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This paper presents a flight control strategy based on nonlinear dynamic inversion. The approach presented,

called incremental nonlinear dynamic inversion, uses properties of general mechanical systems and nonlinear

dynamic inversion by feeding back angular accelerations. Theoretically, feedback of angular accelerations

eliminates sensitivity to model mismatch, greatly increasing the robust performance of the system compared with

conventional nonlinear dynamic inversion. However, angular accelerations are not readily available.

Furthermore, it is shown that angular acceleration feedback is sensitive to sensor measurement time delays.

Therefore, a linear predictive filter is proposed that predicts the angular accelerations, solving the time delay and

angular acceleration availability problem. The predictive filter uses only references and measurements of angular

rates. Hence, the proposed control method makes incremental nonlinear dynamic inversion practically available

using conventional inertial measurement units.

I. Introduction

F LYING scale models are considered as an additional tool in
aircraft design more often and simple unmanned aerial vehicles

(UAVs) are used for a growing number of applications such as
surveillance and monitoring. One of the objectives in the design of
theseUAVs is almost always to be low cost. It is often alsomandatory
to fly automated or at least have sufficient stability augmentation.
Unfortunately using current approaches for control system design
these objectives are often conflicting. A robust generic flight control
system that can easily be implemented to a new type of aircraft using
a primitive aerodynamic model can significantly reduce the con-
sumption of resources for flight control system design. This paper
presents a solution for such an easily adaptable robust flight control
system.

Currently, control techniques exist that are generic in nature,
including nonlinear dynamic inversion (NDI) [1]. For flight control
purposes, NDI uses an aerodynamic model to linearize the dynamics
of an aircraft. The resulting linear system is in principle the same for
every aircraft, given that the aerodynamic model is correct. NDI,
however, suffers from the major drawback that performance is lost
and unstable situations can occur in case of model mismatch.

Several successful attempts have been made to identify and elimi-
nate theflawsofNDIwith respect to robustness.Manyof the attempts
have focusedon combiningNDIwith robust control techniques using
� analysis and H1 synthesis, such as in [2–4]. In these references a
control lawwas found with significant benefits over regular NDI. No
or little gain scheduling was required and statements concerning the
robustness could be made. In many of the publications, however, not
all uncertainties are taken into account or they are covered by lumped
uncertainties hence introducing conservatism.

The obvious alternative solution to make the controller less
sensitive to model mismatch is to make the controller less depending
on the model. The present paper presents a method that is not

conservative, but still incorporates all uncertainties, by feeding back
angular accelerations. This concept is previously described by [5,6].
The control systems showed good performance when subjected to
aerodynamic model mismatch. However, the robustness properties
of angular acceleration feedback are not explicitly described by the
authors. Also, [5,6] assume that the angular accelerations are readily
available from measurements.

In [6] the concept of feeding back angular accelerations is derived
by first rewriting the rotational dynamic equations of motion into an
incremental form and then applying regular NDI, resulting in
incremental nonlinear dynamic inversion (INDI). It should be noted
that INDI has been referred to by [5] as simplified dynamic inversion.
However the authors of the present paper find that the designation
incremental nonlinear dynamic inversion better describes the design
methodology of the control laws. Rewriting the equations of motion
allows for an explicit description of the influence of the uncertainties
on the closed-loop system as is demonstrated in this paper. In the
present paper the insensitivity to aerodynamic model mismatch,
center of gravity mismatch and inertia mismatch are shown, at the
cost of sensitivity to sensor measurement delays and the use of
measurements that are not readily available.

The origin of measurement sensitivity is discussed and a solution
to the problem is presented in the form of a predictive filter for the
angular accelerations. Thefilter is based on only the angular rates and
their reference values, using simple polynomial prediction. Which is
possible only because of the unique properties of INDI. It is shown
that this solves the problems related to sensor measurement delays
without significantly degrading the robust performance increases
obtained from INDI. Furthermore it is a solution to the practical
availability problem of angular accelerations.

The paper is structured as follows: Sec. II discusses the model for
which the controller is designed. Section III briefly reviews regular
NDI and Sec. IV introduces the novel concept of INDI. Section V
reformulates the equations of motion into a form including uncer-
tainties and discusses the influence of these uncertainties onNDI and
INDI. Section VI discusses the influence of measurement delays and
presents the suggested predictive filter. Section VII briefly discusses
outer loop control in the form of sideslip control. In Sec. VIII the
results are presented, followed by a discussion, Sec. IX, and
conclusions, Sec. X.

II. Model

The control strategy is tested in simulations of a UAV having a T
tail and engines attached to the rear end of the fuselage. The engines
generate thrust along the aircraft body X axis. The UAV contains
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conventional control surfaces, hence an elevator, ailerons and a
rudder. The aircraft under consideration has a span of 4.16 m, a
reference wing surface area of 1:82 m2 and a mean aerodynamic
chord of 0.48m. Themotion of the aircraft is described by Eqs. (1–4)
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With the body fixed velocity components � u v w �T , the body
fixed rotational rates!� �p q r �T , the attitude �� �  �T , the
position � x0 y0 z0 �T , the force coefficients �CX CY CZ �T and
moment coefficients CM � �Cl Cm Cn �T . J is the moment of
inertia matrix, g the gravitational acceleration andm the mass, S the
wing surface area, V the airspeed, � the air density, b the wing span
and �c the mean aerodynamic chord. The moment and force coeffi-
cients are given by a general aerodynamic model, Eqs. (5) and (6),
described by, respectively, symmetric and asymmetric control and
stability derivatives
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With i� X, Z, m and j� Y, l, n, andM the Mach number.
Themodel is extendedwith amodel of uncertainties in the stability

