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Summary. The authors present an energy-biased training approach for predicting exact clo-
sure terms of the Navier-Stokes equations discretised in a Variational Multiscale framework. The
approach initially involves formulating a constrained objective function, which is transformed
into an unconstrained problem suitable for neural network training using the Augmented La-
grangian method. The constraints induce a prediction bias by enforcing the predicted closure
term energy contributions to be smaller than the exact values, both for excessive backscatter or
insufficient dissipation. Effectively, the approach controls energy contributions through a-priori
measures rather than a-posteriori measures.

The approach was applied to obtain the H1 projection of a Reτ = 180 turbulent channel
flow on a 32 × 32 × 32 uniform mesh. Eight MLPs were trained to predict the closure terms
associated with the weighting functions of each linear hexahedral element. Each network used
217 features, and five hidden layers with 600 neurons each. The final data-to-parameter ratio
was ∼19.6 : 1 (30 932 992 : 1 575 604) per neural network. A-priori evaluation of the networks’
outputs demonstrated its ability to predict closure terms yielding the desired behaviour in energy
transfer. This was true for both closure terms that yield energy gain and energy loss. In spite of
the energy bias, the closure term predictions retained correlations greater than 0.85 with their
exact value for all positions between the channel walls.

1 INTRODUCTION

The original Variational Multiscale (VMS) formulation of the Navier-Stokes equations at-
tempts to compute the desired projection P(U) of an exact solution U . This requires closure
terms to model the effects of scales unresolved by the projection. Normally, algebraic closure
terms are used to model these effects. However, for turbulent flows, these models become ex-
pectantly worse as the mesh is coarsened, due to the complexity of the phenomena occurring in
the unresolved scales.

Machine learning (ML) provides a path to determining closure terms which result in accurate
projections of turbulent flow solutions. However, it must be ensured that any errors in the
predictions from an ML model do not result in the net addition of kinetic energy to the resolved
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scales, resulting in a divergent numerical simulation. A simple approach is to clip all backscatter
arising due to the closure terms. This considerably limits accuracy as accounting for backscatter,
local in space and in time, becomes increasingly important as the mesh is coarsened.

Here we present an a-priori energy-biased training approach that attempts to minimise non-
physical energy production stemming from erroneous ML closure term predictions. This ap-
proach is applied to create a ML closure-term model for a coarse VMS discretisation of a
Reτ = 180 Turbulent Channel Flow (TCF). Section 2 covers the training approach, in particular
the formulation of the unconstrained objective via the Augmented Lagrangian Method (ALM).
Section 3 demonstrates the a priori performance of models generated using the aforementioned
energy-biased training approach, and Section 4 summarises the results of the paper.

2 METHODOLOGY

2.1 Incompressible Navier-Stokes Equations

The formulation follows that of [1, 2]. Consider a spatial domain Ω ∈ R3 with boundary
∂Ω over a time interval T . The problem consists of solving the incompressible Navier-Stokes
equations for the velocity u

(
x, t

)
, and pressure p

(
x, t

)
:

∇ · u = 0 in Ω ∀t ∈
[
0, T

]
,

∂u

∂t
+
(
u · ∇

)
u = −1

ρ
∇p+∇ ·

(
2ν∇su

)
+ f in Ω ∀t ∈

[
0, T

]
,

where f
(
x, t

)
is a known body force, ν ∈ R+ is a constant kinematic viscosity. The system of

equations is subject to the following initial and no-slip boundary conditions:

u
(
x, 0) = g

(
x) in Ω ,

u
(
x, t

)
= 0 on ∂Ω ∀t ∈

[
0, T

]
,

where g
(
x) is a known initial condition. The problem is discretised by considering a sequence

of time levels tn and assuming the solution at each time level Un =
{
u(x, tn), p(x, tn)

}
lives in

a trial solution space V = V
(
Ω
)
. Using weighting functions W =

{
w, q

}
that live in the same

space, the semi-discrete form of the problem at the next time level becomes: find U ∈ V such
that ∀W ∈ V :

(
w,

∂un+1

∂t
+

(
un+1 · ∇

)
un+1 +

1

ρ
∇pn+1 −∇ ·

(
2ν∇sun+1))

Ω

+

(
q,∇ · un+1

)
Ω

=

(
w,fn+1

)
Ω

,

where ∂un+1/∂t is obtained from a backward finite-difference approximation. Following a direct
sum decomposition of V into a finite-dimensional space V and infinite-dimensional space V ′,
and omitting the n+ 1 superscript for clarity, the variational formulation for the resolved-scale
problem reads:
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find the resolved solution U = {u, p} ∈ V such that ∀W = {w, q} ∈ V:(
q,LC

(
u
))

Ω︷ ︸︸ ︷
BC

1

(
W ,U

)
+

(
w,LM

(
u, p

))
Ω︷ ︸︸ ︷

BM
1

(
W ,U

)
+B2

(
W ,U ,U

)
−L

(
W

)
=

−BC
1

(
W ,U ′

)
︸ ︷︷ ︸
−
(
q,LC

(
u′))

