
The Impact of Antipatterns on the
Change-Proneness of Java Systems

Master’s Thesis

Paulius Raila

The Impact of Antipatterns on the
Change-Proneness of Java Systems

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Paulius Raila
born in Vilnius, Lithuania

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

c© 2012 Paulius Raila

The Impact of Antipatterns on the
Change-Proneness of Java Systems

Author: Paulius Raila
Student id: 4121171
Email: paulius.raila@live.com

Abstract

Antipatterns are called poor solutions to design and/or implementation problems
which are claimed to make object oriented systems hard to maintain. On the one
hand, it has been shown that certain antipatterns negatively impact system compre-
hension, bug-proneness and change-proneness. On the other hand, previous studies
reported that classes infected by certain design or code defects can remain stable and
be even less change prone than other classes when changes are counted per lines of
code (LOC). An example of such a case is a God Class acting as a parser. Because
there are controversial results, more detailed investigations are needed. One limitation
of the existing studies is that they count the changes in classes based on the number of
file revisions or the number of changed lines, which, in our opinion, is not accurate.

In a recent study the authors analyzed a set of 12 antipatterns and demonstrated
their negative impact on the change-proneness of four Java systems. We replicated
a part of this study and extended it by performing an analysis based on fine-grained
source code changes (SCCs) performed on Java classes during the evolution of the
systems. Using SCCs extracted from the version control systems of 16 Java open-
source projects, we investigate: (1) the change-proneness of Java classes participating
in antipatterns, (2) change-proneness of Java classes affected by specific types of an-
tipatterns, and (3) the likelihood that certain types of change are performed in classes
affected by certain antipatterns.

Besides validating the recent findings with a larger data set and considering the
SCCs, our results show that: (1) the distribution of SCCs performed in classes af-
fected by antipatterns is statistically greater than the distribution of SCCs performed
in other classes, (2) there is an association between the number of antipatterns af-
fecting a class and number of SCCs performed in that class, (3) the classes partici-
pating in 3 antipatterns (e.g., ComplexClass, SpaghettiCode and SwissArmyKnife) are
more change-prone than classes affected by other antipatterns, and (4) certain types of
change are more likely to be performed in classes affected by certain antipatterns (e.g.,
API changes are likely to be performed if the class participates in the SwissArmyKnife,
ComplexClass or SpaghettiCode antipattern).

The results of our study are valuable for engineers. For example, software engi-
neers can evaluate the quality of a system when they know which antipatterns have a
negative impact on change-proneness. Moreover, they may want to avoid API changes
in publicly exposed classes and, therefore they should consider refactoring classes af-
fected by SwissArmyKnife, ComplexClass and SpaghettiCode antipatterns.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. M. Pinzger, Faculty EEMCS, TU Delft
Daily supervisor: Daniele Romano, Faculty EEMCS, TU Delft
Committee Member: Dr. Jan Hidders, Faculty EEMCS, TU Delft

ii

Preface

This is the result of my Master’s thesis project, which I performed at the Software Engi-
neering Research Group (SERG). I had an interesting opportunity to perform a study on the
quality of software applications. This gave me both a good insight into current researches
in the field of Software Engineering and contributes to my career as a software developer.
For the opportunity to perform such a study I want to thank several people, who made a
tremendous contribution.

During my master studies at TUDelft I enjoyed the courses tough by Martin Pinzger and
Andy Zaidman. Namely, Software Reengineering, Software Evolution, Software Architec-
ture. After that, I decided to write a literature study on the impact of design defects and their
socio-technical aspects. Martin leaded me though this study and helped to discover many
interesting topics for the master thesis. So, first of all I want to thank Martin and Andy for
teaching very interesting courses at TUDelft and additionally Martin for helping to write a
literature study, which was a good start for my thesis.

During my thesis I had a very good assistance from Daniele Romano. He provided
valuable ideas to investigate, answered technical questions, assisted in writing and perform-
ing analysis and was a nice person to work with. Therefore, he significantly contributed to
this work. Also together with Daniele Romano, Martin Pinzger and Foutse Khomh I have
published my first paper [54], which this thesis is based on.

Paulius Raila
Delft, the Netherlands

November 25, 2012

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Introduction . 1
1.2 Research Questions . 2
1.3 Results . 3
1.4 Structure . 3

2 Antipatterns 5
2.1 Concept . 5
2.2 Examples . 6
2.3 Application . 10

3 Related Work 13
3.1 Detection of design defects . 13
3.2 Repository mining . 19
3.3 The impact of design defects . 19
3.4 Overview . 27

4 Research Framework 29
4.1 Overview . 29
4.2 Versioning data importer . 29
4.3 Source Code Changes (SCC) . 31
4.4 Get release . 31
4.5 AntiPettern detector . 32
4.6 Data preparation . 33
4.7 Analysis . 34

v

CONTENTS

5 Analysis 35
5.1 Overview . 35
5.2 Investigation of RQ1 . 35
5.3 Investigation of RQ2 . 37
5.4 Investigation of RQ3 . 38

6 Project Selection 39
6.1 Overview . 39
6.2 Selection criteria . 39
6.3 Selected projects . 39

7 Results of analysis 43
7.1 Overview . 43
7.2 Results: RQ1 . 43
7.3 Results: RQ2 . 45
7.4 Results: RQ3 . 48
7.5 Manual Inspection . 49
7.6 Summary . 51

8 Discussion 53
8.1 Summary of the Results . 53
8.2 Implications of the Results . 54
8.3 Threats to validity . 56

9 Conclusions and Future work 57
9.1 Conclusions . 57
9.2 Future work . 58

Bibliography 59

A Decor rules 65

B Releases 69

vi

List of Figures

2.1 SpaghettiCode antipattern. The class org.argouml.uml.cognitive.critics.Init from
ArgoUML-0.10.1 release of ArgoUML. 8

2.2 SwissArmyKnife antipattern. The class org.argouml.uml.reveng.java.Modeller
from ArgoUML-0.10.1 release of ArgoUML. 9

2.3 Blob antipattern. The class org.mozilla.javascript.Parser from rhino1 6R3 re-
lease of Rhino. 10

2.4 Classification of Maintainability issues. Code smells are outlined. [37] 12

3.1 (a) Decor method compared to related work. (Boxes are steps and arrows con-
nect the inputs and outputs of each step.) (b) DETEX detection technique. (The
steps, inputs, and outputs in bold, italics, and underlined are specific to DETEX
compared with DECOR.) [10] . 14

3.2 Schematic overview of the EvAn.[49] . 16
3.3 Architecture of code smell browser. [62] . 17

4.1 Overview of the source code fine-grained changes and antipatterns extraction
process [53]. 30

4.2 SCC, file revision and lines modified count of the same change. 31

7.1 Complex antipattern evolution. the class *.xerces.StandardParserConfiguration
from the Xerces system. 50

7.2 SpaghettiCode antipattern evolution. The class *.uml.cognitive.critics.Init from
the ArgoUML releases. 51

vii

Chapter 1

Introduction

1.1 Introduction

Software maintenance is the most expensive stage of software development processes [4].
Indeed, over the past two decades, maintenance costs have grown to more than 50% and up
to 90% of the overall costs of software systems [12].

To help reduce the cost of maintenance, researchers have proposed several approaches
to ease program comprehension, decrease change- and bug-proneness. These approaches
include source code metrics (e.g., [53, 41, 6]), heuristics like usage of design patterns, code
smells and antipatterns to assess the design of a software system (e.g., [51, 31, 61]). For
instance, Romano et al. [53] showed that the interface usage cohesion metric (IUC) is
correlated with the number of source code changes in Java interfaces. Cartwright et. al [6]
found that defect density in the classes which use inheritance relations (measured by DIT
and NOC metrics [7]) is significantly higher.

Recently, many researchers have focused their effort on analyzing the impact of antipat-
terns and code smells on software units (e.g., [31]). Antipatterns [5] are “poor” solutions to
design and implementation problems. Many researchers do not distinguish antipatterns and
code smells or bad smells, that are well described in Martin Fowler’s book [40]. Antipat-
terns are often contrasted to design patterns [21] which are “good” solutions to recurring
design problems. However, there exist studies that show opposing empirical evidence. De-
sign patterns do not always impact the maintenance positively [28], [65], [52], [19]. Simi-
larly, antipatterns do not necessary bring issues to the code. Current studies on the impact
of antipatterns focus on code comprehension, change-proneness, bug-proneness and defect
evolution.

Code comprehension is typically measured by performing an experiment where partic-
ipants have to implement a functionality in different versions of classes (infected and not
infected by antipatterns) [27], [26], [3], [1]. The performance of participants’ works are
typically measured in terms of time and quality of proposed modifications. The studies [27]
[26], [3] showed that groups of participants who worked on the systems with refactored
GodClasses were both faster and results were of a better quality. Similarly, Abbes et al. [1]
showed that participants performed better on a system without antipatterns than on the one

1

1. INTRODUCTION

infected by Blob and SpaghettiCode.
Existing studies on change-proneness and fault-proneness [30], [48], [17], [49] show

that antipatterns and code smells infected classes are more change-prone and bug-prone
than other classes. A number of such studies are presented in the Chapter 3, Section 3.3.

Because of the diversity and large number of antipatterns, support is needed for soft-
ware engineers to identify the risky antipatterns that lead to errors and that increase devel-
opment and maintenance costs. For this we need to obtain a deeper understanding of the
change-proneness of antipatterns and the types of changes occurring in classes effected by
antipatterns. Providing this insight is the main objective of this study.

In this thesis we investigate the extent to which antipatterns can be used as indicators of
changes in Java classes. The goal of this study is to investigate which antipattern is more
likely to lead to changes and which types of changes are likely to appear in classes affected
by certain antipatterns. Differently to existing studies (i.e., [30, 31]), our study proposes
an approach based on fine-grained source code changes (SCCs) [14, 20] mined from the
version control systems. Previous studies counted changes based on the class file revisions
or the number of changed lines of code in each revision. We argue that, our approach is
more accurate [14, 20]. It allows us to identify and count about 50 different types of code
changes, many of which can occur on a single line. We also use SCCs to analyze the types
of changes performed in classes affected by a particular antipattern. Moreover, we take into
account the significance of the change types [13] and we filter out irrelevant change types
(i.e., changes to comments and copyrights), that account for more than 10% of all changes
in our dataset.

1.2 Research Questions

Using the fine-grained source code changes (SCCs) and antipatterns extracted from 16 open-
source Java systems, we address the following research questions:

• RQ1: Are Java classes affected by antipatterns more change-prone than classes not
affected by any antipattern? This research question is aimed at replicating the previ-
ous study [31], but this time considering fine-grained source code changes (SCCs).
Additionally, we used another distribution test and performed correlation analysis
(more in the Chapter 4). That allows us to show more evidence about the relation
between antipatterns and change-proneness.

• RQ2: Are Java classes affected by certain antipatterns more change-prone than classes
affected by other antipatterns - i.e., does the kind of antipattern impact change-proneness?
The results from this research question are meant to assist software engineers in iden-
tifying the more change-prone antipatterns. Defect detection tools could benefit from
such information and give better suggestion for refactoring.

• RQ3: Are particular types of changes more likely to be performed in Java classes
affected by certain antipatterns? The results of this question can assist software en-
gineers in prioritizing antipatterns that need to be resolved in order to prevent certain

2

Results

types of changes in a system. For example, changes in the method declaration of a
class exposing a public API.

1.3 Results

Our study has confirmed the results of [31], counting SCCs as code changes and ignoring
irrelevant changes (e.g., changes to comments and copyrights). Additionally, we observed
that:

• The number of SCCs performed in classes affected by antipatterns is statistically
greater than the number of SCCs performed in other classes.

• There is an association between the number of antipatterns affecting a class and num-
ber of SCCs performed in that class.

• Classes affected by ComplexClass, SpaghettiCode, and SwissArmyKnife are more
change-prone than classes affected by other antipatterns.

• Changes in APIs are more likely to appear in classes affected by the ComplexClass,
SpaghettiCode, and SwissArmyKnife; methods are more likely to be added/deleted
in classes affected by ComplexClass and SpaghettiCode; changes in executable state-
ments are likely in AntiSingleton, ComplexClass, SpaghettiCode, and SwissArmyKnife;
changes in conditional statements and else-parts are more likely in classes affected by
SpaghettiCode.

These findings suggest that software engineers should take into account the negative
impact of antipatterns. For example, during the code review meetings such code fragments
can be discussed. Besides that, they should consider detecting and resolving instances of
certain antipatterns to prevent certain types of changes. For instance, they should resolve
instances of ComplexClass, SpaghettiCode and SwissArmyKnife antipatterns to prevent fre-
quent changes in APIs (declarations of classes, signatures of methods). To prevent changes
in the condition expressions and else-parts they should resolve instances of SpaghettiCode
antipattern as it might lead to bugs and complex unit tests. Likewise, to avoid method ad-
d/remove changes, ComplexClass and SpaghettiCode antipatterns should be avoided. And
to prevent from the statement changes, software engineers should consider refactoring An-
tiSingleton, SwissArmyKnife, ComplexClass and SpaghettiCode antipatterns.

1.4 Structure

In the next chapter (Chapter 2), the concept of antipatterns is introduced and a couple of ex-
amples are given. After that (Chapter 3), we describe related work and concepts, including
studies on the tools used for detecting design defects and the impact of those defects. The
setup of the study and statistical analysis are explained in the Chapters 4, 5. The results for
research questions RQ1, RQ2, RQ3 are presented in the Chapter 6. Finally, we discuss the
results, threads to validity (Chapter 8) and conclude our study (Chapter 9).

3

Chapter 2

Antipatterns

This chapter introduces the concept of design defects called antipatterns, code smells and
related concepts. Additionally, we show that antipatterns can be identified and investigated
during code review sessions, which are common software engineering practices. One of
the purposes of such sessions is to maintain a high quality code by identifying and, later,
refactoring the code which is hard to maintain.

2.1 Concept

According to Brown [5] antipatterns are repeated bad practices in software industry that
initially appear to be beneficial, but eventually bring issues. He presented 40 antipatterns
falling into 3 categories: software architectures, software development and software project
management. 14 of antipatterns belong to the software development group. Only a subset of
those is being investigated in this thesis. Antipatterns are generally introduced in software
systems by the software engineers lacking the adequate knowledge and-or experience in
solving a particular problem or having misapplied design patterns. Coplien [8] described
an antipattern as “something that looks like a good idea, but which back-fires badly when
applied”.

Similar concepts to antipatterns are ”bad smells” or ”code smells”, which were intro-
duced by Kent Beck and gained more popularity after Martin Fowler wrote a a book about
refactoring [40]. 22 bad code smells were shown and techniques to remove them (refac-
toring) were introduced. Later on, a study on classifying those code smells into categories
appeared [36]. The purpose was to increase the comprehension of smells. The following 7
categories were introduced:

• Bloaters. Structures of the code that tends to grow in time. Eventually, they be-
come too large to be effectively maintained. The examples are LongMethod, Large-
Class code smells. LongMethod and LargeClass has too much code contained within
method/class that it is hard to comprehend and reuse such a code.

• Object-orientation abusers. Object oriented (OO) design possibilities are not ex-
ploited. The examples are SwitchStatement, ParallelInheritenceHierarchies code smells.

5

2. ANTIPATTERNS

According to the Fowler [40] the only good place for the switch statement is dur-
ing the object initiation. Other situations, where this smell is used suggest improper
OO design. ParallelInheritenceHierarchies indicates the inheritence structures which
evolves parallel at the same time.

• Change preventer. Those code smells prevent or hinder the futher development of the
code and violate the rule suggested by Beck and Fowler [40] that changes and classes
should have a 1:1 relationship. It means that if there is a change in functionality it
is preferred that it would effect a single class. DivergentChange and ShotgunSurgery
smells belong to this group. DivergentChange indicates a single class that is modi-
fied multiple times during different types of changes. Contrary, ShotgunSurgery is a
situation when many classes have to be modified on a single change.

• Dispensables. This group of smells represents unnecessary code structures, which
can be removed from the code. Examples are LazyClass, DataClass, DublicateCode.
LazyClass is a class that has little or no functionality. Similarly, DataClass is a class
only holding the data and not performing any operations on it.

• Encapsulators. The code smells in this group concerns data communication mecha-
nisms and encapsulation. There are only two smells: MessageChain and MiddleMan.
When the class only delegates operations to other classes and does not perform any
logic, then it suffers from MiddleMan code smell. Let’s say class A wants to call
class B, but doesn’t have a direct reference to it. Instead it calls class C, which then
calls B. If C performs only this kind of operations, then it is a MiddleMan smell. The
MessageChain code smell occurs when there is a long method invocation chain. For
example, a class A wants data from the class D. It has to call class B (there is a ref-
erence) to get an object C, then on that object class A calls class D, and finally class
A calls a method to get some data on the class D. Basically, MiddleMan class could
solve MessageChain code smell.

• Couplers. The code blocks, belonging to this group have a high coupling. For exam-
ple, FeatureEnvy code smell is a method, having more relations to other classes than
to the one it belongs to.

• Others. Those code smells are not classified anywhere else.

On one hand, there exist classifications of defects where code smells and antipatterns
fall into different categories [66]. Smells are treated as code level defects and antipatterns
as design level defects. On the other hand, the defects like GodClass are often referred both
as a code smell and antipattern. Our study also mixes code smells and antipatterns and,
therefore, we don’t make a distinction.

2.2 Examples

This section presents three antipatterns, two of which we found later in the study (see more
in the Chapter 7) to impact the change-proneness of the systems the most: Blob, Spaghetti-

6

Examples

Code and SwissArmyKnife.

2.2.1 SpaghettiCode

Spaghetti is a classical antipattern, since it existed from the invention of the programming
languages [5]. Non-object programming languages are more prone to this antipattern. Large
methods, global variables are the typical signs of it’s presence. However, one can introduce
this defect also in OO languages, when the concepts of OO are not used. Below a number
of symptoms and consequences of SpaghettiCode antipattern [5] are provided:

• Methods are large and, therefore, hard to reuse.

