
 
 

Delft University of Technology

Evaluating List Construction and Temporal Understanding capabilities of Large Language
Models

Dumitru, Alexandru; Venktesh, V.; Jatowt, Adam; Anand, Avishek

DOI
10.1145/3731120.3744606
Licence
CC BY
Publication date
2025
Document Version
Final published version
Published in
ICTIR 2025 - Proceedings of the 2025 International ACM SIGIR Conference on Innovative Concepts and
Theories in Information Retrieval

Citation (APA)
Dumitru, A., Venktesh, V., Jatowt, A., & Anand, A. (2025). Evaluating List Construction and Temporal
Understanding capabilities of Large Language Models. In ICTIR 2025 - Proceedings of the 2025
International ACM SIGIR Conference on Innovative Concepts and Theories in Information Retrieval (pp.
369-379). (ICTIR 2025 - Proceedings of the 2025 International ACM SIGIR Conference on Innovative
Concepts and Theories in Information Retrieval). Association for Computing Machinery (ACM).
https://doi.org/10.1145/3731120.3744606
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/3731120.3744606
https://doi.org/10.1145/3731120.3744606


Evaluating List Construction and Temporal Understanding
capabilities of Large Language Models

Alexandru Dumitru∗
alexandru.dumitru@prosus.com

Prosus
Delft, Netherlands

Venktesh V∗

v.viswanathan-1@tudelft.nl
Delft University of Technology

Delft, Netherlands

Adam Jatowt
adam.jatowt@uibk.ac.at
University of Innsbruck

Innsbruck, Austria

Avishek Anand
avishek.anand@tudelft.nl

Delft University of Technology
Delft, Netherlands

Abstract

Large Language Models (LLMs) have demonstrated immense ad-
vances in a wide range of natural language tasks. However, these
models are susceptible to hallucinations and errors on particularly
temporal understanding tasks involving multiple entities in an-
swers. In such tasks, they fail to associate entities with accurate
time intervals, generate a complete list of entities in answers or rea-
son about events associated with specific temporal bounds. Existing
works do not extensively evaluate the abilities of the model to per-
form implicit and explicit temporal understanding in a list answer
construction setup. To bridge this gap, we propose the Time refer-
enced List based Question Answering or TLQA benchmark that re-
quires structured answers in list format aligned with corresponding
time periods. Our TLQA benchmark, requires both list construction
and temporal understanding simultaneously, which to the best of
our knowledge has not been explored in prior benchmarks. We in-
vestigate the temporal understanding and list construction capabil-
ities of state-of-the-art generative models on TLQA in closed-book
and open-domain settings. Our findings reveal significant short-
comings in current models, particularly their inability to provide
complete answers and temporally align facts in a closed-book setup
and the need to improve retrieval in open-domain setup, providing
clear future directions for research on TLQA. The benchmark and
code at https://github.com/elixir-research-group/TLQA.
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1 Introduction

Large Language Models have made tremendous advances in wide
range of Natural language processing (NLP) tasks [2, 27, 32]. Their
ability to reason and answer questions with factual information
has been studied widely through well known Question Answering
(QA) benchmarks [12, 28, 34, 38]. However, such models are still
prone to errors and hallucination [15] where they generate plausible
sounding answers not grounded on facts in the real world. These

Example: TLQA and extensions

TLQA: List all political positions Joe Biden held to this day.
[Answer]:

✓□ President of the United States (2021-2024)
✓□ Vice President of the United States (2009-2017)
✓□ United States Senator from Delaware (1973-2009)
TLQA-TS question:What political positions were held by Biden
between 2009-2020?
[Answer]: ✓□ Vice President of the United States (2009-2017)
TLQA-TM question: What political positions were held by Biden
after serving as Senator ?
[Answer]: ✓□ Vice President of the United States (2009-2017) ✓□
President of the United States (2021-2024)

Figure 1: An example for Time referenced List based QA

problems are further exacerbated for questions where the model has
to generate a structured list of answers (ListQA). In such ListQA
tasks, the model has to ensure coverage of all relevant entities
in the answer (list construction). The ListQA task may include
inquiries referring to side effects of certain medication, historical
events, priority lists or rankings. Over 10% of Bing’s web queries

[4] and healthcare queries [42] 21.9% of the queries necessitate
a structured list as response. However, there have been only few
works on queries that require structured, listwise answers [30].

