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Power Function Algorithm for Linear
Regression Weights with Weibull

Data Analysis

Robert Ross(&)

IWO, Zweerslaan 46, 6711GG Ede, The Netherlands
r.ross@iwo.nl

Abstract. Weighted Linear Regression (WLR) can be used to estimate Weibull
parameters. With WLR, failure data with less variance weigh heavier. These
weights depend on the total number of test objects, which is called the sample
size n, and on the index of the ranked failure data i. The calculation of weights
can be very challenging, particularly for larger sample sizes n and for non-
integer data ranking i, which usually occurs with random censoring. There is a
demand for a light-weight computing method that is also able to deal with non-
integer ranking indices. The present paper discusses an algorithm that is both
suitable for light-weight computing as well as for non-integer ranking indices.
The development of the algorithm is based on asymptotic 3-parameter power
functions that have been successfully employed to describe the estimated
Weibull shape parameter bias and standard deviation that both monotonically
approach zero with increasing sample size n. The weight distributions for given
sample size are not monotonic functions, but there are various asymptotic
aspects that provide leads for a combination of asymptotic 3-parameter power
functions. The developed algorithm incorporates 5 power functions. The per-
formance is checked for sample sizes between 1 and 2000 for the maximum
deviation. Furthermore the weight distribution is checked for very high simi-
larity with the theoretical distribution.

Keywords: Asymptotic behavior � Power function � Similarity Index �
Weighted linear regression

1 Introduction

The 2-parameter Weibull distribution is widely used for failure data where the lowest
value represents the performance of a test object. E.g., the failure time of an electronic
device in a destructive test is the time that a first failure is observed. The weakest path
to breakdown determines the strength of the device.

Maximum Likelihood (ML) and Linear Regression (LR) can be applied to estimate
the Weibull scale parameter a and shape parameter b from a set of observed failure
times ti (1� i� n), where n is the sample size, i.e., the total number of tested objects.
IWO aims at developing data analytics that can be implemented in office software and
devices with limited computing capabilities, such as mobile phones and smart com-
ponents. An advantage of LR over ML in this respect is that LR parameter estimators
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are analytical. An advanced LR method is weighted LR (WLR). It is preferred because
of a faster declining bias and scatter in b, matches the ML standard deviation while
keeping the analytical advantage of LR (6.3.2.7 in [1]). In general, the calculation of
variances for WLR weights can be difficult [2]. Analytical methods do exist in case of
Weibull, but are demanding for large sample sizes n and for censored data where data
ranking indices i can become non-integer (see Sect. 3). The unavailability of weights
for non-integer indices is recognized by IEC [3], recommending to use the weight for
the nearest integer ranking instead. A precise weights algorithm would be very useful.

Here, the goal was set to develop an algorithm for the weights that on the one hand
can be implemented on light-weight computing devices and in common office software
and on the other hand can handle non-integer ranking indices. The development of this
algorithm is based on a combination of power functions. The development of the
Power model for the WLR weights for Weibull analysis is subject of the paper.

The structure of the discussion is as follows. The concept of asymptotic power
functions is discussed in Sect. 2. The subject of WLR with censored data, variances and
especially weights is introduced in Sect. 3. This leads to the demanding analytic
expressions for WLR weights. Section 4 describes the development of a model for
infinite sample sizes which serves as a basis for the algorithm for weights with finite
sample sizes. Finally, the performance of the algorithm is tested for maximum devi-
ation and agreement with the theoretical weight distribution employing a (dis)similarity
index.

2 Asymptotic Power Functions

Parameter estimators are required to be consistent which means that with increasing
sample size n the absolute bias (if not already zero) and scatter must asymptotically
approach zero as described by Fisher [4]. This concept translates into the principle that
collecting additional data is rewarded by achieving greater estimate accuracy.

