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CHAPTER I - INTRODUCTION 

The semiconductor-to-metal transition has been the subject 

of many studies for several years. Under the compounds that show 

such a transition are the vanadium oxides. Morin (1) was the first 

to establish the semiconductor-to-metal transition of some vana­

dium oxides. His conductivity measurements are summarized in fig­

ure 1.1. Besides the jump in conductivity, Morin (1) also found 
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Fig. 1.1 Conductivity vs. T 

curves of some vanadium 

oxides. * 

1000/TEMPERATURE ( K ) 

a transition point for the magnetic susceptibility and specific 

heat curves. Since Morin, many other research workers have estab­

lished the semiconductor-to-metal transition of the vanadium ox­

ides. Some characteristic data are given in figures 1.2 and 1.3. 

A special point of discussion is vanadium monoxide, which 

has the NaCl structure (figure 1.4). Experimental results on the 

conductivity of this compound have often been in contradiction 

with each other. Moreover, no transition points have been observed 

for magnetic susceptibility and specific heat. 

Just like Morin, Austin (5) found that the conductivity 

jumped by a factor of lO' at about T^ = 126 °K. In later years the 
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Fig. 1.2 Magnetic susceptibility 

vs. T curves of resp. VO 

(ref.8) , V2O2 (ref.2) and 

VO- (ref.3) . 

100 200 300 iOO 500 

TEMPERATURE ("K) 

semiconductor-to-metal transition of fee VO has been affirmed by 

the work of Warren et al. (6), who observed a conductivity discon­

tinuity of greater than a factor of lO** in the vicinity of 125 "K. 

Q. 

in 

Fig. 1.3 Specific heat vs. T 

curves of resp. V-O^ 

(ref.4) and VO2 

(ref.3). 
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TEMPERATURE C K ) 

However, contrary to these results are the observations of 

Kawano et al. (7), who measured the conductivity of samples of VO 

over a temperature range of 100-250 K and found no transition. 
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Fig. 1.4 The rocksalt structure 

of VO. 

The same conclusion has been drawn by Banus et al. (8), Takei et 

al. (9) and Honig et al. (10,11). Although this last group of 

research workers concludes that VO does not show a semiconductor-

to-metal transition, their numerical results deviate. For example, 

the conductivity ö at 300 °K varies from 5x10^ '̂'''cm"''' (7,9-11) 

to 14x10^ "̂•'•cm"-'̂  (8) . Takei et al. (9) report that no marked 

change in the conductivity has been observed in the temperature 

region of 77-300 K. This is a contrast with the other experimen­

talists, who mention an increase in conductivity with increasing 

temperature. 

X measurements, too, have been performed for VO. Like the 

electric data, the magnetic data (susceptibility vs. T curves) 

are not at all of the same tenor. The 15% randomly distributed 

vacancies in VO disturb the lattice periodicity, which makes the 

solid actually a disordered material. According to Anderson's 

theory (12) both collective and localized electrons can be pres­

ent. This must be reflected by the formula for x» which is there­

fore proposed to be: 

X = XQ + C/(T+6) 

The second term signifies the Curie-Weiss law, while Xn is com-



posed of a sum of several contributions: 

^0 ~ '̂ ion """ ^sp "*" ^L "*" ̂ W 

while x-„ is the diamagnetisra of the ion cores, x is the Pauli '̂ lon ^ ''sp 
paramagnetism of the conduction electrons, XT is the associated 

Landau diamagnetism and Xyy denotes the Van Vleck orbital paramag­

netic term. The parameters Xn' C and 9 are determined by measuring 

the susceptibility x ^s a function of the temperature T, and ap­

plying a least-squares procedure to have an optimal fit of the 

experimental values to the above proposed formula. A survey of 

these X measurements is shown in table 1.1. Although the suscepti­

bility data of the first three authors, measured in different 

ranges of temperatures, fit together reasonably well, the derived 

magnetic moments show rather large deviations, y _, is extracted 

from the variable C (u ^^ = 2.2X10^Vc/N, N is Avogadro's number), 

it is a measure for the number of paramagnetic cations that have 

localized orbitals. In the border-line case that all vanadium ions 

Table 1.1 

Survey of the x measurement results on VO 

XQXIO" CxlO^ 6 V ff Temp, range 

(emu/mole) (emu) (°K) (°K) 

Banus et al. (8) 2.3 

Massard et al. (13) 2.5 

Suzuki et al. (14) 1.5 

Aivazov et al. (15) 0.15 

0.11 

1.6 1.4 0.36 4 - 300 

6.0 112 0.69 80 - 900 

5.9 - 0.69 100 - 300 

14.9 176 1.09 100 - 250 
66.9 1530 2.32 250 - 850 
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have non-interacting localized orbitals, p ^, will be 3.87 

(vi ff = /n (n+2) , n is the number of unpaired electrons) . The ex­

perimental data of y f f are considerably lower. Hence a descrip­

tion of VO as a paramagnetic compound with localized magnetic mo­

ments does not seem relevant. The variable 9 is a measure for the 

interaction between the paramagnetic cations and becomes larger as 

U r:^ becomes larger. Suzuki et al. (14) used the Curie law, in­

stead of the Curie-Weiss law, which implicates that 9 is actually 

zero. We establish further that Aivazov et al. (15) found a tran­

sition in the x vs. T curve at T. = 250 °K, as contrasted with the 

other authors. Suzuki et al. (14), as opposed to the others, deter­

mined Xyv by measuring the Knight shift of V in the VO crystal. 

According to their experiments, XTTTT equals 1.12x10 emu/mole, 

which is already some factors larger than Aivazov's Xn values. XT 
^4 emu is a negligible quantity, while x- is estimated -0.2xio — = — . ^ ^ ^ •'' "̂ lon mole 

The Pauli paramagnetic term has thus about the same magnitude as 

The third kind of experiments, applied to VO, are measure­

ments of Seebeck coefficients. The Seebeck coefficient a of VO has 

been investigated by Banus et al. (8) and Aivazov et al. (16). 

Banus et al. found for a the value -4 yV/ K at 300 K, while 

Aivazov et al. conclude that a equals 10 mV/ K. Banus' measure­

ments show a linear dependence of a on T, which may indicate that 

the valence electrons are itinerant, while the negative value of 

a at room temperature is caused by the domination of the electrons 

over the holes in the conduction process (17). Due to experimental 

difficulties, useful Hall data are scarcely available until the 

present (10) . 

In this work we are trying to contribute to the discussion 

on the semiconductor-to-metal phenomenon. The most interesting 

compounds to investigate, are of course V_0_ and VO-, which have 

resp. the corundum and the rutile structure. But their crystal 

structure has a rather low symmetry, while the primitive cells of 

V-O- and VO- contain two molecules each, which complicates an ab-

initio calculation. VO, with the cubic rocksalt structure and 

whose primitive cell contains one molecule, is easier to investi-

11 



gate. We will therefore concentrate on this compound. On the basis 

of a band structure calculation we will try, in the way of Heine 

and Mattheiss (18) and Mattheiss (19), to elucidate the possible 

semiconductor-to-metal transition. In order to gain an insight 

into the influence of the temperature dependence, band structure 

calculations will be executed for several lattice constants. 

Special attention is given to the LCAO interpolation scheme for 

band energies, also used by Mattheiss (19). The results of the 

band structure calculations are thus translated into crystal-field 
2 + parameters for V in MgO. By extension of the basis functions to 

the 4s orbital of vanadium, we try to obtain a more realistic ap­

proximation of the fundamental interaction parameters. 

The localized vs. collective electron model will be reviewed 

in chapter II. The semiconductor-to-metal transition models accord­

ing to Mott, Faiicov and Kimball, and Goodenough are also outlined 

in this chapter. The way in which some energy states of the energy 

band of VO are calculated by the APW method is outlined in chapter 

III. In chapter IV the LCAO interpolation method is presented, 

where its relation to crystal-field parameters is discussed. Chap­

ter V gives the results of the combined APW-LCAO method. In our 

last chapter the results of this thesis are surveyed and evaluated. 

* The drawings of this thesis have been performed by Mr.A.J.Dekker. 
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CHAPTER II - THE COLLECTIVE VERSUS LOCALIZED ELECTRON MODEL 

2.1 INTRODUCTION 

In 1932 Wilson (1) explained the fundamental difference be­

tween metals and non-metals. According to his theory the electrons 

of a solid are described by Bloch (2) orbitals: 

i|;(k,r) = exp (ik.r) w(k,r) 

The corresponding energy eigenvalues form energy bands, which are 

a function of the wave vector k. Wilson argues that in the case 

that an energy band is full and there is no overlap with other 

bands, the considered solid is an isolator. In the case of par­

tially occupied bands, the solid is a metal. 

However in 1937, de Boer et al. (3) suggested that Wilson's 

theory is not generally applicable to all solids. An example of 

such an exception is NiO. This substance has the rocksalt struc-
2 + 

ture. We suppose that the cations are present as Ni and the 
2 — ? + 

anions as 0 . Ni is in the state (3d'). The 3d functions in a 

cubic surrounding split in e and t- orbitals. According to band 

theory, the t- band shall be completely filled and the e band 

must be half full. Therefore NiO should be a conductor, however in 

practice it is an isolator. 

De Boer et al. (3) assumed that the neglect of the Coulomb 

repulsion term U between two electrons on the same atom causes the 
2 + 

contradiction between theory and experiment. For suppose that Ni 

contains m valence electrons (m=8 in this case). We assume further 

that the term U is the average Coulomb repulsion energy of these 

valence electrons with opposite spin. The total repulsive energy 

will be Nm(m-l)U/2, where N is the number of nickel atoms in the 

crystal. The influence of the oxygen atoms is not considered here. 

If one electron from a certain Ni goes to another cation, other-
+ 3+ 

wise formulated, an Ni and an Ni ion are created, the total 
repulsive energy becomes: 

14 



(N-2)m(m-l)U/2 + m(m+l)U/2 + (m-1)(m-2)U/2 = 

Nm(m-l)U/2 + U 

The conclusion is that the Coulomb repulsion term U will favor 

states, where all ions of the same kind have an equal number of 

electrons. In such a situation no metallic conductivity is feas­

ible. 

The ever returning question is how important the term U is 

for a given crystal. Depending on the magnitude of U, the elec­

trons of a given crystal are best described by localized orbitals, 

Wannier functions (4), or itinerant orbitals, Bloch functions. In 

what case shall we apply crystal-field theory and when band 

theory? Apparently for NiO the Coulomb repulsion term is very im­

portant and NiO behaves as a semiconductor, where the residual 
2 + conductivity is due to jumps of electrons between Ni neighbours. 

Stimulated by the observed sharp changes in the conductivity 

of vanadium oxides and related compounds, many theorists (5-15) 

have constructed models in order to explain the semiconductor-

metal transition. We shall restrict ourselves here to three funda­

mental and essentially different descriptions. 

In this chapter we present first the model of the transition 

according to Mott, which is more fundamentally formulated by 

Hubbard, further the model according to Faiicov and Kimball, and 

in the last section Goodenough's model of the semiconductor-metal 

transition. 

2.2 THE TRANSITION ACCORDING TO MOTT 

Mott (5-7) has pointed out that the Coulomb repulsion term U 

plays an important role in the semiconductor-metal transition. In 

order to get some physical insight, we assume a three-dimensional 

crystal with hydrogen atoms, where only the Is orbitals will be 

considered. We suppose the density of states, normalized to a num­

ber of states per atom, to be P(E) (see figure 2.1). Each state 

can contain two electrons viz. with a and 6 spin. Let n and n_ 

15 



be the number of electrons with resp. a and g spin (n = n^ + n_), 

again normalized to a number per atom. In the case of non-interac-

Fig. 2.1 The density of states 

P(E) of a model crys­

tal. 

P(E) 

tion, all states will be doubly filled up to a certain level and 

n = n_ = ^n. After introducing the Coulomb repulsion energy U 

between two electrons on an atom, the number of electrons with a 

and B spins may become unequal and the total energy E becomes 

approximately: 

EP(E)dE + ƒ EP(E)dE + U n+n_j 

E and E_ refer to the maximum energy of the electrons with resp. 

a and B spin, while N is the number of atoms present. The inter­

action energy is the statical average over all possible distri­

butions. We further know that: 

n^ = I P(E)dE 
— 00 

n_ = J P(E)dE 
— CO 

The equilibrium distribution at T=0 will be found by minimizing E 

vs. n and investigating the stability of the solution obtained by 

the requirement d^E /dn^ > 0. In this way the following relations 

are obtained: 

16 



n+ - n_ = (E^ - E_)/u ... {1} 

.... {2} ^ + „.}. , > 2U 
P(E_̂ ) P(E_) 

We can now distinguish two cases: 1° stable solution n = n_ 

2° stable solutions n >> n_ 

Since for the first solution E = E_ = E (see figure 2.1), this 

leads to the requirement: 

P(Ejj) < l/U 

P (E ) is approximately inversely proportional to the bandwidth W. 

Therefore in this situation W > cU, where c is a constant. 

In the case that 

P(Eĵ ) > l/U (W < cU) 

n ^ n_ and there will be more electrons with a than 8 spin. De­

pending on the total number of electrons n and the shape of P(E), 

either the most extreme case will be realized, where n = n and 

n_ = 0, or an intermediate stable solution exists (see further 

figure 2.2). 

In the description as given above, the solution n = n_ 

— P(E^)<1/U n̂ =n_= In 

— P(E„)>1AJ n. =n n_=0 

--P{E^)>VU n ;̂ n_/0 

Fig. 2.2 The total energy E as a function of n for several 

possible cases. 

17 



represents the metallic conductor with uncorrelated electrons, 

the solution n >> n_ the isolator with strongly correlated elec­

trons . 

Hubbard (8-10) has formulated the problem more exactly by a 

model Hamiltonian, which is known to be the Hubbard Hamiltonian: 

H, = y yT..ctc. +^U y n.n. .... {3} 
h .^. ^ 11 10 no ' .^ 10 1,-0 

1,3 Ö -' -' 1,0 

where c. and c. are the creation and destruction operators for 
10 10 ^ 

electrons with spin a in the Wannier (4) state centered on site t. 

We note that a Wannier function is an orthonormalized atomic or­

bital. T.. is the Fourier transform of the Bloch energies E(k) and 

n. is the operator related to the number of electrons on site t.. 
10 1 

This model Hamiltonian has been formulated, for reasons of mathe­

matical simplicity, for the case of a crystal only containing 

s electrons. The calculation of the eigenvalues of the Hubbard 

Hamiltonian is executed formally, that is with the help of a 
2 

Green's function technique. Hubbard concludes that if W < -/3(U) 
the energy band with a bandwidth W splits in two narrow subbands 

and the free electron band theory has to be replaced by a strong 

correlation model. 

Mott (5-7), who was the first who explained this semiconduc­

tor-metal transition mechanism, has found the criterium U > W for 

bandsplitting. Hubbard has conjectured that the results of his 

theory should be treated with some caution because of the neglect 

of the interactions of the electrons on different atoms. Therefore 

Hubbard's criterium should not be considered as significantly 

better than Mott's. 

A very relevant question is, how a Mott transition comes 

about upon variation of temperature. It is feasible that a tran­

sition occurs at a critical lattice constant. On the other hand 

entropy effects have to be taken into account favouring redistri­

bution of electrons in a band. An important problem is whether the 

transition is a gradual process or it arrives sharply at a criti­

cal temperature as a consequence of a cooperative phenomenon. 

Mott (7) argues in favor of the latter proposition. His arguments 

18 



are based on the fact that if we have created a free moving hole 

and electron, these two "particles" would attract each other via a 

Coulomb interaction, V(r) = -e^/Kr and form a so-called "exciton", 

where K is the dielectric constant. The formation of the exciton 

prevents the electron and hole to participate in the conduction 

process. However, if more electrons and holes are present, an elec­

tron and a hole will attract each other via a screened Coulomb 

interaction, V(r) = (-e^/Kr)exp(-ar), where a is the screening 

constant. If there is a sufficient number of carriers, a becomes 

so large that the excitons disintegrate and a sharp transition 

from no free carriers to a large number occurs. It shall be clear 

that the repulsion term U becomes also smaller because of the 

screening effect. 

Finally, we like to pay attention to the magnetic properties 

of a solid near the Mott transition. Making use of Hubbard's 

Hamiltonian, Brinkman and Rice (11) have considered a solid, which 

is just on the metallic side of the Mott transition. The solid 

consists of atoms containing only one electron each. They find a 

highly correlated electron gas, which is nonmagnetic. Besides, 

there is an enhancement of the effective mass and the Pauli para­

magnetism. 