and control derivatives, the center of gravity and the moments of
inertia. The uncertainties in stability and control derivatives are
obtained by comparing the aerodynamic models derived using three
different methods. The first is Digital Datcom [7] (DDC), a method
based on empirical formulas and lookup tables of existing aircraft
designs. The second method is Athena Vortex Lattice method [8]
(AVL), based on thin airfoil aerodynamic theory using horse shoe
vortex computations. The third method is Computational Fluid
Dynamics. By comparing the coefficients of these methods a
measure of the uncertainties is given. It is assumed that when
differences in coefficients between the three methods are small that
the coefficient can be determined relatively accurate using simple
and fastmethods such asAVL andDDC. In the uncertaintymodel the
differences found in the comparison are taken as standard deviations
of a normal distribution. Furthermore all aerodynamic uncertainties
are assumed to be real parametric uncertainties, hence the uncertainty
space is given by Eq. (7)

� aero :� � 2 Rj�� N�0; �2�k
� (7)

with subscript k indicating the control or stability derivative. By
comparing the derivatives of AVL, DDC, and computational fluid
dynamics, it is found that in general the differences in coefficients are
within 25%. The uncertainties of CY� , CYp , CLq , and Cmq have a

standard deviation of 50% and the standard deviation of CYr is taken
to be 200%. The lift, drag, and moment curve slops coincide very
well using the different modeling methods. However the absolute
values differ, therefore the lift, drag and moment slope uncertainties
are not modeled as percentages but as offsets, having standard
deviations of 0.1, 0.02, and 0.2, respectively.

Furthermore, sensor and actuator dynamics are incorporated.
Sensor measurements are perturbed by noise and time delay. The

noise is modeled as white noise having a sample time of 10 ms. The
noise STD for the angular rates is 0:1	=s and 0.25	 for the
measurement of angle of attack and sideslip. The noise on the angular
acceleration measurements of the INDI controller is assumed to be
1	=s2. Actuator dynamics are modeled by actuator rate and position
saturations. The control surfaces are assumed to deflect with 150	=s
with a maximum of 30	. Control surface deflections are assumed to
accurately follow their commands given rate and position saturation.
The atmosphere is assumed to be the standard atmosphere without
wind.

III. Nonlinear Dynamic Inversion

NDI, also called feedback linearization, is a control strategy that
uses themodel of a system to control it and through that eliminate the
need for gain scheduling and improve performance. In flight control
the aerodynamic model of an aircraft is generally used. Fundamental
to NDI are the equations of motions (EOM). Knowledge of the
different forms of the equations of motion reveals the variety of
applications of NDI. This section discusses the theory of basic NDI.

It is assumed that the EOM are affine in the input, Eqs. (8) and (9)

_x� f�x� � �G�x�u (8)

y � h�x� (9)

Withx the n � 1 state vector,u them � 1 input vector, y them � 1

output vector, f and h smooth vector fields, and �G an n �m matrix
whose columns are smooth vector fields. The concept of NDI is to
find a direct relation between the desired output and the input and
invert it. The dependency is found by differentiating the output until
this relation appears. Differentiating the output equation results in
Eq. (10)

dh�x�
dt
� @h�x�

@x

dx

dt
�rh�x� _x�rh�x��f�x� � �G�x�u�

� rh�x�f�x� � rh�x� �G�x�u� Lfh�x� � Lgh�x�u (10)

In Eq. (10)Lfh�x� is called the first-order Lie derivative along the
vector field f�x�, defined as Lfh�x� � rh�x�f�x�, withr being the
Jacobian operator [1]. Lgh�x� is the first-order Lie derivative along
the vector fields of �G�x�. Assume that the first-order Lie derivative

with respect to �G�x� is not zero. This implies that a relation between
the input and the output is found:

_y � Lfh�x� � Lgh�x�u (11)
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The representation is inverted to formulate a control law, Eq. (12).
The variable _y is replaced by the symbol �

u � Lgh�x��1�� � Lfh�x�� (12)

This particular input linearizes the system, resulting into a new
system with decoupled dynamics. The linearized system simply
results in _y � �, where � is called the pseudocontrol input. It is a
signal that is tracked by the derivative of the output, hence the output
can be controlled by a suitable choice of �. It is usually obtained using
a linear controller, depending on the error, denoted by e, between the
controlled parameter and its desired value

� � �LC�e (13)

If the first-order Lie derivative with respect to �G�x� would not have
been zero, Eq. (10) would be differentiated a second time

d2h�x�
dt2

�
dLfh�x�

dt
�
@Lfh�x�
@x

_x�rLfh�x��f�x� � �G�x�u�

� L2
fh�x� � LgLfh�x�u (14)

With L2
fh�x� the second order Lie derivative and LgLfh�x� the

first-order Lie derivative of Lfh�x�. If again the Lie derivative with
respect to �G�x� is zero, Eq. (14) is differentiated another time, until

the Lie derivative with respect to �G�x� is nonzero

dih�x�
dti

� yi � Lifh�x� � LgLi�1f h�x�u (15)

Replacing yi by �, Eq. (15) is inverted to formulate a control law

u � LgLi�1f h�x��1�� � Lifh�x�� (16)

Resulting in an ith order closed-loop system yi � �, where the
order of the system in this context is the number of times the output
equation is differentiated to find a relation between the input and the
output.

