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Multi-Population Aggregative Games: Equilibrium
Seeking via Mean-Field Control and Consensus

Hamed Kebriaei, Senior Member, IEEE, S. Jafar Sadati-Savadkoohi, Mohammad Shokri and Sergio Grammatico,
Senior Member, IEEE

Abstract—In this paper, we extend the theory of deterministic
mean-field/aggregative games to multi-population games. We
consider a set of populations, each managed by a population coor-
dinator (PC), of selfish agents playing a global non-cooperative
game, whose cost functions are affected by an aggregate term
across all agents from all populations. In particular, we impose
that the agents cannot exchange information between themselves
directly; instead, only a PC can gather information on its own
population and exchange local aggregate information with the
neighboring PCs. To seek an equilibrium of the resulting (partial-
information) game, we propose an iterative algorithm where
each PC broadcasts a mean-field signal, namely, an estimate
of the overall aggregative term, to its own population only. In
turn, we let the local agents react with a best response and the
PCs cooperate for estimating the aggregative term. Our main
technical contributions are to cast the proposed scheme as a
fixed-point iteration with errors, namely, the interconnection of
a Krasnoselskij–Mann iteration and a linear consensus protocol,
and, under a non-expansiveness condition, to show convergence
towards an ε-Nash equilibrium, where ε is inversely proportional
to the population size.

I. INTRODUCTION

Distributed optimization and computational game theory
for large-scale multi-agent systems have been strong recent
research areas in systems and control [1] with a variety of
applications, e.g. in wireless communication [2], transmission
networks [3], social networks [4] and smart grids [5].

For multi-agent systems with competitive agents, nonco-
operative game theory offers the mathematical background
for equilibrium analysis [6]. Due to their potential to amend
computation complexity and communication requirements, in
this paper, we are interested in the class of aggregative
games [7]–[8], where each agent is not subject to one-to-one
dependence on nor interaction with other agents, but instead
is subject to an aggregate effect from the whole population.

The literature on equilibrium seeking in aggregative games
can be classified into two main approach classes in terms of
information structure. In the first main class (full-information
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case), the agents have no information about the strategies
of the other agents. Thus, they have to communicate with a
population coordinator (PC), who can measure the aggregate
term among all agents and broadcast a common signal to
them [9]–[11], see [12] for a recent survey – this signal,
commonly known as mean-field term (MFT), typically rep-
resents an estimation of the aggregate term. We refer to [13]
for a recent application to energy management. In the second
class of aggregative games (partial-information case), there
is no population coordinator. Instead, the agents exchange
information with each other through a network [14], where the
aggregative term can be defined either as local [15] or global
[16]. Recently, the authors in [17] proposed a fully-distributed
algorithm for seeking a generalized Nash equilibrium that ex-
ploits an interconnection of dynamic tracking of the aggregate
term, projected-pseudo-gradient dynamics and Krasnoselskij–
Mann (KM) iterations.

In this paper, we investigate a conceptually novel, hier-
archical, approach amidst the two classes mentioned above.
Our motivation is that reaching all agents with broadcast
signals may be impossible in large-scale systems, especially
in geographically distributed or heterogeneously-networked
systems, e.g. PEV parking lots, wireless networks [2], trans-
portation networks [18]. On the other hand, a peer-to-peer
communication network between selfish agents is typically not
available or affordable, especially in engineering applications
[19]–[21]. Our idea is then to cluster a large population of
agents into multiple populations. In this way, the individual
agents should not exchange information among each other,
but only with their local population coordinator (PC). At the
higher level, the PCs should exchange information in order to
estimate the overall mean-field term (MFT). We believe this
approach is a practical way to decouple selfish computations
from the necessary information exchange. In our framework,
the game is defined only among the agents of all populations
and therefore, the coordinators are not competitors nor payoff
maximizers. Their role is only to estimate the overall aggregate
strategy and inform the agents about it. This is to facilitate the
information exchange and to preserve the personal information
of each individual agent from its competitors.

Let us introduce our setup briefly. At the top level, we
consider that each PC can exchange local estimates of the MFT
with its neighboring PCs through a directed communication
graph. At the bottom level, the members of each population
are selfish agents which aim at minimizing their cost function
without having information on the strategies of the others.
However, the cost function of each agent is coupled with all
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other agents through the common MFT, which is a weighted
average of the strategies of all agents from all populations.
This motivates us to let each local agent apply a best response
to the local MFT estimate only. Since the true MFT is
unknown to the agents, its equilibrium value should be in turn
estimated by the PCs.