2.3 THE TRANSITION ACCORDING TO FALICOV AND KIMBALL (12) 

This model is based on the simultaneous existence of local­

ized and collective states, where the localized states are situ­

ated just underneath the conduction band. At T = 0 the localized 

states are assumed to be fully occupied by electrons, while the 

higher collective states are empty. As the temperature T rises, 

electrons will be excited to the collective states. That is, a 

localized hole and an itinerant electron are created. Further 

assuming that it is impossible that more than one electron per 

atom is excited, the most important terms of the model Hamiltonian, 

in the spirit of Hubbard, will be: 

19 



fl = y E (ic)a'''T*- a ̂  + y ebl" b. o '• V vko vkö '- 10 10 
v,k,ö i,o 

+ y Gb; c . ,c ,. ,b. 
'̂  10 VIO V 10 10 

i,0,0',v,v ' 

where a ;J> creates an electron in state k, band v, with spin o, 
+ -*• "f b. creates a hole with spin o at site t. and c . creates the 
10 '̂  1 via 

Wannier states corresponding to the Bloch bands vo. The first two 

sums are the one-particle terms, the last sum represents the intra-

atomic interaction between a localized hole and a delocalized elec­

tron. The essentials of this description are found in the follow­

ing expression for the free energy F of the system: 

F = N{An - Gn^ + entropy terms} 

where N is the number of atoms, n the number of electrons in the 

conduction band (equal to the number of localized holes) and A the 

energy gap for the formation of an electron-hole pair, n is nor­

malized to a number of states per atom. We have in fact an effec­

tive energy gap A -- = A - 2Gn, which decreases as n increases. 

The thermodynamic requirement that F must be minimum as a function 

of n, gives us the dependence of n on the temperature T. The theo­

ry is further similar to the Bragg-Williams treatment of phase 

transitions. For certain values of G, the n vs. T curves show a 

discontinuity. This implicates at the same time a discontinuity in 

the conductivity vs. T curves, which indicates a semiconductor-

metal transition. 

It is seen that the Falicov-Kimball treatment is not re­

stricted to T = 0 and that the entropy terms are essential in 

causing the transition. 

2.4 THE SEMICONDUCTOR-METAL TRANSITION ACCORDING TO GOODENOUGH 

The essential feature of Goodenough's theory (13,14) is a 

change in symmetry at a certain temperature (first order phase 
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transition), leading to a change in band structure. Generally at 

higher temperatures a more symmetric structure will be found, 

while at lower temperatures the structure is less symmetric. Com­

pletely similar to crystal-field splittings of the electronic 

energy levels of isolated atoms, which is the leading principle 

of Goodenough, higher symmetry will lead to higher degeneracies 

in the band structure than lower symmetries. Thus it is feasible 

that a band, partially filled at high temperatures (for instance 
4 + 

a t_ band of V ) , splits up into a completely filled band and a 

completely empty band below the transition temperature. If the 

two latter bands are well separated, the metallic conductor of 

the high temperatures is transformed into an isolator by decreas­

ing the temperature through the transition point. 

Two mechanisms might be considered as responsible for the 

preference of rather low symmetries at low temperatures: 

1° Jahn-Teller effects, where an orbital degenerate symmetric 

state gains in energy by removal of the degeneracy. 

2° Metal-metal bonding effects, where spin correlation of un­

paired spins on neighbouring pairs of metal atoms may distort 

a linear chain of equidistant atoms into pairs of bound atoms 

with alternating short and long separations. 

At high temperatures entropy effects will prevail generally 

and the more symmetric structures will dominate in the same way as 

is found for transitions between static and dynamic Jahn-Teller 

effects. 
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CHAPTER III - BAND STRUCTURE CALCULATIONS 

- APW METHOD -

3.1 INTRODUCTION 

A band structure calculation is usually executed in order 

to get information about the physical properties of the concerning 

crystal. Interesting quantities are e.g. the Fermi energy E„ and 
r 

the density of states P(E) (these two quantities are important 

in relation to the degree of occupation of the valence bands 

and the bandwidth, which determine whether the considered solid 

is an insulator or a conductor). For this purpose we need the 

eigenvalues E(k) in a great number (10'*-10̂ ) of k-points in the 

Brillouin zone. It is well-known that an ab-initio calculation 

like the APW method is a costly procedure, for it consumes rather 

much computer time. Consequently it is impossible to obtain 

sufficient information from an ab-initio calculation. So the ab-

initio calculation is normally restricted to a few symmetry points 

in the Brillouin zone. The other eigenvalues E(k) are then ob­

tained by an interpolation method that will be described in the 

next chapter. 

3.2 THE BORN - VON KARMAN BOUNDARY CONDITION 

The boundary condition plays a very important role in 

quantum mechanics, for the Schrödinger equation is a second or­

der differential equation with solutions strongly dependent on 

boundary conditions. Finite dimensions of a solid leads to math­

ematical difficulties at the edge of the crystal. It is therefore 

advantageous to suppose the crystal infinitely large. The one-

electron Schrödinger equation for such a problem is: 

{-•̂ ^ + V(r) }ii{r) = Ei(j(r) 

where E is the one-electron eigenvalue and V(r) is the potential. 

In the crystal there is a translational symmetry represented by 
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the translation vectors t . The potential will be a repeating 

quantity, mathematically denoted by: 

V(r+t^) = V(r) 

Although it is now possible to solve the one-electron Schrödinger 

equation, since the crystal extends indefinitely in each direc­

tion, there is a continuum of solutions. This also causes mathe­

matical problems, since we can only deal with finite numbers. 

To avoid these complications, so-called periodic boundary condi­

tions are invoked in an otherwise infinite crystal. For the x-, 

y- and z-direction we conjecture respectively N., N- and N, re­

peating units and require all wave functions to have a three-

dimensional periodicity according to the "supercell" consisting 

of N.N_N- unit cells. Mathematically formulated we will have: 

ij/(r) = iJj(?+N̂ l̂ ) = iJ;(?+N2a2) = 4'(r+N2a3) 

a., a- and a- are the primitive translation vectors in respec­

tively the x-, y- and z-direction. It is evident that N , N^ and 

N- should not be too small in order to get significant results. 

The outlined boundary condition is often referred to as the Born 

cyclic boundary condition. It was proposed by Born and von 

KSrmSn (1). 

3.3 BLOCH'S THEOREM 

The shape of the wave functions in a crystal is governed 

by its translational symmetry. Let us introduce the translation 

operators t , defined in such a way that these operators , oper-

ating on the coordinates r,transform them in r-t . Translation 
n 

symmetry means that the potential V(r) is invariant under all 
translation operators t , where the related translation vectors 

n 

t (t = n.a. + n-a- + n-a-) belong to the points of a three-

dimensional lattice. This is also true for the kinetic part of 

the Hamiltonian. Consequently the complete Hamilton operator 
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does not change if a translation operator of the lattice is ap­

plied to it: 

t H(h = H(r) n 

For that reason the translation and the Hamilton operator com­

mute with each other when they operate on a wave function. But 

this means that they have a simultaneous set eigenfunctions ij;(̂ )̂' 

The eigenfunctions of the translation operators are found 

by the application of the projection operator formalism. Let us 

define the primitive vectors of the reciprocal lattice b^, b-

and b_ by the relation a..b. = 6... The values of the wave vectors ^ 3 -̂  1 3 13 
k consistent with the Born-von KSrman boundary conditions then 

have the form: 

it = 2iT(kĵ Èĵ  + k2È2 + kjSj); 

(k̂  = p^/N^; 0 < p^ < N^; i = 1, 2, 3) 

As the translation group is Abelian, all representations are one-

dimensional. The characters of these representations are given 

by exp(ik.t ), where k specifies the irreducible representations 

of the translation group and is limited to the values given above. 

The projection operator associated with the k-th irreducible 

representation of the translation group thus is (2) : 

0(it) = (1/0̂ ) [ exp(-i.^.t^)t^ 

where 0 denotes the order of the translation group. The sum 

includes all translations of the crystal. Application of 0(k) 

on an arbitrary wave function F(r) results in a so-called Bloch 

function: 

0(it)F(r) = (1/0^) I exp(-iic.t^)F(r-t^) 
n 

= exp(-i5t.r)w()c,r) ... {1} 
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where 

w(it,r) = {(1/0^) I exp(iit. (?-tj^))F(?-t^)} 
n 

It is easy to verify that an arbitrary translation opera­

tor t leaves w(k,r) invariant: 

t^w{t,r) = w(ic,r) 

moreover 

tj^{0(k)F(r)} = exp(ik.t^){0(k)F(r)} ... {2} 

,;:*-. ,-> . These projected wave functions 4;(k,r) {=0(k)F(r)} or Bloch func­

tions have the right symmetry for the Schrödinger equation of 

our periodical potential problem: 

fli|j(it,r) = E(it)<lj(it,r) 

3.4 THE BRILLOUIN ZONES 

The vectors b , bj and b^ have been defined in the pre­

ceding part. In terms of these vectors of the reciprocal lattice 

we set up vectors S that satisfy the relation: 
m 

K^ = 2-n{h^t)^ + h2È2 + h^È^) 

where h, , h- and h-, are integers. These vectors K„ form the 
1 2 3 m 

translation vectors of the reciprocal lattice, which is con­

structed by the basis vectors b., b- and b-. They have the 

property that: 

exp(iK .t ) = 1 ... {3} 

If we now consider equation (2) we ascertain that k is not 

unambiguously defined. For take k' = k + K 

equation (3), relation (2) changes then in: 

unambiguously defined. For take k' = k + K and calling in mind 

26 



t^^{k,r) = exp(ik'.t^)exp(-iK^.t^)i|j(k,r) 

= expdic' .t̂ )t|j(i<,r) 

The conclusion is that k and k' represent the same representa­

tion of the translation group. For that reason we define k-space 

consisting of those points that lie closer to k = (0,0,0) than 

to any other reciprocal lattice point. We call this the first 

Brillouin zone. Its boundaries are formed by the perpendicular 

bisector planes of the lines that connect the nearer reciprocal 

points with the origin k = (0,0,0). 

3.5 ROTATIONAL SYMMETRY IN THE SOLID STATE 

Besides translation operations there are rotation opera­

tions R possible in the solid state. All the combinations of 

rotations and translations symbolized by {R|t } form a group, 

which is called a symmorphic space group. We do not consider the 

combinations of e.g. a rotation and a non-primitive translation. 

these latter groups are so-called non-symmorphic space groups. 

A rigorous and formal description of space groups is rather com­

plicated. For the interested reader we refer to Jansen et al. (2) 

After introduction of rotational symmetry, the space group 

of a crystal is no longer Abelian. The irreducible representa­

tions may therefore have higher orders than one. The dimensions 

of the irreducible representations depend on the position in k-

space. Consequently the degeneracy of the energy levels depends 

on k. For the underlying ideas we restrict ourselves to the fol­

lowing intuitive description. 

Suppose we let operate the rotation operator i? on a Bloch 

function i|j(k,r), where 

i(j(k,r) = exp (-ik . r) w (k,r) 

This will result in: 
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i?ijj(it,r) = exp(-ii<./? ̂ r)w(it,i?~-̂ r) 

Applying the same rotation operator to both vectors of a scalar 

product does not change its value, therefore: 

;> —1->- :> —!->• T> ->• 

k.R r = Rk.RR r = i?k.r 

Using t h i s r e s u l t , we have : 

/?ij;(ic,r) = exp(-ii?i<.r)w(it,i?~-'-r) 

The rotation {R|0} belongs to the space group, hence 
- 1 ,̂ - -* , -l->- •+ R r+t = i? r + t n m 

Thus the function w(k,i? r) is a periodic function because 

w(k,r) is periodic. We rename the function w(k,i? r) in w' (i?k,r) 

We have now: 

/?<|j(k,r) = exp (-ii?k.r)w'(i?k,r) 

The conclusion is that operating on a Bloch function with a rota­

tion operator produces another Bloch function with the k-vector 

simply rotated to /?k. 

It seems now plausible that those symmetry operations that 

transform a wave function, characterized by a vector k, to a new 

wave function,characterized by the same wave vector k,play an 

important role. The rotation operators R, which in this sense 

fulfill the relation i?k = k + K , where K is an arbitrary re-
m m •' 

ciprocal lattice vector, form a subgroup of the entire point 

group of the crystal. This subgroup is called the group of the 

wave vector, while it is also known as the small or little 

group of k. Now, under an operation of the group of k, ii)(K,r) 

may be left unchanged or will be transformed into a new function 

\|j'(k,r) with the same wave vector k. In this latter case, there 
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is more than one distinct w(k,r) associated with the same expo­

nential factor exp(ik.r). These various w(k,r) transform into 

each other according to an irreducible representation of the 

group of the wave vector k. 

We summarize that the wave functions of a solid ought to 

be classified according to their wave vectors k. Wave functions 

with the same wave vector are further classified according to 

the irreducible representations of the little group of the wave 

vector k. The preceding considerations are illustrated by figure 

3.1, where the first Brillouin zone of fee VO is shown, the Greek 

Fig. 3.1 The first Brillouin 

zone of fee VO. 

letters symbolize the little group of k. We establish that there 

are symmetry lines viz. E, A, Q, S and Z whose corresponding lit­

tle groups are the resp. point groups C-, , C. , C_, C-, and C-, , 

and symmetry points viz. r, K, L, U, X and W whose corresponding 

little groups are the resp. point groups 0, , C-, , D-,, C_, , D., 

and C. . There are also symmetry planes present e.g. the plane 

TKL, however from the calculational point of view they are of 

less importance. 
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3.6 THE MUFFIN-TIN POTENTIAL 

The Augmented Plane-Wave (APW) method, which has been set 

up by Slater (3) in 1937 for calculating the energy band struc­

ture of solids, makes use of a model potential. The basic idea 

is the subdivision of the solid into two types of regions. 

Around each atom a sphere of radius R is constructed in such a 
•̂  n 

way that different spheres can't overlap each other. Within the 

spheres the crystal potential is assumed spherically symmetric, 

while in the outside region the potential is supposed to be con­

stant. This model potential is often called the muffin-tin po­

tential. 

The first question that arises is how to calculate the 

muffin-tin potential in a given crystal. In the case of a self-

consistent field calculation the Ewald method (4) has to be used. 

Since in this work the calculations are not self-consistent, we 

focus our attention on this latter case. 

The starting point is a Hartree-Fock-Slater (5) or Dirac-

Slater (6) self-consistent field calculation of the atoms or 

ions composing the lattice. This gives as a result the atomic 

charge density and Coulomb potential, properly linked together 

by Poisson's equation. The crystal Coulomb potential is then a 

superposition of these free atomic Coulomb potential functions, 

centered on the different sites of the crystal. 

Inside the muffin-tin spheres, the potential is assumed 

spherically symmetric. The spherically averaged Coulomb potential 

can easily be calculated by the so-called a-Löwdin (7) expansion. 

Supposing that the atomic Coulomb potential of the i'th atom is 

U.(r), the spherically averaged superposed Coulomb potential 

within the i'th muffin-tin sphere is: 
.r.+r 

V^(r) = U^(r) + I 2^ \ ^ ?U.(C)d£ 
j?̂ i j • |rj-r| 

t The muffin-tin potential is calculated by the program MTPOTj 
which has been developed in the course of this work (see 
further Appendix II). 
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U . (r) is the atomic Coulomb potential of a neighbouring atom j 

somewhere in the lattice at a distance r.. In order to obtain 
: 

reasonable approximations of the self-consistent wave functions 

of the crystal side by side with the Coulomb potential, the ex­

change potential has to be inserted in the Schrödinger equation. 

This inclusion of the exchange potential is a crucial point. The 

approximation accepted for these purposes is the one electron 

Slater exchange approximation (8,9): 

^exch(^) = -6a(gf p(r))^/3 (2 , „ ^ „ 

where the exchange potential is directly related to the electron­

ic charge density p (r). a is a constant, a=l is called Slater 

full exchange. The required electronic charge density of 

the crystal in its turn is obtained by superposition of the 

atomic charge densities, where again spherical symmetry inside 

the muffin-tin spheres is obtained by an averaging procedure. 

The Coulomb potential in the regions between the muffin-

tin spheres is averaged out according to the integral method of 

Ham and Segall (10). They have derived in their paper the rela­

tion: 

CO R . 

{Q - 5; ITT^I^^V^ = 4TT ̂  [ r^U^(r)dr - 4TT j; j ^ r^V^(r)dr 

where V is the constant Coulomb potential, fi is the volume of 

the unit cell and R. is the muffin-tin sphere of the i'th atom 

in the cell. The summation Z. is executed over the atoms of the 
1 

unit cell. 

The exchange potential in the regions between the muffin-

tin spheres, calculated according to the Slater approximation, 

again requires the charge density. Once knowing the electronic 

charge density distribution inside the muffin-tin spheres, be­

cause of the charge neutrality in the entire unit cell, the 

mean electron charge in the outside region can be derived. If 

this mean charge density is p, the resulting exchange potential 
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is put constant and equal to: 

c / 3 -11/3 
•6a(g^ p) 

3.7 THE APW FORMALISM APPLIED TO THE MUFFIN-TIN POTENTIAL * 

The problem to solve is the one-electron Schrödinger equa­

tion for a periodic solid: 

fi)|)(jt,?) = [-^^ + V(?)}4;(it,r) = E()t)*(it,r) 

The physical quantities are expressed in atomic units (au), while 

the Rydberg (Ry) is taken as energy unit. The one-electron poten­

tial V(r) is the muffin-tin potential, which is the sum of the 

Coulomb and exchange potential. For simplicity we assume that 

the constant potential outside the muffin-tin spheres is shifted 

to zero. The potential V(r) is a periodic function, invariant 

under a translation operation of the lattice: 

V(r+t^) = V(r) 

t is an appropriate lattice vector of the crystal. According to 

paragraph 3.3 the wave functions are Bloch type functions: 

i|;(k,r) = exp(ik.r)w(k,r) 

where w(k,r) is a periodic function: 

w(i<,r+t^) = w(k,r) 

The function >(j(k,r) cannot be calculated directly as a 

solution of the mentioned Schrödinger equation. Therefore i|;(k,r) 

is expanded in terms of the so-called APW functions: 

* The program (S)APW that handles the symmetry adapted APW method, 
was supplied by Dr.D.A.Papaaonstantopoulos. 
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i|j(it,r) = I c(it^)(()(it^,?;E) 

The wave functions (J)(k.,r;E) represent a plane wave with wave 

vector k. in the region outside the muffin-tin spheres: 

4) ()tĵ ,r;E) = exp(i)ï^.r) 

where k. = k + K., while K. is a translation vector of the recip­

rocal lattice. Within the muffin-tin spheres, the (p's are ex­

panded in terms of products of spherical harmonics and radial 

wave functions. Inside an APW sphere, centered on the atom located 

at r , we have (for r-r the variable r' is substituted): n n 

C K L , ? ; E ) = J f A (it.)u (|?'|;E)Y (r') 
1=0 m=-l 

where A^ (k.) are constants, r' indicates the angular part of r'. 

