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Laymen’s Abstract

This report is about spherical harmonics, a mathematical tool used to understand patterns and
shapes on the surface of a sphere, such as the Earth, or other shapes. You can think of them as the
“building blocks” for describing how things vary across a spherical surface.

Just as musical notes can be combined to form complex sounds, spherical harmonics are used to
combine simple mathematical patterns into more complicated ones. Scientists and engineers use
them in many areas. For example, to represent 3D shapes, to model complex lighting in different
environments, or to describe certain measurements on the atomics level.

In this report, we explore what spherical harmonics are, how they are built from simpler mathemati-
cal objects called polynomials, and why they are useful. Although the topic involves some advanced
mathematics, the goal of this report is to offer a clear and structured introduction that helps readers
gradually build their understanding.
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Abstract

This report introduces spherical harmonics, functions defined on the surface of a sphere that play a
central role in mathematical analysis, especially in problems with spherical symmetry. They appear
in many fields, such as 3D representation within computer graphics, simulation light behaviour and
angular momentum within quantum mechanics.

We begin by developing the theory from first principles. We look at what homogeneous harmon-
ics polynomials are and explain how spherical harmonics arise by restricting these polynomials to
the unit sphere. Using this we discuss properties such as orthogonality and dimension. We also
discuss zonal harmonics, which are symmetric around a chosen axis.

In three dimensions, we solve Laplace’s equation in spherical coordinates to derive explicit formu-
las for spherical harmonics. Associated Legendre polynomials will play a key role here. This directly
connects with angular momentum, which will also be looked at in this report. This report aims to
give students an introduction on spherical harmonics and how they can be used.
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1
Introduction

Spherical harmonics arise naturally in problems with spherical symmetry in both theoretical and
applied mathematics. They are special functions defined on the surface of a sphere. However, we
will see that they can be extended to Rd . This makes them especially useful for representing and
analysing data defined on spherical domains. This report is intended as an accessible introduction
to spherical harmonics, focusing on their mathematical foundation, while also looking at an appli-
cation in quantum mechanics.

Spherical harmonics are used in modern applications that involve data or functions defined on
the surface of a sphere. In 3D computer graphics and geometry, they help represent and process
shapes and objects more efficiently, especially when working with curved surfaces. A recent study
improved a method using spherical harmonics for 3D representation, leading to more accurate and
stable results when analysing or reconstructing 3D shapes.[11]

They are also useful in simulating how light behaves in environments, particularly when dealing
with complex lighting effects like reflections and polarization. Specialized versions of spherical har-
monics make it possible to simulate these effects in a way that is both realistic and efficient, enabling
techniques such as real-time rendering in visual applications.[3]

In quantum mechanics, spherical harmonics help describe the behaviour of certain particles, such
as photons, especially when analysing their angular momentum. Spherical harmonics and angular
momentum have a deep connection, as spherical harmonics help in removing uncertainty for par-
ticle measurements.[6] This application will be treated in this report.

In this report, we begin by introducing the abstract theory of spherical harmonics in chapter 2, start-
ing with the definition of the unit sphere and homogeneous harmonic polynomials. We then explain
how spherical harmonics are constructed from these polynomials and examine some of their key
properties, such as orthogonality and dimension. Next, we look at a special type of spherical har-
monics: zonal spherical harmonic. In chapter 3, we focus on the three-dimensional case, solving
Laplace’s equation in spherical coordinates to derive explicit formulas for spherical harmonics. In
chapter 4 we discuss the application of spherical harmonics in angular momentum. Finally, we
briefly reflect on possible extensions and applications of the theory in chapter 5. In the appendix,
some useful results and definitions can be found that are used throughout the report.
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2
Spherical Harmonics

This chapter introduces the space of spherical harmonics. We start by defining the domain of these
functions, which is the unit sphere. Secondly, we introduce harmonic homogeneous polynomials.
And lastly, we give the definition of spherical harmonics and give some examples of what these
functions look like. This chapter is based on lecture notes written by Koornwinder[9] with some
examples taken form an introductory book on spherical harmonics[1].

2.1. The unit sphere
Spherical harmonics are defined on the unit sphere in Rd . We write this as follows,

Sd−1 := {x ∈Rd | ||x|| = 1},

where x is a vector and ||x|| =
√

x2
1 +·· ·+x2

d the euclidean norm. Here we thus write Sd−1 for the

unit sphere in Rd . To rotate and reflect these vectors we introduce the set of all d ×d orthogonal
matrices,

O(d) := {T ∈ Md (R) | T T T = T T T = I },

where Md (R) is the set of all real d ×d matrices. We use orthogonal matrices since these preserve
the length of the vectors: ||T x|| = ||x|| for T ∈ O(d). To perform rotations or reflections we can de-
fine an action of O(d) on Sd−1. However, for this we must first show that O(d) is a group (recall
the definitions of a group and an action in A.6 and A.7). For the group action we use the usual ma-
trix multiplication. Then we have I ∈ O(d) as the identity element. Furthermore, since T −1 = T T

for all orthogonal matrices, we also have an inverse element. Lastly, for A,B ,C ∈ O(d) we have
A(BC ) = (AB)C , as this holds for all matrices. So indeed O(d) forms a group.
Now we can define the action of O(d) on Sd−1, which is a map O(d)×Sd−1 → Sd−1 given by (T,x) 7→
T x. The proof that this is indeed an action follows easily from matrix properties. Here, we have in-
troduced vector rotation very rigorously, but note that it is indeed just matrix-vector multiplication.

2.2. Harmonic functions
We continue by defining the type of functions we will use to define the spherical harmonics. First,
we restrict ourselves to the set of real-valued homogeneous polynomials. We define homogeneous
polynomials in the following definition.

Definition 2.1. A polynomial f :Rd →R is said to be homogeneous of degree n if it is a linear combi-
nation of the monomials1

xn1
1 xn2

2 · · ·xnd

d such that n1 +n2 +·· ·+nd = n. (2.1)

1A monomial is a polynomial with a single term.
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2.2. Harmonic functions 6

The set of all homogeneous polynomials of degree n in Rd is denoted as Pd
n .

Some concrete examples of homogeneous polynomials are shown in de following example.

Example 2.2.

1. P2
2 = {a1x2

1 +a2x2
2 +a3x1x2 | ai ∈R},

2. P3
2 = {a1x2

1 +a2x2
2 +a3x2

3 +a4x1x2 +a5x1x3 +a6x2x3 | ai ∈R},

3. P2
3 = {a1x3

1 +a2x3
2 +a3x2

1 x2 +a4x1x2
2 | ai ∈R}.

An important property of homogenous polynomials is that we have

f (r x) = r n f (x) ∀x ∈U , r ∈R.

We can see this by noting that every term of f is of the form (2.1), for which we see

(r x1)n1 (r x2)n2 · · · (r xd )nd = r n1+···+nd
(
xn1

1 xn2
2 · · ·xnd

d

)= r n (
xn1

1 xn2
2 · · ·xnd

d

)
.

Now for a vector y ∈ Rd (y ̸= 0) we can write y = r x, where r = ||y|| and x = y
||y|| ∈ Sd−1 is the unit

vector in the direction of y. For any f ∈Pd
n applying homogeneity gives the following,

f
(
y
)= f (r x) = r n f (x). (2.2)

Thus, once we know the values of a homogenous polynomial on the unit sphere, its values can be
immediately determined on Rd . To determine the dimension of Pd

n , we need to count the number
of monomials of degree n, as they form a basis for Pd

n . This is equal to the number of ways to write
n = n1+·· ·+nd with n1, ...,nd ∈Z≥0. For this we can choose d−1 of the ni , the last one is determined
because the total must be n. We have a total power of n to divide over the variables so we get:

dim
(
Pd

n

)
=

(
n +d −1

d −1

)
. (2.3)

This is not so straightforward to see, but to get a better understanding refer to the stars and bars
problem. This is a well-known combinatorics problem, which is analogous to this problem. Another
useful result for f ∈Pd

n that will be used later, is the following lemma,

Lemma 2.3. For f ∈Pd
n we have

d∑
j=1

x j
∂ f (x)

∂x j
= n f (x). (2.4)

Proof. Note that

n f (x) = d

d t

(
t n)∣∣∣∣

t=1
f (x) = d

d t
f (tx)

∣∣∣∣
t=1

=
d∑

j=1
x j
∂ f (x)

∂x j
,

where we used homogeneity in the second step and the chain rule (stated in A.1) in the last step.

We now introduce a natural action of O(d) on Pd
n , which describes how polynomials transform

under rotations and reflections. It is defined by(
T · f

)
(x) := f

(
T −1x

)
( f ∈Pd

n , T ∈O(d)). (2.5)

It is easily shown that this is indeed an action. Clearly we have (I · f )(x) = f (I−1x) = f (x). Further-
more, for A,B ∈O(d), we see

((AB) · f )(x) = f ((AB)−1x) = f (B−1(A−1x)) = (B · f )(A−1x) = (A · (B · f ))(x).

Next, we give the definition of harmonic functions and show that for a harmonic function f , T · f is
again harmonic.
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Definition 2.4. A function f : U → R, where U ⊆ Rd is open, is harmonic if it is twice continuously
differentiable and

∂2 f

∂x2
1

+ ∂2 f

∂x2
2

+·· ·+ ∂2 f

∂x2
d

= 0. (2.6)

This is usually written as: ∇2 f = 0 or ∆ f = 0, where ∆ is called the Laplace operator. Furthermore,
equation (2.6) is called the Laplace equation. The set of all twice continuously differentiable functions
on U is denoted as C 2(U ).

Proposition 2.5. If T ∈O(d) and f ∈C 2(Rd ) is harmonic, then T · f is again harmonic.

Proof. We show that ∆(T · f ) =∆ f = 0. For this let y = T −1x (T ∈O(d)), then we need to show

d∑
i=1

(
∂

∂xi

)2

=
d∑

j=1

(
∂

∂y j

)2

Indeed,
∂

∂xi
=

d∑
j=1

∂y j

∂xi

∂

∂y j
=

d∑
j=1

(
T −1)

j ,i

∂

∂y j
=

d∑
j=1

Ti , j
∂

∂y j
,

where in the first equality we applied the chain rule. We obtain the second equality by observing that

y j =∑d
k=1 T −1

j ,k xk , so
∂y j

∂xi
= (T −1) j ,i . The last equality uses orthogonality: T −1 = T T , so (T −1) j ,i = Ti , j .

Now this implies that

d∑
i=1

(
∂

∂xi

)2

=
d∑

i=1

(
d∑

j=1
Ti , j

∂

∂y j

)2

=
d∑

i=1

d∑
j=1

d∑
k=1

Ti , j Ti ,k
∂

∂y j

∂

∂yk

=
d∑

j=1

d∑
k=1

(
d∑

i=1
Ti , j Ti ,k

)
∂

∂y j

∂

∂yk

Now note that
∑d

i=1 Ti , j Ti ,k is the dot product of column j and k and since T has orthonormal

columns, we have that
∑d

i=1 Ti , j Ti ,k is equal to 1 if i = j and equal to 0 if i ̸= j . The triple sum thus

reduces to
∑d

j=1
∂
∂y j

∂
∂y j

, from which we obtain

d∑
i=1

(
∂

∂xi

)2

=
d∑

j=1

(
∂

∂y j

)2

.

Having defined homogeneous polynomials and harmonic functions, we can define the space of real
harmonic homogeneous polynomials on Rd of degree n:

Hd
n := { f ∈Pd

n | ∆ f = 0}.