To the best of our knowledge, we are the first to address
multi-population aggregative games via the interconnection of
semi-decentralized mean-field control and consensus theory.
The main technical contributions of the paper are as follows:

• We extend the theory of deterministic mean-
field/aggregative games [10]–[11] to multi-population
games where the coordinators exchange information
through a directed network. In our model, we have two
different classes of agents, the population coordinators
(estimators) and the population agents (decision makers),
with coupled tasks.

• In this coupled estimation and decision making setup, we
propose an equilibrium seeking algorithm, a KM iteration
with errors interconnected with a consensus protocol,
with proven convergence to the mean-field term.

• We prove that our algorithm converges to an ε-Nash
equilibrium of the game, where ε is inversely proportional
to the population size.

The paper is structured as follows: The problem formulation
of multi-population aggregative game is introduced in Section
II. Section III proposes an optimization-and-consensus method
for the multi-population aggregative game. The convergence
analysis and the equilibrium of the game are discussed in
Section IV. Finally, the proposed method is simulated on the
plug-in electric vehicles’ charging problem in Section V.

Notation: N and R are the set of natural and real numbers,
respectively. x> and ||x|| denote the transpose and the Eu-
clidean norm of the vector x, respectively. col(x1, ..., xN ) =
[x>1 , ..., x

>
N ]> and xN = col ((xn)n∈N ).

II. MULTI-POPULATION AGGREGATIVE GAME SETUP

We consider a set of P agent populations, each with a PC
p ∈ P := {1, 2, . . . , P}, and with Ip agents, indexed by Ip.
The total number of agents is then I :=

∑
p∈P Ip.

We assume that the PCs can exchange information through
a communication network defined by a possibly time-varying
(k ∈ N being the discrete time index) directed graph G(P, Ek),
where Ek is a set of directed edges of graph G at time k of
the decision making process. We consider that self loops are
present, i.e., (p, p) ∈ Ek, for ∀p ∈ P . Let us denote the set of
neighbors of PC p, namely, the set of PCs from which PC p
can receive information, by Pk

p = {p′ ∈ P | (p, p′) ∈ Ek}.
At the bottom level, each agent i ∈ Ip controls its decision

up,i, which takes values in a compact and convex set Up,i ⊂
Rn. To denote the collective decisions, we use the compact no-
tations up := col

(
up,1, ..., up,Ip

)
and u := col (u1, ...,uP ).

Now, the aim of each agent i is to minimize its cost function:

Jp,i(up,i, σ(u)), (1)

where σ(u) is an aggregative term, which we define as

σ(u) =
1

P

∑
p∈P

∑
i∈Ip

δp,i up,i , (2)

where δp,i are non-negative coefficients such that∑
i∈Ip δp,i = 1. Since the decisions of all agents affects the

objective function in (1) of each agent through the function
σ, we have a game equilibrium problem. We recall that a set
of strategies in which no agent can benefit from individually
deviating from its strategy is called Nash equilibrium. In our
aggregative case, we adopt an analogous equilibrium concept:

Definition 1: (Multi-population ε-Nash equilibrium): A
set of strategies u∗ ∈ (Rn)PI is a multi-population ε-Nash
equilibrium, with ε > 0, if, for all p ∈ P and i ∈ Ip,

Jp,i(u
∗
p,i, σ(u∗)) ≤ ε+ min

y∈Up,i
Jp,i

(
y , 1

P δp,i y+

1
P

∑
i′∈Ip\{i}

δp,i′ u
∗
p,i′ + 1

P

∑
p′∈P\{p}

∑
i′∈Ip′

δp′,i′ u
∗
p′,i′

)
.

