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ABSTRACT

Comets, the sporadic visitors from the outer edges of the Solar System, are considered to hold the
key for understanding the formation of planets and the origin of life on Earth. Having spent the
majority of time away from the radiative environment of the inner Solar System, the chemistry of
the comets has remained unaltered, making them the pristine samples of the matter from the an-
cient Solar nebula. A mission to bring cometary particles back to Earth enables the examination of
the materials in well equipped laboratories and saves the mass of the instruments to be carried on
board. To this end, a comet sample return mission has been a priority in the Solar System explo-
ration plans of space agencies. However, due to the highly inclined and highly eccentric nature of
comets’ orbits, it is challenging to reach them. As conventional propulsion methods require a large
quantity of propellant for this type of mission, the feasibility of using the novel propulsion tech-
nique of solar sailing is explored in this thesis. The solar sailcraft is propelled by the reflection of the
incident solar radiation on a large, lightweight sail. In order to return the comet samples to Earth
within a reasonable time period, the orbit transfer is considered as an optimal control problem with
constraints placed on the sailcraft’s position and velocity.

The comet 103P/Hartley 2 was selected as the target for the mission and the total mission (to the
comet and back to Earth) is aimed to be completed within the ten year period between 2020-2030.
A perfectly reflecting (ideal) square sail with a lightness number β of 0.05 (moderate performance)
was considered for the analysis. The sailcraft was to depart from a heliocentric Earth orbit and the
sail orientation was considered to change at a fixed number of nodal points along the trajectory. The
Differential Evolution (DE) algorithm was used to search for time-optimal trajectories that minimize
the approach distance to the comet and the relative velocity with respect to the comet during sample
collection. Grid Search method was used to narrow in on the optimal departure date and time-of-
flight based on the optimization result. The optimal trajectory obtained predicts the solar sailcraft
to reach the comet, collect the samples and return back to Earth in 6.77 years. The time of arrival
at the comet was found to match with the comet’s perihelion passage, enabling effective sample
collection. The outcome of the trajectory analysis, thus successfully demonstrates the applicability
of solar sailing to comet sample return missions in the near future.
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1
INTRODUCTION

For centuries, we as mankind have been interested in understanding our origin and answering the
fundamental question about the formation of life on Earth. In this quest to understand the early
Solar System formation, a key attribute is about determining the physical and chemical properties
of the primordial mixture, which contained the building blocks for planets and other bodies in the
Solar System. The problem in deducing the composition of this mixture is that over the last 4.5 bil-
lion years since their formation, the planets and their moons have undergone further processing [1].
As a consequence of changes inflicted by high speed impacts between the bodies and due to grav-
itational compression and internal heating, the surface composition of these bodies have evolved
over time and thus, do not offer much insight about early Solar System.

However, some of the other bodies like comets and asteroids, which are considered to have been
formed earlier than the planets, have remained essentially unchanged since their accretion [2].
Comets, especially, orbiting near the outer edges of the Solar System - far from the heat and radia-
tion of the Sun, have remained almost unaltered. Only occasionally, few of the comets pass through
the inner Solar System pulled by gravity, which is witnessed on Earth as the flashy trails across the
night sky. Due to their long orbital periods and minimal interaction with Sun, the chemistry of the
comets has been preserved over time. Thus, comets are considered as the pristine examples of mat-
ter formed from the ancient Solar nebula.

Studying and investigating cometary material could provide information about the primordial mix-
ture from which the planets formed. Such an investigation will also shed some light on cometary
nuclei, exploring the chemistry and physics behind the comet’s activity. Our current knowledge on
comets has been gained through a combination of surface observations and missions to comets.
The presence of ice, ammonia and more importantly, organic compounds like methane and the
amino acid glycine in comets have been confirmed by the past missions to these bodies [3]. These
findings strengthen the theory that water and life on Earth might have been seeded by comets im-
pacting the newly formed Earth. Hence, exploring comets can help in improving our understanding
of planet formation and the origin of life on Earth.

To this end, a science mission to study these bodies is imperative. Though the past flyby or orbiter
missions to comets have provided crucial observations regarding the comet’s physical and chem-
ical characteristics, the scientific benefits of bringing samples of cometary material back to Earth
are far superior. A sample return mission would provide an unique perspective by enabling the
examination of the material returned from the comet in well equipped laboratories [4]. Using the
plethora of instruments and measuring techniques available on ground, higher levels of precision
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2 1. INTRODUCTION

can be obtained and the methods can be updated as the technology evolves. This is in contrast to
orbiter/lander missions taking in-situ measurements at the comet, which are limited by the number
and capability of instruments carried on board the spacecraft. While for a sample return mission,
the only specialized equipment needed on board is a simple sample collection and storage device.
Additionally, the results inferred from analyzing the returned samples could enhance the value of
orbiter/lander observations by validating their findings [4].

The scientific implications of comet sample return missions have made them a prime candidate in
Solar System exploration roadmaps of space agencies [5]. Thus, it is essential to analyze the prospect
of performing such a mission in the near future. The orbits of comets are, however, challenging to
reach due to their high inclination and high eccentricity. Missions to these high energy orbits re-
quire a huge amount of ∆V. For conventional propulsion methods which traditionally operate by
converting the chemical energy stored in molecules to kinetic energy, this translates to carrying
large quantities of propellant on board the spacecraft. As an example, the Rosetta mission (which
is just a one-way mission) to comet 67P/Churyumov-Gerasimenko required close to 60% of the or-
biter mass as propellant to deliver a payload of 265 kg [6]. This is a major limitation in employing
conventional propulsion techniques for comet sample return missions.

To overcome this limitation, novel propulsion technique known as solar sailing, is considered for
the comet sample return mission in this research. In solar sailing, a large, lightweight sail is used for
reflecting the incident radiation from the Sun. The unique advantage of solar sailing is that by using
the Sun as the energy source, it does not require propellants as conventional propulsion methods. It
is based on the principle of momentum transferred during the impact of a stream of photons (trav-
elling at speed of light) onto the sail and thus, the sailcraft [7]. Though, the propulsive force resulting
from the momentum transfer to the sail is in the order of few mN, in the frictionless environment
of space, this constant energy input can build up to significant proportions over time, enabling the
sailcraft to reach great distances in the Solar System. Thus, solar sailing has been considered over
the years to possess the potential for interplanetary orbit transfers.

The main issues to consider in applying solar sailing is that, firstly, the thrust magnitude decreases
as the square of the distance from the Sun. Secondly, unlike other low thrust propulsion systems, the
direction of thrust cannot take up any arbitrary vector alignment and is limited by the orientation
of the sail. Further since the acceleration attained from solar sailing is very small, the time-of-flight
(including the return leg) becomes crucial in accomplishing the mission as well as to prevent the
degradation of the sail and other components. In view of the above factors, the trajectory of the so-
lar sailcraft needs to be optimized to complete the sample return mission within a reasonable time
period. Therefore, the research presented in this thesis report will focus on studying the dynami-
cal aspects of the solar sailcraft trajectory to (and back from) the comet. The comet sample return
mission will be considered as a time-optimal problem with orbital constraints and the optimal tra-
jectory will be determined by employing an optimization algorithm (differential evolution). The
outcome of the research will aim to provide more insight into dynamics of the problem, assess the
results based on current sailcraft performance level and ultimately, answer the following research
question:

Is it possible to effectively return cometary samples back to Earth using solar sailing within a reason-
able time frame?

In order to address the above question, the report begins with the background information on past
missions and moves onto discuss mission critical details like target selection and orbital require-
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ments in Chapter 2. This is followed by Chapter 3, which lays the theoretical foundation of work
done in this thesis, by presenting the choices made regarding the dynamics model used in the sim-
ulation. To determine the optimal trajectory, a number of numerical tools were utilized. Chapter 4
explains the choice of the tools and describes their operation, while Chapter 5 elaborates the pro-
cess of tuning the parameters of these tools and validating their settings. The results of optimization
of the solar sailcraft trajectory for a comet sample return mission are provided in Chapter 6. Finally,
the conclusions derived from this thesis work, along with the recommendations for future research
are presented in Chapter 7.





2
BACKGROUND

The current chapter is used to provide the necessary background to the research topic dealt in this
thesis report. The chapter begins with the history of solar sailing and proceeds to present its ad-
vancement over the years. The various solar sailing missions attempted over the years are briefly
described, along with the breakthrough mission - IKAROS. The presentation of this heritage will
provide the current level of solar sail performance.

A description of the past missions to comets is provided in Section 2.2. The information gained
from these missions was used to decide critical design aspects of the sample return mission. Based
on the design considerations, the mission objectives and the trajectory requirements were derived
and mentioned in Section 2.3. Finally, the possible targets for the comet sample return mission are
listed in Section 2.4 and the choice of the target is also explained.

2.1. HERITAGE OF SOLAR SAILING

Solar sailing is a novel idea of utilizing the naturally available radiation from the Sun for spacecraft
propulsion. The propulsive force, in case of solar sailing, is obtained through the momentum gained
from the impact of photons on the sail. Though the force resulting from the momentum exchange is
small, the sailcraft is slowly and continuously accelerated, making solar sailing a form of very-low-
thrust propulsion.

The concept of solar sailing as a practical means of spacecraft propulsion was conceived as early as
1924 by the German engineer Fridrickh Tsander [7]. Following this, there were brief studies in the
1950s discussing the advantages of using solar sailing for interplanetary travel. But it was not until
1976 when solar sailing was formally considered for a rendezvous mission to comet Halley by the
National Aeronautics and Space Administration (NASA).

The initial proposal consisted of a 800 x 800 m three-axis stabilized square solar sail [7]. However,
the design was changed to a heliogyro (rotating) configuration with twelve 7.5 km long blades, owing
to the high risk associated with the deployment of the large square sail. Following the preliminary
concept analysis phase, the competing concept of Solar Electric Propulsion (SEP) was selected by
NASA upon its merit of having lower risks for the mission. Ultimately, due to the rising cost estimate,
the comet rendezvous mission was dropped. The analysis and design developments achieved dur-
ing this period sparked the interest in manufacturing and testing key technologies related to solar
sailing for future projects.

5



6 2. BACKGROUND

Figure 2.1: Solar Sail deployment test on ground at DLR [9].

In 1999, the Deutsches Zentrum für Luft- und Raumfahrt (DLR) in a joint effort with the European
Space Agency (ESA) successfully tested the first full-scale deployment of a solar sail on ground at
their centre in Cologne. A picture of the deployed sail is given in Figure 2.1. The 20x20 m sail con-
sisted of four segments made of Kapton having a thickness of 7.5 µm, and the sail segments were
deployed with the help of ultra-light weight carbon fiber reinforced plastic (CFRP) booms [8].

Apart from national space agencies, solar sailing also attracted interest from organizations like the
Planetary Society and Cosmos Studios, to set up a private project to test suborbital prototypes.
In 2005, the Cosmos 1 sailcraft (outcome of the collaborative project) marked the first attempt in
demonstrating the solar sail technology on orbit. The 600 m2 sail was made of 5 µm thick alu-
minised reinforced mylar [10]. But due to the malfunctioning of the Volna launcher, the sailcraft
was lost in an explosion just 82 seconds after launch.

Following the above attempts on testing solar sailing technology, the first spacecraft to successfully
demonstrate solar sailing as the main propulsion system in interplanetary space was the Interplan-
etary Kite-craft Accelerated by Radiation Of the Sun (IKAROS), developed by the Japan Aerospace
Exploration Agency (JAXA). The spacecraft comprised of a 14x14 m square sail with a thickness of
7.5 µm [11]. The sail was made of thermoplastic polyimide and had 0.5 kg tip masses at the corners
for stability. Further, thin-film solar cells were embedded on the sail, generating a power of 300 W
and the blocks of LCD (Liquid Crystal Display) panels attached along the edges were used to control
the sail attitude.

IKAROS was launched aboard the H-IIA rocket from Tanegashima Space Center on 21 May 2010
[11]. With the sail successfully deployed in June 2010, the sailcraft was set on an interplanetary tra-
jectory to Venus. Figure 2.2 shows the picture of IKAROS taken using a Deployable Camera (DCAM)
after sail deployment. During the course of the sailcraft’s trajectory, thrust (and the resulting accel-
eration) due to SRP and the performance of sail’s attitude control system were measured. IKAROS
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Figure 2.2: IKAROS in interplanetary space after sail deployment [12].

accomplished its primary goals of deploying the sail, measuring acceleration (and velocity) gained
from SRP and controlling the orientation of the sail. In addition, IKAROS also completed its sci-
entific objectives of detecting and measuring gamma-ray bursts and cosmic dust. Thus, IKAROS
proved to be a landmark in the advancement of solar sail technology and a precursor for making
solar sailing a promising option for space exploration.

With the success of IKAROS, the utilization of solar sailing in space missions increased and ex-
panded to a multitude of applications. NASA’s NanoSail-D2 sailcraft (launched in November 2010)
[13], following a successful sail deployment, remained in the Low Earth Orbit (LEO) for 240 days and
produced large amounts of data on the use of solar sails as passive ways of de-orbiting space debris
and dead satellites. NASA had also planned a solar sailing demonstrator mission called Sunjammer
in 2013 to test sail deployment and sail attitude control, while guiding the sailcraft to the Earth-
Sun L1 Lagrange point. The sail was made of Kapton, having a surface area of 1200 m2, making it
the largest solar sail built till date [14]. With a large surface area and a thickness of just 5 µm, the
sail was capable of producing thrust in the order of 10−2 N. In spite of Sunjammer being cancelled
before its launch, the design and deployment tests (on ground) were valuable for the research on
manufacture and control of large solar sails.

The Planetary Society after their attempt in 2005 with Cosmos 1, re-initiated their plans with the
LightSail series of sailcraft. The new design was based on NanoSail-D, consisting of a 32 m2 Mylar
sail stacked in a 3U CubeSat format [15]. LightSail-1 was launched as a test mission in May 2015 and
was declared a success following the sail deployment on 7 June 2015. The main mission, LightSail-2,
is scheduled for launch in 2019 and will aim to demonstrate controlled raising of orbit apogee using
solar sail as main propulsion.

In view of the results achieved and progress made in solar sailing technology, more missions have
been planned for the forthcoming future. Among the recently proposed missions is the ESA/DLR
collaborative project - Gossamer Roadmap - which would send series of demonstrator sailcraft
called Gossamer-1,-2 and -3 to space [16]. The objective of the project is to demonstrate the de-
ployment and full attitude and orbit control of 5x5 m, 10x10 m and 50x50 m sails, that can be used
to deorbit small satellites from LEO. Another important mission is NASA’s Near Earth Asteroid (NEA)
Scout mission, which will demonstrate the ability of low-cost sailcraft to perform NEAs reconnais-
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sance. The sailcraft will be in a 6U cubesat formation, weighing just 12 kg and propelled by a 83
m2 sail [17]. Notably, NEA Scout will be one of several payloads aboard the maiden flight of NASA’s
Space Launch System (SLS), scheduled to be launched in 2019.

Finally, OKEANOS (Outsized Kite-craft for Exploration and Astronautics in the Outer Solar System)
is a proposed solar sail mission by JAXA to Jupiter’s Trojan asteroids [18]. The spacecraft will be
propelled by a hybrid solar sail, containing thin solar panels embedded on the sail to power an ion
engine. As a supplementary part of the mission, lander and sample return options are considered
and if selected, the mission will be launched in late 2020s.

From the time when solar sailing was considered a concept for novels, it has made giant strides
in becoming a reality, through the efforts of scientists and engineers over the years. Especially in
the last decade, missions like IKAROS and NanoSail-D2 have demonstrated the capabilities and
the wide range of applications that the technology possesses, some of which are unique to solar
sailing. The current research focuses on further reducing the mass per unit area of the sail (called
the sail loading parameter), to enable ambitious mission concepts to outer Solar System or to place
satellites in non-Keplerian orbits. Additionally, performing further flight tests on sail deployment
and attitude control would make the technology more robust and reliable. Therefore, with the rising
opportunities for solar sailing and future advancements in place, solar sailing has the potential to
become a viable option for space exploration.

2.2. MISSIONS TO COMETS

Comets are small bodies made of ice and dust, and are known to originate from the outer regions of
the Solar System. The core of the comets called the nucleus consists of a combination of dust, rock,
ice and frozen oxides of carbon [20]. Due to the heat from solar radiation, the ice and frozen ox-
ides sublimate from the nucleus forming a thin atmosphere called the coma. The presence of these
gases and ions in the coma is responsible for the comet’s brightness, which lead to the detection of
numerous comets. During the comet’s passage close to the Sun, the force exerted by solar wind on
the coma creates a plasma tail pointing away from the Sun. The sublimation of ice from the nucleus
drags along the dust particles as the gases release from the surface, forming an additional dust tail
(shaped by solar radiation pressure) as depicted in Figure 2.3. These tails can be generally observed

Figure 2.3: Depiction of the plasma (blue) and dust (white) tails of a comet [19].



2.2. MISSIONS TO COMETS 9

to extend to great lengths (in the order of 107 km) from the comet, but the density of particles re-
duces rapidly with the distance from the comet.

The comets, along with the planets and asteroids, are considered to have been formed from the
collapse of a dense, molecular cloud made of dust, gas and ice [21]. However, the planets have all
been subjected to significant reprocessing since their formation and do not provide much infor-
mation about the material from which they formed. Whereas, comets having spent only a small
fraction of their orbital period in the inner Solar System, remain pristine, free from reprocessing of
their material or structure. The comets are also considered to be of high astrobiological value due to
the possibility that comets might have contributed to the presence of life and volatile compounds
found on Earth [22]. Thus, observing and exploring comets has been one of the important priorities
for the space agencies around the world, to further the understanding of the solar System.

In the past, there have been space missions to study the comets at a close range, including flyby,
rendezvous, orbiter or sample return missions. Amongst the previous missions to comets, Deep
Impact, Rosetta and Stardust were unique and their observations were pivotal for the current knowl-
edge about these bodies. In the Deep Impact mission, NASA released an impactor into the comet,
to study the interior composition of the comet 9P/Tempel by observing the collision. The spacecraft
was launched on a Delta-II rocket from Cape Canaveral on January 12, 2005 [23]. Following the 60
days cruise phase, the spacecraft began its approach towards the comet, while also observing the
comet’s position, activity, rotation and dust environment. The 372 kg impactor was detached from
the flyby spacecraft on June 29, 2005 and was positioned in front of the comet for an impact on July
4, 2005.

The Deep Impact spacecraft took images of the event and its outcome from a safe distance of about
500 km from the comet. The crater formed due to the impact was measured to be around 150 m in
diameter and 30 m in depth [24]. The image analysis of the impact revealed that the material ejected
consisted of more dust particles (finer than sand) and fewer ice than presumed. More detailed in-
formation could not be recognized from the images due to the bright dust cloud over the crater.
Another mission named Stardust was used as a follow-up to obtain better images of the crater. The
data from these missions indicated the presence of materials containing carbon as well as water ice
on the comet 9P/Tempel 1 [24]. Based on the results, Tempel 1 was envisaged to have originated in
the Uranus and Neptune Oort Cloud region of the Solar System. The Deep Impact mission was ex-
tended to observe other comets including 103P/Hartley 2, before ending the mission in September
2013. The observations made at the Hartley 2 revealed a crucial detail that the comet was made of
dry ice and not water ice as anticipated earlier.