The functions u,(|r'|;E) are solutions of the radial Schrödinger 

equation: 

T i a i i - ^ ^ l M ^ — > I - '^"i 

We are still at liberty to choose the constants A, (k.). 
•' Im 1 

In the APW formalism the $'s are assumed to be continuous func­

tions. So at the muffin-tin spheres the plane wave has to fit to 

the spherically harmonic expansion. It is well-known in litera­

ture that a plane wave can be expanded in terms of products of 

spherical harmonics and spherical Bessel functions. In the case 

the expansion is executed around the centre r , we have: 
n 

iJ..? ik..(?'+r) e 1 = e 1 n 

= Ave'^i-'n I E'yj,(k.r')Y^^(;c,)Yj^(r') 
1=0 m=-l 

where J,(x) is a spherical Bessel function of order I and k. is 

the angular part of k.. C( 

following relation holds: 

the angular part of k.. Consequently at the sphere radius R the 
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^m('^i) = 4.ei'^i-^n i^Y;^(A:,) J^ (k.RJ/u, (R^;E) 

Therefore the APW function for the state specified by the wave 

vector k. is: 

. ĵ  ->-
e i" (outside spheres) 

Ane^^i-^nl { ' i^J^ (k . R^) Y;^(fe,) Y^^(r') x 
1=0 m=-l 

u^(r';E)/Uy(R ;E) (inside the n'th sphere) 

This APW function is obviously no good quantum mechanical wave 

function because of the discontinuity of its derivative at the 

muffin-tin spheres. 

We consider now our original function ij;(k,r), which is an 

expansion of APW functions. In order to know the expansion coef­

ficients c (k.) , related to the wave function )J)(k,r), and addi­

tionally the minimum energy, the variational method is used. To 

this end the matrix elements of ff-E between the APW's have to be 

calculated. Consider: 

{ cell _̂  _̂  

(t)(k, ,r;E)''(fl-E)(})(k.,r;E)dv 
-J 1 J 

•oe II = { {̂ (l)(ït, ,?;E)''.^(t>(it. ,?;E) 
•I ± 3 

(V-E)(t>(it̂ ,r;E)'̂ (()(itj,ï;E) }dv 

This integration can be carried out straightforwardly. The discon­

tinuity in the functions V(|) (k. ,r ;E) at the muffin-tin spheres is 

accounted for by applying Green's theorem in the form: 

cell cell 
J V/.^^ '̂^ = J /^^-^S -J f'^'-g dv 

ƒ and g are APW functions, S denotes the surface where the slopes 
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of the APW functions are discontinuous. The result of the integ­

ration is: 

fi"^(H-E)^j = (L.Kj-E)6^j + I exp{i(itj-L).?^}F.j^ .. {4} 

where 

^ j n = {4.R^/«}[-(it..it.-E)J^(|it.-it.|RJ/|it.-iï.| + 

J^(2l + l)P^(^,.^.)J^(k.RJJj(k.R^)x 

{u^(R^;E)/u^(R^;E)} J ... {5} 

fi is the volume of the unit cell, P,(x) and J^(x) represent the 

Legendre polynomials and spherical Bessel functions, while k. 

equals k./k.. 

Knowing the matrix elements, the eigenvalues and eigenvec­

tors follow from the secular equation: 

II H - SE II = O (S is the overlap matrix) 

Because of the way the problem has been set up, the matrix ele­

ments H.. are a function of the energy E. So the secular equation 

has to be solved by a trial and error method instead of a direct 

diagonalisation. We evaluate therefore the matrix elements and 

the secular determinant as a function of energy and use an inter­

polation scheme to determine the zeros. 

Since the above mentioned calculation consumes rather much 

computer time, it is advantageous to use symmetry adapted APW's 

that reduce the size of the secular determinant. The projection 

operator for Bloch functions is: 

Pij = I {r«.(R)}''if 

where the summation is over all the elements of the so-called 

little group Gj> of the wave vector k. This group is an assembly 
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of all space group operations, whose rotational parts R satisfy 

the relation: 

•+ -y -*-
ffk = k + K. 

1 

r..(R) is the ij'th element of the a'th representation, repre­

senting the operator R. 

We are now interested in knowing the matrix elements of the 

projected functions (|)(k.,r;E) and (j) (k . , r ;E) . The orthogonality 

properties of the projection operators tell us, that: 

<p'r'.F, |fl|p^,F-> = (g/n )<F, |fl| p",F_>6 „6., 
"̂ 13 1' ' ̂ kl 2 ^ a 1' ' 3I 2 aS ik 

g is the order of the group G;J>, n is the dimension of the a' th 

representation. Thus we may restrict ourselves from the beginning 

to consider one representation at a time. Hence: 

(H-E)^^ = <p^^())(jt^,?;E) |H-E|p"^<j)(itj,r;E)> 

= (g/n^)<cK}t^,r;E) | ff-E j p"̂ (() (jt ̂  , r ;E) > 

= {g/n)l {r" (R)}''<<}>()t ,?;E) |fl-E|(t>(/?it ,r;E)> 
u p 11 1 J 

Continuing straightforwardly, gives us the symmetrized equivalent 

of the earlier mentioned secular equation. The matrix elements 

are: 

fi"^(H-E)^^ = {g/n^)l {r̂ (̂R)}''[(it̂ .iïïJj-E)6(i?itj,]t̂ ) 
R 

+ y exp{i (flit .-it . ) . r }F. . (R)l L t- L » -J ^1 n i 3 n J 

where 

F. . (R) = {4TTRVfi} - ( i t . .i?it.) J , (|flit .-it, |R )/ |/?it .-i t . I 
i3n n' L 1 3 ' 1*1 3 i ' n ' I 3 1' 

+ j (2Z + l ) P ^ ( ^ . . i ? ^ ) J ^ ( k . R ^ ) J ^ ( k . R ^ ) [ ^ ^ I ^ ^ ] ] 
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3.8 THE EXTENSION OF THE APW METHOD 

In the preceding pages we defined the muffin-tin potential 

as being spherically symmetric inside the APW spheres and constant 

outside. It will also be convenient to express a potential as a 

muffin-tin part plus a remainder. The smallness of the remainder 

will be a measure for the validity of the APW method as mentioned 

above. 

Suppose that our one-electron Hamiltonian, expressed in 

atomic units, is: 

fi = -^2 + V^(r) + V^(r) + V2(r) • 

V (r) denotes the muffin-tin part of the potential and V (r)+V (r) 

is the remainder. 

In the preceding part of this chapter we gave a solution 

of the Hamiltonian, consisting of the first two terms. We study 

now the influence of the remaining part on the APW method. 

V (r) is defined to be zero inside the APW spheres, while 

V^ (r) is zero outside. The influence of V. (r) can be treated 

simply and exactly, while V-(r) can be handled only approximately 

by perturbation theory. DeCicco (11) has found numerically, that 

the influence of V_(r) is negligible, so from now on we disregard 

it. 

As has been indicated by several authors (12,13), V (r) 

can be included exactly in the APW method. All that is needed is 

the addition of the matrix element of V , viz. 

.cell 
<i|v (r)|j> = j exp(-iit. .r)V (r)exp(iit..r)dv 

= nc(it̂ -itj) 

to the original matrix element (H-E)... ü represents the volume 

t The Fourier coefficients are calculated in subroutine FCOEFF 
of program MTPOT, Program (S)APW has been extended by subrou­
tine VIMEP to incorporate the Fourier coefficients. 
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of the unit cell and c(k.-k.) is the Fourier coefficient of V (r) 

corresponding to the reciprocal lattice vector (it.-it.) {=t. ). 

We remark finally, that the Fourier series expansion of 

V. (r) converges very slowly, since this function is discontinuous 

at the APW spheres. However, this does not cause trouble, since 

the number of required Fourier coefficients is limited by the 

number of APW's needed to obtain sufficient convergence of the 

band energies. 

3.9 THE FOLLOWED SCHEME FOR VO 

The crystal structure of VO is fee (see figure 3.2), so it 

has the same structure as rocksalt (NaCl). The space group is 0, . 

Fig. 3.2 The crystal struc­

ture of VO. 

Q 

It is easy to construct the reciprocal lattice of this structure. 

The reciprocal lattice has the bee structure, the first Brillouin 

zone is shown in figure 3.1 (see further paragraph 3.5). 

We decide to restrict the calculation to the k-points T, 

A(0,0,2), A(0,0,4), A(0,0,6), X, W, Z(0,2,2), Z(0,4,4), K, 

A(2,2,2) and L. 

The lattice constant a of VO has not been unambiguously 

determined. Several experimentalists (14-16) found different 

lattice constants. This is comprehensible if we realize, that VO 
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has a large number of vacancies ( = 15%) , which can vary dependent 

upon the conditions the substance has been prepared. Besides non-

stoichiometry may be involved. We will rely on the work of Taylor 

et al. (16). Their results are very extensive in relation to those 

of others. They have determined the lattice constant as a function 

of the temperature, thereby giving information about the percen­

tage of vacancies. The lattice constant varies roughly from 7.6 

to 7.8 au. For that reason, we execute band structure calculations 

for four lattice constants (viz. 7.327, 7.677, 7.735 and 8.085 au) , 

that is two constants within the mentioned range and two outside. 

We make now some remarks about the determination of the 

radii of the muffin-tin spheres R . Suppose that the lattice is 

constituted of atoms A and B. Along the shortest distance between 

the atoms A and B, the muffin-tin potential is calculated by the 

a-Löwdin method, including both the Coulomb and the exchange part. 

Fig. 3.3 The determination of 

the radii of the 

muffin-tin spheres. 

A B 

The distance, where the potentials cross each other, determines 

the radii R, and R_ as is shown in figure 3.3. 

The crystal potential is, according to paragraph 3.6, a 

superposition of atomic potentials. An important question is 

what configuration to chose for the individual atoms or ions 

that constitute the lattice. According to classical electrostatic 
2+ 2-theory, VO consists of V and 0 ions. From the calculational 

point of view, however, it is impossible to calculate the atomic 
2- 2+ 2-

potential of 0 , so we disregard the configuration (V ,0 ). 
Among others, Mattheiss (17) asserts, that it makes nearly no 

> 
< 

o 
Q-
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difference whether the neutral or any ionic configuration is 

chosen. After all, the ionic nature of a crystal is not very well 

defined and may be ascribed both to charge transfer and to over­

lap effects. Especially the vanadium 4s electrons play herein an 

important role, since their average distance to the vanadium nu­

cleus is rather large. Chosing a neutral configuration has the 

advantage that deviations of the muffin-tin potential are easily 

incorporated. The ground state of the neutral vanadium atom is 
3 2 

(3d) (4s) (see Moore (18)). Given the great radius of the 4s or­
bitals, this would lead to an effective charge close to +2 inside 
the vanadium muffin-tin spheres. According to various authors 
(19,20), better results are obtained with the configuration 

4 
(3d) 4s, corresponding to a substantially lower positive charge 

within the vanadium muffin-tin spheres. For oxygen the configu-
4 

ration (2p) is assumed. 

The electron charge densities of the atoms, which are nec­

essary for the calculation of the muffin-tin potential, are ob­

tained by the Dirac-Slater method * (21) , where relativistic ef­

fects have been neglected by substituting for the velocity of 

light the value c = 10^ au. Since we intend to start with the 

crystal having the lattice constant a = 1.1Z5 au (22), it is use­

ful to shift the energy scales of the other calculations in such 

a way, that the constant muffin-tin potential (muffin-tin zero) 

has the same value. This makes a comparison between the differ­

ent cases possible. 

The effect of the deviation of the muffin-tin potential in 

the region outside the spheres is incorporated by developing that 

deviation in a Fourier series (see paragraph 3.8). The calculation 

of the Fourier coefficients consumes rather much computer time, 

since it is an integration of the superposed potential minus the 

muffin-tin potential on a three dimensional mesh. In order to 

have rather reliable coefficients, we calculate them with a 

Simpson rule on a mesh equivalent to 128,000 points in the entire 

* Dr.D.A.Liberman sent us the computer program, which uses the 
Dirao-Slater method for atoms and ions (see further Appendix II). 
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unit cell. It is instructive to compare it with the way in which 

Mattheiss (23) calculated the Fourier coefficients for ReO,. His 

integration has been executed with a rectangle rule over a three 

dimensional grid of points equivalent to 17,576 points in the 

entire unit cell. 

Once the muffin-tin potential is known, the APW eigenvalues 

for the considered k-points can be calculated. An important step 

in the APW calculation is the procedure to obtain the logarithmic 

derivative of the radial part of the wave function on the muffin-

tin spheres. We use the procedure of Koelling (24), whose method 

is especially suitable for a relativistic calculation. He decoup­

les the matrix elements of the single particle Dirae equation for 

the periodic potential of the muffin-tin form in a non-relativ-

istic analogon M and a part M , which contains the spin-orbit 
NR terms. The matrix elements M contain the mass-velocity and the 

Darwin term. They equal exactly the non-relativistic elements if 

c ^ °°. It is hence possible to incorporate in this way all rela­

tivistic effects, except spin-orbit coupling. We simply substitute 

for ui (R ;E)/Uy(R ;E) of paragraph 3.7, in the APW equations the 

analogical relativistic terms. In order to make comparison possi­

ble with other non-relativistic calculations, we eliminate, how­

ever, the relativistic effects by substituting c = 10^ au. 

According to paragraph 3.7, the wave function used is ex­

panded in APW's characterized by the wave vectors k. = k + K.. 

Including all APW's with wave vectors k. with the property 

|k.| > /80 (Tr/a) , will result in an eigenvalue accuracy of about 

0.003 Ry (25). This corresponds to 113 unsymmetrized APW's at the 

r-point in k-space. The APW matrix elements consist of an infinite 

summation over I from zero to infinity. We cut off the expansion 

in I at the value 12, since an upper limit Z. = 18 has shown to 

result in the same eigenvalues (25). 

* From Dr.D.D.Koelling we obtained the subroutine DLGKAP to cal­
culate the logarithmic derivatives (see further Appendix II). 
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CHAPTER IV - BAND STRUCTURE CALCULATIONS 

- LCAO INTERPOLATION -

4.1 INTRODUCTION 

In the preceding chapter we have discussed the APW method. 

This method calculates the energy eigenvalues of a crystal for 

some k-points in the Brillouin zone. The other eigenvalues E(k) 

are then obtained by interpolation. One of the best interpolation 

schemes is the so-called LCAO interpolation method. This is not a 

purely mathematical device, but still is based on underlying chem­

ical principles. Thus it will enable us to calculate the crystal-

field parameter A when the valence electrons are localized. 

4.2 THE LCAO INTERPOLATION SCHEME 

As was shown in the preceding chapter, the general form of 

the wave function related to the periodic potential of a solid is 

of the Bloch type. One of the first proposed Bloch type orbitals 

is the linear combination of atomic orbitals (LCAO) (1). Such an 

LCAO wave function has the form: 

p̂q̂ *̂ '̂ ' = lè I *p(^-W^''P^^'^-^V"q)^ 

where the sum is over all N lattice vectors t in the crystal, T 

is the position in the cell, with respect to the origin, of the 

q'th type of atom with the atomic wave function ip , where p repre-
ir 

sents the atomic quantum numbers. The final wave function is a 

linear combination of the Bloch functions: 

$(it,J) = I c (it)<t> (it,?) .... {1} 
p,q '̂̂  "̂i 

The energy eigenvalues and the expansion coefficients c (k) are 

obtained by solving the secular equation: 

l|Ĥ j(!t) - EŜ j(it)|| = 0 
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where each index i and j stands for the labels p and q. The over­

lap and transfer integrals are given by: 

S..(h = e^^-^h-'±^ I e^^-^v <^p(?-^,)|^p,(J-V^j)> 

H..(it) = e^^-'^j-^i' I e^^'\ <^p(?-t,)|//Up,(?-V^j)> 

In the ab-initio LCAO method the overlap and transfer integrals 

are calculated directly, while a limited base set of atomic or­

bitals \l) (r-T.) is chosen. It is also clear that in that case the 

summation over the lattice vectors t is limited to the near 
V 

neighbours. Ziman (2) argues that the LCAO method converges badly 

if the considered crystal contains "nearly free electrons" that is 

to say valence s and p electrons. 