*These authors contributed equally to this work
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Additionally, factual information of entities evolves over time
and requires reasoning about the scope of knowledge in different
time periods. Hence, the LLM must posses temporal understand-

ing capabilities such as associating the entities in the list answer
with accurate time intervals and also reason about temporal scope
of the entity in the question. This may also entail performing im-
plicit temporal understanding for questions like “What positions
were held by Joe Biden after his tenure as senator?". Here the LLM
has to infer the time period of position as senator and perform
temporal arithmetic to arrive at the time period after the official left
this position to arrive at the correct answer. While existing works
have focused on questions with temporal markers, they were pri-
marily based on Knowledge Graphs (KG) [7, 16, 17, 31, 37] and not
text-based, which limits the understanding of temporal evolution
and transitions in text. The emphasis on KG based temporal facts
has been found to be limiting research as it ignores implicit tem-
poral structure or temporal reasoning tasks beyond KGs. Further,
prior works have observed that heuristics or shortcuts can often
answer these questions without necessitating genuine temporal
reasoning [8]. While few works focus on temporal understanding
over natural text [10, 29], these works do not address questions
that require multiple answers (list based), which is common in
real-world scenarios involving time-period-specific queries.

To bridge this gap, we study time-referenced List based QA,
by curating a benchmark (TLQA) along with large evidence col-

lection of Wikipedia articles and corresponding info boxes. The
questions in TLQA require a list of answers each associated with a
time period. This reflects real-world queries where users are inter-
ested in querying historical events or news [41]. These are common
queries issued to search engines which are time-sensitive or involve
temporal specifiers [6, 16] such as “What teams did Lebron James
play for between 2007-2009?". These queries are complex to resolve
as they need to not only maintain completeness of the answer list
(list construction ability) but also get accurate bounds (start and
end) of the related time periods and ability to associate entities
with the accurate time periods (temporal understanding ability).
Some queries in our benchmark, such as the TLQA-TM question
in Figure 1 also require implicit temporal understanding capability
to infer time period related to the event specified in the question.
Examples of diverse question types in our benchmark are presented
in Figure 1. Unlike typical QA scenarios such as those in SQuAD
[33] where the system extracts a single answer from a single body
of text, TLQA systems must find multiple answers from a single
text or multiple sources [43] and align them with appropriate time
periods while ensuring the bounds for time intervals are accurate.
We would also like to note that exact sorting of time periods is
beyond scope, though our benchmark can be used for the same.

We evaluate a range of generative Large LanguageModels (LLMs)
in few-shot closed book setup and in open-domain setup to ana-
lyze their temporal understanding and their list construction
abilities. To the best of our knowledge, prior works have not tack-
led the temporal understanding and list structured output abilities
simultaneously, critical for real-world applications.

Real-world applications: Benchmarking LLMs on TLQA can
help improve their temporal understanding and list construction
capabilities, which is of immense use in healthcare, historical re-
search and education and journalism. For instance, in historical

research/education it helps scholars access precise historical in-
formation regarding different events across time. In healthcare, it
could be used to access historical medical records.

Research Questions:

RQ1: How well do Large Language Models (LLMs) perform on
temporal understanding and list construction based questions in
TLQA ?

RQ2: Does retrieval augmentation from external knowledge
sources help reduce hallucination in LLMs for generating complete
lists in answers with precise temporal bounds?

RQ3: When provided with golden evidence in retrieval aug-
mented setup, what are the effects of various distractors (as evi-
dence) on model performance?

2 Related Work

While several ListQA benchmarks have been proposed, they pri-
marily focus on answering factoid or ambiguous questions with
multiple answers [1, 25, 46]. They do not focus on the evolution of
such factual answers with shift in temporal information. Temporal
information plays an important role for real-world tasks such as
Information Retrieval and Question Answering[6, 45]. Information
evolves over time [11, 14], and it is critical to provide temporally
recent and relevant information to users. Hence, temporal informa-
tion retrieval [3, 21] and temporal QA [37, 39] has been of immense
interest recently. These approaches commonly use temporal sig-
nals in text to ascertain temporal aspects of query intents [18],
perform query or document matching [13], aiding in search of
web archives[19]. A large body of studies have been dedicated to
study evolution of facts through temporal knowledge graphs (TKG)
[5, 16, 17, 44] and evaluate QA over such graphs [35]. However, [8]
observed that such datasets consists of primarily pseudo-temporal
questions where QA tasks could be solved without enforcing tem-
poral constraints. To tackle this, MultiTQ [7] mandates temporal
constraints for QA.

However, answering questions over temporal knowledge graphs
are limited to the facts contained in the constructed knowledge
graph. To study temporal evolution of facts in natural text, several
datasets [6, 22] focus on time aware QAwith textual evidence. More
recently, TempLAMA [10] introduced cloze type questions to test
the temporal awareness of pre-trained language models. However,
it has several limitations, such as answers with missing start date
and 7.9% of the questions have subjects with incomplete names,
which can be problematic for disambiguation such as ’Cristiano
Ronaldo’ and ’Ronaldo,’. Additionally, the evaluation metrics em-
ployed in TempLAMA such as maximum token-level F1 score does
not account for answer completeness and temporal bounds.