ESA’s Rosetta mission features as an important milestone in the study of comets and for demon-
strating the technological advancement achieved in the field of space exploration. The objective of
the mission was to orbit comet 67P/Churyumov Gerasimenko and conduct an extensive investiga-
tion of the comet [6]. Towards this aim, the spacecraft was designed to consist of two parts, viz., an
orbiter and a lander (Philae). The orbiter was used to observe the comet’s activities and the lander
was employed to make in-situ measurements of it’s composition. On March 2, 2004, the spacecraft
was launched on an Ariane 5 rocket from the Guiana Space Centre [6]. The main propulsion system
of the spacecraft consisted of 24 paired bipropellant (monomethylhydrazine-dinitrogen tetroxide)
10 N thrusters, which were used for orbit maneuvers and attitude control. Rosetta’s trajectory to the
comet included gravity assist maneuvers and flybys, with the first Earth flyby on March 4, 2005 [26].
To correct its trajectory, the spacecraft made a low-altitude flyby of Mars in February 2007, which
was followed by two more Earth flybys in November 2007 and November 2009 respectively. After
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Figure 2.4: Illustration of the trajectory followed by Rosetta to Comet 67P/Churyumov-Gerashimenko [25].

ten years long journey, Rosetta entered into the orbit around the comet on August 6, 2014, after per-
forming a series of rendezvous maneuvers.

Immediately after getting into the orbit around the comet, the orbiter surveyed the comet’s surface
for potential sites for deploying the lander. On November 12, 2014, the Philae lander detached from
the orbiter and landed on the comet [26]. After a brief hiatus, the lander completed most of planned
measurements and transmitted the obtained data back to Earth via the orbiter. Due to the decrease
in sunlight received by the spacecraft as the comet travelled through the outer Solar System and as
the communication with the orbiter/lander did not look optimistic, the mission was concluded by
guiding the orbiter to the comet’s surface. Being a recent mission, interpretation of data sent by the
spacecraft are still ongoing. From the initial analysis, the isotopic signature of water vapour on the
comet was found to be different to that on Earth [28]. The measurements made by Philae indicate
the presence of carbon and hydrogen molecules in the coma. Further, the material displaced at
Philae’s landing site revealed traces of organic compounds, few of which were observed for the first
time on a comet.

Till date, Stardust is the first and only mission to have achieved the feat of bringing back samples
from the coma of a comet back to Earth. In 1995, NASA set up Stardust as a dedicated mission to

Figure 2.5: Illustration of the Stardust spacecraft [27].
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Figure 2.6: Stardust mission trajectory [27].

study Comet Wild 2, a long-period comet believed to hold pristine samples of materials from its
formation. The spacecraft was launched aboard a Delta-II rocket from Cape Canaveral on February
7, 1999 [29]. The main objective of the mission was to make a non-destructive capture of particles
from the comet’s coma and return the samples safely back to Earth. The spacecraft followed a he-
liocentric orbit (Figure 2.6) that took it around the Sun and approached the Earth for a gravity assist
maneuver in 2001. After around 5 years en route to the comet, Stardust performs a close flyby at a
distance of 240 km to the comet, with the sample collector deployed to collect particles.

To prevent damage during particle collection, the sample collector was designed in the shape of a
tennis racket as shown in Figure 2.5, containing blocks of ultra-low density aerogel in silicon-based
porous structures [29]. Five other scientific payloads (Imaging Camera, Dust Flux Monitor, Dust
Analyzer, Sample Collection Instrument and Telecommunication Unit) were carried on-board to
capture images of the comet and perform real-time analysis to determine the composition, mass
and size of the collected dust particles. On January 15, 2006 after around two years on its return
trajectory, Stardust reached Earth and released the Sample Return Capsule, which re-entered the
Earth’s atmosphere and landed safely in the Utah desert.

The comet’s samples were examined in the clean room at NASA’s Johnson Space Center in Houston.
More than a million microscopic dust particles were embedded in the aerogel, along with few parti-
cles in the size range of 0.1 mm [30]. The preliminary analysis of the samples indicated the presence
of a large number of organic compounds, with some of the compounds containing biologically us-
able nitrogen. The existence of iron and copper sulfide in the samples suggested the heating of
comet’s core during the early Solar System, since the formation of these molecules require the pres-
ence of water [31]. Additionally, for the first time, glycine (an amino acid) was detected in the parti-
cles ejected from Wild 2, supporting the theory that life in the Universe could be common and not
rare.
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2.3. MISSION OBJECTIVES

The current knowledge on comets is based on the information gained from optical remote sens-
ing, computer simulations, study of meteoritic materials found on Earth, flyby missions to comets
and examination of samples returned from Comet Wild 2 [21]. The space missions, especially, were
crucial for expanding our understanding of the comets as well as for verifying some of the existing
theories on comets. The samples retrieved by Stardust spacecraft appears to be composed of a het-
erogeneous mixture of organics and minerals. Intermingled in these mixtures, a collection of highly
refractory and highly volatile components were also found. Few of these components show clear
isotopic evidence of pre-solar materials [21]. Thus, the study on cometary samples has successfully
shown that comets possess materials originating from a wide range of environments, making them
a repository of primordial Solar System materials.

Although the samples brought back by Stardust were vital in arriving at the above insights, the parti-
cle collection had its drawback as well. The particles from comet Wild 2’s coma was collected in the
aerogel collector at a relative velocity of around 6.1 km/s with respect to the comet [21]. Due to this
high impact velocity, only some of the particles survived unaltered, while others were either altered
or destroyed. This in turn affects the interpretation of particle characteristics and determination of
their elemental composition, as there is a possibility for some components to be selectively altered
or lost over others. Hence, these samples do not yet provide answers to some of the key questions
regarding - (i) the presence of volatile organics and nebular condensate amorphous silicates, (ii)
relative concentration of minerals/organics, and (iii) the radiometric chronology of comets and the
early Solar System [21].

Based on the lessons learnt from the Stardust mission, certain points for improved results were
suggested in the concept study on Comet Coma Rendezvous Sample Return mission (CCRSR) [21].
Primarily, as the Stardust spacecraft returned with less than 1000 particles with size greater than 15
µm, it would be beneficial for statistical analysis if close to hundred times more particles were col-
lected by flying closer to the comet and/or allowing longer collection times. Such an increase in the
sample size of particles collected will enhance the chance of identifying the particle types, finding
particular organic molecules, collecting rare minerals and establishing the isotopic chronologies of
the materials. It was also suggested that the particles should be collected using high-purity metallic
meshes, in order to avoid organic contaminants, extraneous materials and the ubiquitous compo-
nents (Si and O) of the aerogel.

Secondly, the study also recommended that the samples need to be collected at relative velocities
less than 0.1 km/s, so that the particles do not suffer any alteration during collection, thus yield-
ing unbiased, pristine samples of the cometary material [21]. Apart from the constraints placed on
sample collection, the overall time period of the mission - from launch till return of samples to Earth
- needs to be set. The mission duration is one of the driving factors which influences the reliability
requirements of various spacecraft subsystems. Obviously, the longer is the mission, the more reli-
able, withstanding and long lasting should be components, which is extremely challenging due to
the harsh environment in space. In a comet sample return concept study by NASA [32], a maximum
time limit of 10 years was set for the overall mission duration considering the safety of the samples as
well during the transit. Further, since in this thesis, solar sailing will be used as the main propulsion,
the degradation of the sail material from constant exposure to solar radiation should be considered
as well when deciding the mission duration. In this regard, the study on Near-Earth Asteroid (NEA)
sample return using solar sailcraft [33] also employed a 10 year time period for maximum mission
duration. Due to the similar nature of the missions in the above mentioned concept studies and the
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one considered in this thesis, the total mission duration was constrained to be within 10 years.

Based on the discussion on past missions and sample return mission concept studies, the following
scientific outcomes are expected as a result of the solar sailcraft comet sample return mission:

• To determine the relative concentrations of minerals and organics.

• To establish a radiometric chronology for comets.

• To check for materials of interstellar origin (like amorphous silicate condensate).

• To understand the nature of evolution and extinction of cometary ice.

• To check for the presence of simple biomolecules.

To achieve the above objectives, certain requirements are placed on the sailcraft trajectory for the
mission considered in this thesis. These are:

• The sailcraft shall collect samples from the comet’s coma at a distance less than 250 km.

• Sample collection shall take place at a relative velocity of less than 0.1 km/s with respect to
the comet.

• The overall mission duration shall be less than 10 years.

• For effective sample collection, the sailcraft shall collect the samples during the comet’s peri-
helion passage.

2.4. MISSION TARGET

Comets have been observed by mankind for many centuries but it was not until 1759 that a comet’s
orbital characteristics were studied and catalogued. This was done for the first time for the comet
1P/Halley. Following that, numerous comets have been identified and added to the catalogue.
Presently, over 5882 comets have been identified, with around 3958 comets having an official desig-
nation [34].

Given such an extensive list of comets, it is challenging to narrow it down to a comet as the target for
our comet sample return mission. Hence, few selection criteria were established to filter through the
number of comets suitable for the mission. Possible mission targets are short-listed based on the
scientific interest to study the comet, and the practical viability of reaching the comet and returning
samples to Earth. Since, solar sailing trajectory evolves slowly, the target’s perihelion distance is
desired to be within 0.5 AU from the Earth’s orbit and considering the overall mission duration, the
target comet’s orbit shall be close to the ecliptic plane. The list of criteria used to filter the potential
targets for the mission are:

• Comets perihelion distance (q) should be close to Earth’s orbit (≤0.5 AU).

• Comets’ orbit should be prograde and close to the ecliptic plane (i < 20◦)

• Comets next perihelion passage must occur within 2020 and 2030, to have a realistic launch
window.

• Comets whose basic physical characteristics like size, mass and shape have already been stud-
ied are preferred, to minimize the mission risk.
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The final condition on the list is to prevent designing a mission to a target whose physical and or-
bital parameters are not yet known accurately due to very few observational sitings. However, at the
same time, comets that have been studied extensively in the past like the Halley’s comet are also not
preferred for the mission, in order to avoid redundancy and explore new frontiers.

Based on NASA’s list of priority comet targets of high scientific importance [35] and targets short-
listed in the concept study for the Comet Surface Sample Return (CSSR) mission [32], a list of poten-
tial targets was obtained as shown in Table 2.1. The data on the comet’s orbit were taken from JPL’s
Small Bodies Database [34].

Table 2.1: Potential targets for comet sample return mission using a solar sailcraft (data obtained from [34]).

Comet e q (AU) i (deg) ω (deg) Ω (deg) Q (AU) Period (yrs) Classification
2P/Encke 0.8483 0.3360 11.7801 186.5420 334.5686 4.0942 3.30 NEO
6P/d"Arrest 0.6114 1.3615 19.4810 178.1152 138.9337 5.6459 6.56 Jupiter-family
8P/Tuttle 0.8198 1.0271 54.9832 207.5092 270.3417 10.3726 13.61 Jupiter-family (NEO)
9P/Tempel 1 0.5175 1.5066 10.5305 178.8771 68.9334 4.7383 5.52 Jupiter-family
15P/Finlay 0.7205 0.9746 6.8036 347.5656 347.5656 13.8006 6.51 Jupiter-family (NEO)
19P/Borrelly 0.6232 1.3598 30.3130 353.3507 75.4359 5.8595 6.86 Jupiter-family
21P/Giacobini-Zinner 0.7068 1.0307 31.9081 172.5844 195.3970 6.0004 6.59 Jupiter-family (NEO)
41P/Tuttle–Giacobini–Kresák 0.6612 1.0450 9.2293 62.1566 141.0677 5.1248 5.42 Jupiter-family (NEO)
55P/Tempel-Tuttle 0.9055 0.9764 162.4865 172.5003 235.2701 19.7002 33.24 Halley-type (NEO)
67P/Churyumov-Gerasimenko 0.6406 1.2453 7.0437 12.6944 50.1800 5.6842 6.45 Jupiter-family
79P/du Toit-Hartley 0.6185 1.1238 3.1456 281.6893 280.6403 4.7679 5.06 Jupiter-family (NEO)
81P/Wild 2 0.5370 1.5979 3.2372 41.7596 136.0977 5.3060 6.41 Jupiter-family
103P/Hartley 2 0.6938 1.0642 13.6043 181.3223 219.7487 5.8863 6.48 Jupiter-family (NEO)

Out of the 13 potential targets, four comets (8P, 19P, 21P and 55P) have inclination greater than the
specified criterion of 20◦ and another four comets (2P, 9P, 6P and 81P) do not have their perihelion
distance close to the Earth’s orbit. Among the remaining comets, only comets 67P and 103P have
been visited by spacecraft previously. However, comet 67P/Churyumov-Gerasimenko was the target
of the recently concluded Rosetta mission, during which the comet was studied in detail using a
combination of orbiter and lander. Whereas, comet 103P/Hartley 2 was briefly observed by the Deep
Impact spacecraft as part of its extended mission. Using the data from Deep Impact mission, the
comet’s physical properties were determined. But, being a flyby mission, the comet was not studied
comprehensively, making it an ideal target for a sample return mission. A follow-up sample return
mission could (i) provide better insight about the comet’s composition, (ii) confirm the existing
observational data, and (iii) obtain chronological information regarding its origin and evolution.
Therefore, the comet 103P/Hartley 2 was selected as the target for the comet sample return mission
using a solar sailcraft.



3
THEORY

This chapter lays the foundation of the theoretical concepts used in this thesis for simulating the
sailcraft trajectory. First, the basic astrodynamic concepts of reference frames and coordinate sys-
tems are introduced. This is followed by a discussion on the forces and dynamics model considered
to describe the motion of the solar sailcraft. In Section 3.5, the principles and dynamics of solar
sailing are explained, along with the sail design parameters. Finally, the equations of motion repre-
senting the sailcraft’s trajectory are presented in Section 3.6.

3.1. REFERENCE FRAMES

In astrodynamics, to describe/simulate the motion of a spacecraft, it is vital to know (at least) the
position and mass of the celestial bodies involved. As position and velocity are relative quantities,
they are defined with respect to a reference system. The reference system completely describes the
formation of a celestial coordinate system, in terms of origin and orientation of fundamental planes
and axes [36]. Using a reference system, any point in space can be specified by a unique set of coor-
dinates.

From Newtonian mechanics, two classes of reference frames can be defined [36]. Reference frames
which are at rest or moving at constant velocity in a straight line are considered as inertial refer-
ence frames. Whereas, non-inertial reference frames are either in a rotational or accelerated mo-
tion. Newton’s laws of motion are valid only in inertial reference frames, while apparent (or pseudo)
forces have to be included when applying Newtonian mechanics in non-inertial reference frames.

There are applications that demand motion to be described about a rotating or accelerating body.
For example, specifying the location of a launch site on the surface of Earth or the orientation of an
instrument with respect to the satellite. In such cases, non-inertial reference frames are considered
along with their associated pseudo forces like centrifugal, Coriolis or Euler forces [36]. Therefore,
with the help of the above force models, a transformation matrix can be defined to convert between
inertial and non-inertial frames.

As no additional force terms are required in inertial reference frames, the mathematical complexity
of equations describing the motion of a body are significantly reduced. Hence, these frames are
preferred for representing the motion of spacecraft, in orbit around a body or on a transfer trajectory
to a target. In this section, the reference frames which were used in this thesis work, to describe the
orbital dynamics and to model the sail force, are discussed.

15
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Figure 3.1: Heliocentric Reference Frame [37].

3.1.1. HELIOCENTRIC REFERENCE FRAME

Heliocentric reference frames are centered at the Sun or at the barycenter (center of mass) of the
Solar System. As the bodies in the Solar System revolve around the Sun, these frames are commonly
used for describing interplanetary trajectories. Although the Sun itself is orbiting the center of the
Milky Way galaxy, considering the time scale of the rotation and the influence of Sun’s gravitational
field within the Solar System, the origin of the heliocentric reference frame can be considered to be
fixed.

The fundamental plane of the heliocentric reference frame is taken to be Earth’s orbital plane (eclip-
tic) around the Sun, since the orbits of other planets have small inclinations with respect to the
ecliptic. The +Z-axis of this frame is along the ecliptic north pole direction, with the +X-axis lying in
the ecliptic plane and pointing towards the Vernal equinox (the First point of Aries) [37]. The +Y-axis
completes the right-handed system as given in Figure 3.1. Due to the effect of precession and nuta-
tion, the direction of the Vernal equinox shifts slowly over the centuries with respect to extragalatic
sources like quasars [36]. Therefore, in order to define the reference axes direction, the orientation
of the heliocentric ecliptic reference frame on 1 January 2000 at 12:00 terrestrial time is typically
taken as the reference. The resulting heliocentric ecliptic inertial frame of reference is referred as
ECLIPJ2000.

The ECLIPJ2000 frame is widely used in many astrodynamics tools and software due to its temporal
reference and compatibility. Furthermore, the Solar System ephemeris information system (called
SPICE), maintained by the Navigation and Ancillary Information Facility (NAIF) under NASA’s Plan-
etary Science division, is available in the ECLIPJ2000 frame [38]. This means the ephemeris data
from SPICE can be directly used in the astrodynamic tool (Tudat) for trajectory simulation. The
ECLIPJ2000 reference frame will thus be the fundamental reference frame for simulating the trajec-
tory of the solar sailcraft in this thesis work, due to its inertial, space-fixed nature and availability of
ephemeris data with respect to this frame.

3.1.2. SPACECRAFT ORBITAL REFERENCE FRAME

A spacecraft orbital reference frame has its origin at the center of mass (CM) of the spacecraft. It is
used for describing the relative dynamical motion of various systems or components of a spacecraft
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Figure 3.2: Spacecraft orbital reference frame [39].

like solar arrays, antennas or - in case of sailcraft - the sail itself. In solar sailing, the sail orientation
determines both the direction and magnitude of the thrust force resulting from the SRP acting on
the sail. The definition of the spacecraft reference frame thus plays a important role in expressing
the orientation of the sail.

The axes of the frame are defined based on three unit vectors as shown in Figure 3.2. The radial unit
vector r̂ points in the direction of the Sun-sail line, unit vector ĥ points along the sailcraft’s orbital
angular momentum vector and finally, the transversal unit vector d̂ completes the right-handed ref-
erence frame [39]. The velocity vector (v) of the sailcraft, therefore, lies in the plane formed by unit
vectors r̂ and d̂ .

