<]
TUDelft

Delft University of Technology

The neurobench framework for benchmarking neuromorphic computing algorithms and
systems

Yik, Jason; Van den Berghe, Korneel; den Blanken, Douwe; Bouhadjar, Younes; Fabre, Maxime; Micheli,
Aurora; de Croon, Guido; Témen, Nergis; Frenkel, Charlotte; More Authors

DOI
10.1038/s41467-025-56739-4

Publication date
2025

Document Version
Final published version

Published in
Nature Communications

Citation (APA)

Yik, J., Van den Berghe, K., den Blanken, D., Bouhadjar, Y., Fabre, M., Micheli, A., de Croon, G., Témen,
N., Frenkel, C., & More Authors (2025). The neurobench framework for benchmarking neuromorphic
computing algorithms and systems. Nature Communications, 16(1), Article 1545.
https://doi.org/10.1038/s41467-025-56739-4

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1038/s41467-025-56739-4
https://doi.org/10.1038/s41467-025-56739-4

nature communications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

The neurobench framework for
benchmarking neuromorphic computing
algorithms and systems

Received: 22 December 2023

Accepted: 29 January 2025

A list of authors and their affiliations appears at the end of the paper

Published online: 11 February 2025

M Check for updates

Neuromorphic computing shows promise for advancing computing efficiency
and capabilities of Al applications using brain-inspired principles. However,
the neuromorphic research field currently lacks standardized benchmarks,

making it difficult to accurately measure technological advancements, com-
pare performance with conventional methods, and identify promising future
research directions. This article presents NeuroBench, a benchmark frame-
work for neuromorphic algorithms and systems, which is collaboratively
designed from an open community of researchers across industry and aca-
demia. NeuroBench introduces a common set of tools and systematic meth-
odology for inclusive benchmark measurement, delivering an objective
reference framework for quantifying neuromorphic approaches in both
hardware-independent and hardware-dependent settings. For latest project
updates, visit the project website (neurobench.ai).

In recent years, the rapid growth of artificial intelligence (Al) and
machine learning (ML) has resulted in increasingly complex and large
models in pursuit of higher accuracy and range of use cases'. The
substantial growth rate of model computation exceeds efficiency gains
realized through Moore and Dennard technology scaling?, indicating a
looming limit to continued advancements with existing techniques.
This issue is compounded by the open challenges of adapting such
methods for resource-constrained edge devices (tinyML) in order to
enable pervasive and decentralized intelligence through the Internet
of Things (IoT)>. As such, the urgency for exploring new resource-
efficient and scalable computing architectures has intensified.

Neuromorphic computing has emerged as a promising area in
addressing these challenges, aiming to unlock key hallmarks of bio-
logical intelligence by porting primitives and computational strategies
employed in the brain into engineered computing devices and
algorithms*. Neuromorphic systems hold a critical position in the
investigation of novel architectures, as the brain exemplifies an
exceptional model for accomplishing scalable, energy-efficient, and
real-time embodied computation.

Initially, the term “neuromorphic” referred specifically to
approaches that aimed to emulate the biophysics of the brain by
leveraging physical properties of silicon, as proposed by Mead in the

1980’s’. However, the field of neuromorphic computing research has
since grown to encompass a wide range of brain-inspired computing
techniques at the algorithmic, hardware, and system levels*. While the
range of approaches is diverse, neuromorphic computing research
generally utilizes mechanisms emulating or simulating biophysical
properties more closely than conventional methods, aiming to
reproduce high-level performance and efficiency characteristics of
biological neural systems.

Neuromorphic algorithms® encompass neuroscience-inspired
methods which strive towards goals of expanded learning cap-
abilities, such as predictive intelligence, data efficiency, and adapta-
tion, and include approaches such as spiking neural networks (SNNs)
and primitives of neuron dynamics, plastic synapses, and hetero-
geneous network architectures. Algorithm exploration often makes
use of simulated execution on readily-available conventional hardware
such as CPUs and GPUs, with the goal of driving design requirements
for next-generation neuromorphic hardware.

Neuromorphic systems’ are composed of algorithms deployed to
hardware, which seek greater energy efficiency, real-time processing
capabilities, and resilience compared to conventional systems. Neu-
romorphic hardware utilizes a variety of biologically-inspired hard-
ware approaches, including analog neuron emulation, event-based

e-mail: jyik@g.harvard.edu

Nature Communications | (2025)16:1545

https://neurobench.ai
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56739-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56739-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56739-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56739-4&domain=pdf
mailto:jyik@g.harvard.edu
www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

computation, non-von-Neumann architectures, and in-memory pro-

cessing. Neuromorphic systems target a wide range of applications,

from neuroscientific exploration, to low-power edge intelligence and
datacenter-scale acceleration.

Despite its promises, progress in the field of neuromorphic
research is impeded due to the absence of fair and widely-adopted
objective metrics and benchmarks®'°. Without such benchmarks,
the validity of neuromorphic solutions cannot be directly quanti-
fied, hindering the research community from measuring technolo-
gical advancement. Standard and rigorous benchmarking is
necessary for the neuromorphic community to objectively assess
and compare the achievements of novel approaches, and make
evidence-based decisions on which directions show promise for
achieving breakthrough efficiency, speed, and intelligence, thereby
helping to focus research and commercialization efforts on tech-
niques that concretely improve on prior work and conventional
computing. Neuromorphic benchmarks have been previously pro-
posed for classical vision"? and audition tasks', open-loop™* and
closed-loop” tasks, and for SNN simulator performance
assessment'. While prior works have made valuable contributions,
there are opportunities to further advance the field by addressing
three outstanding challenges:

* Lack of a formal definition — The variety of approaches to exploring

brain-inspired principles creates difficulties in defining a set of
criteria for what should be benchmarked as a “neuromorphic”
solution. Closed definitions can impose narrow assumptions and
thus risk unfairly excluding promising methods. This challenge
necessitates inclusive benchmarks that can be applied generally
across the spectrum of potential approaches, allowing for flexible
implementation while focusing on task capabilities and metrics of
interest such as temporal processing and efficiency. Furthermore,
the benchmarks should ideally allow for direct comparison of
neuromorphic and conventional approaches.
Implementation diversity - A wide array of different frameworks
targeting different goals, such as neuroscientific exploration'” and
automatic SNN training'®, are used in neuromorphic research. This
diversity, which has been instrumental in exploring the landscape
of bio-inspired techniques following different methodologies and
abstraction levels, comes at the cost of portability and standardi-
zation, which in turn limits the ease of benchmark implementa-
tion. Benchmarks require common infrastructure that unites
tooling to enable actionable implementation and comparison of
new methods.

* Rapid research evolution - Neuromorphic approaches are con-
tinually and rapidly evolving as part of an emerging field. As the
research community continues to make technological progress,
so too should benchmark suites and methodology expand to
foster inclusion and capture salient performance metrics. An
iterative benchmark framework with structured versioning will

facilitate productive foundational and evolving performance
evaluation.

To tackle these challenges, this article presents NeuroBench, a
dual-track, multi-task benchmark framework. NeuroBench addresses
the existing neuromorphic benchmark challenges by advancing prior
work in three distinct ways. Firstly, the benchmark framework reduces
assumptions regarding the specific solution being assessed, encoura-
ging inclusive participation of neuromorphic and non-neuromorphic
approaches by utilizing general, task-level benchmarking and hier-
archical metric definitions which capture key performance indicators
of interest. Secondly, the NeuroBench benchmarks are associated with
a common open-source benchmark harness tool which facilitates
actionable benchmark implementation and offers structure for further
expansion to neuromorphic algorithm frameworks and systems.
Finally, NeuroBench establishes an iterative, community-driven initia-
tive designed to evolve over time to ensure representation and rele-
vance to neuromorphic research, analogous to the well-established
MLPerf benchmark framework for machine learning'>*°. As a whole,
NeuroBench intends to align the neuromorphic research community
on standard benchmarking, providing a dynamically evolving platform
to ensure ongoing relevance and facilitate advancements through
workshops, competitions, and a centralized leaderboard.

As Fig. 1 shows, the NeuroBench framework involves two tracks to
enable agile algorithm and system development. As an emerging
technology, neuromorphic hardware has not converged to a single
platform which is commercially available, thus a large fraction of
neuromorphic research explores algorithmic advancement on con-
ventional systems which may not be optimal for performance. Thus,
NeuroBench consists of an algorithm track for hardware-independent
evaluation and a system track for fully deployed solutions. The algo-
rithm track defines four novel benchmarks for neuromorphic methods
across diverse domains, namely few-shot continual learning, computer
vision, motor cortical decoding, and chaotic forecasting, and utilizes
complexity metrics to analyze solution costs. Such hardware-
independent benchmarking enables algorithmic exploration and pro-
totyping, especially when simulating algorithm execution on non-
neuromorphic platforms. Meanwhile, the system track defines stan-
dard protocols to measure the real-world speed and efficiency of
neuromorphic hardware on benchmarks ranging from standard
machine learning tasks to promising fields for neuromorphic systems,
such as optimization. Up-to-date information on the latest benchmarks
and official results can be found on the NeuroBench website (https://
neurobench.ai/).

Each NeuroBench track includes defined datasets, metric and
measurement methodology, and modular evaluation components to
enable flexible development. Promising methods identified from the
algorithm track will inform system design by highlighting target
algorithms for optimization and relevant system workloads for

Algorithm Track Dataset Algorithm Algorl.thm
Metrics
' 3
1 Algorithm-System System-Informed |
5 Co-Innovation Complexity Metrics i
System Track Dataset —_— Algorithm + Hardware ——— Syst(_em
Metrics

Fig. 1| The two NeuroBench tracks: algorithms and systems. Grey boxes des-
ignate what is defined by the benchmark, and orange boxes indicate what is unique
to each solution. Connecting arrows between the two tracks denote the co-
innovation between the tracks and the cross-stack innovation enabled by this

approach. Between algorithm and system solutions, best-performing results from
each track can motivate future solutions to the other. In addition, system metrics
and results can inform hardware-independent algorithmic complexity metrics.

Nature Communications | (2025)16:1545

https://neurobench.ai/
https://neurobench.ai/
www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

Benchmark Harness

Benchmark Inputs Benchmark
....................................... Results
NeuroBenchModel
Model F---5
Wrapper ;
.. _: .- ‘ .. | N
Dataset i Initialize metric ' Calculate static ‘e Footprint

Dataloader] . calculations i] metrics i e Connection sparsity
Processors Apply : " Workload metrics:

Accumulators pre-processing

R A gttt -

Calculate e Correctness
workload metrics ‘e Activation sparsity
i i) Synaptic operations

. . L Apply i
Desired metrics post-processing | | g
|
[Legend: User-defined User-customizable © EBenchmark—defined]

Fig. 2| An overview of the NeuroBench algorithm track software architecture. Users input their model to benchmark and define the task composed of data, processors,
accumulators and metrics. These are taken by the benchmark harness runtime to automatically generate benchmark metric results.

benchmarking. The system track in turn enables optimization and
evaluation of performant implementations, providing feedback to
refine algorithmic complexity modeling and analysis. The interplay
between the tracks creates a virtuous cycle: algorithm innovations
guide system implementation, while system-level insights accelerate
further algorithmic progress. This approach allows NeuroBench to
advance neuromorphic algorithm-system co-design. Both the algo-
rithm and system track will be extended and co-developed as Neuro-
Bench continues to expand.

In the next few sections, we describe the algorithm track,
including general complexity metric definitions, benchmark tasks, and
common infrastructure tooling. We apply the framework to report
baseline results for each algorithm benchmark, which outline unex-
plored research opportunities in optimizing algorithmic architectures
and training of sparse, stateful models to achieve greater performance
and resource efficiency. Then, we show baseline results established in
the system track to assess neuromorphic performance across pro-
mising application workloads. By outlining both tracks, we provide a
roadmap towards standardizing benchmark procedures in both
hardware-independent and hardware dependent settings.

Algorithm Track Benchmark Framework
The algorithm benchmark track aims to evaluate algorithms in a
system-independent manner, separating algorithm performance from
specific implementation details. The implementation platform can
thus be ill-matched to the particular algorithm benchmark that it
executes (e.g., SNN execution via dense matrix multiplication on a
GPU), and the algorithm complexity and expected performance can be
examined in a theoretical manner, motivating agile prototyping and
functional analysis. Furthermore, minimal assumptions are made
about the solutions tested, promoting inclusion of diverse algorithmic
approaches.

The framework, as illustrated in Fig. 2, is composed of inclusively-
defined benchmark metrics, datasets and data loaders, and common
harness infrastructure, shown in red. The metrics focus on assessing

algorithm correctness on specific tasks as well as capturing general
metrics that reflect the architectural complexity, computational
demands, and storage requirements of the models. The datasets and
data loaders specify the details of the tasks used for evaluation and
ensure consistency across benchmarks. Finally, the harness infra-
structure automates runtime execution and result output for the
algorithm benchmark specified by the input interface, which consists
of the user’s model and customizable components for data processing
and desired metrics, shown in green and orange.

Algorithm track metrics

The algorithm track establishes solution-agnostic primary metrics
which are generally relevant to all types of solutions, including artificial
and spiking neural networks (ANNs, SNNs). Firstly, there are correct-
ness metrics, which measure the quality of the model predictions on
the particular task, such as accuracy, mean average precision (mAP),
and mean-squared error (MSE). The correctness metrics are specified
per task for each benchmark. Next, there are complexity metrics,
which measure the computational demands of the algorithm. In the
first iteration of the NeuroBench algorithm track, we assume a digital,
time-stepped execution of the algorithm and define the following
complexity metrics:

* Footprint - A measure of the memory footprint, in bytes, required

to represent a model, which reflects quantization, parameters,
and buffering requirements. The metric summarizes (and can be
further broken down into) synaptic weight count, weight preci-
sion, trainable neuron parameters, data buffers, etc. Zero weights
are included, as they are distinguished in the connection sparsity
metric.
Connection Sparsity - For a given model, the connection sparsity
is the number of zero weights divided by the total number of
weights, accumulated over all layers. O refers to no sparsity (fully
connected) and 1 refers to full sparsity (no connections). This
metric accounts for deliberate pruning and sparse network
architectures.

Nature Communications | (2025)16:1545

www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

* Activation Sparsity — During execution, the average sparsity of
neuron activations over all neurons in all model layers, for all
timesteps of all tested samples, where O refers to no sparsity (i.e.,
all neurons are always activated), and 1 refers to the case where all
neurons have a zero output.

Synaptic Operations — Average number of synaptic operations per
model execution, based on neuron activations and the associated
fanout synapses. This metric is further subdivided into dense,
effective multiply-accumulate, and effective accumulate synaptic
operations (Dense, Eff MACs, Eff ACs). Dense accounts for all zero
and nonzero neuron activations and synaptic connections, and
reflects the number of operations necessary on hardware that
does not support sparsity. Eff MACs and Eff ACs only count
effective synaptic operations by disregarding zero activations
(e.g., produced by the ReLU function in an ANN or no spike in an
SNN) and zero connections, thus reflecting operation cost on
sparsity-aware hardware. Synaptic operations with non-binary
activation are considered multiply-accumulates (MACs), while
those with binary activation are considered accumulates (ACs).

Footprint and connection sparsity are classified as static metrics,
which can be analytically determined from the model only. Activation
sparsity, synaptic operations, and correctness are classified as work-
load metrics, which are dependent on execution or simulation of the
model based on the benchmark data.

In addition to the above complexity metrics, the algorithm track
proposes to define Model Execution Rate, corresponding to the rate, in
Hz, at which the model’s forward inference pass needs to be executed.
For example, if a model is designed to process data from an event
camera with a 50 ms input stride, the model execution rate is 20 Hz.
The execution rate is a critical feature of the algorithm which provides
intuition into the tradeoff between latency and computational foot-
print of a deployed model, and is reported directly by the solution
designer in benchmark results since it neither needs to be calculated
nor extracted from the model or its outputs.

The complexity metrics are measured independently of the
underlying hardware and therefore do not explicitly correlate with
post-deployment latency or energy consumption. However, they pro-
vide valuable insight into algorithm performance and resource
requirements, enabling high-level comparison and facilitating proto-
typing. For instance, the execution rate and number of synaptic
operations can be taken together to estimate the speed and dynamic
power of a model deployed to certain hardware, and the footprint and
connection sparsity can be used to proxy hardware resource utilization.

Furthermore, the algorithm track can be extended with solution-
specific secondary metrics, which can offer deeper insights by using
information specific to particular types of solutions. For example, for
algorithms geared towards analog hardware, noise robustness is an
important solution-specific metric. In addition, approaches with
complex neuron dynamics may warrant measuring the overall com-
plexity of a neuron update (i.e., type and counts of operations neces-
sary to simulate the update), which can be combined with the total
number of neuron updates in a model pass to calculate the cost of state
updates. Such solution-specific metrics are expected to be
community-driven and will be included in future NeuroBench algo-
rithm track releases.

Algorithm track benchmarks
The v1.0 iteration of the NeuroBench algorithm track includes four
benchmarks for neuromorphic computing research. The benchmarks
were chosen by the NeuroBench community to capture key ongoing
challenges for neuromorphic algorithm design. The list of tasks high-
lights features which are relevant to neuromorphic research interests:
few-shot continual learning, object detection utilizing the high
dynamic range and temporal resolution of event cameras, sensor-
imotor decoding based on cortical signals, and low-dimensional pre-
dictive modeling useful for prototyping resource-constrained
networks that are suitable for small mixed-signal systems.
Benchmark tasks are listed below and summarized in Table 1.
Detailed specifications of benchmark tasks are provided in the Meth-
ods section.

* Keyword Few-Shot Class-Incremental Learning (FSCIL) - Learning
new tasks from a small amount of experiences while retaining
knowledge of prior tasks is a hallmark of biological intelligence
and a long-standing goal of general AI”. It is especially a key
challenge to endow edge devices with the ability to adapt to their
environments and users. This benchmark thus evaluates the
capacity of a model to successively incorporate new keywords
over multiple sessions (class-incremental), with only a handful of
samples from the new classes to train with (few-shot). The FSCIL
task is a recently established benchmark in the computer vision
domain®, but it has not yet been adapted to other data modalities.
Aligning with a neuromorphic interest in temporal data mod-
alities, this benchmark introduces a FSCIL task with streaming
audio data using the large Multilingual Spoken Word Corpus
(MSWC)* keyword classification dataset. The task is designed to
be approached in two phases: pre-training and incremental
learning. First, for pre-training, a set of 100 words spanning 5
base languages (English, German, Catalan, French, Kinyarwanda)
with 500 training samples each are made available to train an
initial model. Next, for incremental learning, the model undergoes
10 successive sessions to learn words from 10 new languages
(Persian, Spanish, Russian, Welsh, Italian, Basque, Polish, Espar-
anto, Portuguese, Dutch) in a few-shot learning scenario. Each
incremental session adds 10 words of the corresponding session
language with only 5 training samples available per word. After
each session, the model is tested in classification accuracy on all
prior learned classes, including the 100 base pre-training classes
and the few-shot-learned classes, therefore evaluating the FSCIL
solution on its ability to learn new classes while retaining
knowledge about the previously learned ones. Each session learns
a new language, for a total knowledge base of 200 keywords by
the end of the benchmark.