3 Benchmark Creation

3.1 Time Referenced List based QA

Definition 3.1. A time-referenced list based question𝑄 is a query
that, given a temporal context 𝑡 , requests a comprehensive list of
entities or facts 𝑒 constituting together a correct answer to 𝑄 over
the time period 𝑡 . The answer 𝐴 to 𝑄 is a set of pairs (𝑒, 𝜏) where 𝑒
is an entity or fact, and 𝜏 is the time interval when 𝑒 is relevant to
𝑄 .
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Entity /List of Entities (Eg: 
David Beckham, Christiano 

Ronaldo, Joe Biden)

Extract 
Wikipedia 
Page

Map to Wikidata Id
Parse 
InfoBox

Entity 
Disambiguation

Wiki Relation IDs

Template based TLQA question
Q: List all political positions Joe Biden held 
to this day

President of United States (2021-2024)
Vice president of United States (2010-2011)

Q: What political positions were held 
by biden between 2009-2020?

TLQA-TS (time-span) question

TLQA-TM (temporal marker) question

LLM
Vice president of United States 
(2010-2011)

Q: What political positions were held 
by biden after serving as Senator ?

President of United States 
(2021-2024)
Vice president of United States 
(2010-2011)

Delaware Senator (1973-2009)

Figure 2: TLQA data collection pipeline

3.2 TLQA generation

We propose an automated solution to generate TLQA. Our focus
is generating questions from entities related to Wikidata relations
namely P54 (member of a sports team) and P39 (position held). The
main intuition behind this decision is that only these topics, the en-
tities are naturally associated with multiple organizations/positions
over different time periods, making it a natural choice for TLQA.
Our data-curation pipeline consists of multiple stages such as en-
tity/subject extraction, Wikipedia Mapping, Infobox Extraction and
question generation with templates shown in Figure 2.

3.2.1 Entity seed set. Our pipeline first starts with a list of en-
tities/subjects which would form the core of the questions. We
extract these entities from TempLAMA to act as seed set though
the pipeline would work with any set of entities. Hence, we would
like to note that our pipeline is generic without dependency on
TempLAMA and requires only a list of entities or subjects with
relation pairs. For each query in TempLAMA, the subject of each
query is extracted by using theWikidata relation type as a semantic
marker. For example, for relation P54, each query is of the form
subject plays for _X_, and can be split based on the words
plays for, to extract the subject.

3.2.2 Entity Disambiguation and mapping to Wikidata ID. For each
subject/entity, the goal is to map to Wikipedia page to extract rele-
vant information and generate questions. Using only the subject’s
name may be insufficient, as multiple named entities may share
the same name. Therefore, to resolve each subject to its correct
Wikipedia page, we collect Wikidata ID which provides a one-to-
one relationship between entities and Wikipedia articles.

To accurately find the Wikidata ID for each subject, we utilize
the entity, the Wikidata relation type (e.g., member of sports teams),
and the aggregated set of entities related to the subject retrieved
using Wikidata relation type, with each related entity having a
unique Wikidata identifier. For example, related entities in the
context of a sports celebrity could be some of the teams he played
for which are objects of the relation type “member of sports teams"
. We then search for entities with the subject’s name on Wikidata,
limiting the search to the top 50 results to manage the scope. Next,
we filter these results to retain only those entities that have the
specified relation type (e.g., P54 for sports teams). Based on the
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Figure 3: Infobox Type Distribution for P39 and P54

overlap between object IDs in relations for the above candidates and
IDs of related entities extracted earlier for the subject, the Wikidata
ID is assigned.

After assigning Wikidata IDs, we perform a verification step
that checks the label and aliases for each assigned Wikidata ID and
compare them with the normalized subject name. If a match is not
found among the names, the entity is ignored. This process resulted
in the reduction of the initial 5825 entities to 5711 entities.

3.2.3 Infoboxes. After obtaining theWikidata IDs, we fetch the cor-
responding infobox for each entity from corresponding Wikipedia
pages by parsing the markup. An infobox is a structured table in
a Wikipedia article that presents key information about the sub-
ject in a standardized format. In Wikipedia’s Wikitext, the markup
language used by Wikipedia, infoboxes follow specific templates
designed for different types of subjects. As of today, there are more
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than 1000 types of infoboxes, which can be found on Wikipedia1.
These structures often contain temporal information, which can be
collected to form questions that require temporal understanding.

3.2.4 Infobox Distribution over Wikidata relations. We analyze and
plot the distribution of infobox types. Infobox types that appear
fewer than 10 times are grouped under ’Other’. The plots for some
relations are available in Figure 3. We observe that, for the relation
P39, infobox officeholder (official) represent the most common
infobox type, whereas for P54, the most frequent one is football
biography (football).