As the frame is centered at the CM of the spacecraft, it rotates as the spacecraft moves in its orbit
around the Sun. Thus, the frame is non-inertial and if equations of motion were to be solved in this
frame apparent forces should be included. To avoid this complication, the sail orientation is trans-
formed from the spacecraft reference frame to the heliocentric reference frame and the equations
are solved in the heliocentric frame.

3.1.3. REFERENCE FRAME TRANSFORMATION

From the previous subsections, it can be seen that two reference frames are to be used to describe
the motion of the sailcraft. The ECLIPJ2000 frame is utilized for specifying the position and velocity
of the sailcraft with respect to the Solar System barycenter (SSB). While the spacecraft orbital ref-
erence frame (SOF) is used for representing the sail attitude and calculating the acceleration due
to SRP. Therefore, the sail normal vector in SOF needs to be transferred to the ECLIPJ2000 for force
calculation and trajectory propagation, at every integration timestep.

The sail normal vector in SOF (~nSOF ) is defined as

~nSOF =
 cosα

sinαsinδ
sinαcosδ

 (3.1)

where α and δ are the cone and clock angles respectively that unequivocally define the sail attitude
in SOF. The cone angle α is defined as the angle between the sail normal vector (n̂) and Sun-sail line
(r̂ ) in radial direction [7]. Whereas the clock angle δ is measured between the transverse unit vector
(d̂) and the projection of n̂ on the plane perpendicular to the Sun-sail line as depicted in Figure 3.3.
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Figure 3.3: Representation of sail cone and clock angles (modified from [40]).

The unit vectors of the three axes of SOF are given by [41]

r̂ = ~r

|~r | , ĥ = ~r ×~v
|~r ×~v | , d̂ = r̂ × ĥ (3.2)

where~r and ~v are the position and velocity vectors of the sailcraft respectively. The frame transfor-
mation matrix R from SOF to ECLIPJ2000 is [41]:

R = (
r̂ d̂ ĥ

)
(3.3)

Thus, the sail normal vector in the heliocentric inertial frame is

n̂H I F = R n̂SOF (3.4)

3.2. COORDINATE SYSTEMS

A coordinate system provides the method for locating a point within the reference frame. The coor-
dinate systems thus play an essential role in expressing the position, velocity or the complete state
of celestial bodies and spacecraft along their trajectory. The coordinate systems used to character-
ize the solar sail trajectories in this thesis work are discussed in this section. Finally, the choice of
the coordinate system which was employed to write the equations of motion is also explained in
Section 3.2.3.

3.2.1. CARTESIAN COORDINATES

The Cartesian coordinate system is one of the most commonly used coordinate systems in the fields
of mathematics, science and engineering. The position of a point is specified by three spatial coor-
dinates (x, y, z) which represent the signed distance of its projection on the three frame axes from
the frame origin O. The state of a body in Cartesian coordinates (x, y, z, ẋ, ẏ , ż) is represented as a
combination of position and velocity components [36].
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3.2.2. KEPLERIAN ELEMENTS

The set of six Keplerian orbital elements (a,e, i ,Ω,ω,ν), in addition to specifying the position of a
body, provides information about the dimension, shape and orientation of its orbit. The elements
describe the orbit in terms of the conic section traced by the body. The semi-major axis a, which
is the average of pericenter and apocenter distances, gives indication about the dimension of the
orbits [36]. Eccentricity e describes the shape of the orbit in relation to a circle (circle: e = 0; ellipse:
e < 1; parabola: e = 1; hyperbola: e > 1). The angular orientation of the orbit with respect to the
reference plane is given by inclination angle i . The angular distance of the point (ascending node),
where the body crosses the reference plane during its ascending path, from the reference direction
is represented by the Right Ascension of the Ascending Node Ω; in heliocentric problems, this is
called the Longitude of the Ascending Node. The argument of periapsis ω provides the orientation
of the orbit in the orbital plane of the body, by an angle measured from the ascending node to the
pericenter. The final orbital element completes the set by pinpointing the angular position of the
body in the orbit.

Different options are available for representing the final element. One of which is true anomaly ν -
the angle swept by the body from the pericenter [36]. A mathematically more convenient option is
to use the Mean Anomaly M as it varies linearly with time - mean motion n times (t −τ) where t is
current time and τ is the time of last pericenter passage. Another option is the Eccentric anomaly
E which is the angle subtended at the center of the ellipse by the projection of the body on a circle
circumscribing the ellipse. These anomalies can be converted between them at a given epoch and
are used depending on the application. Finally, the six Keplerian elements can be converted into
Cartesian coordinates (position and velocity) and vice versa.

3.2.3. MODIFIED EQUINOCTIAL ELEMENTS

The coordinate systems discussed in the above subsections carry their merits and demerits. Carte-
sian coordinates are simple and straightforward to implement but demand high computational
time for trajectory propagation. Also, the Cartesian coordinates provide limited insight into the
actual trajectory behaviour. Whereas with Keplerian elements, the characteristics of orbits are more
clearly represented and trajectory propagation is quicker as well. The orbit representation using
these elements is also simplified in cases without any perturbations, as five (a six, depending on
choice of the anomaly) of the Keplerian elements remain constant. However, due to the nature of
their definition singularities tend to occur for zero eccentricity and 0◦ inclination orbits. In order to
overcome these drawbacks, non-singular orbital elements (equinoctial elements) were introduced
and modified over the years. In this thesis work, the set of Modified Equinoctial Elements (MEE) -
[p,f,g,L,h,k] - introduced by Walker et al. [42] were used. The definition of the elements in terms of
classical Keplerian elements is provided in Equation 3.5.

p = a(1−e2) (3.5a)

f = e cos(Ω+ω) (3.5b)

g = e sin(Ω+ω) (3.5c)

h = tan(
i

2
)cos(Ω) (3.5d)

k = tan(
i

2
)sin(Ω) (3.5e)

L = M +Ω+ω (3.5f)
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Based on the conclusions drawn from a comparative study of coordinate systems in [43], the per-
formance of MEE’s in trajectory propagation was observed to closely follow the direct numerical
integration using Cartesian coordinates. Additionally, with the benefit of having lower computation
time and no singularity issues, MEE’s were opted for formulating the equations of motion of the
sailcraft. Other coordinate systems are utilized for their respective advantages whenever required
in this thesis work.

3.3. DYNAMICS MODEL

With the basic astrodynamic framework (reference frames and coordinate systems) set, it is im-
portant to discuss the dynamics model and forces acting on the sailcraft before moving on to the
equations of motion. Different dynamics models for a two-body, three-body to n-body problem
formulation (with increasing complexity) can be adopted to describe the motion of the sailcraft.
The choice is made based on the mission and the number of bodies whose gravitational attraction
influences the sailcraft’s motion significantly.

For the comet sample return mission, complex formulations like three-body problem or higher can
be neglected, since the mass of the bodies involved (mass of Hartley 2 ≈ 1012 kg; mass of Earth ≈
6x1024 kg) are multiple orders lower than that of the Sun (mass of Sun ≈ 2x1030 kg). Additionally,
the sailcraft throughout its transfer trajectory lies outside of the Sphere of Influence (SOI) of both
the bodies. In this case, the only predominant gravitational force acting on the sailcraft is due to the
Sun. Therefore, a perturbed two-body problem formulation, with the Sun as the primary body and
forces from other bodies (if significant) as perturbations, was considered for trajectory simulation.

In the perturbed two-body system, consisting of a sailcraft and the Sun, the motion of the sailcraft
can be represented as [36]:

d 2~r

d t 2 + µs

r 3
~r =∇R (3.6)

where µs = GMsun is the gravitational parameter of the Sun and R is the perturbing potential due to
all the perturbing forces acting on the sailcraft. For the situation in which R = 0, the solution of this
equation is a Kepler orbit (conic section) for the sailcraft. However, such an ideal two-body system
is extremely rare to occur. Although the gravitational force from other bodies are weaker compared
to the primary body, these forces do perturb the orbit of the sailcraft, causing a deviation from the
Keplerian conic sections. Thus, the perturbations are included in the equations of motion and the
assessment of various perturbing forces acting on the sailcraft is carried out in the next section.

3.4. PERTURBATIONS

The main perturbing forces affecting a sailcraft in a heliocentric trajectory are the third-body grav-
itational forces of bodies besides the Sun and solar radiation pressure. Other perturbations like at-
mospheric drag and non-spherical gravitational potential of celestial bodies can be neglected, since
the sailcraft moves through the vacuum of space without making close approaches to the celestial
bodies within their SOI.

In order to evaluate which among the above listed perturbations have to be considered in the equa-
tions of motion, it is essential to compare the accelerations in terms of their magnitude while acting
on the sailcraft. From orbital mechanics, the third-body gravitational perturbation due to the celes-
tial bodies p acting on the sailcraft with respect to a inertial reference frame centered at SSB is:
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ap =µp

(
~rp −~rsai l∥∥~rp −~rsai l

∥∥3 − ~rp∥∥~rp
∥∥3

)
(3.7)

where µp is the gravitational parameter of the perturbing body,~rp and~rsai l are the position vectors
of the perturbing body and the sailcraft respectively.

Using Equation 3.7, the acceleration experienced by the sailcraft due to other celestial bodies can be
estimated. These accelerations become significant for missions approaching the perturbing body
within its SOI, like rendezvous or flyby missions. In this thesis work, a sample return trajectory to
comet Hartley 2 will be analyzed. The starting point for this trajectory would be considered just
outside the SOI of Earth and inserted into the interplanetary trajectory at 0 km/s hyperbolic excess
velocity. On return to Earth, the trajectory is considered only until the point of closest approach
outside of its SOI. Hence, the maximum perturbing acceleration due to Earth was calculated near
its SOI. Whereas for other celestial bodies, since the sailcraft moves outside their SOI and consider-
ing the fact that comet’s perihelion distance is 1.05 AU, the perturbing accelerations were estimated
for a sailcraft positioned at a distance between 0.8-1.2 AU. The orders of magnitude of the third-
body perturbing accelerations are listed in Table 3.1, along with the acceleration due to SRP and
Sun’s gravity at 1 AU for comparison.

Table 3.1: Orders of magnitude of the perturbing accelerations acting on the sailcraft.

Perturbation Acceleration (m/s2)
Two body - Sun 10−3

Solar Radiation Pressure 10−4

Third body - Venus 10−6

Third body - Earth 10−4 to 10−6

Third body - Mars 10−9

Third body - Jupiter 10−7

Third body - Saturn 10−9

Third body - Uranus 10−11

Comet (103P/Hartley 2) 10−10

From Table 3.1, it is clear that the perturbations caused by other planets - Venus, Mars, Jupiter, Sat-
urn and Uranus - are negligible compared to the acceleration due to solar gravity and SRP. In case
of Earth, the acceleration magnitude resembles that of SRP very close to its SOI. But, since the sail-
craft spends relatively a fleeting moment near Earth, it does not suffice to include the third-body
perturbations due to Earth at the expense of increased complexity and higher computation time.
Therefore, none of the perturbations due to the planets alter the sailcraft’s motion considerably and
hence were neglected for the simulation.

Another possible perturbation can be caused by the prevalent solar wind in the Solar System. Pres-
sure is exerted on the solar sail due to the momentum carried by solar wind protons. The solar wind
pressure Pw can be mathematically represented as [7]

Pw = mpρv2
w (3.8)

with mp being the mass of a proton, ρ the mean proton number density and vw the solar wind
speed. The variation in solar activity affects the proton number density and wind velocity. Consid-
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ering periods of high solar activity, the wind velocity can be as high as 700 km/s at 1 AU, with mean
proton number density of 4x106 m−3 [7]. This results in a solar wind pressure of 3x10−9 N/m2, which
is negligible compared to the SRP (equal to 9.12x10−6 N/m2) on the sail at 1 AU. Hence, owing to the
weak and unpredictable nature of solar wind pressure, it was not considered among the perturba-
tions for trajectory propagation in this thesis work.

In Table 3.1, the acceleration due to the comet has also been mentioned. This was calculated at
close distances (250-1000 km) to the comet. Since the acceleration due to SRP is 4 to 5 orders of
magnitude higher than the gravitational pull from the comet, the sailcraft can potentially hover at
artificial equilibrium points [40] near the comet by adjusting the sail orientation and can closely tag
the comet in its orbit. This is a feature unique to solar sailing but analyzing such orbits is beyond
the scope of this thesis.

The most important perturbing force which alters the sailcraft trajectory is the solar radiation pres-
sure. The energy continuously imparted by the solar photons on the sail produces the thrust to
propel the sailcraft. Thus, the SRP which essentially provides the thrust force is modelled as the
only perturbing force and included on the right-hand side of Equation 3.6. A detailed discourse on
sail performance parameters and solar sailing force models is covered in the subsequent sections.

3.5. SOLAR SAILING

Solar sailing works on the principle of momentum imparted by the solar photons on the highly re-
flective sail film facing the Sun. The impact of photons on the sail causes the solar radiation pressure
P on the sail surface area A [7],

P = W

c
= Ls

4πr 2c
(3.9)

where c is the speed of light (299,792,458 m/s) and W is the energy flux (W = Ls

4πr 2 ) at a distance r
from the Sun, with Ls being the solar luminosity (3.828x1026 W) [7].

The incidence of solar radiation (pressure) on the sail area A produces the force and the reflection
of photons gives another force of similar magnitude. The resultant force is thus

F = 2PA (3.10)

This force can be modelled differently based on the phenomena considered. The choice of the
model influences to a certain degree the direction and magnitude of the SRP force acting on the
sailcraft. Two of these models - ideal sail and optical sail force models - are presented in this section.
The first model is based on a perfectly reflective sail, while the latter includes optical phenomena
like absorption, emission, diffuse and specular reflection of the photons by the sail. In both the
models, the sail is assumed to be flat, rigid and not degrading over time. Before describing the sail
force models, important parameters that indicate the performance capabilities of solar sails are de-
fined in the next subsection.

3.5.1. PERFORMANCE METRICS

For the sail to be able to reflect the incoming radiation, it needs to be rigid and stiff. The presence
of wrinkles in the sail not only affects the sail efficiency but also creates local hot spots which can
damage the sail if the temperature at these points exceed the sail film’s temperature limit. Hence,
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the sail film is held flat with the help of structures like spars, booms and connected to the rest of
the sailcraft (payload, instruments, subsystems) via a hub [7]. These structures form a part of the
solar sail assembly mass (mS A), and the metric which indicates the structural efficiency of a solar
sail design is called the sail assembly loading (σS A).

σS A = mS A

A
(3.11)

The sail assembly loading σS A does not depict the overall performance or efficiency of the sail as it
does not include the payload mass (mPL). The ratio of the total mass of the sailcraft m and the sail
area A gives the sail loading σ parameter which is independent of sailcraft design and serves as a
metric for evaluating sailcraft’s overall performance [7].

σ= m

A
= mS A +mPL

A
=σS A + mPL

A
(3.12)

Another parameter, characteristic acceleration ac , is defined as the acceleration experienced by the
sail at the Sun-sail distance of 1 AU with the sail surface oriented normal to the solar radiation. It is
calculated based on the SRP at 1 AU (P0) acting on a sail area A and having a mass m [7]:

ac = 2P0A

m
= 2P0

σ
(3.13)

The final design parameter is the lightness number β. It is a dimensionless parameter defined as
the ratio of SRP acceleration and solar gravitational acceleration [7]. Since both accelerations are
proportional to the inverse square of distance from the Sun, the lightness number is independent
of Sun-sail distance. For a sail facing normal to the Sun’s radiation, the lightness number is given by

β= aSRP

aS
= ac

( r0
r

)2

µs

r 2

= ac
µs

r 2
0

= ac

a0
(3.14)

Considering a0 to be the solar gravitational acceleration at 1 AU, Equation 3.14 becomes β = ac /5.93
(ac in mm/s2), providing a direct relation between both the design parameters. The lightness num-
ber can also be related to the sail loading parameter as follows [7]:

β= σ∗

σ
; σ∗ = Ls

2πµsc
(3.15)

The critical sail loading parameter σ∗ is a function of solar luminosity and mass. Substituting the
values for the terms, it is found to be 1.53 g/m2. For a sail to have high performance/acceleration
capabilities, the sail loading parameter has to be low which in turn would result in high values for
the characteristic acceleration and the lightness number.

Any of the above defined parameters can be used to model the sail force, since all the parameters
are directly related.

3.5.2. IDEAL SAIL FORCE MODEL

In the ideal sail force (IR) model, the sail is considered to be perfectly reflective and thus, there is
no momentum loss due to absorption, transmission or emission of solar radiation. The SRP force,
therefore, results from two perfect momentum transfers between the photons and the sail film. As
shown in Figure 3.4, the first force component Fi due to photons impinging on the sail surface is in
the direction of the solar radiation [7].

Fi = PA(r̂ .n̂) r̂ = PAcosαr̂ (3.16)
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Figure 3.4: SRP Force components in an Ideal sail force model [39].

The second force component Fr from reflection of photons in the r̂ ′ direction is [7]:

Fr =−PA(r̂ .n̂) r̂ ′ =−PAcosαr̂ ′ (3.17)

The resultant force F is the vector addition of these two components,

F = Fi +Fr = PA(r̂ .n̂)(r̂ − r̂ ′) (3.18)

where the vector difference (r̂ − r̂ ′) = 2(r̂ .n̂)n̂. Hence, the total SRP force can be written as [7]

F = 2PA(r̂ .n̂)2n̂ = 2PAcos2αn̂ (3.19)

The acceleration of the sailcraft can be represented in terms of the design parameters by using their
definitions from Subsection 3.5.1.

F = 2P0

(r0

r

)2
Acos2αn̂ (3.20)

a = 2
P0

m

(r0

r

)2
Acos2αn̂ = 2

P0

σ

(r0

r

)2
cos2αn̂ (3.21)

Using Equations 3.13 and 3.14, the solar sailcraft acceleration becomes [7]:

a = ac

(r0

r

)2
cos2αn̂ (3.22)

a =β
(µs

r 2

)
cos2αn̂ (3.23)

A slight variation of this model exists where the non-ideal effects like wrinkles and billowing are
approximated with an overall sail efficiency parameter η. Efficiency values are usually considered
in the range of 0.85 to 0.9.

a = η.β
(µs

r 2

)
cos2αn̂ (3.24)
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Figure 3.5: Orientation of SRP force in Optical sail force model [39].