A 3-parameter power function of the sample size n can be used as a model that
complies with the consistency concept. E.g., it could describe the decline of the bias
and the standard deviation of ML, LR and WLR estimators of the Weibull shape
parameter [5]. The aimed weight model employs various asymptotic 3-parameter
power functions Dn:

Dn ¼ En � E1 ¼ Q � n� Rð ÞP ð1Þ

En is the expected value of an estimated parameter from a data set with sample size
n. The asymptotic behavior of En is usually the study subject. E∞ is the expected value
of an estimated parameter with infinite sample size, i.e., the asymptotic value of En. Dn

is the difference of En and E∞ that asymptotically approaches zero with increasing n,
the variable under consideration. P, Q and R are the 3 parameters of the power function
of n that models the asymptotic behavior. In logarithmic form a linear relationship
shows:
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log Dnð Þ ¼ log Qð ÞþP � log n� Rð Þ ð2Þ

If log(Dn) is plotted against log(n-R), or linear regression applied, then R should be
optimized to achieve a straight line. P follows from the slope, and Q from the inverse
log of the intercept. Sometimes the power function will be an exact description of the
asymptotic behavior, but in other cases it can be a reasonable approximation merely or
just does not apply. The latter case can show as an S-shaped curve that cannot be
straightened by varying R. Still, it may be worth the exercise.

Sometimes the asymptotic power function must be adjusted. E.g., if the asymptotic
behavior is with a declining n, the n−R term may be replaced by R−n. If one function
asymptotically approaches another function, then E∞ may be taken not as a constant,
but be replaced by that other function. In a more complicated case (like the presently
studied WLR weights) various power functions may have to be combined.

The parameters P, Q and R of the power function can be interpreted as follows. The
rate of the asymptotic approach is characterized by the power P in the limit n ! 1.
Because Dn approaches zero and provided n-R > 1, it is necessary that P\0.

The parameter Q defines the deviation of En from E∞ for small n, or to be more
precise Q ¼ Dn�R¼1. It can be interpreted as an amplitude. If Dn 6¼ 0, then Q 2 R

having the same sign as Dn. If Dn ¼ 0 by definition, then Q ¼ 0.
Whereas the concept of consistency focuses on the limit n ! 1 [4], the asymptotic

3-parameter power function introduces a parameter R that can be ignored in that limit.
However, for small n, this parameter defines a singularity at n ¼ R with the negative
P. The description of the bias for test sets with (very) small sample size n formed the
background of the introduction of R [5].

To illustrate this, the variance r2 of an infinitely sized population and the expected
estimated variance hs2ni of an n sized sample drawn from that population are compared.
The ratio hs2ni=r2 is well-known to be n� 1ð Þ=n and asymptotically approaches
E∞ = 1 with increasing n. This ratio exactly follows a 3-parameter power function,
namely:

s2n
r2

� 1 ¼ n� 1
n

� 1 ¼ �1 � n� 0ð Þ�1 ð3Þ

In terms of the 3-parameter function: P ¼ �1, Q ¼ �1 and R ¼ 0.

3 Weibull Parameter Estimation by WLR

If a series of n devices are destructively tested, a series of failure times are observed.
Let the failure times ti (i = 1,..,n) be ranked such that for all i: ti−1 < ti. If not all failure
times become known in the test, some failure times may remain hidden. Such data are
called censored or suspended. This may occur if a specific test object fails by another
mechanism than which is studied.
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E.g., devices may be tested destructively to assess the failure behavior of an on
board diode. A failed device is short-circuited and has to be withdrawn from the test. If
such devices also contain a transistor, some devices may fail due to transistor failure
rather than diode failure. For those devices, the diode failure time then remains hidden.
It is clear though that the diode failure time must be larger than the observed transistor
failure time on that device. Moreover, the ranking of the unknown diode failure time
among the next actually observed diode failure times remains unknown. As a conse-
quence, part of the higher rankings of observed diode failure times becomes uncertain
too. A method to deal with censored data in the ranking is the Adjusted Ranking
Method [3]. Usually, this leads to non-integer expected rankings i of observed failure
times.