Table 1: Mapping from subject to query based on Wikidata

relation type and infobox type

Infobox Type Temporal Markers Answer Fields

Football youth years,years youth clubs,clubs
Biography national years national team

Officeholder term start office,suboffice
term end jr/sr,state senate
subterm state assembly

Cricketer year, international span club, country

3.2.5 TLQA from infoboxes. To form TLQA, we construct a ques-
tion that explicitly requests a list of entities or facts with corre-
sponding time periods associated with the entities. The question
templates for infobox types can be seen in Table 2.

Table 2: Fields for temporal information from Infoboxes

Relation ID Infobox Type Query

P54 Football,Cricketer List all teams <subject> played
for to this day.

P39 Officeholder List all political positions
<subject> held to this day.

To create our answer set, given a generated query, we parse the
infobox corresponding to each subject and query to extract the
relevant information. We utilize the temporal markers mentioned
in Table 1 to compile comprehensive answers. For sports-related
queries, we extract the teams and the corresponding years the sub-
ject played for each team. For political-related queries, we extract
the political positions held and the associated time periods. If the
end year for a position or team association is not specified, we
interpret this as an indication that the subject currently holds the
position or remains with the team, aligning with the convention
used on Wikipedia.

The process of generating questions and answers is applied to the
extracted TempLAMA subjects marked with the specified infobox
types. This results in a collection of 1655 questions, with an average
number of answers of 8.641. We perform a stratified train-test split
based on the question’s topic (either political or sports-related). The
dataset statistics are shown in Table 3.

1https://en.wikipedia.org/wiki/Wikipedia:List_of_infoboxes

Table 3: Dataset statistics along with categories.

Category Split # of entries Mean # of Answers

Political
Training 630 5.473
Test 251 5.438
Total 881 5.463

Sports
Training 528 11.775
Test 246 11.915
Total 774 11.820

Table 4: Manual eval. GAC: Ground Truth Answer Complete-

ness, QU : Question usefulness. We use the Likert scale (1-5)

and Cohen’s Kappa (𝜅) for inter-annotator agreement (in

brackets).

GAC (𝜅) QU (𝜅)

4.75±0.50 (0.67) 4.98±0.05 (0.74)

Prompt: Generate Temporal-Span based QA TLQA-TS

➤ System Message:
• You will receive an original question along with its correct
answer. The question asks for a list of entities associated with
a person, including temporal information.

• Your task is to generate a new question-answer pair by
rephrasing the original question to include a specific time inter-
val condition, such as "between 2000 and 2010", "before 2000",
or "after 2010".

• Select a time interval that includes as many entities as possible
from the original answer (i.e., maximize overlap with the time-
lines). The answer should be a subset of the original answer,
including only those entities whose time spans overlap with
the selected interval.

• The new question should require temporal reasoning to answer
due to the added time constraints.

• The answer should maintain the same format as the original
answer: a list of entities with years denoting the time span.

Output Format:
Provide the response in JSON format, adhering to the schema
below:
{ "question": "<new question>",

"answers": { "<entity_1>": "<years>",
"<entity_2>": "<years>", ...}}

Figure 4: Prompt used to generate a new timeline dataset.

3.2.6 Extending TLQA. Since the questions in the benchmark are
created based on templates and centered on entities, they may have
limited temporal variability and may also not test for implicit tem-
poral understanding capabilities. To address this, we extend TLQA
with two additional evaluation subsets (test sets) by generating
variations of original questions in TLQA test set. These subsets
namely TLQA-TS where TS denotes Time Span and TLQA-TM
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Prompt: Temporal Marker based Generation (TLQA-TM)

➤ System Message:
• You will receive an original question along with its correct
answer. The question asks for a list of entities associated with
a person, including temporal information.

• Your task is to generate a new question-answer pair by
rephrasing the original question in a more indirect way, incor-
porating a temporal marker based on one of the entities from
the original answer.

• The new question should reference an event or time associ-
ated with an entity from the original answer (e.g., "after he
left [Entity]", "before joining [Entity]", "following his tenure
at [Entity]"). Then ask for entities that are before or after that
temporal marker.

• The answer should be a subset of the original answer, including
only those entities that satisfy the new temporal conditions
specified in the question.

• The new question should not contain a time span, only the
temporal marker.