Event Camera Object Detection - Object detection is a widely-
used computer vision task with applications in robotics, auton-
omous driving, and surveillance. Such scenarios at the edge may
require high energy efficiency and real-time performance, which
can be achieved via event-based vision sensors*. The event
camera object detection benchmark uses the Prophesee 1
Megapixel automotive detection dataset?, a large labeled object
detection dataset with over 15 h of event camera video from the
front of a car driving in various scenarios. Predetermined training,
validation, and testing splits include 11.2h, 2.2h, and 2.2h of

Table 1| NeuroBench algorithm track v1.0 benchmarks

Task Dataset Correctness metric Task description

Keyword FSCIL MSwcC?* Accuracy Few-shot, continual learning of keyword classes.

Event Camera Object Detection Prophesee 1MP Automotive® COCO mAP Detecting automotive objects from event camera video.
NHP Motor Prediction Primate Reaching” R? Predicting fingertip velocity from cortical recordings.
Chaotic Function Prediction Mackey-Glass time series® sMAPE Autoregressive modeling of chaotic functions.

Nature Communications | (2025)16:1545

www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

recording, respectively. Pedestrian, two-wheeler, and car object
classes are used in evaluation, and correctness is measured using
COCO mean average precision (mAP)*.

Non-human Primate (NHP) Motor Prediction - Studying models
which can accurately replicate features of biological computation
presents opportunities in understanding sensorimotor behavior
and developing closed-loop methods for future robotic agents. It
also is foundational to the development of wearable or implan-
table neuro-prosthetic devices that can accurately generate motor
activity from neural or muscle signals. This benchmark utilizes a
dataset consisting of multi-channel recordings from the sensor-
imotor cortex of two non-human primates (NHP Indy and NHP
Loco) during reaching movements, along with corresponding
fingertip motion of the reach”. Six total sessions are included
from the dataset, for a total of 8712 seconds of data. The task is to
train a model to predict the two-dimensional components of
finger velocity using recent neural data. The sessions are treated
independently (i.e., models are trained separately for each
session), and the data is split to allow the first 75% for training
and validation and the last 25% for evaluation. Correctness of the
predictions is evaluated by the coefficient of determination (R?)
score against the true finger velocity targets, averaged over all six
sessions.

Chaotic Function Prediction - The real-world data benchmarks
presented thus far are high-dimensional and can require large
networks to achieve high accuracy, raising challenges for solution
types with limited I/O support and network capacity, such as
mixed-signal edge prototype solutions. To address this, we
include a synthetic benchmark based on prediction of one-
dimensional Mackey-Glass time series”, which can be effectively
tackled by smaller networks. Mackey-Glass has been widely
adopted as a benchmark for evaluating temporal predictors,
including neuromorphic models* . The task involves prediction
of the next timestep value f(t + At) given the current timestep
value f(¢). The model is trained and validated using the first half of
the time series, during which the ground truth state f{t) are
supplied to the model to predict the next timestep f'(t +At).
During the evaluation, the model uses its prior prediction f'(¢t) to
generate each next value f'(¢ + At), autoregressively forecasting
the second half of the time series. Correctness is measured using
symmetric mean absolute percentage error (SMAPE) of the
generated time series against the target time series, a standard
metric in forecasting®. The benchmark includes a set of 14
Mackey-Glass time series, which vary by the equation parameter 7,
the delay constant. Lyapunov time (L), the expected predictability
timescale for chaos™, is used as the time unit for each time series.
The total length of each series is 20 Lyapunov times, and 75 points
are sampled per Lyapunov time (At = L/75).

Algorithm track benchmark harness

The NeuroBench algorithm benchmarks are wrapped in a harness
which standardizes the benchmark interfaces. The harness provides
benchmark users with a consistent framework for loading data, pro-
cessing data and model outputs, and calculating and reporting
metrics, thereby ensuring fair and standard comparisons of the results.
It is built with straightforward interfaces which are designed to be
extended with new frameworks, algorithms, and tasks. The benchmark
harness is open-source for use and development (https://github.com/
NeuroBench/neurobench).

The components of the algorithm benchmark harness are sum-
marized in Fig. 2. Datasets are loaded in a common format and pass
through Processors to be pre-processed. The Model generates pre-
dictions based on the processed data, and Accumulators post-process

the predictions, for instance to accumulate spikes and transform to
labels. Static metrics of algorithm footprint and connection sparsity
are calculated via model analysis, while metrics of correctness, acti-
vation sparsity, and synaptic operations are calculated using predic-
tions and model execution traces. For benchmark users, task
evaluation simply involves utilizing the existing dataloaders, pro-
cessors, and metrics within the harness and wrapping their own code
to fit the standard interfaces.

Currently, the harness and all baseline models are built using
PyTorch** or frameworks based on it, such as snnTorch® and
SpikingJelly®. Due to its modular structure and simple interfaces, the
harness can grow to be compatible with further neuromorphic tools
such as Lava® and Fugu®. Furthermore, it also supports the extension
of data and metric pipelines in order to implement additional bench-
mark tasks. Widely validated benchmarks in keyword®® and gesture
classification’?, which are foundational in neuromorphic and conven-
tional research**, have been incorporated into the harness to
complement the novel tasks in the NeuroBench v1.0 suite. Any novel or
existing benchmarks can make use of the harness infrastructure for
open reproducibility, and also to garner interest in the community
towards long-term task support and appearance in NeuroBench-
affiliated leaderboards and challenge events.

Algorithm track limitations and further extensions. Before diving
into the baseline results, it is worth discussing several possible
improvements to the NeuroBench algorithm track framework in its
current form. Specifically, the initial iteration of metrics is restricted to
the assumption of digital, time-stepped algorithm execution. While
complexity analysis of such prototypes can serve as an intermediate
step for solutions intended for analog or continuous time deployment,
the metric measurements are not yet defined for those execution
settings. Informed by further benchmark implementations, future
versions of NeuroBench will extend inclusiveness by expanding mea-
surement protocols to include such algorithms.

Furthermore, the synaptic operations metric, intended to capture
model computation cost, currently does not account for neuron
updates. The dynamics of neuron models, including mechanisms like
leakage and reset, can vary heavily in complexity. However, counting
the number and type of operations from neuron updates, as well as
estimating their overall costs, depends on the specific arithmetic or
circuit implementation. Thus, they are not accounted for in the broader
algorithmic complexity metrics. The algorithmic metric framework can
be extended with solution-specific metrics that assume a particular
implementation platform to estimate neuron update costs, which have
been previously defined*’. These estimates can then be combined with
the total number of neuron updates per model computation to mea-
sure overall network operation complexity during evaluation.

Data pre- and post-processing can also amount to significant costs
not yet captured in the NeuroBench algorithm track metrics. Such
costs are, however, captured in the deployed metrics of the system
track, which accounts for data processing hardware as part of the
overall system during performance and efficiency measurements. Data
processing metrics will be added as a separate complexity category for
the algorithm track benchmark in the future.

The v1.0 algorithm track benchmark suite is also intended to
expand in the future. This could include covering further data mod-
alities such as inertial measurement unit (IMU) sensing* and extending
to closed-loop sensorimotor tasks to demonstrate embodied intelli-
gence. As with the initial benchmarks, further tasks will undergo
approval and development by the open NeuroBench community
before being included in a future versioned benchmark suite.

Algorithm track baseline results
In our first iteration of the algorithmic track, we report baseline algo-
rithm performance on each benchmark using various model

Nature Communications | (2025)16:1545

https://github.com/NeuroBench/neurobench
https://github.com/NeuroBench/neurobench
www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

architectures, including artificial neural networks commonly used in
deep learning, spiking neural networks, and reservoir networks. We
evaluate each benchmark with two substantially different algorithm
baselines. From these evaluations, we extract baseline comparisons,
identify trends, and uncover motivations for future research. Except
for the event camera object detection task, each benchmark utilizes a
novel data split, and all tasks use novel metric measurement. The
presented baselines are a snapshot of the solution search space and
will be starting points for leaderboards, thereby calling for further
research to push the state of the art for each task. Detailed specifica-
tions of each of the baselines can be found in the Methods section.

Keyword FSCIL. The keyword FSCIL task has an ANN and SNN base-
line, using different model architectures:

* M5 ANN - The ANN baseline uses a tuned version of the M5 deep

convolutional network architecture*, with samples pre-
processed into Mel-frequency cepstral coefficients (MFCC). The
network contains four successive convolution-normalization-
pooling layers, followed by a readout fully-connected layer. Each
model execution (forward pass) uses the data from the full pre-
processed sample, and convolution kernels are applied over the
temporal dimension of the samples. This is reported as a 1Hz
model execution rate.
SNN - The SNN baseline uses a recurrent SNN with adaptive leaky
integrate-and-fire (LIF) neurons and heterogeneous time
constants*. The SNN consists of two recurrent adaptive LIF layers
and one linear output layer. Audio samples are pre-processed to
binary spike trains using Speech2Spikes*¢, which relies on a Mel
Spectrogram with the same parameters as the MFCC of the ANN
baseline. Each input timestep to the model represents 5ms of
audio data, thus the model has a 200 Hz model execution rate.
Output neuron activations are summed over time to produce the
word class prediction.

After pre-training using standard batched training, the ANN and
SNN baseline networks reach high accuracies on the base classes of
97.09% and 93.48%, respectively. As reported by the model execution
rate metric, the SNN baseline computes each sample over 200 passes,
using an order of magnitude fewer effective AC synaptic operations
compared to the ANN baseline’s effective MACs per model execution.
Considering both the model execution rate and synaptic operation
metrics, the number of aggregated ACs over the length of the sample
(200 % 3.65 x 10° = 7.30 x 10”) exceeds the Dense and effective MAC
operations necessary for the ANN baseline, which spatially flattens the
sample and processes it in one model execution. However, outside of
the static-length keyword classification scenario, the low-cost per-
execution temporal processing of SNNs can enable efficient, always-
on, high-frequency prediction capabilities in deployed continuous
audio recognition scenarios.

We present two approaches for the incremental stage for both the
ANN and SNN baselines. The frozen models are locked after pre-
training on base classes and have 0% accuracy on all new incremental
classes, providing a reference for models with no learning or cata-
strophic forgetting of prior classes. The prototypical models employ a

prototypical network?” for incremental learning, which is a feature-
based clustering approach that can be implemented with a simple
linear readout layer on top of the pre-trained network backbone.
Prototypical weights and biases of prior and incremental classes are
directly defined based on the average features of the corresponding
class and directly substitute pre-trained readout layer parameters. The
complexity results in Table 2 thus empirically apply to both the frozen
and prototypical models.

The test accuracy for the baseline models over all sessions, as well
as the test accuracy on only the new incrementally-learned classes, are
shown in Fig. 3. Using prototypical networks, the ANN model reaches
89.27% accuracy on average over all sessions, demonstrating sig-
nificant greater performance of 21.41 accuracy points with respect to
the frozen model. The accuracy on new classes, averaged over all
incremental sessions, is 79.61%. The SNN prototypical baseline, on the
other hand, reaches 75.27% accuracy on average over all sessions,
surpassing the frozen SNN performance by 9.97 accuracy points, with
an average accuracy on new classes over all sessions of 57.23%.

The accuracy loss over the incremental sessions is similar between
the ANN and SNN prototypical baselines. However, the lower overall
accuracy of the SNN is largely due to the conversion from the original
backpropagation-trained readout classifier, which is used in the frozen
baseline, to the prototype readout classifier. On the base classes
(session O in Fig. 3), the ANN sees a drop of 2.37% between the frozen
and prototypical baselines, while the SNN has a larger drop of 9.17%.
The larger drop indicates that our particular SNN baseline has a less
general feature extraction than the ANN. This may be due to the
challenges of backpropagation through time for online temporal
inference to learn to extract long-term temporal keyword features with
the chosen spiking recurrent model. Additionally, the Speech2Spikes*®
pre-processing algorithm converting audio to spikes may also cause
information loss. Overall, the keyword FSCIL benchmark presents
opportunities for further research in learning methods, preprocessing,
and model architectures for continual learning of temporal data.

Event camera object detection. The event camera object detection
task reports a prior baseline, the RED ANN, and a novel conversion of
the architecture to a hybrid ANN-SNN model:

* RED ANN - The RED architecture® consists of blocks of feed-

forward squeeze-and-excite** convolutional layers followed by
blocks of recurrent convolution-LSTM (ConvLSTM*) layers. A
single-shot detection (SSD*°) head is used to predict the location
and class of the bounding box based on multi-scale outputs from
the recurrent layers. Raw event data is binned into 50 ms and pre-
processed into time surfaces.
Hybrid - The hybrid ANN-SNN architecture adopts feedforward
LIF spiking neural layers to replace the ConvLSTM layers in RED,
and shares the same feed-forward convolutional blocks as the
RED. It uses the same input encoding method and SSD head as the
RED model.

Results for the two networks can be found in Table 3. The RED
ANN represents the current state-of-the-art correctness on the
benchmark, at 0.429 mAP. The Hybrid network is a smaller network,

Table 2 | Baseline results for the keyword few-shot class-incremental learning task

Baseline Accuracy (Base / Ses- Footprint Model Exec. Connection Activation SynOps (per model exec.)
sion Avg) (bytes) Rate (Hz) Sparsity Sparsity
Dense Eff MACs Eff ACs
M5 ANN (97.09% / 89.27%) 6.03x10° 1 0.0 0.783 2.59x107 7.85x10°8 0
SNN (93.48% [75.27%) 1.36x107 200 0.0 0.916 3.39x10° O 3.65x10°

Base accuracy refers to accuracy on the 100 base classes after pre-training while session average accuracy is the average accuracy over all sessions for the corresponding prototypical baseline. The

detailed accuracy per session for the different baselines are shown in Fig. 3.

Nature Communications | (2025)16:1545

www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

All Classes Performance

New Classes Performance

100 100
90 90
g 80 g 80 M
> >
(9} (9}
s s
5 70 5 70
[} [}
O 1%}
< <
! \ il
o 60 S o 60
= —— Prototypical M5 ANN " = 1R R s e S s e e |
—— Prototypical SNN I
S pp— Frozen M5 ANN RN SLj pp— Prototypical M5 ANN
fffff Frozen SNN —e— Prototypical SNN
40 40
01 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Incremental Sessions

Fig. 3 | Test accuracy per session on the keyword FSCIL task for prototypical
and frozen baselines, with the accuracy on both base classes and
incrementally-learned classes (left), and accuracy on all incrementally-learned
classes only (right). Incremental session O refers to the accuracy on base classes

Incremental Sessions

after pre-training only. Shaded area represents 5" and 95% percentile on 100 runs.
Frozen baselines with no adaptation do not learn incremental classes and thus have
a fixed 0% accuracy for New Classes Performance.

Table 3 | Baseline results for the event camera object detection task

Baseline mAP Footprint (bytes) Model Exec. Rate (Hz) Connection Sparsity Activation Sparsity SynOps (per model exec.)

Dense Eff MACs Eff ACs
RED ANN 0.429 9.13x107 20 0.0 0.634 2.84x10" 2.48x10" 0]
Hybrid 0.271 1.21x107 20 0.0 0.613 9.85x10" 3.76x10" 5.60x10°

Table 4 | Baseline results for the NHP motor prediction task, for NHP Indy (96-channel data, top), and NHP Loco (192-channel

data, bottom)

Baseline R? Footprint (bytes) Model Exec. Rate (Hz) Connection Sparsity Activation Sparsity SynOps (per model exec.)
Dense Eff MACs Eff ACs
ANN 0.593 20824 250 0.0 0.683 4704 3836 0
0.558 33496 250 0.0 0.668 7776 6103 0]
SNN 0.593 19648 250 0.0 0.997 4900 0 276
0.568 38848 250 0.0 0.999 9700 0 551

reflected by the footprint and synaptic operations metrics measuring
an order of magnitude smaller than for the RED ANN. The smaller size
comes at the expense of lower correctness of 0.271 mAP.

For the RED ANN, the activation sparsity metric (0.634) represents
zero activations by the ReLU function for each neuron. From this, one
may expect that the number of effective operations (operations with a
nonzero activation and nonzero weight) would be around 35% of dense
operations, however the actual ratio is 87%. This is due to the presence
of normalization layers applied to activations before synaptic weight
multiplication. Furthermore, neurons with lower activation frequency
in the network tend to have a smaller fanout than neurons with high
activation frequency. Thus, while activation sparsity alone can provide
a proxy for the cost of the network, architectural characteristics may
impede actual computation reduction, and the synaptic operations
must be considered in tandem.

The Hybrid network demonstrates a significant reduction in total
effective operations against dense operations, outlining significant
gains if deployed on specialized sparsity-aware hardware. However, for
the particular network, the number of effective ACs, generated by the
spiking neuron components, is two orders of magnitude smaller than
the number of effective MACs within the ANN components. Such a
hybrid network may not warrant specialized accumulation units, and
the baseline motivates further research in hybrid networks with a

larger proportion of spiking neuron activity compared to artificial
neuron activity.

NHP motor prediction. Small fully-connected, feedforward networks
were developed for the NHP motor prediction baselines:

* ANN - In the ANN baseline, the cortical activity from the 50 most
recent data samples is buffered to be used as network input. The
network has two hidden layers and 2 final outputs predicting X
and Y velocities, with a fully-connected topology of N.;,-32-48-2,
where N, refers to the channels of cortical data (96 for NHP Indy,
and 192 for NHP Loco). Batch normalization is applied after each
hidden layer.

SNN - The SNN uses the data samples directly as input to the
network, without buffering. It has a hidden layer of 50 LIF neu-
rons, for a fully connected topology of N;-50-2 LIF neurons. The
output neurons do not have a reset mechanism, and the mem-
brane potential is directly read to produce the output velocities.

Table 4 shows the results for the ANN and SNN baselines, aver-
aged between sessions from each NHP (Indy and Loco). The ANN and
SNN are similar in footprint size and number of dense operations per
model forward pass, and also reach comparable prediction quality
based on R? score. Each model is small in footprint and operation

Nature Communications | (2025)16:1545

www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

B ANN

* SNN
g 10°{ @ ANN Flat .
8 4 SNN_Flat
1
£
s
o
£

e
A
0.56 0.58 0.60 0.62 0.64
RZ

w
S *
=
©
8—10"
o 2
=
a]
©
[
@ B ANN
ERUE % SNN
I & ANN_Flat
& 4 SNN_Flat
*
0.56 0.58 0.60 0.62 0.64
RZ

Fig. 4 | Footprint and effective synaptic operations vs R? for four task baselines. Each model has two points: the solid marker represents NHP Indy, and the hollow

marker represents NHP Loco.