Up to this point the discussion of NDI has been kept general. To be
more specific consider the Euler equations of motion, Eq. (3), for
controlling the angular rates of an aircraft, repeated below in vector
form.

J _!�! � J!�M (17)

The angular rates are the controlled variables, h�x� �!. To
further specify the control input of an aircraft note that the moment is
composed partially by moments generated by the aerodynamics of
the airframe (subscript a) and partially by moments generated by the
control surface deflections (subscript c)

J _!�! � J!�Ma �Mc (18)

Ma is partially described by multiplication of stability derivatives
and the aircraft state (Mam

), taking dimensions into account, Eqs. (5)
and (6). And partially by a mismatch between center of gravity and
the reference point of the aerodynamic model, multiplied by the
aerodynamic forces also described in Eqs. (5) and (6).

M a �Mam
� �pref � pCoG� � F (19)

To understand the contribution of the second term consider the
general aerodynamic model. The model describes the forces and
moments that act on the aircraft as a function of aircraft state. It is
defined such that all forces act in a specific reference point. Assuming
a rigid aircraft, in flight the aircraft motion is described by forces and
moments acting in the center of gravity. When using NDI the forces
andmoments of the aerodynamicmodel with respect to the reference
point have to be translated into forces and moments with respect to
the center of gravity, meaning that an extra moment is generated by
the forces times the distance between reference point and center of
gravity.

Themoment that is produced by the control system is a result of the
control surfaces generating moments depending on their deflection,
which is described by the control derivatives times the deflection of
the control surfaces (�)

J _!�! � J!�Ma � �Mc��� (20)

�Mc�� is given by Eq. (21). Note that here it is assumed that the
control derivatives are linear
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Solving Eq. (18) for _! yields and expression in the form of Eq. (8)

_!� J�1�Ma �Mc � ! � J!� (22)

Applying NDI to this equation, Eqs. (10–12) results in an expres-
sion for the real input of an aircraft, the control surface deflections �

� � �Mc��1� �J��! � J! �Ma� (23)

The resulting control law depends on the full aerodynamic model
contained inMa andMc, hence it will depend on all uncertainties of
the aerodynamic model. Furthermore it depends on uncertainties in
moment of inertia and the center of gravity.

IV. Incremental Nonlinear Dynamic Inversion

NDI in flight control provides the commanded control surface
deflections as a function of the error of control variables. At each
execution of the flight control laws by the flight control computer, the
complete deflection of the control surfaces are computed. As a
variation it is possible to only compute the increments of control
surface deflections by taking the influence of the acting control
surface deflections into account. This concept has been used for the
purpose of coping with nonlinear control derivatives, [9]. As
demonstrated in this paper, it can also be used to reduce the impact of
model mismatch. This approach is fundamentally different from the
one discussed by [9]. For use inflight control, it requires rewriting the
rotational dynamic equations of motion into an incremental form,
which is discussed in this section.

To obtain an incremental form of the dynamic rotational equations
of motion, consider a Taylor series expansion of Eq. (22), to obtain a
first-order approximation of _! [6]

_!
 J�1�Ma0
� !0 � J!0 �Mc0

�

� @

@!
�J�1�Ma � ! � J!�Mc��!�!0 ;���0 �!� !0�

� @

@�
�J�1�Ma � ! � J!�Mc��!�!0 ;���0 �� � �0� (24)

! and � in Eq. (24) change with time, hence consider �0 and!0 to
be control and state parameters an incremental instance in time
before � and!. The first term on the right hand side of Eq. (24) is in
fact nothing but _!0

_! 0 � J�1�Ma0
� !0 � J!0 �Mc0

� (25)

Furthermore, parts of Eq. (24) do not depend on the angular rates
and parts do no not depend on the control surface deflection,
simplifying Eq. (24) into Eq. (26)

_!
 _!0 �
@

@!
�J�1�Ma � ! � J!��!�!0;���0�!� !0�

� @

@�
�J�1Mc�!�!0;���0�� � �0� (26)

Equation (26) can be simplified even further, when noting that for
an incremental time advance the second term on the right hand side is
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much smaller than the third term. This is explained as follows. A
change in control input has a change inmoment as effect. The change
in moment is directly effecting the angular accelerations. On the
other hand, the angular rates only change by integrating the angular
accelerations, hence by integrating the control surface deflection
component. Which makes the �! � !0� component, the change in
angular rates, negligible for small time increments. Note that here it is
assumed that a demanded deflection is achieved instantaneous,
Eq. (27)

_!� _!0 �
@

@�
�J�1Mc�!�!0 ;���0�� � �0� (27)

Assuming a linear relation between control deflection and control
moment, Eq. (24) can finally be rewritten into Eq. (28)

_!� _!0 � J�1�Mc�� d� (28)