3.1 Weighted Linear Regression

Two prominent families of Weibull parameter estimation are ML and (W)LR. The
focus of the present paper is on WLR, and particularly on the weights calculation
challenge, rather than the well-established regression method itself. With WLR
parameter estimation a linear relationship is assumed between a plotting position Z and
log-failure times ln(t) from which a and b are estimated. This plotting position Z is
defined as:

Z pð Þ ¼ ln �ln 1� pð Þð Þ � b � ln tð Þ � b � ln að Þ ð4Þ

Here p is a probability, i.e. a value of the Weibull cumulative distribution F(t; a, b). In
a Weibull plot, Z and ln(t) are plotted along the vertical respectively horizontal axis to
form a straight graph granted the data are Weibull distributed indeed. Each observation
ln(ti) is assigned to the ith expected plotting position, hZi;ni which are detailed in
Sect. 3.2 below. The two WLR estimators aWLR and bWLR of respectively a and b are
found as:

aWLR ¼ exp ln tð Þw � Zw

bWLR

� �
ð5Þ

bWLR ¼ Z � Zw
� �2

w

Z � Zw
� � � lnt � lntw

� �� �
w

ð6Þ

The suffix w indicates a weighted average. Such a weighted average uw of a series
observations ui is calculated as:

uw ¼
Pn

i¼1 wi;n � ui
� �Pn
i¼1 wi;n

ð7Þ

The wi,n are the weights assigned to the data ln(ti) in the weighted averaging. The
weights do also depend on the sample size n, which is the reason for indicating both
i and n in the suffix. The wi,n are the inverse of the variances vi,n of the respective
plotting positions Zi,n:
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wi;n ¼ 1
vi;n

¼ 1

hZ2
i;ni � hZi;ni2

ð8Þ

The smaller vi,n, the heavier weighs observation ti in the estimation of aWLR and bWLR.
The variances and weights calculations are very challenging and subject of this paper.

3.2 Variances of the Plotting Position Z

The variances vi,n of the Weibull plotting positions follow from the first and second
moments of Z. An analytic expression for the first moment hZi;ni is:

hZi;ni ¼ �cþ i
n
i

� �Xi�1

j¼0

i� 1
j

� � �1ð Þi�j�ln n� jð Þ
n� j

" #
ð9Þ

Here, c is the Euler constant (c � 0:57722). Rounding errors in the summation of
alternately positive and negative terms can have a high impact. For the second moment:

hZ2
i;ni ¼ i

n

i

� �X2

m¼0

2

m

� �
�1ð Þ2�m @m

@sm
C sþ 1ð Þ

����
s¼0

Xi�1

j¼0

i� 1

j

� �
�1ð Þi�1�j ln n� jð Þð Þ2�m

n� j

ð10Þ

These expressions allow to calculate the variances for integer n, but become demanding
with increasing n. Both are unsuitable for non-integer ranking indices i that occur with
censored data. For light-weight computing these expressions do not suffice either.

Another approach is to determine the moments of Z in the probability domain by
numerical integration, cf. (6). The expected jth moment of Zi,n follows from:

hZ j
i;ni ¼

C nþ 1ð Þ
C ið ÞC nþ 1� ið Þ

Z1

0

ln �ln 1� pð Þð Þ½ � j�pi�1 � 1� pð Þn�idp ð11Þ

This expression is suitable for non-integer adjusted ranking as there is no summation
involved. Singularities occur at p ¼ 0 and 1. Numerical integration requires care
therefore [6]. The expression as such is also demanding for light-weight computing, but
it was used with Mathematica software and Gauss-Legendre quadrature to generate
reference tables of vi,n values for n = 1(1)60, 75(1)80, 80(10)120, 125(25)250(250)
2000 as described in [6]. The notation ‘A(B)C’ means a sequence from A to C with
increment B. All vi,n and wi,n were determined with 10–9–10–14 resolution and used for
the model.

Figure 1 shows the vi,n for all integer i and sample size n = 1, 2, 5, 10, 20, 50, 100,
200, 500, 1000, 2000. Also the vi,n is shown for i = 1(1)10000 and sample size
n ! ∞.
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For all finite n and i > 1, the vi,n curve curls up from the curve for infinite n. This
tail is small compared to v1,n, but with the fast decay of vi,n with increasing i, the curl
grows larger relatively. This has a significant impact on the weights wi,n as shown in
Fig. 2. For finite n, the weights reach a maximum for some i � n/2 and then rapidly
decrease.

Fig. 1. The variances vi,n for all i with various finite n and i � 10000 for infinite n.