Table 5 | Baseline results for the chaotic function prediction task

Baseline sMAPE Footprint (bytes) Model Exec. Rate (Hz) Connection Sparsity Activation Sparsity SynOps (per model exec.)

Dense Eff MACs Eff ACs
ESN 14.79 2.81x10° - 0.876 0.0 3.52x10* 4.37x10° o]
LST™M 13.37 4.90x10° - 0.0 0.530 6.03x10* 6.03x10* 0

Execution rate is not reported as the data is a synthetic time series, with no real-time correlation.

count, demonstrating that this task can be solved by shallow edge
networks, validating prior studies®.

Between the baselines, the SNN realizes similar correctness at
significantly reduced complexity compared to the ANN. Extremely
high activation sparsity in the SNN (0.998) directly translates to low
effective accumulate operations, demonstrating the adequacy of sta-
teful, binary-activation neuron models for sparse regression tasks.
Meanwhile, similarly to the RED ANN in the event camera object
detection task, activation sparsity in the ANN baseline does not
translate to effective operation efficiency, as batch normalization is
applied to activations before multiplication with synaptic weights.

We conduct further exploration for increasing task accuracies
with more complex ANN and SNN models: ANN_Flat and SNN_Flat. For
these networks, 50 data samples of buffered input are split into n, =7
accumulated bins. For ANN _Flat, the 7 bins are spatially flattened as
input to the network, so its topology is (7 x N.;)-32-48-2. SNN_Flat uses
the N ,-32-48-2 topology, and the 7 bins are temporally flattened as
input, presented to the network as separate input timesteps. Each
prediction still uses the membrane potential of the output neurons
after input timesteps, and the network is reset for each prediction.
Layer normalization is also applied on the SNN_Flat inputs.

Figure 4 shows plots of complexity and predictive quality of all
four baseline networks. Both flattened networks demonstrate sig-
nificantly greater R? performance than the other two networks. How-
ever, the larger input dimension of the ANN_Flat network is reflected in
its greater footprint, and the increased model timesteps and layer
normalization sharply increase the effective operations of SNN_Flat by
two orders of magnitude compared to the simpler SNN. Thus, while
input flattening and normalization increase the quality of model pre-
dictions for ANNs and SNNs, each comes with a significant complexity
trade-off.

Chaotic function prediction. The chaotic function prediction task has
two recurrent ANN baselines, which feature distinct network
architectures:

* Long short-term memory (LSTM) - LSTMs are a class of recurrent
ANN architectures®, utilizing multiple gates for selective reten-
tion or omission of past information. The LSTM baseline consists
of a single LSTM with a hidden state of 100 neurons, followed by a

feed-forward layer to produce single-dimension output predic-
tions. In addition, the LSTM baseline utilizes explicit memory by
buffering 50 previous datapoints, spatially flattening them into 50
input channels.

* Echo state network (ESN) - ESNs are randomized recurrent ANNs
that belong to a class of algorithms known collectively as reservoir
computing®, featuring more biologically-inspired principles than
LSTMs despite not being spiking networks. Standard ESNs have
only one hidden layer (the reservoir), where synaptic connections
projecting input data to the hidden layer and recurrent synaptic
connections within the hidden layer are chosen randomly and stay
fixed during the training. The model architecture for the ESN
baseline has two neurons in the input layer, which projects the
Mackey-Glass function input and additional constant bias input
into a hidden layer of 186 neurons. Within the hidden layer, the
probability of recurrent connections is set to 0.11.

The LSTM and ESN models were evaluated on a Mackey-Glass time
series with 7 = 17. The model is evaluated over 30 instantiations of the
system; in each instance the start point is shifted forward by half of the
Lyapunov time. The model is re-initialized and re-trained on each
instance, and the results are averaged over all 30 instances. Table 5
shows the averaged results for the LSTM and ESN model baselines.

The ESN model is architecturally unique compared to the other
ANN and SNN baselines. The connection sparsity metric (0.876) reflects
the high number of zero-weight connections across its reservoir hidden
layer. Due to this sparsity, hardware with support for sparse synaptic
representation by ignoring zero weights would require less memory to
represent the network, thus decreasing the deployed footprint of the
model. The high connection sparsity of the ESN leads to significant
reduction in synaptic operations - the ESN uses an order of magnitude
fewer effective operations (4.37 x 10%) than the LSTM (6.03 x 10*), while
achieving comparable sMAPE. The activation sparsity of the ESN is O
due to neurons using tanh(-), rather than ReLU activations.

Furthermore, we show the generalization and robustness cap-
abilities of the particular ESN and LSTM models by applying them, with
fixed hyperparameter sets, to other Mackey-Glass time series. Figure 5
shows the SMAPE score of the models over varied time series with the T
Mackey-Glass parameter varying between 17 and 30. The models were

Nature Communications | (2025)16:1545

www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

® ESN ® LSTM

200
150
o
< 100
=
7)) °
50 L4 °®
®
e o o o
° [
0
18 20 22

24 26 28 30

T

Fig. 5 | Correctness (SMAPE) of ESN and LSTM models evaluated on Mackey-Glass time series with varying T parameters. The models use a constant set of

hyperparameters.

trained independently for each time series. As the Mackey-Glass 7
parameter characterizes the time-delay of the system, its increase
roughly corresponds to prediction difficulty, shown by the increasing
SMAPE trend through the plot. Notably, the LSTM maintains an error
that is relatively lower than that of the ESN for all 7 > 18. However, the
LSTM uses explicit memory via input buffering, so it is conjectured
that the historical data allows for greater robustness to the varying
time series characteristics. The ESN uses only one previous timestep,
so its memory is only implicitly retained within its hidden layer. While
the ESN tunes well to the T=17 case and demonstrates greatly reduced
effective operations compared to the LSTM, the same set of hyper-
parameters does not generalize as well to other time series. Further
research is motivated in explicit memory buffers versus implicit
memory within the network state for trade-offs in single-series fore-
casting performance, complexity, and generalization capability.

Discussion and opportunities for further research. Baseline results
for the four v1.0 algorithm track tasks compare the correctness and
complexities of various solution types. Compared to ANNs, SNNs and
ESNs demonstrate complexity advantages such as smaller footprints,
high sparsity, and accumulate rather than multiply-and-accumulate
operations. Especially on the motor prediction and chaotic function
prediction regression tasks, the SNN and ESN baselines already achieve
competitive correctness at lower complexity than the ANN and LSTM
counterparts. Further research opportunities in model architectures,
data pre-processing and buffering, and training paradigms to achieve
greater performance is enabled by the standard framework and tool-
ing provided by NeuroBench.

System Track Benchmark Framework

While the algorithm track aims to benchmark solutions in a system-
independent manner via complexity analysis, the NeuroBench sys-
tem track aims to evaluate deployed execution time, throughput,
and efficiency of systems comprised of an algorithm deployed and
tailored to a hardware platform. Previous benchmark studies have
examined neuromorphic systems under various applications,
including keyword spotting®**, audio and video processing®, and
combinatorial optimization®®”’. While these studies have demon-
strated neuromorphic system advantages, the benchmark tasks have
been unaligned. In order for the hallmarks of neuromorphic hard-
ware to be aptly judged against conventional systems and foster the
expansion of neuromorphic solutions, transparent and objective
comparisons must be made on standard tasks between sufficiently

mature neuromorphic systems head-to-head, as well as against con-
ventional systems.

A key challenge for benchmarking neuromorphic hardware is that
systems are implemented and deployed at vastly different scales to
serve diverse applications, from cloud services (e.g., multi-chip plat-
forms like Loihi*® and SpiNNaker*) to embedded sensing intelligence
(e.g., Speck®® and SNP®). This range is visualized in Fig. 6.

Existing benchmarks for conventional systems have individual
focuses across high-performance®, datacenter-level computing', and
embedded processing®, utilizing a tailored set of benchmark tasks to
address the capabilities and requirements across the different com-
puting scales. Thus, rather than pursuing a one-size-fits-all suite of
tasks, the goal of the NeuroBench system track is to develop bench-
marks at various scales and use cases, under multiple application areas
in which both conventional and neuromorphic platforms may com-
pete. The selected v1.0 NeuroBench system track benchmarks repre-
sent key commercial application areas for existing systems, and they
differ from the tasks in the algorithm track, which are more research-
oriented. As benchmark results continue to identify properties of
highly effective algorithms and systems, the two tracks will converge
to the same selction of tasks that are seen as the most impactful for
future progress in the field.

In this section, we present the system track guidelines outlining
metrics and tasks, representing collective design between multiple
owners and vendors of neuromorphic hardware. Baseline benchmark
results for neuromorphic and conventional systems are reported, and
further official results will be collected and announced at a regular
cadence, akin to the MLPerf suite®. As with all other facets of the
NeuroBench framework, the system track guidelines will continue to
be adapted and extended iteratively as benchmark results are pro-
duced and shared.

System track metrics
In order to be representative of the properties of a deployed system,
the system benchmarks, like the algorithm benchmarks, are assessed
at the task level for the overall system, as opposed to operation- or
kernel-level assessment of individual components. Task-level bench-
marks enable straightforward comparison between systems of any
type with regard to their abilities to solve problems, and the overall
system-level measurement describes the realistic capability and effi-
ciency of a whole solution.

Each individual system benchmark uses task-specific metrics
aligned with correctness, timing, and efficiency to measure the system

Nature Communications | (2025)16:1545

www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

Edge Device Accelerator Board Multi-Board System

Il Sensor I:] Flash [Supporting

microcontroller

I:l Neuromorphic |High-speed
chip link

Fig. 6 | Types of neuromorphic systems at various integration scales. The range of system scales from single-chip edge devices, to multi-chip boards, to multi-board
server machines highlights the diverse applications that neuromorphic systems are applied to, and introduces challenges in defining comprehensive system benchmarks.

under test (SUT). The following general considerations are applied to
each category:

* Correctness - In other system benchmarks, such as the closed
category of the MLPerf Inference framework', the same trained
model is used to benchmark all SUTs, and a correctness threshold
isimposed to ensure optimizations such as lower precision do not
disrupt task performance. Due to the tight coupling between an
algorithm and its system implementation in many existing neu-
romorphic hardware solutions, the particular model used to solve
a NeuroBench system track benchmark task is unconstrained.
Therefore, correctness must be measured to verify the validity of
the solution. No correctness thresholds are imposed on submis-
sions, but the benchmark leaderboard will impose tiers of solution
correctness on submissions to evaluate accuracy-efficiency trade-
offs of system approaches.

* Timing - Depending on the task, timing performance can include
measurements of sample throughput or execution time. Indivi-
dually, the former entails an offline, batched inference bench-
mark, while the latter aligns with a streaming benchmark, in which
one inference does not start until the previous one ends. Toge-
ther, both throughput and execution time should be reported for
tasks in which the SUT runs multiple inferences at any given time,
each representing a request which must be responded to within a
constrained window. The MLPerf Inference framework has
defined widely-adopted general task scenarios corresponding to
each of these categories (offline, single-stream, and server,
respectively), and the NeuroBench system track will use these
scenario guidelines where applicable to maintain consistency and
build on conventional frameworks. In addition, neuromorphic
systems are also applied to tasks in which there is no notion of
discrete sample throughput or execution, such as for heuristic
approximations of intractable problems or operation over a
continuous stream of data (e.g., from an event camera). Timing
performance should be defined on a per-benchmark basis for
such tasks, such as a time-to-solution latency or percentage of
execution which exceeds a real-time threshold.

Efficiency - Conventional system benchmarks such as TOP500%*
for HPC and MLPerf Inference” for deep learning do not require
power measurement submission in the main benchmark, instead
allowing for separate submissions to an adjacent power track
(Green500% and MLPerf Power®, respectively). Not only has
efficiency been usually considered as a second-order metric for
conventional systems, it is also notoriously difficult to precisely
measure. However, as energy efficiency is a key hallmark of
biology and thus is a focus of neuromorphic research, power and
energy consumption must be first-order metrics in the

NeuroBench system track. Similarly to timing metrics, efficiency
metrics should be tailored on a per-benchmark basis, i.e., a real-
time always-on processing task may focus on average power,
while offline batched systems focusing on high-throughput
inference may focus on both peak power and energy per
inference.

Ideally, a benchmark framework should include a strict and con-
sistent set of measurement methodologies, including power monitor
devices, chip interfaces, and data loading and measurement software.
However, neuromorphic systems currently explore a broad range of
varied implementation approaches, board-level integration, and
development maturity®”°%, and such platform diversity creates difficult
challenges for completely consistent methodology. For instance,
among mature large-scale neuromorphic systems, implementation
strategies range from digital’****° to mixed-signal approaches’®”, and
system-level integration extends past single-chip boards into servers
including hundreds of chips®*”’>”. Thus, to enable an initial step
towards consistency in the system track while ensuring openness, we
focus on the development of guidelines for transparent documenta-
tion, as they provide the foundation for shared methodology among
highly diverse solutions. While there may be differences in how metrics
are measured, salient details will be available to contextualize the
results, allowing for holistic analysis, and leading the way for future
consistency by enforcing transparency.

Benchmark submissions may perform separate runs to report
performance and power in order to demonstrate system flexibility
(e.g., a ‘performance-mode’ run optimal for execution time and an
‘efficiency-mode’ run optimal for energy), however in all runs, both
metrics must be reported.

Importantly for the NeuroBench system track, in measuring tim-
ing and efficiency, data pre- and post-processing must be taken into
account. Neuromorphic methods will often consume and produce
non-standard (e.g., event-based) data modalities, the processing of
which may consume a significant amount of the overall execution time
and may not be computed on the neuromorphic hardware itself. As
many instances of neuromorphic hardware cannot be deployed with-
out such associated processing, it is essential that measurements
capture the cost of data processing, which stands in contrast with
conventional system benchmarks whose measurements start from
pre-processed data®.

System track benchmarks

Two benchmark specifications for the v1.0 system track are defined in
this article, covering embedded to datacenter scales. Full benchmark
details are available in the Methods section.

Nature Communications | (2025)16:1545

10

www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

* Acoustic Scene Classification - The acoustic scene classification
benchmark challenges systems to classify audio into predefined
categories based on the environmental audio context. Such cap-
abilities are key for embedded computing in low-power hearable
devices, which can utilize them to automatically adjust sound
equalisation profiles, appropriately target microphone denoising,
and support active noise cancellation. The application further
challenges systems to fulfill technical requirements, such as
always-on and real-time operation, and time series processing.
Acoustic scenes provide a rich repertoire of features that are
necessary for prediction, thus this task is a complement to
keyword classification, which mainly focuses on shorter-term
features (e.g., phonemes) with a relatively smaller feature
repertoire. The benchmark evaluates the classification capabilities
of both neuromorphic systems and conventional computing
platforms using datasets from the DCASE challenge™. These
datasets consist of a myriad of audio recordings from diverse
environments, including airports, public parks, and buses, thus
providing a comprehensive foundation for testing both applica-
tion- and system-level performance. The NeuroBench subset of
the DCASE dataset includes 41360/16240 train/test samples
across four classes (airport, street traffic, bus, park). The task will
be presented under the single-stream task scenario, providing one
1-second sample to the SUT at a time. Classification probability
will be sampled to determine the correctness of the prediction. As
the NeuroBench system track allows for unconstrained algorith-
mic implementation, pre-processing and inference metrics should
be separately measured and reported together, which differs from
prior system benchmarking that only measure inference®®,
Timing results report on-device average execution time per
sample. Since the platform diversity of edge-targeted systems
poses inherent inconsistencies in efficiency measurement, power
should be reported under idle and active contexts, following prior
benchmark study methodology™. Idle power measures the system
prepared for inference with the model loaded, and active power
measures the system running pre-processing or inference. The
difference between active and idle measurements offers dynamic
power, which is used along with execution time to calculate
dynamic energy-per-sample.

* QUBO - As a non-ML task, NeuroBench incorporates quadratic
unconstrained binary optimization (QUBO). QUBO is a particu-
larly beneficial first optimization task for NeuroBench for multiple
reasons. First, the binary variables are a natural fit for neuro-
morphic systems with purely binary spike communication.
Second, real-world QUBO applications typically feature sparse
cost matrices” which benefit from the sparse synaptic connectiv-
ity and execution that neuromorphic systems are often optimized
for’. Third, the benchmark is easily scalable from mobile to
datacenter-level systems, promoting benchmark inclusivity
among neuromorphic systems which have varying capacity and
scaling capabilities. The initial set of QUBO workloads in
NeuroBench searches for the maximum independent (i.e. uncon-
nected) set of nodes in graphs, a task that has wide applications
across industry and academia, such as resource allocation in
wireless networks, portfolio optimization, and task scheduling”’.
NeuroBench provides a QUBO generator that can uniquely specify
each workload by three specific parameters provided by the
benchmark: the number of graph nodes, the density of graph
connections, and a random seed. The generator provides a large
dataset for reliable statistics and allows scaling from modest
workloads for small-scale and prototype systems to large work-
loads for larger-scale systems. The graph sizes specified by the
benchmark increase in a pseudo-geometric progression (10, 25,
50, 100, 250, ...), and submissions are encouraged to extend the
problem size to the limits of the SUT. Graph density ranges from

1% to 30%, in order to show the relationship between the number
of connections and SUT power. 5 random seeds for each setting
should be tested. Optimization algorithms use heuristic methods
to iteratively refine approximate solutions to intractable problems
that cannot be completely solved. The QUBO benchmark thus
measures solution optimality and energy consumption after fixed,
pre-set runtimes, removing any timing measurement. Solution
optimality is defined as BKS-Gap, a relative gap between the
current SUT’s solution compared against the best-known solution
(BKS) to the same problem found using a high-powered solver
with a long runtime.

Baseline results

Baseline results for each of the two system track benchmarks are pro-
vided for a mature neuromorphic system against a conventional plat-
form. Like for the algorithm track baseline results, the system track
baselines are intended to snapshot the solution space and provide
starting points for the task leaderboards. Further details on each base-
line system are available in the Methods section, and in-depth system
documentation for the Xylo ASC baseline and CPU/Loihi 2 QUBO
baselines are provided by Ke et al.” and Pierro et al.”, respectively.

Acoustic scene classification. For the acoustic scene classification
task, two baseline embedded systems are reported:

* CPU - The CPU baseline is an Arduino Nano 33 BLE, which uses an
ARM Cortex M4 microcontroller for both pre-processing and
inference. The digital audio sample is pre-processed using Mel-
filterbank energies (MFE), and inference uses a conventional CNN.
Execution time is measured using on-chip timers, and power is
measured using total system power.

* Xylo - The Synsense Xylo’”® neuromorphic baseline uses a feed-
forward SNN with multiple synaptic time constants™. As the
system is intended for continuous, real-time audio processing, the
board uses an analog front end to pre-process analog audio
signals directly from a microphone into spikes for the digital
inference engine. To conform with a digital benchmark dataset, a
simulator of the analog pre-processor generates spikes, which are
routed to the inference module. Execution time and power are
measured using on-board instruments.