• Objects and methods are process oriented. Often methods have no parameters and
objects are named as processes.

• There exist little relations between the objects.

• A frequent form of code reuse in infected classes is code cloning.

• Inheritance is not used.

• Software quickly reaches a point where the effort of maintaining existing code is
greater than the cost of developing a new solution.

We took an example of SpaghettiCode from the ArgoUML system - Init class from the
ArgoUML-0.10.1 release. As it is shown in the Figure 2.1, the class exhibits the following
properties, which are typical for this antipattern:

• Inheritance is not used.

• The class has 86 attributes and most of them are static and global.

• The Init() method is the only method and it has 169 lines of code and has no parame-
ters.

• Both class and method is named with a process name (Init).

7

2. ANTIPATTERNS

Figure 2.1: SpaghettiCode antipattern. The class org.argouml.uml.cognitive.critics.Init
from ArgoUML-0.10.1 release of ArgoUML.

2.2.2 SwissArmyKnife

Another popular antipattern is the SwissArmyKnife (also known as KitchenSink). The de-
signer of a class affected by this antipattern tries to solve different type of issues. The
class has a number of responsibilities, provided by a number of interfaces. SwissArmyKnife
are relevant in commercial software interfaces, where vendors are attempting to make their
products applicable to all possible applications [5]. The antipattern is difficult to maintain
and document. Developers find it hard to comprehend a class which has multiple responsi-
bilities. However, we haven’t found any empirical evidence to support such claim.

We took an example of SwissArmyKnife from the ArgoUML system - Modeller class
from the ArgoUML-0.10.1 release. As it is shown in the Figure 2.2 the class exhibits the
following properties, which are typical for this antipattern:

• The class is not cohesive. It implements 16 interfaces and inherits functionality from
1 class.

• The class is too large. It has 2669 lines of code, 32 attributes and 122 methods.

8

Examples

Figure 2.2: SwissArmyKnife antipattern. The class org.argouml.uml.reveng.java.Modeller
from ArgoUML-0.10.1 release of ArgoUML.

2.2.3 Blob

Another popular antipattern is a Blob (also known as GodClass). It is used in the designs
where one class monopolizes the processing, and other classes primarily encapsulate data.
The class is composed out of the main complex controller class surrounded by data classes.
Such classes are considered of a procedural design. However, Blob can also be implemented
using OO languages [5].

Below are provided a number of symptoms and consequences of Blob antipattern [5]:

• Blob is a single class with a large number of attributes/operations.

• There is an overall lack of cohesiveness of the attributes and operations.

• The antipattern has many associations to data classes, which hold data and do not
perform any operations.

• The Blob does not use a proper OO design. It is very centralized and, usually, does
not use inheritance.

9

2. ANTIPATTERNS

• The Blob class is hard to reuse and test because of the complexity. Additionally, the
complexity of the class tends to grow in time.

• It can get hard to load Blob class into memory due to the huge size.

We took an example of Blob from the Rhino - Parser class from the rhino1 6R3 release.
As it is shown in the Figure 2.3, the class is large in terms of LOC, NA and NM. It also holds
two data classes (CompilerEnvirons, ScriptOrFnNode). More than 90% of their methods
are just getters/setters or overrides the standart functionality of the object class (toString,
clone, equals, finalize, hashCode). Therefore, the class is treated as a Blob antipattern.

Figure 2.3: Blob antipattern. The class org.mozilla.javascript.Parser from rhino1 6R3 re-
lease of Rhino.

2.3 Application

One of the existing applications of antipatterns is code review sessions where software
engineers in groups or individually check each others’ code. Mäntylä et al. [38] spotted
a significant importance of software maintainability issues, while observing code review
sessions. During his research 75% of defects identified in the code review sessions were not
related to a functionality but to the code evolution. This finding confirmed an opinion of
Siy et al. [58], that the biggest part of defects found in code reviews are code evolvability
issues, which adversely affect the code maintenance.

10

Application

To come up with such results the author looked both into the industrial and the code
written by student. A quick overview of the experiments is presented in the Figure 2.1:

Industrial Reviews Student Reviews
LOC reviewed per session 100-5000 100-300
N of reviews 9 23
Domain Engineering Questionnaire data analysis
QA-method prior to code review Functional or automated testing JUnit testing
Individuals (reviewers) Industrial developers Students
Review instructions Find problems in the code

Checklists (existed but mainly
not used)

Find and classify defects as
functionality, evolvability, or
other Checklists (60% had uti-
lized checklists in individual
preparation)

N of reviewers 1-4 + author of code 6-7 + author of code
Data collection method Observation of reviews Submitted defects lists and

source code

Table 2.1: Code review settings of the experiments. [38]

In general, the research showed three types of code review findings:

• Functional Defects constitute 13-21% of all defects.

• Evolutional defects constitute 71-77% of all defects.

• Others are false positives.

Evolutional defects found by the code reviews were further classified by Mäntylä into Doc-
umentation, Visual Representation and Structure. The last category includes code smells
organized into categories. The full organization structure is presented in the Figure 2.4:

11

2. ANTIPATTERNS

Figure 2.4: Classification of Maintainability issues. Code smells are outlined. [37]

About 50% of all the maintenance issues felt into Structure category and, therefore, are
treated as code smells. To sum it up, we can see that code smells constitute a big part of
code review findings at least for some systems.

First, this chapter showed that the concept of antipatterns is not completely clear and,
therefore, many researchers use it with a different meaning. Second, antipatterns can be
detected during code reviews. The next chapter will introduce the techniques and tools for
detecting antipatterns from the source code.

12

Chapter 3

Related Work

This chapter overviews the existing studies on antipattern detection techniques, the impact
of antipatterns on software maintainability and introduces the concept of RM (Repository
Mining). The goal is to motivate our choice for the antipattern detection tool, introduce the
related concepts similar studies.

3.1 Detection of design defects

While initially antipatterns were described in a textual form (see the Chapter 2), there were
no strict rules for identifying them and a manual investigation was preferred. However,
it is not an efficient approach, especially for the large scale systems. Therefore, many
techniques and tools were introduced to assist software engineers and researchers in this
process. This section presents four tools widely used in design and code defect detection:
DECOR, JDeodorant, Evan, JCosmo and an overview of the available techniques. They are
based on metric and meta-model detection techniques.

Some approaches for complex software analysis use visualization [11, 57, 10]. Al-
though visualization is sometimes considered as an interesting compromise between fully
automatic detection techniques, which are efficient but loose track of the context, and man-
ual inspections, which are slow and subjective [33], visualization requires human expertise
and is thus time-consuming. Sometimes, visualization techniques are used to present the re-
sults of automatic detection approaches [34, 63]. However, we chose not to describe those
tools in details as they are not suitable candidates for this study.

3.1.1 DECOR

First, we start by presenting the technique we encountered most frequently during the liter-
ature study and chose to use for our study. Noha et al. [43] presented a study contributing to
three aspects: it presented a novel method, called DECOR to detect code smells and antipat-
terns, first, a detection technique based on DECOR, DETEX, second, and the evaluation of
DETEX on open-source projects (XERCES, QuickUML, PMD, NUTCH, Lucene, Log4J,
GanttProject, Azureus, ArgoUML) in terms of precision and recall, third.
DECOR is composed out of 5 steps:

13

3. RELATED WORK

1. Description Analysis. Concepts are gathered from the descriptions in the literature to
a reusable concept vocabulary.

2. Specification. Concepts gathered in step 1 are combined to form detection rules for
smells.

3. Processing. The Specifications are translated into algorithms.

4. Detection. Potential smells on a given code are identified.

5. Validation. The Potential smells are manually verified.

DETEX uses the domain specific language (DSL) to create card rules for smells. From
the cards smell detection algorithms are generated. Additional information about the code
generation part is also available in [45]. A full mapping of DETEX and DECOR steps is
visible in the Figure 3.1:

Figure 3.1: (a) Decor method compared to related work. (Boxes are steps and arrows
connect the inputs and outputs of each step.) (b) DETEX detection technique. (The steps,
inputs, and outputs in bold, italics, and underlined are specific to DETEX compared with
DECOR.) [10]

Card rules are composed out of a list of properties, which can be either a code metric
or a relation with other rules, a combination of other properties or an operator (intersection,
union, etc.). A property can be:

• Measurable. The property is expressed by a numerical or an ordinal value for a spe-
cific metric. Full set of ordinal values is composed of: very high, high, medium, low,
very low.

• Lexical. The property provides a rule for a class and properties/methods names.

14

Detection of design defects

• Structural. The property is related to the structure of classes, interfaces, methods,
fields, etc. For example, NO POLYMORPHISM checks whether a class uses poly-
morphism.

An example of a rule card for the Spaghetti Code in the listing 3.1.

Listing 3.1: Rule card of the spaghetti code. [10]

1 RULE CARD : SpaghettiCode {
2 RULE : SpaghettiCode { INTER NoInheritanceClassGlobalVariable
3 LongMethodMethodNoParameter };
4 RULE : LongMethodMethodNoParameter { INTER LongMethod MethodNoParameter };
5 RULE : LongMethod { (METRIC: METHOD LOC, VERY HIGH, 0) };
6 RULE : MethodNoParameter { (METRIC: NOParam, INF, 5, 0) };
7 RULE : NoInheritanceClassGlobalVariable { INTER NoInheritance ClassGlobalVariable };
8 RULE : NoInheritance { (METRIC: DIT, INF EQ, 2, 0) };
9 RULE : ClassGlobalVariable { (STRUCT: GLOBAL VARIABLE, 1) };

10 };

The evaluation of DETEX showed that generated detection algorithms has a recall of
100% and the precision varied depending on the system and antipattern. For instance, the
highest precision was archived for the Blob. It varied from 67% to 100%, while the lowest
one was measured for the SwissArmyKnife, varying from 11% to 42%. Furthermore, the
algorithms were quit fast. For the chosen systems the most costly analysis was for a Blob
that took several seconds. We chose to use DETEX for our experiment. More details are
provided in the Section 4.5.

3.1.2 EvAn

Another metric based detection tool EvolutionAnalyzer (EvAn) was developed by Olbrich
et al. [49]. The tool is made to extract code smells from Java code in SVN repositories.
After the code is extracted, a meta-model, containing code metrics and defect information
for a number of revisions is stored into the database. Finally, the stored data is analyzed and
smells are identified using heuristic rules. Although it works similar to other metric based
tools, it has a built in defect mapper which allowed the authors to investigate the impact of
code smells on fault-proneness of the system. The overview of the system architecture is
presented in the Figure 3.2. More information about the study is provided in the Section
3.3. The paper, however, does not provide any evaluation of the tool.

15

3. RELATED WORK

Figure 3.2: Schematic overview of the EvAn.[49]

3.1.3 jCosmo

Van Emden et al. [62] presented a prototype version of the tool jCosmo to detect code
smells using the source code model together with visualization. Each code smell exposes a
number of smell aspects, which are used to identify it. The authors pointed out two types of
such code aspects:

• Primitive smell aspects. They can be observed directly from the code (e.g., A switch
statement).

• Derived smell aspects. Those are inferred from other aspects (e.g., A class doesn’t
use inherited methods).

The detection technique used by jCosmo works as follows. First, the tool parses all
interesting entities and inspects them for primitive smell aspects. The information is stored
into the repository. Finally, jCosmo infers derived smell aspects from the repository. This
technique is illustrated in the Figure 3.3.

According to the authors, people who inspect the code need to know which parts of the
system are affected by the smells and, therefore, they have introduced visual views. Views

16

Detection of design defects

Figure 3.3: Architecture of code smell browser. [62]

represent code structure (packages, classes, interfaces, methods) and code smells, attached
to particular code elements in trees.

The tool was evaluated on a research oriented CharToon system, which helps to develop
facial expression animations. Although no detailed evaluations were performed, the main-
tainers of CharToons, found the results from jCosmo useful for conformance checking and
refactoring support.

3.1.4 jDeodorant

Another non-metric based tool we came across is JDeodorant, a plug-in for the Eclipse IDE.
Based on the entity meta-model, it identifies bad design smells, and removes them by ap-
plying appropriate refactoring. Currently the tool works with four bad smells: FeatureEnvy,
TypeChecking (SwitchStatement according to Martin Fowler), LongMethod and GodClass.
There are several researches concerning this tool. We will briefly describe three of them.

First, a study [15] presents how JDeodorant deals with GodClasses. The idea is the
following. When a class does too much, a new class can be extracted from it, by performing
Extract Class refactoring. To do so, however, we have to decide which functionality is
less related to the class. Firstly, a set of candidate classes for refactoring is calculated by
a hierarchical agglomerative clustering algorithm. Methods and attributes of the class are
treated as entities and at the beginning they belong to different clusters. At each algorithm
step closest clusters are merged. The closeness is determined by how similar entity sets,
which contains all the members of classes that use or are used by the entity in question,
of two entities are. Secondly, a user is suggested to perform a number of Extract-Class
refactoring on each class. Experts confirmed the effectiveness of the tool after evaluating
it on open-source JHotDraw system. They agreed they would perform 56% of suggested
refactoring and even confirmed that in some cases they wouldn’t have spotted a possible
refactoring themselves.

Second, a research [39] was done on FeatureEnvy bad smells. The study showed how
JDeodorant recognizes FeatureEnvy smells and aids to re-factor them. The tool employs
the ASTParser of Eclipse Java Development Tools (JTD). Based on the similar technique
as for the GodClasses removal tool suggests a new class for a method, based on the relation
with classes. The evaluation has been conducted on two well-known refactoring examples,

17

3. RELATED WORK

Video Store [40] and Lan-simulator [55]. The results showed a high accuracy: 6 out of 6
and 7 out of 8 FeatureEnvy smells were successfully identified.

Finally, Tsantalis et al. [47] showed that JDeodorant is capable of identifying Type-
Checking (SwitchStatement according to Martin Fowler) code smells. AST analysis allows
the tool to suggest a corresponding refactoring, Replace Type Code with State/Strategy or
Replace Conditional with Polymorphism. However, the method proposes the first refactor-
ing whenever it finds a ”code-like” attribute on which conditional statements are executed,
which doesn’t conform to Fowlers opinion.

3.1.5 Other Tools

In general, we presented two main approaches to detect code smells: metric and meta-model
based. There were also attempts to optimize current approaches by using domain specific
information or the history of a system.

In the study [9] change history of the classes was used to filter out code smells which
are relatively stable. As a metaphor human diseases were compared with the code smells.
Some of diseases are present when a person is born, but if the organism is accustomed to
them and they make no danger to one’s health, we can ignore them and even not treat as
diseases. The same holds for the code smells. For example, if we have a generated smelly
code, which we are aware of and it doesn’t need to be changed, we may not treat this code
as a code smell. The idea of harmless code smells is also supported by a number of studies
found that certain code smells may not adversely influence the change-proneness of code
[59, 49].

Another study [67] showed that metric based rules for code smells detection can be ad-
justed for the domain to increase accuracy. The group of specialists evaluated the results
from the CodeWizard tool applied on the certain system and suggested how the thresholds
values for metrics can be adjusted. After the adjustment, the accuracy of code smell detec-
tion has increased. Bayesian belief networks can also be used [32] to assist metric based
rule approach.

Although most of the section was focused on presenting metric based techniques, a number
of tools were skipped. Examples are Incode1, CodeWizard [68], iPlasma2, inFussion3. For
example, InCode is an eclipse plug-in system, which assists developers by pointing out code
smells and explaining them. More information about these tools are available in [16].

For our study we chose a metric based detection tool - DECOR as it showed a high
precision and recall, works well with Java source code, has a flexible rule engine and a
unique semantic rule detector.

1http://www.intooitus.com/products/inCode.htm
2http://loose.upt.ro/iplasma/index.html
3http://www.intooitus.com/products/infusion.htm

18

Repository mining

3.2 Repository mining

Mining Software Repository (MSR) or just Repository Mining (RM) in our context refers
to the investigation technique based on the software repositories. Repositories include code
version control systems (e.g., SVN, CVS), issue tracking systems (e.g., Bugzilla), or com-
munication channel archives (e.g., skype logs, email). A literature survey, showing a taxon-
omy of known approaches on MSR is presented by Huzefa et al. [29].

Such data sources usually exist through the life-circle of a software system and, there-
fore, thousands of records can be found. Including source code commits (date, user, code,
comments, etc), bugs (severity, date, component, etc).

In our study, we used Evolizer with built-in repository miner, which supports CVS, SVN
an GIT repositories and extract the information into database (see the Chapter 4).

3.3 The impact of design defects

This section presents the papers concerning the impact of design defects. Beck and Fowler
[40] treated them as code illnesses that should be healed with appropriate refactoring. How-
ever, there is a lack of empirical evidence to support opinions about the impact of design
defects. We, therefore, present papers, which tried to present such evidence. We discovered
two main types of impacts: code evolution and code comprehension.

The first group contains design defect evolution and impact on change-proneness and
fault-proneness of code. Most works use RM as a primary method for the code evolution
analysis. Furthermore, bug tracking systems are combined with RM to map fault fixes and
commits. As a result, fault-proneness can be evaluated.

Code comprehension impact studies try to answer how easy is it to understand the code
containing the smells. Easier understandable code leads to less costly software changes and,
therefore, is preferred in code maintenance.

3.3.1 Code Evolution

Code evolution related studies investigate how the code changes and identifies relations
between code smells and such changes. First, we present the works about the code smell
evolution. They try to answer whether a presence of code smells influences the appearance
of the new ones. Second, we show how change-proneness and fault-proneness of the code
is impacted by smells.

Code Smell Evolution

We found two papers focusing purely on the evolution of code smells. Additionally, there
is one paper concerning both code smell evolution and the change-proneness.