(3)

u∗ is a multi-population Nash equilibrium if (3) holds with
ε = 0. �

III. HIERARCHICAL EQUILIBRIUM SEEKING: MEAN-FIELD
CONTROL AND CONSENSUS

A. Local best responses and global information exchange
We assume that the weights δp,i in (1) are determined by the

PC p and the agents have no information about the function
σ in (1), nor about the strategies of the other agents. Instead,
we assume that each agent i ∈ Ip can only respond to a
macroscopic signal, say zp ∈ Rn, here called local MFT
(LMFT), which is broadcast by the PC p. The role of the signal
zp is to provide a local estimate of the global aggregative
quantity σ(u). Specifically, we assume that each agent i reacts
optimally to the LMFT of its population via its best response

ubr
p,i(·) := arg min

v∈Up,i
Jp,i(v, ·). (4)

Let us group together the best response mappings into the
following aggregative mappings:

∀p ∈ P : Λp(z) :=
∑
i∈Ip

δp,i u
br
p,i(z),Λ(z) :=

1

P

∑
p∈P

Λp(z). (5)

The main idea here is that, for large population size, all the
LMFTs should converge to a fixed point of the mapping Λ in
(5), in order to reach a multi-population ε-Nash equilibrium.
To this end, we set-up the following iterative procedure - see
Figure 1 for a schematic representation. At every iteration k,
each PC p broadcasts a signal zkp to its population. Then, each
agent i ∈ Ip responds optimally according to (4), i.e., ukp,i =
ubr
p,i(z

k
p ). In turn, each PC p computes the aggregate quantity

Λk
p over its population as

Λk
p = Λp(zkp ). (6)

It also receives zkp′ from each of its neighbor PCs, p′ ∈ Pk
p ,

through the communication network. Based on the local ag-
gregation and the network information, each PC p updates its
zk+1
p , the LMFT estimate, to be broadcast at the next iteration.
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Fig. 1: Concept scheme of a multi-population network.

B. Krasnoselskij–Mann iteration and consensus protocol

In this section, we design how the PCs should update their
LMFT estimates such that the iterative procedure outlined
above converges and the resulting agent strategies reach a
multi-population ε-Nash equilibrium, where ε vanishes in the
limit of infinite population size. Specifically, we exploit a KM
fixed-point iteration and a consensus protocol on the LMFT
estimates, simultaneously (k ∈ N):

zk+1
p = (1− αk)

∑
p′∈P

wk
p,p′ zkp′

+ αkΛk
p, (7)

where αk ∈ (0, 1), ∀k ≥ 0, are step sizes and wk
p,p′ are

communication weights. Precisely, let W k ∈ RP×P be the
weighted adjacency matrix of the communication graph Gk,
where each element wk

p,p′ of W k satisfies 0 < wk
p,p′ ≤ 1 if

(p, p′) ∈ Ek; wp,p′ = 0 implies no communication from p to
p′, i.e. wk

p,p′ = 0 for (p, p′) /∈ Ek at iteration k. Note that,
we have wk

p,p > 0 for each agent ∀p ∈ P and ∀k ≥ 0. wk
p

indicates row p of matrix W k. We are now ready to present
our proposed equilibrium seeking algorithm, summarized in
Algorithm 1, which is based on the two steps:

(i) All agents compute in parallel their best response (4) to
the local signal zp; each PC p collects the aggregate Λp

(5) among these best responses;
(ii) PC p updates zp via (7) and broadcasts it to its agents.

Algorithm 1 Multi-population ε-Nash equilibrium seeking

Initialization: k ← 1, z1p ← z0p , ∀p ∈ P .
Iteration k:
Optimization: for each p ∈ P, i ∈ Ip:

ukp,i ← arg min
up,i∈Up,i

Jp,i(up,i, z
k
p )

Aggregation: for each p ∈ P:
Λk
p ←

∑
i∈Ip

δp,iu
k
p,i

Communication and Update: for each p ∈ P:

zk+1
p ← (1− αk)

( ∑
p′∈P

wk
p,p′zkp′

)
+ αkΛk

p

k ← k + 1

IV. CONVERGENCE ANALYSIS

We study the convergence of Algorithm 1 in three main
steps. First, we show that when the PCs update their LMFTs
as in (7), they reach to consensus on the MFT. Second, we
show that the LMFTs converge to a fixed point of the mapping
Λ in (5). Consequently, we prove that Algorithm 1 converges
to a multi-population ε-Nash equilibrium of the game.

A. Consensus of the local mean-field terms

In the following, we prove that all the LMFTs, zkp ∀p ∈ P ,
converge to the same MFT, z̄k, over the whole population

z̄k =
1

P

∑
p∈P z

k
p . (8)

With this aim, let us assume that the step sizes are slowly
vanishing, that the communication graph is doubly stochastic,
and that the union of the time-varying communication graphs
is strongly connected over a finite horizon.