However, this LCAO method satisfies very well as an interpo­

lation scheme (3). In that case the overlap and transfer integrals 

are used as parameters. For these parameters such values are taken 

that the LCAO eigenvalues agree as well as possible with the APW 

(or any other accurate method) eigenvalues for a limited number of 

symmetry points in k-space. 

The wave functions \b (k,r) do not form an orthonormal set. 

Löwdin (4) has shown a way of constructing orthogonalized atomic 

orbitals by taking linear combinations of the atomic orbitals 

ijj (r-t -T. ) . Another group of orthogonalized atomic orbitals con­

sists of the well-known Wannier functions (5). They are obtained 

in a quite different way, but Löwdin (4) has shown that there is a 

close connection between these two kind of orthogonalized func­

tions. Taking the Löwdin orbitals results in zero overlap integ­

rals in the above mentioned equations. So only the transfer integ­

rals have to be adapted. This method is essentially the interpo­

lation scheme of Slater and Koster (6). In a useful note in their 

paper they demonstrate that the Löwdin orbitals transform in the 

same way as the atomic orbitals from which they arise. We shall re­

fer to this scheme as the LCOAO method or the linear combination 

of orthogonalized atomic orbitals. 

Mattheiss (7), on the contrary, uses the atomic orbitals 
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as basis functions. This scheme is indicated as the LCAO method. 

Mattheiss claims that his LCAO method treats the crystal-field ef­

fects in a physically more significant way. Moreover, his method 

leads to more realistic LCAO or "tight-binding" parameters. There­

fore Mattheiss' method is used in this thesis. A clear disadvan­

tage of this method is not only that more parameters have to be 

adapted, but also that the diagonalization process is more elab­

orate. 

The electrons we are mainly dealing with in a band structure 

calculation are the valence electrons, since the core electrons 

occupy almost the same states as in the free atoms. For vanadium 

oxide we concentrate on the 2s and 2p electrons belonging to oxy­

gen, and the 3d and 4s electrons related to vanadium. We further 

assume in our case of VO that the overlap integrals in the expres­

sion for S.. are non-zero only for the nearest neighbours. Con­

cerning the transfer integrals in the formula for H.., the first 

and second nearest neighbours are included. In the mentioned for­

mulas a vanadium atom is chosen as the centre of the coordinate 

system. In table 4.1 the considered basis functions are shown, 

while the related matrix elements are listed in table 4.2. We es­

tablish that there are 29 independent parameters, that is 21 

transfer and 5 overlap integrals. E . (Imn) symbolizes the 

transfer integral 

JiJ;̂  (r) Hii^ (r-la^-ma2-na3) dv 

and S. . (Imn) is the corresponding overlap integral 

Jij;̂  (r) if/ĵ  (r-laj-ma2-na2) dv 

a , 82 and a^ are the unit vectors of the coordinate system in 

units a. 

4.3 THE DETERMINATION OF THE INTERPOLATION PARAMETERS 

In our interpolation scheme 10 atomic orbitals have been 

included as basis functions. This results in a 10 by 10 secular 
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Table 4.1 

Basis functions of the LCAO interpolation scheme for VO. 

Basis set 
Type No. Origin 

Ligand s 1 a(%,0,0) 

X 2 aiH,0,0) 

y 3 a(i!,0,0) 

z 4 aih.O.O) 

Metal xy S al.0,0,0) 

yz 6 a(0,0,0) 

zx 7 a(0,0,0) 

3z'-r' 8 a(0,0,0) 

x^-y^ 9 a(0,0,0) 

s 10 a(0,0,0) 

Matrix elements of the LCAO interpolation scheme for VO. 
C = 15k ,-i n = %k a r. = !sk a 

Anion-anion interactions 

= E {000)+4E (̂ 0̂) (cosf; .cosn+cosC .cosc+cosn .cose } 
a ' a a' a 

+ iE^ x'""*̂ ' (cosn.cost;) 

E (000)+4E (l|liO) (cosn .cosc + cosf,.cosn) 

= ^X x ' ° ' " " * ' ' ^ x Cs^O) (COSC.COSC + COSII .COS5) 

= 41E (ijiO) (sinC.cosn+sinC.cosc) 

= -4iE (iĵ O) (sinn .cosc + sinn .cosC) s^,x 

= -4iE (^%0)(sine.cosC+slnj.cosn) 

= -4Ê _y(iillO) (sint.Sinn) 

= -4E^_y(^»iO) (sine.sine) 

= -'lÊ  (ijisO) (Sinn.sine) 

b. Cation-cation interactions 

"5,5 = Exy,xy'°00'"''Exy,xy'^'*0"=°=f--'^°=^'' 

+ ''E»>, ,,„"''s'5' (cosc.cose+cosn.cos;) 
Ay , Ay 

"6,6 = V,xy"'«°'*''V-xy''''>°"=°^^-=°^^' 
+ 4E (Ô î) (cos£,-cosr;+cos^. cose,) xy »xy 

"7,7 = V,xy'°°°'^''Exy,xy'^^0'<'^°^'^-'=°^';> 

+ 4E ^ „ ( 0 ! ; ^ ) ( cosn . c o s ; + c o s C . c o s n ) 
xy / xy 
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Table 4.2 (continued) 

«8,8 = E3^,.^,_3^,.^, (000)+4E3^,.^,_3^2.^,(li!,0)(cosC.cosn 

+ icost.cose + icosn.cose)+3E 3_ 2 ?_ 2 (Iŝ O) cose • (cos£,+cosn) 

"9,9 " ^3z'-rS3z'-r' '°'""*-^^3z^-rS3z^-r' '^^°''^°^^-- (c°s5+cosn) 

+ 4E^2_ 2 x^-v^ (̂ 0̂) (cost..cosn + icos^.cose + icosr .cose) 

"10 10 ° ^s s (000)+4E ^ (̂ "iO) (cost.cosn+cos?..oose+cosn.cos;) 
' c' c c' c 

"5,6 = -''E^y^xz"'''''"^^"^-^^"'^' 

"5,7 = -4Ê y_̂ (̂0l!li) (Sinn.sine) 

"5,8 ° -'iEjjŷ 3̂ 2_j.2 (Ii(i0) (sint.Sinn) 

«6,7 = -4Eĵ y_ĵ (̂01sli) (sint.Sinn) 

"6,8 = +2Ejjy_3^2_^2 (liiO) (Sinn.sine) 

Hg_g = -2/3E^y^3^2_j.2 (̂ iO) (Sinn.sine) 

"6 10 ' ""^s xv'^^°' '^^""•^^"^' ' c' ^ 

"7,8 ° +2Ejjy_3^2.r2 Cl^O) 'sine.sine) 

H^^g = +2/3Ê _̂3̂ 2.j.2(li*iO) (sint.sine) 

"7 10 ' ''^^s ^^d'lOtisinti.sin!.) 
' c' ^ 

"8 9 " '̂'•̂ Ŝz'-r' 32!-r2'^^O'''^osC.cose-cosn .cose) 
-''3Ej;2-y2 ,x^-y^ Cs^O) (cost.cose-cosn.cose) 

-s^,3z^ 

t2/3E_ 

c. Cation-anion interactions 

" 1 8 ° ^s 332.J-2'°0^) '"'=°st-cosn + 2cose) 

Hj g = /3E^ 3^2_^2 (OQii) (cost-cosn) 

H . = 2E (%00)(cost+cosn+cose) 
' c' a 

"2,5 ' ^^^x,xy'°^°' '̂ "̂'̂ ' 

H ^ - , = 2iÊ _ĵ y(01iC) (sine) 

«2,8 = -iE,,3,2.r2(00ii)(sint) 

H ^ g = /3iE^_3^2.j.2 (OOlj) (sint) 

H2 JO = -^iEg j;(>iOO) (sint) 
' c' 

Hj^j = 2iÊ _ĵ y(0is0) (sint) 

Hj^g = 2iEjĵ ĵ y(0ls0) (sine) 

"3,8 = -iE^_3^2.j.2 (00^) (Sinn) 

"3,9 = -•^3iE^_3^2.r2 (00!s) (Sinn) 

H3 JO = -2iE^ x''*"'" (Sinn) 
' c' 

H^_g = 2iEĵ _̂ y(0isC) (Sinn) 
"4,7 ° ^^^x,xy'°'>°' ' = ̂"^' 

H^_g = 2iE^_3^2_y2(001i) (Sine) 

»i ,n = -2iE„ ^CiOO) (Sine) 



determinant to be solved at every desired k-point. As pointed out 

in the preceding chapter, it is advantageous to make use of the 

symmetry of specific k-vectors we like to consider. We concentrate 

therefore on the "little group" Gj* of these k-vectors. Denoting 

the elements of Gj by R we can write the projection operator for 

the a' th irreducible representation of G-^ as 

Pij = nr^j<R)>''^ 

r,.(R) is the Ij'th element of the matrix corresponding to the 

operator R in the a'th irreducible representation of G^. Applica­

tion of this projection operator leads to a basis function for the 

irreducible representation a: 

X«.ij(it,?) = P̂ j*pq(Ĵ ,?) 

i' stands for the indices p and q. Introducing the expression for 

p?. leads to: 

Xi.ij(i^.?) = I I exp(iit.(t^+tq)) (r̂ j(R))''x 

{i?4.p(/f(r-t̂ -Tg))} 

= I exp(iit. (t +t )) I exp(-iit.tĵ )x 

[T^.(R)]''(R^^(r-t^-T )) 
^R 

T originates from the unique relation: 

t_ is a translation vector and x refers to the atomic coordi-

nates in the cell (8). 

In the rocksalt structure it is evident that: 

T^ = T^ = (0,0,0)a and T2 = "̂2 = (h,0,0)a 
R R 
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The index 1 refers to vanadium and the index 2 to oxygen. The use 

of symmetrized orbitals has the advantage that orbitals, belonging 

to different representations, do not admix with each other. Hence, 

the 10 by 10 secular determinant will be subdivided in smaller de­

terminants. We restrict ourselves to the k-points V, A(0,0,2), 

Fig. 4.1 The first Brillouin 

zone of fee VO. 

A(0,0,4), A(0,0,6), X, W, z:(0,2,2), 1(0,4,4), K, A(2,2,2) and L 

(see figure 4.1). The figures between parentheses indicate the 

k-veetor in units TT/4a. Application of the projection operator 

formalism for the considered k-points gives results as shown in 

table 4.3. In assembling this table, the convention of Cornwell (9) 

has been used, since he has already projected out some spherical 

harmonics for several cubic space groups. 

Suppose now that an LCAO eigenvalue is denoted by e., while 

the related APW eigenvalue is indicated by E.. We require for the 

considered k-points: 

m 
I w (E - e ) 

,i=l 
minimum 

w. is a weighing factor, which is necessary in order to obtain 

convergence in this least-squares procedure. Minimization is ob­

tained by variation of the overlap and transfer integrals. Once 

we know the integrals, it is possible to determine the e.'s for a 
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Table 4.3 

Symmetrized wave functions for the rocksalt structure. The phase 
factors are not mentioned. The figures between parentheses indi­
cate the centre of the function. 

Representation Row Symmetrized functions 

12 

'25' 

15 

1 

1 

2 

1 

2 

3 

1 

2 

3 

S g ( i i O O ) ; s ^ ( O O O ) 

x ^ - y ^ ( 0 0 0 ) ; 

3 z ^ - r ^ ( 0 0 0 ) ; 

x y ( O O O ) ; 

y z ( O O O ) ; 

z x ( O O O ) ; 

x ( ) 5 0 0 ) ; 

y ( ^ O O ) ; 

z ( ) 5 0 0 ) ; 

1 s^(^OO); z(isOO); 3z^-rM000); s^(OOO); 

1 x^-yMOOO) ; 

1 xy(OOO); 

1 x(^OO); zx(OOO); 

2 y(^OO); yz(OOO); 

"2 

*2' 

Ac 

X4. 

X5. 

2 

1 

2 

s ^ ( i 5 0 0 ) ; 3 z 
a 

x ^ - y ^ ( 0 0 0 ) ; 

x y ( O O O ) ; 

zCsOO) ; 

y z ( O O O ) ; 

- z x ( O O O ) ; 

x ( i i O O ) ; 

y (<500) ; 

^-r2(000); s ( c 



T a b l e 4 . 3 ( c o n t i n u e d ) 

W^ 1 y ( ^ O O ) ; ! 5 { / 3 { x 2 - y ^ ) + ( 3 z 2 - r M } ( 0 0 0 ) ; s^ (OOO) 

W^, 1 z x ( O O O ) ; 

W2, 1 s ( i jOO); !}{ ( x 2 - y 2 ) - / 3 ( 3 z ^ - r M } ( 0 0 0 ) ; 

Wj 1 x ( !500) ; x y ( 0 0 0 ) ; 

2 z ( ^ O O ) ; - y z ( O O O ) ; 

ï j^ 1 s ^ ( i 5 0 0 ) ; W 2 ( y + z ) (ijOO) ; y z ( O O O ) ; 

i i { / 3 { x = - y ^ ) - ( 3 z = ^ - r ' ) } ( 0 0 0 ) ; s^ (OOO) ; 

^2 1 S s / 2 ( x y - z x ) ( 0 0 0 ) ; 

Z3 1 x ( ! 5 0 0 ) ; )5/2 ( x y + z x ) ( 0 0 0 ) ; 

J:^ 1 ! 5 / 2 ( y - z ) (ijOO) ; SjC ( x ^ - y ^ ) + / 3 ( 3 z ' - r 2 ) } ( 0 0 0 ) 

K, i s ( % 0 0 ) ; ! 5 / 2 ( y + z ) ( ^ 0 0 ) ; y z ( O O O ) ; 

i i { / 3 ( x ' - y ^ ) - ( 3 z ^ - r M } ( 0 0 0 ) ; s ^ ( O O O ) ; 

K^ 1 W 2 ( x y - z x ) ( 0 0 0 ) ; 

Kj 1 x ( ^ O O ) ; )5/2 ( x y + z x ) ( 0 0 0 ) ; 

K^ 1 i 5 / 2 ( y - z ) (SjOO) ; Ssf ( x 2 - y ^ ) + / 3 ( 3 z = ^ - r ^ ) } ( 0 0 0 ) 

A^ 1 s ^ ( % 0 0 ) ; { x + y + z ) / / 3 ( W 0 ) ; 

( x y + y z + z x ) / / 3 ( 0 0 0 ) ; s ( 0 0 0 ) ; 

Aj 1 l i / 2 ( x - y ) CsOO) ; ^5/2 ( y z - z x ) ( 0 0 0 ) ; x ' - y M o O O ) ; 

2 ( 2 z - x - y ) / / 6 (ijOO) ; ( 2 x y - y z - z x ) / / 6 ( 0 0 0 ) ; 

3 z ^ - r ^ ( 0 0 0 ) ; 

L^ 1 ( x + y + z ) / / 3 ( % 0 0 ) ; ( x y + y z + z x ) / / 3 ( 0 0 0 ) ; 

s ( 0 0 0 ) ; 

L3 1 i i / 2 ( x - y ) (liOO) ; 15/2 ( y z - z x ) ( 0 0 0 ) ; ( x ' - y =̂ ) ( 0 0 0 ) ; 

2 ( x + y - 2 z ) / / 6 ( i s 0 0 ) ; ( 2 x y - y z - z x ) / / 6 ( 0 0 0 ) ; 

3 z ^ - r ^ ( 0 0 0 ) ; 

^2' 1 s ^ ( i s O O ) ; 



dense network in k-space. 

Since the 10 by 10 secular determinants are blocked out in 

1 by 1 to 5 by 5 subdeterminants, we can expect that in general 

the dependence of the parameters e. on the transfer and overlap 

integrals is non-linear. This fact may cause difficulties in the 

least-squares procedure. Good starting values of the integrals are 

therefore indispensable. A method for determining these starting 

values is derived in Appendix I. 

4.4 CRYSTAL-FIELD PARAMETERS 

In the preceding pages, the overlap and transfer integrals 

have been defined. It is interesting to see how crystal-field 

parameters can be derived from the values of these overlap and 

transfer integrals. 

In crystal-field theory the central ion (vanadium) is con­

sidered to be isolated. The influence of the surrounding ligands 

is incorporated by assuming that they cause an electric field. 

This electric field, which has the symmetry of the crystal, can 

split the orbitals of the central atom. So we are interested in 

knowing how the vanadium 3d orbitals split under the influence of 

the oxygen 2s and 2p orbitals. In this regard we follow Mattheiss 

(7) who used the perturbation theory of Löwdin (10). Formally, we 

start with the LCAO matrix formulation: 

- . . - . 

«s. 

<.' 

-"a=c 

K^ 
Hpp 

4. 
-k 

K-
Spd 

Sdd 

^ \ 

^^a^c 

^P^c 

^ 3 . 