Evolutional Trends The first one [64] looked deeper into the evolution of GodClasses.
Source code repositories were mined from Eclipse and the Xerces open-source Java sys-

19

3. RELATED WORK

tems. To identify GodClasses a Bayesian belief network [18] was applied. For each class a
probability of being a GodClass was calculated based on the following measures:

• Size (number of methods and attributes)

• Cohesion (using LCOM5 [25])

• Number of associated data classes

• Lexical analysis of a class and it’s method names

Based on how these probabilities changes the evolution trends were created and clas-
sified into 7 categories (Constant, Sharp Improvement, Gradual Improvements, Temporary
Badness, Temporary Relief, Sharp Degradation, and Gradual Degradation). Having all the
required values, the author showed how often each evolution trend occurs in each project.

One of the interesting findings was that the largest group in both projects appeared to be
the constant evolutionary trend. Most of the time godliness of the classes remained stable.
Also the ratio of GodClasses compared to the normal classes remained more or less stable.
Additionally, the Xerces primary developer was asked why the particular GodClasses were
used. He mentioned that the reasons of those smells lies in the complexity of problems
they deal with. To get rid of the doubt that the code containing GodClasses is poorly im-
plemented the authors decided to investigate whether design patterns were used as it can
indicate the quality of code. Interestingly, it was revealed that 82% of GodClasses were
involved in design patterns.

As a conclusion it is stated that, although a smell is considered as a bad code, there are
many cases when they cannot be improved and they remain relatively untouched. As an
example a parser class is given which on one hand, has a complex logic, but on the other
hand, is tightly coupled and hard to decompose.

Counting the Smells The second work concerning the evolution of the code smells is
written by Chatzigeorgiou et al. [2]. He investigated how other code smells change over
time. Namely, LongMethod, FeatureEnvy and StateChecking smells were mined from
repositories and captured by the jDeodorant tool. As a source code input for the tool, two
open-source Java systems, JFlex and JFreeChart were chosen. The authors measured how
the number of each bad smell evolves through software revisions. A number of important
results are presented below:

• The number of code smells increases over time. Authors think that this might be spe-
cific for the open-source systems, since they are not usually involved in a systematic
preventive maintenance.

• The majority of code smells (for LongMethod in JFlex even 89,9%) persist from their
appearance to the latest version of a system.

• A large number of code smells (59.59% for LongMethod in JFreeChart) were intro-
duced during the initial design of a particular component.

20

The impact of design defects

• In the vast majority of the cases where code smells were removed, targeted refactoring
activities were not the reasons for this.

Contrary to the previous work, from the first glance it may seem that this time re-
searchers have discovered that the amount of code smells increase over time. However,
one can miss an essential detail here.The total size of the projects also increases over time.
Therefore, in the previous work a relative number of classes involved in the code smells was
not taken into account.

The idea that code smells do increase over time was once more refuted by Olbrich et al.
[48]. Besides change-proneness the authors also looked into the evolution of the smells.
To be more precise, they tried to answer the following questions: Does the number of code
smell increase over time? Does the fraction of components having code smells increase
over time? The results showed the following:

• The total number of code smells did not increase steadily. Activities such as refactor-
ing can influence them.

• The fraction of components having the code smells does not necessary increase over
time. Reasons could be the same as to the previous point.

Change-proneness and Fault-proneness

A common way to measure the badness of a smell is to check whether the code containing
the smell is related to more changes and faults than other code. We found four papers
falling in this sub sub-section. Those works have analysed the same aspect as our study
(change-proneness).

Change-proneness of 29 code smells A number of code smells were investigated by
Khomh et al. [30]. He looked how code smells impacts change-proneness of two open-
source projects, Eclipse and Azure. DECOR tool was chosen to identify 29 different code
smells [30] from the code repositories. Identification was based on the rules combined from
code metrics (McCabe complexity, Brian Henderson-Sellers cohesion metric LCOM5, etc.)
and threshold values.

First, the authors tested whether there is a significant difference in the proportion of
classes exhibiting at least one / none changes among the classes participating and not partic-
ipating in code smells. The Fisher exact test [35] was used to measure if there is a difference
between the two samples as well as odds ratio (OR) [50] to indicate if the probability of a
change is greater in one sample than in another.

Second, they identified a relation between the number of code smells in classes and
change-proneness. The numbers were compared between the classes which were changed
at least once and the ones which were not. The parametric t-test and non-parametric Mann-
Whitney tests were used to compare the two samples. Furthermore, the authors assessed the
magnitude of difference with Cohen d effect size [35].

21

3. RELATED WORK

Finally, it was checked, if some code smells impact change-proneness more than the
others. For that Khomh et al. applied a logistic regression model [50]. The results showed
the following:

• Classes, containing code smells have a higher likelihood to be changed.

• Classes, containing more code smells are more likely to be changed.

• Class change likelihood depends on the particular code smell in the specific context
(system, version). For example, the worst code smell in terms of change proneness
for the Azureus appeared to be NotAbstract smell, while for the Eclipse HasChildren,
MessageChains and NotComplex smells.

The research questions of this study are similar to our’s. However, here, the authors
focused on smaller scale code defects. In DECOR settings there are code smells and de-
sign defects. This study used code smells, while our study - design defects. Additionally,
we counted changes as SCC and investigated what types of changes are common for each
defect.

Change-proneness of GodClass and ShotgunSurgery Another research on changeprone-
ness was conducted by Olbrich et al. [48]. He analyzes two code smells: GodClass and
ShotgunSurgery. The source code from the SVN repositories of two open-source projects,
Lucene, Apache Xerces was analyzed with the CodeWizard tool. Similarly to the other
code smell detection tools, which are described in the Section 3.1, it combines code metrics
(WMC, TCC, ATFD, CM, CC for GodClass and ShotgunSurgery) and thresholds values to
identify smells.

The authors were interested in the following questions: Do classes infected by code
smells change more frequently? Are infected classes modified in bigger code churns? Mod-
ification meant change, delete or add operation. A code churn stands for a number of code
lines. To answer these questions, the numbers of entities containing and not containing a
smell were compared over the change history. In order not to pay attention to insignificant
changes threshold values were introduced. Findings are the following:

• Classes participating in the code smells were more change-prone.

• Classes containing code smells did not suffer from larger code churn changes.

Compared to our study, the authors used a limited set of defects and haven’t performed
the analysis on types of changes. Moreover, they counted changes as changed lines, which
is not as precise as SCC.

Introducing Fault-proneness Another researched topic of the code evolution is fault-
proneness. Khomh et al. [17], [31] has continued his work (previous section) on the im-
pact of design defects. Fowlers code smells (LargeClass, LazyClass, LongMethod, Mes-
sageChain) and other design defects (13 in total) were referred to as antispatterns. They
were examined from the 54 releases of open-source Java systems, ArguUML, Eclipse, My-
lyn, and Rhino.

22

The impact of design defects

Besides investigating the change-proneness of bad smells as he did in the previous work
(described in the first part of this subsection), he also analyzed how antipatterns are related
to the fault-proneness of systems. Thus, several new questions were raised. Does the pro-
portion of classes participating in at least one bug fixing-change between to releases differ
between classes participating in antipatterns or not? Do classes participating in specific an-
tipatterns are more bug-prone than others? Is LOC of a class a main cause of a higher fault
or change proneness?

During the study a class was treated as fault-prone if it underwent at least one fault-
fixing change between two subsequent releases. Those were identified in two different
ways: by manually validating publicly available bug reports or by using issue tracking
systems such as Bugzilla in case they were present.

The first question as well as the similar one concerning change-proneness was analyzed
using Fishers exact test and odds ratio (OR) as in the previous work of Khomh. Similarly,
the authors used logistic regression model to find which antipatterns differs from others in
terms of fault-proneness. For the final question 3 step approach was used. Firstly, for each
release the average size of classes participating in antipatterns and not was compared using
Mann-Whitney test and Cohen d effect size. Second, the same was calculated for each class
participating in each different antipattern. It is expected that for some of them there won’t
be any significant difference. Third, the same tests were executed to assess how the classes
participating in size-related (Blob, LargeClass, etc.) antipatterns differ. To accomplish
it, classes that had size above 75% percentile were divided into two groups (antipatterns
infected/ not infected). Besides that, the study also looked into the types of changes: They
considered two types of changes: structural and non-structural changes. Structural changes
are changes that would alter a class interface while non-structural changes are changes to
method bodies.

The overall results were the following:

• Classes that participate in antipatterns in most releases appeared to be significantly
more change-prone.

• Some antipatterns appeared to be significantly more correlated with change-proneness
than others. In particular, MessageChain, LongMethod in ArgoUML, Eclipse, and
Mylyn; LongParameterList in ArgoUML and Eclipse; AntiSingleton and Refused-
ParentBequest in ArgoUML, ComplexClass and LazyClass in Eclipse.

• Classes that participate in antipatterns are more fault-prone.

• Some antipatterns appeared to be significantly more correlated with fault-proneness
than others. In particular, MessageChain in Eclipse and Rhino; AntiSingleton, Com-
plexClass, LazyClass and LongMethod in Eclipse.

• Some antipatterns are related to the size of class, but the size alone doesn’t explain
the greater change and fault-proneness.

• Structural changes occurred more often in the classes, which participate in antipat-
terns.

23

3. RELATED WORK

We replicated this study by adding additional research questions, using SCC and a larger
dataset.

Further study on how code smells impact fault and change proneness of code was con-
ducted by Olbrich et al. [49]. He continued his work on change-proneness and also included
fault aspects of code smells. This paper tries to explain why GodClass and BrainClass code
smells are considered to increase defect rate, and negatively influence change-proneness of
systems. A straightforward explanation would be that classes infected with such code smells
simple have more lines of code and, therefore, they are both more likely to be changed in
the future and to contain defects.

RM approach was used to investigate three open-source systems, Log4j, Apache Lucene,
Apache Xerces. In order to mine repositories for Java code Evan tool was developed to ex-
tract code smells from a versioning system containing Java code. Similarly as other tools
(see the section 3.1, code smell detection is based on a combination of code metrics and
thresholds.

Besides EvAn, Jira, BugZilla were used as bug tracking systems. They had to map bug
fixes to repository code commits. During the study calculated a WDR (weighted defect rate)
was calculated. Weights were given to the bugs to indicate the severity. To be more precise,
bug tracking systems classify bugs into Blocker, Critical, Major, Minor, Trivial. For each
category numbers 16, 8, 4, 2, 1 were assigned correspondingly.

The same analysis method was applied as in the previous Olbrichs study, yet LOC metric
was taken into account for change and fault proneness as well as WDR and WDR per LOC
were calculated. WDR of a class is c the sum of all weighted defects. Authors came up with
the following findings:

• CF (change frequency) of GodClasses and BrainClasses is higher compared with
other classes.

• CF per LOC is lower of GodClasses but this doesn’t hold for BrainClasses.

• CS (change size) for the GodClasses is higher compared with other classes. This
doesn’t hold for BrainClasses.

• CS per LOC is smaller for both GodClasses and BrainClasses compared with other
classes.

• WDR and WDF per LOC have not brought any significant results for all the analyzed
systems.

The authors concluded that when the presence of GodClass and BrainClass smells is
not extreme, they can be even beneficial, as they are less change-prone when LOC is taken
into account. The study differs from our study in the same way as the previous study of the
authors.

3.3.2 Code Comprehension

As it is necessary to understand the code before a bug can be fixed or a new feature added,
most of the papers here perform experiments that simulate this kind of situation. Also ques-

24

The impact of design defects

tionnaires were commonly used to provide a supplementary data. This topic contains four
papers. All the studies measure the impact of GodClass smells. One, however, additionally
investigated the SpaghettiCode antipattern. Our study didn’t focus on the code comprehen-
sion.

God Class Studies with Experiment and a Questionnaire

Deligiannis et al. [27] looked into the impact of the GodClass smells on the program com-
prehension and maintainability. Two groups (A and B) of two people were involved in the
experiment. During it, the subjects needed to understand the system and perform several
design tasks. All the participants were not new in the field OO technologies. Tasks were
performed on the small mobile tariff selector system (TSS). The system was implemented in
Java programming language with AWT graphical user interface and contained 16 (Design
B) or 18 (Design A) classes in total. The design B contained a centralized functionality,
dedicated to one GodClass, while the Design A was a decentralized version of the same
system.

First of all, groups were introduced to the system with a short session where the run-
ning software was demonstrated. It was assumed that after the session, participants would
have an overall understanding of the system. Also, they were given a set of corresponding
system design documents (Specifications, Use case diagram, Event flow diagram, Class dia-
gram, Sequence diagram) and a required modification task (e.g., adding new functionality).
The whole maintenance work was video-taped to record every activity. Lately, using the
recorded video data, the authors came up with diagrams, showing how often participants
switch activities and how much time do they spend on each one.

The performances of the group works were measured in terms of time and quality of
proposed system designs containing required modifications. The quality was indicated by
code metrics such as COF (coupling factor), WMC (weighted method per class), Class
coupling, etc.

The group A performed tasks significantly faster. Furthermore, output of their work
was of a similar quality compared to the original, which was relatively high. Contrary, the
design produced by one (out of 2) of the participants from the group B was of a much lower
quality. It was also noted that the group B more frequently looked at the sequence diagrams
which may indicate that it was harder for them to understand an interaction between objects.
This was also confirmed by the questioner.

The groups were given a questioner about the difficulties they faced during the work.
As main difficulties they mentioned tight coupling between classes, cohesion, and syntax
and naming conventions.

Deligiannis et al. [26] published another paper based on the previous one. The study also
focused on how the GodClass smells influence maintainability and understanding. The
similar experiment on the same TTS system was conducted with 20 students belonging to
two groups (A and B, 10 to each). This time, however, there was no video recording, and
analysis was done differently. Maintainability was measured in terms of completeness, cor-
rectness, and consistency. All the measures were expressed in simple formulas. To evaluate

25

3. RELATED WORK

the understandability of the program groups were given a questioner. Statistical methods
were used to test both maintainability and program comprehension.

The evaluation of the changes performed by the participants revealed that the system
A, which did not have a GodClass, is easier to maintain according to all three criterias.
After giving the questionnaire regarding the design understanding to the participants, it was
observed that the system without a GodClass was easier to work with. Thus, the findings
confirmed the previous study.

God Class Comprehension and Education

A slightly different approach to evaluate the impact of GodClass smells to the program com-
prehension was used in another study conducted by Du Bois et al. [3]. The author brought
forward the question whether decomposing GodClass smells affects program comprehensi-
bility in terms of accuracy and speed. To answer it, he applied four different refactoring on
GodClass smells and included one case where the GodClass smells remained. After that,
he asked the students to perform simple changes on the code.

63 master level students formed 5 groups based on their course and university. Only
one of the groups was formed not from the computer science students, but ICT electronics.
The experiment was performed on the open source Java main client (Yamm). Students were
given the source code and tasks to be performed. A task is finished when a student submits a
new code to the Concurrent Versioning System (CVS). It was measured how accurately and
fast participants solve tasks, which require localizing the relevant attributes and algorithmic
steps. For the analysis step a non-parametric test was applied.

The observed results indicate that certain refactoring had positively influenced the tasks
requiring a code understanding. However, results depend on the group. For example, ICT
electronic students were more successful in understanding GodClass smells than comfputer
science students. Authors interpret this finding as confirmation that object-oriented training
influences the way of understanding code.

Study of Two antipatterns, Blob and Spaghetti Code

The final work in this subsection is done by Abbes et al. [1]. He investigated the impact of
two antipatterns, Blob and SpaghettiCode, on the program comprehension. The aim was to
show that antipatterns negatively influence the understanding of code. The study consisted
of three experiments: the tests were performed to find out whether the code containing
Blob, SpaghettiCode and both antipatterns is harder to understand than the code without
antipatterns.

Each experiment was conducted by 24 subjects consisting of professional developers
and graduate students. They were given different comprehension tasks and the performance
was measured with: NASA task load index [24], time, and correctness. Three different
open-source systems were chosen for each experiment. DECOR tool aided to identify sys-
tems containing specific antipatterns. After that, only the code sample with a one random
instance of the antipattern was extracted together with related classes performing a particu-
lar task. The subjects were given original code samples and refactored ones (using Fowler’s

26

Overview

refactoring techniques). However, none of them received two versions of the same sample.
This was done in order to prevent from learning code before an experiment.

The results did not show a statistically significant difference on program comprehension
with and without a single antipattern. Yet, experiment 3, which studied the combination of
the Blob and the Spaghetti Code, revealed a significant difference between the subjects
efforts, correct answers and time. This showed that a single antipattern did not cause com-
prehension issues. However, this didn’t hold for multiple antipatterns. Yet, authors were
not sure whether the results were due to the high density of antipatterns or their specifics.

3.4 Overview

This chapter has introduced important concepts for our study. We used Evolizer as a RM
tool together with DECOR as an antipattern detector. Evolizer retrieves source code version
history from publicly available source repositories and analyzes it. DECOR is a very flexible
defect detection tool, working on Java source code, detecting a wide range of antipatterns
and is available free of charge for research purpose. More information about the tools and
reasons why they have been chosen are provided in the Chapter 4.

Our study is similar to the ones performed by Khomh et al. [30], [17], [31] and Olbrich
et al. [48], [49]. The main difference is that we use SCC to count source code changes and,
we are able to distinguish about 50 different types of them. Therefore, we believe that we
count changes more precise. Moreover, we related different type of defects with different
types of changes. The focus of our study is to contribute and extend current knowledge on
the impact of antipatterns on the change-proneness of software systems.

27

Chapter 4

Research Framework

This work aims to investigate the relation between the antipatterns and changes-proneness
of software classes. This chapter describes the research framework used to answer the
research questions, which were introduced in the previous chapter, Section 1.2.

4.1 Overview

In this section, we describe the approach used to gather the data needed to perform our
study. The data consist of the fine-grained source code changes (SCC), performed in each
Java class along the history of the systems under analysis, and the type and number of
antipatterns in which a class participates during its evolution. Figure 4.1 shows an overview
of our approach consisting of 6 steps.