3.5.3. OPTICAL SAIL FORCE MODEL

In the real world, losses due to absorption and transmission of solar radiation are present. The Op-
tical sail force (OR) model aims to utilize the sail material’s optical properties to determine the SRP
force more accurately. A set of six parameters are used to uniquely define the sail optical properties
[7], namely

• Reflection coefficient ρ - Fraction of incoming radiation which is reflected

• Specular reflection coefficient s - Fraction of the reflected photons that is specularly reflected

• Sail’s front and back surface emission coefficients ε f , εb

• Front and back surface non-Lambertian coefficients B f , Bb - Provides the angular distribution
of radiation emitted and diffusely reflected by the surfaces

Due to these optical properties, the SRP force is no longer coincident with the sail normal vector.
The thrust has components along the sail normal and transverse (in-plane) directions (as shown in
Figure 3.5) given by [7]:

Fn = PA

{
(1+ρs)cos2α+B f ρ(1− s)cosα+ (1−ρ)

ε f B f −εbBb

ε f +εb
cosα

}
n̂ (3.25)

Ft = PA[(1−ρs)cosαsinα] t̂ (3.26)

and the magnitude of the SRP force is:

F =
√

F 2
n +F 2

t (3.27)

Naturally, due to the optical losses, the magnitude of the SRP force is lower than the ideal sail force
model. The angle λ represented in Figure 3.5 is known as the centerline angle [39]. It indicates the
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Figure 3.6: Orbit classification based on sail lightness number for α = 0 (adapted from [7]).

measure by which the force magnitude of an OR model differs from that of an IR model. The center-
line angle is found to increase with the cone angle and hence the difference in thrust magnitude is
more pronounced for highly tilted sail orientations. Additionally, among the sail optical properties,
only the variations in ρ and s strongly influence the deviation of thrust direction from sail normal.

3.5.4. CHOICE OF SRP FORCE MODEL

Having presented the SRP force models in this section, it is imperative to make a choice regarding
the model to be used in formulating the equations of motion. The models can be assessed based
on their mathematical complexity and the accuracy of their force description. Using the optical sail
force model will provide accurate and more realistic results but the complexity of integrating the
equations of motion increases and with it the computational effort needed. As the solar sail model
was developed from scratch in the astrodynamic software tool Tudat, a significant amount of time
was dedicated to programming, testing the model and integrating it with the existing framework.
Although as per the initial thesis planning, optical sail force model was viewed as the second step
of the mission analysis, it was not practical to proceed with the complex model due to the time
limit on the thesis study. Moreover, since this is a preliminary study exploring the feasibility and
benefits of employing solar sails for a comet sample return mission, the need to use complex SRP
force models was not rightly justified. Though ideal solar sails do not exist in reality today, the sail
materials and coating available are capable of providing 90% reflectivity [11]. In such a case, the
difference in time-of-flight (TOF) between IR and OR models are around 5-15% as concluded in
[44, 45]. So, by considering an ideal sail force model valuable insights on the mission trajectory
can still be obtained. Hence, based on the above considerations, the ideal sail force model with an
efficiency factor η = 1 was adopted for describing the SRP force in this thesis work.
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3.6. EQUATIONS OF MOTION

3.6.1. VECTOR FORM

The vector form of the sailcraft’s equations of motion (EoM) was introduced in Section 3.3 with the
motion described by Equation 3.6. Based on the discussions and choices made regarding perturba-
tions (Section 3.4) and the SRP force model (Section 3.5), the EoM in vector form is rewritten as:

d 2~r

d t 2 + µs

r 3
~r =βµs

r 2 cos2αn̂ (3.28)

This equation results in a system of three scalar second-order differential equations in Cartesian
coordinates which in turn can be written as six first-order differential equations. For a sail normal
directed along the Sun-line, i.e. the radial direction (n̂ = r̂ ; α = 0), the above equation can be simpli-
fied to:

d 2~r

d t 2 + (1−β)
µs

r 3
~r = 0 (3.29)

This results in the familiar classical two-body problem equation, with (1-β)µs being the effective
solar gravitational parameter. Thus, based on the value of the lightness number β, different conic
sections are obtained as the solution for Equation 3.29 as seen in Figure 3.6.

A second class of solutions for Equation 3.28 is obtained for sails which are oriented at a fixed angle
with α 6= 0. In this case, a family of logarithmic spiral trajectories are obtained instead, as derived in
[7]. But for most mission applications, the sail attitude is not fixed at a particular orientation. It has
to be steered based on certain strategies in order to reach the mission target. However, the above
Keplerian orbit/logarithmic spiral trajectory solutions can be used as a criterion to validate newly
implemented solar sail models in software tools.

3.6.2. GAUSS’ FORM OF LAGRANGE’S PLANETARY EQUATIONS

Representing the EoM in vector form using Cartesian coordinates is one way of representing the
sailcraft’s motion. But, as explained in Section 3.2.3, using MEE’s expedites the integration of the
trajectory and is free from running into singularities. The rate of change of these elements in the
presence of a perturbing force is given by the Lagrange’s Planetary Equations (LPEs) [36]. LPEs
are advantageous for modelling minute variations as they isolate the position movement in orbit
through a single fast variable (phase angle). Hence, LPEs capture the motion of the sailcraft, under
the influence of continuous, low-thrust propulsion like solar sailing, more precisely. Due to the way
in which LPEs are defined, it works only for perturbing forces that can be expressed as a perturbing
potential. Therefore, the Gauss form of LPEs are more suitable for representing the EoM, since the
perturbations can be expressed as accelerations components.
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The EoM of the sailcraft are [46]:
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(3.30)

where fR , fS and fW are the components of the perturbing acceleration along the radial, transversal
and angular momentum direction respectively; and

s2 = 1+h2 +k2

w = p

r
= 1+ f cos(L)+ g sin(L)

(3.31)

Since SRP thrust is the perturbing force acting on the sailcraft, the expressions for acceleration com-
ponents can be written using Equation 3.23 [7]:

fR =βµs

r 2 cos3α

fS =βµs

r 2 cos2αsinαsinδ

fW =βµs

r 2 cos2αsinαcosδ

(3.32)

Solving this set of six first-order differential equations requires the implementation of numerical
integration methods, which are covered in the next chapter.
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NUMERICAL TOOLS

This chapter covers the numerical tools used in this research for optimizing the trajectory of the
sailcraft. The initial part of the chapter focuses on integration method, followed by parts on opti-
mization algorithms. Integrators provide the way for solving the equations of motion formulated in
the previous chapter. Some of the widely used integration methods are briefly introduced and the
choice of the integrator opted for trajectory propagation is also explained.

Once the integrator is set up, propagation of the sailcraft over time can be simulated. The trajectory,
thus simulated will be based on the initial state and conditions. However, the aim of the research is
to find the trajectory which fulfills the mission requirements best. In order to find the best possible
trajectory, optimization algorithms are used. The performance of an algorithm depends on the
particular problem as well as the settings of the respective algorithm. Therefore, after covering some
basic aspects of optimization, the choice of the algorithm best adapted for the problem dealt in this
thesis work is discussed in detail.

4.1. INTEGRATOR

The equations of motion of the sailcraft need to be solved to propagate the sailcraft in time and ob-
tain the state history of the sailcraft. A closed-form analytical solution cannot be obtained for the
Equations 3.30, due to the presence of perturbing acceleration terms. Alternately, numerical inte-
gration techniques need to be used to estimate how the state and other parameters of the sailcraft
vary with time. The integration process is repeated at small discrete time steps covering the entire
propagation period and the state of the sailcraft is determined at each of these time steps.

Numerous integration methods exist having different properties and possessing problem-specific
advantages. Below, a set of the commonly used integration methods, ranging from single-step, fixed
stepsize integrator (RK4) to multi-stage, variable stepsize integrator (DOPRI8(7)) are provided. This
set of integrators were short-listed considering their availability in the astrodynamic software tool
(Tudat) used for trajectory simulation in this research.

• The Euler Integrator is based on first-order Taylor series expansion, requiring only the first
derivative. The state at the next epoch is given by a linear relation of the constant step size (h),
thus resulting in a truncation error of the order O (h2). The Euler method is computationally
inexpensive but does not produce accurate results for astrodynamic problems. It is typically
suited for functions with linear variation.

29
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• Runge-Kutta (RK) fixed step-size methods are also derived from Taylor series, but instead of
having to derive application-specific higher-order terms, an approximation is used by calcu-
lating the slope at different points within each integration step. The RK4 integrator uses four
function evaluations to compute the state at the next epoch and the increment function Φ is
the result of their weighted mean [47]. Thus, an RK4 integrator is more accurate than an Euler
method having a truncation error of the order of O (h5).

Φ= 1

6
(k1 +2k2 +2k3 +k4) (4.1)

Higher-order RK methods can be formulated by including more terms for intermediate func-
tion evaluations and their corresponding coefficients. But determining the coefficients be-
comes increasingly difficult with more function evaluations.

• Variable step-size RK methods offer improvement over the standard RK methods. For the var-
ious phases of the trajectory different step-sizes are utilized to achieve uniform accuracy. In
variable step-size RK methods, the function y approximation at next epoch t0 +h is formu-
lated as [47]:

y(t0 +h) = y0 +hΦ (4.2)

with the increment functionΦ given by

Φ=
s∑

i=1
bi ki (4.3)

where s is the number of function evaluations.

k1 = f (t0 + c1h, y0)

ki = f (t0 + ci h, y0 +h
i−1∑
j=1

ai j k j ) (i = 2....s)
(4.4)

The coefficients ai j , bi and ci are selected such that the order p of the local truncation error
(LTE) is as high as possible. The coefficients are also set to follow the conditions in Equation
4.5. The values of the coefficients are represented in a Butcher’s Table [47].

s∑
i=1

bi = 1 c1 = 0 ci =
i−1∑
j=1

ai j (i > 1) (4.5)

For efficient step-size control, an RK method of neighbouring order (with the same number
of function evaluations) is embedded to yield two independent approximations of order p
and p −1. Using the two approximations, an estimate ε of LTE of the lower-order integrator is
obtained. Based on the error tolerance εr eq specified, the time step is rescaled accordingly.

hr eq ≈ h
(εr eq

ε

) 1
p−1

(4.6)

After the time step modification, there are two approaches for proceeding with the integration
step - (i) to use the lower-order method or (ii) to use the higher-order method. Methods that
use the lower-order approach for integration are Runge-Kutta-Fehlberg RKF4(5), RKF5(6) and
RKF7(8). Dormand and Prince formulated the DOPRI8(7) method which uses the higher-
order approach for integration.
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• Multi-step methods use the integration results from previous steps for estimating the function
value at the current time step. These methods work by storing results and using them for
further calculations, which makes it advantageous for certain applications.

y(ti+1) = y(ti )+h
s∑

j=0
b j f (ti− j , yi− j )

ti− j = ti − j h

(4.7)

An interpolating polynomial is set between previous s data points and the integral of the
polynomial is used to extend the polynomial to the next epoch ti+1. Examples of multi-step
method are Adams-Moulton, Adams-Bashforth and Predictor-Corrector methods.

4.2. INTEGRATOR CHOICE

As discussed in the previous section, there are many options available for the choice of integrator.
The integrator best suited for an application depends on the dynamics involved in the problem. For
applications involving transfer trajectories, the integrator should be capable of modeling elliptical
or near-parabolic motion precisely. This requires an adaptive and variable step-size integration as
additional evaluations need to be performed when the spacecraft is moving faster (close to peri-
center) in order to accurately capture the position and velocity changes. Furthermore, when there
is no significant change in spacecraft’s position/velocity (close to apocenter), the integrator should
be able to take larger time steps to reduce the computation time. Since the transfer trajectory to
and back from the comet using solar sailing will be elliptical (osculating) in nature, variable step-
size RK methods are better suited for the problem than fixed step-size methods like Euler and RK4.
Meanwhile multi-step methods provide very good precision for complex problems, but the complex
mathematics involved and high computation time overcome the benefits.

Within the variable step-size integrators, two approaches have been distinguished in [47] - (i) lower-
order integration methods like RKF4(5), RKF5(6) and RKF7(8) and (ii) higher-order integration meth-
ods like DOPRI8(7). That is, for example in DOPRI8(7), the 8th-order method is used for calculating
the solution and the 7th-order method is applied for stepsize control. The application of the meth-
ods is inverse for lower-order integration methods. Thus, integration performed using DOPRI8(7)
results in superior solutions when compared with lower-order methods like RKF7(8), though both
are embedded methods of order 7 and 8. Due to the requirement of approaching the comet within
a narrow distance margin of 250 km, higher importance was given for solution accuracy over ro-
bustness in integration step-size. Hence, DOPRI8(7) was found to be the suitable integrator for the
problem considered in this thesis and was hence used for solving the equations of motion and prop-
agating the sailcraft in time.

4.3. OPTIMIZATION

The objective of optimization is to find the control parameters which minimize (or maximize) an
objective function, with constraints placed on the parameters. Mathematically, an optimization
problem can be defined as

min
xεΣ

f (x) subject to g (x) = 0 and h(x) É 0 (4.8)
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where f is the objective function, x is the decision vector based on which optimization is performed,
and g and h are the equality and inequality constraints respectively.

In optimization problems pertaining to spacecraft trajectories, the aim is to determine the optimal
spacecraft state history x[t], which fulfills the mission requirements in the best possible way. The
motion of the spacecraft will be influenced by external forces, like gravitational attraction, or forces
generated by propulsion systems. These external or internal variable parameters, along with the ini-
tial (t0) and/or end epoch (t f ), form the control vector u(t) based on which the dynamics of the tra-
jectory varies. Using this decision or control vector, attributes of the mission like∆V , time-of-flight,
mass of propellant etc. are to be minimized. One or more of these attributes define the cost func-
tion J . Hence, the optimal trajectory of the spacecraft must comply with the dynamic constraints
ẋ(t) = G(x(t),u(t)) (resulting from its equations of motion) and boundary constraints x(tf) = xT(tf),
while minimizing the cost function J.

For low-thrust propulsion systems like solar sailing, as dealt with in this thesis, a combination of
factors namely initial state x(t0), gravitational force from bodies and thrust from the propulsion
system determines the trajectory shape. The SRP thrust from the Sun is active throughout or for a
major portion of the transfer time and the thrust vector can basically point in any direction opposite
to the Sun (ideal sail). Thus, a steering strategy which provides the direction of the thrust acceler-
ation vector throughout the transfer time, plays the major role in determining the trajectory of a
solar sailcraft. The steering strategy given in terms of sail orientation can be a continuous varying
parameter with a wide range of values. This makes solar sail trajectory optimization a challenging
task.

The problem of finding the optimal state history x∗(t) is thus transformed to determining the opti-
mal control u∗(t), which is equivalent to finding the two sail steering angles α and δ as a function
of time t . As already seen in Section 2.3, for an effective sample collection from the comet’s coma,
the sailcraft should perform a close approach rendezvous or flyby at the comet. This means that
the sailcraft’s position and velocity (for a rendezvous) should match with that of the comet at the
point of closest approach. Therefore, for the solar sailcraft to rendezvous with the comet, the goal
is to find a control vector history u[t] which forces the sailcraft state x(t) = (r(t)T , ṙ(t)T )T from initial
value x(t0) to the state of comet xT(t) along a trajectory that minimizes a cost function J for the trans-
fer. Since solar sailing is a low-thrust, propellant-free propulsion technique, the actual optimization
objective is to minimize the flight time ∆t .

J =
∫ t f

t0

d t = t f − t0 =∆t (4.9)

However, spacecraft trajectory optimization problems usually can have multiple objectives. Some
of the objectives can be contradictory to other functions considered. So, a solution cannot generally
fulfill all criteria to the best extent possible, i.e. if for one criterium its best value is obtained, it might
not be the case for others. Tackling such multi-objective optimization demands high computational
effort. So, in practice, multi-objective problems are transformed into a single-objective problem
using one of the following approaches [48]:

• A priori method of considering a weighted sum of the different objective functions which are
normalized to accommodate their different dynamic ranges. Determining the appropriate
weight factors can be challenging and requires knowledge about potential solutions of the
problem.

• The Interactive or progressive approach utilizes the knowledge gained while optimization is
in progress. An expert will be able to effect changes to the weights by monitoring the process
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periodically. Though this approach offers refinement in applying weights, the possibility of
introducing a bias towards some objectives still exists.

• In a posteriori approach, a set of competing solutions are analyzed without biasing the result
by imposing weights. From the set of equally compelling possibilities, a solution is selected
through implicit application of weights. Algorithms employing a posteriori weight preference
are based on the concept of Pareto-optimality. But, the major drawbacks of such algorithms
is their lower speed and the uncertainty in find Pareto-optimal solutions.

Once the problem has been reduced to a single-objective optimization, various methods can be ap-
plied to determine the optimal solution for the above-mentioned rendezvous/flyby trajectory. The
methods differ in their approach and/or execution, having their own merits and demerits. Ana-
lytical methods, based on Calculus of Variations (COV) and solving a Two Point Boundary Value
Problem (TPBVP), are among the earliest methods developed. In these methods, the control vector
u(t) is considered as a continuous function and has an infinite solution space. Apart from this, the
mathematics gets complicated when constraints are placed on variables or function values. Hence,
analytical solutions are possible only in very rare cases and for problems involving rendezvous or
flyby, such solutions are in fact unknown.

Alternatively, numerical methods reduce the problem complexity by transforming it into a finite-
dimensional problem. The discretization of time from being a continuous entity into τ finite inter-
vals changes the control vector parameter space to nuτ dimensions. As a result, computation is sim-
plified and numerical optimization techniques are capable of accommodating multiple constraints
and/or objective functions. The numerical optimization techniques can be broadly classified into
- (i) local trajectory optimization methods (LTOMs) and (ii) global trajectory optimization methods
(GTOMs). Information about both methods is provided in the next section, discussing their benefits
and drawbacks.

4.3.1. LTOM AND GTOM

LTOMs are numerical methods employing mathematical concepts derived from calculus of varia-
tions and optimal control theory. LTOMs can be further categorized as direct and indirect methods,
with Non-Linear Programming (NLP) and Hill Climbing being an example of the respective cat-
egories [49]. The common functional aspect of LTOMs is that an initial guess, in terms of either
initial control vector history u[t] or starting adjoint vector of Lagrange multiplier λ(t0), is needed.
The initial guess is obtained by simulating the trajectory based on the transfer settings and the gen-
eration of the initial guess has to be repeated if the LTOM does not converge. The main benefits of
LTOMs are [49]:

• As the methods have proven mathematical foundations, LTOMs are deterministic and their
operations are well understood.

• The results of LTOMs are highly accurate and perfectly match the boundary conditions of the
problem.

while drawbacks of LTOMs are:

• Convergence of LTOM for a given initial guess input is not guaranteed as similar initial guesses
can give dissimilar results.

• The result of LTOM depend on the initial guess provided and generating the guesses requires
expert level knowledge in optimization.
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• If the initial guess is far from the global optimum, LTOMs have the tendency of resulting in a
local optimum close to the initial guess in the solution space.

• The trajectory problem is transcribed into a system of linear equations in many LTOMs. Solv-
ing these equations demand a substantial computational effort in terms of storage and CPU
time.