Equation (28) is a linear approximation of Eq. (17) around �0 and
!0 for small time increments, describing the changes in angular
accelerations as a function of control increments. The new represen-
tation of the dynamic rotational equations of motion contains three
significant implications. First of all, the aerodynamic moment term
Ma has disappeared from the equation, hence the angular acceler-
ation is not expressed in terms of the largest part of the aerodynamic
model anymore. Second, theMa term also depends on the location of
the center of gravity through the definition of the aerodynamic
model, hence this dependency is also eliminated. And third, the
expression does not contain the nonlinear cross couplings of angular

rates, ! � J!.
Using the newly found equation for the rotational dynamics the

general NDI procedure [Eqs. (10–12)] is applied. Define the param-
eter to be controlled as the angular rates. Hence the output equation is
given by

y � h�x� �! (29)

To obtain a relation with the input, the output is differentiated

_y � _!� _!0 � J�1�Mc�� d� (30)

The direct relation to the input is found after differentiating once.
Replacing the angular acceleration by the pseudocontrol input
�� _!, the linearizing control input Eq. (31) is found by inverting
Eq. (30)

d �� �Mc��1� J�� � _!0� (31)

Note that this control law results in control surface deflection
changes. These changes must be added to the current deflections to
obtain the full new control surface deflections. For practical imple-
mentation in the system described by Eq. (8) this last step must be
added, Eq. (32)

u � �� �0 � d� (32)

Applying NDI to the incremental form of the equations of motion,
referred to from here on as incremental NDI (INDI), results in a
control law that is not depending on the largest part of the aerody-
namic model , hence it is not effected by the largest part of the
aerodynamic uncertainties. This increases the robustness of the
system as is discussed in the next section.

V. Uncertainties

The aircraft dynamics are considered to be nonlinear and as
shown, using NDI, a linearizing control law can be designed.
Resulting in a linear and time invariant closed-loop system. However
as will be demonstrated the linearizing control law resulting from
NDI is not completely linearizing anymore under the influence of
uncertainties, as has been shown by [3]. On the other hand, the
linearizing control law resulting from INDI remains linearizing. To
demonstrate the influence of uncertainties the general system
description as given by Eq. (8) is reformulated, Eq. (33)

_x� fn�x� � �Gn�x�u (33)

Subscript n is added to indicate the nominal situation. If no
uncertainties exist this is the real system. Continuing along the
general NDI procedures (10–12), a linearizing control law is found.
For simplicity a first-order system is assumed

u � Lgh�x��1�� � Lfh�x�� � �G�1n �� � fn�x�� (34)

resulting in the closed loop

_x� � (35)

In reality uncertainties do exist, hence the representation of
Eq. (33) is not complete. Equation (33) must be seen as the system
known by the Flight Control Computer (FCC) or the system the FCC
believes to be the real system. The true system is represented as the
system known by the FCC plus an additional, not known, hence
uncertain part

_x� fn�x� ��f�x� � �Gn�x�u�� �G�x�u (36)

Application of NDI to the true system, Eq. (36), means that the
input, u, is defined as in (34), the linearizing control law for the
system as known by the FCC. The resulting closed-loop system is
analytically derived by substituting the linearizing control law into
the real system [3]

_x� fn�x� ��f�x� � �Gn�x�� �G�1n �� � fn�x���
�� �G�x�� �G�1n �� � fn�x���

_x� ���f�x� �� �G�x� �G�1n � �� �G�x� �G�1n fn�x�
_x� ��f�x� �� �G�x� �G�1n fn�x�� � �I �� �G�x� �G�1n �� (37)

This is not necessarily a linear equation anymore, such as Eq. (35).
In particular for angular rate control of aircraft using regular NDI the
closed-loop system expressed by Eq. (37) is given by Eq. (38), when
assuming negligible measurement uncertainties

_!���J�1�Ma��J�1�!�J!�
��J�1�McM

�1
cn
J�Ma�!�J!��� �I��J�1�McM

�1
cn
J�� (38)

Here�Ma contains uncertainties in center of gravity (CG) and all
aerodynamic uncertainties in terms of stability derivatives. �Mc

contains uncertainties in control derivatives. �J represents uncer-
tainties in themoments of inertia. Also the nonlinear cross product of

the angular rates, ! � J!, remain in the equation.
Now consider INDI. Recall the derivation of the general incre-

mental representation of the equations of motion, Eqs. (24–28), with
_!0 assumed to be measurable

_x� fn�x� � �Gn�x�u _!� _!0 � J�1�Mc�� d� (39)

Note that here fn�x� represents _!0 and not Ma. This is an
important difference, because _!0 is a measurements, whereas Ma

depends on model parameters. When the angular accelerations are
assumed to be known accurately, hence again that measurement
uncertainties are negligible, the real world representation is slightly
different from Eq. (36). The term�fn�x� does not appear in Eq. (40)

_x� fn�x� � �Gn�x�u�� �G�x�u (40)

Applying INDI, Eq. (31), to the linearized approximation of the
true system results in Eq. (41)

_x� fn�x� � �Gn�x�� �G�1n �� � fn�x��� �� �G�x�� �G�1n �� � fn�x���
_x��� �G�x� �G�1n fn�x� � �I �� �G�x� �G�1n ��
_!���J�1�McM

�1
cn
J _!0 � �I ��J�1�McM

�1
cn
J��

_!��B _!0 � �I � B�� (41)
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For simplicity the new notation B��J�1�McM
�1
cn
J is intro-

duced. Equation (41) is a linear system with uncertainties in the
control derivatives andmoments of inertia. The block diagram of this
process is illustrated in Fig. 1. With !0 the integrated _! and _!0 the
derivative of !0.