4.2 Versioning data importer

The first step (step 1 in Figure 4.1) is to retrieve the versioning data from the versioning
control systems (CVS, SVN or GIT). To perform this step we use the Evolizer Version
Control Connector EVCC[20], belonging to the Evolizer1 tool set. For each cass, EVCC
fetches and parses log entries from the versioning repository. The extracted information
together with the source code is stored in the Evolizer repository. From the log entries
EVCC extracts:

• Revision numbers

• Revision timestamps

• The name of the developer who checked-in the revision

• The commit messages

• The total number of lines modified
1http://www.evolizer.org/

29

4. RESEARCH FRAMEWORK

CVS, SVN,
GIT

Evolizer
Change
Distiller AST

C
om

parison

Repository

2. Source Code Changes (SCC)

6. Analysis

Evolizer
Version Control

Connector

SCCs

Revisions Info
Subsequent Versions

1. Versioning Data Importer

SCCs filtering, grouping and
linking with antipatterns

5. Data preparation

VCSs clients
3. Checkout releases

Antipatterns

Decor
4. Antipatterns detector

Figure 4.1: Overview of the source code fine-grained changes and antipatterns extraction
process [53].

• The source code

We found that retrieving data from SVN takes too long (at least several weeks for a
smaller system). Therefore, before the retrieval, the exact copies of publicly available SVN

30

Source Code Changes (SCC)

repositories were created locally. After that, the data was extracted from the local reposito-
ries.

4.3 Source Code Changes (SCC)

The source code of subsequent versions of each Java file is used by ChangeDistiller [14] to
extract the fine-grained source code changes SCC (step 2 in the Figure 4.1). ChangeDistiller
first parses the source code from the two subsequent versions of Java class and creates the
corresponding Abstract Syntax Trees ASTs. Second, the two ASTs are compared using
a tree differencing algorithm, which outputs the differences in form of tree edit operations
add, delete, update and move. Next, each edit operation for a given node in AST is annotated
with a semantic information of the source code entity it represents and is classified as a
specific change type based on the taxonomy of code changes [13]. For instance, the insertion
of a node representing an else-part in the AST is classified as else-part insert change type.
The result is a list of change types between two subsequent versions of each Java class
which is stored into Evolizer repository.

The alternative ways to find source code changes would be to check for the total number
of revisions for a class file. However, this would not provide any information about the
extent of changes. Another approach would be to count Lines Modified (LM). However,
this still would not show what kind of changes has been made. For example, if we change a
return type and one parameter type of the same method, it will be treated as one change in
terms of file revisions and lines modified. SCC, however, would indicate two changes and
show their type and location as it is shown in the Figure 4.2.

Figure 4.2: SCC, file revision and lines modified count of the same change.

4.4 Get release

In the third step of our approach (step 3 in the Figure 4.1) we get releases used later on
by the antipattern detector. A range of releases for each software system were downloaded
from the public websites as .jar files. Another way would be to check out releases from the
source code. We chose the first option for a number of reasons:

31

4. RESEARCH FRAMEWORK

• Releases are compiled which is mandatory for the next step.

• Releases do not include unit tests and obsolete code, which otherwise would need to
be manually removed as it does not represent the functional code.

• Only functioning releases are available from the main branch. So we avoid dealing
with experimental releases.

4.5 AntiPettern detector

The fourth step of our approach (step 4 in the Figure 4.1) is aimed to detect all antipatterns
existing in the releases. This is achieved by DECOR (Defect dEtection for CORrection)
[45, 43, 44, 46]. It is described more in the Chapter 3.1. The following reasons influenced
our choice of DECOR:

1. The former study [31] used this tool. Therefore, we are sure that we can detect the
same antipatterns, while using the same detection heuristics.

2. DECOR is free and open for modifications, in case it is used for the research purposes.

3. DECOR supports Java source code.

4. Detection rules are available and flexible for modifications.

5. During the literature survey we found DECOR to be the most used tool for detecting
design defects.

To analyze the participation of a class in antipatterns along its history we run the DECOR
detection algorithm on each different release for each system under analysis. Among all the
antipatterns detectable with DECOR we select the following ones:

• AntiSingleton (AS): A class that provides mutable class variables, which consequently
could be used as global variables.

• Blob: A class that is too large and not cohesive enough, that monopolises most of
the processing, takes most of the decisions, and is associated with data classes. Also
known as GodClass.

• ClassDataShouldBePrivate (CDSBP): A class that exposes its fields, thus violating
the principle of encapsulation.

• ComplexClass (ComplexC): A class that has (at least) one large and complex method,
in terms of cyclomatic complexity and LOCs.

• LargeClass: A class that has a very high number of methods and attributes.

• LazyClass (LazyC): A class that has few fields and methods (with little complexity).

• LongMethod (LongM): A class that has a method that is overly long, in term of LOCs.

32

Data preparation

• LongParameterList (LPL): A class that has (at least) one method with a too long list
of parameters with respect to the average number of parameters per methods in the
system.

• MessageChain (MsgC): A class that uses a long chain of method invocations to realise
(at least) one of its functionality.

• RefusedParentBequest (RPB): A class that redefines inherited method using empty
bodies, thus breaking polymorphism.

• SpaghettiCode (Spaghetti): A class declaring long methods with no parameters and
using global variables. These methods interact too much using complex decision
algorithms. This class does not exploit and prevents the use of polymorphism and
inheritance.

• SpeculativeGenerality (SG): A class that is defined as abstract but that has very few
children, which do not make use of its methods.

• SwissArmyKnife (Swiss): A class which has multiple responsibilities, defined by mul-
tiple interfaces.

Metric and syntatic rules used by DECOR to detect antipatterns can be found in Ap-
pendix A. We chose this subset of antipatterns because of the following reasons:

1. They appear frequently in the different releases of the systems under analysis.

2. They are representative of design and implementation problems with data, complex-
ity, size, and the features provided by Java classes.

3. They allow us to compare our findings with those of Khomh [31].

4.6 Data preparation

Once we have the SCCs performed in each class and the number and type of antipatterns
affecting each class in each different release, we prepare the data for the analyses (step 5 in
the Figure 4.1). This task is performed in two steps:

1. Merging releases: If between two subsequent releases the number of changes is less
than 200, they are merged. The operation is repeated until the condition is satisfied
between all the pairs of two subsequent (k and k+1) releases. The information about
all releases is available in AppendixB.

2. Linking: For each release we link the SCC performed in between two subsequent
releases (k and k+1) with the type and number of antipatterns appearing in the release
k. Only the classes which appear both in source control and downloaded release are
considered.

33

4. RESEARCH FRAMEWORK

3. Clustering SCCs types: the SCCs are clustered in seven different categories as pro-
posed by Giger [22]. The different categories are shown in the Table 4.1 together
with the description of the changes grouped in each category. Clustering the SCCs
allows us to analyze the contingency between different types of changes and different
antipatterns.

As a result, we came up with a list containing for each release k a list of Java classes
with a number of detected instances of the twelve antipatterns at release k plus the number of
fine-grade changes per change type category that occurred between two subsequent releases
k and k+1.

Category Description

API
Changes that involve the declaration of classes (e.g., class renaming and class
API changes) and alter the signature of methods (e.g., modifier changes,
method renaming, return type changes, changes of the parameter list)

oState Changes that affect object states of classes (e.g., fields addition and deletion).

func
Changes that affect the functionality of a class (e.g., methods addition and
deletion)

stmt
Changes that modify executable statements (e.g., statements insertion and
deletion)

cond
Changes that alter condition expressions in control structures and the modifi-
cation of else-parts

Table 4.1: Categories of types of change used to test H3

4.7 Analysis

The last step of our approach (step 6 in the Figure 4.1) is analysis. A number of statistical
tests were executed on top of the collected data. The analyses performed in this study will
be extensively described in the next Chapter (5).

34

Chapter 5

Analysis

The goal of this empirical study is to evaluate the impact of antipatterns on the change
proneness of Java classes. The focus is the ability to highlight change-prone Java classes
based on whether they participate in antipatterns.

5.1 Overview

This chapter presents the approach we used to test our hypothesis. For All three research
questions (RQ1, RQ2, RQ3) we present the hypotheses and methods how those hypothesie
are tested. The raw data used to perform our analysis are available at our website.1

5.2 Investigation of RQ1

5.2.1 Hypotheses

The goal of RQ1 is to analyze the change-proneness of Java classes participating in antipat-
terns, compared to the change-proneness of classes not participating in antipatterns. We
decided to answer this question to test whether the Khomh et al. findings [31] are con-
firmed when we analyze the SCCs performed between two subsequent releases. Moreover,
we provide a further validation testing the difference between the distributions of SCCs per-
formed in classes participating and not participating in antipatterns. We address RQ1 by
testing the following two null hypotheses:

• H1a: The proportion of classes changed at least once between two releases is not
different between classes that are affected by antipatterns and classes not affected by
antipatterns.

• H1b: The distribution of SCC performed in classes between two releases is not dif-
ferent for classes affected by antipatterns and classes not affected by antipatterns.

• H1c: There is no association between the number of antipatterns affecting a class and
number of SCC performed in that class.

1http://swerl.tudelft.nl/wiki/pub/DanieleRomano/WebHome/WCRE12rawData.zip

35

5. ANALYSIS

5.2.2 Method

To test H1a we classify the Java classes in change-prone if they undergo at least one change
in between two subsequent releases (k and k+1). Otherwise they are considered not change-
prone. This binary variable (we refer to it as change-proneness (k, k+1)) is the dependent
variable. As independent variable we choose a binary variable that indicates if a Java class
participates or not in any antipattern in a given release k and we refer to it as antipatterns(k).
We test Ha examining the significance of the contingency between these two variables. The
significance of the association between antipatterns(k) and change-proneness (k, k+1) for
each class and for each given release k is tested with the Fisher’s exact test [56]. Moreover
we use the odds ratio (ORs) [56] to measure the probability that a Java class will be changed
between two releases (k and k+1) if it is affected by at least one antipattern in the release k.
OR is defined as OR = p/(1−p)

q/(1−q) and it measures the ratio of the odds p of an event occurring
in one group (i.e., experimental group) to the odds q of it occurring in another group (i.e.,
control group). In this case, the event is a change in a Java class, the experimental group
is the set of classes affected by at least one antipattern and the control group is the set of
classes not affected by any antipattern. ORs equal to 1 indicates that a change can appear
with the same probability in both groups. ORs greater than 1 indicates that the change is
more likely to appear in a class affected by at least one antipattern. ORs less than 1 indicate
that classes not participating in antipatterns are more likely to be changed.

To test Hb we analyze the differences between the distributions of SCC performed in Java
classes participating in antipatterns and classes not participating. To perform this analysis,
as dependent variable we choose a variable that counts the number of SCC for a given Java
class between two subsequent releases and we refer to it as #SCC(k, k+1). The indepen-
dent variable is the same used in the Fisher’s exact test. We use the Mann-Whitney test to
test whether the two distributions of SCC performed in between two subsequent releases
are significantly different for classes participating and not participating in antipatterns. We
apply the Cliff’s Delta d effect size [23] to measure the magnitude of the difference. Cliff’s
Delta estimates the probability that a value selected from one group is greater than a value
selected from the other group. Cliff’s Delta ranges between +1 if all selected values from
one group are higher than the selected values in the other group and -1 if the reverse is
true. 0 expresses two overlapping distributions. For independent samples (as in our case)
the effect size is defined as the difference between the means (M1 and M2), divided by the

pooled standard deviation (σ =
√

(σ2
1 +σ2

2)/2) of both groups: d = (M1−M2)/σ. The
effect size is considered negligible for d < 0.147, small for 0.147≤ d < 0.33, medium for
0.33 ≤ d < 0.47 and large for d ≥ 0.47 [23]. We chose the Mann-Whitney test and Cliff’s
Delta effect size because the values of the SCC per class are non-normally distributed. Fur-
thermore, our different levels (small, medium, and large) facilitate the interpretation of the
results. The Cliff’s Delta effect size has been computed with the orddom package2 available
for the R environment.3

2http://cran.r-project.org/web/packages/orddom/index.html
3http://www.r-project.org/

36

Investigation of RQ2

Hc is aimed at investigating whether there is a correlation between the number of antipat-
terns a Java class is participating in and the number of SCC performed in the class. The
independent variable is the number of antipatterns in a given release k (#antipatterns(k)),
while the dependent variable is the number of SCC performed in between two subsquent re-
leases (#SCC(k, k+1)). We use the Spearman rank correlation test to analyze the correlation
between these variables. Spearman compares the ordered ranks of the variables to measure
a monotonic relationship. We chose to use the Spearman rank correlation test because it
doesn’t make any assumptions about the distribution, variances and the type of the relation-
ship [60]. A high positive or negative correlation is shown by respectively a Spearman rho
value of +1 and -1, while 0 indicates that the two variable do not correlate at all. Values
greater than +0.5 or smaller than -0.5 are considered substantial; values greater than +0.7
and smaller than -0.7 are considered strong correlations.

5.3 Investigation of RQ2

5.3.1 Hypotheses

The goal of RQ2 is to test whether certain antipatterns lead to more changes in Java classes
than other antipatterns. The basic idea is to assist software engineers in identifying the most
change-prone antipatterns in a system that should be resolved first. We address RQ2 by
testing the following null hypothesis:

• H2a: The proportion of classes changed at least once between two releases is not
different for classes affected by different antipatterns.

• H2b: The distribution of SCC is not different for classes affected by different antipat-
terns.

5.3.2 Analysis Method

For the H2a the dependent variable is change-proneness (k, k+1), already introduced in the
investigation of H1a. As independent variables we use a binary variable for each antipattern
that indicates whether the class is affected by that antipattern. To test H2a first we measure
the contingency between the dependent and the indipendent variables with the Fisher’s ex-
act test. Then we use the ORs to measure the likelihood that a class affected by a particular
antipattern will be changed between two subsequent releases.

For the H2b we use the number of SCC performed in a class between two releases, al-
ready introduced in the investigation of H1b (SCC (k, k+1)) as dependent variable. As
independent variable we use a binary variable for each antipattern that indicates whether
the class is affected by that antipattern or it doesn’t participate in any antipattern. To test
H2b we use the Mann-Whitney test to analyze whether there is a difference in the distri-
butions of SCC performed in Java classes not affected by different antipatterns and SCC
performed in classes not affected by any antipattern. As already introduced testing H1b, we

37

5. ANALYSIS

also used Cliff’s Delta d effect size over all releases for a system. We selected all releases
per system since several releases had too few data points (e.g., there have been only 6 SCC
between releases 1.6R3 and 1.6R4 of Rhino). The orddom package used to compute Cliff’s
Delta d is not optimized for very big data sets. Therefore, in cases of systems with more
than 5000 data points (i.e., more than 5000 classes experiencing changes over the revision
history), we randomly sampled 5000 data points 30 times and computed the average of the
obtained Cliff’s Delta values. This sampling allows us to compute Cliff’s Delta values for
each system with a confidence level of 99% and a confidence interval of 0.004; which is a
very precise estimation.

5.4 Investigation of RQ3

5.4.1 Hypotheses

Addressing RQ3 we analyze the relationship between different antipatterns and different
types of changes. The goal is to further assist software engineers by verifying whether a
particular type of change is more likely to be performed in classes affected by a specific
antipattern. This knowledge can help engineers to avoid or fix certain antipatterns that
frequently lead to changes that impact large parts of the rest of a system, such as changes
in the method declarations of a class that exposes a public API. We address RQ3 by testing
the following null hypothesis:

• H3: The distribution of different types of SCC performed in classes affected by dif-
ferent antipatterns are not different.

5.4.2 Analysis Method

To test H3 we categorize the changes mined with ChangeDistiller in five different categories
as illustrated in the Section 4.6 (see 4.1). In order to have enough data about each change
type category we use the data from all systems as input for this analysis. As dependent
variables we use the change type categories representing the number of SCC that fall in each
category. As for H2, the independent variables are the set of binary variables that denote
whether a class is affected by a specific antipattern or not. We test the difference in the
distributions of SCC per category using the Mann-Whitney test and compute the magnitude
of the difference with the Cliff’s Delta d effect size. In order to have enough data about each
change type category we use the data from all systems as input for this analysis. Similar to
H2b, we use the random sampling approach for computing Cliff’s Delta and we report the
mean effect size of the 30 random samples.

38

Chapter 6

Project Selection

This chapter details the process of project selection. The selection criteria and our dataset
are introduced here.

6.1 Overview

The next section will provide the criteria for the project selection. After that, we will intro-
duce the dataset used in this study.

6.2 Selection criteria

The project selection criteria depend on our chosen approach (see the Chapter 4) and the
former study conducted by Khomh et.al [31]. We chose to use Java open source systems.
First, they support OO (Object Oriented) design which is misused by a number of antipat-
terns. Second, the former study investigated four open source Java systems: Rhino, Mylyn,
ArgoUML, Eclipse. Our chosen projects had also to have publicly available code source
repositories and system releases available for public download. Many open source projects
satisfied those requirements.

Additionally, we chose three requirements to provide enough information for our study:

1. More than 2000 revisions

2. More than 200 classes in any release

3. More than 100 antipatterns in any release

6.3 Selected projects

The context of this study consists of the 16 open-source systems from different domains,
implemented in Java and widely used in academic and industrial communities. The Table
6.1 shows an overview of the dataset in our empirical study. #Files is the number of Java
files in the last release, #Classes is the number of classes in the last release, #Rel is the

39

6. PROJECT SELECTION

number of releases analyzed, #Rev is the number of revisions, #SCC the number of fine-
grained source code changes performed in the given time period (Time). The Tables 6.2, 6.3
show the number of antipatterns detected by DECOR in first and last release of the analyzed
systems.