We follow with a lemma which shows that all functions in Hd
n containing a factor ||x||2 are equal

to zero. Next, the lemma will be used in a proposition relating Pd
n and Hd

n .

Lemma 2.6. Let n ≥ 2, f ∈ Pd
n−2 and F (x) := ||x||2 f (x). Then F ∈ Pd

n and if additionally F ∈Hd
n we

have F = 0
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Proof. Since for f ∈Pd
n−2 every element is of degree n−2, so clearly multiplying by x2

1+·· ·+x2
d yields

a function in Pd
n . Now suppose F ∈Hd

n . To show F = 0, assume F ̸= 0. Then there exists a maximal
k (1 ≤ k ≤ 1

2 n) such that F (x) = ||x||2k g (x) for some g ∈Pd
n−2k . In other words, we factor out ||x||2 as

many times as possible. We will compute ∆(||x||2k g (x)) to reach a contradiction. For this, first note
that for general functions p(x) and q(x), by applying the product rule twice, we have

∂2

∂x2
i

( f g ) = f
∂2g

∂x2
i

+2
∂ f

∂xi

∂g

∂xi
+ g

∂2 f

∂x2
i

.

Now summing over all i we get the Laplacian for a product of two functions,

∆( f g ) =
d∑

i=1

(
f
∂2g

∂x2
i

+2
∂ f

∂xi

∂g

∂xi
+ g

∂2 f

∂x2
i

)
= f ∆g +2

d∑
i=1

∂ f

∂xi

∂g

∂xi
+ g∆ f .

Write r := ||x||, then we can apply the above to the product r 2g (x) and see

0 =∆
(
r 2k

)
g (x)+2

d∑
i=1

∂

∂xi

(
r 2k

) ∂

∂xi
g (x)+ r 2k∆g (x). (2.7)

Next we use that ∆ acting on a function only depending on r acts as d 2

dr 2 + d−1
r

d
dr . We can show this

by directly computing. For a general function p(r ), we have

∂

∂xi
p(r ) = d p(r )

dr

∂r

∂xi
= d p(r )

dr

2xi

2r
= d p(r )

dr

xi

r
.

This yields
∂2

∂x2
i

p(r ) = d

d xi

(
d p(r )

dr

xi

r

)
= d 2p(r )

dr 2 ·
( xi

r

)2
+ d p(r )

dr
· d

d xi

( xi

r

)
,

where
d

d xi

( xi

r

)
= r −xi

xi
r

r 2 = r 2 −x2
i

r 3 .

Now we sum over all i and see,

∆p(r ) =
d∑

i=1

∂2

∂x2
i

p(r ) = d 2p(r )

dr 2

d∑
i=1

x2
i

r 2 + d p(r )

dr

d∑
i=1

r 2 −x2
i

r 3 .

Finally, we compute the two sums:

d∑
i=1

x2
i = r 2 ⇒

d∑
i=1

x2
i

r 2 = 1

d∑
i=1

(r 2 −x2
i ) =

d∑
i=1

r 2 −
d∑

i=1
x2

i = dr 2 − r 2 = (d −1)r 2 ⇒
d∑

i=1

r 2 −x2
i

r 3 = d −1

r
.

We apply this to ∆
(
r 2k

)
in (2.7). Furthermore, we can compute ∂

∂xi

(
r 2k

)
(also in (2.7)) to obtain(

d 2

dr 2 + d −1

r

d

dr

)(
r 2k

)
g (x)+4kr 2k−2

d∑
i=1

xi
∂

∂xi
g (x)+ r 2k∆g (x).

We now compute the first term. For the second term we use lemma 2.3. We get

2k(2k +d −2)r 2k−2g (x)+4k(n −2k)r 2k−2g (x)+ r 2k∆g (x)

= 2k(2n −2k +d −2)r 2k−2g (x)+ r 2k∆g (x)
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Write C =−2k(2n −2k +d −2), then in total we have

0 =−Cr 2k−2g (x)+ r 2k∆g (x) ⇐⇒ g (x) = 1

C
r 2∆g (x)

Substituting this in F (x) = r 2k g (x) yields F (x) = 1
C r 2k+2∆g (x). This contradicts the maximality of k

and thus we must have F = 0.

Proposition 2.7. We have

Pd
n =Hd

n ⊕||x||2Pd
n−2 (n ≥ 2) and Pd

n =Hd
n (n = 0,1). (2.8)

For the case of n ≥ 2, this means that we can uniquely write every element of Pd
n as the sum of an

element of Hd
n and an element of ||x||2Pd

n−2.

Proof. For all polynomials of degree smaller or equal to one we have that the Laplacian is zero and
thus Pd

n =Hd
n if n = 0,1. Let n ≥ 2, then we have Hd

n , ||x||2Pd
n−2 ⊆Pd

n . Now lemma 2.6 implies that
Hd

n ∩||x||2Pd
n−2 = {0}, so we have dim(Pd

n ) ≥ dim(Hd
n )+dim(||x||2Pd

n−2). To show equality it remains
to prove dim(Pd

n ) ≤ dim(Hd
n )+dim(||x||2Pd

n−2).
Indeed we have

dim(Pd
n ) = dim(Hd

n )+dim(∆(Pd
n )) ≤ dim(Hd

n )+dim(Pd
n−2) = dim(Hd

n )+dim(||x||2Pd
n−2).

The first equality comes from the fact that for a linear mapφ : V →W , we have dim(V ) = dim(kerφ)+
dim(im φ). Recall that kerφ are all elements of V that are mapped to zero and that im φ are all el-
ement of W that are of the form φ(v) for some v ∈ V . Now notice that ∆ : Pd

n → Pd
n−2 is a linear

map with ker∆=Hd
n and im ∆= ∆(Pd

n ). The second inequality follows because ∆(Pd
n ) ⊂Pd

n−2. We
have the last equality because there is a bijection Pd

n−2 → ||x||2Pd
n−2 given by f 7→ ||x||2 f , thus their

dimensions are equal. We conclude

dim(Pd
n ) = dim(Hd

n )+dim(||x||2Pd
n−2),

which implies the desired result.

A corollary about the dimension of Hd
n that follows directly from proposition 2.7 is:

Corollary 2.8. For the dimension of Hd
n we have

dimHd
n = dimPd

n −dimPd
n−2 (n ≥ 2) and dimHd

n = dimPd
n (n = 0,1) (2.9)

We can now use this corollary to explicitly compute the dimension of Hd
n . Using equation (2.3)

we see that for d ≥ 2 and n ≥ 1,

dimHd
n = dimPd

n −dimPd
n−2 =

(
n +d −1

d −1

)
−

(
n +d −3

d −1

)
= (n +d −1)!

(d −1)!n!
− (n +d −3)!

(d −1)!(n −2)!

= (n +d −1)!(n −2)!− (n +d −3)! n!

n!(n −2)!(d −1)!

= (n +d −1)(n +d −2)(n +d −3)!(n −2)!− (n +d −3)! n(n −1)(n −2)!

n!(n −2)!(d −1)!

= (d 2 +2nd −2n −3d +2)(n +d −3)!

n!(d −1)(d −2)!
= (d −1)(2n +d −2)(n +d −3)!

n!(d −1)(d −2)!

= (2n +d −2)(n +d −3)!

n!(d −2)!
.
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Now still for d ≥ 2, note that for n = 0, we must have f (r x) = r 0 f (x) = f (x), which only holds for
constant functions. Thus dimHd

0 = 1.
For d = 1, the Laplacian reduces to the second derivative. And a homogeneous polynomial of degree
n has the form f (x) = xn . We see that ∆ f = 0 only holds for n = 0,1, so dimH1

n = 1 if n = 0,1 and
dimH1

n = 0 if n ≥ 2.
Next, we give some examples of harmonic homogeneous polynomials in Hd

n .

Example 2.9.

1. For d = n = 2 we can easily solve ∆ f = 0. In this case f has the form a1x2
1 +a2x2

2 +a3x1x2 and
calculating the Laplacian and setting equal to zero yield 2a1 +2a2 = 0 which is equivalent to
a2 =−a1. Substituting this back into the polynomial gives a1x2

1 −a1x2
2 +a3x1x2 = a1(x2

1 −x2
2)+

a3x1x2. Thus all polynomials are of the form H2
2 = { a(x2

1 −x2
2)+bx1x2 | a,b ∈C}.

2. For d = 2 we have that any polynomial of the form (x1 + i x2)n belongs to H2
n . Note that

∂2

∂x2
1

((x1 + i x2)n) = n(n −1)(x1 + i x2)n−2 and ∂2

∂x2
2

((x1 + i x2)n) =−n(n −1)(x1 + i x2)n−2, because

we multiply by i twice when using the chain rule.

3. For d = 3 and a fixed θ ∈R, polynomials of the form (i x1cosθ+i x2sinθ+x3)n belong to H3
n . To

see this, observe that

∂2 f
∂x2

1
=−n(n −1)cos2θ(i x1cosθ+ i x2sinθ+x3)n−2,

∂2 f
∂x2

2
=−n(n −1)sin2θ(i x1cosθ+ i x2sinθ+x3)n−2,

∂2 f
∂x2

3
= n(n −2)(i x1cosθ+ i x2sinθ+x3)n−2,

where we have written f (x1, x2, x3) = (i x1cosθ+ i x2sinθ+x3)n . So we get

∆ f (x1, x2, x3) = (−(cos2θ+ sin2θ)+1)n(n −1)(i x1cosθ+ i x2sinθ+x3)n−2.

Noting that −(cos2θ+ sin2θ)+1 = 0 yields the result.

Note that for these functions, as seen in the examples, we can have complex coefficients. However,
we do still require real-valued variables.

2.3. Spherical harmonics
We are now ready to introduce the space of spherical harmonics. By applying f (r x) = r n f (x) to the
functions in Hn we obtain the bijection f 7→ f |Sd−1 . We call f |Sd−1 a spherical harmonic of degree n
on Sd−1. We denote the space of all spherical harmonics of degree n on Sd−1 by Yd

n . Because of the
bijection, we have

dim(Yd
n ) = dim(Hd

n ),

so the dimensions are the same as in equation (2.9). Thus, to obtain spherical harmonics we have
to restrict homogeneous harmonic polynomials to the unit sphere.

Example 2.10. Take the polynomial of the form (x1 + i x2)n , we saw in example 2.9 that this is a
homogeneous harmonic. Now in polar coordinates, for x ∈ S1 (the unit circle in this case), we have
(x1, x2)T = (cosθ, sinθ)T and the restriction of (x1 + i x2)n to the unit circle is

(cosθ+ i sinθ)n = e i nθ = cos(nθ)+ i sin(nθ),
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which is a spherical harmonic of degree n. In addition, the real and imaginary parts are also a
spherical harmonic, since for f (x) = g (x)+ i h(x),

0 =∆ f (x) =∆g (x)+ i∆h(x) =⇒ ∆g (x) =∆h(x) = 0.

Thus, cos(nθ) and sin(nθ) are also elements of Y2
n .