The corresponding transfer function of Fig. 1 is given by Eq. (43),
which states that through using INDI the uncertainties in the
system are eliminated. As long as the sign of the control derivatives is
known and assuming instant deflections and measurable angular
accelerations

FF� K�I � B� I=s

I � sB=s� K
I � B
s�I � B� �

K

s
(42)

�

�ref

� FF

I � FF�
K=s

I � K=s�
K

s� K (43)

with ��s� being the Laplace transform of !. Recall that B contains
uncertainties in control derivatives and moment of inertia matrix. In
addition the dependency on the center of gravity and other
aerodynamic derivatives is eliminated since the effect is captured by
the measured angular accelerations. Hence using INDI the control
system is insensitive to uncertainties in aerodynamicmodel, center of
gravity and moment of inertia. When a proportional controller is
selected to close the loop, the closed-loop transfer function of the
linearized system is given by a simple first-order low-pass filter, as it
would be the case for regular NDI without any uncertainties in the
system.

To understand the limitations of the derivation and the applica-
bility in practice, the assumptions that result in this conclusion and
the implications are repeated and discussed. Three assumptions are
made for INDI:

1) The first assumption is that the second term on the right hand
side of Eq. (26) is negligible. If taken into account, this term could be
added in Eq. (41) as an extra uncertainty, which would include all the
uncertainties of the aerodynamic stability derivatives and the center
of gravity. However, asmentioned before, the change in angular rates
for small time increments is small by definition, since the angular
rates are an integrated consequence of the control surface deflections.
Again note that for this assumption to be true instantaneous control
surface deflections are implied.

2) Hence the second assumption, ideal actuators; actuator
dynamics are not taken into account in the derivation. Instantaneous
deflections are assumed in the derivation, justifying the claim that the
second term on the right hand side of Eq. (26) can be neglected. In
practice deflections are not achieved instantaneous, however,
actuator deflections are fast. The UAV considered in this paper
achieves values of 150 deg =s. If the demanded control surface
deflections result in actuator saturation, through a suitable choice of
control gain the control surface commands can be accelerated or
decelerated, which sppeds the system up or slows it down.

3) Ideal sensors; up to this point the angular accelerations have
simply been assumed to be known without error. Angular acceler-
ation sensors exist, however, they are not common. Alternatively the
angular accelerations can be derived from inertial measurement unit
(IMU) gyro measurements. In any case, the measurements will
contain biases, noise and measurement delay.

Uncertainties in the form of biases can be compensated by outer
loops. INDI should work for common and cheap systems, hence
using an IMU with high noise levels and not angular acceleration
sensors. The IMU sensor noise in that case, however, eliminates the

option of numeric differentiation, because it is generally known to
cause problems. Time delay, depending on thefiltering and processor
capabilities, is in the order of milliseconds, however, from simula-
tions it is observed that even small measurement delays are of
significant concern when using INDI. Because by using INDI the
demanded angular acceleration is considered to be an incremental
step in time from the measured angular acceleration, any noticeable
delay will violate the assumption of the incremental step, hence
causing loss of performance. Concluding, the assumption of ideal
sensors does not hold in practice. The angular acceleration measure-
ments are not available and the time delay cannot be zero.

VI. Prediction

To understand the problem caused by time delay of real world
sensors, consider the linearizing control law for INDI [Eq. (31)]

d �� �Mc��1� J�� � _!0�

When subject to time delay, the measured angular accelerations
are delayed, denoted by !	

d �� �Mc��1� J�� � _!	� (44)

When using this as input to the system, not all terms are canceled

_!� _!0 � J�1�Mc���Mc��1� J�� � _!	�
_!� �� _!0 � _!	 � �� _!�	 (45)

Equation (45) shows that the closed-loop system is not linearized
completely. An extra term remains that is varying with time, _!�	 .
_!�	 is the difference of the angular accelerations at two different
instances in time. As the time delay is decreased the influence of _!�	

becomes smaller, up to a time delay of zero.
Because it is impossible to eliminate the time delay, the control

system must be adjusted to anticipate upon it, which can be done
using a predictivefilter. Required is that the error in predicted angular
acceleration is small enough such that it can be neglected. In [10–13]
several methods to predict angular acceleration have been proposed.
These methods are, however, rather complex, varying from multiple
neural networks to extensive Kalman filtering. The present situation
can be simplified such that complex predictivefilters are not required.

Because INDI decouples the dynamics of the controlled aircraft, it
is justified to design a decoupled predictivefilter. For example, afilter
to predict the pitch angular accelerations uses only longitudinal
parameters, and similar for roll and yaw angular acceleration
prediction.

For the prediction of the angular acceleration several parameters
qualify, such as the current angular acceleration, the control surface
deflections, the angular rates and the angular rate references. The
drawbacks of angular acceleration in terms of availability and noise
have already been discussed. Regarding control surface deflections it
is noted that they are aircraft dependent. For each aircraft the control
surface deflection to create an angular acceleration will be different.
The deflection depends on the aircraft moment of inertia and control
derivatives, which again depend on wing shape and control surface
sizing. With the objective of obtaining a generic control law, the two
parameters remaining that should be used are the angular rates and
the references thereof.