Project #Files #Classes #Rel #Rev #SCC Time[M,Y]
argo 1716 1859 9 875137 128949 Oc02-Mar09
hibernate2 537 494 10 13584 22960 Jan03-Mar11
hibernate3 1036 970 20 30774 34960 Jun04-Mar11
eclipse.debug.core 188 201 12 8295 11670 May01-Mar11
eclipse.debug.ui 793 907 22 41860 55259 May01-Mar11
eclipse.jface 381 442 17 22136 27041 Sep02-Mar11
eclipse.jdt.debug 469 509 16 11711 33895 Jun01-Mar11
eclipse.team.core 172 199 6 3726 4551 Nov01-Mar11
eclipse.team.cvs.core 189 210 11 12343 23311 Nov01-Mar11
eclipse.team.ui 293 405 13 20183 32267 Nov01- Mar11
jabref 1996 2597 30 6614 56936 Dec03-Oct11
mylyn 1288 1596 17 34816 100405 Dec06-Jun09
rhino 184 219 8 8669 20873 May99-Aug07
rapidminer 2061 2907 4 6207 7786 Oct09-Aug10
vuze 3265 3733 29 22651 176891 Dec06-Apr10
xerces 710 869 20 12577 119238 Dec00-Dec12

Table 6.1: Dataset used in the empirical study

Basically, all of the systems contain instances of most of the 12 antipatterns. In particu-
lar, Rapid miner and Vuze contain the largest number of antipatterns which is not surprising,
since they also are the largest systems in our sample set. According to our numbers, the
antipatterns LongMethod (LongM) and MessageChain (MsgC) and RefusedParentBequest
(RPB) occur most frequently, while SpathettiCode (Spaghetti), SpeculatigeGenerality (SG)
and SwissAmryKnife (Swiss) occur less frequently. Overall, the frequency of antipatterns
and changes allow us to investigate the relationship with fine-grained source changes.

Unfortunately, due to the lack of time and computational resources we could not include
the full Eclipse project. Instead the seven subprojects (eclipse.debug.core, eclipse.debug.ui,
eclipse.jface, eclipse.jdt.debug, eclipse.team.core, eclipse.team.cvs.core eclipse.team.ui) of
Eclipse were analysed in our study. The other projects from the the former study (Rhino,
ArgoUML, Mylyn) are a part of our dataset.

The project eclipse.team.core have not met the requirements of having at least 200
classes but was close (199). We still included it in our dataset. In the next chapter we
will present the results on the chosen dataset.

40

Selected projects

Project #AS #Blob #CDBSP #ComplexC #LazyC #LongM
argo 352-3 26-169 136-51 56-195 16-53 172-354
hibernate2 113-104 34-37 33-17 30-37 5-3 56-72
hibernate3 176-232 52-75 31-50 58-8 9-12 121-194
eclipse.debug.core 1-22 7-14 0-12 1-8 0-9 5-22
eclipse.debug.ui 18-146 13-70 0-70 11-50 0-22 30-176
eclipse.jface 8-25 7-22 6-32 5-13 6-22 22-60
eclipse.jdt.debug 17-44 26-27 1-74 30-33 8-42 68-78
eclipse.team.core 1-12 2-7 1-10 1-5 0-4 8-33
eclipse.team.cvs.core 9- 64 1-21 2-6 1-21 0-0 17-79
eclipse.team.ui 9-64 1-21 2-6 1-21 0-0 17-79
jab 12-139 10-136 8-400 9-144 1-126 21-365
mylyn 4-70 43-101 61-174 43-83 2-16 132-300
rhino 16-18 5-11 4-18 9-19 4-9 11-33
rapidminer 11-19 130-161 145-203 152-156 10-15 450-568
vuze 179-145 199-282 189-270 138-193 29-215 381-473
xerces 10-22 8-59 14-134 13-44 6-21 29-96

Table 6.2: Number of antipatterns in first and last releases of the analyzed systems. Table 1

Project #LPL #MsgC #RPB #Spaghetti #SG #Swiss #Total
argo 195-334 130-197 65-513 22-1 9-34 3-4 1182-1908
hibernate2 34-19 51-101 93-97 15-4 2-1 0-0 466-492
hibernate3 48-74 157-236 123-202 9-12 3-8 3-9 790-1112
eclipse.debug.core 0-18 3-6 0-11 0-1 1-1 0-2 18-126
eclipse.debug.ui 25-41 6-53 6-73 3-8 2-24 0-7 114-740
eclipse.jface 19-45 22-34 5-14 0-2 7-21 0-2 107-292
eclipse.jdt.debug 37-40 78-80 80-82 3-3 1-2 1-1 350-506
eclipse.team.core 0-26 1-15 0-7 0-1 3-10 0-0 17-130
eclipse.team.cvs.core 1-51 4-45 0-13 0-1 2-10 0-0 37-311
eclipse.team.ui 1-51 4-45 0-13 0-1 2-10 0-0 37-311
jab 2-169 2-332 2-295 1-16 0-17 0-1 68-2140
mylyn 43-66 98-135 34-165 2-0 12-35 1-1 475-1146
rhino 9-8 15-51 3-7 0-0 0-2 0-1 76-177
rapidminer 214-270 583-674 781-1068 1-1 12-28 3-1 2492-3164
vuze 217-295 514-773 476-637 22-16 21-27 35-70 2400-3396
xerces 16-130 19-99 3-37 2-1 5-4 10-11 135-658

Table 6.3: Number of antipatterns in first and last releases of the analyzed systems. Table 2

41

Chapter 7

Results of analysis

The results of our study are of interest for software engineers. They can use the number of
antipatterns as a quality indicator to highlights change prone classes. As it was discussed
in the Chapter 2, antipatterns are good targets for the code review sessions. This chapter
reports the results of our empirical study presented in the Chapter 6.

7.1 Overview

This chapter is structured as follows: each section presents results to the research questions
(more in the Chapter 1, starting from RQ1 and finishing with RQ3.

7.2 Results: RQ1

The goal of H1a is to test whether Java classes affected by antipatterns are more change-
prone than classes not affected by antipattern. The odds ratios are summarized in the Table
7.1. The Table 7.1 shows for each system the total number of releases (#Releases) and the
number of releases that showed a p-value for the Fisher’s exact test smaller than 0.01 and
odds ratios greater than 1 (ORs>1). Fisher’s exact test p-values smaller than 0.01 indicate
that there is significant difference between change-proneness of classes affected and not
affected by antipatterns. The ORs greater than 1 indicate that Java classes participating in
at least one antipattern are more change-prone than the other classes. The results show that,
except for three systems (eclipse.team.cvs.core, Jabref and Rhino), in most of the analyzed
releases Java classes participating in at least one antipattern are more change-prone than
other classes. In total in 190 out of 244 releases (≈82%) classes affected by at least one
antipattern are more change-prone.

To test H1b we analyzed the difference between the distributions of SCC performed in
Java classes participating in antipatterns and in other classes. We applied the Mann-Whitney
test to test whether the distributions are different (Mann-Whitney p-value <0.01) and we
measured the Cliff’s Delta d effect size to quantify the magnitude of the difference. The
Table 7.2 shows the p-values of the Mann-Whitney tests and values of the Cliff’s Delta d
effect size for testing H1b. Only in 18 releases (≈7%) there is no significant difference

43

7. RESULTS OF ANALYSIS

System #Releases ORs ≥1
argo 9 9
hibernate2 10 10
hibernate3 20 19
eclipse.debug.core 12 8
eclipse.debug.ui 22 20
eclipse.jface 17 16
eclipse.jdt.debug 16 16
eclipse.team.core 6 4
eclipse.team.cvs.core 11 5
eclipse.team.ui 13 9
jabref 30 3
mylyn 17 17
rhino 8 2
rapidminer 4 4
vuze 29 29
xerces 20 19
Total 244 190

Table 7.1: Total number of releases (#Releases) and number of releases where Fisher’s exact
test shows significant differences (p-values<0.01) and ORs>1 (ORs ≥1) for each system
under analysis.

(Mann-Whitney p-value≥0.01) between the distributions of SCC performed in classes af-
fected by antipatterns and in other classes. In the other 226 releases (≈93%) the difference
is significant (Mann-Whitney p-value<0.01). Concerning the effect size we found that this
difference is small (0.147≤d<0.33) in 102 releases (≈42%), medium (0.33≤d<0.47) in
26 releases (≈11%), large (0.47≤d) in 9 releases (≈4%) and negligible (d < 0.147) in 89
releases (≈36%). Based on these results we reject H1b and accept the alternative hypothe-
sis that in most cases Java classes with antipatterns undergo more changes during the next
release than classes that are free of antipatterns.

The last hypothesis on RQ1 is H1c. We tested it by computing the Spearman rank
correlation test between the number of SCC and the number of antipatterns affecting a Java
class. The results are reported in the Table 7.3. The results show that there is no strong
correlation because only in 15 releases out of 144 (≈6%) the rho value is greater than 0.5.
However, 177 releases (≈72%) show a rho value in between 0.3 and 0.8. This result give
us enough evidence of the association between number of antipatterns and number of SCC.

Based on these results we accept H1 and we conclude that Java classes participating in
antipatterns are more change-prone than other classes. Also, classes affected by antipatterns
undergo a number of changes statistically greater than the number of changes performed in
other classes. Moreover we conclude that there is a relationship between the number of
antipatterns and the number of SCC even though we do not have the evidence of linear
relationship (i.e., correlation) between the two variables.

44

Results: RQ2

Mann-Whitney p-value<0.01 Mann-Whitney p-value≥0.01
System #Releases 0.47≤d 0.33≤d<0.47 0.147≤d<0.33 d≤0.147
argo 9 0 1 6 2 0
hibernate2 10 0 1 6 3 0
hibernate3 20 0 3 7 10 0
eclipse.debug.core 12 4 2 4 1 1
eclipse.debug.ui 22 0 0 14 8 0
eclipse.jface 17 0 0 12 4 1
eclipse.jdt.debug 16 0 1 8 5 2
eclipse.team.core 6 0 1 3 0 2
eclipse.team.cvs.core 11 1 3 4 3 0
eclipse.team.ui 13 1 4 3 1 4
jabref 30 0 3 11 16 0
mylyn 17 0 2 9 6 0
rhino 8 2 0 0 0 6
rapidminer 4 0 0 0 4 0
vuze 29 0 2 7 20 0
xerces 20 1 3 8 6 2
total 244 9 26 102 89 18

Table 7.2: p-values of the Mann-Whitney tests and Cliff’s Delta d showing the magnitude
of the difference between the distribution of SCC in classes affected and not affected by
antipatterns.

p-value<0.01 p-value≥0.01
System #Releases 1<rho≤0.8 0.8<rho≤0.5 0.5<rho≤0.4 0.4<rho≤0.3 0.3<rho≤0.2 0.2<rho≤0
argo 9 0 0 1 5 1 2 0
hibernate2 10 0 0 1 2 5 2 0
hibernate3 20 0 0 1 6 8 5 0
eclipse.debug.core 12 0 9 2 1 0 0 0
eclipse.debug.ui 22 0 0 0 12 10 0 0
eclipse.jface 17 0 0 1 10 6 0 0
eclipse.jdt.debug 16 0 0 2 8 6 0 0
eclipse.team.core 6 0 0 2 2 0 0 2
eclipse.team.cvs.core 11 0 2 3 5 1 0 0
eclipse.team.ui 13 0 0 3 6 1 0 3
jab 30 0 2 2 0 5 21 0
mylyn 17 0 0 0 3 10 4 0
rhino 8 0 2 0 0 0 0 6
rapidminer 4 0 0 0 0 0 4 0
vuze 29 0 0 0 2 12 15 0
xerces 20 0 0 2 6 9 2 1
totale 244 0 15 20 68 74 55 12

Table 7.3: Spearman rank correlation between number of antipatterns and number of SCC.

7.3 Results: RQ2

RQ2 is aimed at testing whether Java classes affected by certain antipatterns are more
change-prone than classes affected by other antipatterns. We used both Fishers test for
(H2a) and Mann-Whitney test for (H2b).

The Tables 7.4, 7.5, 7.6 and 7.7 shows the Odds ratios and Cliff’s Delta d effect size for
which the p-value of the Mann-Whitney is significant (p-value<0.01). NA denotes p-values
for Mann-Whitney greater than 0.01 and consequently Cliff’s Delta is not computed.

The results of the Mann-Whitney tests show that, except for the LazyClass and Specu-

45

7. RESULTS OF ANALYSIS

Project #AS #Blob #CDBSP #ComplexC #LazyC #LongM
argo 3.60 1.44 3.70 2.35 NA 2.23
hibernate2 2.01 1.66 2.35 8.13 0.30 1.99
hibernate3 2.60 1.81 1.94 5.41 0.18 2.63
eclipse.debug.core 12.83 4.90 5.89 109.10 NA 12.77
eclipse.debug.ui 2.90 3.93 2.41 8.85 0.11 3.58
eclipse.jface 4.70 3.05 2.68 13.75 0.10 4.62
eclipse.jdt.debug 6.02 3.31 NA 9.77 0.05 5.86
eclipse.team.core 6.27 6.32 NA 10.36 NA 4.48
eclipse.team.cvs.core NA 3.88 NA 20.76 0.35 3.60
eclipse.team.ui 3.92 3.41 2.64 5.06 NA 3.58
jab 3.88 NA 1.62 4.05 0.26 4.12
mylyn NA 2.17 2.19 4.86 0.07 3.02
rhino 3.73 NA 4.59 NA NA NA
rapidminer NA 1.95 NA 4.70 NA 2.29
vuze 3.80 2.44 2.39 8.10 0.39 3.21
xerces 3.54 2.12 1.31 10.3 0.57 3.84
Median 3.8 2.745 2.4 8.13 0.22 3.58

Table 7.4: ORs of changes in classes participating in different antipatterns. NA indicates
a p-value for Fisher’s exact test greater than 0.01 or lack of sufficient data to perform the
tests.

Project #LPL #MsgC #RPB #Spaghetti #SG #Swiss
argo 1.85 2.79 1.24 3.84 NA 5.05
hibernate2 3.87 2.98 NA 3.07 NA 22.40
hibernate3 3.09 3.61 NA 3.04 NA 5.59
eclipse.debug.core 24.58 3.91 7.23 NA NA 20.14
eclipse.debug.ui 2.80 3.97 0.64 5.88 NA 4.36
eclipse.jface 3.31 7.97 0.38 6.99 NA 4.45
eclipse.jdt.debug 5.63 3.15 0.66 5.60 NA 12.18
eclipse.team.core NA 4.08 NA NA 5.45 NA
eclipse.team.cvs.core 2.12 3.76 NA NA NA NA
eclipse.team.ui 2.25 2.48 NA Inf 2.46 NA
jab 3.12 2.34 NA 15.27 0.08 NA
mylyn 2.39 3.34 NA NA NA NA
rhino NA 1.68 NA Inf NA NA
rapidminer 1.50 2.19 NA NA NA 15.05
vuze 3.48 4.50 1.24 7.56 NA 5.96
xerces 4.58 1.98 NA 4.05 3.41 11.08
Median 3.105 3.245 0.95 5.88 2.935 8.52

Table 7.5: ORs of changes in classes participating in different antipatterns. NA indicates
a p-value for Fisher’s exact test greater than 0.01 or lack of sufficient data to perform the
tests.

lativeGenerality (SG), the distributions of SCC performed in classes affected by a specific
antipattern are different from the distribution of SCC performed in classes not affected by
that antipattern. According to the median values for Cliff’s Delta shown in the last row, this

46

Results: RQ2

System #AS #Blob #CDBSP #ComplexC #LazyC #LongM
argo 0.311 0.098 0.331 0.226 -0.012 0.192
hibernate2 0.143 0.112 0.193 0.500 NA 0.149
hibernate3 0.171 0.086 0.064 0.386 -0.110 -0.172
eclipse.debug.core 0.553 0.352 0.419 0.889 NA 0.544
eclipse.debug.ui 0.169 0.299 0.150 0.454 0.147 0.231
eclipse.jface 0.461 NA NA 0.411 NA 0.266
eclipse.jdt.debug 0.277 0.182 0.078 0.485 0.103 0.250
eclipse.team.core 0.422 0.433 NA 0.581 NA 0.33
eclipse.team.cvs.core 0.026 0.374 0.085 0.723 NA 0.331
eclipse.team.ui 0.290 0.293 0.212 0.395 NA 0.265
jabref 0.089 0.001 0.019 0.094 NA 0.072
mylyn -0.020 0.150 0.177 0.388 NA 0.192
rhino 0.276 NA 0.393 0.119 NA 0.067
rapidminer 0.051 0.060 -0.001 0.141 NA 0.051
vuze 0.151 0.076 0.079 0.211 NA 0.121
xerces 0.302 0.104 0.044 0.541 NA 0.269
Median 0.223 0.131 0.117 0.403 0.045 0.211

Table 7.6: Cliff’s Delta d effect sizes of cases for which Mann-Whitney shows a significant
difference (p-value<0.01) or NA otherwise. Values in bold denote the largest difference per
system. For the underlined systems we applied random sampling.

System #LPL #MsgC #RPB #Spaghetti #SG #Swiss
argo 0.148 0.248 0.035 0.354 0.030 0.528
hibernate2 0.347 0.250 -0.032 0.262 NA 0.654
hibernate3 0.169 0.170 0.016 0.191 NA 0.662
eclipse.debug.core 0.691 0.289 0.435 NA 0.298 0.650
eclipse.debug.ui 0.169 0.227 NA 0.377 0.009 0.514
eclipse.jface NA 0.385 NA NA NA NA
eclipse.jdt.debug 0.295 0.137 0.051 0.361 NA 0.919
eclipse.team.core 0.107 0.315 NA NA 0.373 NA
eclipse.team.cvs.core 0.172 0.329 NA NA NA NA
eclipse.team.ui 0.163 0.187 NA 0.642 0.183 NA
jabref 0.044 0.042 -0.006 0.356 NA 0.966
mylyn 0.232 0.228 0.063 NA NA NA
rhino 0.025 0.100 NA 0.928 NA NA
rapidminer 0.080 0.051 -0.002 NA NA 0.600
vuze 0.106 0.140 -0.021 0.308 0.028 0.213
xerces 0.327 0.122 0.036 0.153 0.307 0.565
Median 0.169 0.207 0.025 0.355 0.183 0.625

Table 7.7: Cliff’s Delta d effect sizes of cases for which Mann-Whitney shows a significant
difference (p-value<0.01) or NA otherwise. Values in bold denote the largest difference per
system. For the underlined systems we applied random sampling.

difference is large for SwissArmyKnife (Swiss), medium for 2 antipatterns (0.33≤d<0.47),
small for 5 antipatterns (0.147≤d<0.33) and negligible for 4 antipatterns. Note, that for
classes affected by LazyClass and SG the Mann-Whitney test was significant only in 4 and

47

7. RESULTS OF ANALYSIS

respectively 7 systems. ORs table mean values show that only classes participating in Lazy-
Class and RPB antipatterns have less chance to be changed (or < 1).