To deeper analyse spherical harmonics, we note that all spherical harmonics are elements of
L2(Sd−1), the space of square integrable functions defined on Sd−1. To see this, note that clearly all
polynomials are square integrable. Furthermore, we can use the Lebesgue measure on Rd to define
a surface measure on Sd−1, which we denote by σ. For example, this is determined by the property∫

Rd
f (y) dy =

∫ ∞

r=0

∫
x∈Sd−1

f (r x)r d−1dσ(x)dr, (2.10)

for all integrable functions f . Intuitively this property comes from the fact that when the radius of a
sphere increases, the surface scales with r d−1.
Now we can also define an inner product on L2(Sd−1) by

〈 f , g 〉 := 1

σ(Sd−1)

∫
Sd−1

f (x)g (x)dσ(x), (2.11)

where σ
(
Sd−1

)
is the total surface area of the unit sphere in Rd . We can make this explicit using the

the gamma function (A.5):

σ
(
Sd−1

)
= 2πd/2

Γ
(

d
2

) =


2πd/2

( d
2 −1)!

, d even

πd/2·2 1
2 d+ 1

2p
π(d−2)!!

, d odd
,

where we used the two properties from result A.5. Note that n!! = n(n − 2) · · ·1. We normalize by
σ

(
Sd−1

)
, since this simplifies many formulas involving the inner product. Using this inner product,

we can show orthogonality of spherical harmonics.

Theorem 2.11. If hn ∈Hd
n ,hm ∈Hd

m and n ̸= m, then 〈hn ,hm〉 = 0

Proof. Without loss of generality we may assume hn ,hm to be real-valued, since we can this apply
this result to complex-valued functions by taking real and imaginary parts. Now by Green’s first
identity (A.2) we have∫

||x||≤1
∇hn ·∇hm dx+

∫
||x||≤1

hn∆hm dx =
∫

Sd−1
hn∇hm ·n(x) dσ, (2.12)∫

||x||≤1
∇hm ·∇hn dx+

∫
||x||≤1

hm∆hn dx =
∫

Sd−1
hm∇hn ·n(x) dσ. (2.13)

Subtracting (2.12) and (2.13) and noting that ∆hn =∆hm = 0 yields

0 =
∫
||x||≤1

(hn∆hm −hm∆hn)d x =
∫

Sd−1
(hn∇hm ·n(x)−hm∇hn ·n(x))dσ. (2.14)

Now note that every point x ∈ Sd−1 is perpendicular to the surface of Sd−1, so we have n(x) = x for
all x. By lemma 2.3 we obtain

∇hm ·n(x) =∇hm ·x =
d∑

j=1

∂ f (x)

∂xi
x j = m f (x),

and in the same way
∇hn ·n(x) = n f (x).

Substituting this into (2.14) yields

0 =
∫

Sd−1
(hnmhm −hmnhn)dσ= (m −n)

∫
Sd−1

hnhmdσ.
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The theorem above proves that spherical harmonics are orthogonal in L2(Sd−1) and is used to
show that spherical harmonics form an orthonormal basis for L2(Sd−1). We won’t discuss the norm
here, but we will return to this in chapter 3 for the case d = 3.

2.4. Zonal spherical harmonics
Zonal functions are functions that are invariant under rotation about a certain axis, meaning that
rotating the argument of the function around this axis will not change the value of the function.
To define zonal functions, we first look at the stabiliser (see A.8) of e1 = (1,0, ...,0) in O(d), i.e. all
T ∈O(d) such that Te1 = e1. This is easily seen to be the following set:

S(d −1) =
{(

1 0
0 T1

) ∣∣∣∣ T1 ∈O(d −1)

}
. (2.15)

We note here that we do not necessarily have to choose e1, we can fix any axis. In this section we fix
e1. We follow with the definition of a zonal function.

Definition 2.12. A function f on Sd−1 is called zonal if

T · f = f ∀ T ∈ S(d −1).

Since we have a bijection between Hd
n and Yd

n , we can search for zonal functions in Hd
n and restrict

them to the unit sphere. For this we first have the following lemma for zonal functions in Pd
n .

Lemma 2.13. Let f ∈Pd
n . Then f is zonal if and only if, for certain coefficients ci ,

f (x) =
⌊ n

2 ⌋∑
i=0

ci xn−2i
1

(
x2

2 +·· ·+x2
d

)i
, (2.16)

where ⌊n
2 ⌋ is n

2 rounded down to an integer.

Proof. First suppose f is of the form (2.16), then we see that f has maximum degree n. Furthermore,
for T ∈ S(d−1) we have that T −1x = T T x does not change the first element of x. The rest of the vector
is determined by T −1

1 (x2, ..., xd )T = T T
1 (x2, ..., xd )T . Since T1 ∈O(d−1) this will not change the length

of (x2, ..., xd )T . So noting that f is dependent on powers of x1 and ||(x2, .., xd )||2i , we can conclude
that T · f (x) = f (T T x) = f (x) for all x.
Conversely, suppose f ∈Pd

n is zonal. Then for certain homogeneous polynomials fk of degree k in
x2, ..., xd , we can write

f (x) =
n∑

k=0
xn−k

1 fk (x2, ..., xd ),

by factoring out xn−k for every k ∈N∪ {0}. Now note that S(d −1) contains the reflection

R : (x1, x2, ..., xd ) 7→ (x1,−x2, ...,−xd ).

Since f is zonal, we have R · f = f , so

n∑
k=0

xn−k
1 fk (x2, ..., xd ) =

n∑
k=0

xn−k
1 fk (−x2, ...,−xd ) =

n∑
k=0

xn−k
1 (−1)k fk (x2, ..., xd ),

where we used homogeneity in the last equality. For odd k we thus see

xn−k
1 fk (x2, ..., xd ) =−xn−k

1 fk (x2, ..., xd ),
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since we do not necessarily have x1 = 0, we must have fk = 0 for odd k. We can write

f (x) =
⌊ n

2 ⌋∑
i=0

xn−2i
1 f2i (x2, ..., xd ).

Now for every (x1, x2, ..., xd ) we can construct a rotation Rx ∈ S(d −1) given by

Rx : (x1, x2, ..., xd ) 7→
(
x1,

√
x2

2 +·· ·+x2
d ,0, ...,0

)
.

For this take

Rx =
(
1 0
0 T1

)
,

with a T1 ∈O(d −1) such that T1(x2, ..., xd )T =
(√

x2
2 +·· ·+x2

d ,0, . . . ,0
)
. With this map, again since f

is zonal, we have

f (x) =
⌊n/2⌋∑
i=0

xn−2i
1 f2i (x2, . . . , xd ) =

⌊n/2⌋∑
i=0

xn−2i
1 f2i

(√
x2

2 +·· ·+x2
d ,0, . . . ,0

)
.

Since now every f2i only depends on the first variable and since they are homogeneous of degree
2i , we must have

⌊n/2⌋∑
i=0

xn−2i
1 f2i

(√
x2

2 +·· ·+x2
d ,0, . . . ,0

)
=

⌊n/2⌋∑
i=0

ci xn−2i
1 (x2

2 +·· ·+x2
d )i ,

for certain coefficients ci .

The next proposition implies that all zonal harmonic homogeneous polynomials of the same
degree are multiples of each other.

Proposition 2.14. The space of zonal functions in Hd
n has dimension 1.

Proof. By lemma 2.13 we know that a function f ∈ Pd
n is zonal in Hd

n if and only if f has the form

(2.16) and satisfies ∆ f = 0, thus we check when ∆ f = 0 holds. For this write ρ :=
√

x2
2 +·· ·+x2

d , then

as in the proof lemma 2.6, we use that ∆ acts on a function only depending on ρ as d 2

dρ2 + d−2
ρ

d
dρ

(where we now have d −2, because we start at x2). Applying ∆ to f we see

∆ f = ∂2 f

∂x2
1

+
(
∂2 f

∂x2
2

+·· ·+ ∂2 f

∂x2
d

)
= ∂2 f

∂x2
1

+ d 2 f

dρ2 + d −2

ρ

d f

dρ
.

Computing this yields

∆ f =
⌊ n

2 ⌋∑
i=0

ci

(
(n −2i )(n −2i −1)xn−2i−2

1 ρ2i +xn−2i
1

(
d 2

dρ2

(
ρ2i

)
+ d −2

ρ

d

dρ

(
ρ2i

)))

=
⌊ n

2 ⌋∑
i=0

ci

(
(n −2i )(n −2i −1)xn−2i−2

1 ρ2i +2i (2i +d −3)xn−2i
1 ρ2i−2

)
= 0.

Note that 2i (2i +d −3)xn−2i
1 ρ2i−2 = 0 for i = 0 and that (n −2i )(n −2i −1)xn−2i−2

1 ρ2i = 0 for i = ⌊n
2 ⌋

(n −2i = 0 for even n, n −2i −1 = 0 for odd n). With this we can rewrite the above expression into

⌊ n
2 ⌋∑

i=1
((n −2i +2)(n −2i +1)ci−1 +2i (2i +d −3)ci ) xn−2i

1 ρ2i−2 = 0,
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where we shifted the index. From this we deduce that

ci =− (n −2i +2)(n −2i +1)

2i (2i +d −3)
ci−1

(
i = 1, . . . ,

⌊n
2

⌋)
.

We can conclude that all coefficients are dependent on the choice of c0, i.e. all zonal functions in
Hd

n are determined by multiples of c0.

To find the explicit form of these functions, we follow with three results. For this we first give
a parametrisation of the unit sphere in Rd , which is used in these results. We want to parametrise
x = (x1, ..., xd )T ∈ Sd−1 in terms of x1. This can be done by first noting that for x ∈ Sd−1,

x = x1(1,0, ...,0)T + (0, x2, ..., xd )T = x1e1 + (0, x2, ..., xd )T .

Now we want to rewrite (0, x2, ..., xd )T in terms of a vector with length one. So we write (0, x2, ..., xd )T =
ax′, where x′ is a vector with length one and x1 = 0. To determine a we solve:

1 = ||x||2 = ||x1e1 +ax′||2 = x2
1 +a2,

so a =
√

1−x2
1 . Now write t := x1 and Sd−1

0 := {x ∈ Sd−1 | x1 = 0}, then we obtain the parametrisation

x = te1 +
√

1− t 2x′ t ∈ [−1,1], x′ ∈ Sd−1
0 .

Proposition 2.15. Let d ≥ 3. Define Sd−1
0 as above and let σ′ be the surface measure on Sd−1

0 . Then,
for all f ∈C (Sd−1),∫

Sd−1
f dσ=

∫
x′∈Sd−1

0

∫ 1

t=−1
f
(
te1 +

√
1− t 2 x′

)
(1− t 2)

1
2 d− 3

2 d t dσ′(x′). (2.17)

Proof. A vector y = (y1, ...yd )T , can be decomposed into y1e1 = (y1,0, ...,0)T and y′ = (0, y2, ..., yd )T .
Now for functions g with g ̸= 0 outside a compact set we can write∫

Rd
g (y) dy =

∫
Rd−1

∫ ∞

y1=−∞
g (y1e1 + (0, y2, .., yd )) d y1d(y2, ..., yd )

Now we can apply (2.10) to the outer integral to obtain∫
x′∈Sd−1

0

∫ ∞

ρ=0

∫ ∞

y1=−∞
g (y1e1 +ρx′)ρd−2 d y1 dρdσ′(x′).

We use a change of variable, let y1 = r t and ρ = r
p

1− t 2. Then the Jacobian is∣∣∣∣∣∣∣∣
∂y1

∂t

∂y1

∂r
∂ρ

∂t

∂ρ

∂r

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣

r t

− r tp
1− t 2

√
1− t 2

∣∣∣∣∣∣∣= r
√

1− t 2 + r t 2

p
1− t 2

= r (1− t 2)−
1
2 .