Assumption 1: The sequence (αk)k∈N is non-increasing,
non-summable, i.e.,

∑∞
k αk =∞, and square-summable, i.e.,∑∞

k (αk)2 <∞. �
Assumption 2: For each k ∈ N, the adjacency matrix W k

is doubly stochastic, i.e.,
(i) wk

p,p′ ≥ 0, for all k ≥ 0;
(ii)

∑
p′∈P w

k
p,p′ = 1, for all p ∈ P , k ≥ 0;

(iii)
∑

p′∈P w
k
p′,p = 1, for all p ∈ P , k ≥ 0.

(iv) ∃η ∈ (0, 1) : wk
p,p′ ≥ η, for all (p, p′) ∈ Ek, k ≥ 0.

�
Assumption 3: There exists an integer K ≥ 1 such that the

graph (P,
⋃K

k′=1 Ek
′+k) is connected for all k ≥ 0. �

We note that Assumption 3 ensures that each PC can
indirectly reach all other PCs within K iterations, thus the
information can spread throughout the entire network.

First, we characterize the evolution of the average among
the LMFTs.

Lemma 1: z̄k satisfies the following dynamics:

z̄k+1 = (1− αk)z̄k +
1

P
αk∑

p∈P Λk
p (9)

with Λp as in (5). �
Proof: By averaging (7) over P , we obtain

z̄k+1 :=
1

P

∑
p∈P

zk+1
p

=
1

P
(1− αk)

∑
p∈P

∑
p′∈P

wk
p,p′zkp′ +

1

P
αk∑

p∈P Λk
p

(10)

For the first term in (10), considering Assumption 2, we have∑
p∈P

∑
p′∈P

wk
p,p′zkp′ =

∑
p′∈P

zkp′

∑
p∈P

wk
p,p′ = P z̄k.

The proof follows by putting the latter back into (10).
We are now ready to prove the main result of this subsection,

the consensus on the LMFTs among PCs.
Theorem 1: Let Assumptions 1–3 hold. Then, the sequences

((zkp )k∈N)p∈P generated by Algorithm 1 reach consensus , i.e.,
limk→∞maxp∈P

∥∥zkp − z̄k∥∥ = 0, with z̄k as in (8). �
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Proof: Let us introduce the transition matrix from time
k′ to k > k′ ≥ 0 as Φk,k′

:= W kW k−1 · · ·W k′
with Φk,k :=

W k, for all k, and let [Φk,k′
]s,j denote its (s, j) element. By

(7), we can relate the LMFT of each PC p from time k′ to
k + 1 as follows:

zk+1
p = αkΛk

p +
k−1∑
r=k′

∑
j∈P

[Φ̄k,r+1]p,jα
rΛr

j +
∑
j∈P

[Φ̄k,k′
]p,jz

k′

p

(11)

where Φ̄k,k′
= Φk,k′

T k,k′
, and T k,k′

= (1 − αk)(1 −
αk−1) · · · (1−αk′

). Then, by using (9) from k′ to k, we get:

z̄k+1 = T k,k′
z̄k

′
+

1

P

k−1∑
r=k′

∑
p∈P

T k,r+1αrΛr
p +

1

P
αk
∑
p∈P

Λk
p.

(12)

Next, by substituting k′ ← 0 and k ← k − 1 in (11) and
(12), and by computing the distance of a LMFT to the MFT,
we derive the following inequality:

||zkp − z̄k|| ≤
∑
j∈P

∣∣∣∣[Φk−1,0]p,j −
1

P

∣∣∣∣T k−1,0 ∥∥z0j∥∥
+

k−2∑
r=0

∑
j∈P

∣∣∣∣[Φk−1,r+1]p,j −
1

P

∣∣∣∣T k−1,r+1αr
∥∥Λr

j

∥∥
+ αk−1∥∥Λk−1

p

∥∥+
1

P
αk−1

∑
j∈P

∥∥Λk−1
j

∥∥.
(13)

In view of Assumption 2 and 3, and [22, Prop. 1 (a)], we
have that

∣∣∣[Φk,k′
]p,j − 1

P

∣∣∣ ≤ c(β)k−k
′
, for some β ∈ (0, 1)

and c > 0. By compactness of Up,i, there exist a positive
constant B such that

∥∥ubr
p,i(·)

∥∥ ≤ B, thus
∥∥Λk

p

∥∥ ≤ B, ∀p ∈ P .
Therefore, (13) can be rewritten as follows:∥∥zkp − z̄k∥∥ ≤ c(β)k−1

P∑
j=1

T k−1,k′ ∥∥z0j∥∥
+ PcB

k−2∑
r=0

(β)k−r−2T k−1,r+1αr + 2αk−1B.