On the other hand, GTOMs operate by coding the problem into a black-box function which presents
the functional relationship between decision vector and cost function. The optimization routine be-
gins with an arbitrary initial candidate from the solution space and iteratively progresses towards
the optimum based on the method. As GTOMs do not need an initial guess from the user, the opti-
mization process remains unbiased and the need for expert level knowledge is no longer a require-
ment [49]. The search process generally continues until (i) the best possible solution is found, (ii) no
improvement can be observed in the results after a certain number of iterations, (iii) the maximum
process time is exceeded, or (iv) an internal parameter causes the algorithm to terminate. A large
number of GTOMs have been developed over the years, some of which are inspired from nature
or other fields of science. These methods differ in the way how - (i) new generation of candidate
solutions is created, (ii) solutions are evaluated, and (iii) search parameters are used. The major
advantages of GTOM are [49]:

• The search space of GTOM is not confined to the vicinity of the initial candidate solution.

• Most GTOMs start from a randomly initialized parameter set, i.e. the process is independent
of any initial guess.

• Initial conditions like launch epoch t0 and velocity v0 can also be optimized along with the
control vector.

• Convergence of GTOMs depend on the problem, its formulation and the values opted for the
algorithm’s control parameters.

GTOMs suffer from the following disadvantages [49]:

• The way in which the problem is formulated and coded plays a crucial role in algorithm’s
performance to find the global optimum.

• The results of GTOMs have lower accuracy than LTOMs results due to the algorithm’s focus on
finding the global optimum in the solution space.

• Since GTOMs are heuristic (and non-deterministic) in nature, multiple runs with the same
initial conditions are needed to confirm a previously found optimum.

4.3.2. CHOICE OF OPTIMIZATION METHOD

In this subsection, the selection of the optimization method which will be used in this research is
discussed. Firstly, the choice between LTOM and GTOM for the trajectory problem considered is an-
alyzed. The drawback of LTOM as mentioned in the previous section is that LTOMs require an initial
guess to start the optimization process. It is difficult to estimate an initial guess as it requires a good
insight about the problem and the mathematics behind optimal control theory. Moreover, conver-
gence of LTOMs is sensitive to the initial guess and if the solution does not converge, the complete
process from generating a new initial guess has to be repeated. Furthermore, when convergence is
achieved, solutions of LTOMs often turn out to be local optima close to the initial guess. The above
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issues cause the optimization process using LTOMs to be time consuming, requires periodic moni-
toring and expert intervention. Due to the above reasons and ability of GTOMs to extensively scan
the solution space for the global optimum, only GTOMs were considered for further selection.

Among GTOMs, many of the popular methods like Genetic Algorithm (GA), Differential Evolution
(DE), Simulated Annealing (SA) and Particle Swarm Optimization (PSO) have been applied to trajec-
tory optimization problems in the past. A study under ESA’s Advanced Concepts Team [50], compar-
ing the performance of these methods, found DE to be the most promising method for a low-thrust
direct planet-to-planet transfer problem. The methods were compared on aspects like - (i) finding
the Pareto-optimal solution, (ii) ability to locate the basin of attraction of optimal solutions, and
(iii) number of function evaluations and runtime. The results obtained by DE were not only close
to the best known solution but were also found after fewer function evaluations than other meth-
ods. Another comparative study performed by Spaans and Mooij [51], concluded that DE was best
among the methods considered in terms of the fitness value obtained and population size used for
determining the optimal trajectory for a solar polar sail mission.

Additionally, DE is available as part of the open source PAGMO (Parallel Global Multiobjective Op-
timizer) library [52] from ESA’s Advanced Concepts Team. The tool is highly versatile and flexible in
using the existing methods. The PAGMO library can be used in conjunction with the astrodynamic
toolbox Tudat, which was developed at TU Delft and hence, had the advantage of major technical
support. Therefore, considering the technical and practical aspects, DE was selected for optimiz-
ing the solar sailing trajectories in this thesis. The main operating principle and features of DE are
presented in the next section.

4.4. DIFFERENTIAL EVOLUTION

DE is a heuristic global optimization technique developed by Storn and Prince in 1994. The method
has a wide applicability and can be utilized for minimizing even non-linear and non-differentiable
continuous functions. DE belongs to the family of evolutionary algorithms (EA) and thus, has its
inspiration from biological evolution [53]. Like other EAs, DE follows the process of initiation, mu-
tation, crossover and selection. The unique aspect of DE over other EAs is that a new generation is
formed by taking the weighted difference between two members and adding it to a third member of
the current generation. This makes the algorithm completely self-organizing and prevents the need
for a separate probability distribution. The step-by-step operation of DE is described below.

Initiation
In DE, a population of vectors is defined as [53]

Px,g = (xi ,g ), i = 0,1, ....,NP−1, g = 0,1, ...., gmax (4.10)

xi ,g = (x j ,i ,g ), j = 0,1, ....,D−1 (4.11)

where NP is the population size, index g represents the generation number and D is the number of
parameters in the decision vector. Unlike GA which uses binary parameters, DE is a real parameter
optimization with the elements x j ,i ,g of vectors represented as real numbers. Hence, DE searches
for the global optimum in a D-dimensional real-parameter space RD . At the start of optimization,
the D elements of NP decision vectors are randomly generated and initialized as

x j ,i ,0 = rand j [0,1].(b j ,U −b j ,L)+b j ,L (4.12)
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Figure 4.1: Schematic of differential evolution optimization routine [54].

with bU and bL being the upper and lower bounds of the parameters in the decision vector [53]. The
term rand j [0,1] generates a uniformly distributed random number between 0 and 1.

Mutation
The mutant vector vi ,g is formed by taking the vector difference of two randomly chosen vectors in
the current generation and adding the scaled difference to a third vector xr 1,g [53]

vi ,g = xr 1,g +F.(xr 2,g −xr 3,g ) (4.13)

where F is the weight factor which controls the extent of deviation between the two vectors, and has
a value between 0 (no mutation) and 1.

Crossover
Following mutation, the target vector and mutant vector are combined to form a trial vector ui ,g and
diversify the population. The extent of mixing between the vectors is determined by the crossover
factor CR. Two types of crossover are possible - (i) exponential and (ii) binomial [55]. In exponential
crossover, a random element among the D parameters is chosen. This element acts as a starting
point in target vector from where the exchange of L integer elements with the mutant vector begins.

u j ,i ,g =
{

v j ,i ,g for j = 〈n〉D 〈n +1〉D , ....,〈n +L−1〉D

x j ,i ,g for all other j ε [1,D]
(4.14)



4.5. GRID SEARCH 37

whereas in a binomial crossover, for every element of the vector, a random value is generated in the
range of [0,1]. If this value is lower than CR, crossover occurs and the original value of the target
vector is replaced by the corresponding value from the mutant vector. For CR = 0, no crossover
occurs and when CR = 1, the elements of trial vector are completely from the mutant vector.

ui ,g = u j ,i ,g =
{

v j ,i ,g if (rand j [0,1] ≤ CR)

x j ,i ,g otherwise
(4.15)

Selection
The final step of the process is selection. In this step, each individual of the new generation is de-
fined. The new generation is populated by comparing the trial u j ,i ,g and target x j ,i ,g vectors, and
the one with a lower fitness value is selected for the next generation. This ensures that the fitness
status of the population improves or remains the same but never deteriorates. A schematic of the
optimization using DE is shown in Figure 4.1.

xi ,g+1 =
{

ui ,g if f (ui ,g ) ≤ f (xi ,g )

xi ,g otherwise
(4.16)

DE Variants
Similar to the two types of crossover, there can be some variations in the mutation step. Therefore,
based on the choices for mutation and crossover, DE can be classified according to the following
convention: DE/x/y/z [55], where x denotes the option for base vector (best or rand), y is the num-
ber of vector differences considered for mutation (1 or 2) and z represents the type of crossover used
(bin or exp). The variant described earlier for mutation uses one weighted difference and adds it to
a random base vector xr 1,g . This along with a binomial crossover is denoted as: DE/rand/1/bin.
Considering the various options as seen above, 10 DE variants were identified in [55] and have been
defined in the PAGMO library. Among these variants, DE/best/1/bin was found to yield best perfor-
mance in terms of both accuracy and robustness, irrespective of the characteristics of the problem
to be solved. This is also confirmed by the study done in [51], where DE/best/1/bin outperformed
other algorithms in finding the global optimum. Therefore, the DE/best/1/bin variant was selected
for optimizing the solar sailing comet sample return trajectory in this research.

4.5. GRID SEARCH

DE provides an effective method of finding the global optimum. In cases with many parameter
problems, sometimes DE is able to only reach the basin region of the optimal solution, as it han-
dles a large search space. So, the solution obtained is close to global optimum but not having the
required accuracy. In order to locate the global optimum from the solution of DE, a local search
technique can be used.

Grid Search (GS) is one of the local search methods, and is simple to program and execute. GS was
employed in this research to improve the trajectory results obtained from DE, as reported in Chapter
6. GS works by overlaying a uniform grid on the parameter space and evaluating the objective func-
tion at each of the grid points [56]. The resolution of the grid determines the accuracy of the results
and also the computation time. Low-resolution grids are much faster to search but potential solu-
tions within narrow portions of the parameter space could be missed. Whereas for high-resolution
grids, the accuracy of results are improved but at the cost of high computation time. Therefore,
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grid searches are conducted first over a broader parameter space and later focused onto the re-
gion around the best point obtained. The main drawback of GS is that it becomes computational
intractable for problems with many parameters, resulting in a multi-dimension parameter space.



5
VALIDATION AND PARAMETER TUNING

With the theoretical foundations of the research established through the previous chapters, the next
part of the report focuses on the application of those concepts in the software program to solve the
research problem. Prior to the actual trajectory simulation, the astrodynamics models and numeric
tools used in the program have to be verified and validated to confirm if their implementation is
working as intended. This step is highly essential in any scientific research to ensure a sense of re-
liability and credibility to the results obtained. As the simulation consists of existing plus the new
software modules, through verification the proper working of these modules is examined. By com-
paring the outcome of the simulations with previous research results from literature, the functioning
and results of the program can be validated.

In addition to the validation of the astrodynamics models and numeric tools, the chapter also covers
the tuning of integrator and optimizer. The integrator and optimizer contain important parameters
in their set up whose value influence the performance of these numeric tools. Hence, to exact an
optimal performance from the tools, the impact of these parameters was analyzed and the best set-
tings were selected at the end of the tuning process. The same reference cases were considered for
tuning and validation, to enable testing of the settings during tuning process.

In the first part of the chapter, the validation of the newly implemented solar sail acceleration model
is presented. Following this, the tuning and validation of the integrator is explained in Section 5.3.
The final part of the chapter is dedicated to describing the analysis performed to find the best com-
bination of parameter settings for the optimizer. The reference case for tuning was also used for
optimizer validation.

5.1. SRP ACCELERATION MODEL VALIDATION

The SRP acceleration existing in Tudat was a simple cannon-ball radiation model, which calcu-
lates the force exerted on an effective spacecraft area by assuming normal incidence for the solar
radiation. This model is applicable for measuring the perturbation due to SRP on a satellite orbit
around Earth. Further, this model does not accommodate any of the solar sail design parameters
and sail orientation angles, which are crucial for describing a solar sailing trajectory. Therefore, a
solar sail acceleration model was developed and implemented in Tudat for this research. The model
estimates the acceleration due to SRP based on the sailcraft’s position, sail’s orientation (cone and
clock angle) and lightness number as given by Equation 3.23. It was added to the existing accelera-
tion models interface in Tudat.

39
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This new feature addition to Tudat had to be tested and verified before applying it in simulations.
The preliminary check that was carried out was to verify if the parts of the model performed cor-
rectly at the function level. So, the solar sail acceleration function, which provides the output in the
orbital reference frame (Subsection 3.1.2), was tested on four test cases each with inputs covering
different scenarios. The first case takes up the situation when the sail normal vector is perpendicu-
lar to the Sun-line which is like the thrust OFF mode for solar sailing, i.e. no radiation impacts the
sail. In the second case, the solar sail acceleration model is compared with the existing cannon-ball
radiation pressure acceleration model. Since the cannon-ball model assumes a normal incidence
of solar radiation, the test case is formulated for a sail with β = 0.0015312 (m = 1kg and A = 1m2) and
oriented at α = 0◦, δ = 0◦.

Test Case β α δ Tudat result Reference value
OFF mode 0.05 90◦ - (0, 0, 0) (0, 0, 0)
Cannonball model
at distance of 1AU

0.0015312 0◦ 0◦ (9.080725x10−6, 0, 0) (9.080725x10−6, 0, 0)

Sail at Venus orbit 0.05 35.26◦ 10.8◦
(3.08524x10−4,
4.0872x10−5,

2.14260x10−4)

(3.08524x10−4,
4.0872x10−5,

2.14260x10−4)

Sail at Mars orbit 0.05 65.83◦ 270◦
(8.76680x10−6,

-1.953437x10−5,
0)

(8.76680x10−6,
-1.953437x10−5,

0)

Table 5.1: Static validation of solar sail acceleration model.

For the third and fourth cases, sails were given an arbitrary orientation and position in the orbits
of Venus and Mars respectively, and were considered to confirm whether the orientation angles
were processed correctly by the function. For these two cases, the results are compared with the
evaluation of Equation 3.23 in MATLAB. This is done in order to verify the magnitude of the SRP
acceleration obtained from the model and to note the difference in value (error) if any. All the four
test cases are listed in Table 5.1, along with their corresponding inputs, reference values and the
result obtained in Tudat. From the table, it can be seen that for all the four cases, the outcomes of
the function in Tudat perfectly matches with the reference values. Additionally, a second test was
performed to obtain the ’force bubble’ [57], which is characteristic of the variation in solar sail force
components for the range of possible cone angles [-π/2,π/2]. The Figure 5.1 indicates the envelope
of possible radial and transverse component values with the maximum radial force obtained forα =
0◦ as anticipated. In view of the above results, it can be confirmed that the sail acceleration function
has been defined properly.

5.2. SAILCRAFT DYNAMICS VALIDATION

The test cases discussed above have validated the model for the static conditions, i.e. without con-
sidering the motion of the sailcraft. Additional features of the SRP acceleration model come into
play when the dynamics of the sailcraft are considered. These include the transformation of the ac-
celeration from the orbital reference frame to the ECLIPJ2000 and time (or node) based changes of
sail orientation angles. Validation of these aspects of the model are done by simulating the sailcraft
trajectory based on a reference case.
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Figure 5.1: Force bubble computed for an ideal solar sail with β=0.05 at 1AU.

The solar sail trajectory optimization presented in [58], for an interplanetary Earth-Mars transfer
mission, was selected as the reference case to conduct the verification tests. In the reference, the
optimization problem is considered as a two-dimensional orbit-to-orbit transfer without employ-
ing the actual ephemeris of the planets. This simplifies the problem with the sail cone/pitch angle
α being the only source of control as the clock angle δ = 0◦. The steering of the sailcraft was pro-
vided by discretizing the trajectory into N segments, i.e. N+1 nodal points and using a piecewise
constant function for the pitch angle. In the paper, a simplified optical sail force model was utilized
for describing the sailcraft acceleration as given below [58]:

a = ac

(r0

r

)2
cosα[b1r̂ + (b2 cosα+b3)n̂] (5.1)

with b1, b2, b3 equal to 0.0864, 0.8277 and -5.45x10−3 respectively. The dynamics of the sailcraft
were represented in polar coordinates (r , θ, u, v). The minimum-time optimization problem was
solved by converting it to a non-linear programming problem (NLP) and employing a successive
quadratic algorithm (SQP) algorithm. The time-optimal trajectories and their corresponding pitch
angle profiles were provided in the paper for characteristic accelerations (ac ) of 1 and 2 mm/s2.

Initial Position
r(0) 1.496x1011 m
θ(0) 0 rad

Initial Velocity
u(0) 0 km/s
v(0) 29.78 km/s

Final position r(t f ) 2.279x1011 m

Final velocity
u(t f ) 0 km/s
v(t f ) 24.13 km/s

Time-of-flight t f 450 days

Table 5.2: Trajectory conditions for the Earth-Mars mission. [58]

This trajectory is replicated in Tudat using the cone angle profile as shown in Figure 5.2a. The tra-
jectory constraints (Table 5.2) as considered in the original problem were implemented in the Tudat
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simulation. Since the acceleration model in Tudat uses the sail lightness number as the design pa-
rameter, the corresponding value of β = 0.168 for ac = 1 mm/s2 was applied. The Gauss modified
equinoctial propagator (Section 3.6.2) and DOPRI8(7) integrator (Section 4.1) were used for the tra-
jectory simulation. The resulting trajectory to the orbit of Mars is shown in Figure 5.3.

(a) Reference Trajectory (solid line) [58] (b) Simulated Trajectory

Figure 5.2: Cone Angle Profile.

Comparing the trajectory obtained from Tudat (right) with the reference trajectory (left), a very close
match can be observed. This proves that the acceleration frame transformation and processing of
input sail angles have been implemented and functioning properly.

(a) Reference Trajectory [58] (b) Simulated Trajectory

Figure 5.3: Representation of reference and simulated trajectories to Mars.

5.3. INTEGRATOR TUNING

The implementation of DOPRI8(7) in Tudat requires the specification of initial time step, minimum
and maximum step size, and absolute and relative error tolerances. Values provided for these pa-
rameters can widely influence the performance of the integrator, affecting step size, truncation er-
rors and number of evaluations. Therefore, the integrator needed to be tuned to have the appro-
priate settings for obtaining a precise sailcraft trajectory. Sailcraft trajectories were simulated for
different values of the parameters mentioned before. The simulation results were evaluated based
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on accuracy and computation time.

A simple trajectory to the outer Solar System was simulated for tuning the integrator. The initial po-
sition of the sailcraft was taken to be just outside the sphere of influence of Earth with no hyperbolic
excess velocity. Throughout the simulation, the sailcraft was assumed to have a constant (arbitrary)
orientation. The solar radiation pressure and gravitational force from the Sun were the only forces
acting on the sailcraft. The trajectory was propagated using Gauss form of Lagrange Planetary Equa-
tions (Section 3.6.2). The simulations were carried out for a period of two years, considering it to be
representative of the transfer time to our target comet Hartley 2. The simulation settings are sum-
marized in Table 5.3.

Start Epoch t0 Jan 1, 2020
Initial State x(t0) Earth’s state at t0

Excess Velocity v∞ 0 km/s
Lightness Number β 0.168 (ac =1mm/s2)
Cone Angle α 18◦

Clock Angle δ 105◦

Time-of-flight t f 2 years

Table 5.3: Trajectory simulation settings for integrator tuning.

Simulations were performed first to determine the values for minimum and maximum step sizes.
Three set of values were tried, namely (10−6, 106), (10−9, 109) and (10−12, 1012), for the minimum and
maximum step size combination. DOPRI8(7) being a variable step size integrator selects time steps
based on the dynamics of the trajectory and within the limits specified. For the first combination,
the maximum step size of 106 seconds was not adequate as the integration time steps turned out to
be constant (106), irrespective of the tolerance value (except 10−15) selected. Whereas in the second
(10−9, 109) and third (10−12, 1012) combination, the variable integration time steps, on average in
the order of 2 million seconds, were well within the provided limits. However, since the solar sailing
trajectory is not a very fast evolving trajectory, (10−12, 1012) setting could be a bit computationally
excessive, considering that (10−9, 109) combination works adequately. The reason for considering
small values (<10−6) for the minimum step size is due to the large number of minuscule integration
steps taken by the integrator near the nodal points, in order to represent the sudden change in the
dynamics of the sailcraft. The steps were of the order of 10−6 or lower in case of higher error toler-
ance. Therefore, the minimum and maximum step sizes of the DOPRI8(7) were fixed at 10−9 and
109 seconds, respectively.