Fig. 2. The weights wi,n for all i with various finite n and i � 1500 for infinite n.
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In the following, an algorithm is developed for vi,n and wi,n based on 3-parameter
power functions. The process steps to reach the algorithm are discussed in detail.
Figure 1 suggests that the vi,n curves might be approached as an adaption of the curve
for infinite n. For that reason, firstly the vi,n for infinite n is studied. Secondly, the
adjustment for finite vi,n is studied.

4 Power Model for LR Weights

4.1 Infinite Sample Size

The Eqs. (9)–(11) are not easy to interpret for infinite n. However, for i = 1 a simple
expression follows directly from (8) and (9) that is independent of n:

v1;n ¼ p2

6
ð12Þ

The variances vi,n!∞ asymptotically approach 0 with increasing i. The same holds for
the difference vi;n!1 � viþ 1;n!1. Both can be approximated with an asymptotic power
function as in (1). The former gives a fairly good approximation, the latter appears to
yield a power function that was later proven to be an exact solution and is elaborated
here further. As the difference approaches 0 with i ! 1, the asymptote E∞ = 0.

Figure 3 shows vi;n!1 � viþ 1;n!1 for n = 2000, i.e., the largest sample size. The
log-log plot of Di against i-R is straight for R = 1. The slope yields: P = −2 and the
intercept Q = 1. With increasing n this asymptotic decay of Di appears more and more
accurate.

Fig. 3. The asymptotic behavior of vi;n!1 � viþ 1;n!1 for infinite n.
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With power function parameters {P,Q,R} = {−2,1,1}, a relationship is found:

n ! 1 : vi;n � viþ 1;n ¼ 1

ði� 1Þ2 ð13Þ

Combining (12) and (13) yields an algorithm for vi,n with infinite n:

n ! 1 : vi;n ¼ p2

6
�
Xi

j¼2

1

j� 1ð Þ2 ð14Þ

The sum in (14) with i ! 1 is known to be equal to p2=6 (cf. Equation 23.2.24 in
[7]).

It is also interesting to do a similar exercise for the weights wi,n!∞. From (12)
follows for i = 1 and all n:

w1;n ¼ 6
p2

ð15Þ

When listing the values wi;n!1 ¼ 1=vi;n!1, these appear to asymptotically
approach to i−0.5. However, from (15) for i # 1 a deviation of 6=p2 � 0:5 � 0:108 is
found. The asymptotic approach of wi,n!∞ to i−0.5 can again be investigated in terms
of an asymptotic power function. Figure 4 shows the difference Di ¼ wi;n!1 �
i� 0:5ð Þ against i−R. The asymptotic power function parameters are {P,Q,
R} = {−1.04,0.098,0.088}. This yields an algorithm for wi,n!∞:

n ! 1 : wi;n � i� 0:5þ 0:098 � i� 0:088ð Þ�1:04 ð16Þ

Fig. 4. The asymptotic behavior of wi;n!1 � i� 0:5ð Þ for infinite n.
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Also the variances for infinite n can be calculated through vi;n!1 ¼ 1=wi;n!1. This
expression is suitable for non-integer i as can occur with censored failure data.

It appeared fruitful to first find an algorithm for vi,n and then convert to wi,n. In the
following, still, the asymptotic approach of wi,n!∞ to i−0.5 is used as the foundation,
because unlike (14) it is suitable for non-integer i. As wi,n!∞ approaches i−0.5,
likewise vi,n!∞ approaches (i−0.5)−1 with increasing i. This asymptote is a first power
function with {P1,Q1,R1} = {−1, 1, 0.5}. In a similar fashion as Fig. 4, the asymptotic
behavior Di ¼ vi;n!1 � i� 0:5ð Þ�1 can be explored. The parameters of a second
function are then found as {P2,Q2,R2} = {−3, −0.1, 0.3445}. The algorithm for
vi;n!1 ¼ vi;1 is:

vi;1 ¼ Q1 � i� R1ð ÞP1 þQ2 � i� R2ð ÞP2� i� 0:5ð Þ�1�0:1 � i� 0:3445ð Þ�3 ð17Þ

4.2 Finite Sample Size

The algorithm in (17) is suitable for the infinite n case and a good approximation for
(severely) censored cases where i 	 n. For finite n and the limit i ! n, the variances
increase (cf. Fig. 1) and the weights decrease sharply (cf. Fig. 2). Figure 5 shows the
deviation Di ¼ vi;n � vi;1 as a function of i for various n.