For the new bounds note that y2
1 = r 2t 2 and ρ2 = r 2(1− t 2). Thus

y2
1 +ρ2 = r 2(t 2 +1− t 2) = r 2 =⇒ r =

√
y2

1 +ρ2,

and
t = y1

r
= y1√

y2
1 +ρ2

.
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Since r is the root of a positive number, we have r ∈ [0,∞). For t we see

lim
y1→±∞ t = lim

y1→±∞
y1√

y2
1 +ρ2

= lim
y1→±∞

y1∣∣y1
∣∣√1+ρ2/y2

1

=±1,

so t ∈ (−1,1). We obtain∫
x′∈Sd−1

0

∫ 1

t=−1

∫ ∞

r=0
g

(
r te1 + r

√
1− t 2 x′

)(
r
√

1− t 2
)d−2 (

r (1− t 2)−
1
2

)
dr d t dσ′(x′)

=
∫

x′∈Sd−1
0

∫ 1

t=−1

∫ ∞

r=0
g

(
r
(
te1 +

√
1− t 2 x′

))
(1− t 2)

1
2 d− 3

2 r d−1 dr d t dσ′(x′).

We are interested in the integral over the unit sphere, so we assume that g has the form g (y) =
h(r ) f (x), for some function h. Now comparing what we found above to the rewriting in (2.10) yields∫ ∞

r=0

∫
x∈Sd−1

f (x)h(r )r d−1dσ(x)dr

=
∫

x′∈Sd−1
0

∫ 1

t=−1

∫ ∞

r=0
f
(
te1 +

√
1− t 2 x′

)
(1− t 2)

1
2 d− 3

2 h(r )r d−1 dr d t dσ′(x′).

Since g has a compact support, the integral over r is bounded and so we can divide it out to obtain
the desired result.

As a corollary, we obtain

Corollary 2.16. Let d ≥ 2 and let f ∈C (Sd−1) be zonal. Then

1

σ(Sd−1)

∫
Sd−1

f dσ= Γ
(1

2 d
)

Γ
(1

2 d − 1
2

)
Γ

(1
2

) ∫ 1

−1
f
(
te1 +

√
1− t 2 e2

)
(1− t 2)

1
2 d− 3

2 d t , (2.18)

where Γ is the gamma function. (One can write these gamma functions explicitly using the properties
in result A.5.)

Proof. We apply proposition 2.15 to get

1

σ(Sd−1)

∫
Sd−1

f dσ= 1

σ(Sd−1)

∫
x′∈Sd−1

0

∫ 1

t=−1
f
(
te1 +

√
1− t 2 x′

)
(1− t 2)

1
2 d− 3

2 d t dσ′(x′).

Since f is zonal, f
(
te1 +

p
1− t 2 x′

)
is independent of x′, in particular we can set x′ = e2. We obtain

1

σ(Sd−1)

∫
Sd−1

f dσ= 1

σ(Sd−1)

∫
x′∈Sd−1

0

∫ 1

t=−1
f
(
te1 +

√
1− t 2 e2

)
(1− t 2)

1
2 d− 3

2 d t dσ′(x′)

= σ′(Sd−1
0 )

σ(Sd−1)

∫ 1

t=−1
f
(
te1 +

√
1− t 2 e2

)
(1− t 2)

1
2 d− 3

2 d t .

Now note that we have this equality for all f ∈C (Sd−1), so we can set f = 1. Then we see

1

σ(Sd−1)

∫
Sd−1

1dσ= 1 = σ′(Sd−1
0 )

σ(Sd−1)

∫ 1

t=−1
1 · (1− t 2)

1
2 d− 3

2 d t ,

so that
σ(Sd−1)

σ′(Sd−1
0 )

=
∫ 1

−1
(1− t 2)

1
2 d− 3

2 d t .
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To compute this integral, we first note that (1− t 2)
1
2 d− 3

2 is an even function, so we have∫ 1

−1
(1− t 2)

1
2 d− 3

2 d t = 2
∫ 1

0
(1− t 2)

1
2 d− 3

2 d t .

Now let t =p
x, then d t = 1

2 x− 1
2 d x and we obtain

2
∫ 1

0
(1− t 2)

1
2 d− 3

2 d t = 2
∫ 1

0
(1−x)

1
2 d− 3

2 · 1

2
x− 1

2 d x =
∫ 1

0
(1−x)( 1

2 d− 1
2 )−1 · x

1
2−1 d x.

We recognize this form as a beta function (A.6) for which we have

B(x1, x2) =
∫ 1

0
xx1−1(1−x)x2−1 d x = Γ(x1)Γ(x2)

Γ(x1 +x2)
.

Thus
σ(Sd−1)

σ′(Sd−1
0 )

=
∫ 1

−1
(1− t 2)

1
2 d− 3

2 d t = B

(
1

2
d − 1

2
,

1

2

)
= Γ( 1

2 d − 1
2 )Γ( 1

2 )

Γ( 1
2 d)

.

The following theorem will show that the explicit form of zonal spherical harmonics are Jacobi
polynomials. There are multiple ways to define Jacobi polynomials, here we define them using Ro-
drigues’ formula:

P (α,β)
n (x) = (−1)n

2nn!
(1−x)−α(1+x)−β

d n

d xn

(
(1−x)α(1+x)β(1−x2)n

)
. (2.19)

A property of Jacobi polynomials that will be used in proving theorem is that for n ̸= ℓ we have∫ 1

−1
P (α,β)

n (x)P (α,β)
ℓ

(x)(1−x)α(1+x)β d x = 0, (2.20)

whenever α,β>−1.

Theorem 2.17. Let f ∈Hd
n . Then f is zonal if and only if, for the restriction of f to Sd−1,

f (x) = f
(
te1 +

√
1− t 2 x′

)
=C P

(
1
2 d− 3

2 , 1
2 d− 3

2

)
n (t ), t ∈ [−1,1], x′ ∈ Sd−1

0 ,C ∈C. (2.21)

Here P
(

1
2 d− 3

2 , 1
2 d− 3

2

)
n (t ) is a Jacobi polynomials with α=β= 1

2 d − 3
2

Proof. For each n choose a nonzero real-valued zonal functionφn ∈Hd
n . By lemma 2.13 and the fact

that x2
2 +·· ·+x2

d = 1−x2
1 = 1− t 2, we have constants ci such that

φn

(
te1 +

√
1− t 2 x ′

)
=
⌊ n

2 ⌋∑
i=0

ci t n−2i (1− t 2)i .

Here we see that φn only depends on t and is a polynomial with maximum degree n, we denote this
polynomial in t by pn . Now by theorem 2.11 and corollary 2.16, for n ̸= m, we obtain

0 =
∫

Sd−1
φnφmdσ= Γ

(1
2 d

)
Γ

(1
2 d − 1

2

)
Γ

(1
2

) ∫ 1

−1
pn(t )pm(t )(1− t 2)

1
2 d− 3

2 d t .

Dividing by the constant gives∫ 1

−1
pn(t )pm(t )(1− t )

1
2 d− 3

2 (1+ t )
1
2 d− 3

2 d t = 0.
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Hence pn is a polynomial that is orthogonal with respect to the weight (1− t )
1
2 d− 3

2 (1+ t )
1
2 d− 3

2 . It can
be shown that this is exactly a Jacobi polynomial with α = β = 1

2 d − 3
2 as defined above. For this,

take a sequence
(
pn

)∞
n=0 of polynomials, with the degree of pn equal to n. We assume them to be

orthogonal, but by dividing through the norm we can assume 〈pn , pm〉 = δnm . In the same way let(
qn

)∞
n=0 be a different sequence of polynomials with the same properties. Now suppose we have a

polynomial q =∑m
k=0 ck qk with m < n. Then

〈qn , q〉 =
〈

qn ,
m∑

k=0
ck qk

〉
=

m∑
k=0

ck〈qn , qk〉 = 0, (2.22)

where we used orthonormality. Now we can write qn =∑n
k=0 ck pk so that

〈qn , pm〉 =
〈

n∑
k=0

ck pk , pm

〉
=

n∑
k=0

ck〈pk , pm〉 = cm .

But now by (2.22) we see that cm = 〈qn , pm〉 = 0 if m < n. We conclude that qn = cn pn .



3
The Laplace Equation in R3

In many applications such as 3D representation and angular momentum, we turn to spherical har-
monics in three dimensions. In this chapter we deduce an explicit formula for spherical harmonics
in three dimensions by solving Laplace’s equation directly using spherical coordinates. Further-
more, we compute the norm of the spherical harmonics to normalize these functions. This chapter
is based on notes by Haber[7] and a book by Boas[2].

3.1. The Laplace operator
As defined in (2.6), the Laplacian operator in Cartesian coordinates in three dimensions is given by

∆ f (x, y, z) = ∂2 f

∂x2 + ∂2 f

∂y2 + ∂2 f

∂z2 . (3.1)

However, in three dimensions it might not be too surprising that we turn to spherical coordi-
nates. Recall that spherical coordinates are given by

x = r sinθcosφ, y = r sinθ sinφ, z = r cosθ, (3.2)

where r ∈ [0,∞), θ ∈ [0,π], φ ∈ [0,2π). To express the Laplacian in spherical coordinates, we need to
compute ∆ f (r,θ,φ). For this we have to first express r,θ,φ in terms of x, y, z, which can be done as
follows

r =
√

x2 + y2 + z2, θ = cos−1

(
z√

x2 + y2 + z2

)
, φ= sign(y) ·cos−1

(
x√

x2 + y2

)
, (3.3)

where sign(y) is the sign of y . We can now use to chain rule to find the first derivative of f (r,θ,φ)
with respect to x:

∂ f

∂x
= ∂ f

∂r

∂r

∂x
+ ∂ f

∂θ

∂θ

∂x
+ ∂ f

∂φ

∂φ

∂x
.

In the same way we can compute the first derivatives with respect to y and z. However, these deriva-
tives get complicated fast, so we will not further compute these here. For the full derivation, see for
example [12]. The Laplacian in spherical coordinates is given by

∆ f (r,θ,φ) = 1

r 2

∂

∂r

(
r 2 ∂ f

∂r

)
+ 1

r 2 sinθ

∂

∂θ

(
sinθ

∂ f

∂θ

)
+ 1

r 2 sin2θ

∂2 f

∂φ2 . (3.4)

18
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3.2. Solving the Laplace equation
Now that we have introduced the Laplacian in spherical coordinates, we can solve the Laplace equa-
tion:

∆ f (r,θ,φ) = 0. (3.5)

To solve this equation, we will start by assuming that the solution has the form

f (r,θ,φ) = R(r )Θ(θ)Φ(φ). (3.6)

Not all solution are of this form, however, any solution can by approximated as a linear combination
of (3.6). We will touch more one this later. Substituting (3.6) into (3.4) yields

∆ f (r,θ,φ) = 1

r 2

∂

∂r

(
r 2 ∂ f

∂r

)
+ 1

r 2 sinθ

∂

∂θ

(
sinθ

∂ f

∂θ

)
+ 1

r 2 sin2θ

∂2 f

∂φ2

= 1

r 2

d

dr

(
r 2 dR(r )Θ(θ)Φ(φ)

dr

)
+ 1

r 2 sinθ

d

dθ

(
sinθ

dR(r )Θ(θ)Φ(φ)

dθ

)
+ 1

r 2 sin2θ

d 2R(r )Θ(θ)Φ(φ)

dφ2

= Θ(θ)Φ(φ)

r 2

d

dr

(
r 2 dR(r )

dr

)
+ R(r )Φ(φ)

r 2 sinθ

d

dθ

(
sinθ

dΘ(θ)

dθ

)
+ R(r )Θ(θ)

r 2 sin2θ

d 2Φ(φ)

dφ2 = 0

=⇒ sin2θ

R(r )

d

dr

(
r 2 dR(r )

dr

)
+ sinθ

Θ(θ)

d

dθ

(
sinθ

dΘ(θ)

dθ

)
+ 1

Φ(φ)

d 2Φ(φ)

dφ2 = 0,

where in the last step we multiplied by r 2 sin2(θ)
R(r )Θ(θ)Φ(φ) . We can rewrite this into

− 1

Φ(φ)

d 2Φ(φ)

dφ2 = sin2θ

R(r )

d

dr

(
r 2 dR(r )

dr

)
+ sinθ

Θ(θ)

d

dθ

(
sinθ

dΘ(θ)

dθ

)
. (3.7)

Now note that the left-hand side of the equation only depends on φ, while the right-hand side only
depends on r and θ. Thus the equation can only be satisfied if both sides equal a constant. For the
left hand side, for a constant C ∈R, we obtain

− 1

Φ(φ)

d 2Φ(φ)

dφ2 =C ⇐⇒ d 2Φ(φ)

dφ2 =−CΦ(φ) ⇐⇒ d 2Φ(φ)

dφ2 +CΦ(φ) = 0. (3.8)

This is a second-order homogeneous linear ODE and recall that this has solutions of the form erφ,
where r is given by solving

r 2 +C = 0 ⇐⇒ r =
{
±i

p
C , if C ≥ 0

±pC , if C < 0
.