The next two settings - relative and absolute tolerances - determine the step size control of the
DOPRI8(7) integrator. The simulations were performed for tolerances (both absolute and relative)
varying from 10−15 to 10−10, increasing by a factor of 10 for the next simulation. The difference in
position was calculated with respect to the simulation results for the tolerance of 10−15, as it can
be concluded as the most accurate among the tolerances considered. By using a variable step-size
integrator, the various tolerances considered have different integration/propagation times. In or-
der to calculate the error in position with respect to 10−15 tolerance, the state history data of other
tolerances were interpolated using an 8th order Lagrange interpolator to the time values of 10−15

tolerance.

The error in sailcraft position determined for various tolerances is shown in Figure 5.4. From the
plot, the error margins of the tolerance settings over the period of propagation can be observed.
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Figure 5.4: Comparison of Integrators based on position Error

Figure 5.5: Integrator tolerance trade-off between accuracy and computation time.

Based on the range of the error in position, a tolerance value of 10−14 has the lowest error in order
of 100 m, while a tolerance 10−10 has the largest error in order of 1000 km. But, selection of precise
tolerance setting like 10−14 has the drawback of requiring high computation time. As optimization
algorithms need to evaluate tens of thousands of trajectories, quick integration also plays a vital role
along with accuracy. A trade-off between these two criteria has been plotted in Figure 5.5, compar-
ing the mean position error and average integration steps taken for each of the tolerance settings.
The CPU time is not used for the trade-off here as it varies with other background programs running
simultaneously in the system.

Figure 5.5 clearly shows an increase in integration steps/time with lower tolerance values. The toler-
ance settings of 10−12 and 10−13 have the best outcomes from the trade-off with good accuracy and
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moderate computation time. However, since in this research, the objective of the mission is to reach
the comet within distances of hundreds of km, the error margin in the order of 10 km for tolerance
setting 10−12 is still significant. Hence, the relative and absolute tolerances for the DOPRI8(7) inte-
grator were set with a value of 10−13. The integrator was thus tuned and the settings derived from
the process have been applied for trajectory simulation in the rest of the thesis work.

5.4. INTEGRATOR VALIDATION

Similar to the model validation in Section 5.2, a reference study was considered from literature and
the trajectory is recreated based on the given initial conditions but using the tuned integrator set-
tings. Further, since in Section 5.2, the actual ephemeris was not considered for simulation, the cur-
rent opportunity is used to verify the ephemeris settings in Tudat as well. The optimization of solar
sailing Earth-Venus rendezvous trajectories, analyzed by G.Hughes in his PhD dissertation [59], is
chosen for validating the integrator.

(a) Reference Trajectory [59] (b) Simulated Trajectory

Figure 5.6: Representation of reference and simulated trajectories.

The optimal trajectory for the Earth-Venus rendezvous in [59] was determined for a solar sailcraft
with a characteristic acceleration of 0.2 mm/s2. The corresponding lightness number value of 0.0337
was adopted for the simulation in Tudat. The sailcraft was again assumed to depart with zero hyper-
bolic excess velocity from Earth’s position in its orbit around the Sun. In the study [59], the optimal
departure date was searched in the period from 2010-2020 and was found to be March 31, 2011. The
optimal trajectory departing on this date reached Venus in 676 days and is shown in Figure 5.6a.

Based on the above information, the Earth-Venus rendezvous trajectory was simulated in Tudat
using the DOPRI8(7) integrator, having an error tolerance of 10−13. The resulting trajectory is pre-
sented in Figure 5.6b. Comparing the reference and simulated trajectories, it can be observed that
the motion of the sailcraft has been almost perfectly recreated. The slight phase difference in the
final position of sailcraft between the two plots can be attributed to the way in which sail orienta-
tion angles were modelled in both the cases. The sail orientation angles for the reference trajectory
were described as continuous, oscillatory curves in [59]. Since the SRP acceleration model in Tudat
is based on piecewise nodal angle representation, a discrete approximation of the cone and clock
angles, as shown in Figure 5.7, were utilized for the simulation. Even with this approximation, the
obtained trajectory has confirmed the correct working of the integrator. Moreover, along with the
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simulation result from Section 5.2, the performance of the SRP acceleration model has been suc-
cessfully validated for both the two-dimensional case with no ephemeris and the three-dimensional
case with ephemeris trajectory propagation.

(a) Cone Angle (b) Clock Angle

Figure 5.7: Sail orientation angle profiles for Earth-Venus trajectory.

5.5. DE TUNING

With the performance of the SRP acceleration model and the integrator successfully validated, the
next most important numeric tool is the optimizer. As already introduced in Section 4.4, DE is a
heuristic global optimization technique. It belongs to the class of evolutionary algorithms, and op-
erates by modifying the population members and finding the improved solution over the genera-
tions. DE’s performance is influenced by the values of the parameters - population size NP, muta-
tion weight F and crossover factor CR. For the algorithm to perform well and determine near-global
optimal solutions, the functional parameters have to be set to their optimal values, which may vary
according to the optimization problem. Hence, the DE parameters were tuned in order to aid the
optimization process. The parameters were analyzed based on the solutions obtained and the com-
putational effort required.

For the Earth-Venus rendezvous used for tuning the optimization parameters, the sailcraft is as-
sumed to depart from Earth’s position (just outside SOI) with no hyperbolic excess velocity. A sail-
craft with a sail lightness number of 0.05 is considered for the transfer. The trajectories are simulated
considering the actual ephemeris of bodies. The decision vector consists of the sail orientation angle
and departure epoch. The search for the optimal departure date is confined to the synodic period
(584 days) of Venus, starting from January 1, 2011. Other integrator and propagator settings remain
the same as the ones chosen for this thesis work.

The results of the tuning process are discussed in this section. A rendezvous trajectory to Venus
was opted for tuning the DE parameters due to the proximity of Venus’s orbit to Earth’s, which is
similar to the actual comet’s perihelion passage, and availability of literature for this transfer. In
the first part of the section, the formulation of the objective function which has to be minimized
by the optimizer is presented. As will be seen in this section, the objective function is a weighted
combination of multiple objectives. The sensitivity of the results to the variation in weights was
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also analyzed and the best combination was selected. Following this, the population size and node
distribution were analyzed and set. Finally, in the last part of the section, the DE optimizer settings
are completed by deciding on the F and CR combination.

5.5.1. OBJECTIVE FUNCTION

The objective of time-optimal trajectories generally contains only the time-of-flight term in the ob-
jective function. Due to the requirements set on the mission trajectory, other terms related to the
sailcraft’s position and velocity were included as constraints in the objective function. This is also
the case because of the way in which constraints are handled in PAGMO’s implementation of DE.
DE by its definition works on minimizing a single objective or fitness term. So, multiple objectives
have to be combined into a single objective by following one of the methods mentioned in Section
4.3. A priori approach of combining the multiple functions as weighted sums was adopted due to
its simple implementation. Although determining the set of non-dominated or Pareto-optimal so-
lutions is more effective, considering the number of functions, dimensions of the problem and time
limit for this thesis work, the simpler weighted sum approach was selected.

The choice for the objective function is made after pre-planning for the sample return mission to
the comet Hartley 2. Since, for that mission, the sailcraft is required to make a rendezvous with the
comet, the position and velocity of the sailcraft should match with that of the comet. This forms
two of the objectives for minimizing the distance and velocity between sailcraft and the comet. As
it is also desired for the sailcraft to tag the comet - observing and collecting samples - a possible
match in the orbital elements of the sailcraft and comet (at the rendezvous point) is considered as
well. In order to verify and test the above considerations, the same has been adopted for the Earth-
Venus rendezvous (validation) mission. Therefore, the various components of the multi-objective
cost/fitness function are:

• Time-of-flight (TOF) - The transfer time from Earth to the target. It is normalized by a factor
of three years, since the optimal transfer time from reference was 676 days [59].

• Distance to target (∆r) - This is the distance of the closest approach to the target during the
course of the trajectory. In order to make the distance parameter of order 100, it was normal-
ized by 109 m (a million km).

• Relative velocity (∆v) - The relative velocity between the sailcraft and the target at the point of
closest approach. It has been normalized to km/s.

• Orbital elements (∆a, ∆e, ∆ω, ∆θ) - The match in orbital elements can be considered like
a penalty function. The difference in semi-major axis is normalized in the same way as ∆r,
while the angles ∆ω, ∆θ are normalized with their range 2π and eccentricity (already in range
0-1) is left as such.

The normalization factors considered above are intended to bring all the terms of the objective func-
tion in the same magnitude range. So, the sum of these terms having equal weight factors of 1, forms
the basic objective function around which the sensitivity of each term is tested

J =∆t ′+∆r ′+∆v′+∆a′+∆e +∆ω′+∆θ′ (5.2)

where the prime notation denotes normalized terms. The sensitivity of objective function J was
studied by increasing the weight of terms (by a factor of 10) one-by-one. For each of those cases, the
optimization algorithm was run for 50 seed numbers with a population size of 100 and a nominal



48 5. VALIDATION AND PARAMETER TUNING

value of (0.5,0.5) for the (F ,CR) combination. The outcome of this sensitivity study is shown in
Figure 5.8 in which, each term on the X-axis implies a weight factor of 10 on that term with rest
remaining same as the nominal formulation in Equation 5.2.

Figure 5.8: Comparison between various objective function formulation.

The figure shows the box plots, which indicate the range of the data within 25 and 75 percentile as
the box with the whisker ends showing the minimum and maximum values. The red cross markers
indicate potential outliers in the data. In the plot, the terms on the x-axis indicate the different
objective function settings, with the mentioned term carrying additional weight factor over the rest
of the terms in each case. From the figure, it can be noticed that the additional weight to the relative
velocity does not improve the fitness compared to the nominal objective function (Equation 5.2).
Only the optimization runs with more weight on eccentricity and distances show improvement from
the nominal case. The minimum value for fitness among all the cases is obtained for the eccentricity
case. Apart for achieving minimum fitness, it is important to attain it consistently. Even in terms
of consistency, the objective function with weight on eccentricity performs better than all other
functions, by having a smaller range for fitness values and no outliers. Hence, the objective function
with additional weight factor on eccentricity was used for rest of the tuning process.

5.5.2. NODE VS POPULATION SIZE

The number of nodes considered for representing sail orientation also affects the performance of
the DE optimizer. The dimension of the search space is determined predominantly by the number
of nodes considered. So, an increase in the number of nodes, in turn increases the dimensionality
of the problem, making it more difficult for DE to find the global optimum. Whereas if sail orien-
tation is varied at very few nodes, the dynamics of the sailcraft will not be sufficiently represented.
Thus, optimization runs with different nodal settings are done to determine the right combination
along with the population size. The same simulation setting was used with the updated objective
function containing additional weight on the ∆e’ term. Four different population sizes of 50, 100,
200 and 300 were analyzed for the orientation angle setting with 4, 8 and 12 nodes. Overall 12 cases
were compared based on 20 seeded optimization runs per case.

Figure 5.9 shows the box plots of the fitness values obtained for every case. The immediately notice-
able observation is that the fitness values get better with an increase in population size, irrespective
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Figure 5.9: Comparison between different Node(N)-Population(P) combinations.

of the number of nodes assumed. Another interesting fact from the plot is that the fitness values
are slightly better for lower number of nodes, with the N4P200 combination arriving at the lowest
fitness among the 12 cases. However, N4P200 is not the best solution, as the fitness range of N4P300
is much smaller indicating that the setting provides very consistent and robust results at the end of
optimization. The drawback of selecting the N4P300 combination is that the number of function
evaluations to be done before converging at a solution is almost double the number of function
evaluations needed for N4P200. This increases the computational effort significantly as the DE al-
gorithm has to be run for multiple seed numbers. Therefore, in view of the computation time, the
second-best N-P combination of 4 nodes and a population of 200 members was selected for the DE
algorithm.

5.5.3. F AND CR COMBINATION

The combination of mutant and crossover factors introduce new members into the population and
convergence of the algorithm. For low values of F-CR, the probability of introduction of new mem-
bers into the population is less, so there is risk of pre-mature convergence, i.e. the algorithm would
not have searched the parameter space sufficiently. While for higher values, the new members are
given more preference and important characteristics of existing members may not be retained. In
this case, it takes a longer time for the algorithm to converge. Hence, a right balance between these
parameters is need for optimal functioning. For tuning the F-CR parameters, 16 combinations were
considered with each parameter having the values from the set 0.2,0.4,0.6,0.8. Each combination
was run for 20 seeded runs and the result is shown in Figure 5.10.

From the plot, the (0.2,0.8) and (0.4,0.8) combinations can be observed to have lowest average and
minimum fitness values. The fitness range of the (0.2,0.8) combination is slightly larger compared
to that of (0.4,0.8). So, the F =0.4 and CR=0.8 combination provides the best, consistent and robust
results. Therefore, the (0.4,0.8) F-CR combination was incorporated in the DE algorithm settings.
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Figure 5.10: Comparison between different F-CR combinations.

5.6. DE VALIDATION

The parameters related to DE optimization have been tuned in the previous section, so as to make
the algorithm optimally search for near-global minima. To verify that the tuned parameters work
as intended, the algorithm was tested on the rendezvous mission to Venus, as executed in the refer-
ence [59]. As the same reference case was discussed in Section 5.4 on integrator validation, the best
trajectory obtained after optimization was compared with the previously simulated trajectory.

Figure 5.11: Optimal rendezvous trajectory to Venus used for DE validation.
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Departure time t0 May 13, 2011
Arrival time t f February 8, 2013
Time-of-flight TOF 636.8 days
Approach distance ∆r 2.3x105 km
Relative velocity ∆v 67.4 m/s
Difference in
semi-major axis

∆a 107 km

Difference in
eccentricity

∆e 0.0019

Table 5.4: Results of the optimal trajectory for Earth-Venus validation case.

A solar sailcraft with a lightness number of 0.0337, equivalent to ac = 0.2 mm/s2, was considered. As
the optimal departure date was also to be determined, the search bounds were provided as starting
from January 1, 2010 and having a timespan of 584 days (synodic period of Venus). The sailcraft
was assumed to depart from Earth’s heliocentric orbit around the Sun, without any excess velocity.
Based on the node and population size setting, the decision vector consisted of four cone angles,
apart from the departure time and time-of-flight. In order for the sailcraft to rendezvous with Venus,
its final position should be within Venus’s sphere of influence (rSOI ≈ 6x105 km) and also match its
velocity. Using the above conditions and the tuned settings for the optimizer, the DE algorithm was
run. Since the initial population is formed by randomly generated chromosomes, different runs can
produce different results. Therefore, the optimization was repeated for 20 seeded runs. The best
trajectory resulting from DE was improved by performing a grid search to determine the departure
epoch more accurately and consequently decrease the approach distance to the comet as well. The
optimal trajectory thus obtained is plotted in Figure 5.11 along with the reference trajectory (from
Figure 5.6b).

By comparing the optimal and reference trajectories, it can be seen that both trace similar paths to
reach Venus, with the optimal trajectory starting 43 days after the reference departure date (March
31, 2011). This difference is however compensated as the time taken to arrive at Venus with the op-
timal trajectory is around 637 days, compared to 676 days with reference trajectory. As a result both
the trajectories arrive at Venus within a span of just 4 days (t f of reference trajectory is February 4,
2013). This proves that the DE algorithm with the tuned settings in place, is capable of providing
competing results. Moreover, the additional terms in the objective function also seem to have been
fulfilled as shown in Table 5.4. The sailcraft is able to approach Venus within its SOI and the relative
velocity between them is merely 67 m/s, which is negligible when compared to Venus’s orbital ve-
locity of 35 km/s. Furthermore, the optimal trajectory has also closely matched the orbital elements
of Venus at the rendezvous point. This makes it possible for the sailcraft to follow Venus (or a target
body in general) in its orbit, which is a desirable result for sample return missions to small bodies
like comets. With the success of verifying the DE settings and the advantageous results produced by
the algorithm, the optimization procedure has been validated.





6
RESULTS

Having discussed the mission background, theory, numerical tools and program settings, this chap-
ter is dedicated to present the results of the problem conceived as the research goal of this thesis
work. All the theoretical studies, programming and validation exercises explained in the previous
chapters, have laid the foundation for the results to be shown here.

The process of finding an optimal trajectory for a comet sample return mission is quite challenging,
owing to the high-energy, highly eccentric nature of comet orbits. As thus far in the report, all the
simulations and validation cases were done for coplanar transfers between bodies in circular orbits,
the optimization of comet sample return trajectory was considered in two steps. In the first step, an
outbound trajectory to the comet 103P/Hartley 2 from Earth- the first leg of the mission - was op-
timized. Following this, the optimization of the overall sample return trajectory was performed as
the final step. For both cases, the optimal trajectory results were analyzed and the performance of
the DE algorithm was evaluated. Modifications to the optimization settings/conditions were incor-
porated based on the solutions obtained. The conditions and settings for the outbound trajectory
to the comet are explained, and the best result found is presented in Section 6.1. The implementa-
tion and results of grid search as a local search method is also described. In a similar manner, the
analysis of comet sample return trajectory results are provided in Section 6.2.

6.1. OUTBOUND TRAJECTORY TO 103P/HARTLEY 2

The outbound trajectory to comet Hartley 2 has been realized as the initial analysis needed to opti-
mize the sample return trajectory. The orbit of the comet is highly eccentric, inclined (as shown in
Table 2.1) and different from the planetary orbits considered so far. This has an impact on the op-
timization settings. For instance, the departure date timespan can no longer be considered as the
synodic period, due to the eccentricity of the comet orbit. As one of the mission requirements, the
entire sample return mission is planned to be completed within a ten-year period between 2020-
2030. Before this time period, the comet was at its perihelion on October 28, 2010. Based on its
orbital period (6.46 years), the comet’s next perihelion passage was found to occur in September
2023, which is around 1370 days after the start of the decadal time period. As the perihelion dis-
tance of the comet is 1.05 AU, the comet will also approach Earth at its closest distance during this
perihelion passage. So, based on this time period and considering time needed for transfer, the de-
parture date timespan was considered to be three years.