^^c^c 

% 

^ 

2d 

\ 

El 

0 

< ' 

< . : 

0 

Ei 

4̂a 

< c 

-s.d 

^Spd 

El 

0 

^^^=c 

^Sps^ 

0 

Ei 

I 

' 

i 

i 

the eigenvector C has been decomposed into s , p, d and s compo­

nents. The matrix equation is multiplied out, whereafter the vec­

tors $„ , J and t 

then 

are eliminated. The above relation results 

in the matrix equation: 
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Sdd ^d = ̂ i ̂ d 

Where H^d = Sdd + ^^l d'^Ü d> (̂ i'Ss s ^''^^s d'^^s d' 
a a a a a a 

+ (H'*'̂ -ES"*" ,) (El-H )~-̂ (H ,-ES ,) + n't (El-H )~'̂ H, 
'-pd -pd' ' pp' '-pd -pd' -^^c c^c ~^^c 

+ higher order matrix terms. 

We neglect the higher order matrix terms and define 

A" E (H''',-ES'̂  ,) (El-H )~-̂ (H ,-ES ,) —dd —ad —ad aa —ad —ad' 

^a P ^c 
This results in: Hi, = H-,, + A,, + A,, + A,, -^d —dd —dd —dd =dd 

Dividing H in its diagonal and non-diagonal parts, E 1 and H , 
^ —aa rt - 1 ci '^~ —aa 

and expanding (El-E 1-H" ) in a power series in H , we obtain: 
^ — a— —aa '̂  —aa 

A" = (H"*" ,-Es''',) (El-E 1)~-̂ (H ,-ES ,) —dd —ad —ad — a— —ad —ad 

+ (H"*" ,-ES"'',) (El-E 1)~-^(H"'^) (El-E 1)~-̂ (H ,-ES ,) + ... —ad —ad — a— —aa — a— —ad —ad 

We retain only the first term in this expansion and substitute for 

the energy E the eigenvalues E,, so the mentioned equations reduce 

to a second order perturbation theory approximation. It is now 

possible to calculate the matrix elements of the effective d block. 

Now we make a step toward the crystal-field theory in the 

localized case. Anderson (11) has shown that the energy of the 

localized Wannier (5) functions is equal to the average energy of 

the corresponding band. In an octahedral field the d functions of 

the central vanadium atom are split into e and t- orbitals. By 

averaging over k-space, the energy for the e states <E > turns 
g e 

up as: 

<^e" = ̂ 3z^-rS3z^-r^(0°°' "̂  ̂^^s + ̂  + ̂  > 
a c 

For the tj band we get: 
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^ V = \y,xy(000) + ^^\ + ̂ s ' 
c 

The crystal-field parameters A , A , A , A" and A' are de-
S 7T O S S 

te rmined from the LCAO pa rame te r s by c c 
the r e l a t i o n s : 

6 h , , 3 z ^ - r ^ ( ° 0 ^ ) - E 3 z ^ - r ^ 3 z ^ - r ^ 'OOO'^s ,3z^- r^ ^'°^^] ' 
A 

s a E 
J z ' - r ' . J z ' - r ' ' • s ,_ a a 3 z ^ - r ^ 3 z ^ - r ^ ( ° ° ° ) - ^ s , s «OOÔ  

STE ( O ^ O ) - E (OOO)S (OJjO)! 
L X, xy xy , xy x , xy J 

B i t ( U ^ u j - t ; ( u u u ) b ^u=5un 
A = I- X , x y x y , x y ' ' x , x y ' J 

' ' ^ x y , x y ( ° ° ° ) - ^ x , x ' ° 0 ° ^ 

A = ' ^ ^ ^ , 3 z ^ - r ^ ^ ° ° ^ ' - ^ 3 z ^ - r ^ 3 z ^ - r ^ ' ° ° ° ' ^ z , 3 z ^ - r ^ ' ° ° ^ ^ ] 

^ 3 z ^ - r ^ 3 z ^ - r ^ ( ° 0 ° ) - ^ x , x ( ° ° 0 > 

4^3 ,xy(^^0)] 
A " 

s 
c E„„ ,„,(000)-E„ (000) 

e ' ^ c 
2 

1 2 ^ ,3z^-r^(^^°)] 
, , = c : 

S_ r- ir\nn\ -v ( 0 0 0 ) 
'^ E 3 z ^ - r S 3 z ^ - r ^ ( ° ° ° ' - ^ s ^ , 

c - ^ c 

So in t h e l o c a l i z e d l i m i t t he e and t , o r b i t a l s undergo a s p l i t ­
t i n g A (=10Dq), which i s de f ined a s : 

<E^> - <E^> = E 3 ^ , _ ^ . ^ 3 ^ , _ ^ , ( 0 0 0 ) - E^y^^^(OOO) 

+ ^ { A + A + A " - A - A ' } 
s ^ a s „ IT s 

a c e 

This result is illustrated by figure 4.2. We remark that, for ex­
ample, E(t- ) on the left side equals E ^„(000), while analogous 

** y xy f xy 
statements hold for the other levels. 
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V2(A, + A+A) 

9̂ 1/2(A +A ) 

p Fig. 4.2 Orbital splitting in 

(LIGAND) an octahedral field. 

(LIGAND) 

Mattheiss (12) asserts that if the lattice periodicity is 

taken into account the e bandwidth is (A + A ), while the width 
g 0 s^ 

of the tj band is equal to A , provided that the d bands are 

sufficiently narrow and the crystal field sufficiently strong. Ac­

tually, however, the interaction between the metal atoms has about 

the same magnitude as the crystal-field parameters. Therefore it 

is better to express the width of the t- band as: 

W. = E(X_) - E(X-,) = 8fE (0^^) - E (̂ 0̂)1 t- 5 3' ^ xy, xy ' ' " xy, xy * ̂  ̂  -̂  

In the transition metal oxide series, as calculated by Mattheiss 

(12), the t- band is the broadest band. The e band is normally 

much smaller and cannot be easily written down in LCAO parameters. 

The perturbation theory approximation of the crystal-field 

parameters gives us a qualitative insight. Because of the approxi­

mations involved, numerical data should be considered with a 

great deal of caution. It can therefore be advisable to make an 

independent calculation of the crystal-field parameter A along a 

different route. To this end we have adapted the APW results of 

the vanadium 3d bands by an LCOAO interpolation scheme. That is, 

five 3d Bloch orbitals, each constructed from the Lowdin ortho­

gonalized 3d functions, are used as a basis set. Incorporating the 
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vanadium nearest- and second nearest-neighbour interactions, re­

sults in the twelve independent transfer integrals of table 4.4. 

Table 4.4 

Relation between the transfer integrals of an LCOAO inter­
polation scheme, with only d functions as basis functions, 
and the corresponding quantities as expressed in LCAO and 
crystal-field parameters. 

Effective parameter 

^xy,xy(°°°) 

^xy,xy(^^0) 

Sy,xy(0^^) 

^xy,xz(°^^) ! 

^xy,xy'^°°) 

^xy,xy'°01) 

^3z^-rS3z^-r^«°°°' 

^3z^-rS3z^-r^<^^°' 

^x^-ySx^-y^<^^°' 

Sy,3z^-r^(^^0> 

^3z^-rS3z^-r^<°°l) 

S^-ySx^-y^(°°l) 

Perturbation theory approximation 

E (000) + M A +A' ) 
xy, xy ^' IT s 

E {hhO) 

E (O'sM xy,xy ̂  

E (0̂ 5̂ ) - (A +2A' )/8 
xy,xz ̂  ^ ̂  Ti s 

E (100)"*"- (A +2A' )/8 
xy,xy' ' TT s^'^ 

E (001)'^ xy,xy ' 

^3z^-rS3z^-r^(°°°) + ^ « ^ ^^^^^ > 
3, C 

^3z^-rS3z^-r^(^^0) + (3A^ +A^ )/36 
a c 

E^2_^2 ^2_^2(^^0) - (4A +A" )/16 
X y ,x y ^a c 

^xy,3z^-r^(^^°' " (3A,A^)Vl2 

^3z^-r^3z^-r^(°01)'- (A^-A^ )/6 
3i 

E 2 2 2 2 (OOI)"*" 

These parameters are not included in the LCAO interpolation 
scheme. 
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Table 4.4 again illustrates the potential danger in ascribing too 

much physical importance to the LCAO interpolation parameters. In 

the transfer integrals anion-cation covalency contributions and 

cation-cation d band transfer integrals are involved and inter­

mixed. Parameters, which are intended to represent a d-d interac­

tion can easily be dominated by p-d or s-d contributions. 

Calculations of parameters along LCAO and LCOAO lines have 

been performed. Results will be compared in chapter V. In order 

to judge further whether the so obtained crystal-field parameter 

A is sufficiently reliable, the LCOAO interpolation for the vana­

dium 3d bands has been repeated, whereby also the vanadium third 

nearest-neighbour interactions are included. This scheme results 

in 21 independent transfer integrals. 
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CHAPTER V - BAND STRUCTURE CALCULATIONS 

- RESULTS -

5 .1 INTRODUCTION 

In the following pages, the results are presented of the 

combined APW-LCAO calculations on VO. The study of the eventually 

semiconductor-metal transition and the calculation of the crystal-
2 + field parameter of V in MgO compel us to execute a calculation 

for several lattice distances a, viz. 7.327, 1.611, 1.135 and 

8.085 au. We indicate these different cases by resp. I, II, III 

and IV. 

5.2 THE MUFFIN-TIN POTENTIAL 

A survey of the muffin-tin potential calculations is given 

Table 5.1 

Some results of the muffin-tin potential calculation on VO. 
I, II, III and IV refer to the respectively lattice con­
stants 7.327, 7.677, 7.735 and 8.085 au. 

units I II III IV 

Lattice parameter a 

APW radius Ry of vanadium 

APW radius R_ of oxygen 

Constant Coulomb potential 

Constant exchange potential 

Muffin-tin zero V c 
Electron charge within 

vanadium muffin-tin sphere au 21.46 21.64 21.62 21.64 

Electron charge within 

oxygen muffin-tin sphere au 7.439 7.472 7.587 7.618 

au 

au 

au 

Ry 

Ry 

Ry 

7 

1 

1 

-0 

-1 

-1 

327 

929 

702 

823 

045 

867 

7 

2 

1 

-0 

-0 

-1 

677 

053 

756 

676 

.965 

.641 

7.735 

2.053 

1.812 

-0.654 

-0.947 

-1.601 

8 

2 

1 

-0 

-0 

-1 

085 

118 

869 

549 

885 

.434 
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in table 5.1. These data are related to the situation before the 

energy shift of the muffin-tin zero. The APW radii R^ for the cases 

II and III have the same value because we let coincide the APW 

radius with a meshpoint of a rather coarse logarithmic scale. It 

is evident that in this ease too the different spheres don't 

overlap each other. We notice that the superposition of Coulomb 

potentials or atomic charges includes 320 like and 370 unlike 

atoms in our calculations. If the potential within the vanadium 

muffin-tin spheres is calculated, vanadium is the like atom and 

oxygen the unlike one and so on. 

An interesting point is to compare the charges with those 

obtained by Neckel (1). He has executed a self-consistent APW 

calculation on VO with a lattice constant a = 7.736 au, hence it 

is best comparable with ease III. Neckel takes for the muffin-tin 

radii R^ and R_ the respective values 2.0789 and 1.7885 au. He 

starts with a neutral atom configuration. The starting values of 

the electron charge are 21.21 and 7.45 au respectively. At the 

end of the calculation, these values are 20.98 and 7.93 au. The 

small shift in the charge justifies the use of the neutral atom 

configuration. 

Comparison of the absolute values of the charges should be 

taken not too seriously, since Neckel (1) uses for the exchange 

approximation the Xa method (2), while in our work Slater full 

exchange is applied. 

5.3 THE APW CALCULATION 

The results of the APW calculation of VO are summarized in 

table 5.2. We call to mind that the energy scales are shifted in 

such a way that all muffin-tin zeros equal the value -1.601 of 

case III. For the lattice constant a = 7.735 au, the APW eigenval-

ues, as a function of the k-vector for some symmetry directions, 

are illustrated by figure 5.1 

The comparison between the different cases is made clear by 

figure 5.2, where the APW eigenvalues along the A-axis are shown. 

The APW eigenvalues are calculated, as mentioned, in a non-
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Table 5.2 

APW and LCAO energy eigenvalues. The wave vector k is indicated in 
unit» ii/4a, the energy eigenvalues are expressed in Rydberg units. 
The symbols following the coordinates of the k-points are the ir­
reducible representations. 

i. 

000 

002 

004 

006 

008 

048 

h 

^15 

' • 2 5 ' 

••12 

*1 

'^2 
A2, 

^ 

*1 

' 2 
i j , 

^ 

^ 

Aj 

i j , 

^̂ 5 

'^l 

" 2 

" 3 

\ . 

H 
X j , 

N 

" ! • 

" 2 ' 