This gives solutions of the form e±i
p

Cφ. However, note that φ is a periodic variable with period 2π,

so we needΦ(φ+2φ) =Φ(φ). For e±
p

Cφ we need

e±
p

Cφe±
p

C ·2π = e±
p

Cφ.

This equality holds whenever e i
p

C 2π = 1, which in turn holds when 2πC = 2πm2 for some m ∈ Z.
Thus we need C = m2 and we can write all solutions as

Φ(φ) = ae i mφ a ∈C, m ∈Z.

Now with equation (3.8) and C = m2, we can write

− 1

Φ(φ)

d 2Φ(φ)

dφ2 = m2. (3.9)
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Substituting this back into equation (3.7), we obtain

m2 = sin2θ

R(r )

d

dr

(
r 2 dR(r )

dr

)
+ sinθ

Θ(θ)

d

dθ

(
sinθ

dΘ(θ)

dθ

)
,

which can be rewritten into

1

R(r )

d

dr

(
r 2 dR(r )

dr

)
=− 1

Θ(θ)sinθ

d

dθ

(
sinθ

dΘ(θ)

dθ

)
+ m2

sin2θ
. (3.10)

Now we have the left hand side only depending on r , while the right hand side only depends on θ.
So as before, for a constant D ∈C, we can set

1

R(r )

d

dr

(
r 2 dR(r )

dr

)
= D ⇐⇒ d

dr

(
r 2 dR(r )

dr

)
−DR(r ) = 0.

In this case we choose D = ℓ(ℓ+1), ℓ ∈N∪ {0}, for reasons that will become clear later. Working out
the derivative using the product rule yields

r 2 d 2R(r )

dr 2 +2r
dR(r )

dr
−ℓ(ℓ+1)R(r ) = 0. (3.11)

We recognize this as Euler’s equation, which has solutions of the form R(r ) = r s for some s ∈ R. To
determine s, we substitute this solution into equation (3.11). We obtain

0 = r 2s(s −1)r s−2 +2r sr s−1 −ℓ(ℓ+1)r 2

= s(s −1)r s +2sr s −ℓ(ℓ+1)r s

= r s(s(s −1)+2s −ℓ(ℓ+1)).

Since r s > 0, we get

s(s −1)+2s −ℓ(ℓ+1) = 0 ⇐⇒ s(s +1) = ℓ(ℓ+1) ⇐⇒ s = ℓ ∨ s =−ℓ−1.

Thus the general solution is
R(r ) = pr ℓ+qr−ℓ−1, p, q ∈C. (3.12)

Finally, with equation (3.10) and D = ℓ(ℓ+1) we obtain

ℓ(ℓ+1) =− 1

Θ(θ)sinθ

d

dθ

(
sinθ

dΘ(θ)

dθ

)
+ m2

sin2θ
,

which is equivalent to

1

sinθ

d

dθ

(
sinθ

dΘ(θ)

dθ

)
+

(
ℓ(ℓ+1)− m2

sin2θ

)
Θ(θ) = 0. (3.13)

To solve for Θ(θ), we make a change of variables. For this let x = cosθ and y(x) =Θ(θ). Then using
the chain rule, we see

dΘ(θ)

dθ
= d y

d x

d x

dθ
= d y

d x
(−sinθ) =−sinθ

d y

d x
,

and thus
d

dθ

(
sinθ

dΘ(θ)

dθ

)
= d

dθ

(
−sin2θ

d y

d x

)
=−2sinθcosθ

d y

d x
− sin2θ

d 2 y

d x2

d x

dθ
.

We can substitute this into the first term of equation (3.13) to obtain

−2cosθ
d y

d x
+ sin2θ

d 2 y

d x2 = 0.



3.3. Orthonormality 21

Finally, with cosθ = x and sin2θ = 1−cos2θ = 1−x2, we see

(1−x2)
d 2 y

d x2 −2x
d y

d x
+

(
ℓ(ℓ+1)− m2

1−x2

)
y = 0. (3.14)

We chose D = ℓ(ℓ+1) since the equation we have now obtained is a special type of equation, namely
the associated Legendre equation. A note here is that this choice of D is more a physical reason
than a mathematical one, since other choices of D can still yield mathematically feasible solutions.
However, since we will look at a physical application in chapter 4, we choose D = ℓ(ℓ+1) here. Now
we can show that the function

P m
ℓ (x) = (−1)m

2ℓℓ!
(1−x2)m/2 dℓ+m

d xℓ+m
(x2 −1)ℓ, |m| ≤ ℓ, (3.15)

solves this equation. The derivation of this will not be shown here, for reference see chapter 12 of
[2].
Putting everything we found together, we have that the general solution of the Laplacian in spherical
coordinates is:

R(r )Θ(θ)Φ(φ) = (pr ℓ+qr−ℓ−1)(P m
ℓ (cosθ))ae i mφ, (3.16)

where a, p, q ∈C and ℓ ∈N∪ {0}, m ∈Zwith |m| ≤ ℓ.

3.3. Orthonormality
On the the unit sphere, we have r = 1, and so (3.16) above reduces to

R(1)Θ(θ)Φ(φ) = (p +q)(P m
ℓ (cosθ))ae i mφ

By absorbing all constants into a single constant, we can write the general solution as

Ỹ m
ℓ (θ,φ) =C P m

ℓ (cosθ)e i mφ, C ∈C, (3.17)

which is the collection of not yet normalised spherical harmonics in three dimensions. Note that for
m = 0, the exponential is equal to one, meaning the functions become invariant to rotation about
the z-axis. In other words, for m = 0 we have the collection of zonal spherical harmonics in three
dimensions. This can also be seen by setting d = 3 in theorem 2.17, then we see P (0,0)

ℓ
= P 0

ℓ
.

In theorem 2.11, we showed that spherical harmonics are orthogonal to each other (see proposi-
tion B.1 for an elementary proof of this for d = 3). So what remains is finding the constant C such
that Ỹ m

ℓ
(θ,φ) is normalised. For this, we compute 〈Ỹ m

ℓ
, Ỹ m

ℓ
〉. Now note that the inner product in

(2.11) is defined for Cartesian coordinates. However, since Ỹ m
ℓ

is defined in spherical coordinates,
we transform the integral. The Jacobian of this transformation is r 2 sinθ, so with r = 1 we see

〈Ỹ m
ℓ , Ỹ m

ℓ 〉 = 1

σ(S2)

∫
S2

Ỹ m
ℓ , Ỹ m

ℓ
dσ= 1

4π

∫ 2π

0

∫ π

0
P m
ℓ (cosθ)e i mφP m

ℓ (cosθ)e−i mφ sinθ dθdφ

= 1

4π

∫ 2π

0

∫ π

0
P m
ℓ (cosθ)2 sinθ dθdφ= 2π

4π

∫ π

0
P m
ℓ (cosθ)2 sinθ dθ.

Now we make a change of variables back to Cartesian coordinates with x = cosθ and so d x =
sinθ dθ, which yields

1

2

∫ 1

−1
P m
ℓ (x)2 d x.

For this integral we have the following theorem.
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Theorem 3.1. For ℓ,n ∈N and m ∈Zwith |m| ≤ ℓ, we have∫ 1

−1
P m
ℓ (x)P m

n (x) d x = δℓn
2

2ℓ+1

(ℓ+m)!

(ℓ−m)!
,

where

δℓn =
{

1, if ℓ= n

0, if ℓ ̸= n
.

Proof. Without loss of generality, for now we assume ℓ≥ n. Write

I m
ℓn =

∫ 1

−1
P m
ℓ (x)P m

n (x) d x = 1

2n+ℓn!ℓ!

∫ 1

−1

(
(1−x2)m d n+m

d xn+m (x2 −1)n
)(

dℓ+m

d xℓ+m
(x2 −1)ℓ

)
d x.

We now integrate by parts ℓ+m times∫ 1

−1
u(x)v ′(x)d x = [u(x)v(x)]1

−1 −
∫ 1

−1
u′(x)v(x)d x,

with u(x) = (1−x2)m d n+m

d xn+m (x2−1)n and v ′(x) = dℓ+m

d xℓ+m (x2−1)ℓ. Then note that for the first m integra-

tions by parts, u(x) in [u(x)v(x)]1
−1 contains the term (1− x2), since this term is 0 at the endpoints,

[u(x)v(x)]1
−1 vanishes. For the remaining ℓ integrations, v(x) contains the term (x2 − 1). Thus we

obtain

I m
ℓn = (−1)ℓ+m

2n+ℓn!ℓ!

∫ 1

−1
(x2 −1)ℓ

dℓ+m

d xℓ+m

(
(1−x2)m d n+m

d xn+m (x2 −1)n
)

d x.

Applying Leibniz’s rule (A.3) to the second term in the integral yields

dℓ+m

d xℓ+m

(
(1−x2)m d n+m

d xn+m (x2 −1)n
)
=
ℓ+m∑
k=0

(
ℓ+m

k

)
d k

d xk
(1−x2)m dℓ+n+2m−k

d xℓ+n+2m−k
(x2 −1)n .

For the first derivative in the sum we see that this is non-zero for r ≤ 2m, since (1− x2)m is a poly-
nomial of degree 2m. Recall that m ≤ ℓ, so we do reach 2m in the sum. The second derivative is
non-zero when ℓ+n +2m −k ≤ 2n or equivalently r ≥ ℓ−n +2m. We thus have that I m

ℓn ̸= 0 when

ℓ−n +2m ≤ r ≤ 2m =⇒ ℓ−n +2m ≤ 2m ⇐⇒ ℓ≤ n,

but by assumption we have ℓ≥ n and so we must have ℓ= n. Substituting this in the bound for r we
also have r = 2m. Putting this all into I m

ℓn gives

I m
nℓ = δℓn(−1)ℓ

(−1)ℓ+m

22ℓ(ℓ!)2

(
ℓ+m

2m

)∫ 1

−1
(x2 −1)ℓ

d 2m

d x2m (1−x2)m d 2ℓ

d x2ℓ
(1−x2)ℓd x,

where we also factored out (−1)ℓ. To evaluate the two derivatives within the integral, we apply the
binomial theorem (A.4) to expand (1−x2)r :

(1−x2)r =
r∑

i=0

(
r

i

)
·1r ·

(
(−x2)r−i

)
=

r∑
i=0

(
r

i

)
(−1)r−i x2(r−i ).

