dalloo,1 = supy,ersa) 10a(w)][1. Therefore

Diamp, () (Oa)) = sup [l —wau®[ly = sup |[|da(u)lls = [|dalloc,1-
uEU(M) u€U(M)
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APPENDIX A.

We prove two technical results concerning the constants A, and /NXn In Theorem A.1 we will for n # 4
determine the exact value of A,, with the help of Theorem 4.3. In Lemma A.2 we prove the main property
of the constants A,, that we used in the paper.

Theorem A.1. We have Ay = Ay =1, @ <Ay <1and A, = @ for any n ¢ {1,2,4}.

Moreover, for n # 4 there exists a g € Loo(2,), T € Auty, z € C such that that A(g, T, z) = A(g) = Ay,
Proof. If n =1 then A(g,Id, g(1)) =1 for all g € S(€2,,) since we agreed to count % = 1. Hence, Ay = 1.
If n = 2 then A(g, T, w) =1 for all g € §(Qy,) where T(1) = 2. Hence, Ay = 1. Tt follows from

Theorem 4.3 that A,, > ‘/75 for all n > 3. It only remains to show that this is in fact an equality whenever

n =3 or n > 5, which we shall do now. For the given values of n, we can find a partition {41, A2, A3}
of Q,, such that % < % < % for j =1,2,3. Now, denote w; := et for 7 =1,2,3 and construct the
function g = Z?Zl wiXA; € Loo(Q2n). We will show that A(g) < @

Suppose A(g) > ‘/75 Then there exists T € Aut,, zo € C and A > @ so that

19(T'(w)) = g(w)| = M|g(T'(w)) = 20| + [9(w) — 20)
a.e..
We note that for k # [ we have
|wk — wl| = \/g
Denote By ; = A N T7Y(A;) so that By ; C Ay and T(By, ;) C Aj. Moreover, since {41, A2, A3} is a
partition of €2,, we have for [ = 1,2, 3 that

(56) A = BlJ U BLQ U B113 Tﬁl(Al) = Bl,l U Bgﬁl U Bgﬁl.
We note that if p, (B, ; U Bj ) > 0 we must by the assumption have that
|wi = w;| = AJwy, = 20| + |w; — 20])-

This is to say that 2 lies within the ellipse with foci wy and w; and eccentricity A.
Now suppose pin (Bk,i) > 0 for some k. Then zy = wy, and for I, j # k we have

lwp — w;i| < V3 <2\ < 20V3 = M|w;, — wi| + |w; — wi|) = M|wi — 20| + |wj — 20])
and hence p, (B;,;) = 0. However, (56) then implies for j # k that
pin(Aj) = pn(Bj1) + pn(Bj2) + pin(Bj3) = pin(Bijk)-
Therefore, using this and (56) we obtain
2pn(Ak) = pn(Ax) + (o (B1k) + pn(B2,k) + pn(Bs k)

= pn(Ax) + | D n(Bir) | + pin(Brok)
1<i<3
£k

= pin(Ax) + E pin (A1) | + pn(Br.k)
1<I<3
Tk

= ,Un(Bk,k) + .Un(A1> + .Un(AQ) + Nn(AB)
= pn(Qn) + pn(Brk) > pn(Q2n)-

Hence % > %, which is a contradiction with the choice of the partition.

We conclude that p,(Byi) = 0 for & = 1,2,3. Now suppose that for some 1 < [,j < 3 with
I # j we have u,(Bi; U Bj;) = 0. Let k € {1,2,3} such that k£ # [,j. Then we obtain u,(4;) =
tin(Bi) + pin(Bj,1) + b (Brt) = pin(Br,t) and pn(A;) = pn(Bij) + pn(Bj ;) + pin(Br.j) = pn(Br,j). We
thus have
2pn(Ak) = pin(Ak) + pin(Br,) + pn(Br,j) + pin(Br,k)
= pn(Ak) + pn (A1) + pn(A;) = pn(Q24)