" 3 

APW 

1.012 

- 1 . 2 2 4 

0 . 0 3 8 

0 . 7 7 5 

0 . 8 9 8 

1 . 0 8 8 

0 . 9 5 8 

- 0 . 0 3 8 

- 1 . 1 9 9 

0 . 9 1 0 

0 . 7 3 3 

0 . 8 3 0 

0 . 0 2 5 

1.269 

1.026 

- 0 . 1 2 6 

- 1 . 1 6 4 

0 . 9 4 4 

0 . 6 4 6 

0 . 9 5 4 

0 . 0 0 6 

1 .413 

1 .062 

- 0 . 1 2 2 

- 1 . 1 6 8 

0 . 9 8 1 

0 . 5 7 3 

1 .038 

- 0 . 0 0 3 

1.761 

1.057 

- 1 . 1 8 0 

0 . 9 9 7 

0 . 5 4 5 

1.506 

- 0 . 0 9 5 

1 .065 

0 . 0 0 1 

1 .835 

1 .115 

- 0 . 0 9 6 

1.066 

1.044 

- 1 . 1 4 4 

1.719 

0 . 8 1 0 

- 0 . 0 6 9 

I 

LCAO 

1 .013 

- 1 . 2 2 6 

0 . 0 3 6 

0 . 7 6 6 

0 . 8 9 9 

1 .185 

0 . 9 4 9 

- 0 . 0 3 6 

- 1 . 2 0 1 

0 . 9 1 4 

0 . 7 3 2 

0 . 8 2 8 

0 . 0 2 4 

1 .502 

1 .029 

- 0 . 1 2 3 

- 1 . 1 6 0 

0 . 9 4 8 

0 . 6 5 0 

0 . 9 4 9 

0 . 0 0 6 

1 .693 

1 .066 

- 0 . 1 2 2 

- 1 . 164 

0 . 9 8 2 

0 . 5 6 8 

1 .033 

- 0 . 0 0 3 

1.762 

1.054 

- 1 . 1 7 9 

0 . 9 9 6 

0 . 5 3 4 

- 0 . 1 0 1 

1 .057 

- 0 . 0 0 5 

1 .833 

1.114 

- 0 . 0 8 7 

1.057 

1.044 

- 1 . 1 4 9 

0 . 8 3 0 

- 0 . 0 6 2 

APW 

0 . 9 8 0 

- 1 .099 

0 . 132 

0 . 8 6 5 

0 . 9 6 6 

1.067 

0 . 9 9 2 

0 . 0 7 2 

- 1 . 0 8 2 

0 . 9 7 5 

0 . 8 3 0 

0 .908 

0 . 121 

1 .237 

1 .040 

- 0 . 0 0 4 

- 1 . 0 5 6 

1 .003 

0 .757 

1 . 003 

0 . 103 

1.376 

1.073 

- O . O U 

- 1 . 0 5 2 

1.033 

0 . 6 9 5 

1 .078 

0 . 0 9 3 

1.678 

1.070 

- 1 . 0 5 7 

1.047 

0 . 6 7 1 

1 .475 

0 . 0 0 5 

1 . 101 

0 . 0 9 3 

1.746 

1 . 136 

0 . 0 2 5 

1.102 

1 .068 

- 1 . 0 3 5 

1.674 

0 .886 

0 . 0 3 5 

I I 

LCAO 

0 . 9 8 1 

- 1 . 1 0 2 

0.13-3 

0 . 8 5 7 

0 . 9 6 6 

1 .156 

0 . 9 8 8 

0 . 0 7 0 

- 1 . 0 8 2 

0 . 9 7 8 

0 . 8 2 9 

0 . 9 0 7 

0 . 1 2 2 

1 .460 

1 .042 

- 0 . 0 0 2 

- 1 . 0 5 5 

1 .006 

0 . 7 5 9 

1 . 004 

0 . 1 0 4 

1 .626 

1 .076 

- 0 . 0 0 9 

- 1 . 0 5 2 

1 .035 

0 . 690 

1.074 

0 . 0 9 3 

1.679 

I . 0 6 8 

- 1 . 0 5 6 

1 .047 

0 . 6 6 2 

0 . 0 0 1 

1 . 094 

0 . 0 9 1 

1.744 

1 .136 

0 . 0 3 1 

1 .094 

1 .067 

- 1 . 0 3 7 

0 . 9 0 5 

0 . 0 3 9 

APW 

0 . 9 7 6 

- 1 . 0 8 1 

0 . 1 4 5 

0 . 6 7 8 

0 . 9 7 5 

1.067 

0 . 9 9 5 

0 . 0 8 8 

- 1 . 0 6 5 

0 . 9 8 4 

0 . 8 4 4 

0 . 9 2 0 

0 . 1 3 5 

1 .233 

1.042 

0 . 0 1 4 

- 1 . 0 3 9 

1 . 0 1 1 

0 . 7 7 3 

1 .011 

0 . 1 1 8 

1 .371 

1.074 

0 . 0 0 6 

- 1 . 0 3 5 

1.040 

0 . 7 1 3 

1.084 

0 . 1 0 8 

1.667 

1.072 

- 1 . 0 3 9 

1 .053 

0 . 6 8 9 

1.471 

0 . 0 2 0 

1.107 

0 . 1 0 7 

1.734 

1 .138 

0 . 0 4 3 

1.107 

1 .071 

- 1 . 0 1 9 

1.667 

0 . 8 9 8 

0 . 0 5 0 

I I I 

LCAO 

0 . 9 7 6 

- 1 . 0 8 7 

0 . 148 

0 . 8 7 1 

0 . 9 7 2 

1 .145 

0 . 9 9 7 

0 . 0 8 2 

- 1 . 0 6 3 

0 . 9 8 4 

0 . 8 4 3 

0 . 9 1 8 

0 . 1 3 7 

1 .428 

1.047 

0 . 0 1 7 

- 1 . 0 3 2 

1 .013 

0 . 7 7 6 

1 . 0 1 3 

o . i i e 
1.607 

1 . 072 

O . O U 

- 1 . 0 3 1 

1 .041 

0 . 7 0 9 

1 .080 

0 . 1 0 8 

1.667 

1 .071 

- 1 . 0 3 6 

1 .053 

0 . 6 8 1 

0 . 0 1 6 

1 . 100 

0 . 1 0 5 

1.732 

1.142 

0 . 0 4 8 

1.100 

1 . 0 7 3 

- 1 . 0 2 4 

0 . 9 1 6 

0 . 0 5 3 

APW 

0 .956 

- 0 . 9 8 0 

0 . 2 2 0 

0 . 9 4 4 

1 . 0 2 5 

1 .078 

0 . 9 9 6 

0 .174 

- 0 . 9 6 9 

1.032 

0 . 9 1 7 

0 . 9 7 6 

0 . 2 1 1 

1.211 

1.051 

0 . 1 1 3 

- 0 . 9 5 0 

1 .055 

0 . 8 5 8 

1.052 

0 .196 

1.340 

1.084 

0 . 1 0 0 

- 0 . 9 4 4 

1 .078 

0 . 8 0 6 

1.113 

0 .186 

1.601 

1.084 

- 0 . 9 4 4 

1.089 

0 . 7 8 6 

1.444 

0 . 1 0 8 

1.132 

0 .186 

1 .660 

1.153 

0 . 1 3 8 

1 .133 

1 .089 

- 0 . 9 3 3 

1.627 

0 . 9 5 6 

0 . 1 3 7 

IV 

LCAO 

0 . 9 5 0 

- 0 . 9 8 3 

0 . 2 2 1 

0 . 940 

1 . 0 2 1 

1 .130 

1 .011 

0 . 1 7 3 

- 0 . 9 6 9 

1 .031 

0 . 9 1 6 

0 . 9 7 7 

0 . 2 1 2 

1 .402 

1 .052 

0 . 1 1 6 

- 0 . 9 4 7 

1 . 0 5 5 

0 . 8 6 0 

1 .053 

0 . 196 

1 .557 

1 .062 

0 . 1 0 3 

- 0 . 9 4 2 

1 .079 

0 . 8 0 3 

1 .109 

0 . 187 

1 .602 

1 .081 

- 0 . 9 4 4 

1 . 0 8 9 

0 . 7 7 9 

0 . 1 0 5 

1 . 127 

0 . 1 8 4 

1.656 

1 .154 

0 . 142 

1.127 

1 .094 

- 0 . 9 3 5 

0 . 9 7 1 

0 . 139 
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Table 5.2 (continued) 

k 

022 Zj 

^2 

^3 

^4 

044 I j 

"^2 

^i 

^4 

066 Kj 

" 2 

•'s 

"i 

222 A^ 

^3 

444 Lj 

4 

^ 2 ' 

APW 

1.132 

0 . 9 5 3 

0 . 8 7 5 

- 0 . 0 6 5 

- 1 . 1 7 6 

0 . 8 1 9 

1 .961 

0 . 7 7 0 

0 . 0 1 0 

1 .016 

- 0 . 0 2 5 

1 .407 

1 .027 

0 . 9 2 6 

- 0 . 1 6 2 

- 1 . 1 1 9 

0 . 9 2 4 

1 .796 

0 . 8 3 0 

- 0 . 0 4 6 

1 .160 

- 0 . 0 8 3 

1 .790 

1 .069 

0 . 6 9 6 

- 0 . 0 9 2 

- 1 . 1 4 5 

1 .026 

1 .610 

0 . 9 7 0 

- 0 . 0 8 4 

1 .091 

- 0 . 0 4 8 

1 .159 

0 . 8 0 2 

- 0 . 0 9 6 

- 1 . 1 5 4 

1 .026 

0 . 8 6 6 

- 0 . 0 3 3 

1 .772 

0 . 8 8 7 

- 0 . 2 1 5 

1 .163 

0 . 9 7 2 

- 0 . 0 9 1 

1 .243 

- 1 . 0 6 5 

I 

LCAO 

1 .305 

0 . 9 4 3 

0 . 8 7 3 

- 0 . 0 6 5 

- 1 . 1 7 8 

0 . 8 1 9 

0 . 7 7 9 

0 . 0 1 1 

1.014 

- 0 . 0 2 2 

1 .723 

1.029 

0 . 9 3 1 

- 0 . 1 4 9 

- 1 . 1 2 0 

0 . 9 3 2 

0 . 8 4 7 

- 0 . 0 3 8 

1 .163 

- 0 . 0 9 0 

1 .805 

1 .071 

0 . 7 0 8 

- 0 . 0 7 8 

- 1 . 1 5 0 

1 .025 

0 . 9 8 1 

- 0 . 0 8 1 

1.086 

- 0 . 0 5 1 

1 .408 

0 . 8 1 3 

- 0 . 1 0 3 

- 1 . 1 5 4 

1 .025 

0 . 8 6 7 

- 0 . 0 3 1 

1 .773 

0 . 8 6 8 

- 0 . 2 1 5 

1 .163 

0 . 9 6 6 

- 0 . 0 9 7 

- 1 . 0 8 5 

APW 

1 .101 

0 . 9 9 6 

0 . 9 4 3 

0 . 0 4 7 

- 1 . 0 6 7 

0 . 9 0 1 

1 .943 

0 . 8 5 7 

0 . 1 0 9 

1 .055 

0 . 0 8 6 

1.374 

1 .059 

0 . 9 7 8 

- 0 . 0 3 4 

- 1 . 0 2 4 

0 . 9 8 8 

1 .760 

0 . 9 0 1 

0 . 0 5 9 

1.167 

0 . 0 4 1 

1 .718 

1 .086 

0 . 7 9 2 

0 . 0 2 1 

- 1 . 0 3 6 

1 .071 

1 .576 

1 . 0 1 8 

0 . 0 1 9 

1 .117 

0 . 0 6 2 

1 .125 

0 . 8 8 0 

0 . 0 1 9 

- 1 . 0 5 2 

1 .063 

0 . 9 4 0 

0 . 0 7 9 

1 .689 

0 . 9 4 0 

- 0 . 0 7 9 

1 .172 

1 .022 

0 . 0 3 5 

1 . 2 5 1 

- 1 . 0 0 3 

I I 

LCAO 

1.260 

0 . 9 9 5 

0 . 9 4 2 

0 . 0 4 1 

- 1 . 0 6 4 

0 . 9 0 0 

0 . 8 6 5 

0 . 1 1 0 

1 .053 

0 . 0 8 8 

1 . 650 

1 .061 

0 . 9 8 4 

- 0 . 0 2 6 

- 1 . 0 2 5 

0 . 9 9 2 

0 . 9 1 8 

0 . 0 6 2 

1 .171 

0 . 0 3 7 

1 .717 

1 . 0 9 1 

0 . 6 0 3 

0 . 0 3 1 

- 1 . 0 3 8 

1 .067 

1 .029 

0 . 0 2 0 

1 .113 

0 . 0 5 9 

1 .349 

0 . 8 8 9 

O . O U 

- 1 . 0 4 9 

1 .062 

0 . 9 3 8 

0 . 0 8 0 

1 .690 

0 . 9 2 1 

- 0 . 0 7 7 

1 .171 

1 .018 

0 . 0 3 0 

- 1 . 0 0 5 

APW 

1 .098 

1 .002 

0 . 9 5 3 

0 . 0 6 3 

- 1 . 0 5 0 

0 . 1 1 3 

1 .939 

0 . 8 7 0 

0 . 1 2 3 

1 .060 

0 . 1 0 2 

1.370 

1 . 0 6 3 

0 . 9 8 6 

- 0 . 0 1 5 

- 1 . 0 1 0 

0 . 9 9 7 

1 .754 

0 . 9 1 2 

0 . 0 7 4 

1 .168 

0 . 0 5 8 

1.706 

1 . 0 8 8 

0 . 6 0 6 

0 . 0 3 8 

- 1 . 0 2 0 

1 .077 

1 .571 

1 .025 
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-^ld=-

Fig. 5.1 The band structure of VO for a = 7.735 au. The circles 

indicate the APW eigenvalues, the lines correspond to 

the interpolated values. 
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Fig. 5.2 Comparison between the band structures of 

VO for several lattice parameters. 

relativistic way. Relativistic effects will have little influence, 

since vanadium and oxygen are small atoms. Inclusion of all rela­

tivistic effects except the spin-orbit coupling, shifts the vana­

dium 4s band roughly 0.005 Ry downwards, while the vanadium 3d 

band is about 0.005 Ry higher. 

The inclusion of the non-muffin-tin potential in the form of 

the Fourier coefficients has a remarkable effect on the APW eigen­

values. It shifts the bottom of the vanadium 4s band as has been 

illustrated by figure 5.3 (a = 7.677 au). 

5.4 THE LCAO INTERPOLATION SCHEME 

The 89 APW eigenvalues, we have at our disposal, enable us 

to determine the 29 LCAO parameters by a least-squares method. 

The least-squares method is in fact an optimization problem, that 

is the minimum of the least-squares sum has to be sought. In this 

case the procedure of Marquardt (3) is preferable to other ex­

isting methods. The LCAO interpolation fits rather good the APW 
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Fig. 5.3 The influence of the non-muffin-tin terms 

on the APW eigenvalues of VO at the 

r-point (a = 7.677 au). 

eigenvalues. However the A^, E^ and A^ states that belong to the 

vanadium 4s band, are hard to adapt. The corresponding weighing 

factors w^ have been given therefore the symbolic value 0.01 in­

stead of 1.0. The bad adaptation of some states is mainly caused, 

we suppose, by the non-inclusion of the vanadium 4p basis func­

tions. Further, we should realize that the vanadium 4s electron, 

due to its great distance to the nucleus, shows a plane wave char­

acter more than an atomic orbital character, which makes the 

application of the LCAO formalism difficult anyhow. On the other 

hand, we remark that vanadium 4s states, which do not admix with 

the vanadium 4p orbitals for symmetry reasons, like r , X , W 

and Lĵ , are very well fitted. 

The values of the LCAO parameters are shown in table 5.3. 

With the help of these LCAO parameters, it is possible to obtain 

the Fermi energy and the density of states, which are shown in 

figure 5.4. The Fermi energy and the errors of the LCAO inter­

polation scheme can be found in table 5.4. 

The density of states and the Fermi energy E„ are deter-
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Table 5.3 

Transfer and overlap integrals of the LCAO interpolation scheme 
for VO. I, II, III and IV refer to the respectively lattice con­
stants 7.327, 7.677, 7.735 and 8.085 au. 

Cation-cation interactions (Ry) II III IV 

^3z^-r^32^-r^'°°°' 

^3z^-r^3z^-r^<'>^°' 

^x^-y^x^-y^('»^0) 

^s ,3z^-r^(^^0' 

V,s (°°°' 

E ^',^^2 2 (hho) 
xy,3z -r " 
E (WO) 
E ^ (000) 
xy, xy 

E (^^0) 
xy,xy* ^ 

E (0)5*5) xy,xy 
E (0^^) 
xy ,xz 

0.9926 

-0.0044 

-0.0112 

0.0064 

1.5071 

-0.0584 

0.0146 

-0.0426 

0.8535 

-0.0509 

0.0145 

0.0197 

0.8502 

-0.0197 

0.0390 

0.0156 

1.4731 

-0.0479 

0.0171 

-0.0318 

0.9268 

-0.0418 

0.0122 

0.0162 

0.8528 

-0.0201 

0.0399 

0.0259 

1.3715 

-0.0633 

0.0160 

-0.0298 

0.9377 

-0.0405 

0.0119 

0.0155 

0.8829 

-0.0200 

0.0430 

0.0186 

1.3950 

-0.0457 

0.0130 

-0.0222 

0.9933 

-0.0334 

0.0100 

0.0127 

Anion-anion interaction 

Eg (000) 

Eg^'^^(^^O) 

E^^;(000) 

^x,x'^^°) 
^x,x(°^^' 
^x,y(^^°) 

-1.0851 

0.0031 

0.0041 

-0.0186 

0.0086 

-0.0035 

-0.0176 

-1.0045 

0.0037 

0.0003 

0.0791 

0.0082 

-0.0029 

-0.0104 

-0.9969 

0.0067 

-0.0070 

0.0937 

0.0083 

-0.0029 

-0.0048 

-0.9211 

0.0035 

0.0003 

0.1738 

0.0073 

-0.0026 

-0.0039 

Cation-anion interactions 

E3 ,3,2.^2(00^) 

^z?3z^-r^'°°'») 
^s ,s (^°°) 
s ,x 

E (0*50) 
x,xy 

^s .3z= (00!5) 

Sz,3z^-r='°0^) 
Sg ,s (^00) 

^s''',x^<^°°' 
s ^' (0)50) 
x,xy 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0641 

0023 

1049 

1927 

0463 

0287 

1642 

0038 

0024 

0499 

0 

-0 

0 

0 

0 

-0 

0 

0 

-0 

-0 

1509 

0027 

0772 

1547 

0383 

0973 

2079 

0107 

0057 

0417 

0 

-0 

0 

0 

0 

-0 

0 

-0 

-0 

-0 

1237 

0388 

1154 

1291 

0389 

1248 

1722 

0235 

0414 

0385 

0 

0 

0 

0 

0 

-0 

0 

0 

-0 

-0 

1177 

0049 

0728 

1125 

0308 

1250 

1938 

0002 

.0284 

.0312 
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Table 5.4 

Some energy parameters in the APW-LCAO calculation of VO. 

units I II III IV 

Max error in the 
LCAO interpolation Ry 0.0203 0.0190 0.0201 0.0163 
ïims error in the 
LCAO interpolation Ry 0.0064 0.0053 0.0057 0.0049 
Fermi energy E^ Ry 0.923 0.980 0.988 1.031 

r 

mined by a histogram technique. For the cases II and III, we have 

used thereby 55,296 k-points, while for the less important cases 

I and IV only 16,384 k-points are taken. In figure 5.4 we see how 

the density of states changes as a function of the lattice para­

meter a. One can ascertain that a small lattice parameter leads 

to a broad energy band. 

The LCAO interpolation tells us further that the t^ band 
ĝ 

is the broadest band with a bandwidth 

W. = E(X.) - E(X ) 
^2g 

The e band is smaller and overlaps the t- band partially. The 

bottom of the e band is at the r-point in k-space, the top of 

the e band varies dependent on the lattice parameter. 

5.5 THE CRYSTAL-FIELD PARAMETERS 

In chapter IV, we gave the perturbation approximation to 

determine the crystal-field parameters from the LCAO interpolation 

parameters. The values of these crystal-field parameters have been 

listed in table 5.5. The crystal-field parameter A decreases with 

an increasing lattice parameter. 

To get an impression of the reliability of these values, we 
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Table 5.5 

Crystal-field parameters for VO as calculated from the 
LCAO interpolation parameters. I, II, III and IV refer 
to the respectively lattice constants 7.327, 7.677, 
7.735 and 8.085 au. 

units I II III IV 

^s^ 

'a 

^ 

% 

% 
A 

A 

Ry 

Ry 

Ry 

Ry 

Ry 

Ry 

cm 

0.0037 

0.1532 

0.0725 

-0.0222 

-0.0010 

0.1919 

21,060 

0.1766 

0.2506 

0.0559 

-0.0148 

-0.0047 

0.1141 

12,520 

0.1718 

0.2724 

0.0533 

-0.0164 

-0.0155 

0.1111 

12,190 

0.1730 

0.2337 

0.0373 

-0.0098 

-0.0081 

0.0752 

8,259 

compare them with the experimental results of V̂"*" in MgO, for the 

numerical value of A is mainly determined by the oxygen atoms that 

surround the central vanadium atom. Sturge (4) has found for A 

by optical experiments the value 13,200 cm""*̂ . Since MgO has a 

lattice distance a of 7.9 52 au, linear interpolation between our 

theoretical calculated A values results in a A value 9,747 cm"''' 

for V̂""" in MgO. 