After differentiating this 2r -times we see that only the first term of the sum is non-zero, so

d 2r

d x2r (1−x2)r = d 2r

d x2r

((
r

0

)
(−1)r x2r

)
= (−1)r (2r )!.
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Thus we see

I m
nℓ = δℓn(−1)ℓ

(−1)ℓ+m

22ℓ(ℓ!)2

(
ℓ+m

2m

)∫ 1

−1
(x2 −1)ℓ (−1)m(2m)!(−1)ℓ(2ℓ)!d x

= δℓn(−1)ℓ
1

22ℓ(ℓ!)2

(ℓ+m)!

(2m)!(ℓ−m)!

∫ 1

−1
(x2 −1)ℓ(2m)!(2ℓ)!d x

= δℓn(−1)ℓ
(2ℓ)!

22ℓ(ℓ!)2

(ℓ+m)!

(ℓ−m)!

∫ 1

−1
(x2 −1)ℓd x.

We evaluate ∫ 1

−1
(x2 −1)ℓd x

by setting x = cosθ, then∫ 1

−1
(x2 −1)ℓd x = (−1)ℓ

∫ 1

−1
(1−x2)ℓd x = (−1)ℓ+1

∫ 0

π
sin2ℓ+1(θ) dθ = (−1)ℓ

∫ π

0
sin2ℓ+1(θ) dθ.

To compute this integral note that

d

dθ

(
sinn−1θcosθ

)= (n −1)sinn−2θcos2θ− sinn−1θ sinθ

= (n −1)sinn−2θ(1− sin2θ)θ− sinn−1θ sinθ

= (n −1)sinn−2θ− (n −1)sinn θ− sinn θ

= (n −1)sinn−2θ−n sinn θ.

Integrating both sides and rearranging yields∫ π

0
sinn θdθ = 1

n

[−sinn−1θcosθ
]π

0 + n −1

n

∫ π

0
sinn−2θdθ = n −1

n

∫ π

0
sinn−2θdθ,

where we used that sinθ = 0 for θ = 0,π. Applying this we get

(−1)ℓ
∫ π

0
sin2ℓ+1(θ) = (−1)ℓ

2ℓ

2ℓ+1

∫ π

0
sin2ℓ−1θ dθ = (−1)ℓ

2ℓ

2ℓ+1

∫ π

0
sin2ℓ+1θ sin−2θ dθ.

By changing back to x we obtain∫ 1

−1
(x2 −1)ℓd x =− 2ℓ

2ℓ+1

∫ 1

−1
(x2 −1)ℓ−1d x.

Applying this recursively we get∫ 1

−1
(x2 −1)ℓd x = (−1)ℓ

(
2ℓ

2ℓ+1
· 2(ℓ−1)

2ℓ−1
· 2(ℓ−2)

2ℓ−3
· · · 2

3

)∫ 1

−1
d x,

and for the right expression we see

2ℓ

2ℓ+1
· 2(ℓ−1)

2ℓ−1
· 2(ℓ−2)

2ℓ−3
· · · 2

3
= 2ℓℓ!

(2ℓ+1)(2ℓ−1)(2ℓ−3) · · ·3 = 2ℓℓ!
(2ℓ+1)!

2ℓℓ!

= 22ℓ(ℓ!)2

(2ℓ+1)!
,

so that ∫ 1

−1
(x2 −1)ℓd x = (−1)ℓ

22ℓ+1(ℓ!)2

(2ℓ+1)!
.
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We can thus conclude that∫ 1

−1
P m
ℓ (x)P m

n (x) d x = δℓn(−1)ℓ
(2ℓ)!

22ℓ(ℓ!)2

(ℓ+m)!

(ℓ−m)!

∫ 1

−1
(x2 −1)ℓd x

= δℓn(−1)ℓ
(2ℓ)!

22ℓ(ℓ!)2

(ℓ+m)!

(ℓ−m)!
· (−1)ℓ

22ℓ+1(ℓ!)2

(2ℓ+1)!

= δℓn
2

2ℓ+1

(ℓ+m)!

(ℓ−m)!
.

With this we obtain the normalisation factor of Ỹ m
ℓ

(θ,φ), since

〈Ỹ m
ℓ , Ỹ m

ℓ 〉 = 1

2

∫ 1

−1
P m
ℓ (x)2 d x =−1

2

2

2ℓ+1

(ℓ+m)!

(ℓ−m)!
=− 1

2ℓ+1

(ℓ+m)!

(ℓ−m)!
.

Thus, setting setting C =
√

−2ℓ+1 (ℓ−m)!
(ℓ+m)! in (3.17), we have

Y m
ℓ (θ,φ) =

√
−(2ℓ+1)

(ℓ−m)!

(ℓ+m)!
P m
ℓ (cosθ)e i mφ,

which satisfies
〈Y m

ℓ ,Y m
ℓ 〉 = 1.

A final important property of the spherical harmonics in Rd , which we state without proof here,
is that the spherical harmonics form a complete basis for L2(S2). This implies that any function
f (θ,φ) ∈ L2(S2) can be written as

f (θ,φ) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓmY m
ℓ (θ,φ). (3.18)

This property will be useful in the application we will discuss in the following chapter.



4
Angular Momentum

In this section, we will turn to an application of spherical harmonics: angular momentum. We start
by introducing the notion of operators in quantum mechanics. After introducing the angular mo-
mentum operators, we will show that spherical harmonics are the eigenfunctions of these operators
and why discuss this is useful. The mathematics in this chapter are clearly explained in a book by
Hall[8]. For the physical side, refer to this introductory book on quantum mechanics[6].

4.1. Preliminaries
4.1.1. Operators in R
In quantum mechanics, the position of a particle is determined using a wave function. A wave
function, denoted byψ, assigns a probability to the location of a particle. Let us first assume that we
have a particle moving along the real number line. Then for such a particle, we have a wave function
ψ : R→ C. ψ depends on the position x and time t , but for now we assume time independence, so
we write ψ(x). Now the probability density of the location of a particle is given by |ψ(x)|2, where
|ψ(x)|2 = ψ(x)ψ(x) is the modulus squared. Thus we have that the probability that a particle is
within some Borel set A ⊆R is ∫

A
|ψ(x)|2d x.

Since |ψ(x)|2 is a density, we also have ∫
R
|ψ(x)|2d x = 1.

Furthermore, we can define the expectation of the position:

〈x〉 :=
∫
R

x|ψ(x)|2d x, (4.1)

assuming that this integral is convergent. Now you might wonder how we can interpret this expec-
tation. As you might know, when measuring a quantum particle, the wave function describing it
collapses as it will be located at one point. This means that the expectation of the position is not the
average of different measurement of the same quantum particles. Rather, we can see it as averaging
the measurements of different quantum particles all in the state ψ.

In quantum mechanics expectations of various quantities are expressed in terms of operators
and the inner product on the relevant space, in this case L2(R). On L2(R)1 we can define the position
operator X by

(Xψ)(x) := xψ(x).

1Not for all ψ ∈ L2(R), we will touch on this later.
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We can now write (4.1) as
〈x〉 = 〈Xψ,ψ〉R,

where the inner product is defined as

〈 f , g 〉R :=
∫
R

f (x)g (x)d x.

Besides the position, another property of particles is momentum. In classical mechanics, momen-
tum relates velocity and mass by multiplying the two. So to introduce momentum in quantum me-
chanics, we need some information on the velocity. For this, we introduce time-dependence and
write ψ(x, t ). Now the velocity is the derivative of the position, so we want to find an expression for

d

d t
〈x〉(t ) = ∂

∂t

∫
R

x|ψ(x, t )|2 d x.

Note that this is the derivative of the expectation of the position, so it will not give deterministic
information on the velocity, but it will help us derive the momentum operator. In this derivation
we do leave out some mathematical details. To find this quantity, we will first find an expression for
∂
∂t |ψ(x, t )|2. For this we introduce the Schrödinger equation:

iħ ∂

∂t
ψ(x, t ) =− ħ2

2m

∂2

∂x2ψ(x, t )+V (x, t )ψ(x, t ), (4.2)

where m is the mass of a particle, ħ= h
2π , with h being Plank’s constant and V :R×R≥0 →R is the po-

tential that represents the environment in which the particle exists. Now rewriting the Schrödinger
equation gives

∂

∂t
ψ(x, t ) = iħ

2m

∂2

∂x2ψ(x, t )− i

ħV (x, t )ψ(x, t ). (4.3)

Taking the complex conjugate of this equation yields

∂

∂t
ψ(x, t ) =− iħ

2m

∂2

∂x2ψ(x, t )+ i

ħV (x, t )ψ(x, t ). (4.4)

Now using the product rule we find

∂

∂t
|ψ(x, t )|2 = ∂

∂t

(
ψ(x, t )ψ(x, t )

)
=ψ(x, t )

∂

∂t
ψ(x, t )+ψ(x, t )

∂

∂t
ψ(x, t ).

By substituting in (4.3) and (4.4) we obtain

∂

∂t
|ψ(x, t )|2 = iħ

2m

(
−ψ(x, t )

(
∂2

∂x2ψ(x, t )+ i

ħV (x, t )ψ(x, t )

)
+ψ(x, t )

(
∂2

∂x2ψ(x, t )+ i

ħV (x, t )ψ(x, t )

))
= iħ

2m

(
−ψ(x, t )

∂2

∂x2ψ(x, t )+ψ(x, t )
∂2

∂x2ψ(x, t )

)
= iħ

2m

∂

∂x

(
−ψ(x, t )

∂

∂x
ψ(x, t )+ψ(x, t )

∂

∂x
ψ(x, t )

)
,
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where in the last step we again used the product rule. Finally, we find

d

d t
〈x〉(t ) = ∂

∂t

∫
R

x|ψ(x, t )|2d x =
∫
R

x
∂

∂t
|ψ(x, t )|2d x

= iħ
2m

∫
R

x
∂

∂x

(
−ψ(x, t )

∂

∂x
ψ(x, t )+ψ(x, t )

∂

∂x
ψ(x, t )

)
d x

= iħ
2m

[
x

(
−ψ(x, t )

∂

∂x
ψ(x, t )+ψ(x, t )

∂

∂x
ψ(x, t )

)]∞
x=−∞

− iħ
2m

∫
R
−ψ(x, t )

∂

∂x
ψ(x, t )+ψ(x, t )

∂

∂x
ψ(x, t )d x

=− iħ
2m

∫
R
−ψ(x, t )

∂

∂x
ψ(x, t )+ψ(x, t )

∂

∂x
ψ(x, t )d x

= iħ
2m

∫
R
ψ(x, t )

∂

∂x
ψ(x, t )d x − iħ

2m

∫
R
ψ(x, t )

∂

∂x
ψ(x, t )d x

= iħ
2m

([
ψ(x, t )ψ(x, t )

]∞
x=−∞−

∫
R
ψ(x, t )

∂

∂x
ψ(x, t )d x

)
− iħ

2m

∫
R
ψ(x, t )

∂

∂x
ψ(x, t )d x

=− iħ
m

∫
R
ψ(x, t )

∂

∂x
ψ(x, t )d x,

where we used integration by parts twice and the fact that ψ goes to zero at ±∞ (This does not hold
for all ψ ∈ L2(R), but we will choose an appropriate set of function later). Now as in the classical
case, we multiply this by m and obtain a momentum operator. We see

−iħ
∫
R
ψ(x, t )

∂

∂x
ψ(x, t )d x = 〈−iħ ∂

∂x
ψ,ψ〉R.