(14)

Since ||z0p|| ≤ B0 and T k−1,r+1 ≤ 1, we have:

∥∥zkp − z̄k∥∥ ≤ c(β)k−1PB0 + 2αk−1B + PcB
k−2∑
r=0

(β)k−2−rαr.

(15)

Finally, since limk→∞ αk = 0 and 0 < β < 1, for k → ∞,
the first two addends in the right hand side of (15) converge
to zero. Also, it holds that limk→∞

∑k
r=0 (β)k−rαr = 0.

Consequently, limk→∞
∥∥zkp − z̄k∥∥ = 0 for all p ∈ P .

B. Convergence of the mean-field term to a fixed point of the
aggregation mapping

Our next step is to show that the consensus MFT, z̄k,
converges to a fixed point of the aggregation mapping, Λ in (5).
Before establishing our main result, we postulate a technical
assumption and a preliminary lemma on the boundedness of
the MFT estimation error weighted by the vanishing step sizes.

Assumption 4: The functions {Jp,i}p∈P, i∈Ip in (1) are uni-
formly `−Lipschitz continuous, for some ` > 0 independent of
P and I , and all the best-response mappings {ubrp,i}p∈P, i∈Ip
in (4) are non-expansive. �

Remark 1: The non-expansiveness in Assumption 4 can be
efficiently checked for quadratic cost functions, see [10]. �

Lemma 2: Let Assumptions 1-3 hold. Then,
supp∈P

∑∞
k=1 α

k
∥∥zkp − z̄k∥∥ <∞. �

Proof: By (15), we have that
∞∑
k=1

αk
∥∥zkp − z̄k∥∥ ≤ cPB0

∞∑
k=1

αk(β)k−1 + 2B
∞∑
k=1

αkαk−1

+ PcB
∞∑
k=2

αk
k−2∑
r=0

(β)k−2−rαr.

Thanks to Assumption 1 and β ∈ (0, 1), the terms∑∞
k=1 α

k(β)k−1 and
∑∞

k=1 α
kαk−1 are bounded. For the last

term,
∑∞

k=2 α
k
k−2∑
r=0

(β)k−2−rαr, we can exploit the fact that

αk is non-increasing:
∞∑
k=2

αk
k−2∑
r=0

(β)k−2−rαr ≤
∞∑
k=2

k−2∑
r=0

(β)k−2−r(αr)2

=
∞∑
r=0

(αr)2
∞∑
k=r

(β)k−r = (β)−1
∞∑
r=0

(αr)2 <∞.
(16)

It then follows that
∑∞

k=1 α
k
∥∥zkp − z̄k∥∥ <∞.

We are ready to show the convergence of all the LMFTs to
a fixed point of the aggregation mapping in (5).

Assumption 5: The coefficients (δp,i)p∈P, i∈Ip in (2) are
non-negative, such that for all p ∈ P ,

∑
i∈Ip δp,i = 1, and are

uniformly bounded, i.e., δp,i ≤ c/Ip, for some constant c > 0
independent of P and I .

�
Theorem 2: Let Assumptions 1–5 hold. The collective

sequence ((zkp )p∈P)k∈N generated by Algorithm 1 converges
to a fixed point of the aggregation mapping Λ(·) in (5). �

Proof: By (9) in Lemma 1, we have

z̄k+1 = (1− αk)z̄k + αkΛ(zkp ). (17)

Let define the aggregation error as ek = Λ(zkp ) − Λ(z̄k).
Therefore, (17) can be rewritten as

z̄k+1 = (1− αk)z̄k + αk(Λ(z̄k) + ek). (18)

By the definition of Λ(·) in (5) and Assumption 4, we note
that Λ(·) is a convex combination of nonexpansive mappings,
hence it is nonexpansive as well. Thus, according to [23, Th.
3.3], z̄k in (18) converges to a fixed point of Λ(·) in (5) if∑∞

k=1 α
k(1 − αk) = ∞ and

∑∞
k=1 α

k||ek|| < ∞ hold true.
The first condition follows directly from Assumption 1. For
the second condition, we can write
∞∑
k=1

αk||ek|| =
∞∑
k=1

αk||Λ(zkp )− Λ(z̄k)|| ≤

1

P

∑
p∈P

∞∑
k=1

αk||Λp(zkp )− Λp(z̄k)|| ≤ 1

P

∑
p∈P

∞∑
k=1

αk||zkp − z̄k||.