For every curve, Di # 0 for i # 1. This is due to (12). For n� 9 the curves reach
higher maxima vn,n and for n[ 9 the maxima vn,n are decaying. Noticing that the
summation in (14) equals p2=6 for i ! 1 (cf. Equation 23.2.24 in [7]), the vn,n
asymptotically approach 0. These observations led to the conclusion that this behavior
may be described with the product of 3 power functions as a start. In the following the
parameters of these three 3-parameter power functions will be indexed 3–5.

Fig. 5. The asymptotic behavior of vi;n � vi;1 for various sample sizes n.
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The requirement to have D1 ¼ 0 can be met with a power function of i-1 (i.e.,
R3 = 1) and a positive power P3 (note: not asymptotic for i ! 1). As for the amplitude
Q3, a product of 3 power functions will lead to a joint amplitude Q ¼ Q3 � Q4 � Q5

which is investigated as one single parameter Q. As all Di [ 0 for all i[ 1 (cf. Fig. 5),
the joint Q[ 0.

The requirement of decaying vn,n can be met with a power function of n-R4 and a
negative power P4. For n # R4 this power function approaches its singularity on the one
hand, while the power function of i−1 approaches 0. If Di for all n and i can be
described with the explored set of power functions, then R4\1 and the singularity is
not reached for any n� 1 and i� 1. It is noteworthy, that the power functions of i−1
and n−R4 may very well describe the behavior of vi,n and particularly vn,n in the range
1� i� 9.

Finally, the individual curves for given n, can be described with a power function of
n−i−R5 that has a negative power P5. Also here the singularity should not be reached
for any n� i� 0 and therefore R5\0. With vi;1 as in (17), the variance model
becomes:

vi;n ¼ vi;1 þQ � i� 1ð ÞP3 � n� R4ð ÞP4 � n� i� R5ð ÞP5 ð18Þ

The WLR weight model follows as the inverse, i.e., wi;n ¼ 1=vi;n.
The parameters P3, P4, P5, Q, R4 and R5 were optimized with the reference data set

mentioned above [6]. A mini-max criterion was applied, i.e. the largest ± relative
deviation of any weight wi,n between the model and reference was minimized.
A rounded off result was: {P3, P4, P5, Q, R4 and R5} = {1.4, −1.656, −0.75, 0.125,
−0.343, −0.8}. The algorithm for the variances vi,n thus becomes:

vi;n � i� 0:5ð Þ�1�0:1 � i� 0:3445ð Þ�3 þ
0:125 � i� 1ð Þ1:4� nþ 0:343ð Þ�1:656� n� iþ 0:8ð Þ�0:75
h i ð19Þ

From (19) follows the algorithm for the WLR weights wi,n:

wi;n ¼ 1=vi;n � 1=f i� 0:5ð Þ�1�0:1 � i� 0:3445ð Þ�3 þ
0:125 � i� 1ð Þ1:4� nþ 0:343ð Þ�1:656� n� iþ 0:8ð Þ�0:75
h i

g ð20Þ

This algorithm enables to calculate weights for WLR not only for integer ranking
indices i, but also for non-integer ranking indices. As mentioned before, failure data
from tests with random censoring is often treated with adjusted ranking that usually
yields non-integer indices. The present algorithm is built with 3-parameter power
functions. The algorithm is suitable for light-weight computing and can conveniently
be embedded in common office software like spreadsheets. The performance is tested
below.
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5 Evaluation of the Algorithm

The variance model of (17)–(19) and weight algorithm of (20) were evaluated in two
ways. The first was part of the optimization, namely, the error of each model weight wi,

n,mod calculated with (20) compared to the theoretical or reference weight wi,n,ref.
Figure 6 shows the maximum ± relative error in wi,n for each sample size n that was
involved in the optimization process which was the sequence detailed in Sect. 3.2
above. For all tested n� 2000 the absolute value of maximum error was < 2.8% which
occurred for i = 2000, n = 2000. For all n� 500 the absolute value of max error was
� 1%. Relative to the max wi,n = wn,max for each n, the relative error was � 0.34%
(occurring for n = 2). The model parameters may be fine-tuned further. However, for
the purpose of WLR, the approximation is very satisfactory with the � 0.34% max
error.