Moreover, analyzing the results for each system we can notice that that classes partic-
ipating in the ComplexClass (ComplexC), SpaghettiCode (Spaghetti) and SwissArmyKnife
(Swiss) antipatterns are more change-prone than classes participating in any other antipat-
tern. In 7 systems out of 16 the odds ratios of changes in classes affected by the Complex-
Class antipattern are the highest. In 6 systems the odds ratios of changes in classes affected
by the SwissArmyKnife antipattern are the highest even though in 6 systems we do not have
enough occurrences of this antipattern. In the other 3 systems the highest odds ratios are
of changes in classes participating in the SpaghettiCode antipattern. Similarly, in 8 systems
out of 16 the Cliff’s Delta effect size is highest for classes affected by SwissArmyKnife. In
4 systems the Cliff’s Delta effect size is higher for classes affected by ComplexClass. In
the other 3 systems the highest effect size is for classes affected by SpaghettiCode. Only in
one system, namely eclipse.jface, the Antisingleton antipattern shows the highest value for
Cliff’s Delta.

Based on this result we reject H2 and we conclude that among all classes the classes par-
ticipating in the ComplexClass (ComplexC), SpaghettiCode (Spaghetti) and SwissArmyKnife
(Swiss) antipatterns are more change-prone. These findings detail the results obtained by
Khomh et al. [31] by highlighting three antipatterns that are more change-prone than the
other antipatterns. Based on our findings we can advice software engineers to detect in-
stances of these three change-prone antipatterns and fix them first.

7.4 Results: RQ3

The goal of RQ3 is to test whether Java classes affected by certain antipatterns are more
likely to undergo particular types of changes. We tested H3 by analyzing the Cliff’s Delta d
effect sizes of different types of change (see the Table 4.1) performed in classes participating
in different antipatterns. The Table 7.8 lists the results of this analysis.

Group #AS #Blob #CDBSP #ComplexC #LazyC #LongM #LPL #MsgC #RPB #Spaghetti #SG #Swiss
API 0.131 0.077 0.038 0.213 -0.043 0.073 0.095 0.075 0.001 0.207 0.029 0.150
oState 0.080 0.048 0.031 0.144 NA 0.042 0.060 0.045 -0.001 0.126 -0.001 0.109
func 0.084 0.057 0.019 0.153 -0.040 0.053 0.076 0.054 -0.002 0.149 NA 0.142
stmt 0.157 0.077 0.051 0.252 NA 0.140 0.146 0.120 0.100 0.308 0.007 0.245
cond 0.080 0.035 0.028 0.138 -0.020 0.059 0.081 0.058 0.001 0.178 0.100 0.136

Table 7.8: Cliff’s Delta d effect sizes of cases for which Mann-Whitney shows a significant
difference (p-value<0.01) or NA otherwise. Values in bold denote an effect size that is at
least small (d > 0.147).

They show that changes in the class and methods declaration (API) are more likely to
appear in classes participating in the SwissArmyKnife (Swiss), ComplexClass and Spaghet-
tiCode (Spaghetti) antipatterns. In fact, only for these antipatterns the distribution of API
changes is larger (0.8≤d) than the distribution of the same changes in classes not affected by
antipatterns. Changes in the functionalities (func) are likely in classes affected by the Com-

48

Manual Inspection

plexClass and SpaghettiCode antipatterns. Changes in the executable statements (stmt) are
frequent in classes affected by Antisingleton, SwissArmyKnife (Swiss), ComplexClass and
SpaghettiCode (Spaghetti).Finally, changes in the condition expressions and in the else-
parts (cond) are more frequent in classes affected by the SpaghettiCode antipattern.

Based on these results we reject H3 and conclude that classes affected by different
antipatterns undergo different types of changes.

7.5 Manual Inspection

To further highlight the relationship between antipatterns and change-proneness we man-
ually inspected several classes affected by antipatterns that have been resolved. For these
classes we analyzed the number of changes before and after the removal of the antipatterns.
The analysis clearly shows that when classes are affected by an antipattern they undergo a
considerably higher number of changes.

The example is the class *.xerces.StandardParserConfiguration from the Xerces sys-
tem. The Figure 7.1 illustrates how many total and API changes the class had during the
evolution. This class was affected by the ComplexClass antipattern until the release 2.0.2.
Before release 2.0.2, the class underwent on average 64.5 changes per release. The average
number of changes decreased to 5.2 after the antipattern was removed. Furthermore, the
average number of API changes decreased from 2 to 0.07, while the LOC dropped from
around 370 to 150.

49

7. RESULTS OF ANALYSIS

Figure 7.1: Complex antipattern evolution. the class *.xerces.StandardParserConfiguration
from the Xerces system.

As another example, consider the *.debug.ui.views.memory.AddMemoryBlockAction class
from the eclipse.debug.ui system. The Figure 7.2 illustrates how many total and conditional
changes the class had during the evolution. This class was affected by the SpaghettiCode
antipattern until the release 3.2. The average number of changes decreased from 79.83 to
1.5 after the release 3.2. Moreover, the average number of cond changes decreased from
2.67 to 0.1.

50

Summary

Figure 7.2: SpaghettiCode antipattern evolution. The class *.uml.cognitive.critics.Init from
the ArgoUML releases.

7.6 Summary

The results of our study help researchers and software engineers to gain a better insight into
the effects of antipatterns on change-proneness of Java classes.

We confirmed the Kohmh et.al findings [31] taking into account the SCC performed in
between two subsequent releases (H1a). Our approach overcomes the threats to validity that
affect analyses based on source code changes mined from two subsequent releases without
considering the actual changes performed in between them.

The distribution of SCC performed in classes affected by antipatterns is statistically
greater than the distribution of SCC performed in other classes (H1b). This result can be
used by software engineers to optimize the allocation of the resources needed to evolve a
system and to perform testing before it is released.

There is an association between the number of antipatterns affecting a class and number
of SCC performed in that class (H1c). Even though there is not a linear association, the
results of our study show that the number of antipatterns a class participates in is an indicator
of the number of SCC performed in that class.

Classes participating in ComplexClass, SpaghettiCode and SwissArmyKnife patterns are

51

7. RESULTS OF ANALYSIS

more change-prone than classes participating in other antipatterns (H2). This result is useful
to narrow down the set of risky classes. Software engineers can highlight classes affected by
these antipatterns in order to allocate more resources for their maintainance. Moreover, re-
searchers can focus on investigating techniques and tools aimed at avoiding and refactoring
classes affected by these antipatterns.

Changes in APIs are more likely to appear in classes affected by the ComplexClass,
SpaghettiCode, and SwissArmyKnife; methods are more likely to be added/deleted in classes
affected by ComplexClass and SpaghettiCode; changes in executable statements are likely
in AntiSingleton, ComplexClass, SpaghettiCode, and SwissArmyKnife; changes in condi-
tional statements and else-parts are more likely in classes affected by SpaghettiCode (H3).

52

Chapter 8

Discussion

8.1 Summary of the Results

In this thesis we performed a study to help researchers and software engineers to gain
a better insight into the effects of antipatterns on change-proneness of open-source sys-
tems. We used fine grade source changes to test whether 1) classes infected by antipatterns
change more than other classes; 2) there are specific antipatterns which differently influence
change-proneness; 3) there is a relation between the types of changes and the presence of
specific antipatterns.

First, we confirmed the Khomh et al.’s findings [31] taking into account the SCCs per-
formed in between two subsequent releases (RQ1). Our approach overcomes the threats
to validity that affect analysis based on changes mined from two releases without consid-
ering the actual changes performed in between them. Moreover using SCCs we were able
to count changes more precisely filtering out changes in the comments and copyrights that
accounted for more the 10%. Our results also partly confirm Olbrich et al. results [48],
[49]. Differently from us, they analyzed a couple of code smells and showed that infected
classes can even change less when counting changes per line of code. Khomh et al. [31]
addressed this question by showing that classes affected by antipatterns are no larger than
non-infected classes and, therefore, the change-proneness of the infected classes are not due
to the size, when a larger set of antipatterns is taken into account. The confirmation of this
research question was out of scope of our study. Additionally, we showed that there is an
association between the number of antipatterns and the number of SCCs.

Second, we showed that classes affected by ComplexClass, SpaghettiCode and Swis-
sArmyKnife antipatterns are more change-prone than classes affected by other antipatterns
(RQ2). We think that such results were due to the high complexity and low cohesion of
the antipatterns. In the former study, the authors concluded that the most change-prone an-
tipatterns vary per system and weren’t able to come up with a list of the most change-prone
antipatterns. Considering a bigger dataset we found different results showing the greater
impact of ComplexClass, SpaghettiCode and SwissArmyKnife antipatterns on change prone-
ness.

Third, we showed that certain antipatterns are linked with certain changes (RQ3):

53

8. DISCUSSION

• API changes are more frequently performed in classes affected by the SwissArmyKnife,
SpaghettiCode and ComplexClass patterns.

• Conditional (cond) changes are more frequent in classes affected by the Spaghetti-
Code antipattern.

• Changes in the functionalities (func) are likely in classes affected by the Complex-
Class and SpaghettiCode antipatterns.

• Changes in executable statements are likely in AntiSingleton, ComplexClass, Spaghet-
tiCode and SwissArmyKnife;

This is a novel and very dependent on the use of SCC research question. By looking
at the definitions of the antipatterns and the examples from the source code we present the
possible explanations of the results:

• SwissArmyKnife implements many interfaces and has a lot of responsibilities. There-
fore, it is likely that new responsibilities are added and removed by modifying the
API. The API changes in SpaghettiCode can be explained by the usage of long and
complex methods which time after time get refactored by extracting new functionali-
ties, exposed through the API. Similarly, ComplexClass is a target for many changes,
including API related due to the high complexity.

• Frequent conditional changes in the SpaghettiCode antipattern may be caused by the
high complexity and length of the methods.

• The high rate of functional changes in ComplexClass and SpaghettiCode, execution
statements in Antisingleton, ComplexClass, SpaghettiCode and SwissArmyKnife can
also be influenced by the higher complexity, low cohesion and the general high rate
of changes in those classes.

8.2 Implications of the Results

The results of our study have several implications on software engineers and researchers.
From the perspective of software engineers, first, RQ1 suggests that antipatterns should
be targets of refactoring due to the high change-proneness and, consequently, the higher
maintenance cost. Second, the results for RQ2 show that detecting and resolving the three
antipatterns ComplexClass, SpaghettiCode and SwissArmyKnife is even more important.
Classes affected by these antipatterns turned out to be the most change-prone. Third, among
all the analyzed antipatterns, engineers should particularly focus on resolving instances of
these antipatterns in order to prevent changes in APIs (RQ3). Those changes can have
a significant impact on the implementation of the other parts of a software system and,
therefore, should be prevented.

For instance, consider the scenario in which APIs are made available through web ser-
vices. The responsible software engineers want to assure the robustness of these classes to
minimize the possibility of breaking the clients of the web services. Based on the results of

54

Implications of the Results

our study they can use DECOR during the code review sessions to detect instances of the
ComplexClass, SpaghettiCode and SwissArmyKnife antipatterns in the set of API classes.
These are the antipatterns they should resolve first in order to reduce the probability that
APIs are changed and, hence, that clients are broken. This can be especially useful when
implementing SOA architectures containing many services and clients. Similarly, software
engineers may want to refactor ComplexClass and SpaghettiCode antipatterns as they are
linked with method add/remove changes. In case a public method is added or removed the
service API is changed and the clients may need to be updated.

In another situation, software engineers may prefer to have code with less conditional
statements to ease the unit testing. One change in a conditional statement may impact a
number of code paths and cause a huge effort in updating the test cases. In case there are
tests for many of the impacted paths, they might need to be modified to reflect the change.
Therefore, developers end up not only maintaining a highly change-prone class but also a
bunch of frequently modified unit tests. Additionally, they may even stop supporting them
which would impact the system quality. In order to prevent from such situations we suggest
to refactor SpaghettiCode antipatterns.

Similarly, ComplexClass and SpaghettiCode antipatterns could be refactored as they are
linked with the method add/remove changes. Consequently, after adding or removing meth-
ods in a class, corresponding unit tests are also added/removed/modifed. Although more
unit tests are written for the public methods and we didn’t distinguish private and public
method changes in the study, we believe that there is a link between those antipatterns and
modifications in unit tests. Its important to note that refactoring infected classes in naive
way by moving complexity to other classes may not ease the unit testing a lot. The com-
plexity will still remain in the system as the same execution paths will persist. Therefore,
it is important to perform refactoring wisely. Many good refactoring cases are described in
the book written by Beck and Fowler [40].

From the perspective of a researcher, our results are a step forward on analyzing the
impact of antipatterns on the change-proneness of classes. As there is no clear agreement
on the impact of design defects, there was a need for the further investigation. In par-
ticular, we showed that certain antipatterns are more change-prone than others and that
specific antipatterns are more likely to lead to specific types of changes. These results can
form basis for developing recommendation techniques that point out the most change-prone
classes and how to refactor them. Furthermore, we showed that fine-grade source changes
allow us to obtain a more detailed understanding of the evolution of classes affected by
antipatterns. Based on our results, researchers can perform studies on investigating specific
antipatterns. For instance, as ComplexClass, SpaghettiCode and SwissArmyKnife antipat-
terns were shown to be the most change-prone ones, software engineers might find hard
to understand the classes containing those defects. Therefore, a study on comprehension
can be performed. Similarly, the bug-pronennes and SpaghettiCode antipattern link can be
investigated as conditional changes may lead to bugs.

55

8. DISCUSSION

8.3 Threats to validity

This section discusses the threats to validity that can affect our empirical study and the
results described in the previous sections.

Threats to construct validity concern the relationship between theory and observation.
In our study, this threat can be due to the fact that we considered SCC performed in between
two subsequent releases. However, the effects of antipatterns can manifest themselves after
the next immediate release whenever the class affected by antipatterns needs to be changed.
We mitigated this threat by testing all the hypotheses taking into account all the SCC per-
formed after a release (available from the reported raw data). We obtained similar results.

Threats to internal validity concern factors that may affect an independent variable. In
our study, both the independent and dependent variables are computed using deterministic
algorithms (implemented in ChangeDistiller and Decor) delivering always the same results.

Threats to conclusion validity concern the relationship between the treatment and the
outcome. To mitigate these threats our conclusions have been supported by proper statis-
tical tests, in particular by non-parametric tests that do not require any assumption on the
underlying data distribution.

Threats to external validity concern the generalization of our findings. Every result ob-
tained through empirical studies is threatened by the bias of their datasets [42]. To mitigate
these threats we tested our hypotheses over 16 open-source systems of different size and
from different domains.

Threats to reliability validity concern the possibility of replicating our study and obtain-
ing consistent results. We mitigated these threats by providing all the details necessary to
replicate our empirical study. The systems under analysis are open-source and the source
code repositories are publicly available. Moreover, we published on-line1 the raw data to
allow other researchers to replicate our study and to test other hypotheses on our dataset.

1http://swerl.tudelft.nl/twiki/pub/DanieleRomano/WebHome/
/WCRE12rawData.zip

56

Chapter 9

Conclusions and Future work

This chapter summarizes the project’s contributions, concludes our findings and shows the
implications. After that, some ideas for future work are discussed.

9.1 Conclusions

Antipatterns have been defined to denote “poor” solutions to design and implementation
problems. Previous studies have showed that classes participating in antipatterns are more
change-prone than other classes. In this paper we extended existing studies providing a bet-
ter insight into the change-proneness of Java classes affected by antipatterns. We analyzed
the change proneness of these classes extracting and analyzing 40 types of fine-grained
source code changes (SCC) from the version control repositories of 16 Java open-source
systems. Besides confirming existing studies, our results show that:

• Classes participating in antipatterns change more frequently along the evolution of a
system (see RQ1).

• There is an association between the number of antipatterns affecting a class and num-
ber of SCC performed in that class (see RQ1), but no correlation existss.

• Classes participating in ComplexClass, SpaghettiCode and SwissArmyKnife antipat-
terns are more likely to be changed than classes participating in other antipatterns
(see RQ2).

• Certain antipatterns lead to certain types of source code changes (see RQ3). Condi-
tional changes are more frequent in classes affected by the SpaghettiCode antipattern;
Method add/remove changes are likely in classes affected by the ComplexClass and
SpaghettiCode antipatterns; Changes in executable statements are likely in AntiSin-
gleton, ComplexClass, SpaghettiCode and SwissArmyKnife .

To sum it up, we contributed to the existing knowledge on the impact of design de-
fects by confirming the high change-proneness of antipattern infected classes, identifying
the most change prone antipatterns and showing that specific changes are more common

57

9. CONCLUSIONS AND FUTURE WORK

for specific antipatterns. The study was performed while ignoring unimportant source code
changes (comments, copyrights) and counting changes more precisely compared to the pre-
vious studies.

9.2 Future work

Based on the results of this study and discussed related works (see the Chapter 3), we
suggest a number of possible future works:

• Perform a qualitative analysis of antipatterns. This would give a better understanding
of the antipattern evolution. The study may also be restricted to focus only on highly
change-prone antipatterns: ComplexClass, SpaghettiCode and SwissArmyKnife.