The sailcraft was assumed to depart from Earth’s heliocentric orbit, just outside of its SOI and with-
out any hyperbolic excess velocity. Thus, determining the optimal departure time would provide the
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initial position and velocity of the sailcraft. Actual ephemeris of the bodies (Sun, Earth and Hart-
ley 2) were used in the simulation. A sailcraft with a nominal performance sail, having a lightness
number of 0.05 (corresponding to ac ≈ 0.3 mm/s2) was considered for the mission. An ideal sail
force model was used for modelling the SRP force acting on the sail. The sailcraft moved under the
influence of the solar gravitational force, with the SRP thrust force acting as a perturbation. The
equations of motion of the sailcraft were represented in the Gauss form of Planetary Equations with
modified equinoctial elements. The trajectory was propagated in Tudat using the DOPRI8(7) inte-
grator with the tuned settings.

The trajectories were optimized using the settings derived from tuning the parameters as specified
in the previous chapters. The DE/best/1/bin variant algorithm with a population of 200 members
was utilized for optimization. The mutant and crossover weight factors were set at 0.4 and 0.8 re-
spectively. The number of decision vectors is mainly affected by the consideration of sailcraft dy-
namics and node distribution. For a two-dimensional trajectory with four node points, only the sail
cone/pitch angle contributes to steering the sailcraft, resulting in four angles in the decision vector.
But when the transfer is considered in three dimensions, the number of angles needed for steering
doubles. The DE algorithm does not have the same effectiveness for this increase in parameters, as
can be seen from the preliminary results obtained for a three-dimensional transfer which are pro-
vided in the Appendix A. The larger the number of parameters D in the decision vector, the more
difficult it will be for the DE algorithm to narrow in on the global optimum, due to the increase
in the dimension of the solution space RD. This is especially relevant, when extending the three-
dimensional transfer to the entire sample return mission. The number of angles to be determined
by the optimizer increases to 16 and, along with the departure time and time-of-flight, the total
number of decision variables becomes 18. Owing to the complexity of the low-thrust problem in
itself and the multiple objectives in place, the probability of obtaining solutions that satisfy the mis-
sion requirements is not very compelling for a three-dimensional transfer. Therefore, the problem
of optimization of solar sail trajectories to (and from) the comet was limited to two-dimensional
transfers.

Another aspect of the mission which had to be modified from previous optimization runs was the
objective function. For the optimization runs until now, the objective function expressed by Equa-
tion 5.2 was employed. The aim of the objective function is to find rendezvous trajectories that
minimize the time-of-flight and also to match the orbital elements at the point of closest approach.
Preliminary runs for an outbound trajectory to the comet indicated the difficulty in matching all of
the constraints mentioned in the objective function. This can be primarily attributed to the vast
contrast between the initial and target orbits. The sailcraft which is initially in a circular Earth orbit
(e = 0, r = 1 AU) has to meet the conditions at the comet which is in moving in an orbit with a =
3.46 AU (around 518 million km) and e = 0.694. Such a drastic change in a and e requires a strong
propulsive force. Since solar sails with β = 0.05 results in a slowly evolving trajectory and given the
time period of the mission, the demands on orbital elements are difficult to fulfill. This has been
proven by performing optimization runs for high-performance solar sails with β = 0.3. The reader is
referred to the Appendix B for more information about these runs. However, with the current level
of technology such high-performance sails are still not practical. As an alternative approach, the
sailcraft with β = 0.05 can be made to evolve in its orbit for many years in order for it to have gained
enough energy to match the comet’s orbit. But this would exceed the time period considered for the
mission and could prove critical as the sail degrades with radiation impact. Hence, to have realistic
sail performance and complete the mission within the span of 10 years, only time-of-flight, distance
to the comet and relative velocity terms were considered in the objective function for the optimiza-
tion runs presented in this chapter.
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(a) Fitness Range. (b) Departure Date.

Figure 6.1: Histogram of the fitness and departure dates obtained for 50 runs to optimize the outbound
trajectory to comet Hartley 2 (Y-axis indicates the Ntrials).

(a) Approach Distance. (b) Relative Velocity.

Figure 6.2: Histogram of approach distance and relative velocity obtained for 50 runs to optimize the
outbound trajectory to comet Hartley 2 (Y-axis indicates the Ntrials).

With the settings as discussed in this section, optimization runs for outbound trajectories to Hart-
ley 2 were performed. Due to the heuristic nature of DE, optimization runs were repeated for 50
different seed numbers. The range of fitness/objective function values obtain is shown in the form
of an histogram in Figure 6.1a. Similar plots are shown for the approach distance, relative veloc-
ity and departure date in Figures 6.1b, 6.2a and 6.2b. These plots indicate the performance of the
DE algorithm. The fitness values are focused in the range between 6 and 14. This can also be seen
from Table 6.1 providing data on the optimization run results. The main factor contributing to these
fitness values is the relative velocity between the sailcraft and the comet. The reason for the high
relative velocities is due to the inability of the solar sailcraft, with nominal performance sail, to gain
this velocity in the short timespan available. For reference, IKAROS - the only interplanetary solar
sailcraft to have flown till now - had gained only 0.4 km/s speed 3 years afterits deployment.

Although from Figure 6.2a it can be noticed most optimization runs result in approach distances
in the order of 0-2 million km with the minimum being around 100,000 km, these values are still
significantly higher than what is desired (< 1000 km) for the mission. So, the approach distances
have to be reduced further to enable effective sample collection. For this purpose, the grid search
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Average Std. Deviation
Fitness 10.5358 3.2912
Departure time (JD) 2459248 170.225
Time-of-flight (days) 983.36 157.66
Approach distance (km) 1,734,320.65 1,353,609.84
Relative velocity (km/s) 8.128 1.741

Table 6.1: Results of optimization runs for the outbound trajectory to Hartley 2.

Figure 6.3: Fitness vs departure time plot showing the impact of grid search on four optimization runs.

(GS) method was utilized to search the solution space. Since a two-dimensional coplanar transfer
was considered, performing a grid search based on departure time was observed to decrease the
approach distance at the comet. This can be seen in Figure 6.3, where the fitness values found are
plotted against their corresponding optimal departure dates. The figure shows the optimization re-
sults to be spread across a wide range (≈ 650 days) of departure dates with the majority falling in
the region of the optimal point (2459334 JD). Even with this wide of departure times, the sailcraft
is found to arrive at the comet within a span of 120 days (Sep-Dec 2023), which happens to be the
period of the comet’s perihelion passage and also the time of closest approach to Earth (Oct 2023).
The departure times around the optimal point were searched using a progressively finer grid. The
number of points in the grid was increased until the level of looking at departure dates every 10−5

days, i.e. in the order of 1 sec increments. The number of function evaluations becomes very large
in this case. This is the reason for restricting the application of grid search to four optimization runs.

Fitness ∆r (km) ∆v (km/s) t0 (JD) TOF (days)
After DE 6.3823 112,537.3564 5.6686 2459334.5122 877.7700
GS (0.0004 days) 6.2792 1,013.3716 5.6774 2459334.9716 877.2486
GS (10−5 days) 6.2783 114.6370 5.6774 2459334.9716 877.2468

Table 6.2: Results of grid search obtained for the best optimization run from DE.
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Figure 6.4: Representation of the optimal outbound trajectory.

Departure Date 30 April 2021
Time-of-Flight 877.2468 days
Arrival Date 24 Sept 2023
Approach Distance 114.637 km
Relative velocity 5.6774 km/s
Number of revolutions ≈ 2

Table 6.3: Attributes of the optimal outbound
trajectory.

Figure 6.5: Cone Angle Profile for Outbound
Trajectory.

As shown in Figure 6.3, the impact of grid search was not found to be uniform on all four of the
arbitrarily chosen runs. For the case with the largest decrease in fitness, a reduction in approach
distance from the order of a million km to less than a thousand km was observed. In other cases as
well, a comparatively smaller decrease in approach distance was noted, but due to the normaliza-
tion of distance, it is not so much reflected in the fitness value. This is seen in case of the optimiza-
tion run with the lowest fitness value from Table 6.2. Furthermore a common aspect in all four GS
cases is that GS does not affect the ∆v, t0 and TOF (as shown in Table 6.2), which is according to the
expectation.

The trajectory of the optimal solution after the application of GS is presented in Figure 6.4 and var-
ious attributes of the trajectory are summarized in Table 6.3. The sailcraft following this trajectory
would depart on April 30, 2021 and make a flyby at the comet Hartley 2 on September 24, 2023 after
having flown for 877 days. The interesting attribute of this trajectory is that the sailcraft arrives at
the comet exactly during its perihelion encounter with the Sun, and thus, will be able to witness
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increased activity in the comet. Additionally, by flying close to the comet at a distance of 115 km,
a larger quantity of dust and ice particles could be collected. The cone angle profile, shown in Fig-
ure 6.5, is oscillatory in nature, indicating an uniform solution for sail control function. Therefore,
the optimal trajectory obtained for the outbound trajectory to Hartley 2 fulfills requirements of the
mission.

6.2. SAMPLE RETURN TRAJECTORY TO 103P/HARTLEY 2

The majority of the settings that were implemented in the previous section were used for optimizing
the solar sail sample return trajectory to comet Hartley 2. The only modifications were the increase
in the number of decision variables by including an additional four angles for the return trajectory.
These angles along with the departure time and overall time-of-flight form the 10 variables of the
decision vector. A slight change was made in the objective function by normalizing the time-of-
flight by one year (instead of four years) to bring all the terms of the objective function in the order
of 1-10. The Earth return distance and velocity were also included in the objective function. The
remainder of the conditions were maintained as such.

The sailcraft departing from the Earth heliocentric orbit is required to approach the comet at dis-
tances less than 250 km and collect samples from the comet’s coma. The return trajectory should
lead the sailcraft close to Earth’s sphere of influence at a low relative velocity, in order to preserve
the samples during re-entry. The aim of optimization is thus to find a trajectory which satisfies the
above mission conditions. The DE algorithm is run in Tudat with a population size of 200 members.
As mentioned in the previous sections, the initial populations are formed by randomly generated
chromosomes. So, there is possibility for different optimization runs producing different optimal
trajectories. Hence, 50 optimization runs were performed to determine the optimal trajectory and
also evaluate the performance of DE.

The data from the results of the optimization runs is provided in Table 6.4. The histogram of the
data is also shown in Figures 6.6a-6.8b. The fitness values found are not consistently on the lower
range, unlike the outbound one-way trajectory optimization. The comet approach distances and
sailcraft’s relative velocities at the comet, have increased compared to what was observed for the
one-way trajectory. Similarly, Earth return distance is also having a higher magnitude compared to
the desired value close to Earth’s SOI. Whereas the majority of the optimization runs resulted in an
acceptable range for the Earth return velocity. The above results indicate that DE has not been as
effective as for the outbound trajectory in finding near-optimal solutions. As mentioned in the pre-
vious section, this can be attributed to the increase (almost double) in the number of parameters in
the decision vector. The corresponding increase in the real D-dimensional solution space might be
the cause for the difficulty in finding the optimum. Moreover, the inclusion of Earth return distance
and velocity terms in the objective function, does not simplify the problem. In fact, in most of the
runs, contrasting results are observed for the terms evaluated at the comet and Earth. That is if one
of them has low values, the other has high value terms.

In order to find better trajectory solutions, a grid search was applied using the results of DE as the
base. But this time, the grid points cannot only be based on departure times. Searching around
optimal departure times might reduce the comet approach distance as seen for the outbound tra-
jectory. But this could in turn still result in a large Earth return distance. While performing grid
search to reduce the fitness based on the eight angle variables is computationally inefficient. The
alternative is to consider the overall TOF and departure time together and look for better solutions
in this two-dimensional space. A grid search was performed based on these parameters on multiple
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(a) Fitness. (b) Departure Date.

Figure 6.6: Histogram of fitness and departure date obtained for 50 runs to optimize the sample return
trajectory to comet Hartley 2.

(a) Comet Approach Distance. (b) Relative velocity at the comet.

Figure 6.7: Histogram of comet approach distance and relative velocity obtained for 50 runs to optimize the
sample return trajectory to comet Hartley 2.

(a) Earth Return Distance. (b) Earth Return Velocity.

Figure 6.8: Histogram of Earth return distance and velocity obtained for 50 runs to optimize the sample
return trajectory to comet Hartley 2.



60 6. RESULTS

Average Std. Deviation
Fitness 41.6201 7.6888
Departure time (JD) 2459351 231.535
TOF to Comet (days) 1448.39 842.17
Overall TOF (days) 3074.98 369.74
∆rComet (km) 8,028,609.13 5,352,236.91
∆rEarth (km) 11,467,317.64 5,624,938.62
∆v at Comet (km/s) 11.125 2.767
∆v at Earth (km/s) 2.579 1.685

Table 6.4: Results of optimization runs for the sample return trajectory to Hartley 2.

Figure 6.9: Contour plot of grid search results based on grid size of 1 day.

results obtained from DE. The contour plot for the initial grid search, with a grid size of 1 day, on one
of these results is shown in Figure 6.9. When the contour plot is explored further by using a much
finer grid close to the minima obtained, an interesting plot (Figure 6.10) is obtained.

Figure 6.10 shows the presence of numerous contour regions within the grid range considered. The
yellowish regions have a slightly larger fitness values whereas the purple/violet regions depict the
regions with low fitness. The regions with similar color codes tend to have similar fitness values
as well. This implies the presence of many sub-optimal points which carry the same or similar fit-
ness values. The reason as to the existence of such pocket regions in the contour plot has to do
with the nature of the problem and the objective/fitness function used. The overall TOF determines
the nodal points where the angle change occurs, thus influencing the dynamics of the sailcraft to a
larger extent, as can be seen in Figure 6.9. Through Figure 6.10, the difference in fitness for neigh-
boring regions can be noted. This could be due to the multiple term objective function, where every
term is affected by the changes in departure date and/or overall TOF. This also causes the discon-
tinuity in contour leading to the formation of small isolated regions. As opposed to the 2D grid
search for the outbound trajectory, here the terms in objective function pertaining to the encounter
with the comet are calculated at the point of minimum approach, which differs with both departure
epoch as well as the overall TOF. This is in contrast to the one-way trajectory, where these terms were
evaluated at the end of the TOF, while minimizing the TOF. Due to this reason, point of minimum
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Figure 6.10: Contour plot of grid search results based on grid size of 0.01 day.

approach differs only with the TOF in case of the outbound trajectory analysis, thus producing con-
tinuous contour lines as shown in Appendix C.

Figure 6.11: Representation of the optimal sample return trajectory.

The best trajectory obtained after GS is shown in Figure 6.11 and its attributes are listed in Table 6.5.
Based on this trajectory, the sailcraft departs on April 17, 2021 which is two weeks earlier than the
departure date found for the outbound trajectory in the previous section. The time of arrival at the
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Departure Date 17 April 2021
TOF to comet 849.16 days
Arrival date at comet 14 Aug 2023
Comet Approach Distance 1019.598 km
Relative velocity at comet 8.426 km/s
Return date to Earth 24 Jan 2028
Earth return distance 821,958.213 km
Earth return relative velocity 4.942 km/s
Overall TOF 2473.3727 days
Number of revolutions 5

Table 6.5: Attributes of the optimal sample return
trajectory. Figure 6.12: Cone angle profile for sample return

trajectory.

comet and the time-of-flight to reach it were also similar to the results of the outbound trajectory.
In fact, in this case, the sailcraft makes a flyby with the comet around a month earlier than the
optimal outbound trajectory. The similarities between both the trajectories can be attributed to the
identical initial angle variation from 10◦ to 58◦, for the major portion (≈ 600 days) of the outbound
trajectory to the comet. To counter the high velocity at the comet during sample collection, effective
sample collection techniques (advanced than the collector in Stardust mission) could be employed
to collect the particles at these speeds without damaging them. Also, in reality with the help of
GNC (Guidance, Navigation and Control), the sailcraft can be maneuvered to approach the comet
(after reaching its vicinity) at a closer distance and lower relative velocity. Furthermore, the return
leg of the trajectory brings the sailcraft within the SOI of Earth and at a nominal relative velocity
of 4.94 km/s. In view of the above results and considerations, the optimal solar sail trajectory was
found to fulfill the distance and time-of-flight requirements of the sample return mission to comet
103P/Hartley 2. For the lightness number considered, various combinations of sailcraft mass and
sail area can be used depending on the mass of the payload to be carried on board.



7
CONCLUSIONS AND RECOMMENDATIONS

7.1. CONCLUSIONS

The current thesis work focused on the optimization of solar sailcraft trajectory for a comet sample
return mission. The study began by formulating the requirements for the sample return mission
based on the knowledge from literature and past missions. From a list of potential target options,
comet 103P/Hartley 2 was selected as the target for the mission based on various criteria.

The theoretical foundations for the mission were set by making choices on the dynamics model and
solar sail design. The equations of motion were decided to be written in the Gauss form of Plane-
tary Equations using modified equinoctial elements. The variable step-size integrator, DOPRI8(7)
was used for the propagation of the trajectory in time. Differential Evolution was employed as the
optimization algorithm and the simulations were carried out in the Tudat toolbox, with the PAGMO
modules providing the algorithms for performing the optimization.

The solar sailing acceleration model developed and implemented in Tudat for this thesis, was tested
and verified prior to running simulations. The sail orientation represented by the sail cone and clock
angles were considered to change at discrete nodal points. With the help of a solar sail reference
trajectory to Mars, the performance of the integrator was validated. Similarly, a Venus rendezvous
trajectory was recreated in order to tune and validate the settings of the DE optimizer. The objective
function considered for optimization was a weighted sum of multiple constraints on sailcraft’s po-
sition, velocity and orbital elements, that need to be fulfilled by the trajectory. The results obtained
for the validation case proved the algorithm to be capable of handling coplanar rendezvous trans-
fers.

The optimization of the comet sample return mission was performed in two parts - (i) an outbound
trajectory to the comet and (ii) the overall sample return trajectory to the comet. The simulations
were performed for a sailcraft with a lightness number of 0.05. The decision vector consisted of
the departure time, time-of-flight and the cone angles needed for steering the sailcraft. Due to the
highly eccentric nature of the comet orbit and the use of a nominal performance sail, the orbital
elements of sailcraft and the comet could not be matched using the given settings. Modifications
were done to the objective function to just include the position and velocity constraints. The results
obtained following this, were found to be sub-optimal in terms of the large approach distances to
the comet. Hence, a grid search on the departure date was employed to reduce the approach dis-
tance and narrow in on the optimum solution. The optimal outbound trajectory found was able to
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make the sailcraft reach the comet in 877 days and date of arrival matched with the comet’s perihe-
lion passage.

In the second part, the return leg of the mission was also included, thereby increasing the number
of decision variables from 6 to 10. Furthermore, the objective function now included terms for the
return conditions at Earth as well. With the same settings as for the outbound trajectory, 50 opti-
mization runs were performed. The outcome of these runs produced results which were not optimal
by far. The grid search method was again utilized for improving the results. Searching through the
two-dimensional grid formed by departure time and time-of-flight, numerous sub-optimal points
were found, with many of them not satisfying the mission requirements. The best result among
those sub-optimal points was found to fulfill the time and distance requirements of the mission.
The high relative velocity during sample collection can be countered by using a more advanced
sample collection technique or with the help of GNC the sailcraft can be maneuvered towards the
comet for collecting the particles.