Output Format:
Provide the response in JSON format, adhering to the schema
below:
{"question": "<new question>",

"answers": {
"<entity_1>": "<years>",
"<entity_2>": "<years>", ... }}

Figure 5: Prompt to generate indirect temporal Q-A pairs.

which denotes Temporal Markers test the ability of the model to
reason and provide list-structured answers for different time slices
and ability of the model to decipher implicit temporal references
and perform temporal understanding respectively. We employ the
powerful LLMs GPT4o and using the prompts in Figure 5 (for TM)
and Figure 4 (for TS) we generate the new sets of questions. We
perform data filtering using the prompt shown in Figure 6, with a
powerful GPT4o model as it shown to correlate well with human
judgments [40] to validate the correctness of the newly generated
questions and answers.

Manual Evaluation: We also perform manual evaluation on
100 questions sampled in a stratified manner by asking annotators
to rate the question quality/usefulness and ground truth answer
completeness (guidelines in repository) of the generated questions
using Likert scale (1-5). The results are shown in Table 4 along
with agreement between annotators. The analysis helps validate
the quality of our data curation pipeline. This evaluation helps us
further filter down to questions that are of high quality. This results
in evaluation sets with TLQA-TS comprising 423 and TLQA-TM
comprising 460 questions in addition to the 1655 questions.

3.3 Corpus Creation for Open-Domain Setup

We release a corpus which is the latest Wikipedia dump (April
2024)2 to evaluate models on TLQA in an open-domain setup. We
employ dumpster-dip [23] to parse the Wikipedia dump and extract
2https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2

Prompt: Evaluate Generated Question-Answer Pairs

➤ System Message:

Objective:

• Determine if the generated question-answer pair is accurate,
using the original pair as the baseline for truth.

• Pay extra attention to ensure that the years in the generated
answer match the original answer.

Response Instructions:

• Respond with:
– ’1’ if the new question-answer pair is correct.
– ’0’ if the new question-answer pair is incorrect.

• Provide reasoning for your evaluation.
• Format the output as a JSON object.

Output Format:
Your output should be a JSON object structured as follows:
{"reasoning": <str, "Your reasoning for the
answer">,"is_correct": <int, 1 if the new

question-answer pair is correct,
0 if it is incorrect>}

Figure 6: Prompt used for ensuring the quality of automati-

cally generated QA pairs.

semi-structured data such as infoboxes from the articles. After
filtering out the articles without an infobox, we get a collection of
approximately 4.5 million articles. For each article, we save the
title, infobox, and summary ( ’lead’3 section of each article).

4 Experimental Setup

We evaluate several LLMs on TLQA (Mistral v0.2, Llama 3.1 8b
and GPT-4o-mini). Llama 3.1 underperforms when compared to
Mistral v0.2 and hence is not attached in this paper owing to space
constraints. However, Llama 3.1 8b results can be found in the repo.
We would like to highlight that an exhaustive evaluation of all LLMs
in the current landscape is not feasible.

4.1 LLM Evaluation Setups

We carry LLM evaluation in (1) Gold Evidence setup where, the
ground truth infobox is employed to get an upper bound for their
performance, (2) Closed book setup without external knowledge.
(3) Open-Domain setup where, we retrieve the relevant evidence
(infobox) from the Wikipedia collection (Section 3.3). We con-
sider two scenarios, one where the documents indexed contain
title, infobox, summaries (title.infobox-summary (T-I-S) setup) and
another where the documents contain only title and summaries
(title-summary (T-S) setup). In the T-S setup, a mapping between
Wikipedia titles and infoboxes is created once and used for lookup
during retrieval, to fetch the corresponding infoboxes for retrieved
titles.

3https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Lead_section
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Table 5: Results of Mistral v0.2 and gpt-4o-mini models on TLQA. The first three metrics evaluate list completeness, the last

two assess the temporal correctness (Temporal Overlap (TO) and Temporal Jaccard (TJ))

Model Precision Recall F1 TO TJ

Closed Book

Mistral v0.2 7b

few-shot 0.558 0.257 0.330 0.384 0.317
knn few-shot 0.532 0.310 0.366 0.435 0.360
Few-shot-cot 0.529 0.276 0.338 0.412 0.330
Auto COT 0.523 0.311 0.365 0.346 0.282
GPT 4o-mini

few-shot 0.625 0.451 0.501 0.595 0.533
knn few-shot 0.620 0.487 0.525 0.610 0.550
Few-shot-cot 0.645 0.459 0.513 0.652 0.578
Auto COT 0.524 0.384 0.420 0.546 0.481
Open Domain

Mistral v0.2 7b

BM-25 0.746 0.547 0.607 0.623 0.581
all-mini-lm-v2 0.572 0.380 0.430 0.414 0.366
mutli-qa-mpnet 0.552 0.380 0.441 0.436 0.375
GPT-4o-mini

BM-25 0.735 0.666 0.685 0.751 0.729
all-mini-lm-v2 0.621 0.528 0.551 0.627 0.578
multi-qa-mpnet 0.581 0.490 0.510 0.593 0.535
Golden Evidence