The predictive filter must predict the closed-loop response of the
controller and the aircraft. Because for INDI the closed-loop
response is known and simple regardless of uncertainties, Eq. (43), a
simple linear filter can be designed using the closed-loop model. An
advantage of linear prediction is that bounded-input bounded-output
stability is guaranteed. In Eq. (46) the expression for the chosen
linear predictive filter is given

_! �t� �
X5
i�1
��!j!�t�i dt� � �rj r�t�i dt�� � 
 (46)

with rj the reference angular rate with j for the roll, pitch, and yaw
rate. The coefficients (�) of the predictive filter are computed usingFig. 1 Block diagram of the closed-loop system using INDI.
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least squares estimation, which requires a data set to estimate coeffi-
cients. Least squares estimation solves the overdetermined system
Eq. (47) for � using a cost function, Eq. (48). H contains collected
data of the angular rates and the angular rate references, and z
contains data of the predicted angular accelerations, hence one time
step ahead (i� 0)

z�H�� 
 (47)

J� 1

2

XN
k�1


2k �
1

2
�z �H��T�z �H�� (48)

@J

@�
�HT�z �H�� � 0 (49)

�� �HTH��1HTz (50)

To maximally use INDI, it is crucial to obtain the data in a generic
fashion. Because a closed-loop system controlledwith INDI ismodel
independent, the general closed-loop system, Eq. (43) can be used for
that purpose. Data is generated from a simulation of a low-pass filter
response to a single step input. Using least squares estimation on the
generated data ideal coefficients are computed. Hence the predictive
filter is constructed without prior knowledge of the aircraft model or
availability of test data.

The sample rate of the generated data must be chosen equal to the
sample rate of the flight control computer. Otherwise the predicted
value becomes too large or too small. It is important to understand
that the predictive filter only works in combination with INDI itself.
This combination is from here on referred to as predictive incre-
mental nonlinear dynamic inversion (PINDI).

Themagnitude of the step exciting the low-pass filter is taken to be
10 rad=s for all three rates. Note that this approach results in the same
coefficients for all three predictive filters of the three angular rates.
The ideal coefficients are given in Table 1.

To understand why the predictive filter will not cause problems
with sensor noise, compare the predictive filter to a numeric
differentiation scheme. The difference is shown by comparing the
predictive filter coefficients to numerical differentiation scheme
coefficients. As an example the five point numerical scheme is given
by Eq. (51), [14]. The coefficients multiplying the angular rates at
different sample times are much larger than the coefficients given by
Table 1. Lower-order schemes, such as the three point scheme and
Euler differentiation, may reduce the noise generated by differen-
tiation, but they will also be less accurate and furthermore will not
contain less noise than the predictive filter

_! t ��
1

12dt
��25!t � 48!t�dt � 36!t�2 dt � 16!t�3 dt � 3!t�4 dt�

(51)

VII. Outer Loop Control Laws

To test the control system performance, test cases for the
controllers consist of step inputs on the pitch rate (q) and the roll rate
(p). The yaw rate is chosen by an outer loop control law, such that the
sideslip angle is minimized. The outer loop controller uses the time
scale separation principle [12]. The time scale separation principle

uses the fact that the time constants of the inner and outer loops are
different and hence the control laws for inner and outer loops can be
designed independent. For completeness the control law for the
sideslip is given below. Finally note that the thrust is controlled to
maintain constant airspeed, which will not be treated in this paper.
� is chosen to be a control variable since it is otherwise difficult to

find a reference for the yaw rate. The reference sideslip angle is set to

zero in all situations. To do so, an expression for _� is derived by
differentiating the expression for the sideslip angle, Eq. (52) and
rewriting it with substitution of Eq. (1) [15]

�� sin�1
v

V
(52)

_�� 1����������������
V2 � v2
p �FX � FY � FZ� �

�
w����������
V2�v2
p 0 �u����������

V2�v2
p

� p
q
r

2
4

3
5

(53)

FX ��
uv

V2
��g sin �� ax�

FY �
�
1 � v

2

V2

�
�g sin cos �� ay�

FZ ��
vw

V2
�g cos cos �� az�

with ai the acceleration along i, and with i� x, y, z being the three-
body fixed axes. Inverting this equation results in an expression for
the yaw rate reference signal, as a function of the pseudocontrol input

for _�, which is provided by another linear controller. And as a
function of the roll and pitch rate reference signals

rref �
�
�u����������������
V2 � v2
p

��124�� � 1����������������
V2 � v2
p �FX � FY � FZ�

�
�

w����������
V2�v2
p 0

�
pref

qref

" #35 (54)

VIII. Results

The robust performance of three control systems in angular rate
reference tracking is compared in simulations using Matlab/
Simulink. One uses NDI, one INDI and the third uses PINDI. The
INDI controller assumes the direct measurement of angular acceler-
ations without delay, making the INDI controller a hypothetical
controller. The NDI and PINDI controller on the other hand are
controllers that can be implemented in aircraft with a commonly used
set of sensors, in particular an IMU, angle of attack and sideslip
sensor and a pitot static tube for true airspeed.

All simulations are performed with actuator dynamics in the form
of position and speed saturation and a measurement delay of 10 ms
for the NDI and PINDI controllers and zero time delay for the INDI
controller, except when mentioned otherwise. The control system is
updated at 100 Hz, hence the time delay is equal in size to the control
update time step. All simulations are performed with a fixed sample
frequency, also equal to 100 Hz. Furthermore all linear controllers
generating the pseudocontrol inputs are proportional controllers
only, except for the inner loop NDI control. The gains are given in
Table 2. The step inputs used to compute the coefficients of the
predictive filter are different from those used to determine the
predictive filter coefficients both inmagnitude and sign. Furthermore
the simulation does not contain a trimming routine, hence initial
divergence from reference parameters is caused by untrimmed initial
conditions. The simulations are all performed at 34 m=s and flight at
sea level.