Based on the optimization results obtained in both the cases, it can be seen that DE by itself was not
sufficient to find the optimal trajectory. The performance of DE was influenced by the number of
decision variables and by the presence of multiple constraint terms in the objective function. This
is evident from the sample return trajectory analysis, where DE could not replicate the performance
in determining the optimal trajectory as in the case of the outbound trajectory. The reduction in DE
performance can be attributed to the increase in number of decision variables to be determined and
additional penalty terms in the objective function. However, considering the nature of the comet’s
orbit, the fact that the sailcraft following the optimal trajectory will be able to reach the comet at a
close distance, collect the particles and return back to Earth within 6.77 years, shows the success of
the solution obtained in fulfilling the mission requirements. Therefore, the research has been able
to successfully answer the question raised at the start of the thesis work, by demonstrating the ef-
fectiveness of using solar sailing for comet sample return mission.

7.2. RECOMMENDATIONS

Since this was a preliminary mission study, various straightforward assumptions were considered.
But, for future research on this topic, it would be more effective if an optimizer capable of handling
multiple objectives were to be used. Alternatively, using a Pareto-optimal approach can reduce the
uncertainty surrounding the weight factors in the objective function and could aid in solving the
problem as a single-objective optimization. As seen in this thesis, the problem is plagued by the
presence of numerous sub-optima. Though grid search method scans the solution space, these re-
sults are based on only the time parameters, as performing grid search based on the angles would be
computationally inefficient. So, an effective local optimization technique which can search without
getting stuck in these optima, might be important to perform post-optimization search.

Furthermore, the disadvantage of using discrete piecewise control is that the dynamics of the sail are
restricted. So, for more advanced studies, the angles can either be interpolated between the nodes
or continuous angle representation can be adopted. In such cases, to reduce the dimensionality of
the problem, steering strategies can be employed. For example, taking the case of a trajectory to
a comet, a local steering law based on maximizing the eccentricity and inclination (or semi-major
axis) can be used.

As more direct recommendations, the thesis work can be extended to three dimensions and a more
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realistic sail force model (like optical sail force model) can be incorporated. The gravitational at-
traction from other bodies could also be included as perturbations. As an extension of the previous
recommendation, it will be interesting to see the results when including solar photonic assists or
gravitational assists in the problem. Finally, since the choice of the sail lightness number seems
to affect the trajectory followed by the sailcraft, performing a sensitivity analysis on the results for
various sail lightness numbers could provide more insight about the sail performance needed to
execute these missions.





A
OPTIMIZATION OF THREE-DIMENSIONAL

SOLAR SAILCRAFT TRAJECTORY

In Section 6.1, the reason for considering a two-dimensional transfer is briefly explained. Here, the
results of preliminary optimization results for a three-dimensional transfer to the comet Hartley 2
is given. The optimal trajectory obtained from DE is shown in Figure A.1.

Figure A.1: Optimal three-dimensional outbound trajectory to Comet Hartley 2.

The values of important aspects of the trajectory are provided in Table A.1 and the projection of the
optimal trajectory in 2D plane is shown in Figure A.2.

The large values of approach distance and relative velocity indicates the difficulty faced by the DE
algorithm in minimizing these parameters. This is because in the 3D trajectory analysis, the number
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Departure Date 30 July 2020
TOF to comet 1,168.6 days
Comet Approach Distance 2,041,689.189 km
Relative velocity at comet 10.03 km/s
∆a 300,433,833 km
∆e 0.50

Table A.1: Results of three-dimensional trajectory
optimization.

Figure A.2: Projection of the optimal trajectory.

of decision variables increase from 6 to 10. So, DE has to search through a ten-dimensional param-
eter space to find the optimal trajectory. The task is further complicated by the complex nature of
the comet’s orbit. As a result, the minimum approach distance and the velocity difference are way
off from the desired values.

Considering a third-dimensional trajectory analysis for the entire sample return mission would still
increase the dimension of the parameter space to 18, which would be extremely difficult to solve
and will cause the optimizer to result in solutions far from the optimum. Due to these reasons, a
two-dimensional trajectory analysis was adopted in this thesis. Additionally, from Figure A.1, it can
be seen that the optimal trajectory almost remains in the ecliptic plane and intersects the comet
when the comet passes through its descending node. This planar nature of the optimal trajectory
adds to the justification of considering a two-dimensional trajectory analysis.



B
TRAJECTORY TO 103P/HARTLEY 2 USING A

HIGH PERFORMANCE SAIL

As discussed in Section 6.1, for the lightness number β = 0.05, the trajectory found by the optimizer
could not fulfill the conditions set on the sailcraft velocity and orbital elements. This resulted in a
flyby trajectory to the comet than the desired rendezvous trajectory. In order to verify if the reason
for the above result is due to the slow evolving nature of the sailcraft when β = 0.05, the trajectory
analysis was performed for a higher lightness number β of 0.3. As per the classification of sail per-
formance in [60], β = 0.3 falls under the category of high performance sails. Such sails have very low
sail loading value and thus, do not exist in reality as of now. For comparison, the lightness number
of the largest sail (Sunjammer mission) made until now is 0.07.

The optimal trajectory obtained from the DE optimizer is shown below in Figure B.1. The details of
the trajectory are mentioned in Table B.1.

Figure B.1: Rendezvous Trajectory to Comet Hartley 2 using a high performance sail

69



70 B. TRAJECTORY TO 103P/HARTLEY 2 USING A HIGH PERFORMANCE SAIL

Departure time t0 May 19, 2022
Time-of-flight TOF 1,095.7 days
Approach distance ∆r 5,745.535 km
Relative velocity ∆v 0.197 km/s
Difference in
Semi-major axis

∆a 749.158 km

Difference in
Eccentricity

∆e 0.0034

Table B.1: Results of the optimal trajectory for a high performance sailcraft.

From the figure, it can observed that the trajectory of the sailcraft spirals outwards rapidly than what
was observed for the moderate performance sails. The sailcraft is able to rendezvous with the comet
after just 1096 days. Apart from the match in position and velocity, the high performance sail is able
to replicate the orbital elements to a reasonable extent. This means that the sailcraft can follow
the comet in its orbit and obtain samples during the different active phases of the comet. Thus,
this analysis confirms that for higher value of lightness number, i.e using a high performance sail,
the objective to rendezvous the comet is satisfied along with all the position, velocity and orbital
element constraints. Having said that, the results of this analysis are currently not possible with the
existing solar sail technology and hence, the moderate performance sails (β= 0.05) were used for
analysis done in this thesis.



C
TWO-DIMENSIONAL GRID SEARCH RESULTS

FOR THE OUTBOUND TRAJECTORY

The contour of the two-dimensional grid search for the outbound trajectory remains continuous
even when finer grid was used as shown in the figures below.

Figure C.1: Grid Search on Outbound Trajectory with grid size of 10 days.

Figure C.2: Grid Search on Outbound Trajectory with grid size of 0.2 day.

71





BIBLIOGRAPHY

[1] M. Küppers, H. Keller, and E. Kührt et. al., Triple F — a comet nucleus sample return mission,
Experimental Astronomy, Volume 23, Issue 3, pp 809-847 (2009).

[2] M. Burchell, M. Prince, and P. Wozniakiewicz et. al., Sample return missions to minor bodies,
Astronomy and Geophysics, Volume 54, Issue 3, pp 3.28–3.32 (2013).

[3] D. S. Lauretta, S. W. Squyres, and S. Messenger et. al., The caesar new frontiers mission: Sample
science, 49th Lunar and Planetary Science Conference, The Woodlands, Texas (2018).

[4] C. R. Neal, C. K. Shearer, M. Wadwha, L. Borg, B. Jolliff, and A. Treiman, Developing sample
return technology using the earth’s moon as a testing ground, The Inner Planets Panel, NRC
Decadal Survey for the Planetary Sciences Division, Science Mission Directorate, NASA (2008).

[5] S. W. Squyres, K. Nakamura-Messenger, and F. Mitchell et. al., The caesar new frontiers mission:
Overview, 49th Lunar and Planetary Science Conference, The Woodlands, Texas (2018).

[6] European Space Agency, Rosetta mission, http://www.esa.int/Our_Activities/Space_
Science/Rosetta, [Online; accessed November 5, 2018].

[7] C. R. McInnes, Solar Sailing: Technology, Dynamics and Mission Applications (Praxis Publish-
ing Limited, Chichester, UK, 1999).

[8] L. Herbeck, C. Sickinger, M. Eiden, and M. Leipold, Solar sail hardware developments, Euro-
pean Conference on Spacecraft Structures, Materials and Mechanical Testing, Toulouse (2002),
pg. 1-10.

[9] M. MacDonald, Solar sailing: Applications and technology advancement, Advances in Space-
craft Technologies (2011), pg. 35-60.

[10] L. Friedman, The rise and fall of Cosmos 1, http://www.planetary.org/explore/
projects/lightsail-solar-sailing/story-of-lightsail-part-2.html, [Date of Ac-
cess: October 9, 2018].

[11] M. Macdonald, Advances in Solar Sailing (Springer-Verlag Berlin Heidelberg, 2014).

[12] Y. Tsuda et al., Achievement of IKAROS — Japanese deep space solar sail demonstration mission,
Acta Astronautica, Volume 82, Issue 2 (2012).

[13] eoPortal Directory, NanoSail-D2, https://directory.eoportal.org/web/eoportal/
satellite-missions/n/nanosail-d2 (), [Date of Access: October 9, 2018].

[14] J. P. Eastwood, D. O. Kataria, C. R. McInnes, N. C. Barnes, and P. Mulligan, Sunjammer, Weather,
Vol. 70, Issue 1, Royal Meteorological Society (2015).

[15] eoPortal Directory, LightSail Missions of The Planetary Society, https://directory.
eoportal.org/web/eoportal/satellite-missions/l/lightsail (), [Date of Access: Oc-
tober 9, 2018].

73

http://www.esa.int/Our_Activities/Space_Science/Rosetta
http://www.esa.int/Our_Activities/Space_Science/Rosetta
http://www.planetary.org/explore/projects/lightsail-solar-sailing/story-of-lightsail-part-2.html
http://www.planetary.org/explore/projects/lightsail-solar-sailing/story-of-lightsail-part-2.html
https://directory.eoportal.org/web/eoportal/satellite-missions/n/nanosail-d2 
https://directory.eoportal.org/web/eoportal/satellite-missions/n/nanosail-d2 
https://directory.eoportal.org/web/eoportal/satellite-missions/l/lightsail
https://directory.eoportal.org/web/eoportal/satellite-missions/l/lightsail


74 BIBLIOGRAPHY

[16] U. Geppert, B. Biering, F. Lura, J. Block, M. Straubel, and R. Reinhard, The 3-step DLR–ESA
gossamer road to solar sailing, Advances in Space Research, Vol. 48, Issue 11 (2011).

[17] L. McNutt, L. Johnson, D. Clardy, J. Castillo-Rogez, A. Frick, and L. Jones, Near-Earth Asteroid
Scout, AIAA SPACE Conference and Exposition, San Diego (2014).

[18] T. Okada et al., Science and Exploration in the Solar Power Sail OKEANOS Mission to a Jupiter
Trojan Asteroid, 49th Lunar and Planetary Science Conference, Texas (2018).

[19] J. C. Brandt, Physics and Chemistry of Comets (Encyclopedia of the Solar System, Chapter 30,
pp 557-574, 2006).

[20] I. De Pater and J. J. Lissauer, Planetary Sciences (Cambridge University Press, 2001).

[21] S. A. Sandford et al., The comet coma rendezvous sample return mission concept - the next step
beyond stardust, NASA Ames Research Center (2010).

[22] F. M. McCubbin et al., Priority science targets for future sample return missions within the solar
system out to the year 2050, Planetary Science Vision 2050 Workshop, Washington DC, United
States (2017), JSC-CN-38641.

[23] M. Henderson and W. Blume, Deep impact – a review of the world’s pioneering hypervelocity
impact mission, Procedia Engineering, Elsevier (2015).

[24] M. F. A’Hearn, Deep impact and the origin and evolution of cometary nuclei, Space Science Re-
view, Springer (2008).

[25] T. W. S. Journal, How probes get ’gravity assists’ in their journeys through space, http:
//si.wsj.net/public/resources/images/WO-AT286_ROSETT_G_20140806124805.jpg,
[Online; accessed October 25, 2018].

[26] eo Portal Directory, Rosetta rendezvous mission with comet 67p/churyumov-gerasimenko,
https://directory.eoportal.org/web/eoportal/satellite-missions/r/rosetta,
[Online; accessed October 20, 2018].

[27] NASA, Stardust Launch, Press Kit (1999).

[28] P. D. Feldman and M. F. A’Hearn et al., Measurements of the near-nucleus coma of Comet
67P/Churyumov-Gerasimenko with the Alice far-ultraviolet spectrograph on Rosetta, Planets
and planetary systems, Astronomy and Astrophysics (2015).

[29] D. E. Brownlee et al., Stardust: Comet and interstellar dust sample return mission, Journal of
Geophysical Research, Vol. 108, Issue E10, AGU Publications (2003).

[30] D. Brownlee, The Stardust Mission: Analyzing Samples from the Edge of the Solar System, Annual
Review of Earth and Planetary Sciences, Vol. 42:179-205 (2014).

[31] E. L. Berger, T. J. Zega, L. P. Keller, and D. Lauretta, Evidence for aqueous activity on comet
81P/Wild 2 from sulfide mineral assemblages in Stardust samples and CI chondrites, Geochim-
ica et Cosmochimica Acta, Vol. 75, Issue 12, Elsevier (2011).

[32] H. Weaver, M. A’Hearn, G. Fountain, J. Leary, and C. Niebur, Comet surface sample
return - mission study objectives, http://www.lpi.usra.edu/opag/meetings/nov2007/
presentations/cssr.pdf, [Online; accessed September 25, 2018].

http://dx.doi.org/JSC-CN-38641
http://dx.doi.org/JSC-CN-38641
http://si.wsj.net/public/resources/images/WO-AT286_ROSETT_G_20140806124805.jpg
http://si.wsj.net/public/resources/images/WO-AT286_ROSETT_G_20140806124805.jpg
https://directory.eoportal.org/web/eoportal/satellite-missions/r/rosetta
http://www.lpi.usra.edu/opag/meetings/nov2007/presentations/cssr.pdf
http://www.lpi.usra.edu/opag/meetings/nov2007/presentations/cssr.pdf


BIBLIOGRAPHY 75

[33] B. Dachwald, W. Seboldt, and L. Richter, Multiple Rendezvous and Sample Return Missions to
Near-Earth Objects using Solar Sailcraft, 5th IAA Conference on Low-Cost Planetary Missions,
Noordwijk, The Netherlands (2003).

[34] JPL, JPL small-body database search engine, https://ssd.jpl.nasa.gov/sbdb_query.cgi,
[Online; accessed September 25, 2017].

[35] NASA, Comet - Science Targets, https://solarsystem.nasa.gov/planets/comets/sats,
[Online; accessed September 25, 2017].

[36] K. F. Wakker, Fundamentals of Astrodynamics (Institutional Repository, Delft University of
Technology, 2015).

[37] B. N. Suresh and K. Sivan, Integrated Design for Space Transportation System (Springer India,
2015).

[38] NAIF, An overview of reference frames and coordinate systems in the spice context,
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_
docs/17_frames_and_coordinate_systems.pdf, [Online; accessed October 14, 2018].

[39] L. Carzana., Laser-Enhanced Solar Sailing: Modeling and Trajectory Optimization for Inter-
planetary Missions, Master Thesis Report, TU Delft (2017).

[40] B. Dachwald, Low thrust trajectory optimization and interplanetary mission analysis using evo-
lutionary neurocontrol, Ph.D. Dissertation, Bundeswehr University Munich (2003).

[41] L. Chen, X. Z. Bai, Y. G. Liang, and K. B. Li, Orbital Prediction Error Propagation of Space Objects,
Orbital Data Applications for Space Objects, Springer (2017).

[42] M. J. H. Walker, B. Ireland, and J. Owens, A set of modified equinoctial orbit elements, Celestial
Mechanics, vol. 36, p. 409-419 (1985).

[43] J. H. Jo, I. K. Park, N. Choe, and M. Choi, The Comparison of the Classical Keplerian Orbit
Elements,Non-Singular Orbital Elements (Equinoctial Elements), and the Cartesian State Vari-
ables in Lagrange Planetary Equations with J2 Perturbation: Part I, Journal of Astronomy and
Space Sciences, Volume 28, Issue 1, The Korean Space Science Society (2011).

[44] B. Dachwald, Optimal Solar-Sail Trajectories for Missions to the Outer Solar System, Journal of
Guidance, Control and Dynamics, Vol. 28 (2005).

[45] G. Mengali and A. A. Quarta, Optimal Three-Dimensional Interplanetary Rendezvous Using
Nonideal Solar Sail, Journal of Guidance, Control and Dynamics, Vol. 28 (2005).

[46] R. D. Falck and J. W. Dankanich, Optimization of low-thrust spiral trajectories by collocation,
2012 Astrodynamics Specialists Conference, AAS, Minneapolis (2012).

[47] O. Montenbruck and E. Gill, Satellite Orbits: Models, Methods and Applications (Springer-
Verlag Berlin Heidelberg, 2000).

[48] K. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution - A Practical Approach to Global
Optimization (Natural Computing Series, Springer, 2005).

[49] A. Ohndorf, Multiphase Low-Thrust Trajectory Optimization Using Evolutionary Neurocontrol,
Doctoral Thesis, Delft University of Technology (2016).

https://ssd.jpl.nasa.gov/sbdb_query.cgi
https://solarsystem.nasa.gov/planets/comets/sats
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf


76 BIBLIOGRAPHY

[50] P. Di Lizia and G. Radice, Advanced global optimization tools for mission analysis and design,
Final Report of ESA, Ariadna Id: 03/4101 (2004).

[51] C. J. Spaans and E. Mooij, Performance evaluation of global trajectory optimization methods
for a solar polar sail mission, AIAA Guidance, Navigation, and Control Conference, Chicago,
Illinois (2009).

[52] E. Github, Pagmo and pygmo, https://esa.github.io/pagmo2/index.html, [Online; ac-
cessed October 15, 2018].

[53] E. Hekma, Debris removal with zoomed grid search optimization, Master Thesis Report, Delft
University of Technology (2017).

[54] F. J. Ahlers et al., Differential evolution for continuous function optimization, http://www1.
icsi.berkeley.edu/~storn/code.html, [Online; accessed October 15, 2018].

[55] S. Das and P. N. Suganthan, Differential evolution: A survey of the state-of-the-art, IEEE Trans-
actions on Evolutionary Computation, Vol. 15, No. 1 (2011).
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