Table 6 lists baseline results for the neuromorphic Xylo system
against an Arduino system. Compared to prior neuromorphic audio
system benchmarking®, which takes a server-class CPU as a point of
comparison, we adopt a fairer approach by focusing on low-power
edge application and comparing against an Arduino embedded
microprocessor. At comparable inference accuracy, Xylo exhibits
60.9 x less dynamic inference power and 33.4 x less dynamic inference
energy consumption than the Arduino.

QUBO. Three baselines are measured for the QUBO benchmark:

* Simulated Annealing (SA) - The simulated annealing solver uses
Markov chain Monte Carlo (MCMC) sampling to probabilistically
explore the search space.

Tabu Search (TABU) - Tabu search solvers maintain and iterate a

list of prohibited actions in order to prevent the search from

remaining in local minima or revisiting states. Both the TABU and

SA solver baselines use the D-Wave Samplers library® on an Intel

Core i9-7920X desktop-class CPU, with power measured using

Intel SoC Watch.

* Loihi 2 - The Loihi 2 neuromorphic system solver uses an SNN
formulation of the simulated annealing algorithm which enables
solving via neural dynamics, and parallelization via stochastic
refractory periods. The baseline is implemented on one Loihi 2 chip
on the 8-chip Kapoho Point board, and internal power instrumen-
tation measures all compute and memory components of the chip.

Nature Communications | (2025)16:1545

www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

Table 6 | Baseline results for the acoustic scene classification task

Baseline Accuracy Execution Idle Power (mW) Active Dynamic Dynamic Energy
Time (ms) Power (mW) Power (mW) (mJ/inf)

CPU pre-process 79.64% 43 79.40 100.72 21.32 0.917

(system-wise) inference 45 79.40 100.15 20.75 0.934

Xylo pre-process™ 79.90% 0.00017* 0.015* 0.015* 0.015*

(component-wise) inference 84 0.351 0.692 0.341 0.028

Pre-processing of the Xylo (marked with an asterisk *) measures power of the analog pre-processor in real-time relative to the audio data, whereas other measurements are of digital components
processing digital data on-hand. Idle Xylo pre-processing measures silence and active measures test data audio played to the device, and energy is measured over the sample duration of 1second.
CPU power is measured over the full Arduino system, as it does not have on-board power instrumentation, while Xylo power measures power consumed by the Xylo Audio 2 ASIC only. Dynamic
power and energy provide proper comparison between the systems, and idle and active measurements are provided for transparency.

Figure 7 shows the optimality reached by the CPU- and Loihi
2-based solvers after different timeouts. For tight time constraints, at
1072 seconds timeout or less, Loihi 2 finds feasible solutions to work-
loads 4 x larger than the CPU. But for timeout lasting 10 seconds or
longer, the CPU running TABU provides the lowest BKS-Gap, incenti-
vizing algorithmic advances for neuromorphic optimization systems.
Figure 8 illustrates the power consumed during runtime. Across the
workloads, the Loihi 2 solver requires 37.24 x less power compared to
the best CPU solver.

Discussion and future work. The initial baselines for the v1.0 system
track compare correctness, timing, and efficiency of neuromorphic
systems against conventional CPU systems in domains of both audio
classification and optimization. Against mature, commercially-
developed CPU systems, for both edge and server use cases, the
neuromorphic systems show strong advantages in general efficiency,
as well as further promises in terms of timing and correctness. In future
NeuroBench iterations, the system track benchmarks can be unified
under common tooling, similar to the algorithm track. Software tool-
chains such as Lava*, Fugu®, SPyNNaker®, and Samna®’, among oth-
ers, have been developed to interface with specific hardware
platforms. Many of the stacks are built with general paradigms to
support extension to any backend, and the community is actively
moving towards developing standards for deployment tools. The
current v1.0 benchmark specifications allow for open algorithm and
software design in order to demonstrate fully optimized performance
for neuromorphic systems. As standards mature in the future, a core
focus of the NeuroBench system track is to introduce a closed-
algorithm benchmarking category that leverages the recently pro-
posed NIR model description framework® as a general, cross-platform
tool for benchmarking key workloads of interest across many different
platforms.

Discussion

Benchmarking neuromorphic computing has faced challenges
stemming from the diversity of neuromorphic approaches, the range
of implementation and deployment tools, and rapid research evo-
lution. NeuroBench addresses these challenges as a framework for
the inclusive, actionable, and iterative benchmarking of neuro-
morphic solutions, by including novel tasks and metrics, open-
source and extendable harness tooling, and facilitating systematic
growth via community collaboration. NeuroBench is supported and
developed by a broad community of neuromorphic researchers to be
a standard, agreed-upon benchmarking framework for neuro-
morphic technology.

Future directions of the NeuroBench initiative will build on the
baselines outlined in this article to increase the scope of the bench-
mark framework. One important direction for NeuroBench is towards
closed-loop benchmarks™**. Biological systems excel in interacting
with dynamic environments, demonstrating high energy efficiency,

real-time reaction, and versatility. As such, embodied intelligence with
adaptive sensory and action capabilities are of interest to neuro-
morphic research. In closed-loop scenarios, the objective is to sense
and act within an environment to complete a task, rather than to sta-
tically process a frozen dataset, thus the benchmark harness infra-
structure and measurement protocols will be extended to facilitate
such benchmarks.

Further important directions will be to increase the inclusivity of
NeuroBench. While at present, the algorithm track harness supports
PyTorch-based libraries, further coverage can be garnered by
extending the interfaces to support other software libraries, poten-
tially utilizing portable tooling such as NIR® as a standard for con-
necting to benchmark measurements. In addition, the system track
guidelines can be extended to define benchmark protocols for
continuous-time execution and exploratory hardware platforms in
simulation stages, such as memristive hardware. All future Neuro-
Bench expansion will be informed by the collected results and con-
tinue to be driven by the interests and development of the broader
community.

Methods
This section outlines details and specifications of the benchmark
metrics, tasks, and baselines.

Algorithm track metrics

NeuroBench includes correctness and complexity metrics, the latter of
which is divided in static and workload metrics. Static metrics do not
depend on the model inference and input data, while the workload
metrics do. Note that the defined metrics reflect only the model and
model execution. Data pre-processors and post-processors are not
taken into account in the v1.0 algorithm track results.

Footprint. The footprint metric reflects the memory footprint a model.
It is distinct from execution memory, which may incur further usage,
e.g. to store activations. It is computed for a model by accumulating
the sizes of the model’s parameters and buffers, in bytes. Parameters
store the model synaptic weights, and buffers include other inference
memory requirements, such as the internal states of recurrent or
spiking layers and buffers of recent input data, if the model must
record data for input binning. Considering n parameters, each
requiring p; bytes, and b buffers of size g, the total model footprint

is 1Pt Y004

Model execution rate. Execution rate is a numeric which is not directly
computed by the harness, but should be reported by the user. The
numeric reflects the real-time correlation of the rate at which the
model computes input data. If the model processes input with a
temporal stride of ¢ seconds, then the rate should be reported as ¢ Hz.
Note the distinction between stride and bin window - input can be
binned in overlapping windows, but execution rate depends on the
temporal stride of window processing. As an example, a model may

Nature Communications | (2025)16:1545

12

www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

Timeout @ 1073 s

Timeout @ 1072 s

100 | ® 3 N
8
< 80
wn
=]
g
= 60
<
z
A 404 o
g
o
= O O o d
% 20 1 ./ ./.———Ol °
= / — b % o
S ° ===y O
01 oo’ == 7
Timeout @ 107! s Timeout @ 1 s
20
a
.2 03
=)
n 154 /’
a o,
2 P
Z 0] - et
z | a
) /)
E 0 (2 —
2 i / '
g g * o
o \ O °/
IS
012 - X A Le—s 4 .
Timeout @ 10' s Timeout @ 10% s
101
8
E .
= 81 / \.
% o
;é 61 o—"* /".
B
m 4. /. () Q
g /
8 ()
= o— o
jor) 4
52 g ;;;;;_\\5.
X o,
0+e sy — e =i 7/. .
10! 102 10 10! 10? 103
Number of Variables Number of Variables
— SA —— TABU —— Loihi

Fig. 7 | Percentage gap from the best known solution (BKS-Gap%) for the QUBO workloads with QUBO matrices at 15% density (lower is better). Results are shown
for different timeouts of the QUBO solvers. Figure taken, with permission, from Pierro et al.”’.

use 50 ms windows of input and compute every 10 ms, which would
give an execution rate of 100 Hz.

This numeric is currently not well-defined for models operating
under event-based or continuous-time contexts. These limitations will
be addressed in future benchmark versions.

Connection sparsity. The parameter matrices of each layer [/ in a
model, representing synaptic weights, are collected, and the number
of zero weights m; and total weights n; are aggregated, with the con-

Zlm[

Zz"’ ’

nection sparsity defined as

Activation sparsity. Activation sparsity is computed after the infer-
ence phase. The sparsity is calculated by accumulating the number of
zero activations (z), over all neuron layers (/), timesteps (¢), and input
samples (i) and dividing by the total number of neurons (N),
LZ';’,‘ The outputs of ReLU functions and spikes from spiking

Ll lailt

neurons are considered activations.

Synaptic operations. Synaptic operations are the multiplication of
weights by activation or input data, and are calculated using the inputs
and weights of connection layers (e.g., torch.nn.Linear and

Nature Communications | (2025)16:1545

13

www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

Density 5%

Density 15%

Density 30%

g 1024 e { : > o ° 3 L E o ® ® °
o)
=
~
f§ 1004 : : : : E E
5
A~ @ o——® o—2
] ; ; Y 4
% 100 1 e HIPY F ™ : l & e ‘ 1o
53 3 _e-—=-e ® b * . . o : .- o :
<
1071 4= ; - ; ; - . . —
10! 102 10 10! 102 103 10! 10? 103
Number of Variables Number of Variables Number of Variables
SA —— TABU —— Loihi ---- Compute = Memory —— Total

Fig. 8 | Power consumption of the QUBO solvers running simulated annealing
(SA) or TABU search on CPU, and the parallelized version of simulated
annealing on Loihi 2. The CPU solvers require up to 37 x more power than the

neuromorphic algorithm on Loihi 2. Since the QUBO workloads were run for a fixed
timeout, differences in power consumption are equivalent to differences in energy
consumption of the processors. Figure taken, with permission, from Pierro et al.”’.

torch.nn.Conv2d). Effective synaptic operations are operations
where a non-zero weight is multiplied by a non-zero activation. Effec-
tive operations are further divided into multiply-accumulates (MACs),
and accumulates (ACs), where accumulates correlate with activations
or input data only containing values of [-1, O, 1], and multiply-
accumulates cover all other cases. The reported number of synaptic
operations is the average number of synaptic operations required per
model execution, the rate of which is defined by the model execution
rate metric.

The number of effective synaptic operations is computed by
performing the forward pass of a layer and counting the number of
operations in which there is no zero multiplication. Practically, this is
implemented in the harness by setting all non-zero weights in the layer
and all the non-zero activations to 1, then performing the forward pass
and summing the output to give the number of synaptic operations.

The number of dense synaptic operations is computed in a similar
fashion, by setting all weights and activations to 1 and accumulating
the output of the forward pass. Biases are not taken into account in the
calculation of the synaptic operations, as they are added after weight
multiplications and accumulation.

Note that processing of activations before the connection layer,
for instance using batch normalization, can transform sparse activa-
tions into dense input at the connection layer, which will lead to high
effective synaptic operations despite high activation sparsity. Fur-
thermore, such processing can transform binary activations to non-
binary data, causing effective operations to be MACs rather than ACs.
When deployed to neuromorphic hardware, such algorithms that
normalize activations before multiplication with synaptic weights may
lose the benefits of sparse operation, e.g., an SNN with normalization
following each spiking layer would require dense MAC weight calcu-
lation, no matter how few spikes were generated.

In some cases, algorithm execution may have distinct temporal
sections of higher and lower synaptic operations, such as during initial
caching versus continuous inference. For such algorithms, benchmark
users may choose to distinguish synaptic operations and other com-
plexity measurements between execution sections.

Algorithm track benchmark tasks

Keyword FSCIL. Few-shot Class-Incremental Learning, FSCIL, is an
established benchmark task setting in the computer vision domain?®. It
can be defined as follows: a base session with fixed classes, each with
abundant training data, is used to train an initial model. Then,

successive incremental training sessions introduce new classes in a
few-shot learning scenario. In each session, only the current session
classes are available to the model for training. After each incremental
training session, the model is evaluated on all previously seen classes,
including the base classes. Therefore, the model has to learn new
classes while retaining knowledge about the previously learned ones.

Formally, for M-step FSCIL, where M is the total number of
incremental sessions, each training session uses a support dataset D?,
t € [0, M] to train new classes on. L? is the set of classes of the t-th
session where V i,j where i #j, L N LY = ¥, meaning each training
session uses a unique set of classes. D and L© are the base class
training data and set of base classes, respectively, DY and L represent
the first incremental session set, and so on. At session ¢, only DY is
available for training, and for ¢ > 0, D contains a fixed number of
classes (N) with few samples per class (K). This form of FSCIL is
therefore named N-way K-shot FSCIL. At the end of each session ¢,
model accuracy is reported on the test samples of all previously seen
classes LU 1O U ... U L®},

For the Keyword FSCIL task, classes in the base set (L”) have
700 samples each, with a fixed train/validation/test sample split of
500/100/100. All classes within incremental sessions have 200 samples
per word, with a fixed train/test split of 100/100. Of the 100 training
samples, 5 are randomly selected for few-shot learning (each session is
10-way, 5-shot). The inclusion of 200 samples allows for increasing
learning up to 100 samples.

NeuroBench proposes an audio keyword classification version of
the FSCIL task, which to the best of our knowledge is the first of its
kind. This novel task is established by selecting a subset of the words
and languages from the Multilingual Spoken Word Corpus (MSWC)*
dataset. The FSCIL task consists of a multilingual set of 100 base classes
and 10 incremental sessions of 10 classes each, for a final total of 200
learned classes. Fifteen languages are represented: the base classes are
composed of a set of five base languages with 20 words each, and each
of the ten incremental sessions contains 10 words from a distinct
language. The languages were chosen based on data availability within
the MSWC dataset. The top five languages with the greatest number of
potential words (words with enough data samples) are used as the base
class languages, while the next ten languages with the greatest num-
bers are the incremental classes. The base languages are English,
German, Catalan, French and Kinyarwada. Incremental languages are
Persian, Spanish, Russian, Welsh, Italian, Basque, Polish, Esparanto,
Portuguese and Dutch. The order of languages presented in the

Nature Communications | (2025)16:1545

14

www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

incremental sessions are randomized, but each incremental session
will represent exactly one new language.

For each language, the longest length words (that had the
appropriate number of samples) were selected to allow for rich and
robust temporal features to be learned. Next to the richness of longer
words, there are practical considerations for this choice. The MSWC
dataset normalizes all samples to a duration of 1 second, centered
around the 0.5 seconds mark. For shorter words, this means that the
data needs to be zero-padded on both sides to fill the entire duration.
Longest-length words are likely to fill the complete sample and reduce
zero-padding, which is also useful in scenarios in which algorithms
seek to classify words before the sample has completed®. Further-
more, common keyword spotting solutions, such as Ok Google, Alexa,
and Hey Siri, use multi-syllable wake-phrases to assist in accurate word
classification. Using shorter keyword subsets can lead to greater
challenge in both base language training and continual class learning.
The full list of chosen words for the task presented in this paper
(longest words), as well as other potential subsets of short words for
the same languages, can be found with dataset documentation
through the harness.

Within each language, words showing great similarity in phonics
and meaning are not included (e.g. 'amendement and amendements
in French). Across different, but related languages, words with similar
pronunciation and meaning were not included as well (e.g., university,
universitdt and universitat in English, German and Catalan).

The subset of MSWC used for this FSCIL task is significantly
smaller in size (630MB) compared to the full MSWC datatset (124GB),
and subset download details can be found in the harness.

Event camera object detection. The task of object detection using
event camera data involves identifying bounding boxes of objects
belonging to multiple predetermined classes in an event stream. The
dataset is the Prophesee 1 Megapixel automotive detection dataset”,
which is one of the largest and highest-resolution event-camera
detection datasets currently available. The performance of the task is
defined by the COCO mean average precision (mAP) metric?, a metric
that is commonly used for the evaluation of object detection algo-
rithms. Only three out of the seven available object classes within the
dataset are used due to limited sample availability in the dataset, which
matches prior work®.

COCO mAP is calculated using the intersection over union (IoU,
Equation (1)) of the bounding boxes produced by the model against
ground-truth boxes. Here, A and B refer to bounding boxes, and the
intersection and union consider the overlapping area and the area
covered by both boxes, respectively. The loU is compared against 10
thresholds between 0.50 and 0.95, with a step size of 0.05. For each
threshold, precision is calculated (Equation (2)) with True Positives
(TP) and False Positives (FP) determined by whether the loU meets the
threshold or not, respectively. The mAP is calculated as the averaged
precision over all thresholds for each class, which is further averaged
over all classes to produce the final result.

AN B

wwmm=mum @D
- B S TP
Precision(TP, FP) = W 2)

Note that in the dataset, labels are generated from images froman
RGB camera. Due to the nature of event cameras, objects which are still
at the start of a recording sequence have no generated events and
cannot be detected. Therefore, labels within the first 0.5s of each
sequence are not taken into account. Furthermore, as the RGB camera
used for labeling has a higher resolution than the event camera, not all
objects which appear in the RGB image are recognizable from the

generated events. Thus, objects with a diagonal of less than 60 pixels
are also not considered. The dataset and metric measurement is
implemented using the Prophesee Metavision software®®.

Non-human primate motor prediction. The non-human primate
motor prediction task involves predictive modeling of two-
dimensional fingertip velocity, given neural motor cortex data. The
six sessions used for the benchmark comprise three recording sessions
each from two non-human primates (NHP Indy and NHP Loco) such
that the chosen sessions approximately span the entire duration of the
experiment” (several months). The specific sessions used are
indy_20170131 02, indy_20160630_01, indy 20160622 _01, loco_20170
30105, loco 20170215 02, and loco_20170210_03. Each of these ses-
sions consists of one day of experiments, during which multiple
reaches are recorded. During each reach, a target position is displayed,
which the NHP needs to localize and touch with its finger. Once the
NHP touches the correct target for the current reach, the next reach is
instantiated, showing a new target position. The data contains sen-
sorimotor cortex recordings from 96 channels for the recordings of
the first NHP (Indy), while 192 channels were used for the second NHP
(Loco), and was gathered and labeled at a frequency of 250 Hz. Two-
dimensional position data of the NHP fingertip during its reaches is
provided in the dataset, and these are translated into X and Y velocity
ground-truth labels using discrete derivatives®.

Each session is segmented into individual reaches based on the
target position for the NHP to touch. The data in each session is split
such that the initial 75% of reaches are used for training and validation,
and the remaining 25% of reaches are test data. The user can choose
how to utilize the training and validation split for their particular
method.