Mistral v0.2 7b

few-shot 0.918 0.770 0.818 0.747 0.715
knn few-shot 0.941 0.850 0.882 0.857 0.820
GPT-4o-mini

few-shot 0.916 0.917 0.911 0.950 0.937
knn few-shot 0.937 0.950 0.934 0.960 0.949

Hyperparameters: For all experiments, we use a temperature of
0.3 decided based on tuning on validation set.
Evaluation metrics:

Retrieval: Mean Reciprocal Rank (MRR) and Recall@k.
List Construction Metrics: To evaluate list construction per-
formance of LLM outputs, we apply the standard definitions of
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙 , and 𝐹1 by matching entities in the generated list
of answers and the ground truth. To match entities, we follow a
three stage pipeline, namely subsequence matching and also seman-
tic matching by employing BERT based tokenwise similarity.
Temporal Metrics: Formally, given the set of years covered by the
expected date ranges 𝑌expected and the set of years covered by the
generated date ranges 𝑌generated, we define Temporal Overlap as:

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 =
|𝑌expected∩𝑌generated |

|𝑌expected |
The Temporal Jaccard measures the similarity between the gen-

erated and expected date ranges. Unlike Temporal Overlap, Tem-
poral Jaccard penalizes the model for hallucinating years outside
the expected range. Formally, we define it as: 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
|𝑌expected∩𝑌generated |
|𝑌expected∪𝑌generated | We first parse and normalize the date ranges from
both the generated and expected answers. For each matched en-
tity, we represent the date ranges as set of years, which we further
use to calculate the Temporal Overlap Score and Temporal Jaccard
Similarity. We then average these scores across all matched entities.

5 Results

5.1 Performance of LLMs on TLQA

To answerRQ 1, we study the performance of Mistral v0.2 and GPT-
4o-mini in a closed book setting on TLQA as shown in Table 5 and
on TLQA-TS, TLQA-TM in Table 7. From results, we observe that
all models have lower listwise recall scores in a closed book setting
but have relatively higher precision. We analyzed the answers and
observed that this is primarily because the models generate correct
answers but incomplete answer lists. We posit that this is primarily
due to limitations of model parametric knowledge and additionally
instruction tuned models are more precise but however have lower
recall, as evidenced by the study [24]. While [24] focuses on free-
form answers, precision and recall for our work is measured for
lists, providing new insights for list construction abilities of LLMs.
Nevertheless, models fine-tuned to follow human instructions tend
to lose completeness in their answers.

With respect to temporal performance, both models generally
perform suboptimally on TLQA and TM, TS subsets. It can be ob-
served that the Time Overlap scores are consistently higher than the
Time Jaccard scores, indicating that while the models are not very
capable of identifying significant overlapping time periods, they
struggle even more with accurately bounding the time-intervals
(start and end periods). This is also evident in the results obtained
on TLQA-TS subset that requires temporal bounding abilities. This
discrepancy likely arises because the models can detect relevant
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Table 6: Performance on TLQA for different Retrieval approaches at k = 1, 3, and 10 on mistral v0.2.

Retrieval Setup Corpus

F1@k Temporal overlap@k Temporal Jaccard@k

k=1 k=3 k=10 k=1 k=3 k=10 k=1 k=3 k=10

all-mini-lm-v2 T-S 0.367 0.430 0.417 0.372 0.414 0.400 0.323 0.366 0.351
T-I-S 0.394 0.398 0.368 0.410 0.398 0.340 0.360 0.341 0.293

BM25 T-S 0.502 0.594 0.618 0.503 0.594 0.627 0.458 0.556 0.584
T-I-S 0.536 0.607 0.624 0.558 0.623 0.651 0.513 0.581 0.607

multi-qa-mpnet T-S 0.353 0.379 0.376 0.373 0.375 0.354 0.310 0.318 0.300
T-I-S 0.441 0.426 0.400 0.436 0.407 0.388 0.375 0.352 0.326

Figure 7: Performance of different retrieval settings over

the two Wikipedia corpora, T-S and T-I-S using MRR metric.

Dashed line is T-S, whereas complete line represents T-I-S.

Figure 8: Comparison of retrieval models (Recall)

time frames but have difficulty in precisely delineating the start and
end years, resulting in either overshooting (example: Table 8) or
undershooting the correct periods. We also observe that temporal
performance on TLQA-TM is the lowest, as the model is unable to
detect the implicit temporal reference made by the marker in the
question due to parametric memory limitations (example: Table 8).
Among different prompting methods, knn few-shot works best.