The second evaluation tested the shape of the weight distribution. If all model
weights would deviate from theory by the same factor, then the relative model and
theoretical weights would remain the same. The WLR results by model and theory
would also be exactly the same. A Similarity Index Sfg [1] was employed to test the
overall shape. This is a measure for how similar two distributions F and G are, judged
by their respective distribution densities f and g. If the distribution densities are
identical, then Sfg = 1. If f and g have nothing in common, then Sfg = 0. The general
definition is:

Sfg ¼ f � g
f � f þ g � g� f � g ð21Þ

Fig. 6. The maximum relative deviations in the model wi,n,mod from the reference wi,n,ref.
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The terms f � g, f � f and g � g are inner products that can be defined in various ways. In
the present case, the weights can be defined as discrete distribution densities:

f i;n ¼ wi;n;modPn

i¼1
wi;n;mod

gi;n ¼ wi;n;refPn

i¼1
wi;n;ref

ð22Þ

The Sfg of the model and reference can then be determined for each sample size n:

Sfg ¼
Pn

i¼1 fi;n � gi;n
� �

Pn
i¼1 fi;n � fi;n

� �þ Pn
i¼1 gi;n � gi;n

� ��Pn
i¼1 fi;n � gi;n

� � ð23Þ

Additionally, a Dissimilarity Index Dfg can be defined as Dfg ¼ 1� Sfg. Dfg can be
regarded as L2 (sum of squared deviations) normalized by the union of F and G:

Dfg ¼ 1� Sfg ¼ f � f þ g � g� 2f � g
f � f þ g � g� f � g ¼ f � gð Þ � f � gð Þ

f � f þ g � g� f � g ð24Þ

For all n� 2000, Sfg appeared > 0.9999885 � 1. Dfg was found largest for n = 6,
namely, 1:02 � 10�5 � 0. Figure 7 shows Sfg of the model and theory as a function of
sample size n.

6 Discussion and Conclusion

The present paper discussed the making of an algorithm to calculate the weights for
WLR with two challenging boundary conditions. The first condition is that the algo-
rithm must be able to handle failure data that have non-integer rankings i (1� i� n).

Fig. 7. The similarity of wi,n,mod and wi,n,ref., i.e. between the WLR weight algorithm and theory.
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The second condition comes from an on-going project that aims to develop widely
accessible data analytics in support of asset management that translates into a
requirement of ‘light-weight computing’.

The approach of the subject is to combine asymptotic 3-parameter power functions.
In earlier research, such functions were applied to cases like the bias and standard
deviation of Weibull and other distribution parameters that are efficient and therefore
show often a smooth asymptotic behavior. Some aspects of the present challenge, i.e.,
the WLR weights case, can be associated with asymptotic behavior, but it is more
complex. The trajectory to reach the present results required much trial and error. The
paper shows the line along which the algorithm was successfully developed.

The parameter values as in (20) are the result of an optimization process. It may be
possible to find roots that make the algorithm even more accurate. The performance
with the present parameter values is tested for maximum deviation of the model from
theory for a wide range of sample sizes, namely, n = 1(1)60, 75(1)80, 80(10)120, 125
(25)250(250)2000 as reported in [6]. The deviation of all weights is within 1% for
tested sample sizes n� 500 and within 2.8% for n� 2000. For all n, relative to the max
wi,n,max, the error < 0.34%. Secondly, the distributions of model and reference weights
are tested for their similarity. The similarity index Sfg was practically 1, i.e. the model is
almost identical to theory. The dissimilarity Dfg � 1:02 � 10�5 for all n.

This work on theory and ultimate model is supported by the Netherlands Ministry
of Economic Affairs and Climate through the RvO agency, Grant ref. nr. TEUE418008,
TKI Project FINDGO and by the EU H2020 R&I program and RvO under ECSEL
grant agreement No 826417 (Project Power2Power).
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