Thus, we define the momentum operator by

(Pψ)(x) :=−iħdψ(x)

d x
,

where we dropped the time-dependence again.
Note that for a function ψ(x) ∈ L2(R), both (Xψ)(x) and (Pψ)(x) could fail to be in L2(R) again. How
to deal with this properly is beyond the scope of this report. Therefore, we will work with Schwartz
functions. These functions are infinity differentiable, bounded, and rapidly decreasing.
An important property of these two operators is that they do not commute, i.e. X (Pψ(x)) ̸= P (Xψ(x)).
We see this as follows

X (Pψ(x)) = X

(
−iħdψ(x)

d x

)
=−iħx

dψ(x)

d x
, (4.5)

P (Xψ(x)) = P
(
xψ(x)

)=−iħ d

d x
(xψ(x)) =−iħ

(
ψ(x)+x

dψ(x)

d x

)
(4.6)

However, X and P do satisfy the canonical commutation relation which is defined as follows.

Definition 4.1. For two operators A and B, the canonical commutation relation is

[A,B ] = AB −B A.

Now we have the following relation between X and P .

Proposition 4.2. The position and momentum operators X and P satisfy the relation

[X ,P ] = iħI .
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Proof. Using (4.5) and (4.6) we get

P (Xψ(x)) =−iħ
(
ψ(x)+x

dψ(x)

d x

)
=−iħψ(x)− iħx

dψ(x)

d x
= iħψ(x)+X (P (ψ(x)),

from which the result follows.

4.1.2. Operators in R3

We can now generalise what we found in section 4.1.1 to R3. Note that we can also generalise to Rd ,
but we only need three dimensions for angular momentum.
For the position and momentum operators, instead of one operator, we have 3 operators given by

X jψ(x) = x jψ(x),

P jψ(x) =−iħ∂ψ(x)

∂x j
,

for j = 1,2,3. As a generalisation of proposition 4.2, we have the following result.

Proposition 4.3. The position and momentum operators in R3 satisfy

[X j , Xk ] = 0, (4.7)

[P j ,Pk ] = 0, (4.8)

[X j ,Pk ] = iħδ j k I (4.9)

for all 1 ≤ j ,k ≤ 3.

Proof. For the first two results, we easily see

[X j , Xk ]ψ(x) = x j xkψ(x)−xk x jψ(x) = 0,

[P j ,Pk ]ψ(x) =−iħ ∂

∂x j

∂

∂xk
ψ(x)+ iħ ∂

∂xk

∂

∂x j
ψ(x) = 0.

For the last result we have

1

iħ [X j ,Pk ]ψ(x) = 1

iħ
(
X j (Pkψ(x))−Pk (X jψ(x))

)
= 1

iħ
(
−iħx j

∂ψ(x)

∂xk
+ iħ ∂

∂xk
(x jψ(x))

)
.

Computing this for j = k and j ̸= k yields the result.

4.2. Angular momentum operators
Now that we have introduced the notion of operators, we can introduce the angular momentum
operator. In classical mechanics the angular momentum is calculated as r×p, the cross product of
a particles position vector r and momentum vector p = mv. In quantum mechanics angular mo-
mentum is similarly defined as the cross product between the position and momentum operators.
We define the operators on the unit sphere. Writing x, y, z for x1, x2, x3, we have that the angular
momentum is defined by

J :=
X

Y
Z

×
Px

Py

Pz

=
Y Pz −Z Py

Z Px −X Pz

X Px −Y Px

=−iħ

y ∂
∂z − z ∂

∂y

z ∂
∂x −x ∂

∂z
x ∂
∂y − y ∂

∂x

 ,
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where in calculating the cross product we used the commutation relation (4.9) from proposition 4.3.
Thus, for each direction we have the following operators:

Jx =−iħ
(

y
∂

∂z
− z

∂

∂y

)
, Jy =−iħ

(
z
∂

∂x
−x

∂

∂z

)
, Jz =−iħ

(
x
∂

∂y
− y

∂

∂x

)
.

To find the relation between these operators and the spherical harmonics found in chapter 3,
we make a transformation to spherical coordinates and call the new operators Lx ,Ly ,Lz . This trans-
formation is an elementary (but long) calculation, so we will not show it here. We see that

Lx = iħ
(
sinφ

∂

∂θ
+ cosφ

tanθ

∂

∂φ

)
, Ly = iħ

(
−cosφ

∂

∂θ
+ sinφ

tanθ

∂

∂φ

)
, Lz =−iħ ∂

∂φ
,

are the angular momentum operator in spherical coordinates. Note that these do not depend on r
as we assumed that we are working on the unit sphere. Besides the directional operators for angular
momentum, we can also look at the total angular momentum, which is written as

L2 = L2
x +L2

y +L2
z ,

which is equal to

L2 =−ħ2
(

1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+ 1

sin2θ

∂2

∂φ2

)
. (4.10)

For these operators, we have the following commutation relations:

[Lx ,Ly ] = iħLz , [Ly ,Lz ] = iħLx , [Lz ,Lx ] = iħLy , (4.11)

and
[L2,Lx ] = 0, [L2,Ly ] = 0, [L2,Lz ] = 0. (4.12)

By symmetry, it suffices to show [Lx ,Ly ] = iħLz and [L2,Lx ] = 0. We show these relations using
Jx , Jy , Jz . We first compute

[Jx , Jy ] = [X Pz −Z Py , Z Px −X Pz ].

By expanding this and using [A+B ,C ] = [A,C ]+ [B ,C ] we get

[Y Pz , Z Px ]− [Y Pz , X Pz ]− [Z Py , Z Px ]+ [Z Py , X Pz ].

For the products, we use

[AB ,C D] = A[B ,C ]D + AC [B ,D]+ [A,C ]DB +C [A,D]B ,

and apply this to every term. This yields

[Y Pz , Z Px ] = Y [Pz , Z ]Px +Y Z [Pz ,Px ]+ [Y , Z ]Pz Px +Z [Y ,Px ]Pz

= Y (−iħ)Px +0+0+Z (0)Pz =−iħY Px ,

[Y Pz , X Pz ] = Y [Pz , X ]Pz +Y X [Pz ,Pz ]+ [Y , X ]Pz Pz +X [Y ,Pz ]Pz

= Y (0)Pz +0+0+X (iħ)Pz = iħX Pz ,

[Z Py , Z Px ] = Z [Py , Z ]Px +Z Z [Py ,Px ]+ [Z , Z ]Py Px +Z [Z ,Px ]Py

= Z (0)Px +0+0+Z (0)Py = 0,

[Z Py , X Pz ] = Z [Py , X ]Pz +Z X [Py ,Pz ]+ [Z , X ]Py Pz +X [Z ,Pz ]Py

= Z (−iħ)Pz +0+0+X (iħ)Py =−iħZ Pz + iħX Py .

By combining the terms we obtain
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[Jx , Jy ] = (−iħY Px )− (iħX Pz )−0+ (−iħZ Pz + iħX Py )

= iħ (X Py −Y Px )

= iħ Jz .

For [J 2, Jx ] we see
[J 2, Jx ] = [J 2

x + J 2
y + J 2

z , Jx ] = [J 2
x , Jx ]+ [J 2

y , Jx ]+ [J 2
z , Jx ].

First, [J 2
x , Jx ] = 0 because Jx commutes with itself. For the second and third term, we use [A2,B ] =

A[A,B ]+ [A,B ]A and we obtain

[J 2
y , Jx ] = Jy [Jy , Jx ]+ [Jy , Jx ]Jy .

Using [Jy , Jx ] =−iħ Jz we get

[J 2
y , Jx ] = Jy (−iħ Jz )+ (−iħ Jz )Jy =−iħ (Jy Jz + Jz Jy ).

Finally, we have

[J 2
z , Jx ] = Jz [Jz , Jx ]+ [Jz , Jx ]Jz = Jz (iħ Jy )+ (iħ Jy )Jz = iħ (Jz Jy + Jy Jz ),

now using [Jz , Jx ] = iħ Jy , We conclude

[J 2, Jx ] = 0+ (−iħ (Jy Jz + Jz Jy )
)+ (

iħ (Jz Jy + Jy Jz )
)= 0.

With this we can also conclude that [Lx ,Ly ] = iħLz and [L2,Lx ] = 0. Furthermore, we have that they
are linear operators. Indeed for f , g ∈ L2(R3) and a,b ∈C, we see

Lx (a f +bg ) = iħ
(
sinφ

∂

∂θ
(a f +bg )+ cosφ

tanθ

∂

∂φ
(a f +bg )

)
= iħ

(
sinφ

(
a
∂ f

∂θ
+b

∂g

∂θ

)
+ cosφ

tanθ

(
a
∂ f

∂φ
+b

∂g

∂φ

))
= aLx ( f )+bLx (g ),

Ly (a f +bg ) = iħ
(
−cosφ

∂

∂θ
(a f +bg )+ sinφ

tanθ

∂

∂φ
(a f +bg )

)
= iħ

(
−cosφ

(
a
∂ f

∂θ
+b

∂g

∂θ

)
+ sinφ

tanθ

(
a
∂ f

∂φ
+b

∂g

∂φ

))
= aLy ( f )+bLy (g ),

Lz (a f +bg ) =−iħ ∂

∂φ
(a f +bg )

=−iħ
(

a
∂ f

∂φ
+b

∂g

∂φ

)
= aLz ( f )+bLz (g ),

L2(a f +bg ) =−ħ2
(

1

sinθ

∂

∂θ

(
sinθ

∂

∂θ
(a f +bg )

)
+ 1

sin2θ

∂2

∂φ2 (a f +bg )

)
=−ħ2

(
1

sinθ

∂

∂θ

(
sinθ(a

∂ f

∂θ
+b

∂g

∂θ
)

)
+ 1

sin2θ

(
a
∂2 f

∂φ2 +b
∂2g

∂φ2

))
= aL2( f )+bL2(g ).
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4.3. Eigenfunctions
So far, we have seen position, momentum, and angular momentum in quantum mechanics. In this
section we will show that performing calculation for particles described by a wave function of the
form Ỹ m

ℓ
(θ,φ) found in chapter 3 simplify a lot. For this we first define eigenfunctions.

Definition 4.4. Let D be a linear operator and f ̸= 0 a function. Then f is an eigenfunction of D with
eigenvalue λ ∈C if

D f (x) =λ f (x).

If we now take D = Lz for example, finding an eigenfunction f for this operator means that if we
have a particle in the state f , we know that Lz f =λ f . This means that calculating the z-component
of the angular momentum is very straightforward. So in the optimal case we want to find a function
that is the eigenfunction of multiple operators. However, for a function to be the eigenfunction of
multiple operators, the operators must commute on the span of a function f . To see this, suppose
we have a function f such that Lx f =λ f and Ly f =µ f , then

[Lx ,Ly ] f = Lx Ly f −Ly Lx f =µLx f −λLy f =µλ f −µλ f = 0.