5.2 Open-Domain Results

Golden Evidence Setup Results: To ascertain the upper bound
of performance on TLQA and other subsets, we carry out experi-
ments using LLMs in golden evidence setting where the models are
provided with the correct evidence. We observe that this leads to
higher performance (Table 5, Table 7) as measured by list construc-
tion metrics (F1=0.934) and temporal metrics (0.960). Hence, better
tabular retrieval will lead to high LLM reasoning performance.
Retrieval Performance: To address RQ 2, we study the impact of
augmenting the query with additional evidence to determine if this
improves the model’s performance on TLQA. We first evaluate the
performance of the different retrieval models in open-domain setup
on the two Wikipedia corpora (T-S and T-I-S). The performance
of the different retrieval systems (MRR) is shown in Figure 7 and
comparison using Recall@k is shown in Figure 8

From the plot, we observe that sparse retrieval approaches like
BM25 outperform dense retrieval approaches on both T-S and T-
I-S corpora settings. We posit that this is due to the nature of
entity centric queries. Sciavolino et al. [36] demonstrate that dense
retrieval systems perform considerably worse than BM25 in simple
entity-centric questions due to popularity bias.
Retrieval Augmented Answer Generation: We also observe
the impact of retrieved documents in an open-domain setting on
downstream LLM reasoning, as shown in Table 5 for TLQA. We
observe that augmenting LLMs with retrieved documents in general
leads to performance gains in list construction and temporal met-
rics. We observe that retrieval performance directly translates to
answer generation performance [26], as BM25 retrieved documents
lead to significantly higher gains compared to documents from
dense retrieval. For instance, BM25 documents coupled with Mis-
tral v0.2 outperforms all-mini-lm retrieved documents by 45.11%

as measured by 𝐹1. The results in Table 5 for open-domain setting
are carried out with top-3 retrieved documents. We further vary
k=1,3,10 (number of retrieved documents) and study their impact
on downstream LLM based answer generation as shown in Table 6.
We observe that LLM reasoning using documents from sparse and
dense retrieval approaches, results in slight gains and saturated per-
formance respectively beyond k=3. Further, we observe that LLMs
are able to decipher implicit temporal references in TLQA-TMwhen
provided with the relevant infobox by mapping the marker to time
interval information. However, analysis on TLQA-TS reveals that
the temporal bound error persists.
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Figure 9: Comparison of F1 Score and Temporal Overlap for answer generation with golden evidence augmented with varying

numbers of distractors (k). The dashed line represents the score with golden evidence. Evaluation was conducted on Mistral v0.2

Table 7: Results for Temporal Markers and Time Intervals Across different setups. model: gpt-4o-mini.

Dataset Setup Precision Recall F1 TO TJ

TLQA-TM
Closed Book (KNN) 0.449 0.524 0.455 0.589 0.529

Open Book (BM25@3) 0.703 0.778 0.713 0.820 0.798
Golden Evidence 0.830 0.938 0.857 0.945 0.934

TLQA-TS
Closed Book (KNN) 0.631 0.485 0.523 0.703 0.589

Open Book (BM25@3) 0.739 0.656 0.670 0.837 0.719
Golden Evidence 0.892 0.801 0.823 0.963 0.846

Table 8: Example of incorrect and incomplete answer from TLQA-TM and TLQA-TS.

➤ Query (TLQA-TM): Which positions did Rob Nicholson hold after serving as Minister of National Defence?

Expected Answer Generated Answer

• Shadow Minister of Justice Shadow Attorney General of Canada:
2015-2019

• Minister of Foreign Affairs: 2015

• Minister of Foreign Affairs: 2015
• Minister of Justice and Attorney General of Canada:
2013-2015

• Minister of National Defence: 2013-2013

➤ Query (TLQA-TS): Which teams did David Beckham play for between 2000 and 2010?

• Manchester United F.C.: 2000-2003
• Real Madrid CF: 2003-2007
• England national football team: 2000-2009
• LA Galaxy: 2007-2010
• AC Milan (loan): 2009, 2010

• Real Madrid: 2003-2007
• LA Galaxy: 2007-2012
• England national football team: 2000-2009
• AC Milan (loan): 2009-2010

5.3 Effects of Distractors

To address RQ 3, we evaluate how different types of distractors im-
pact the performance of the golden evidence based LLM reasoning
setup. This would also provide insights into future directions for
improving retrieval. We use three different methods for selecting
distractors: random selection, retrieving the top 𝑘 infoboxes using

BM25, or using dense retrieval with all-mini-lm-v2 embeddings
with T-S corpora setup. We then append the golden evidence along
with these 𝑘 distractors as evidence for the LLM.

From Figure 9, it can be observed that temporal and list construc-
tion performance drops noticeably with the addition of even a single
distractor (𝑘 = 1), indicating that noise affects the model’s ability
to extract the correct information to answer the query. This effect
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Table 9: Example of refusal errors and incomplete answers.