During evaluation, the coefficient of determination (R?, Equation (3))
for the X and Y velocities are averaged to report the correctness score for
each session, where n is the number of labeled points in the test split of
the session, y; is the ground-truth velocity, y; is the predicted velocity, and
y is the mean of the ground-truth velocities. The R? from sessions for each
NHP are averaged, producing two final correctness scores.

R=1_ S0 =9 3)
S0 -y

Chaotic function prediction. The chaotic function prediction is
another sequence-to-sequence problem. Given an input sequence
generated from a one-dimensional Mackey-Glass function, the task is
to predict the future values of the same function. The dataset used for
this task is synthetically generated, following the Mackey-Glass dif-
ferential equation®® (Equation (4)), which is integrated and discretized
with a timestep of At. The time series generated by this differential
equation is a function of the Mackey-Glass parameters n, B, y and 7.
Adhering to standard parameters®, the values used for n, B, and y are
10, 0.2 and 0.1 respectively. 7 is varied between 17 (a standard value)
and 30, leading to 14 time series which vary greatly in dynamics and
can be used to analyze the generalization of predictive models.

Each value of 7 is associated with a Lyapunov time, the expected
predictability timescale for chaos®, which is used as the time unit for
each series. To calculate the overall Lyapunov time for each value of 7,
we average the Lyapunov times of 30,000 generated time series of
2000 timesteps, with At = 1.0, each with a randomly chosen initial
condition. All time series and Lyapunov times were generated and
estimated using the JiTCDDE library®®. For each final time series used
for benchmarking, initial conditions are a point randomly chosen
along the series. The Lyapunov time and initial condition x, for each of
the 14 final time series are provided in Table 7.

dx _ Px(t—r1)
dt " lexc—17 yx(0) “4)

Nature Communications | (2025)16:1545

15

www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

Table 7 | Mackey-Glass parameters used for the 14 time series

T Lyapunov Time Xo

17 197 0.7206597
18 138 0.7744313

19 315 0.7783468
20 131 0.9225991

21 191 0.9479431

22 19 0.5455960
23 106 0.8622247
24 97 0.3259660
25 98 0.8297825

26 104 1.0033490
27 12 0.6491406
28 19 1.0957495

29 131 0.9256179

30 139 0.2713639

As the integration of the differential equation can depend on
underlying floating-point arithmetic and thus produce varying time
series on different machines, the datasets are precomputed and loa-
ded for training and evaluation. In the benchmark results, 30 instan-
tiations of the Mackey Glass system are used, each with a length of 20
Lyapunov times and successively shifted forwards by half a Lyapunov
time. The dataset time series are generated for 50 total Lyapunov times
to allow for varied offset starting points. The generated time series are
available to be downloaded under the NeuroBench harness.

Symmetric mean absolute percentage error (SMAPE, Equation (5)),
a standard metric in forecasting®, is used to measure the correctness
of the model predictions y; against the ground-truth y; over n data
points in the test split of the time series. The SMAPE metric has a
bounded range of [0, 200], thus diverging predictions (infinity or NaN)
due to floating-point arithmetic have bounded error which can be used
to average correctness over multiple time series instantiations.

LG =il
MAPE =200 x — L= 5
* “ (;wwm)) ©

Algorithm track baselines
All baselines are implemented using PyTorch nn.Module objects in
order to interface with the harness.

Keyword FSCIL. The ANN baseline employs Mel-frequency cepstral
coefficients (MFCC) pre-processing along with a modified version of
the M5 deep convolutional network architecture**.

The MFCC pre-processing converts the 48 kHz, 1s audio samples
from MSWC into 20 channels of 200 timesteps (5 ms stride, 10 ms time
bins), focusing on frequencies within the human voice range between
20 Hz and 40 kHz. The network contains four successive blocks, each
consisting of 1D convolution, batch-normalization, ReLU activation,
and max-pooling layers, followed by a single readout fully-connected
layer. Convolutional layers apply their kernels over the temporal
dimension of the samples, thus extracting longer temporal features
through the depth of the network. We also incorporate dropout after
the ReLU activations to avoid over-fitting and let the network be more
general for incremental learning. The network is trained with sto-
chastic gradient descent using cross-entropy loss and the Adam
optimizer.

For the SNN baseline, we employ the Speech2Spikes*® (S2S) pre-
processing algorithm to convert audio samples to spikes. For S2S we
use the default parameters from the original implementation, only the
hop length is updated to match the 48 kHz audio frequency of the

MSWC samples, whereas the original implementation was applied to
16 kHz audio. S2S applies a Mel Spectrogram and a log operation to
raw audio samples, converting them to positive and negative trains of
spikes using delta-encoding.

Spike trains from S2S are used as input for the recurrent SNN
(RSNN), which consists of 2 recurrent adaptive leaky integrate-and-
fire (RadLIF) layers of 1024 neurons and one linear output layer. The
model architecture is adapted from Bittar’s work*’. The RadLIF neu-
rons in these layers are LIF neurons that produce a binary spike s(¢)
and reset via subtraction when their membrane potential u(¢) crosses
a certain threshold value 8, combined with an extra adaptation
variable w(t) to enable more complex temporal dynamics and firing
patterns. Equation (6) is the input current to neurons, with x the
input spikes from the previous layer, Wy the forward weight matrix,
BNTT batch-normalization through time, and W, the recurrent weight
matrix. u(t) and w(¢) are shown in Equation (7), where a, 8, a and b are
heterogeneously trainable parameters of the neuron. Finally, spikes
s(t) are generated according to Equation (8).

I(6)=BNTT(Wx(O) +W,[s(t — 1) (6)

u(t) =afu(t — DI+ 1 — e)[I(t) — w(t — D] — O[s(z — 1)]

7

w(t)=Bw(t — D]+ a1 — B)u(t — 1]+ b[s(t —)] @
_[Oifu(t)<0

s®)= { lifu@t)= 0 ®

The last layer of the network is a readout linear classifier, and the
class corresponding to the maximum of the summation of output
activities over all timesteps is chosen as the network prediction. The
RSNN network is trained with backpropagation through time using a
boxed pseudo-gradient and cross-entropy loss.

Algorithm 1. Few-Shot Class-Incremental Learning with Prototypes

Requires: Pre-trained network g f consisting of feature extractor

fand classifier g: x — Wx +b

Define: (x), w; and b, respectively the set of input samples, clas-

sifier weights and biases associated with a class [

1: for each base class k do

2: Compute prototype embedding ¢, = Mean[f((x))] (also summed
over time for SNN baseline)

3: Compute corresponding classifier weights wy = 2¢; and bia-
ses by = — ¢ cl

4: end for

5. Replace classifier layer g with prototype weights: W <«

W= (W) and biases b < by =(by)y.p

6: for each session i in sessions do

7: Get session support S’

8: Repeat lines 1 to 4 for all new classes of S to get prototype
weights W and biases bg

9: Extend the classifier layer weights W < [W, W land b < [b, by]

10: end for

We implement baseline solutions for the FSCIL task with both
ANN and SNN models. The frozen baselines do not learn any new
classes while the prototypical baselines follow the prototypical net-
works approach® to classify new classes. For both baselines, the ANN
and SNN models are pre-trained on the 100 base classes B, which
employs the abundant number of samples to develop a robust feature
extractor f, which generates embeddings from hidden layers that are
passed to a readout classifier.

For the frozen baselines, the models parameters are frozen after
pre-training for inference during all incremental sessions, thus setting

Nature Communications | (2025)16:1545

16

www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

a‘worst-case’ reference with no incremental learning but also no risk of
catastrophic forgetting.

For the prototypical baselines, the pre-trained models learn 100
extra classes within the 10 incremental sessions in a 5-shot learning
scenario. The prototypical networks protocol is applied in each
incremental session as shown in Algorithm 1. Prototypical networks
provide a clustering algorithm for classification that is equivalent to a
readout affine operation on feature embeddings, resulting in a linear
layer of weights and biases. Each class k is represented by a prototype
vector ¢ = Mean[f{((x),)] defined as the average feature embedding
produced by f over all corresponding training samples (x)x. The read-
out classifier layer is defined based on this prototype such that the
weights wy and biases by associated with class k follow wy = 2¢, and
by = — c,cl, which associates embeddings with the closest prototype
with respect to the squared Euclidean distance®’.

For the SNN baselines, as the features also have a temporal
dimensionality, we accumulate embeddings over all timesteps ¢ to
define the prototype vector ¢, = Mean[> (f((X),))]. Also, as we
maintain the summation over timesteps after the final prototype layer
to keep the online nature of the SNN baseline, the biases will be applied
at each timestep. Thus to maintain the balance between weighted
inputs and biases, for the SNN baseline we also normalize the biases by
the total number of timesteps T: b; = — c,c] /T.

We fit the prototypical networks approach to the FSCIL task by
first discarding the original output layer and replacing it with the
prototype weights Wp and biases bg of the base classes, computed
based on the averaged feature embeddings over all 500 training
samples per base class. This causes an initial accuracy drop, as the
trained output layer weights are replaced by clustered weights for the
prototypical learning approach. Then, for each incremental session,
the prototype of each of the 10 new classes is defined based on the 5
corresponding support samples. The prototype weights and biases are
computed in the same manner and concatenated to the existing clas-
sifier layer to accommodate for the new classes.

Event camera object detection. For both the RED ANN and Hybrid
ANN-SNN baselines, the event data from the event camera are con-
verted into frame-based representations using multi-channel time
surfaces. Non-overlapping 50 ms time bins (with 50 ms stride), are
further subdivided into three sub-bins. Each sub-bin, starting at time-
stamp t,, generates two time surfaces TS (Equation (9)), based on each
event (x, y, p, t) in the sub-bin, where X, y are event coordinates, p is
positive or negative polarity, and ¢ is the event time.

TS(p,y,x)=t — t, for each event (x,y, p, t) in the sub-bin. 9)

The RED ANN” is a deep convolutional neural network model
using three feed-forward squeeze-and-excite*® convolution layers fol-
lowed by five recurrent convolution-LSTM* (ConvLSTM) layers. The
squeeze-and-excite layers provide effective feature extraction while
the ConvLSTM layers provide effective temporal learning. The single-
shot detection (SSD*°) head is used to predict the location and class of
the bounding box based on multi-scale outputs from the recurrent
layers.

The Hybrid ANN-SNN architecture adopts five LIF spiking neural
layers to replace the ConvLSTM layers in RED, and shares the same
feed-forward convolutional blocks as the RED. The LIF neuron layers
are connected with feed-forward convolution, and have far fewer
weights than the ConvLSTM layers. The Hybrid model uses the same
input encoding method, object detection head, and training loss
functions as the RED model. The LIF units are built using the Spi-
kingJelly library®, and the neuron dynamics of the LIF membrane
potential are given in Equations (10), (11), and (12). h(¢) is the charged
potential before spiking during a timestep, dependent on activation
input X(¢), and membrane time contant 7, and u(¢) is the final potential

of the timestep which resets to the reset value V., if h(f) reaches the
threshold voltage V.. The same thresholds determine s(t), whether a
spike is produced. In the experiments, 7 is set t0 2.0; V, is 1.0, and Vg,
is 0.0.

h(t) =u(e 1)+ ~(X(¢) ~ u(c ~ 1) (10)
L[h@) ifh@)<Vy,
u= { Vi IEh(0) = Vg a
(0 ifh(D)<Vy
s®)= { 1 ifh@ 2V, (12)

The losses used to train the RED ANN and Hybrid baselines
match previous work®, using a combination of regression and clas-
sification loss functions. Regression loss L, (Equation (13)) for all
predicted boxes B and ground-truth boxes T is given by smooth /1
loss Ls° (Equation (14)), averaged over N predicted bounding boxes
B; and their corresponding ground-truth boxes T;. Smooth 1 loss is a
piecewise loss function with threshold g, which is set to 0.11. For the
classification loss L. (Equation (15)), softmax focal loss* is used, with
correct-class probability p, for all default boxes in the regression
head and constant y, which is set to 2.

LB, T)= %; Ly(B, T;) 13)
B, —T,|-8 if|B,—T,>
u@ﬂn=|j 72 AT 14)
% (B;—T;) otherwise
Le(p)=— (1-p;) log(p) 15)

Non-human primate motor prediction. All baseline models have lin-
ear feed-forward layer architectures, where ANN, ANN Flat, and
SNN_Flat have topologies N, — 32 — 48 - 2, and SNN uses N, — 50 - 2.
The varying topologies between SNN and SNN_Flat attempt to opti-
mize for complexity in the former and correctness in the latter.

The LIF neurons used in the SNN networks are developed using
snnTorch', and have potential dynamics shown in Equations (16) and
(17). Note that unlike the SpikingJelly neurons (Equations (10), (11), and
(12)), the potential u(¢) is reset in the timestep following a spike, rather
than during the same timestep. As before, Ve is 0.0 and Vy is 1.0,
while S is 0.96 for the SNN baseline and 0.50 for the SNN_Flat baseline.
The potential of the readout neurons in both baselines is directly read
to produce velocity predictions, thus there is no spiking or reset
mechanism and the neurons function as leaky accumulators.

ifs(t—1)=0

_ [Bu(t-1)+X()
u®= { V roset ifs(t—1)=1 16)
(0 ifu) <V,
s®)= { 1 ifu@>Vv,, a7

ANN, ANN Flat, and SNN_Flat are trained using mean-squared
error (MSE) loss over 50 epochs. The SNN baseline used a sliding
window of 50 consecutive data points, representing 200 ms of data
(50-point window, single-point stride) in order to calculate the loss, to
allow for more information for backpropagation and avoid dead
neurons and vanishing gradients. The MSE loss was linearly weighted
from O to 1 for the 50 points within the window. The SNN was trained
with 10-fold cross-validation, using an early-stopping regime with

Nature Communications | (2025)16:1545

17

www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

patience (epochs for which there is no improvement to the validation
set) of 10 epochs.

Chaotic function prediction. The LSTM baseline uses one LSTM layer
followed by a ReLU activation and linear readout layer. As input, the
LSTM uses an explicit memory buffer of the last M = 50 points. During
training, input X(f) to the LSTM uses the Mackey-Glass data f(t)
(Equation (18)), whereas, during autoregressive evaluation, the input
uses prior predictions y(¢) (Equation (19)). Values u(t < 0) and v(t < 0)
are zero.

x(t)=(f(t — M), f(c — M —1), ..., £(t) (18)

XO=(yt-M-1),yt-M-2),...,yt-1)

The LSTM is trained using MSE loss for backpropagation with 200
epochs. The hyperparameter sweep used the evaluation setup of 30
instantiations of T = 17 Mackey-Glass data, with each instance shifted
forward by half of the Lyapunov time. The corresponding sets with the
lowest SMAPE scores were used to report the results.

For the ESN, the standard architecture with one hidden layer (i.e.,
reservoir) with recurrent connections was used, where the states of the
reservoir r(t) e RP at timesteps ¢ are evolving according to the
dynamics shown in Equation (20). The random matrix W™ ¢ RP?*4*1
with components drawn from the uniform distribution projects d-
dimensional input f(¢) (d = 1 for the Mackey-Glass system), augmented
with constant bias, into D neurons of the reservoir. The recurrent
connectivity is defined by the second (potentially sparse) random
matrix W € R?*? with nonzero components drawn from the normal
distribution; &, y, and S are hyperparameters controlling the behavior
of the ESN.

19

r(¢)=(1 - a)r(¢ — 1) +atanh (yWr(t — 1)+ BWIN[L; f(t)]) 20)

To make a prediction y(¢), the ESN uses the readout matrix W°" ¢
RY*P*d*1 that computes the activation of the output layer based on
the current states of the input and hidden layers: y(¢) = W°"[f(¢); r(¢)].
To predict the values of the system at the next timestep, i.e. y(¢) pre-
dicts f(¢ + 1), the output layer has d neurons.

The training of W°" is formulated as a linear regression problem
so that it can be computed with the regularized least squares estimator
(Equation (21)), where H € RM*P*4*1 is an activation matrix that
stores the readout for M timesteps in the training data, Y ¢ RM*¢ is
another matrix that stores the corresponding ground-truth values for
the same timesteps, and A is the regularization parameter of the esti-
mator.

WO =Y TH(H H+AI) (21)

Like for the LSTM, optimal hyperparameters are chosen based on
lowest average sMAPE score over 30 time series. For each series, the
ESN weight matrices W and W were randomly initialized. The corre-
sponding sets with the lowest SMAPE scores were used to report the
results.

System track metrics

Given the variability of task application areas and system sizes, the
NeuroBench metric methodology is defined on a per-benchmark basis.
Particularly for efficiency metrics, as neuromorphic systems are not
matured, a singular power measurement method cannot be applied to
all submissions. It is the responsibility of the submitter to faithfully
capture all active processing components for their system and fairly
outline their methodology in the report. As NeuroBench moves
towards head-to-head benchmarking of neuromorphic systems by
hardware vendors and owners, official results must be associated with

a report that provides context for the benchmark submission results,
as the overall benchmark format is generally open and does not have
stringent consistency rules. The report must contain

* an outline of the system architecture,

* an outline of the algorithm used (model architecture, tuning),

* a diagram depicting the workflow, including (where applicable)
data initialization, host pre-processing, data loading, on-device
preprocessing, inference, post-processing,

* timing measurement description,

* power measurement description, including measurement devi-
ces, included hardware components, and measurement time
resolution,

a re-iteration of the results.

In addition, official submissions will be subject to potential audits
during which an auditor will inspect the methodology and request
additions or revisions to the results and report if necessary.

System track benchmarks

Detailed information on each v1.0 system track benchmark is provided
here, and the most updated information can be found in the official
NeuroBench system track documentation (https:/github.com/
NeuroBench/system_benchmarks).

Acoustic Scene Classification (ASC)

Benchmark dataset. The dataset is based on the DCASE 2020
acoustic scene classification challenge’™, using the TAU Urban
Acoustic Scenes 2020 Mobile datasets. Of the 10 available scene
classes, 4 are used: “airport”, “street_traffic”, “bus”, “park”. Of the 9
real / simulated audio recoding devices available, 1 real device is
used: “a”. Audio samples are sliced into 1-second samples. The audio
may be resampled to a different frequency as a pre-processing step,
which is not included in inference measurement. 41360 training
samples are available, as well as 16240 test samples. The NeuroBench
system track repository linked above provides a download script and
a PyTorch-compatible dataset file which is expected to be used as the
front-end data generator for all submissions. The data may be
reformatted into a different framework, this is not included in
inference measurement.