• Enlarge our dataset and analyze a number of industrial systems. Currently only open-
source systems were taken into investigation.

• Perform a study focused on specific domains, specific responsibilities of the classes.
As it has been discovered in the previous studies, code defects might be good solu-
tions in particular applications (e.g., GodClass in compilers) or unavoidable in auto-
generated code, such as GUI.

• Analyze the types of changes performed when antipatterns are introduced and when
they are resolved. This could indicate dangerous changes in antipatterns and solutions
to them.

• Evaluate the cost of particular changes in the classes infected by different antipatterns.

• Analysis are needed to further estimate the development and maintenance costs caused
by antipatterns.

• Analyze the relation between antipatterns and modifications in the unit tests. Such a
study would show if antipatterns impact the change-proneness of the unit tests.

Besides the empirical studies, the knowledge gained in this and future works could be
used to enhance existing tools for antipattern detections (see the Chapter 3, section 3.1). For
example, during the code review sessions or the process of reengineering engineers would
be given better suggestions for the code quality and possible refactoring. Furthermore, they
could be warned for the possible consequences before inserting the dangerous changes.

58

Bibliography

[1] Marwen Abbes, Foutse Khomh, Yann-Gael Gueheneuc, and Giuliano Antoniol. An
empirical study of the impact of two antipatterns, blob and spaghetti code, on program
comprehension. In Proceedings of the 2011 15th European Conference on Software
Maintenance and Reengineering, pages 181–190, Washington, DC, USA, 2011. IEEE
Computer Society.

[2] Chatzigeorgiou Alexander and Manakos Anastasios. Investigating the evolution of
bad smells in object-oriented code. QUATIC, pages 106–115, 2010.

[3] Du Bois Bart, Demeyer Serge, Verelst Jan, Mens Tom, and Temmerman Marijn. Does
god class decomposition affect comprehensibility? In Proceedings of IASTED Con-
ference on Software Engineering, pages 346–355, Anaheim, California, 2006. IAST-
ED/ACTA Press.

[4] Fred P. Brooks, Jr. The mythical man-month. In Proceedings of the international
conference on Reliable software, pages 193–, New York, NY, USA, 1975. ACM.

[5] William J. Brown, Raphael C. Malveau, Hays W. McCormick, III, and Thomas J.
Mowbray. AntiPatterns: refactoring software, architectures, and projects in crisis.
John Wiley & Sons, Inc., New York, NY, USA, 1998.

[6] Michelle Cartwright and Martin Shephard. An empirical investigation of an object-
oriented software system. IEEE Trans. Softw. Eng., 26(8):786–796, 2000.

[7] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design. IEEE
Trans. Softw. Eng., 120(6):476 – 493, 1994.

[8] James O. Coplien and Neil B. Harrison. Organizational Patterns of Agile Software
Development. Prentice-Hall, Upper Saddle River, NJ (2005), 1st edition, 2005.

[9] Ratiu Daniel, Ducasse Stéphane, Gı̂rba Tudor, and Marinescu Radu. Using history
information to improve design flaws detection. In Proceedings of the Conference on
Software Maintenance and Reengineering, pages 223–232, Washington, DC, USA,
2004. IEEE Computer Society.

59

BIBLIOGRAPHY

[10] Serge Demeyer, Stéphane Ducasse, and Michele Lanza. A hybrid reverse engineering
approach combining metrics and program visualization. In Proceedings of the 6th
Working Conference on Reverse Engineering, pages 175–186, Washington, DC, USA,
1999. IEEE Computer Society.

[11] Karim Dhambri, Houari Sahraoui, and Pierre Poulin. Visual detection of design
anomalies. In Proceedings of the 12th European Conference on Software Maintenance
and Reengineering, Tampere, Finland, pages 279–283. IEEE CS Press, April 2008.

[12] L. Erlikh. Leveraging legacy system dollars for e-business. IT Professional, 2(3):17
–23, may/jun 2000.

[13] Beat Fluri and Harald C. Gall. Classifying change types for qualifying change cou-
plings. In Proceedings of the 14th IEEE International Conference on Program Com-
prehension, ICPC ’06, pages 35–45, Washington, DC, USA, 2006. IEEE Computer
Society.

[14] Beat Fluri, Michael Wuersch, Martin Pinzger, and Harald Gall. Change distilling:
Tree differencing for fine-grained source code change extraction. IEEE Trans. Softw.
Eng., 33:725–743, November 2007.

[15] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander Chatzigeorgiou.
Jdeodorant: identification and application of extract class refactorings. In Proceed-
ing of the 33rd International Conference on Software Engineering, pages 1037–1039,
New York, NY, USA, 2011. ACM.

[16] Francesca Arcelli Fontana, Elia Mariani, Andrea Mornioli, Raul Sormani, and Alberto
Tonello. An experience report on using code smells detection tools. In Proceedings
of the 4th International Conference on Software Testing, Verification and Validation
Workshops, pages 450–457, Washington, DC, USA, 2011. IEEE Computer Society.

[17] Khomh Foutse, Di Penta Massimiliano, Guéhéneuc Yann-Gaell, and Antoniol Guil-
iano. An exploratory study of the impact of antipatterns on class change- and fault-
pronenesss. Empirical Software Engineering, 2011.

[18] Khomh Foutse, Vaucher Stéphane, Guéhéneuc Yann-Gael, and A. Sahraoui Houari.
A bayesian approach for the detection of code and design smells. In Proceedings of
the International Conference on Quality Software, pages 305–314, Washington, DC,
USA, 2009. IEEE Computer Society.

[19] Khomh Foutse and Gueheneuc Yann-Gael. An empirical study of design patterns and
software quality. Technical report, University of Montreal, 2008.

[20] Harald C. Gall, Beat Fluri, and Martin Pinzger. Change analysis with evolizer and
changedistiller. IEEE Softw., 26:26–33, January 2009.

[21] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

60

[22] Emanuel Giger, Martin Pinzger, and Harald C. Gall. Comparing fine-grained source
code changes and code churn for bug prediction. In Proceedings of the 8th Working
Conference on Mining Software Repositories, MSR ’11, pages 83–92, New York, NY,
USA, 2011. ACM.

[23] Robert J. Grissom and John J. Kim. Effect sizes for research: A broad practical
approach. Lawrence Earlbaum Associates, 2nd edition edition, 2005.

[24] S. G. Hart and L. E. Stateland. Development of nasa-tlx (task load index): Results
of emperical and theoretical research. P. A. Hancock and N. Meshkati (Eds.) Human
Mental Workload, pages 139–183, 1988.

[25] Brian Henderson-Sellers. Object-oriented metrics: measures of complexity. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[26] S. Deligiannis Ignatios, Stamelos Ioannis, Angelis Lefteris, Roumeliotis Manos, and
J. Shepperd Martin. A controlled experiment investigation of an object-oriented design
heuristic for maintainability. Journal of Systems and Software, 72:129–143, 2004.

[27] S. Deligiannis Ignatios, J. Shepperd Martin, Roumeliotis Manos, and Stamelos Ioan-
nis. An empirical investigation of an object-oriented design heuristic for maintainabil-
ity. Journal of Systems and Software, 65:127–139, 2003.

[28] M. Bieman James, Straw Greg, Wang Huxia, Munger P. Willard, and T. Alexander
Roger. Design patterns and change proneness: An examination of five evolving sys-
tems. In Proceedings of the International Software Metrics Symposium, pages 40–49,
Washington, DC, USA, 2003. IEEE Computer Society.

[29] Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey and taxonomy
of approaches for mining software repositories in the context of software evolution. J.
Softw. Maint. Evol., 19:77–131, 2007.

[30] Foutse Khomh, Massimiliano Di Penta, and Yann-Gael Gueheneuc. An exploratory
study of the impact of code smells on software change-proneness. In Proceedings of
the 16th Working Conference on Reverse Engineering, pages 75–84, Washington, DC,
USA, 2009. IEEE Computer Society.

[31] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano Anto-
niol. An exploratory study of the impact of antipatterns on class change- and fault-
proneness. Empirical Software Engineering, 17(3):243–275, 2012.

[32] Foutse Khomh, Stphane Vaucher, Yann-Gal Guhneuc, and Houari Sahraoui. A
bayesian approach for the detection of code and design smells. In Choi Byoung-ju, ed-
itor, Proceedings of the 9¡sup¿th¡/sup¿ International Conference on Quality Software
(QSIC). IEEE Computer Society Press, August 2009. 10 pages.

[33] Guillaume Langelier, Houari A. Sahraoui, and Pierre Poulin. Visualization-based anal-
ysis of quality for large-scale software systems. In proceedings of the 20th interna-
tional conference on Automated Software Engineering. ACM Press, Nov 2005.

61

BIBLIOGRAPHY

[34] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice. Springer-
Verlag, 2006.

[35] S Nash Maliha. Handbook of parametric and nonparametric statistical proce-
dures:handbook of parametric and nonparametric statistical procedures. Technomet-
rics, 43:374–374, 2001.

[36] Mika Mäntylä, Jari Vanhanen, and Casper Lassenius. A taxonomy and an initial em-
pirical study of bad smells in code. In Proceedings of the International Conference on
Software Maintenance, pages 381–384, Washington, DC, USA, 2003. IEEE Computer
Society.

[37] Mika V. Mäntylä. Empirical software evolvability - code smells and human evalua-
tions. In Proceedings of the IEEE International Conference on Software Maintenance,
pages 1–6, Espoo, Finland, 2010. Helsinki University of Technology.

[38] Mika V. Mäntylä and Casper Lassenius. What types of defects are really discovered
in code reviews? IEEE Trans. Softw. Eng., 35:430–448, 2009.

[39] Fokaefs Marios, Tsantalis Nikolaos, and Chatzigeorgiou Alexander. Jdeodorant: Iden-
tification and removal of feature envy bad smells. In International Conference on
Software Maintenance, pages 519–520, New York, NY, USA, 2007. ACM.

[40] Fowler Martin, Beck Kent, Brant John, and Roberts Don. Refactoring: improving the
design of existing code. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999.

[41] Bernhart M. Mauczka A., Grechenig T. Predicting code change by using static met-
rics. In Software Engineering Research, Management and Applications, pages 64–71,
2009.

[42] Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code attributes to
learn defect predictors. IEEE Trans. Softw. Eng., 33:2–13, January 2007.

[43] Naouel Moha, Yann-Gael Gueheneuc, Laurence Duchien, and Anne-Francoise
Le Meur. Decor: A method for the specification and detection of code and design
smells. IEEE Trans. Softw. Eng., 36:20–36, 2010.

[44] Naouel Moha, Yann-Gaël Guéhéneuc, Anne-Françoise Le Meur, and Laurence
Duchien. A domain analysis to specify design defects and generate detection algo-
rithms. In Proceedings of the Theory and practice of software, 11th international con-
ference on Fundamental approaches to software engineering, FASE’08/ETAPS’08,
pages 276–291, Berlin, Heidelberg, 2008. Springer-Verlag.

[45] Naouel Moha, Yann-Gael Gueheneuc, and Pierre Leduc. Automatic generation of de-
tection algorithms for design defects. In Proceedings of the 21st IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pages 297–300, Washington,
DC, USA, 2006. IEEE Computer Society.

62

[46] Naouel Moha, Amine Mohamed Rouane Hacene, Petko Valtchev, and Yann-Gaël
Guéhéneuc. Refactorings of design defects using relational concept analysis. In Pro-
ceedings of the 6th international conference on Formal concept analysis, ICFCA’08,
pages 289–304, Berlin, Heidelberg, 2008. Springer-Verlag.

[47] Tsantalis Nikolaos, Chaikalis Theodoros, and Chatzigeorgiou Alexander. Jdeodorant:
Identification and removal of type-checking bad smells. In Proceedings of the Confer-
ence on Software Maintenance and Reengineering, pages 329–331, Washington, DC,
USA, 2008. IEEE Computer Society.

[48] Steffen Olbrich, Daniela S. Cruzes, Victor Basili, and Nico Zazworka. The evolution
and impact of code smells: A case study of two open source systems. In Proceedings
of the 3rd International Symposium on Empirical Software Engineering and Measure-
ment, pages 390–400, Washington, DC, USA, 2009. IEEE Computer Society.

[49] Steffen M. Olbrich, Daniela S. Cruzes, and Dag I. K. Sjoberg. Are all code smells
harmful? a study of god classes and brain classes in the evolution of three open source
systems. In Proceedings of the International Conference on Software Maintenance,
pages 1–10, Washington, DC, USA, 2010. IEEE Computer Society.

[50] Andersen Per Kragh. 3. applied logistic regression. 2nd edn. Statistics in Medicine,
21:1963–1964, 2002.

[51] Daryl Posnett, Christian Bird, and Prem Dévanbu. An empirical study on the influence
of pattern roles on change-proneness. Empirical Softw. Engg., 16(3):396–423, June
2011.

[52] L. Prechelt, B. Unger, W. F. Tichy, P. Brössler, and L. G. Votta. A controlled exper-
iment in maintenance comparing design patterns to simpler solutions. IEEE Trans.
Softw. Eng., 27:1134–1144, 2001.

[53] Daniele Romano and Martin Pinzger. Using source code metrics to predict change-
prone java interfaces. In ICSM, pages 303–312, 2011.

[54] Daniele Romano, Paulius Raila, Martin Pinzger, and Foutse Khomh. Analyzing the
impact of antipatterns on change-proneness using fine-grained source code changes.
In Proceedings of the 19th Working Conference on Reverse Engineering (WCRE),
Washington, DC, USA, 2012. IEEE Computer Society.

[55] Demeyer Serge, Van Rysselberghe Filip, Gı̂rba Tudor, Ratzinger Jacek, Marinescu
Radu, Mens Tom, Du Bois Bart, Janssens Dirk, Ducasse Stéphane, Lanza Michele,
Rieger Matthias, Gall Harald, and El-ramly Mohammad. The lan-simulation: A refac-
toring teaching example. In Proceedings of the International Workshop on Principles
of Software Evolution, pages 123–134, Washington, DC, USA, 2005. IEEE Computer
Society.

[56] David J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures.
Chapman & Hall/CRC, 4 edition, 2007.

63

BIBLIOGRAPHY

[57] Frank Simon, Frank Steinbrückner, and Claus Lewerentz. Metrics based refactor-
ing. In Proceedings of the Fifth European Conference on Software Maintenance and
Reengineering (CSMR’01), page 30. IEEE CS Press, 2001.

[58] Harvey Siy and Lawrence Votta. Does the modern code inspection have value? In
Proceedings of the International Conference on Software Maintenance, pages 281–
289, Washington, DC, USA, 2001. IEEE Computer Society.

[59] Vaucher Stéphane, Khomh Foutse, Moha Naouel, and Guéhéneuc Yann-Gael. Track-
ing design smells: Lessons from a study of god classes. In Proceedings of the Working
Conference on Reverse Engineering, pages 145–154, Washington, DC, USA, 2009.
IEEE Computer Society.

[60] S. Dowdy S.Weardon and D. Chilko. Statistics for Research. Probability and Statistics.
John Wiley and Sons, 2004.

[61] Suresh Thummalapenta, Luigi Cerulo, Lerina Aversano, and Massimiliano Di Penta.
An empirical study on the maintenance of source code clones. Empirical Software
Engineering, 15(1):1–34, 2010.

[62] E. Van Emden and L. Moonen. Java quality assurance by detecting code smells. In
Proceedings of the 9th Working Conference on Reverse Engineering, pages 97–115,
Washington, DC, USA, 2002. IEEE Computer Society.

[63] Eva van Emden and Leon Moonen. Java quality assurance by detecting code smells.
In Proceedings of the 9th Working Conference on Reverse Engineering (WCRE’02).
IEEE CS Press, October 2002.

[64] Stephane Vaucher, Foutse Khomh, Naouel Moha, and Yann-Gael Gueheneuc. Track-
ing design smells: Lessons from a study of god classes. In Proceedings of the 6th
Working Conference on Reverse Engineering, pages 145–154, Washington, DC, USA,
2009. IEEE Computer Society.

[65] Marek Vokác. Defect frequency and design patterns: An empirical study of industrial
code. IEEE Trans. Softw. Eng., 30:904–917, 2004.

[66] Luo Yixin, A Hoss, and D.L Carver. An ontological identification of relationships
between anti-patterns and code smells. In Proceedings of the Aerospace Conference,
pages 1–10, Baton Rouge, LA, USA, 2010. Software Eng. Lab., Louisiana State Univ.

[67] Guo Yuepu, B. Seaman Carolyn, Zazworka Nico, and Shull Forrest. Domain-specific
tailoring of code smells: an empirical study. In Proceedings of the International Con-
ference on Software Engineering, pages 167–170, New York, NY, USA, 2010. ACM.

[68] Nico Zazworka and Christopher Ackermann. Codevizard: a tool to aid the analysis of
software evolution. In Proceedings of the International Symposium on Empirical Soft-
ware Engineering and Measurement, pages 1–1, New York, NY, USA, 2010. ACM.

64

Appendix A

Decor rules

In this appendix we provide DECOR detection rules to detect 13 antipatterns. More infor-
mation is provided in section 4.5.