➤ Query: List all teams Alan Kirby played to this day. Refusal Error

Expected Answer Generated Answer

• Aston Villa F.C.: 1996-1998, 1994-1996
• Johnville F.C. (Waterford): 1994
• Republic of Ireland under-21 national football team: 1998 . . .

I apologize, but I couldn’t find any information on a person named
Alan Kirby playing for any football teams. If you meant someone
else or provided incorrect information, please let me know and I’ll
be happy to help.

➤ Query: List all political positions Ulf Kristersson held to this day. Incomplete Answer Error

Expected Answer Generated Answer

• Prime Minister of Sweden: 2022-2024
• Leader of the Moderate Party: 2017-2024
• Leader of the Opposition: 2017-2022
• Minister for Social Security: 2010-2014
• Chairman of the Moderate Youth League: 1988-1992
• Member of the Riksdag: 2014-2024, 1991-2000

• Leader of the Moderate Party: 2017-2024
• Member of the Riksdag:2006-2021, 2022-2024

becomes more evident as we increase the number of distractors (𝑘).
This consistent performance degradation can be attributed to the
model’s capacity limitations; as more distractors are introduced, it
becomes difficult for the model to discern useful information from
the correct evidence. Hence, we observe that the model outputs
incorrect entities or is unable to output correct time periods due
to presence of distracting information. Further, we observe that
randomly choosing distractors leads to a less significant decrease in
performance compared to distractors retrieved using BM25 or dense
retrieval model. We posit that this maybe because the retrieved
distractors serve as hard negatives compared to random distractors,
rendering it difficult for the LLM to distinguish between golden
evidence and the distractors. These results contrast the phenome-
non observed recently [9], where the authors observe that adding
random noise to contexts improves performance of RAG systems.
5.4 Error Analysis

We perform a detailed error analysis of common errors made by
LLMs in our evaluation on the test sets. From Table 9, we observe
the case of refusal errors where the model is not able to generate an
answer in the question due to limitations of parametric knowledge.
LLMs are believed to encode world knowledge in their parameters
and are believed to perform approximate retrieval [20] when posed
with new queries. However, we observe that LLMs are unable to
provide an answer in some cases as discussed above, either due
to limitations in parametric knowledge or inability of the LLM
to perform approximate retrieval in closed book setting. We ob-
serve that in a retrieval augmented setting for LLMs the refusal
errors decrease when related evidence is present among retrieved
infoboxes.

In Table 9, we also observe incomplete answer errors and incor-
rect temporal bounds. We observe that the model only covers two
positions, “leader of moderate party" and “member of Riksdag" out
of 6 positions held by the individual in question. We posit that
incomplete answers could again be an artifact of limited knowledge
encoded in model parameters in a closed book setting. We also ob-
serve that in many scenarios where the LLM generates incomplete

answers, it is also an artifact of popularity bias as the LLM covers
popular organizations that are well known and less popular or rare
entities/organizational names are left out.

We also observe from Table 9 that the answer “Member of Riks-
dag" has wrong temporal bounds. We observe that LLM generated
time interval has undershooting errors where it predicts time period
as starting from 2006 when in actuality it was 2014 and similar
error for the end time period (2021 vs 2024). it also has an over-
shooting problemwhere the model predicts 2022 instead of 1991. We
observe the overshooting and undershooting issues for time intervals
in closed book and even in open-domain settings, demonstrating
that LLMs still lack at accurate temporal understanding.

We also perform error analysis on evaluation subsets TLQA-
TS and TLQA-TM as shown in Table 8. We observe from Table
8 that the LLM is unable to detect and reason about the implicit
temporal reference made by the temporal marker “after serving
as Minister of National Defense" in the question. This results in
the LLM generating positions held by “Rob Nicholson" prior to the
time period mentioned in the question. Due to incorrect temporal
understanding, it also results in missing a position held by this
person. We also observe a case of incorrect temporal bounds,
where the LLM fails to detect the bounds of the time spanmentioned
in the question and overshoots the time period for the “La Galaxy".

6 Conclusion

We introduce TLQA, an open-domain benchmark where the models
are expected to provide a list of possible answers with correspond-
ing time intervals. TLQA primarily tests the temporal understand-
ing and list construction abilities of models. We observe that LLMs
believed to encode world knowledge underperform by either pre-
dicting incomplete lists or suffer from temporal understanding
blindspots resulting in incorrect time intervals or temporal align-
ment. While we observe that RAG setup improves performance,
there exists scope for improvement of tabular retrieval and tempo-
ral understanding capabilities of LLMs, providing future research
directions.
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