(19)
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Now, by applying Lemma 2 to the last term, we get∑∞
k=1 α

k||ek|| < ∞ as desired. Consequently, z̄k converges
to a fixed point of Λ(·). In view of Theorem 1, we conclude
that each zkp , ∀p ∈ P , converges to such a fixed point.

Remark 2: The range of the mapping Λ is bounded due to
the compactness of the sets Up,i and the uniform boundedness
of the coefficients δp,i (Assumption 5). Therefore, according
to [24, Th. 4.1.5 (b)], the mapping Λ(·) has a fixed point. �

C. Multi-population ε-Nash equilibrium analysis
We conclude the technical part of the paper by showing that

the outcome of Algorithm 1, a set of strategies that are best
responses to a fixed point of the aggregation mapping in (5)
is a multi-population ε-Nash equilibrium, where ε is inversely
proportional to the population size.

Assumption 6: There exists a lower bound on the number of
agents of all local populations which is uniformly proportional
to the average population size, i.e., minp∈P Ip ≥ d I

P , for some
constant d ∈ (0, 1) independent of P and I . �

Theorem 3: Let Assumptions 4, 5, 6 hold and
let z̄ = col(z̄1, . . . , z̄P ) be a fixed point of
the aggregation mapping Λ(·) in (5). Then, the
associated collective set of best-response strategies, i.e.,{
ūp,i := argminv∈Up,iJp,i(v, z̄p) | p ∈ P, i ∈ Ip

}
, is a

multi-population ε-Nash equilibrium, where ε is inversely
proportional to I . �

Proof: Let us define:

u•p,i := ubr
p,i(z

•), ûp,i := ubr
p,i(z

′
p,i),

ũp,i := ubr
p,i

(
1

P
δp,iup,i + v•p,i

)
,

(20)

where z• = Λ(z•) = limk→∞z̄
k is the converged MFT, v•p,i =

z•− 1
P δp,iu

•
p,i is obtained by excluding the effect of u•p,i from

z• and z′p,i = 1
P δp,iũp,i + v•p,i. Then, it follows that:

Jp,i(ûp,i, z
′
p,i) ≤ Jp,i(ũp,i, z′p,i) ≤ Jp,i(u•p,i, z•). (21)

The first inequality holds because ûp,i is the best response to
z′p,i, while ũp,i is not. The second inequality holds since the
best response of an agent to the mean-field term results in a
higher cost compared to the case in which the agent optimizes
over the effect of its own strategy ( 1

P δp,iup,i) in the mean-
field term as well. Therefore, since Jp,i is Lipschitz continuous
according to Assumption 4, by (3) and (21), we conclude that:

Jp,i(u
•
p,i, z

•)− Jp,i(ũp,i, z′p,i) ≤ Jp,i(u•p,i, z•)− Jp,i(ûp,i, z′p,i)
≤ `(||u•p,i − ûp,i||+ ||z• − z′p,i||)

where ` is the Lipschitz constant of Jp,i. Then, by using
Assumption 4 and the definition of z• and z′p,i, we have:

Jp,i(u
•
p,i, z

•)− Jp,i(ũp,i, z′p,i)

≤ 2`||z• − z′p,i|| ≤
2

P
`δp,i||ũp,i − u•p,i||.

Since Up,i are compact, we have ||ũp,i − u•p,i|| ≤ ||ũp,i||+
||u•p,i|| ≤ 2B. Therefore, by Assumptions 5 and 6, we obtain

Jp,i(u
•
p,i, z

•)− Jp,i(ũp,i, z′p,i)

≤ 4

P
B`δp,i ≤

4B`c

PIp
≤ 4B`cd

I
=: ε. (22)

Thus, the solution generated by Algorithm 1 is an ε-Nash
equilibrium with ε in (22), the constant 4B`cd does not depend
on P and I .