The robust performance of the three control systems is
investigated by consequently varying sources of uncertainty while
using the same step inputs on the roll and pitch rate and minimizing

Table 1 Ideal coefficients used in the predictive filter

Coefficient Value Coefficient Value

�rt�1 dt
4.8771 �!t�1 dt

�0:8058
�rt�2 dt

�0:1986 �!t�2 dt
�0:8369

�rt�3 dt
�0:1481 �!t�3 dt

�0:8723
�rt�4 dt

�0:0983 �!t�4 dt
�0:9119

�rt�5 dt
�0:0490 �!t�5 dt

�0:9562
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the sideslip angle. The sources of uncertainty are the aerodynamic
model, the center of gravity, the moment of inertia and the sensor
measurements in terms of noise.

Figures 2a and 2b present the nominal response of the closed-loop
systems. Each of the controllers track the step inputs satisfactory. The
response of the NDI controller is fastest, with a rise time of 0.2 s and
an overshoot of 7%. The INDI controller does not experience any
overshoot and has a rise time of 0.5 s. The rise time of the PINDI
controller is around 0.35 s without any overshoot. In the longitudinal
response of the PINDI system it is noted that the longitudinal motion
is influenced marginally by the lateral dynamics.

Figures 2c and 2d present the sideslip angle response and the true
and predicted angular accelerations of the predictive filter, respec-
tively. These two plots are only presented for the nominal response
because their characteristics vary analogously to the rate responses.
For each step input it is observed that initially the predicted angular
acceleration is larger than the true value. This is an indication of the
control surface rate saturation. Because the ideal closed-loop
response assumes instantaneous deflections the predicted accel-
erations are too high. This also causes the transient response in
Fig. 2b. A high angular acceleration prediction does not cause the
system to become unstable because it results in smaller deflections,
hence adding a damping effect to the system.

The mismatch observable in Fig. 2d between true and predicted
yaw acceleration is caused by a changing yaw rate reference. During
a roll rate step input, the aircraft is linearly increasing its bank angle.
In a coordinated turn, hence a turn without sideslip, a fixed bank
angle corresponds to a constant yaw rate. For a changing bank angle,
the corresponding yaw rate is also changing. Because the closed-loop
rate controlled response is that of a first-order system a lag error is
present as seen in Fig. 2d.

In Fig. 3 the nominal response of the INDI with a 10 ms measure-
ment delay is presented. For comparison the nominal responses of the
NDI and the PINDI system are repeated. The oscillation that is
noticeable in Fig. 3 is caused by _!�	 of Eq. (45), which is constantly
varying in magnitude. The response of the PINDI controller clearly

Table 2 Linear controller gains

Coefficient NDI INDI PINDI

Roll rate proportional gain 10 5 5
Roll rate integrational gain 5 0 0
Pitch rate proportional gain 10 5 5
Pitch rate integrational gain 5 0 0
Yaw rate proportional gain 10 5 5
Yaw rate integrational gain 5 0 0
Roll angle proportional gain 2 2 2
Pitch angle proportional gain 2 2 2
Sideslip angle proportional gain 2 2 2
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illustrates the effect of adding the predictive filter. The oscillations
vanish and the response is satisfactory.

Figures 4 and 5 show the performance subject to aerodynamic
model mismatch. The aerodynamic mismatches are present both in
the stability and control derivatives hence inMa andMc. Note once
more that the responses of the NDI and the PINDI controller arewith
time delays on the measurements and the INDI response is without
time delay in the measurement. In the simulation of Fig. 4, the
responses to five realizations of the uncertainty space described in
Sec. II are presented. The conventional NDI controller suffers from
the model mismatch. The responses are different for each realization
and the performance is unsatisfactory, with overshoots of 50% or
with responses not reaching the reference value.

The response of the INDI controller does not show any sensitivity
to the aerodynamic model mismatch, not to the stability nor the
control derivativesmismatches. The responses are nearly identical to
those of the nominal simulation. Compared with the ideal INDI
controlled system, the PINDI controller responds marginally worse.
It is observed that the steady-state error remains uninfluenced by the
uncertainties. Merely the response time of the system is changed by a
fraction of a second and the influence of the lateral motion on the
longitudinal response has increased marginally. The larger influence
to model inaccuracies of the PINDI controller compared with the

INDI controller is explained by the angular acceleration prediction,
which computes angular accelerations based on ideal coefficients
that are always marginally off. Because the aircraft models are varied
in the simulations, the error is different in each realization. However,
compared with conventional NDI the response of PINDI is a
significant improvement.

Figure 5 presents results of a Monte–Carlo simulation containing
1000 samples of the aerodynamic model. The two graphs show the
rms error of the angular rates compared with the nominal response.
The few larger rms errors shown in the box plots of INDI and PINDI
are explained by long term actuator saturation, caused by physically
impossible demands to the aircraft motion in the present flight
conditions. Because in the simulations all uncertainties are added in
the model instead of in the control system airplane models occur that
are physically not capable of following the step inputs of the angular
rates.