Listing A.1: AntiSingleton detection rule

1 RULE CARD : AntiSingleton {
2 RULE : NotClassGlobalVariable { (STRUCT: GLOBAL VARIABLE, 1) };
3 };

Listing A.2: Blob detection rule

1 RULE CARD : Blob {
2 RULE : Blob { ASSOC: associated FROM: mainClass ONE TO: DataClass MANY };
3 RULE : mainClass { UNION LargeClassLowCohesion ControllerClass };
4 RULE : LargeClassLowCohesion { UNION LargeClass LowCohesion };
5 RULE : LargeClass { (METRIC: NMD + NAD, VERY HIGH, 0) };
6 RULE : LowCohesion { (METRIC: LCOM5, VERY HIGH, 20) };
7 RULE : ControllerClass { UNION
8 (SEMANTIC: METHODNAME, {Process, Control, Ctrl, Command, Cmd,
9 Proc, UI, Manage, Drive})

10 (SEMANTIC: CLASSNAME, {Process, Control, Ctrl, Command, Cmd,
11 Proc, UI, Manage, Drive, System, Subsystem}) };
12 RULE : DataClass { (STRUCT: METHOD ACCESSOR, 90) };
13 };

Listing A.3: CDSBP detection rule

1 RULE CARD : ClassDataShouldBePrivate {
2 RULE : FieldPublic { (STRUCT: PUBLIC FIELD, 1) };
3 };

65

A. DECOR RULES

Listing A.4: ComplexClass detection rule

1 RULE CARD : ComplexClass {
2 RULE : ComplexClass { UNION LargeClassOnly ComplexClassOnly } ;
3 RULE : LargeClassOnly { (METRIC: NMD + NAD, VERY HIGH, 0) } ;
4 RULE : ComplexClassOnly { (METRIC: McCabe, VERY HIGH, 20) } ;
5 };

Listing A.5: LazyClass detection rule

1 RULE CARD : LazyClass {
2 RULE : LazyClass { INTER NotComplexClass FewMethods };
3 RULE : NotComplexClass { (METRIC: WMC, VERY LOW, 20) };
4 RULE : FewMethods { (METRIC: NMD + NAD, VERY LOW ,5) };
5 };

Listing A.6: LPL detection rule

1 RULE CARD : LongParameterList {
2 RULE : LongParameterListClass { (METRIC: NOParam, VERY HIGH, 20) } ;
3 };

Listing A.7: MessageChain detection rule

1 RULE CARD : MessageChains {
2 RULE : MessageChainsClass { (METRIC: NOTI, SUP EQ, 4, 0) } ;
3 };

Listing A.8: RPB detection rule

1 RULE CARD : RefusedParentBequest {
2 RULE : RefusedParentBequest {
3 INHERIT: inherited FROM: ParentClassProvidesProtected
4 ONE TO: RareOverriding ONE } ;
5 RULE : ParentClassProvidesProtected { (METRIC: USELESS, EQ, 1,0) } ;
6 RULE : RareOverriding { (METRIC: IR, VERY LOW, 0)};
7 };

66

Listing A.9: SpaghettiCode detection rule

1 RULE CARD : SpaghettiCode {
2 RULE : SpaghettiCode { INTER NoInheritanceClassGlobalVariable
3 LongMethodMethodNoParameter };
4 RULE : LongMethodMethodNoParameter { INTER LongMethod MethodNoParameter };
5 RULE : LongMethod { (METRIC: METHOD LOC, VERY HIGH, 0) };
6 RULE : MethodNoParameter { (METRIC: NOParam, INF, 5, 0) };
7 RULE : NoInheritanceClassGlobalVariable { INTER NoInheritance ClassGlobalVariable };
8 RULE : NoInheritance { (METRIC: DIT, INF EQ, 2, 0) };
9 RULE : ClassGlobalVariable { (STRUCT: GLOBAL VARIABLE, 1) };

10 };

Listing A.10: SG detection rule

1 RULE CARD : SpeculativeGenerality {
2 RULE : SpeculativeGenerality { INTER AbstractClass OneChildClass };
3 RULE : AbstractClass {(STRUCT: IS ABSTRACT, 1) };
4 RULE : OneChildClass { (METRIC: NOC, EQ, 1, 0) };
5 };

Listing A.11: SwissArmyKnife detection rule

1 RULE CARD : SwissArmyKnife {
2 RULE : MultipleInterface {(STRUCT: MULTIPLE INTERFACE, 3) };
3 };

,

67

Appendix B

Releases

In this appendix we list the releases of software applications which forms the dataset of our
study. Columns #Classes, #Antipatterns, #SCC shows the number of classes, antipatterns
and SCC in each release.

Release #Classes #Antipatterns #SCC
ArgoUML-0.10.1 896 1278 14182
ArgoUML-0.12 984 1421 7551
ArgoUML-0.14 1282 1838 7237
ArgoUML-0.16 1263 1765 27022
ArgoUML-0.18.1 1332 1702 11569
ArgoUML-0.20 1483 1906 15548
ArgoUML-0.22 1579 2109 13279
ArgoUML-0.24 1639 2147 352
ArgoUML-0.26 1859 2089 1027

Table B.1: argo releases.

,

69

B. RELEASES

Release #Classes #Antipatterns #SCC
hibernate-2.0beta1 428 559 2822
hibernate-2.0beta3 437 489 1374
hibernate-2.0beta4 476 576 3247
hibernate-2.0rc2 414 494 1399
hibernate-2.0 437 483 853
hibernate-2.0.1 401 513 1091
hibernate-2.1final 492 604 12876
hibernate-2.1.4 512 620 720
hibernate-2.1.5 518 666 1276
hibernate-2.1.7 537 638 441

Table B.2: hibernate2 releases.

Release #Classes #Antipatterns #SCC
hibernate-3.0alpha 654 855 7778
hibernate-3.0beta1 748 982 3655
hibernate-3.0beta2 795 1020 1575
hibernate-3.0beta3 802 805 2985
hibernate-3.0beta4b 828 1026 3905
hibernate-3.0rc1 876 1082 1979
hibernate-3.0 877 1066 758
hibernate-3.0.1 887 1088 954
hibernate-3.0.2 893 1077 562
hibernate-3.0.3 894 1093 1461
hibernate-3.0.5 907 1125 2671
hibernate-3.1alpha1 934 915 1651
hibernate-3.1beta1 946 1162 2827
hibernate-3.1beta2 975 1195 527
hibernate-3.1beta3 972 1207 628
hibernate-3.1rc2 994 1204 786
hibernate-3.1rc3 1015 1235 710
hibernate-3.1 1019 1256 526
hibernate-3.1.1 1034 1247 380
hibernate-3.1.2 1036 1273 953

Table B.3: hibernate3 releases.

70

Release #Classes #Antipatterns #SCC
eclipse-SDK-2.0-win32 63 19 872
eclipse-SDK-2.1-win32 79 22 188
eclipse-SDK-2.1.1-win32 79 22 450
eclipse-SDK-2.1.2-win32 79 21 191
eclipse-SDK-2.1.3-win32 79 21 392
eclipse-SDK-3.0-win32 159 68 826
eclipse-SDK-3.0.2-win32 159 67 565
eclipse-SDK-3.1-win32 159 75 237
eclipse-SDK-3.1.2-win32 159 75 383
eclipse-SDK-3.2-win32 160 77 1754
eclipse-SDK-3.3-win32 197 109 551
eclipse-SDK-3.4-win32 201 118 1191

Table B.4: eclipse.debug.core releases.

Release #Classes #Antipatterns #SCC
eclipse-SDK-2.0-win32 157 125 1078
eclipse-SDK-2.0.2-win32 157 125 2621
eclipse-SDK-2.1-win32 212 186 810
eclipse-SDK-2.1.1-win32 212 186 1628
eclipse-SDK-2.1.2-win32 212 186 986
eclipse-SDK-2.1.3-win32 212 187 1672
eclipse-SDK-3.0-win32 416 343 1183
eclipse-SDK-3.0.1-win32 416 338 4434
eclipse-SDK-3.0.2-win32 416 331 2250
eclipse-SDK-3.1-win32 561 579 452
eclipse-SDK-3.1.1-win32 561 586 3909
eclipse-SDK-3.1.2-win32 561 583 4369
eclipse-SDK-3.2-win32 740 638 605
eclipse-SDK-3.2.1-win32 741 645 3663
eclipse-SDK-3.2.2-win32 741 648 2352
eclipse-SDK-3.3-win32 820 722 1600
eclipse-SDK-3.3.1-win32 820 714 812
eclipse-SDK-3.3.2-win32 820 713 943
eclipse-SDK-3.4-win32 859 722 1070
eclipse-SDK-3.4.2-win32 858 717 748
eclipse-SDK-3.5-win32 907 742 2535
eclipse-SDK-3.5.2-win32 907 740 831

Table B.5: eclipse.debug.ui releases.

71

B. RELEASES

Release #Classes #Antipatterns #SCC
eclipse-SDK-2.1.1-win32 189 111 479
eclipse-SDK-2.1.2-win32 189 116 1023
eclipse-SDK-2.1.3-win32 189 114 1247
eclipse-SDK-3.0-win32 217 136 280
eclipse-SDK-3.0.1-win32 217 137 1220
eclipse-SDK-3.0.2-win32 217 136 977
eclipse-SDK-3.1-win32 305 198 1235
eclipse-SDK-3.1.2-win32 305 199 1140
eclipse-SDK-3.2-win32 371 237 652
eclipse-SDK-3.2.1-win32 371 238 1105
eclipse-SDK-3.2.2-win32 371 241 1491
eclipse-SDK-3.3-win32 416 286 1208
eclipse-SDK-3.3.2-win32 416 285 678
eclipse-SDK-3.4-win32 434 296 369
eclipse-SDK-3.4.2-win32 434 297 409
eclipse-SDK-3.5-win32 441 308 559

Table B.6: eclipse.jface releases.

Release #Classes #Antipatterns #SCC
eclipse-SDK-2.0-win32 428 389 1075
eclipse-SDK-2.0.1-win32 428 380 1100
eclipse-SDK-2.0.2-win32 428 388 1146
eclipse-SDK-2.1-win32 441 367 754
eclipse-SDK-2.1.1-win32 441 373 435
eclipse-SDK-2.1.2-win32 441 368 837
eclipse-SDK-2.1.3-win32 441 378 325
eclipse-SDK-3.0-win32 468 418 650
eclipse-SDK-3.0.1-win32 468 426 2207
eclipse-SDK-3.0.2-win32 468 427 2135
eclipse-SDK-3.1-win32 471 484 237
eclipse-SDK-3.1.1-win32 471 463 942
eclipse-SDK-3.2-win32 476 484 1327
eclipse-SDK-3.3-win32 500 547 515
eclipse-SDK-3.4-win32 500 528 591
eclipse-SDK-3.5-win32 508 534 707

Table B.7: eclipse.jdt.debug releases.

72

Release #Classes #Antipatterns #SCC
eclipse-SDK-2.0-win32 48 18 517
eclipse-SDK-2.1.2-win32 53 35 247
eclipse-SDK-3.0-win32 102 82 459
eclipse-SDK-3.1-win32 119 96 280
eclipse-SDK-3.1.2-win32 119 96 322
eclipse-SDK-3.2-win32 199 147 493

Table B.8: eclipse.team.core releases.

Release #Classes #Antipatterns #SCC
eclipse-SDK-2.0-win32 132 123 989
eclipse-SDK-2.0.2-win32 132 123 3834
eclipse-SDK-2.1-win32 147 161 2772
eclipse-SDK-2.1.2-win32 147 163 488
eclipse-SDK-2.1.3-win32 147 163 893
eclipse-SDK-3.0-win32 184 183 1010
eclipse-SDK-3.0.2-win32 184 183 745
eclipse-SDK-3.1-win32 186 202 387
eclipse-SDK-3.1.2-win32 186 202 407
eclipse-SDK-3.2-win32 208 234 1100
eclipse-SDK-3.3-win32 210 231 445

Table B.9: eclipse.team.cvs.core releases.

Release #Classes #Antipatterns #SCC
eclipse-SDK-2.0-win32 80 38 684
eclipse-SDK-2.1.1-win32 88 51 165
eclipse-SDK-2.1.2-win32 88 51 102
eclipse-SDK-2.1.3-win32 88 51 223
eclipse-SDK-3.0-win32 171 114 630
eclipse-SDK-3.0.1-win32 171 113 824
eclipse-SDK-3.0.2-win32 171 113 670
eclipse-SDK-3.1-win32 222 145 638
eclipse-SDK-3.1.2-win32 222 145 1456
eclipse-SDK-3.2-win32 360 279 2387
eclipse-SDK-3.2.2-win32 361 278 457
eclipse-SDK-3.3-win32 395 275 1047
eclipse-SDK-3.5-win32 405 288 504

Table B.10: eclipse.team.ui releases.

73

B. RELEASES

Release #Classes #Antipatterns #SCC
JabRef-1.0 174 77 644
JabRef-1.1 192 101 1264
JabRef-1.19 248 130 1342
JabRef-1.2 238 142 1806
JabRef-1.4 505 453 1479
JabRef-1.5 663 563 1528
JabRef-1.55 850 743 818
JabRef-1.6 874 742 3764
JabRef-1.7b 1038 875 1570
JabRef-1.7 1057 876 2582
JabRef-1.8b 1099 885 1873
JabRef-1.8 981 765 2795
JabRef-2.0b 1284 912 558
JabRef-2.0.1 1276 928 1155
JabRef-2.1b 1355 1015 1105
JabRef-2.1 1350 1006 1619
JabRef-2.2b 1859 1559 355
JabRef-2.2b2 2095 1837 724
JabRef-2.2 2101 1896 1672
JabRef-2.3b 2196 1832 3751
JabRef-2.3b2 2202 1849 369
JabRef-2.3b3 2208 1864 1828
JabRef-2.3 2212 1849 976
JabRef-2.4b 2508 2183 627
JabRef-2.4 2517 2171 199
JabRef-2.4.2 2540 2194 1125
JabRef-2.5b 2567 2214 951
JabRef-2.6b 2581 2241 675
JabRef-2.6 2588 2235 1239
JabRef-2.7b 2597 2244 1272

Table B.11: jabref releases.

74

Release #Classes #Antipatterns #SCC
mylar-site-1.0.1-e3.3 776 512 7100
mylar-site-2.0M1-e3.3 936 625 3203
mylar-site-2.0M2-e3.3 966 651 4301
mylar-site-2.0M3-e3.3 1037 727 10795
mylyn-2.0.0-e3.3 882 593 3990
mylyn-2.1-e3.3 916 639 4244
mylyn-2.2.0-e3.3 971 697 3343
mylyn-2.3.0-e3.3 1060 773 1120
mylyn-2.3.1 1062 772 905
mylyn-2.3.2 1062 770 14559
mylyn-3.0.0 1106 751 510
mylyn-3.0.1 1109 754 859
mylyn-3.0.2 1121 760 1462
mylyn-3.0.3 1124 767 4035
mylyn-3.0.4 1124 761 1098
mylyn-3.0.5 1125 761 847
mylyn-3.1.0 1596 1236 4679

Table B.12: mylyn releases.

Release #Classes #Antipatterns #SCC
Rhino140R3 RELEASE 95 85 4631
rhino15R1 125 108 4031
rhino15R2 187 164 780
rhino15R4 206 147 741
rhino1 5R5 209 139 1423
rhino1 6R1 218 163 426
rhino1 6R2 218 159 234
rhino1 6R3 219 163 2529

Table B.13: rhino releases.

Release #Classes #Antipatterns #SCC
rapidminer-4.6-community 2261 2690 239
rapidminer-5.0 2839 3412 6702
rapidminer-5.0.008 2861 3433 840
rapidminer-5.0.009 2907 3321 2118

Table B.14: rapidminer releases.

75

B. RELEASES

Release #Classes #Antipatterns #SCC
Azureus3.0.0.3 2838 2525 11380
Azureus3.0.0.8 2901 2905 915
Azureus3.0.1.0 2911 2917 2754
Azureus3.0.1.4 2961 2983 2836
Azureus3.0.1.6 2980 2999 7463
Azureus3.0.2.0 3038 3045 3346
Azureus3.0.3.0 3063 3092 593
Azureus3.0.3.4 3065 3095 3278
Azureus3.0.4.0 3096 3134 5161
Azureus3.0.4.2 3082 3115 4780
Azureus3.0.5.0 3164 3185 8839
Azureus3.0.5.2 3180 3178 2831
Azureus3.1.0.0 3381 3406 3781
Azureus3.1.1.0 3458 3586 13592
Azureus4.0.0.0 3557 3599 1172
Azureus4.0.0.2 3550 3593 1629
Azureus4.0.0.4 3562 3591 1690
Azureus4.1.0.0 3605 3598 4880
Azureus4.1.0.2 3605 3592 685
Azureus4.1.0.4 3606 3602 852
Azureus4.2.0.0 3671 3649 4723
Azureus4.2.0.2 3671 3653 2129
Azureus4.2.0.4 3694 3669 3611
Azureus4.2.0.8 3746 3724 5058
Azureus4.3.0.0 3680 3559 9770
Azureus4.3.0.2 3679 3553 3815
Azureus4.3.1.0 3696 3570 1818
Azureus4.3.1.2 3698 3565 2247
Vuze 4400 3733 3597 3510

Table B.15: vuze releases.

76

Release #Classes #Antipatterns #SCC
Xerces-J-bin.2.0.0.alpha 247 147 2216
Xerces-J-bin.2.0.0.beta 536 370 1914
Xerces-J-bin.2.0.0.beta3 633 490 3951
Xerces-J-bin.2.0.0.beta4 608 553 4641
Xerces-J-bin.2.0.0 579 439 2014
Xerces-J-bin.2.0.1 579 477 8511
Xerces-J-bin.2.0.2 617 512 4381
Xerces-J-bin.2.1.0 633 553 1811
Xerces-J-bin.2.2.0 642 524 4944
Xerces-J-bin.2.3.0 673 544 1416
Xerces-J-bin.2.4.0 678 555 3310
Xerces-J-bin.2.5.0 692 545 4259
Xerces-J-bin.2.6.0 700 565 3656
Xerces-J-bin.2.6.2 723 569 9233
Xerces-J-bin.2.7.0 795 668 1941
Xerces-J-bin.2.8.0 802 643 616
Xerces-J-bin.2.8.1 804 642 1675
Xerces-J-bin.2.9.0 808 647 1340
Xerces-J-bin.2.9.1 815 645 7121
Xerces-J-bin.2.10.0 869 700 599

Table B.16: xerces releases.

77