Task. After training a model using the training set, the submitter will
report test set accuracy, as well as execution time and energy per
inference on the system. The test split should not be used to train or
tune the model, only the train split. Audio samples will be processed in
batch-size 1, in which one sample is processed at a time and the next
sample is not processed until the previous one is finished. The general
compute flow consists of three steps: pre-processing, inference, and
classification. One inference is defined as the processing of one second
of audio data. Inference is separate from classification because systems
are often intended to process samples as sequences over time, rather
than all at once, and the classification may be available before the
whole data sequence is seen. Classification thus does not need to be
included in the benchmark measurement. Pre-processing in general
can be defined as feature extraction or the conversion of raw audio
data into a format that is suitable for inference. Execution time and
energy of pre-processing must be included in benchmark measure-
ment, and will be reported separately from inference. In certain sys-
tems, e.g. Synsense Xylo, pre-processing blocks use analog hardware
on-chip to directly convert real-time analog microphone output to
digital spikes for inference. In order to operate inference from a
digitally-encoded dataset, this pre-processing must be simulated and
the spikes are sent through a side-channel directly to the inference
block. For such cases, the reported pre-processing measurements will
be for the analog hardware running in real-time on the dataset audio
played over speakers into the device microphone.

Nature Communications | (2025)16:1545

18

https://github.com/NeuroBench/system_benchmarks
https://github.com/NeuroBench/system_benchmarks
www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

Metrics. The following metrics should be reported:

* Accuracy - Accuracy of the predictions on the test set, measured
from the system and not in any software simulation.
Execution time - Execution time is the average time per sample
for pre-processing and inference. The final result should be
averaged over all samples in the test set. The time begins when
data has been loaded into on-board or on-chip memory and is
prepared to be processed. The time ends when the last timestep
of the sequence has completed processing.
Power/Energy - Idle power and active power should be reported,
where idle power is power of the chip when it has been configured
and it has prepared to begin processing. Note that this should not
measure the device in a lower-power sleeping state. Active power
is the average power consumed during processing. The difference
between active power and idle power should be reported as
dynamic power. Power should be converted to energy by
multiplying power by the averaged execution time. The power
measurement should include all computational components and
power domains which are active during the workload processing.
If applicable, power may be measured over longer data sequences
(e.g. 5seconds rather than 1 second), such that configuration
costs are amortized over a longer period of processing. This
should be done separately from accuracy and execution time
experiments, and should be clearly detailed in the associated
submission report.

Quadratic Unconstrained Binary Optimization (QUBO). Quadratic
Unconstrained Binary Optimization (QUBO) refers to the problem of
finding the binary variable assignment x; € {0, 1} that optimizes the
quadratic cost function

min_c¢(X)= minnxTQx

xe{0,1}" Xe(0,1) (22)

subject to no constraints.

The solvers for QUBO will be benchmarked using Maximum
Independent Set (MIS) workloads. Given an undirected graph
G=(V, €), an independent set 7 is a subset of V such that, for any two
vertices u,veZ, there is no edge connecting them,
i.e., dec Es.t.e=(u,v) v e=(v,u).

The MIS problem has a natural QUBO formulation: for each node
u €V in the graph, a binary variable x, is introduced to model the
inclusion or not of u in the candidate solution. Summing the quadratic
terms x2 will thus result in the size of the set of selected nodes. To
penalize the selection of nodes that are not mutually independent, a
penalization term is associated to the interactions x,x, if u and v are
connected. The resulting Q matrix coefficients are defined as

-1 ifu=v
dw=14 4 ifuzvand (u,v) € £ (23)
0 otherwise.

The MIS problem is NP-hard and intractable, and therefore any
solver system approximates a solution. Therefore, the cost of the
QUBO formulation (x’Qx) is used to assess solutions, and solutions are
not restricted to being maximum nor independent sets. The QUBO
formulation ensures that any non-independent set will always have a
higher cost than a corresponding independent set with conflicting
nodes removed.

Benchmark dataset. The benchmark’s workload complexity is defined
such that it can automatically grow over time, as neuromorphic sys-
tems mature and are able to support larger problems.
* Number of nodes, spaced in a pseudo-geometric progression: 10,
25, 50, 100, 250, 500, 1000, 2500, 5000, ...

* Density of edges: 1%, 5%, 10%, 25%.

* Problem seeds: 0, 1, 2, 3, 4 are allowed for tuning. At evaluation
time, for official results NeuroBench will announce five seeds for
submission. Unofficial results may use seeds which are randomly
generated at runtime.

Each workload will be associated with a target optimality, which is
the minimum cost found using a conventional solver algorithm. Small
QUBO workloads with fewer than 50 nodes will be solved to global
optimality, corresponding to the true maximum independent set.
Larger workloads cannot be reasonably globally solved. The DWave
Tabu CPU sampler®® will be used with 100 reads and 50 restarts, and
the QUBO solution with the best cost (best-known solution, BKS)
found will set the target optimality for the tuning workload seeds. For
evaluation workload seeds, the same method will be used to set the
target optimality. NeuroBench will provide target optimalities for
workloads up to 5000 nodes. Submissions are encouraged to continue
scaling up the workload size along the pattern to demonstrate the
capacity of their systems. The first group that tackles workloads of an
unprecedented size should provide the benchmark solutions via a pull
request to the system track repository. The dataset workload gen-
erator and scripts for the DWave Tabu sampler to compute optimal
costs are available in the repository, and this code is expected to be
used as the front-end data generator for all submissions.

Task and metrics. Based on the BKS found for each workload, the BKS-
Gap optimality score of the solution found by the SUT is defined as

target

(24)

where Cerge is the QUBO cost of the BKS, and c is the cost found by the
SUT. This may be reported as a percentage gap by multiplying by 100.
If the SUT manages to beat the BKS, then the BKS-Gap will be negative.

Given each workload, the benchmark should report the BKS-Gap
of the solution found by the SUT after a fixed runtime. The time begins
after the graph has been loaded into the SUT. Timeouts spread across
orders of magnitude (107, 1072, 107, 10°, 10%, 10%). As the runtime is
fixed, no measured timing metric is reported, and submissions should
report average power over the duration of the runtime, as it is directly
proportional to energy consumed. Importantly, the QUBO solver
needs a module to measure the cost of its solutions, and this module
should be considered as part of the SUT, thus its computational
demand and power must be included in the benchmarking results.

In the future, a different optimization task scenario may be used
for the same QUBO dataset, in which the SUT must run until it reaches
a small BKS-Gap, rather than stopping after a fixed-timeout. Here, the
benchmark should report latency and energy required to reach BKS-
Gap thresholds, e.g., 0.1, 0.05, and 0.01. This task scenario normalizes
systems to solution quality, rather than SUT runtime.

System track baselines

Acoustic Scene Classification (ASC)

CPU. The CPU baseline uses an Arduino Nano 33 BLE board, which runs
preprocessing and inference on an ARM Cortex-M4F microcontroller
running at 64MHz. All training and deployment uses Edge Impulse, a
commercially developed ML-operations platform for tinyML*°. The
1 second digital audio samples were converted into two-dimensional
frames of Mel-filterbank energies (MFE), and inference uses a network
with two convolution layers with batch normalization and max pool-
ing. The trained model was quantized then compiled to an Arduino
library using Edge Impulse EON compiler, which optimizes for memory
and flash usage. Execution time is measured using on-chip timers from
the Arduino, while power is measured using an external multimeter for
total system power. Power was measured separately for idle, active

Nature Communications | (2025)16:1545

19

www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

Xylo HDK

Sm

avod 300 (@)
¥IM0a01 c.-]
oo @3

@3

0

ORI B 68
EHIEINTIS @

:

)

Dataset

e

Result
collection

FPGA

Fig. 9 | An overview of the Xylo benchmarking system. Left: Diagram of host and
SUT communication. A simulator of the analog encoding module is run on a PC and
streamed to the SNN inference core via USB. After inference, outputs are routed

back to the PC for classification. An on-board FPGA configures and records power

il

SYNS61202_04

x
%
2
5
S
2
2
S
s
;
P
S
g
g
2
&
2
&
A
3
o
H
8
<
s

@-3 @

of the Xylo components. Right: The Xylo™ Audio 2 hardware development kit
(HDK), used as the SUT. The red outline marks the Xylo inference module. Figures
taken, with permission, from Ke et al.’%,

PC

Kapoho Point board

Ethernet

Fig. 10 | A Kapoho Point board with Loihi 2 chips is connected to a host PC via
ethernet. Shown here is a Kapoho Point board with 8 Loihi 2 chips, while the
experiments were run on a board with 1 Loihi 2 chip. The QUBO workload is loaded
onto the chip, and all processing happens on Loihi 2. On Loihi 2, the neuro-cores, in
yellow, are arranged in two 8 x 8 grids and iteratively update the variables of the

Loihi 2
Parallel IO Parallel IO
EVEEVEL VL) _EVCL UL gkt
g[Ea(x e (x(ix(=x(as(=lz »
8 L e | i
- ‘ &L
;‘.

Parallel 1O | [FPo)

Parallel IO

QUBO workload. Embedded CPUs, shown in blue, monitor the cost of the variable
assignment. Six parallel 10 ports enable 3D stacking of multiple chips for larger
workloads than used here. An additional 10 port provides the communication to
the host PC. The energy and runtime measurements cover the computation of the
Loihi 2 chip. Kapoho Point image courtesy of Intel.

pre-processing, and active inference by taking the average power over
60 seconds. The Arduino repeatedly computes over one sample loa-
ded in memory, with a recording frequency of 3Hz on a Keysight
34465A digital multimeter.

Synsense Xylo. As shown in Fig. 9, the Xylo baseline used a host PC to
run a simulation of the analog pre-processing unit on the benchmark
dataset, which was routed into the SNN core on the Xylo SUT. Accuracy
is measured by performing a maximum on the output spikes of the
SNN. The SNN on Xylo is a feedforward network with three hidden
layers, where each layer is connected by synapses with varying time
delays. Training is done using the open-source Rockpool toolchain®. In
order to amortize measurement overheads, power and execution time
are measured over continuous streams of 10 seconds of audio, where
the execution time result is divided by 10 and the power result is
averaged over the duration. The measurements are made by the on-
board FPGA, which operates at 12.5 MHz and samples power at 1280
Hz. Accuracy is still measured on the 1-second samples. Full details are
available in Ke et al.”®.,

Quadratic Unconstrained Binary Optimization (QUBO). The pro-
cessors ran repeatedly with five different initial variable assignments
and seeds for different timeouts between 10~ s and 10°s, and for
different workloads sizes of up to 1000 variables. The neuromorphic
algorithm is a parallelized version of simulated annealing that was
running on a Kapoho Point board with one Loihi 2 chip, as shown in

Fig. 10. The Loihi 2 board was controlled using Lava 0.8.0 and Lava
Optimization 0.3.0. For comparison with conventional hardware,
two solvers were adopted based on simulated annealing and tabu
search, as implemented in the D-Wave Samplers v1.1.0 library®.
The library was compiled on Ubuntu 20.04.6 LTS with GCC 9.4.0
and Python 3.8.10. CPU measurements were obtained on a machine
with Intel Core i9-7920X CPU @ 2.90 GHz and 128GB of DDR4 RAM,
using Intel SoC Watch for Linux OS 2023.2.0. All details on the
solvers, benchmarking routine, and results have been provided by
Pierro et al.”’.

Code availability

The DOI-minted release of the NeuroBench harness tooling in order to
reproduce algorithm track results in this study can be found on
Zenodo”. As NeuroBench is a constantly evolving initiative, bench-
mark users should access the harness tooling from the open-source
Github repository.

References

1. Sevilla, J. et al. Compute trends across three eras of machine
learning. In 2022 International Joint Conference on Neural Networks
(IJCNN), 1-8, https://doi.org/10.1109/IJCNN55064.2022.
9891914 (2022).

2. Shankar, S. & Reuther, A. Trends in energy estimates for computing

in ai/machine learning accelerators, supercomputers, and
compute-intensive applications. In 2022 IEEE High Performance

Nature Communications | (2025)16:1545

20

https://github.com/NeuroBench/neurobench
https://github.com/NeuroBench/neurobench
https://doi.org/10.1109/IJCNN55064.2022.9891914
https://doi.org/10.1109/IJCNN55064.2022.9891914
www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

10.

.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Extreme Computing Conference (HPEC), 1-8, https://doi.org/10.
109/HPEC55821.2022.9926296 (2022).

Ray, P. P. A review on tinyml: State-of-the-art and prospects. J. King
Saud. Univ. - Computer Inf. Sci. 34, 1595-1623 (2022).

Schuman, C. D. et al. A survey of neuromorphic computing and
neural networks in hardware. https://doi.org/10.48550/arXiv.1705.
06963 (2017).

James, C. D. et al. A historical survey of algorithms and hardware
architectures for neural-inspired and neuromorphic computing
applications. Biol. Inspired Cogn. Architect. 19, https://doi.org/10.
1016/j.bica.2016.11.002 (2017).

Thakur, C. S. et al. Large-scale neuromorphic spiking array pro-
cessors: A quest to mimic the brain. Front. Neurosci. 12, 891 (2018).
Mead, C. A. Neuromorphic electronic systems. Proc. IEEE 78,
1629-1636 (1990).

Schuman, C. et al. Opportunities for neuromorphic computing
algorithms and applications. Nat. Computational Sci. 2,

10-19 (2022).

Frenkel, C., Bol, D. & Indiveri, G. Bottom-up and top-down approa-
ches for the design of neuromorphic processing systems: Tradeoffs
and synergies between natural and artificial intelligence. Proc. IEEE
1M, 623-652 (2023).

Davies, M. Benchmarks for progress in neuromorphic computing.
Nat. Mach. Intell. 1, 386388 (2019).

Orchard, G., Jayawant, A., Cohen, G. K. & Thakor, N. Converting
static image datasets to spiking neuromorphic datasets using sac-
cades. Front. Neurosci. 9, 437 (2015).

Amir, A. et al. A low power, fully event-based gesture recognition
system. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 7243-7252 (2017).

Cramer, B., Stradmann, Y., Schemmel, J. & Zenke, F. The heidelberg
spiking data sets for the systematic evaluation of spiking neural
networks. IEEE Trans. Neural Netw. Learn. Syst. 33, 2744-2757
(2022).

Ostrau, C., Klarhorst, C., Thies, M. & Riickert, U. Benchmarking
neuromorphic hardware and its energy expenditure. Front. Neu-
rosci. 16, 873935 (2022).

Milde, M. B. et al. Neuromorphic engineering needs closed-loop
benchmarks. Front. Neurosci. 16, 813555 (2022).

Kulkarni, S. R., Parsa, M., Mitchell, J. P. & Schuman, C. D. Bench-
marking the performance of neuromorphic and spiking neural
network simulators. Neurocomputing 447, 145-160 (2021).
Gewaltig, M.-O. & Diesmann, M. Nest (neural simulation tool).
Scholarpedia 2, 1430 (2007).

Eshraghian, J. K. et al. Training spiking neural networks using les-
sons from deep learning. Proc. IEEE 111, 1016-1054 (2023).

Reddi, V. J. et al. Mlperf inference benchmark. In Proceedings of the
ACMY/IEEE 47th Annual International Symposium on Computer
Architecture, ISCA ‘20, 446-459, https://doi.org/10.1109/
ISCA45697.2020.00045 (IEEE Press, 2020).

Mattson, P. et al. Mlperf training benchmark. Proc. Mach. Learn.
Syst. 2, 336-349 (2020).

Kudithipudi, D. et al. Biological underpinnings for lifelong learning
machines. Nat. Mach. Intell. 4, 196-210 (2022).

Tao, X. et al. Few-shot class-incremental learning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recogni-

tion (2020).

Mazumder, M. et al. Multilingual spoken words corpus. In Van-
schoren, J. & Yeung, S. (eds.) Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks, vol. 1
(Curran, 2021).

Gallego, G. et al. Event-based vision: A survey. IEEE Trans. Pattern
Anal. Mach. Intell. 44, 154-180 (2022).

Perot, E., de Tournemire, P., Nitti, D., Masci, J. & Sironi, A. Learning to
detect objects with a 1 megapixel event camera. In Proceedings of

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

the 34th International Conference on Neural Information Processing
Systems, NIPS'20 (2020).

Lin, T.-Y. et al. Microsoft COCO: Common objects in context. In
Computer Vision - ECCV 2014, 740-755 (2014).

O'Doherty, J. E., Cardoso, M. M. B., Makin, J. G. & Sabes, P. N.
Nonhuman primate reaching with multichannel sensorimotor cor-
tex electrophysiology, Zenodo, https://doi.org/10.5281/zenodo.
788569 (2017).

Mackey, M. C. & Glass, L. Oscillation and chaos in physiological
control systems. Science 197, 287-289 (1977).

Jaeger, H. & Haas, H. Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication. science
304, 78-80 (2004).

Mukhopadhyay, S. & Banerjee, S. Learning dynamical systems in
noise using convolutional neural networks. Chaos: Interdiscip. J.
Nonlinear Sci. 30, 103125 (2020).

Chilkuri, N. R. & Eliasmith, C. Parallelizing legendre memory unit
training. In Int. Conf. Machine Learn., 1898-1907 (2021).
Makridakis, S., Spiliotis, E. & Assimakopoulos, V. The m4 competi-
tion: 100,000 time series and 61 forecasting methods. Int. J. Fore-
cast. 36, 54-74 (2020).

Gilpin, W. Model scale versus domain knowledge in statistical
forecasting of chaotic systems. https://doi.org/10.48550/arXiv.
2303.08011 (2023).

Paszke, A. et al. Pytorch: An imperative style, high-performance
deep learning library. In Proceedings of the 33rd International
Conference on Neural Information Processing Systems, NIPS'19,
8026-8037 (Curran Associates Inc., Red Hook, NY, USA, 2019).
Fang, W. et al. Spikingijelly. https://github.com/fangwei123456/
spikingjelly (2020).

Intel. Lava software framework. https://github.com/lava-nc/

lava (2021).

Aimone, J. B., Severa, W. & Vineyard, C. M. Composing neural
algorithms with fugu. In Proceedings of the International Con-
ference on Neuromorphic Systems, ICONS "9, 1-8 (Association for
Computing Machinery, New York, NY, USA, 2019).

Warden, P. Speech commands: A dataset for limited-vocabulary
speech recognition. https://doi.org/10.48550/arXiv.1804.

03209 (2018).

Blouw, P., Choo, X., Hunsberger, E. & Eliasmith, C. Benchmarking
keyword spotting efficiency on neuromorphic hardware. In Pro-
ceedings of the 7th Annual Neuro-Inspired Computational Elements
Workshop, NICE 19, https://doi.org/10.1145/3320288.3320304
(Association for Computing Machinery, New York, NY, USA, 2019).
Fang, W. et al. Incorporating learnable membrane time constant to
enhance learning of spiking neural networks https://doi.org/10.
48550/arXiv.2007.05785 (2021).

Massa, R., Marchisio, A., Martina, M. & Shafique, M. An efficient
spiking neural network for recognizing gestures with a DVS camera
on the loihi neuromorphic processor. In 2020 International Joint
Conference on Neural Networks (IJCNN), 1-9, https://doi.org/10.
1109/1JCNN48605.2020.9207109 (2020).