Figure 6 shows the results of a simulation with a mismatch in
center of gravity. The mismatch is taken to be 50% of the mean
aerodynamic chord both along the aircraft x and z axis, moving the
center of gravity further to the rear of the aircraft. The moment of
inertia change caused by the shift of center of gravity is negligible.
The results clearly indicate that conventional NDI cannot copewith a
mismatch in center of gravity, whereas the responses of the INDI and
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PINDI systems are, respectively, not and slightly different from their
nominal responses. The PINDI controller has a well-damped 20%
overshoot, and a settling time of within 1 s.

In Fig. 7 the responses with a 50%mismatch in moment of inertia
is presented, meaning that the inertia in the FCC is twice the actual
size. The mismatch in inertia causes the computed control surface
deflections to be larger or smaller than required for the desired
maneuver with a magnitude directly proportional to the mismatch,
Eq. (31). The conventional NDI controlled system is influenced only
marginally by the mismatch. The influence is marginal because
conventional NDI calculates the control deflections from flight
parameters that are related to the angular acceleration by integrating
once and twice, which has a damping effect. INDI on the other hand
derives the deflections directly from angular accelerations, without
any damping causing the control system to constantly overshoot the
desired angular rate. Note, however, that apart from the oscillations
the reference signal is tracked. The fact that PINDI does not suffer
from overshoots is caused by the predictive filter which again has a
damping effect, since the ideal coefficients do not anticipate on the
faster response of the system and predict angular accelerations that
are smaller than the true values.

Figure 8 shows the responses to sensor noise. From the responses it
is noted that for non of the controllers the noise is blown up and
causing significant loss of performance. The NDI response is
satisfactory. The noise is clearly noticeable, but the response is
similar to the nominal response. The INDI controller also responds
satisfactory to noise. The noise on the PINDI system response is of
the same magnitude as for the NDI controller system. Note that the

noise in the PINDI system is not blown up, which is generally known
to cause problems when numerically differentiating noisy signals.
Because PINDI uses prediction instead of numerical differentiation,
this is not a problem.

IX. Discussion

The crux of INDI and PINDI is that almost all model uncertainties
that degrade the performance of regular NDI are replaced by a
(indirect) measurement. This includes the nonlinear effects of the
angular rate cross product. The resulting control law does therefore
not depend on the greatest part of the model (Ma), resulting in
responses that are non model dependent to a large degree.

The reason that the PINDI controller is sensitive to the model
uncertainties to a slightly larger degree than the INDI controller is
that the predictive filter is designed for an aircraft with an ideal
response. Because instant control surface deflections are assumed in
the derivation and because contributions to the angular accelerations
other than control surface deflections are neglected, in reality, the
aircraft response is only close to ideal.

In the course of the derivation a linear relation between control
deflection and generatedmoment was assumed. Although in practice
by approximation this is often correct, the relation can be highly
nonlinear for particular aircraft. Nonlinearities can, however, be
described as extra parametric uncertainties, against which the PINDI
controller is shown to be robust.

In principle every system is linearized to the same low-pass filter
when using INDI, with only small errors remaining. To then obtain a

0

5

10

15

NDI INDI PINDI

Roll rate RMS error

a) Roll rate

0

5

10

15

20

25

NDI INDI PINDI

Pitch rate RMS error

b) Pitch rate
Fig. 5 Box plots of aMonteCarlo simulation of the inner loop response of theUAVcontrolled usingNDI, INDI, andPINDI, subject tomismatches in the
aerodynamic model, both in stability and control derivatives. The NDI and PINDI controllers are subject to sensor measurement time delays, and the

INDI controlled system is not.

0 2 4 6 8 10
−200

−150

−100

−50

0

50

100

R
ol

l r
at

e,
 d

eg
/s

reference
ndi WITH delay
indi NO delay
pindi WITH delay

a) Roll rate

0 2 4 6 8 10
−50

−40

−30

−20

−10

0

10

20

30

P
itc

h 
ra

te
, d

eg
/s

reference
ndi WITH delay
indi NO delay
pindi WITH delay

b) Pitch rate
Fig. 6 The inner loop response of the UAV controlled using NDI, INDI, and PINDI, subject to a mismatch in the center of gravity of 50% mean

aerodynamic chord toward the rear and the right of the aircraft. The NDI and PINDI controllers are subject to sensormeasurement time delays, and the

INDI controlled system is not.

1740 SIEBERLING, CHU, AND MULDER



more accurate filter, only small corrections are required. Hence it
should be possible to have an online adaptive algorithm tomake these
small adjustments to the coefficients, to obtain the ideal response.
Using simulated flight data from a well-modeled aircraft controlled
using an ideal INDI controller, it is found that coefficients for the
predictive filter of Eq. (46) can be computed, such that the PINDI
response matches the ideal INDI performance in every aspect.

X. Conclusions

INDI and the practically available PINDI require less aircraft state
information, but result in better robust performance than regular
NDI. Furthermore INDI and PINDI require significantly less model
information in both qualitative and quantitative sense than NDI.

Because angular accelerations are not readily available, and
because it is shown that INDI is sensitive to measurement delays a
linear predictive filter is designed to predict the angular accelerations
from only angular rates and references thereof. It is demonstrated that
using PINDI the robust performance improves compared with
regular NDI for aerodynamic model, inertia, and CG mismatch.

Because the stability is not endangered for any type ofmismatch, it
is possible to implement the PINDI control algorithm and fly aircraft
with hardly any knowledge of the model.
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