and thus % = % This contradicts the choice of the partition sets.
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Hence, p,(By; UBj;) > 0 for all I, j with [ # j. This means that the point z lies in all three ellipses
(i.e. for I # j the point zp has to lie inside the ellipse with foci w; and w; and eccentricity A). We obtain

that for A = @ the only point in the intersection of the three ellipses is 0, and that for A > \/Tg the
intersection is empty (see Fig. 4)

| >
PQ

FIGURE 4. The image of the simple function g consists of the three points wi,ws and

ws. The three ellipses with foci w; and w; (for [ and j different) and eccentricity A = @
are drawn. The only point that lies in all three the ellipses is the point zp := 0.
Hence, A(g) < é Therefore A,, = \/Tg O

Lemma A.2. Let 1 < n < oo. Then there is a g € Loo(Qy) with Diam(g(Q,)) = 1 and so that
Ay =sup,cc —Hg—lzlh .
Proof. The result for n = 2 follows directly by taking g = x{1;-
Thus, suppose n > 3. We can build a partition {A4;, A2, A3} of ©,, so that:
e If n =3k, k€N, or n =00, then p,,(A1) = pin(A2) = pn(A43) = 3.
e Ifn=3k+1, k€N, then u,(A1) = pn(4z) = %, tn(As) = %
o If n=3k+2, keN,then u,(A1) = pn(4z) = %, tn(As) = %
For convenience let us denote
a = pn(A1) = pn(A2), b= pn(As), wp =5, k=0,1,2.
Define go € Loo (Qna ,U/n) by
9o = XA, W1 + XA, W2 + XA;Wo.

Since pn (A1) = un(Az), it is clear that the minimum of C 3 z — ||go — 2|1 is attained for real-valued z,

and moreover that —% < z < 1. When n =4, it is clear from the triangle inequality that the minimum is

attained at the point ¢y = 1 and we have ||go —to||1 = @ Now assume n # 4 so that the ratio 2 satisfies
3

% <3 (the ratio % is maximal for n = 7 in which case we have £ = Z = % < \/5) Hence v/3a — b > 0.

We have for ¢ € [—1,1] that

RIS

lgo — tl = 2alwy —t[ + b(1 — ).
Then )
d t+ 5
—Ilgo —t|l1 =2 2
dt”go ||1 a|’LU —t|
As %Hgo — t|]1 is negative when evaluated at —3 and positive when evaluated at 1 (as V3a—b>0), the
minimum of ||go — ¢||; must be assumed at a point ¢y € [—3, 1] satisfying

—b.

1
b|w1 — t0| = 2a(t0 + 5)

Then . 3 .
2 324 2y = g2 12
B((to +5)° + ) = da¥(to + 5)
and ) )
1 3b 3b
(to+ ) =

2/ T 4(4a®—1?)  4(2a— D)
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since 2a + b = 1. Therefore

(t+l)2+§—37b2+§ Lﬁ
0T T4 T 4(2a—b) 4 (2a—0b)

and

llgo — toll1 = 2alto — w1 |+ b(1 — o)
2
V2a —b 2v2a—b 2
V3v2a—b  3b
7+_
2 2
v3—6b 3b
=X
2 2
e For n =3k or n = co we have pu,(A3) = % and find ||go — to]|1 = 1.

e For n=3k+1 (n #4) we have p,(As Skk—fl and find

)
1 [3k—=3 1 3k+3
2V3k+1 ' 2 3k+1

e For n = 3k + 2 we have p,(As) = # and find

oo tofls — L PO 13k
gom ol =5V 322 3+ 2

Now, take g = \/iggo so that Diam(g(f2,,)) = 1. Then
1 V3 V3

)

1
3

lgo —toll1 =

sup = sup = = A,.
zec lg—zll1 zecllgo—zll1  llgo — tollx
O
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