Lemaire, E. et al. An analytical estimation of spiking neural networks
energy efficiency. In Neural Information Processing, 574-587,
https://doi.org/10.1007/978-3-031-30105-6_48 (Springer Interna-
tional Publishing, 2023).

Fra, V. et al. Human activity recognition: suitability of a neuro-
morphic approach for on-edge aiot applications. Neuromorphic
Comput. Eng. 2, 014006 (2022).

Dai, W., Dai, C., Qu, S., Li, J. & Das, S. Very deep convolutional neural
networks for raw waveforms. In 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 421-425,
https://doi.org/10.1109/ICASSP.2017.7952190 (2017).

Bittar, A. & Garner, P. N. A surrogate gradient spiking baseline for
speech command recognition. Front. Neurosci. 16, 865897 (2022).

Nature Communications | (2025)16:1545

2

https://doi.org/10.1109/HPEC55821.2022.9926296
https://doi.org/10.1109/HPEC55821.2022.9926296
https://doi.org/10.48550/arXiv.1705.06963
https://doi.org/10.48550/arXiv.1705.06963
https://doi.org/10.1016/j.bica.2016.11.002
https://doi.org/10.1016/j.bica.2016.11.002
https://doi.org/10.1109/ISCA45697.2020.00045
https://doi.org/10.1109/ISCA45697.2020.00045
https://doi.org/10.5281/zenodo.788569
https://doi.org/10.5281/zenodo.788569
https://doi.org/10.48550/arXiv.2303.08011
https://doi.org/10.48550/arXiv.2303.08011
https://github.com/fangwei123456/spikingjelly
https://github.com/fangwei123456/spikingjelly
https://github.com/lava-nc/lava
https://github.com/lava-nc/lava
https://doi.org/10.48550/arXiv.1804.03209
https://doi.org/10.48550/arXiv.1804.03209
https://doi.org/10.1145/3320288.3320304
https://doi.org/10.48550/arXiv.2007.05785
https://doi.org/10.48550/arXiv.2007.05785
https://doi.org/10.1109/IJCNN48605.2020.9207109
https://doi.org/10.1109/IJCNN48605.2020.9207109
https://doi.org/10.1007/978-3-031-30105-6_48
https://doi.org/10.1109/ICASSP.2017.7952190
www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.
63.

64.

65.

66.

67.

68.

Stewart, K. M., Shea, T., Pacik-Nelson, N., Gallo, E. & Danielescu, A.
Speech2spikes: Efficient audio encoding pipeline for real-time
neuromorphic systems. In Proceedings of the 2023 Annual Neuro-
Inspired Computational Elements Conference, NICE ‘23, 71-78,
https://doi.org/10.1145/3584954.3584995 (Association for Com-
puting Machinery, New York, NY, USA, 2023).

Snell, J., Swersky, K. & Zemel, R. Prototypical networks for few-shot
learning. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS'17, 4080-4090 (Cur-
ran Associates Inc., Red Hook, NY, USA, 2017).

Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
7132-7141, https://doi.org/10.1109/CVPR.2018.00745 (IEEE, 2018).
Shi, X. et al. Convolutional Istm network: A machine learning
approach for precipitation nowcasting. In Proceedings of the 28th
International Conference on Neural Information Processing Systems -
Volume 1, NIPS"15, 802-810 (MIT Press, Cambridge, MA, USA, 2015).
Liu, W. et al. SSD: Single shot MultiBox detector. In Computer Vision
- ECCV 2016, 21-37, https://doi.org/10.1007/978-3-319-46448-0_2
(Springer International Publishing, 2016).

Willsey, M. et al. Real-time brain-machine interface in non-human
primates achieves high-velocity prosthetic finger movements using
a shallow feedforward neural network decoder. Nat. Commun. 13,
6899 (2022).

Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural
Comput. 9, 1735-1780 (1997).

Scardapane, S. & Wang, D. Randomness in neural networks: an
overview. Data Min. Knowl. Discov. 7, 1-18 (2017).

Bos, H. & Muir, D. R. Micro-power spoken keyword spotting on xylo
audio 2. https://doi.org/10.48550/arXiv.2406.15112 (2024).
Shrestha, S. B., Timcheck, J., Frady, P., Campos-Macias, L. & Davies,
M. Efficient video and audio processing with loihi 2. In ICASSP 2024
- 2024 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 13481-13485, https://doi.org/10.1109/
ICASSP48485.2024.10448003 (2024).

Chen, Z. et al. On-off neuromorphic ising machines using fowler-
nordheim annealers. https://doi.org/10.48550/arXiv.2406.

05224 (2024).

Pierro, A. et al. Solving qubo on the loihi 2 neuromorphic processor.
https://doi.org/10.48550/arXiv.2408.03076 (2024).

Davies, M. et al. Loihi: A neuromorphic manycore processor with on-
chip learning. IEEE Micro 38, 82-99 (2018).

Mayr, C., Hoeppner, S. & Furber, S. Spinnaker 2: A 10 million core
processor system for brain simulation and machine learning.
https://doi.org/10.48550/arXiv.1911.02385 (2019).

SynSense. SynSense Speck. https://www.synsense.ai/products/
speck/ (2023).

Innatera. Innatera’s Spiking Neural Processor (SNP). www.innatera.
com/snp.pdf (2023).

TOP500. Top500. https://www.top500.0rg/ (2023).

Banbury, C. et al. Mlperf tiny benchmark. Proceedings of the Neural
Information Processing Systems Track on Datasets and Bench-
marks (2021).

MLCommons. Mlperf inference policies. https://github.com/
mlcommons/inference_policies/ (2023).

Green500. Green500. https://www.top500.org/lists/

green500/ (2023).

Tschand, A. et al. Mlperf power: Benchmarking the energy effi-
ciency of machine learning systems from microwatts to megawatts
for sustainable ai 2410.12032 (2024).

Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine
intelligence with neuromorphic computing. Nature 575,

607-617 (2019).

Basu, A., Deng, L., Frenkel, C. & Zhang, X. Spiking neural network
integrated circuits: A review of trends and future directions. In 2022

69.

70.

7.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

IEEE Custom Integrated Circuits Conference (CICC), 1-8, https://doi.
org/10.1109/CICC53496.2022.9772783 (2022).

Merolla, P. A. et al. A million spiking-neuron integrated circuit with a
scalable communication network and interface. Science 345,
668-673 (2014).

Neckar, A. et al. Braindrop: A mixed-signal neuromorphic archi-
tecture with a dynamical systems-based programming model.
Proc. IEEE 107, 144-164 (2018).

Schmitt, S. et al. Neuromorphic hardware in the loop: Training a
deep spiking network on the brainscales wafer-scale system. In
2017 international joint conference on neural networks (IJCNN),
2227-2234 (IEEE, 2017).

Pei, J., Deng, L., Ma, C., Liu, X. & Shi, L. Multi-grained system inte-
gration for hybrid-paradigm brain-inspired computing. Sci. China
Inf. Sci. 66, 1-14 (2023).

Intel. Intel builds world’s largest neuromorphic system to enable
more sustainable ai. https://www.intel.com/content/www/us/en/
newsroom/news/intel-builds-worlds-largest-neuromorphic-
system.html (2024).

Heittola, T., Mesaros, A. & Virtanen, T. Acoustic scene classification
in dcase 2020 challenge: generalization across devices and low
complexity solutions. In Proceedings of the Detection and Classifi-
cation of Acoustic Scenes and Events 2020 Workshop
(DCASE2020), 56-60 (2020).

Koch, T., Berthold, T., Pedersen, J. & Vanaret, C. Progress in math-
ematical programming solvers from 2001 to 2020. EURO J. Com-
putational Optim. 10, 100031 (2022).

Aimone, J. B. et al. A review of non-cognitive applications for neu-
romorphic computing. Neuromorphic Comput. Eng. 2,

032003 (2022).

Wurtz, J. et al. Industry applications of neutral-atom quantum
computing solving independent set problems. https://doi.org/10.
48550/arXiv.2205.08500 (2024).

Ke, W., Khoei, M. & Muir, D. Neurobench: Dcase 2020 acoustic
scene classification benchmark on xyloaudio 2. https://doi.org/10.
48550/arXiv.2410.23776 (2024).

SynSense. SynSense xylo. https://www.synsense.ai/products/
xylo/ (2023).

D-Wave Systems Inc. D-Wave Samplers software packagehttps://
docs.ocean.dwavesys.com/en/stable/docs_samplers/index.

html (2018).

Rhodes, O. et al. spynnaker: A software package for running pynn
simulations on spinnaker. Front. Neurosci. 12, 816 (2018).
SynSense. Samna. https://www.synsense.ai/products/

samna/ (2024).

Pedersen, J. E. et al. Neuromorphic intermediate representation: A
unified instruction set for interoperable brain-inspired computing.
Nat. Commun. 15, 8122 (2024).

Stewart, T. C., DeWolf, T., Kleinhans, A. & Eliasmith, C. Closed-loop
neuromorphic benchmarks. Front. Neurosci. 9, 464 (2015).
Jeffares, A., Guo, Q., Stenetorp, P. & Moraitis, T. Spike-inspired rank
coding for fast and accurate recurrent neural networks. Int. Conf.
Learning Representations, https://openreview.net/forum?id=
iMH1e5k7n3L (2022).

Prophesee. Event-based vision software - metavision intelligence.
https://www.prophesee.ai/metavision-intelligence/ (2023).

Makin, J. G., O’'Doherty, J. E., Cardoso, M. M. B. & Sabes, P. Superior
arm-movement decoding from cortex with a new, unsupervised-
learning algorithm. J. Neural Eng. 15, 026010 (2018).

Ansmann, G. Efficiently and easily integrating differential equations
with JiTCODE, JiTCDDE, and JiTCSDE. Chaos 28, 043116 (2018).
Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollar, P. Focal loss for
dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42,
318-327 (2020).

Nature Communications | (2025)16:1545

https://doi.org/10.1145/3584954.3584995
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.48550/arXiv.2406.15112
https://doi.org/10.1109/ICASSP48485.2024.10448003
https://doi.org/10.1109/ICASSP48485.2024.10448003
https://doi.org/10.48550/arXiv.2406.05224
https://doi.org/10.48550/arXiv.2406.05224
https://doi.org/10.48550/arXiv.2408.03076
https://doi.org/10.48550/arXiv.1911.02385
https://www.synsense.ai/products/speck/
https://www.synsense.ai/products/speck/
http://www.innatera.com/snp.pdf
http://www.innatera.com/snp.pdf
https://www.top500.org/
https://github.com/mlcommons/inference_policies/
https://github.com/mlcommons/inference_policies/
https://www.top500.org/lists/green500/
https://www.top500.org/lists/green500/
https://doi.org/10.1109/CICC53496.2022.9772783
https://doi.org/10.1109/CICC53496.2022.9772783
https://www.intel.com/content/www/us/en/newsroom/news/intel-builds-worlds-largest-neuromorphic-system.html
https://www.intel.com/content/www/us/en/newsroom/news/intel-builds-worlds-largest-neuromorphic-system.html
https://www.intel.com/content/www/us/en/newsroom/news/intel-builds-worlds-largest-neuromorphic-system.html
https://doi.org/10.48550/arXiv.2205.08500
https://doi.org/10.48550/arXiv.2205.08500
https://doi.org/10.48550/arXiv.2410.23776
https://doi.org/10.48550/arXiv.2410.23776
https://www.synsense.ai/products/xylo/
https://www.synsense.ai/products/xylo/
https://docs.ocean.dwavesys.com/en/stable/docs_samplers/index.html
https://docs.ocean.dwavesys.com/en/stable/docs_samplers/index.html
https://docs.ocean.dwavesys.com/en/stable/docs_samplers/index.html
https://www.synsense.ai/products/samna/
https://www.synsense.ai/products/samna/
https://openreview.net/forum?id=iMH1e5k7n3L
https://openreview.net/forum?id=iMH1e5k7n3L
https://www.prophesee.ai/metavision-intelligence/
www.nature.com/naturecommunications

Perspective

https://doi.org/10.1038/s41467-025-56739-4

90. Hymel, S. et al. Edge impulse: An mlops platform for tiny machine
learning. https://doi.org/10.48550/arXiv.2212.03332 (2023).

91. Muir, D., Bauer, F. & Weidel, P. Rockpool documentaton, Zenodo,
https://doi.org/10.5281/zenodo0.3773845 (2019).

92. Yik, J. et al. Neurobench/neurobench: Doi release, Zenodo, https://
doi.org/10.5281/zenodo.14477064 (2024).

Acknowledgements

Authors of this work have been supported in parts by Semiconductor
Research Corporation (JY), the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 101001448), a grant from the Research
Grants Council of the Hong Kong Special Administrative Region, China
[Project No. CityU 11200922], ARC Laureate Fellowship FL210100156,
and the EU H2020 project BeFerroSynaptic (871737). We acknowledge
the financial support of the CogniGron research center and the Ubbo
Emmius Funds (Univ. of Groningen). We acknowledge a contribution
from the Italian National Recovery and Resilience Plan (NRRP), M4C2,
funded by the European Union -NextGenerationEU (Project IROO00011,
CUP B51E22000150006, “EBRAINS-Italy”). The work of SynSense was
partially supported by the European Commission, under the Horizon
grant Ferro4kdge Al (grant agreement 101135656). This work is partly
funded by the German Federal Ministry of Education and Research
(BMBF) and the free state of Saxony within the ScaDS.Al center of
excellence for Al research and by the German Federal Ministry for
Economic Affairs and Climate Action (BMWK) under contract
01MN23004F (ESCADE). This work is partially supported by NSF Grant
2020624 AccelNet:Accelerating Research on Neuromorphic Percep-
tion, Action, and Cognition and NSF Grant 2332166 RCN-SC: Research
Coordination Network for Neuromorphic Integrated Circuits. Sandia
National Laboratories is a multi-mission laboratory managed and oper-
ated by National Technology & Engineering Solutions of Sandia, LLC
(NTESS), a wholly owned subsidiary of Honeywell International Inc., for
the U.S. Department of Energy’s National Nuclear Security Administra-
tion (DOE/NNSA) under contract DE-NAOO03525. This written work is
authored by an employee of NTESS. The employee, not NTESS, owns the
right, title and interest in and to the written work and is responsible for its
contents. Any subjective views or opinions that might be expressed in
the written work do not necessarily represent the views of the U.S.
Government. The publisher acknowledges that the U.S. Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this written work or allow
others to do so, for U.S. Government purposes. The DOE will provide
public access to results of federally sponsored research in accordance
with the DOE Public Access Plan. This paper describes objective tech-
nical results and analysis. Any subjective views or opinions that might be
expressed in the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

Author contributions

Authors are grouped based on contributions, and ordered alphabetically
within groups. J.Y. led project discussions and management. J.Y. and
K.V.dB. implemented harness metric infrastructure, conducted experi-
ments, and prepared the manuscript. The following authors primarily
developed the main algorithm track results: D.dB. and M.F. on the key-
word few-shot class-incremental learning task; G.T. and S.W. on the
event camera object detection task; P.H., P.V.S., and B.Z. on the non-
human primate motor prediction task; Y.B. and D.K. on the chaotic
function prediction task; and N.P. led harness infrastructure

development. The following authors primarily developed the main sys-
tem track results: W.K. and M.A.K. on the acoustic scene classification
task; A.P. and P.S. on the QUBO task. S.H.A.,, G.V.J., B.L., AM., AKM.,
G.L., and T.S. developed components of the algorithm track harness
infrastructure. Z.A., M.A,, B.A., A.G.A., C.B., AB., P.B., S. Bohte, S.
Buckley, G.C., E.C., F.C., Gd.C., A. Danielescu, A. Daram, M.D., Y.D., J.E,,
T.F., JF,V.F,SF,PMF., W.G., AG., HAG., G., S.J., VK, L. Khacef,
J.CK., L. Kriener, RK., D.K., S.L., Y.L, H.M., RM., JM.M,, C.M,, KM,
D.R.M., ENN,, T.N,, F.O., A.O., P.P, J.P., M.P., C. Pehle, M.A.P., C. Posch,
AR, Y.S., C.JS.S,, Av.S,, J. Schemmel, S. Schmidgall, C.S., J. Seo, S.
Sheik, S.B.S., M.S., AS., K.S., M.S,, T.C.S., J.T., N.T,, G.U.,, M.V, CM.V.,
B.V., AY., and F.T.Z. participated in discussions during meetings, pre-
pared sections for the present manuscript and/or its preprint, and
reviewed the manuscript. C.F. and V.J.R. jointly supervised the project,
reviewed the manuscript, and analyzed results.

Competing interests

The Authors declare the following competing interests: The design of
the benchmark framework reflects the Authors’ research interests,
which includes non-financial and financial commercial interests. These
interests do not affect our results in any way, nor the value of our con-
tributions. The NeuroBench benchmark framework was developed col-
laboratively and specifically to allow for as objective and applicable
comparison as possible. The benchmark harness and framework are
open-source and intended to be further extended by the community
over time.

Additional information
Correspondence and requests for materials should be addressed to
Jason Yik.