Mattheiss (5) ascribed the fact that the numerical value of 

A is somewhat too small to the overestimate of the 2p-3d band gap. 

A reduction of this gap decreases the denominator of the second 

order perturbation theory approximation for the crystal-field 

parameters. 

However, the derivation in paragraph 4.4 of the crystal-

field parameter A as a function of the LCAO interpolation para-
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meters is only an approximation. As discussed earlier, we have 

therefore also calculated the parameter A by using the LCOAO 

interpolation scheme of Slater and Koster (6) for the vanadium 

3d band. In table 5.6 the LCOAO parameters are enumerated, where 

vanadium second-nearest-neighbour interactions have been included 

in the interpolation scheme. It is instructive to compare these 

results with those that can be obtained from the perturbation 

approximation as outlined in table 4.4. These results are listed 

in table 5.7. The LCOAO parameters, where even the vanadium third-

nearest-neighbour interaction has been incorporated, are summa­

rized in table 5.8. This shows us that the parameter A from table 

5.6 is rather reliable. The relation between this crystal-field 

parameter A and the lattice distance a is illustrated by figure 

5.5. Linear interpolation results in a A-value 12,600 cm for 
2 + V in MgO. This value is in good agreement with the experimental 

data. It indicates at the same time that the correlation effects 

are small. 

Fig. 5.5 Crystal-field 

parameter A 

as a function 

of the lat­

tice constant a. 

> 73 75 7.7 78" 81 

" LATTICE PARAMETER o (au) 

5.6 COMPARISON WITH OTHER CALCULATIONS 

We have also executed an APW calculation under the same con­

ditions as above, but with an a-value 2/3 (see paragraph 3.6) for 

the lattice constant a = 7.677 au. Using for a the value 2/3 in-

ct 
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LCOAO interpolation parameters, whereby the vanadium 3d functions 
are taken as the basis set. As far as the second neighbour inter­
action has been included. 

Transfer Integral (Ry) 

,(000) 

^(Oiils) 

AOSS) 

,(100) 

^3z^-r',3z=-r^<'>''0' 

'-x^-ySx^-y'<'''"" 

^xy,3z'-r^ ''''>»' 

0.8910 

-0.0510 

0.0148 

0.0089 

-0.0095 

-0.0001 

1.0702 

-0.0058 

-O.OU 1 

0.0000 

-0.0257 

-0.0018 

0.9545 

-0.0419 

0.0125 

0.0084 

-0.0068 

-0.0006 

1.0942 

-0.0063 

-0.0069 

0.0000 

-0.0201 

-0.0023 

0.9637 

-0.0405 

0.0122 

0.0083 

-0.0064 

-0.0005 

1.0973 

-0.0063 

-0.0063 

0.0000 

-0.0193 

-0.0024 

1.0112 

-0.0334 

0.0103 

0.0077 

-0.0043 

-0.0007 

1.1145 

-0.0070 

-0.0038 

0.0000 

-0.0149 

-0.0032 

rms error 

max error 

0.1792 0.1396 0.1336 0.103J 

0.0123 0.0119 O.OllB 0.0136 

0.0409 0.0420 0.0419 0.0410 

T a b l e 5 . 7 

The e f f e c t i v e d - d i n t e r a c t i o n s e x p r e s s e d i n LCAO p a r a m e t e r s 
by a p e r t u r b a t i o n t h e o r y a p p r o x i m a t i o n . 

P . T. a p p r o x i m a t i o n (Ry) 1 1 H I I V 

E ( 0 0 0 ) + l s ( i + a ' ) 
x y , x y ^ ÏÏ s 

^ x y , x y ' ^ ^ ' " 

E (Oils) 
x y . x y 

^ x y , x z " " > ^ ' - " „ ' ^ 2 A ; ) / 8 

^ x y , x y < ° ° ^ ' 

' ^ 3 z ^ - r S 3 z ' - r ^ ' 0 ° ° ' " ' > " ^ s / ' * o ^ ' - s ^ ' 

E3z = - r ^ 3 z ^ - r = ' ' > ' > 0 ^ * ' " s / ' s ^ ' ' ' 3 6 

^ ' - y ' , x ^ - y ' ' ' ' ' ' ° ' - < * ' - s / " s ^ ' / " 

^ x y , 3 z ^ - r ' ' ' ' ' ' « l - ' 3 ^ ^ ^ / l ^ 

" 3 z ^ - r S 3 z ' - r ^ 

0 . 8 7 8 7 0 . 9 4 7 4 

- 0 . 0 5 0 9 - 0 . 0 4 1 8 

0 . 0 1 4 5 0 . 0 1 2 2 

0 . 0 1 6 2 0 . 0 1 2 9 

- 0 . 0 0 3 5 - 0 . 0 0 3 3 

0 . 0 0 0 0 0 . 0 0 0 0 

1 .0706 1 .0615 

- 0 . 0 0 4 1 - 0 . 0 0 5 1 

- 0 . 0 1 2 1 - 0 . 0 0 4 9 

- 0 . 0 0 0 3 0 . 0 0 0 0 

- 0 . 0 2 4 9 - 0 . 0 1 2 3 

0 . 0 0 0 0 0 . 0 0 0 0 

0 . 9 5 6 2 1 .0071 

- 0 . 0 4 0 5 - 0 . 0 3 3 4 

0 . 0 1 1 9 0 . 0 1 0 0 

0 . 0 1 2 9 0 . 0 1 0 5 

• 0 . 0 0 2 6 - 0 . 0 0 2 2 

0 . 0 0 0 0 0 . 0 0 0 0 

1 .0672 1 .0822 

• 0 . 0 0 6 2 - 0 . 0 0 5 8 

• 0 . 0 0 2 1 0 . 0 0 0 3 

• 0 . 0 0 1 4 - 0 . 0 0 0 5 

• 0 . 0 1 6 8 -O .OIOI 

0 . 0 0 0 0 0 . 0 0 0 0 
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Table 5.8 

LCOAO interpolation parameters, whereby the vanadium 3d functions 
are taken as the basis set. As far as the third neighbour inter­
action has been included. 

Transfer Integral (Ry) I II III IV 

^xy,xy'°°°' 

^xy,xy(^^°' 

^xy,xy(°^^) 

xy,xz ̂  ̂ ^ 

^xy,xy'l°°' 

^xy,xy'°°l' 

Sy,xy'^^^' 

Sy,xy'^i^> 

^xy,xz'^^l> 

^xy,xz(^^^' 

'3z^-r^3z'-

^3z^-r^3z^-

^x^-y^x^-y = 

j.2 (000) 

^lihhO) 

CsW) 

Sy,3z^-r^'^^°) 

'^3z^-r^3z^-

^x^-y^x^-y = 

^x^-y^x^-y^ 

= 3z2-r^3z^-

j.2 (001) 

(001) 

(hhi) 

^2(^5's!) 

^xy,3z^-r^'^^l) 

^xz,3z^-r^<^^l' 

^v,.v2_„a(^U) 

0 

-0 

0 

0 

-0 

-0 

0 

-0 

0 

0 

1 

-0 

-0 

-0 

-0 

-0 

0 

0 

0 

0 

0 

8903 

0513 

0157 

0096 

0092 

0001 

0006 

0009 

0001 

0015 

0699 

0070 

0115 

0006 

0259 

0015 

0002 

0014 

0005 

0016 

0014 

0 

-0 

0 

0 

-0 

-0 

0 

-0 

0 

0 

1 

-0 

-0 

0 

-0 

-0 

0 

0 

0 

0 

-0 

9536 

0422 

0132 

0089 

0065 

0006 

0004 

0006 

0000 

0013 

0944 

0075 

0071 

0000 

0204 

0020 

0001 

0016 

0000 

0004 

0002 

0 

-0 

0 

0 

-0 

-0 

0 

-0 

-0 

0 

1 

-0 

-0 

0 

-0 

-0 

0 

0 

-0 

0 

-0 

9628 

0408 

0128 

0088 

0061 

0006 

0004 

0006 

0001 

0012 

0975 

0076 

0065 

0002 

0196 

0021 

0001 

0017 

0001 

.0003 

0004 

1 

-0 

0 

0 

-0 

-0 

0 

-0 

-0 

0 

1 

-0 

-0 

0 

-0 

-0 

-0 

0 

-0 

0 

-0 

0105 

0337 

0108 

0082 

0041 

0007 

0003 

0006 

0001 

0010 

1146 

0085 

0038 

0007 

0152 

0028 

0002 

0019 

0004 

0003 

0004 
x z , x - y 

0 .1795 0 .1408 0 .1347 0 .1041 

0 .0094 0 .0092 0 .0092 0.0113 

0 .0257 0 .0252 0 .0248 0.0212 

rms e r r o r 

max e r r o r 
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stead of 1 results in a broader 3d band. The bandwidth of the 

t- band becomes now 0.519 Ry (compare: 0.432 Ry for a = 1). So 

a smaller a promotes a broader 3d band. Another feature is the 

overlap of the 3d and 4s band: E(r ) - ^(^-^2^ = -0.019 Ry. 

Mattheiss (5) has executed a similar calculation as we did 

for VO with a = 7.735 au (see figure 5.6). Only he has not in-

) 

1.0 

0.9 

0.6 

0.5 

0.0 

-t.2 

Fig. 5.6 The band 

structure 

of VO ac­

cording to 

L.F. Mattheiss (5). 

The energy is ex­

pressed in Rydbergs. 

eluded the vanadium 4s orbital in the interpolation scheme, while 

the transfer integrals are simplified to a two-centre approxima­

tion. It will be evident that not only our interpolation of the 

APW eigenvalues is more accurate, but also the Fermi energy E„ 

will be exacter. This is particularly relevant since at the 
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r-point the vanadium 4s state drops below the Fermi energy. 

Although our value, obtained for the crystal-field parameter A 

(0.1336 Ry) , compares well with the value given by Mattheiss 

(A = 0.1332 Ry), our 3d bands are somewhat broader than those 

obtained by Mattheiss. We believe that the latter finding is a 

consequence of the inclusion of more atoms in obtaining the 

muffin-tin potential. 

We will now pay attention to the worJc of Honig et al. (7), 

who have tried to fit the APW eigenvalues of fee TiO as calcu­

lated by Ern and Switendic]c (8). It will be ]<:nown that TiO has 

the same crystal structure as VO, while the band structure is 

almost identical (see figure 5.7). The general feature is that 

Fig. 5.7 The LCOAO interpolation of the APW eigenvalues of 

TiO. Large deviations occur in area A and B (ref. 7) 
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the d bands are somewhat broader, while there is more overlap 

between the titanium 4s and 3d band. They have adapted the APW 

eigenvalues with an LCOAO interpolation scheme, thereby taking the 

same basis functions as we do, with this difference that their 

basis functions are mutually orthogonal. The 24 independent trans­

fer integrals are determined by the best fit to 38 eigenvalues. 

For two states, namely the K -state belonging to the titanium 

4s band and the A -state related to the titanium 3d band, the 

LCOAO and APW eigenvalues show large deviations. This is particu­

larly important because of the proximity of that A -state to the 

Fermi level. We have two objections to the followed procedure. We 

believe in the first place that too few APW eigenvalues are used 

in order to get reliable transfer integrals. Secondly, we don't 

think it is justified to give each state the same weight. 

Mattheiss (5) has compared the band structure of the tran­

sition metal (mon)oxides with each other. It is equally inter­

esting to make a comparison of VO with VN and VC. These last two 

mentioned compounds also have the NaCl structure. The lattice 

constants of VC and VN are respectively 7.903 and 7.801 au (9). 

On the ground of our band structure calculations, one would expect 

that because of the large lattice constants the 3d bands of VC 

and VN will be narrower than those of VO. On the other hand, 

carbon and nitrogen have a lower nuclear charge than oxygen, 

in consequence the 2p electrons will be less tightly bound. The 

2p bands will therefore increase in energy going from VO via VN 

to VC. States belonging to the vanadium 3d band, which can admix 

with the 2p band for symmetry reasons will be pushed upwards. 

These conclusions are supported by calculations of Neckel et al. 

(1,10) on VC and VN (see figure 5.8 and 5.9). They establish that 

in VN the 2p band almost touches the 3d band. In VC these bands 

even overlap each other. The L., and Z. states belonging to the 

3d band of VC and VN have considerably higher energies than the 

comparable states in VO. This is caused, as mentioned above, by 

the influence of the oxygen 2p band. 

In table 5.9 our transfer and overlap integrals are compared 

with those used in or obtained by other calculations. Norwood and 
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E(k) 

Fig. 5.8 The band structure of VC. The energy 

is expressed in Rydbergs (ref. 10). 

- Er 

Fig. 5.9 The band structure of VN. The energy 

is expressed in Rydbergs (ref. 1) . 
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Table 5.9 

Comparison between the transfer and overlap integrals of the 
LCAO interpolation scheme with those of other calculations on 
VO. 

Norwood & Fry Mattheiss This work 

E S E S E S 

3z^-rS3z^-

xy,xy (000) 

r^ (000) 

xy,3z^-r2(^^0) 

s ,3z'-r^ (00^) 

z,3z'-r' (00 

x,xy (Ô jO) 

3z^-r^3z^-
x^-ySx^-y^ 

xy,xy (̂ ijO) 

xy,xy (0^5^ 

xy,xz(0^^) 

s^,s^(000) 

s^,s^(^!50) 

s^,s (000) 

x,x(000) 

X,X(!5^0) 

x,x(0!5Js) 

x,y('5̂ 20) 

h) 

rM^^O) 
(̂ 0̂) 

-0. 

-0. 

0 

-0 

-0 

0 

-0 

0 

-0 

0 

0 

-1 

-0 

-2 

0 

-0 

0 

535 

395 

015 

390 

289 

173 

161 

088 

032 

020 

033 

.593 

.856 

.399 

--

.037 

.027 

.083 

1. 

1 

-0 

0 

0 

-0 

0 

-0 

0 

-0 

-0 

1 

0 

1 

1 

-0 

0 

-0 

000 

000 

128 

121 

109 

083 

140 

287 

029 

110 

018 

000 

.456 

000 

.000 

.020 

.013 

.033 

-0 

-0 

0 

-0 

-0 

0 

0 

0 

-0 

0 

0 

-2 

-1 

0 

-0 

0 

426 

395 

021 

222 

217 

093 

015 

026 

039 

Oil 

014 

--
— 

.271 

.187 

.009 

.005 

.014 

1 

1 

0 

0 

0 

-0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

000 

000 

000 

056 

084 

033 

000 

000 

000 

000 

000 

— 
— 

.000 

.000 

.000 

.000 

.000 

-0. 

-0 

0 

0 

-0 

0 

-0 

0 

-0 

0 

0 

0 

-0 

-2 

-1 

0 

-0 

-0 

471 

395 

017 

289 

266 

090 

020 

039 

042 

012 

016 

.152 

.048 

.326 

.243 

.008 

.003 

.010 

1 . 

1 

0 

-0 

0 

-0 

0 

0 

0 

0 

0 

1 

0 

1 

1 

0 

0 

0 

000 

000 

000 

125 

172 

039 

000 

000 

000 

000 

000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

X a = 7.735 au. 

Fry (11) have calculated transfer and overlap integrals directly, 

thereby choosing for the lattice parameter the value 7.676 au. 

Mattheiss' work (5) has been mentioned earlier. He applied the 
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APW-LCAO method, as we have done, but in a less exact form. He 
has ascertained the value 7.735 au to the lattice constant. The 
energy levels are shifted to make comparison possible. The zero of 
energy for the LCAO parameters has been shifted so that the trans­
fer integrals E (000) have equal values. The assumed config-

^ xy,xy' ^ ^ 

uration for the three cases is V(3d'*4s') and 0(2p'*). The numerical 

agreement between the APW-LCAO results of Mattheiss and ours on 

the one hand and those of Norwood and Fry on the other hand is 

very bad. 

The first six transfer and overlap integrals determine the 
positions of the e and t„ band with regard to each other. g 2g 
Covalency effects are included here. The next two integrals are 

mainly responsable for the bandwidth of the e band, while the 

following three integrals determine the t„ bandwidth. The re­

maining transfer and overlap integrals are less interesting, they 

are important for the vanadium 4s and the oxygen 2s and 2p band. 

The most striking deviation is that between our values for the 

transfer and overlap integrals s ,3z^-r^(00^) and those of the 

others authors. Even the signs have opposite values. The discrep­

ancy might be linked to our introduction of the vanadium 4s or­

bitals. A second point is the remarkable value for the transfer 

integral E (000) of Norwood and Fry. Considering that this 
c' c integral defines the position of the vanadium 4s level, 

it is not to be expected that its value would be even lower than 

the corresponding values for the 3d levels of t_ and e symmetry. 

Another fact that concerns Mattheiss' results and our work is the 

relative unimportance of the transfer integrals between the oxygen 

2p orbitals E ('j'sO) , E (Oiŝs) and E Cŝ sO) . It can be advan-x,x x,x x,y 
tageous to give these integrals the value zero and take other 

integrals as parameters to be adapted. 