Remark 3: In view of Remark 2, Theorem 2 and Theorem 3,
under suitable assumptions, Algorithm 1 converges to a set of
strategies that is an ε-Nash equilibrium, where in view of (22)
in the proof of Theorem 3, ε is upper bounded by a uniform
constant divided by the overall population size, I . Therefore,
whenever all the local population sizes are very large (infinite),
the ε is very small (zero). �

Remark 4: Based on (15) and the sublinear convergence of
the KM iteration (18) [25, Th. 1], one can show that Algorithm
1 converges at least with R-sublinear order of convergence [26,
Sec. 9.2]. �

V. ILLUSTRATIVE EXAMPLE: CHARGING PLUG-IN
ELECTRIC VEHICLES IN MULTIPLE PARKING LOTS

We consider the charging coordination problem for a pop-
ulation of plug-in electric vehicles (PEVs) that have been
distributed in P different parking lots. We consider that each
parking lot p has a coordinator who can exchange infor-
mation with some other parking lot coordinators through a
communication graph G(P, E). We assume that each PEV
i ∈ Ip is located in the parking p ∈ P in some time slots
T = {1, ..., T}. Each PEV i ∈ Ip controls its charged
energy up,i = [u1p,i, ..., u

T
p,i]
>, where utp,i indicates the energy

demand at time slot t ∈ T , which must satisfy the constraint
Up,i := {utp,i

∣∣up,i ≤ utp,i ≤ up,i}. Also, let xtp,i denotes the
state of charge (SoC) of the battery of PEV i ∈ Ip at t ∈ T ,
which we assume to evolve according to the dynamics

xt+1
p,i = xtp,i +

ηp,i
βp,i

utp,i, u
t
p,i ∈ Up,i (23)

where βp,i is the battery size, and ηp,i ∈ (0, 1] is the
charging efficiency. To ensure the appropriate functionality of
the battery, the SoC must satisfy xp,i ≤ xtp,i ≤ xp,i, for all
t ∈ T . Each PEV i ∈ Ip aims to minimize its cost function

Jp,i = Cp,i(up,i) + λ(u)>up,i + γp,i(x
T
p,i − xDp,i)2 (24)

where Cp,i(up,i) =
∑

t∈T qp,i(u
t
p,i)

2
+ rp,iu

t
p,i + hp,i is a

quadratic battery degradation cost as in [27] and qp,i, rp,i,
γp,i, and hp,i are positive parameters. xDp,i is the desired SoC
for PEV i of parking p. λ(u), u = col(uI1 , ...,uIp) and
uIp = col(up,1, ..., up,Ip), indicates the price of energy which
is defined as a congestion cost function [28]:

λ(u) = a

d+
∑
p∈P

∑
i∈IP

up,i

+ b (25)

where a > 0 and b is a positive vector, and the vector d repre-
sents the normalized demand from non-PEV electrical loads.
We simulate the charging coordination problem over 24 time
slots with P = 10 parking lots and the number of PEVs Ip for
each parking lot is same; I1 = · · · = IP = 150. We borrow
the parameters of the cost functions from [28]. As for the
electricity price in (25), we set a = 1.1× 10−2, b = 0.06 ·1T

and the vector d empirically derived from [19]. Note that based
on (2), if we have P parking lots with each contains Ieq PEVs,
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Fig. 2: Evolution of the LMFTs (solid lines) toward consensus and the
MFT (dashed line) towards a fixed point of the aggregation mapping.

then a is adjusted by the coefficient 1500/(PIeq). We set the
parameters of the battery degradation cost as qp,i = 1.25,
rp,i = 0.11 and hp,i = 0.2, lower bound of the input to 0 (to
prevent V2G) and upper bound to 5 (kW). For each PEV,
battery capacity size and charging efficiency are randomly
selected in the range of [25,30] and [0.5,1], respectively. Also,
all the PEVs share the common minimum and maximum SoC,
0.1 and 0.9, respectively. Furthermore, we set the step sizes
of Algorithm 1 to αk = 1/(k + 1). In Figure 2, we show
the minimum and maximum distances between the LMFTs
and the MFT, which represents the estimation error of the
price signal. As expected, the local estimates,

(
zkp
)
p∈P , reach

consensus (Theorem 1) and converge towards the equilibrium,
since z̄k converges as well (Theorem 2). Figure 3 shows the
distance between the computed ε-Nash equilibrium and a Nash
equilibrium for different population sizes. We observe that for
large population sizes, the ε becomes small.

0 200 400 600 800 1000 1200 1400 1600
0

2

4

6

8

10

12

14

Fig. 3: Distance between the computed ε-Nash equilibrium and a
Nash equilibrium versus the population size.
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