Thus we need the operators to commute on the span of f . However, in (4.11) we saw that Lx and Ly

do not commute, so we must chose operators that do commute. In (4.12) we saw that L2 commutes
with Lx ,Ly , and Lz . So we can try to find an eigenfunction for L2 and one of the directional opera-
tors.
We will show that the eigenfunctions of Lz and L2 are Ỹ m

ℓ
(θ,φ) =C P m

ℓ
(cosθ)e i mφ, as given in (3.17).

For Lz we easily see that

Lz (Ỹ (θ,φ)) =−iħ ∂

∂φ

(
C P m

ℓ (cosθ)e i mφ
)
=−i (i m)ħC P m

ℓ (cosθ)e i mφ =ħmC P m
ℓ (cosθ)e i mφ,

so Y (θ,φ) is an eigenfunction of Lz with eigenvalue ħm.
Now for L2 notice that (4.10) is exactly the angular part of the Laplacian in spherical coordinates
(3.4) multiplied by −ħ2. Recall that in (3.9) we found

− 1

Φ(φ)

d 2Φ(φ)

dφ2 = m2,

and in (3.13)
1

sinθ

d

dθ

(
sinθ

dΘ(θ)

dθ

)
+

(
ℓ(ℓ+1)− m2

sin2θ

)
Θ(θ) = 0,

where Θ(θ) and Φ(φ) are from the separation of variables in (3.6). So substituting (3.9) in (3.13)
yields

1

sinθ

d

dθ

(
sinθ

dΘ(θ)

dθ

)
+

(
ℓ(ℓ+1)+ 1

Φ(φ)sin2θ

d 2Φ(φ)

dφ2

)
Θ(θ) = 0,

which is equivalent to

1

sinθ

d

dθ

(
sinθ

dΘ(θ)Φ(φ)

dθ

)
+ 1

sin2θ

d 2Θ(θ)Φ(φ)

dφ2 =−ℓ(ℓ+1)Θ(θ)Φ(φ).

Now we know that this equation is satisfied by Ỹ m
ℓ

(θ,φ) =C P m
ℓ

(cosθ)e i mφ. So now we observe that

L2(Ỹ m
ℓ (θ,φ)) =−ħ2

(
1

sinθ

∂

∂θ

(
sinθ

∂

∂θ
Ỹ m
ℓ (θ,φ)

)
+ 1

sin2θ

∂2

∂φ2 Ỹ m
ℓ (θ,φ)

)
=−ħ2 (−ℓ(ℓ+1)Ỹ m

ℓ (θ,φ)
)

=ħ2ℓ(ℓ+1))Ỹ m
ℓ (θ,φ).
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Thus Y m
ℓ

(θ,φ) is an eigenfunction of L2 with eigenvalue ħ2ℓ(ℓ+1).
Now these results do not only imply that calculating the properties of particles in the state Y m

ℓ
(θ,φ)

can be simplified. Namely, if we use (3.18), we can decompose any function in L2(S2) into a linear
combination of spherical harmonics. In such, we can apply the results above to each individual
component of the linear combination and so the spherical harmonics form a nice basis when work-
ing with angular momentum.



5
Discussion and Future Work

This report was written to provide a structured and accessible introduction to spherical harmonics.
We started with rigorously introducing spherical harmonics by restricting harmonic homogeneous
polynomials to the unit sphere. Using this theory we looked at zonal spherical harmonics and its
properties.
The rest of the report focussed on three dimensions, where we found an explicit formula for the
space of spherical harmonics and normalised these functions. With this, we turned to an appli-
cation: angular momentum. Here we used spherical harmonics as a nice basis within quantum
measurement.

Now obviously, there remains a lot open for further study. For example,
spherical harmonics have a deep connection with group theory, more so than discussed in this re-
port. The lecture notes of Koornwinder[9] treat this in a lot of detail. This group theoretical aspect,
which was not discussed in detail in this report, is also present in the angular momentum applica-
tion from chapter 4.
Besides the abstract theory, one can also look at the numerical aspect of spherical harmonics. Effi-
cient computation of spherical harmonic coefficients is essential in fields such as computer graph-
ics and climate modelling. The work of Driscoll and Healy[5] on fast algorithms and recent improve-
ments using Fibonacci grids[11] are valuable extensions.
Finally, there are many other applications like modelling Earth’s gravitational potentiation[10]. Spher-
ical harmonics are also essential in the study of the cosmic microwave background. The angular
power spectrum of the cosmic microwave background is analysed using spherical harmonic de-
compositions, as documented in works like Dodelson’s Modern Cosmology[4]. Besides these appli-
cations, one can also look at the applications mentioned in the introduction.

In short, there are endless possibilities for the use of spherical harmonics!
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A
Some Useful Results and Definitions

Theorem A.1 (Chain rule). Let D ⊆ Rd , and let f : D → R be differentiable. Furthermore, let E ⊆ Rn

and for each i ∈ 1, ...,d, let ui : E →R be differentiable. Then, with ui (t) = u(t1, ..., tn), we have

∂

∂t j
f (u1, ...,ud ) = ∂ f

∂x1

∂x1

∂t j
+ ∂ f

∂x2

∂x2

∂t j
+·· ·+ ∂ f

∂xd

∂xd

∂t j
, (A.1)

for any j = 1, ...,n.

Theorem A.2 (Green’s first identity). Let U ⊆ Rd . Suppose f : U → R is once continuously differen-
tiable and g : U →R twice continuously differentiable. Then∫

U
∇ f ·∇g dV +

∫
U

f ∆g dV =
∫
∂U

f ∇g ·n(x)dS, (A.2)

where ∂U is the boundary of U and n is the outward pointing normal vector at the point x.

Theorem A.3 (Leibniz’s rule). Let f , g be n-times differentiable. Then f g is n-times differentiable
and

( f g )(n) =
n∑

k=0

(
n

k

)
f (n−k)g (k). (A.3)

Theorem A.4 (Binomial theorem). Let x, y ∈C and n ∈N, then

(x + y)n =
n∑

k=0

(
n

k

)
xn−k yk . (A.4)

Result A.5 (Gamma and beta function). For x > 0, the gamma function is defined by

Γ(x) :=
∫ ∞

0
t x−1e−t d t . (A.5)

Two properties of this integral are

• Γ(n) = (n −1)!, n ∈N,

• Γ
(n

2

)= 2− 1
2 n+ 1

2
p
π(n −2)!!, n ∈N, n odd.

Here n!! = n(n − 2) · · ·1. A function closely related to the gamma function is the beta function, for
which we have

B(x1, x2) :=
∫ 1

0
t x1−1(1− t )x2−1d t = Γ(x1)Γ(x2)

Γ(x1 +x2)
(A.6)
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Definition A.6 (Group). A group is a set G with an operation G ×G →G, which we shall denote here
as (a,b) 7→ a ◦b, such that the following three requirements are met.

(G1) (Associativity) For all a,b,c ∈G we have that a ◦ (b ◦ c) = (a ◦b)◦ c.

(G2) (Identity element) There is an e ∈G such that e ◦a = a ◦e = a, for all a ∈G .

(G3) (Inverse element) For every a ∈G there exists an element a∗ ∈G such that a ◦a∗ = a∗ ◦a = e.

Definition A.7 (Action). Let G be a group, and let X be a set. We say that G acts on X if for every g ∈G
and every x ∈ X , an element g ◦x ∈ X is given such that:

(W0) e ◦x = x ∀x ∈ X ,

(W1) (g h)◦x = g ◦ (h ◦x) ∀g ,h ∈G and x ∈ X .

Definition A.8 (Stabiliser). Let the group G act on the set X and let x ∈ X . If g ◦x = x, then we say that
x is a fixed point of g . The stabiliser of x in G, notation Gx , is the subset

Gx = {g ∈G : g ◦x = x}.



B
Elementary calculations

Proposition B.1. Fix m ∈Z. Then for ℓ ̸= n, we have

〈Ỹ m
ℓ , Ỹ m

n 〉 = 0

Proof. Since we are showing equality to zero we can choose C = 1 in (3.17). Now note that the
inner product in (2.11) is defined for Cartesian coordinates. However, since Ỹ m

ℓ
, Ỹ m

n are defined in
spherical coordinates, we transform the integral. The Jacobian of this transformation is r 2 sinθ, so
with r = 1 we see

〈Ỹ m
ℓ , Ỹ m

n 〉 = 1

σ(S2)

∫
S2

Ỹ m
ℓ , Ỹ m

n dσ= 1

4π

∫ 2π

0

∫ π

0
P m
ℓ (cosθ)e i mφP m

n (cosθ)e−i mφ sinθ dθdφ

= 1

4π

∫ 2π

0

∫ π

0
P m
ℓ (cosθ)P m

n (cosθ)sinθ dθdφ= 2π

4π

∫ π

0
P m
ℓ (cosθ)P m

n (cosθ)sinθ dθ.

Now we make a change of variables back to Cartesian coordinates with x = cosθ and so d x =
sinθ dθ, which yields

1

2

∫ 1

−1
P m
ℓ (x)P m

n (x) d x

To show that this integral equals 0, we resort back to the associated Legendre equation (3.14), which
we can rewrite using the chain rule:

d

d x

(
(1−x2)

d y

d x

)
+

(
ℓ(ℓ+1)− m2

1−x2

)
y = 0.

Now we know that Ỹ m
ℓ

, Ỹ m
n satisfy this equation, so we can substitute them in and get

d

d x

(
(1−x2)

d

d x
P m
ℓ (x)

)
+

(
ℓ(ℓ+1)− m2

1−x2

)
P m
ℓ (x) = 0, (B.1)

d

d x

(
(1−x2)

d

d x
P m

n (x)

)
+

(
n(n +1)− m2

1−x2

)
P m

n (x) = 0. (B.2)

Multiply (B.1) with P m
n (x) and (B.2) with P m

ℓ
(x), then subtracting yields

P m
n (x)

d

d x

(
(1−x2)

d

d x
P m
ℓ (x)

)
−P m

ℓ (x)
d

d x

(
(1−x2)

d

d x
P m

n (x)

)
+ (ℓ(ℓ+1)−n(n +1))P m

n (x)P m
ℓ (x) = 0.

Using the chain rule for the first term we can write

d

d x

(
(1−x2)

(
P m

n (x)
d

d x
P m
ℓ (x)−P m

ℓ (x)
d

d x
P m

n (x)

))
+ (ℓ(ℓ+1)−n(n +1))P m

n (x)P m
ℓ (x) = 0.
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Now integrating gives∫ 1

−1

d

d x

(
(1−x2)

(
P m

n (x)
d

d x
P m
ℓ (x)−P m

ℓ (x)
d

d x
P m

n (x)

))
d x + (ℓ(ℓ+1)−n(n +1))

∫ 1

−1
P m

n (x)P m
ℓ (x) d x

=
[

(1−x2)

(
P m

n (x)
d

d x
P m
ℓ (x)−P m

ℓ (x)
d

d x
P m

n (x)

)]1

−1
+ (ℓ(ℓ+1)−n(n +1))

∫ 1

−1
P m

n (x)P m
ℓ (x) d x = 0.

Finally, note that 1−x2 = 0 for x =−1,1, so we get

(ℓ(ℓ+1)−n(n +1))
∫ 1

−1
P m

n (x)P m
ℓ (x) d x = 0.

Thus we can conclude that, for ℓ ̸= n, 〈Ỹ m
ℓ

, Ỹ m
n 〉 = 0.
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