Peer review information Nature Communications thanks Saptarshi Das,
Jianhua Yang, and the other, anonymous, reviewer(s) for their con-
tribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2025

Jason Yik®"

, Korneel Van den Berghe'?, Douwe den Blanken?, Younes Bouhadjar ® 3, Maxime Fabre®*, Paul Hueber?>®,

Weijie Ke®, Mina A. Khoei®, Denis Kleyko ® 2, Noah Pacik-Nelson ® °, Alessandro Pierro ® '°, Philipp Stratmann ®'°, Pao-

Nature Communications | (2025)16:1545

23

https://doi.org/10.48550/arXiv.2212.03332
https://doi.org/10.5281/zenodo.3773845
https://doi.org/10.5281/zenodo.14477064
https://doi.org/10.5281/zenodo.14477064
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0009-0009-5860-0619
http://orcid.org/0009-0009-5860-0619
http://orcid.org/0009-0009-5860-0619
http://orcid.org/0009-0009-5860-0619
http://orcid.org/0009-0009-5860-0619
http://orcid.org/0000-0003-4367-8236
http://orcid.org/0000-0003-4367-8236
http://orcid.org/0000-0003-4367-8236
http://orcid.org/0000-0003-4367-8236
http://orcid.org/0000-0003-4367-8236
http://orcid.org/0000-0002-6032-6155
http://orcid.org/0000-0002-6032-6155
http://orcid.org/0000-0002-6032-6155
http://orcid.org/0000-0002-6032-6155
http://orcid.org/0000-0002-6032-6155
http://orcid.org/0000-0002-5615-2260
http://orcid.org/0000-0002-5615-2260
http://orcid.org/0000-0002-5615-2260
http://orcid.org/0000-0002-5615-2260
http://orcid.org/0000-0002-5615-2260
http://orcid.org/0000-0002-5682-627X
http://orcid.org/0000-0002-5682-627X
http://orcid.org/0000-0002-5682-627X
http://orcid.org/0000-0002-5682-627X
http://orcid.org/0000-0002-5682-627X
http://orcid.org/0000-0001-6791-9159
http://orcid.org/0000-0001-6791-9159
http://orcid.org/0000-0001-6791-9159
http://orcid.org/0000-0001-6791-9159
http://orcid.org/0000-0001-6791-9159
www.nature.com/naturecommunications

Perspective https://doi.org/10.1038/s41467-025-56739-4

Sheng Vincent Sun', Guangzhi Tang®, Shenqi Wang®'?, Biyan Zhou", Soikat Hasan Ahmed?, George Vathakkattil

Joseph ®'3, Benedetto Leto ® ', Aurora Micheli?, Anurag Kumar Mishra®, Gregor Lenz'®, Tao Sun®'¢, Zergham Ahmed’,
Mahmoud Akl", Brian Anderson'®, Andreas G. Andreou ® '8, Chiara Bartolozzi ® ', Arindam Basu®", Petrut Bogdan'?,
Sander Bohte'®, Sonia Buckley ® 2°, Gert Cauwenberghs?', Elisabetta Chicca ® %, Federico Corradi® '?, Guido de Croon®?2,
Andreea Danielescu ® °, Anurag Daram??, Mike Davies'®, Yigit Demirag ® 232425, Jason Eshraghian ® 26, Tobias Fischer ® %/,
Jeremy Forest ®28, Vittorio Fra® ¥, Steve Furber ® 2°, P. Michael Furlong ® 32, William Gilpin®"32, Aditya Gilra®"®,
Hector A. Gonzalez®", Giacomo Indiveri® 2324, Siddharth Joshi ® 33, Vedant Karia??, Lyes Khacef ® 3435,

James C. Knight ® 36, Laura Kriener ® 232437, Rajkumar Kubendran®2, Dhireesha Kudithipudi ® 22, Shih-Chii Liu ® 2324, Yao-
Hong Liu®®°, Haoyuan Ma>°, Rajit Manohar?®, Josep Maria Margarit-Taulé ® 4!, Christian Mayr*243,

Konstantinos Michmizos*?, Dylan R. Muir ® ¢, Emre Neftci®*®, Thomas Nowotny ® 3¢, Fabrizio Ottati'4,

Ayca Ozcelikkale ® %%, Priyadarshini Panda®®, Jongkil Park*’, Melika Payvand ® 2324, Christian Pehle?*?,

Mihai A. Petrovici ® 37, Christoph Posch?®, Alpha Renner ® 3, Yulia Sandamirskaya'®®°, Clemens J. S. Schaefer33,

André van Schaik ® ¥, Johannes Schemmel ® 48, Samuel Schmidgall’®, Catherine Schuman ® °2, Jae-sun Seo®3,

Sadique Sheik®, Sumit Bam Shrestha'®, Manolis Sifalakis ® 3, Amos Sironi*®, Kenneth Stewart®®4, Matthew Stewart',
Terrence C. Stewart®®, Jonathan Timcheck ® '°, Nergis Tomen ®2, Gianvito Urgese ® 4, Marian Verhelst ® 5-°¢,

Craig M. Vineyard ® %7, Bernhard Vogginger ® %, Amirreza Yousefzadeh ® 5, Fatima Tuz Zohora??, Charlotte Frenkel>%2 &
Vijay Janapa Reddi"%8

"Harvard University, Cambridge, USA. 2Delft University of Technology, Delft, Netherlands. 3Forschungszentrum Jiilich, Jilich, Germany. “University of
Groningen, Groningen, Netherlands. ®imec, Eindhoven, Netherlands. 6SynSense, Zurich, Switzerland. “Orebro University, Orebro, Sweden. 8Research
Institutes of Sweden, Gothenburg, Sweden. ®Accenture Labs, San Francisco, USA. "Intel Labs, Hillsboro, USA. "City University of Hong Kong, Kowloon
Tong, Hong Kong. 2Eindhoven University of Technology, Eindhoven, Netherlands. ®Innatera Nanosystems B.V., Rijswijk, Netherlands. Politecnico di Torino,
Torino, Italy. ®NeuroBus, Toulouse, France. *®Centrum Wiskunde & Informatica, Amsterdam, Netherlands. "’SpiNNcloud Systems GmbH, Dresden, Germany.
"8 johns Hopkins University, Baltimore, USA. "Istituto Italiano di Tecnologia, Genoa, Italy. 2°National Institute of Standards and Technology,

Gaithersburg, USA. 2'UCSD, San Diego, USA. 22UTSA, San Antonio, USA. Z2University of Zurich, Zurich, Switzerland. 2ETH Zurich, Zurich, Switzerland.
25Google, Mountain View, USA. 28UCSC, Santa Cruz, USA. ’Queensland University of Technology, Brisbane, Australia. 22Cornell University, Ithaca, USA.
2University of Manchester, Manchester, UK. 3°U Waterloo, Waterloo, Canada. 3'University of Texas at Austin, Austin, USA. 3>Medici Therapeutics, Austin, USA.
33University of Notre Dame, Notre Dame, USA. 3*Sony Semiconductor Solutions Europe, Weybridge, UK. *3Sony Europe B.V., Weybridge, UK. *6University of
Sussex, Brighton, UK. ¥University of Bern, Bern, Switzerland. *University of Pittsburgh, Pittsburgh, USA. *®CentraleSupélec, Gif-sur-Yvette, France. “°Yale
University, New Haven, USA. #'Instituto de Microelectronica de Barcelona, Barcelona, Spain. “’Technische Universitat Dresden, Dresden, Germany.
435caDS.Al Dresden/Leipzig, Dresden, Germany. “*Rutgers University, New Brunswick, USA. > RWTH Aachen, Aachen, Germany. “®Uppsala University,
Uppsala, Sweden. #’Korea Institute of Science and Technology, Seoul, South Korea. “®Heidelberg University, Heidelberg, Germany. “°Prophesee,

Paris, France. °°ZHAW, Winterthur, Switzerland. 'Western Sydney University, Sydney, Australia. >2University of Tennessee, Knoxville, USA. 53Cornell Tech,
Manhattan, USA. 34UCI, Irvine, USA. ®°National Research Council Canada, Ottawa, Canada. >®KU Leuven, Leuven, Belgium. 5’Sandia National Laboratories,
Albuquerque, USA. *8These authors contributed equally: Charlotte Frenkel, Vijay Janapa Reddi. e-mail: jyik@g.harvard.edu

Nature Communications | (2025)16:1545 24

http://orcid.org/0000-0002-6757-0660
http://orcid.org/0000-0002-6757-0660
http://orcid.org/0000-0002-6757-0660
http://orcid.org/0000-0002-6757-0660
http://orcid.org/0000-0002-6757-0660
http://orcid.org/0009-0007-8891-5051
http://orcid.org/0009-0007-8891-5051
http://orcid.org/0009-0007-8891-5051
http://orcid.org/0009-0007-8891-5051
http://orcid.org/0009-0007-8891-5051
http://orcid.org/0000-0002-8967-8760
http://orcid.org/0000-0002-8967-8760
http://orcid.org/0000-0002-8967-8760
http://orcid.org/0000-0002-8967-8760
http://orcid.org/0000-0002-8967-8760
http://orcid.org/0000-0003-3826-600X
http://orcid.org/0000-0003-3826-600X
http://orcid.org/0000-0003-3826-600X
http://orcid.org/0000-0003-3826-600X
http://orcid.org/0000-0003-3826-600X
http://orcid.org/0000-0003-3465-6449
http://orcid.org/0000-0003-3465-6449
http://orcid.org/0000-0003-3465-6449
http://orcid.org/0000-0003-3465-6449
http://orcid.org/0000-0003-3465-6449
http://orcid.org/0000-0003-1035-8770
http://orcid.org/0000-0003-1035-8770
http://orcid.org/0000-0003-1035-8770
http://orcid.org/0000-0003-1035-8770
http://orcid.org/0000-0003-1035-8770
http://orcid.org/0000-0003-2809-9287
http://orcid.org/0000-0003-2809-9287
http://orcid.org/0000-0003-2809-9287
http://orcid.org/0000-0003-2809-9287
http://orcid.org/0000-0003-2809-9287
http://orcid.org/0000-0002-5518-8990
http://orcid.org/0000-0002-5518-8990
http://orcid.org/0000-0002-5518-8990
http://orcid.org/0000-0002-5518-8990
http://orcid.org/0000-0002-5518-8990
http://orcid.org/0000-0002-5868-8077
http://orcid.org/0000-0002-5868-8077
http://orcid.org/0000-0002-5868-8077
http://orcid.org/0000-0002-5868-8077
http://orcid.org/0000-0002-5868-8077
http://orcid.org/0000-0001-8265-1496
http://orcid.org/0000-0001-8265-1496
http://orcid.org/0000-0001-8265-1496
http://orcid.org/0000-0001-8265-1496
http://orcid.org/0000-0001-8265-1496
http://orcid.org/0000-0001-7460-2467
http://orcid.org/0000-0001-7460-2467
http://orcid.org/0000-0001-7460-2467
http://orcid.org/0000-0001-7460-2467
http://orcid.org/0000-0001-7460-2467
http://orcid.org/0000-0001-8990-2075
http://orcid.org/0000-0001-8990-2075
http://orcid.org/0000-0001-8990-2075
http://orcid.org/0000-0001-8990-2075
http://orcid.org/0000-0001-8990-2075
http://orcid.org/0000-0002-5832-4054
http://orcid.org/0000-0002-5832-4054
http://orcid.org/0000-0002-5832-4054
http://orcid.org/0000-0002-5832-4054
http://orcid.org/0000-0002-5832-4054
http://orcid.org/0000-0003-2183-017X
http://orcid.org/0000-0003-2183-017X
http://orcid.org/0000-0003-2183-017X
http://orcid.org/0000-0003-2183-017X
http://orcid.org/0000-0003-2183-017X
http://orcid.org/0000-0002-8486-5559
http://orcid.org/0000-0002-8486-5559
http://orcid.org/0000-0002-8486-5559
http://orcid.org/0000-0002-8486-5559
http://orcid.org/0000-0002-8486-5559
http://orcid.org/0000-0001-9175-2838
http://orcid.org/0000-0001-9175-2838
http://orcid.org/0000-0001-9175-2838
http://orcid.org/0000-0001-9175-2838
http://orcid.org/0000-0001-9175-2838
http://orcid.org/0000-0002-6524-3367
http://orcid.org/0000-0002-6524-3367
http://orcid.org/0000-0002-6524-3367
http://orcid.org/0000-0002-6524-3367
http://orcid.org/0000-0002-6524-3367
http://orcid.org/0000-0001-9503-8498
http://orcid.org/0000-0001-9503-8498
http://orcid.org/0000-0001-9503-8498
http://orcid.org/0000-0001-9503-8498
http://orcid.org/0000-0001-9503-8498
http://orcid.org/0000-0002-8628-1864
http://orcid.org/0000-0002-8628-1864
http://orcid.org/0000-0002-8628-1864
http://orcid.org/0000-0002-8628-1864
http://orcid.org/0000-0002-8628-1864
http://orcid.org/0000-0001-7312-1389
http://orcid.org/0000-0001-7312-1389
http://orcid.org/0000-0001-7312-1389
http://orcid.org/0000-0001-7312-1389
http://orcid.org/0000-0001-7312-1389
http://orcid.org/0000-0002-7109-1689
http://orcid.org/0000-0002-7109-1689
http://orcid.org/0000-0002-7109-1689
http://orcid.org/0000-0002-7109-1689
http://orcid.org/0000-0002-7109-1689
http://orcid.org/0000-0002-9201-9678
http://orcid.org/0000-0002-9201-9678
http://orcid.org/0000-0002-9201-9678
http://orcid.org/0000-0002-9201-9678
http://orcid.org/0000-0002-9201-9678
http://orcid.org/0000-0002-4009-174X
http://orcid.org/0000-0002-4009-174X
http://orcid.org/0000-0002-4009-174X
http://orcid.org/0000-0002-4009-174X
http://orcid.org/0000-0002-4009-174X
http://orcid.org/0000-0003-0577-0074
http://orcid.org/0000-0003-0577-0074
http://orcid.org/0000-0003-0577-0074
http://orcid.org/0000-0003-0577-0074
http://orcid.org/0000-0003-0577-0074
http://orcid.org/0000-0001-5275-9199
http://orcid.org/0000-0001-5275-9199
http://orcid.org/0000-0001-5275-9199
http://orcid.org/0000-0001-5275-9199
http://orcid.org/0000-0001-5275-9199
http://orcid.org/0000-0003-4462-5224
http://orcid.org/0000-0003-4462-5224
http://orcid.org/0000-0003-4462-5224
http://orcid.org/0000-0003-4462-5224
http://orcid.org/0000-0003-4462-5224
http://orcid.org/0000-0002-7557-045X
http://orcid.org/0000-0002-7557-045X
http://orcid.org/0000-0002-7557-045X
http://orcid.org/0000-0002-7557-045X
http://orcid.org/0000-0002-7557-045X
http://orcid.org/0000-0002-3256-6741
http://orcid.org/0000-0002-3256-6741
http://orcid.org/0000-0002-3256-6741
http://orcid.org/0000-0002-3256-6741
http://orcid.org/0000-0002-3256-6741
http://orcid.org/0000-0003-4477-035X
http://orcid.org/0000-0003-4477-035X
http://orcid.org/0000-0003-4477-035X
http://orcid.org/0000-0003-4477-035X
http://orcid.org/0000-0003-4477-035X
http://orcid.org/0000-0003-3856-826X
http://orcid.org/0000-0003-3856-826X
http://orcid.org/0000-0003-3856-826X
http://orcid.org/0000-0003-3856-826X
http://orcid.org/0000-0003-3856-826X
http://orcid.org/0000-0002-4451-915X
http://orcid.org/0000-0002-4451-915X
http://orcid.org/0000-0002-4451-915X
http://orcid.org/0000-0002-4451-915X
http://orcid.org/0000-0002-4451-915X
http://orcid.org/0000-0001-8978-2990
http://orcid.org/0000-0001-8978-2990
http://orcid.org/0000-0001-8978-2990
http://orcid.org/0000-0001-8978-2990
http://orcid.org/0000-0001-8978-2990
http://orcid.org/0000-0001-5400-067X
http://orcid.org/0000-0001-5400-067X
http://orcid.org/0000-0001-5400-067X
http://orcid.org/0000-0001-5400-067X
http://orcid.org/0000-0001-5400-067X
http://orcid.org/0000-0003-2632-0427
http://orcid.org/0000-0003-2632-0427
http://orcid.org/0000-0003-2632-0427
http://orcid.org/0000-0003-2632-0427
http://orcid.org/0000-0003-2632-0427
http://orcid.org/0000-0002-0724-4169
http://orcid.org/0000-0002-0724-4169
http://orcid.org/0000-0002-0724-4169
http://orcid.org/0000-0002-0724-4169
http://orcid.org/0000-0002-0724-4169
http://orcid.org/0000-0001-6140-017X
http://orcid.org/0000-0001-6140-017X
http://orcid.org/0000-0001-6140-017X
http://orcid.org/0000-0001-6140-017X
http://orcid.org/0000-0001-6140-017X
http://orcid.org/0000-0003-1440-4375
http://orcid.org/0000-0003-1440-4375
http://orcid.org/0000-0003-1440-4375
http://orcid.org/0000-0003-1440-4375
http://orcid.org/0000-0003-1440-4375
http://orcid.org/0000-0002-4264-8097
http://orcid.org/0000-0002-4264-8097
http://orcid.org/0000-0002-4264-8097
http://orcid.org/0000-0002-4264-8097
http://orcid.org/0000-0002-4264-8097
http://orcid.org/0000-0002-0949-2094
http://orcid.org/0000-0002-0949-2094
http://orcid.org/0000-0002-0949-2094
http://orcid.org/0000-0002-0949-2094
http://orcid.org/0000-0002-0949-2094
http://orcid.org/0000-0002-2071-2668
http://orcid.org/0000-0002-2071-2668
http://orcid.org/0000-0002-2071-2668
http://orcid.org/0000-0002-2071-2668
http://orcid.org/0000-0002-2071-2668
http://orcid.org/0000-0003-3916-1859
http://orcid.org/0000-0003-3916-1859
http://orcid.org/0000-0003-3916-1859
http://orcid.org/0000-0003-3916-1859
http://orcid.org/0000-0003-3916-1859
http://orcid.org/0000-0003-2672-7593
http://orcid.org/0000-0003-2672-7593
http://orcid.org/0000-0003-2672-7593
http://orcid.org/0000-0003-2672-7593
http://orcid.org/0000-0003-2672-7593
http://orcid.org/0000-0003-3495-9263
http://orcid.org/0000-0003-3495-9263
http://orcid.org/0000-0003-3495-9263
http://orcid.org/0000-0003-3495-9263
http://orcid.org/0000-0003-3495-9263
http://orcid.org/0000-0002-4787-6160
http://orcid.org/0000-0002-4787-6160
http://orcid.org/0000-0002-4787-6160
http://orcid.org/0000-0002-4787-6160
http://orcid.org/0000-0002-4787-6160
http://orcid.org/0000-0001-9042-5405
http://orcid.org/0000-0001-9042-5405
http://orcid.org/0000-0001-9042-5405
http://orcid.org/0000-0001-9042-5405
http://orcid.org/0000-0001-9042-5405
http://orcid.org/0000-0002-2967-5090
http://orcid.org/0000-0002-2967-5090
http://orcid.org/0000-0002-2967-5090
http://orcid.org/0000-0002-2967-5090
http://orcid.org/0000-0002-2967-5090
mailto:jyik@g.harvard.edu
www.nature.com/naturecommunications

	The neurobench framework for benchmarking neuromorphic computing algorithms and systems
	Algorithm Track Benchmark Framework
	Algorithm track metrics
	Algorithm track benchmarks
	Algorithm track benchmark harness
	Algorithm track limitations and further extensions

	Algorithm track baseline results
	Keyword FSCIL
	Event camera object detection
	NHP motor prediction
	Chaotic function prediction
	Discussion and opportunities for further research

	System Track Benchmark Framework
	System track metrics
	System track benchmarks
	Baseline results
	Acoustic scene classification
	QUBO
	Discussion and future work

	Discussion
	Methods
	Algorithm track metrics
	Footprint
	Model execution rate
	Connection sparsity
	Activation sparsity
	Synaptic operations

	Algorithm track benchmark tasks
	Keyword FSCIL
	Event camera object detection
	Non-human primate motor prediction
	Chaotic function prediction

	Algorithm track baselines
	Keyword FSCIL
	Event camera object detection
	Non-human primate motor prediction
	Chaotic function prediction

	System track metrics
	System track benchmarks
	Acoustic Scene Classification (ASC)
	Benchmark dataset
	Task
	Metrics

	Quadratic Unconstrained Binary Optimization (QUBO)
	Benchmark dataset
	Task and metrics

	System track baselines
	Acoustic Scene Classification (ASC)
	CPU
	Synsense Xylo

	Quadratic Unconstrained Binary Optimization (QUBO)

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