Comparing Mattheiss' and our results we see, as we have 

already notified that the largest deviation is for the integrals 
E , 2 2(00^) and S ., 2_ 2(00^). The other integrals have the s,jz—r s,jz—r 

same order of magnitude. We believe that 

our values are better suited for the interpolation procedure, 

since Mattheiss has not used the three-centre integrals as inde-
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pendent parameters, but has composed these integrals out of a 

two-centre approximation by the relations as outlined by Slater 

and Koster (6). We must stress again that the transfer and over­

lap integrals as used by Mattheiss and us have no direct physical 

reality. They should not match in detail the physically signifi­

cant values of Norwood and Fry. Nevertheless it is interesting 

that a certain correspondence is still present. 

Finally it may be mentioned, that Norwood and Fry's transfer 

and overlap integrals have been used in a direct tight-binding or 

LCAO calculation of the band structure of VO (see figure 5.10). 

r X w L r K 

Fig. 5.10 The tight-binding calculation on VO. 

according to Norwood and Fry (11) . 

They find the best results for the configuration V(3d'*4bM and 

0(2p''). The bandwidth of the t band is (E(Z )-E(X )) that is 

about 0.5 Ry. The objection to their method is not the accuracy 

of their transfer and overlap integrals, but the inaccuracy of 

the ab-initio LCAO method. We have already noted in chapter IV 

that such LCAO methods fail for valence s or p electrons, which 

happens in VO. 

Recently, still another band structure calculation on VO 

has been published by Tewari (12). He has used the ionic configu­

ration {V(3dMsM ,0(2p^) }. He probably has not included the non-

flatness of the muffin-tin potential outside the spheres by 

Fourier coefficients. He also establish an overlap of the vana­

dium 3d and 4s band (see figure 5.11). 
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Fig. 5.11 The band struc­

ture of VO ac­

cording to 

Tewari (12). 

000 0^0 080 teo w t 000 
K(IN UNITS OF IT/Ao) 

itUQ Ë60 
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CHAPTER VI - CONCLUSIONS AND EVALUATION 

In the preceding chapters we have presented the results of 

APW-LCAO calculations on the band structure of VO as a function of 

the lattice parameter a. A crucial point is, in retrospect, wheth­

er the one-electron approach,inherent to this type of calculations, 

is justified or not. Hence it is important to evaluate the effect 

of interelectron correlation interactions, for instance by appli­

cation of the criteria of Mott and Hubbard. 

According to Anderson's (1) estimate, the average Coulomb 
2-H repulsion energy U between the 3d electrons in a V ion equals 

0.43 Ry. According to the results of this thesis, the t_ band­

width of the crystals corresponding to the lattice parameters 

a = 7.327 to a = 8.085 au are found to be 0.523, 0.432, 0.419 and 

0.347 Ry, respectively. According to Mott and Hubbard (paragraph 

2.2) in the first case the band is sufficiently broad to justify 

a one-electron approximation, the second case is a borderline case, 

while in the last two cases correlation effects would lead to 

band splitting. Apart from all complications due to the orbital 

degeneracies of the d electrons, which make the Mott and Hubbard 

approximations dubious, we know further that for the two greater 

values of the lattice parameters the vanadium 4s band is partially 

occupied. Heine and Mattheiss (2) have suggested that in such a 

case the fast vanadium 4s electrons screen the vanadium 3d elec­

trons. The effect of U is thus reduced, which means that the 

APW-LCAO calculation might be a better justified alternative for 

all four considered lattice parameters. 

Similar conclusions then would hold for the other band struc­

ture calculations as reviewed in chapter V. Further, we have es­

tablished in the same chapter that diminishing the constant a of 
2 

the exchange potential from 1 to T results in a broader d band, 

again decreasing the relative importance of correlation effects. 

In our view, band structure calculations on VO performed 

thus far would agree with VO being a metallic type conductor with 

a relatively narrow band. The effective mass of the charge car­

riers then is expected to be great, the magnetism would be a rel-
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atively large Pauli paramagnetism. Very good reasons for the oc­

currence of a semiconductor-metal transition upon increase of tem­

perature cannot be obtained from the band calculations as presen­

ted. 

Turning to a second model for a semiconductor-metal transi­

tion, the approach of Faiicov and Kimball (3) allows of a simple 

description for VO. Based on the observations of Morin (4) sensi­

ble data would be obtained for the separation of the localized 

levels and the bottom of the conduction band, A = 0.018 Ry, and 

for the electron-hole attraction parameter G = 0.017 Ry. The 

localized states according to Faiicov and Kimball should be the 
4 2-1-
A- ground terms of the V ions. Excitation of electrons from 
^ 4 

this state to for instance T_ would lead to delocalized electron­

ic states effectively forming a conduction band. For comparison 
4 4 with the parameter A , it should be mentioned that the A_ -»• 1 2 + excitation energy of the V ion in an octahedral crystal field 

of oxygen anions is 0.12 Ry. The quantity G should be compared 

with the ionization energy of 2V -*• V -I- V .As mentioned ear­

lier this corresponds to 0.43 Ry. Apparently substantial screening 

effects have to be accounted for. The model of Faiicov and Kimball 

does not give ab-initio information about A and G. Hence, predic­

tions whether or not a semiconductor-metal transition is to be 

expected are not possible. Considering the susceptibility meas­

urements, as have been summarized in chapter I, the model of 

Faiicov and Kimball does not lead to consistent results. With 
2+ 

localized V states, magnetic moments of 3.87 Ur, per ion would be 
expected. Although a temperature dependent susceptibility is 

observed, the magnetic moments per ion, 0.69 y , are considerably 

smaller than the spin-only value. We believe, therefore, that only 

a small percentage of electrons is in localized states. It is well 

possible, that this is due to the presence of about 15% vacancies, 

which cause a so-called Anderson localization (5), which has no 

great influence on the band structure. 

Finally, we turn to the possibility of a semiconductor-metal 

transition in VO according to the principles of Goodenough. 

Goodenough (6) conjectures that upon deformation of the cubic crys-
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tal field, possibly added by correlation effects, the t̂  band 

will split in two subbands separated by a narrow energy gap. We 

establish that in the limit of localized electrons the ground 
4 

state will be a A. state. Further, every primitive cell of VO 

contains one formula unit, hence there are three valence electrons 
4 

per cell. The A. state is an orbital singulet state, hence will 

be quite insensitive to Jahn-Teller distortions. Moreover an odd 

number of valence electrons would never lead to a complete filled 

band. We extrapolate this conclusion to the VO crystal with col­

lective electrons. In principle, a degeneracy could be introduced 

by doubling the cell. Such a double cell then would contain an 

even number of electrons. By reducing the degeneracy, a completely 

filled lower band could be split off, or talking in magnetic terms, 

pairs of interacting V-ions could be formed. However, we do not 

see a simple way how such a structure could arise out of a cubic 

fee lattice. Further, it has been remarked by Mattheiss (7) al­

ready that in an fee structure the overlap of t_ and e bands is 
2g g 

an essential feature of the band structure belonging to this sym­

metry. This overlap will not be removed easily by lowering the sym­

metry. 

The arguments given here do not apply to V_0., and VO^. Thus 

Goodenough's approach may explain very well the semiconductor-

metal transition of these compounds. It may not be accidental that 

the experimental detection of the semiconductor-metal transition 

of these compounds is completely straightforward, while there is 

still considerable experimental uncertainty of the existence of 

such a transition for VO. 

Quite recently very interesting band structure calculations 

for VO2 have been published by Caruthers et al. (8) , both for the 

distorted and the undistorted lattice. They established that the 

change in crystal symmetry can result in a splitting of a partial­

ly filled d band into subbands, which are either completely full 

or completely empty. They thus explain the semiconductor-metal 

transition of V0_ in the sense of Goodenough. 

All in all, we come to the conclusion that there is no sin­

gle reason why VO, as to the feasibility of a semiconductor-metal 
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transition, should be placed in the same category as V-O, and VO,. 

The APW-LCAO calculations ascribe a predominant metallic charac­

ter to VO, where a relative broad d band is formed by overlap of 

vanadium t_ and e bands. The physical properties may be influ­

enced to a certain extent by a slight overlap of these d bands 

with the vanadium 4s band. If semiconductor-metal transitions oc­

cur, they probably would be of a Mott type. It is doubtful whether 

computations of the type given in this thesis could ever be made 

sufficiently accurate to decide whether a transition will occur or 

not. Not only the accuracy is limited due to restrictions of the 

size of the set of basis functions and to the number of adjustable 

parameters for the interpolation, but more serious is the basic 

inadequacy of all models introducing correlation effects thus far. 

Most promising is the method introduced by the Hubbard 

Hamiltonian. But in applying this Hamiltonian to the discussion of 

compounds of transition metal ions, the interatomic d electron 

interactions still are insufficiently taken into account. Not only 

variations of oxidation states and correlation therein have to be 

considered, but also the spin-governed exchange interactions. The 

multitude of spin configurations in a d band is far too great for 

effective handling. Ways should be found to isolate from this 

multitude the analogues of the ground term of the isolated ion and 

the states most easily derived therefrom by interatomic excitation 

or spin inversion of individual d electrons. Only then the possi­

bility will arise to discuss side by side the changes in electric 

and magnetic properties, which occur upon semiconductor-metal 

transitions in compounds of transition metal ions. 
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APPENDIX I - DETERMINATION OF THE STARTING VALUES OF THE LCAO 

INTERPOLATION SCHEME 

The least-squares problem 

m -
^ w.(E. - e.) —^ minimum (m=89) 

1=1 ^ ^ ^ 

we have to solve is very sensitive to the starting values of 

the parameters we have to determine. Most of the E.-values are 

dependent on these parameters in a non-linear way. Moreover 

there are difficulties in connecting together the corresponding 

e.'s and E.'s. For example: the 10 by 10 secular determinant 

that we have to solve for a certain symmetry point in k-space 

can be transformed in some subdeterminants for symmetry reasons. 

For the 1 by 1 and 2 by 2 subdeterminants it is possible to 

indicate which of the e.'s and E.'s are connected together. 

This is no longer possible if the determinants have an order 3 

or higher. In order to meet both problems at the same time we 

have concentrated on the n coefficients of the "characteristic 

polynomial" of the n by n subdeterminant instead of the n 

roots. If the n eigenvalues e. are the solutions of the 

equation 

e" + Â ê '̂ "-̂ ' + . . . + A ,e -1- A = 0 1 n-1 n 

(the A's are functions of the matrix elements), the coefficients 

of the "characteristic polynomial" are the following: 

A.^ = -{z^ + c^ + . ' • + ^^) , 

^2 = ^^1^2 + ̂ 1^3 "" ••• •" ̂l^n "" ̂ 2^3 + ••• + ^n-l^n' ' 

\ = (-1)" Ï (^1^2...=^. 

The E.'s are rearranged in the same way: 
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E' = (-1)^ [ (E^E2...E^). 

After this transformation the part of the least-squares sum 

corresponding to the n by n subdeterminant now reads 

j+n , 
y w!(E: - A.)^. 

.'' . 1 1 1 

The new created least-squares problem is rather insensitive to 

starting values. We took them all equal to 0.1. The resulting 

values for the parameters are used as starting values for the 

original least-squares problem. 
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APPENDIX II - SHORT DESCRIPTION OF THE USED COMPUTER PROGRAMS 

The program that calculates the atomic charge density and 

potential by the Dirac-Slater method, is the relativistic 

program HEX of D.A.Liberman, J.T.Waber and D.T.Cromer'. We have 

adapted the program, which was written in Fortran IV for a 

CDC 6600, to our IBM 360/65 computer. The only really program-

matical modification we made, was a better integration method 

in subroutine ADLINT, which has as a consequence that the wave 

functions are better normalized. The atomic charge densities 

are punched on cards, which can be used for the muffin-tin poten­

tial code. 

The muffin-tin potential program MTPOT has been based on 

the code of T.L.Loucks as has been described in his book: 

"Augmented Plane-Wave Method". We have not only made this prog­

ram more accurate (e.g. by improving the subroutine for the 

a-Löwdin expansion), but we have also extended it considerably. 

So the constant Coulomb potential has been calculated by the 

integral method of F.S.Ham and B.Segall in subroutine CSTPT. 

Fourier coefficients of the potential between the atoms are cal­

culated in subroutine FCOEFF. The output of the program consists 

of values for the radii of the muffin-tin spheres, the constant 

potential, the muffin-tin potential within the spheres and the 

Fourier coefficients of the potential between the spheres. 

The subroutine for the solution of the Dirac equations in 

the spheres, DLGKAP, was obtained from D.D.Koelling^. His prog­

ram calculates straightway the relativistic analogue of the 

logarithmic derivatives of the radial wave function at the 

muffin-tin spheres as a function of the energy E in a similar 

way as described by T.L.Loucks. 

The most important computer program of our project is the 

(S)APW computer code according to Switendick, which we received 

from D.A.Papaconstantopoulos'. The program was written in 

Fortran V for an Univac 1108 computer. It can only calculate 

cubic structures. We have adapted the program for our computer 

and we have added one subroutine viz. VIMEP, which supplies the 
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appropriate Fourier coefficients when they are necessary. A note­

worthy fact is, that we have used this program for a more ex­

tended basis set than used hitherto, since former users have 

only calculated metals, which need a relatively small basis set, 

The LCAO interpolation scheme consists of three codes, 

which have been programmed in the course of this work. The 

first program STARTVAL performs the minimization or least-

squares problem to calculate the starting values as has been 

outlined in Appendix I. For the minimization, the procedure 

DAPODMIN (S.A.Lill, The Computer Journal 12_, 111 (1970)) is used, 

which searches a minimum according to the Davidon method. With the 

help of the starting values the final least-squares problem is 

executed by program MINLEIGV. With the so obtained numerical 

values for the transfer and overlap integrals, the LCAO eigenval­

ues can be obtained for a dense network in k-space by program 

INTERPOLATE. Moreover the density of states and the Fermi energy 

E„ are calculated. The last two programs make use of the diago-

nalization procedure for complex matrices COMEIG (P.J.Eberlein , 

Num. Math. \A_, 232 (1970)). This last procedure has been published 

in the Algol language. This is one of the main reasons, why this 

last category of three computer programs has been written in 

Algol 60. Program MINLEIGV uses the minimization procedure 

MARQUARDT, according to D.W.Marquardt (J. Soa. Ind. Appl. Math. 11, 

431 (1963)), provided to us by Mr.C.J.Peters. This procedure is 

especially appropriate to optimization problems with many varia­

bles. 

'We thank Dr.D.A.Liberman from the Los Alamos Scientific Labora­

tory, Los Alamos, California, USA for the relativistic self-

consistent field program HEX for atoms and ions. 

^We are grateful to Dr.D.D.Koelling from Northwestern University, 

Evanston, Illinois, USA for the subroutine DLGKAP. 

^Our heartfelt thanks are expressed to Dr.D.A.Papaconstantopoulos 

from George Mason University, Fairfax, Virginia, USA for the 

SAPW program. 
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"we express our thanks to Mr.C.J.Peters of the Laboratory of 

Inorganic and General Chemistry for the procedure according to 

D.W.Marquardt. 
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SAMENVATTING 

Metaal-halfgeleider overgangen, met de daarbij vaak gepaard 

gaande magnetische overgangen, hebben de laatste jaren in de lite­

ratuur veel aandacht gekregen. De groep van vanadiumoxiden (er 

zijn meerdere stoichiometrische samenstellingen bekend) neemt 

hierbij een belangrijke plaats in. 

Veel kwalitatieve uitleggingen zijn er reeds gegeven om de 

overgangen te kunnen begrijpen. Sinds de komst van de computers 

is men in het begin van de jaren vijftig begonnen met een basis te 

leggen voor de kwantitatieve bepaling van de eleetronenniveaus 

in een kristal. Hierdoor kan een helderder inzicht verkregen 

worden in de metaal-halfgeleider overgangen. 

In dit proefschrift zijn bandberekeningen uitgevoerd voor 

vanadiummonoxide. De keuze van deze verbinding, die een keukenzout 

kristalstruktuur heeft, is voornamelijk gedaan vanwege de hoge 

symmetrie en het lage aantal atomen per primitieve cel. Dit ver­

eenvoudigt de ab-initio berekening nl. aanzienlijk. 

De gebruikte berekeningen zijn uitgevoerd met de APW-LCAO 

methode. De APW methode wordt gebruikt om de energieniveaus voor 

enkele punten in de k-ruimte met een hoge symmetrie te bepalen. 

De LCAO methode, waarbij als basisset de 3d en 4s Bloch orbitals 

van vanadium, en de 2s en 2p Bloch orbitals van zuurstof worden 

gebruikt, fungeert als een interpolatieschema ter bepaling van de 

energieniveaus voor de overige k-punten. 

Al onze berekeningen zijn uitgevoerd op de IBM 360/65 compu­

ter van het rekencentrum aan de Technische Hogeschool Delft. Som­

mige programma's zijn van andere onderzoekers verkregen en aange­

past aan de voornoemde computer, terwijl andere programma's in de 

loop van het onderzoek zelf zijn ontwikkeld. 

Om bij te dragen tot de discussie over de eventuele metaal­

halfgeleider overgang van VO, is er een bandstruktuurberekening 

uitgevoerd voor vier verschillende roosterparameters. 

De LCAO interpolatiemethode heeft ons tevens in staat ge­

steld om de kristalveld parameter A te berekenen en te vergelijken 
2+ met die van het overeenkomstig gesitueerde V in MgO. 
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