Ω

−BM
1

(
W ,U ′

)
−B2

(
W ,U ,U ′

)
−B2

(
W ,U ′,U

)
−B2

(
W ,U ′,U ′

)
︸ ︷︷ ︸

−
(
w,L′

M

(
u,u′, p′

))
Ω

,

(1)

where U ′ =
{
u′, p′

}
∈ V ′ is the unresolved solution, and we have expressed the weak form in

terms of the bilinear and trilinear forms:

BM
1

(
W ,U

)
=

(
w,

∂u

∂t
+

1

ρ
∇p−∇ ·

(
2ν∇su

))
Ω

, BC
1

(
W ,U

)
=

(
q,∇ · u

)
Ω

,

B2

(
W ,U ,V

)
=

(
w,

(
u · ∇

)
v

)
Ω

, L
(
W

)
=

(
w,f

)
Ω

,

with V =
{
v, ·

}
. The terms in Eq. (1) are gathered into the resolved terms on the left-hand

side and the unresolved terms on the right-hand side. It is the right-hand side terms which we
predict using a ML model. Equation (1) is solved by iteratively minimising its residual using
a Newton-Raphson procedure. To avoid the corrector-pass issues pointed out in [2], we used
the lagged feature set approach studied in [3], in which the ML model is trained to provide
predictions for the sum of the closure terms at tn+1 using data only from the time levels tn and
tn−1.

2.2 Model Requirements

In a finite-element setting, it is preferable that the ML model provides the closure-term
predictions on the element level. The complete closure term is then computed via the assembly
operator A as the sum of element contributions:(

w,L′
M

(
u,u′, p′

))
Ω

=A
(
we,L′

M

(
u,u′, p′

))
Ωe︸ ︷︷ ︸

predicted

,

(
q,LC

(
u′))

Ω
=A

(
qe,LC

(
u′))

Ωe︸ ︷︷ ︸
predicted

,

(2)

where we and qe are the portions of the weighting functions within each element, and Ωe is the
element domain. Therefore, to satisfy that the closure terms are predicted exactly, the individual
element predictions have to match their exact values, or at least sum to the exact sum. Here
the former requirement is chosen, since the correct local predictions imply that the L2-inner
product is carried out using a unique unresolved solution. This results in four requirements for

3
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the s-th element weighting functions {we,s, qe,s}:

EM
x :=

[(
we,s,x,L′

M

(
u,u′, p′

)
x

)
Ωe

]
pred.

−
[(

we,s,x,L′
M

(
u,u′, p′

)
x

)
Ωe

]
truth

= 0 ,

EM
y :=

[(
we,s,y,L′

M

(
u,u′, p′

)
y

)
Ωe

]
pred.

−
[(

we,s,y,L′
M

(
u,u′, p′

)
y

)
Ωe

]
truth

= 0 ,

EM
z :=

[(
we,s,z,L′

M

(
u,u′, p′

)
z

)
Ωe

]
pred.

−
[(

we,s,z,L′
M

(
u,u′, p′

)
z

)
Ωe

]
truth

= 0 ,

EC :=
[(

qe,s,LC

(
u′))

Ωe

]
pred.

−
[(

qe,s,LC

(
u′))

Ωe

]
truth

= 0 .

(3)

Since the predicted terms above are supplied by a ML model, they will be subject to errors.
The distribution of these errors can be controlled by imposing a constraint upon the predictions
themselves. Consider the resolved-scale kinetic energy equation:(

u,LM

(
u, p

))
Ω
−

(
u,f

)
Ω
= −

(
u,L′

M

(
u,u′, p′

))
Ω
.

We propose that the predicted closure-term resolved-scale kinetic-energy contributions must be
equivalent or smaller than the truth values, i.e.[

−
(
u,L′

M

(
u,u′, p′

))
Ω

]
pred.

≤
[
−
(
u,L′

M

(
u,u′, p′

))
Ω

]
truth

.

The above can be expressed similarly to Eqs. (2) by noting that u is a weighted sum of solution
bases and coefficients ax, a y, a z. As the a (·) are constants at a given time level, they can
be factored out of the inner products, e.g. for the energy contribution originating from the x
momentum component:[
A −a e,x

(
we,x,L′

M

(
u,u′, p′

)
x

)
Ωe

]
pred.

≤
[
A −a e,x

(
we,x,L′

M

(
u,u′, p′

)
x

)
Ωe

]
truth

.

To provide suitable constraints for training at the element level, we decompose the three result-
ing inequalities into more restrictive versions that require the contributions from each element
weighting function to adhere to the inequality:

Cx :=
[
− a e,s,x

]
truth

[(
we,s,x,L′

M

(
u,u′, p′

)
x

)
Ωe

]
pred.

−
[
− a e,s,x

(
we,s,x,L′

M

(
u,u′, p′

)
x

)
Ωe

]
truth

≤ 0 ,

Cy :=
[
− a e,s,y

]
truth

[(
we,s,y,L′

M

(
u,u′, p′

)
y

)
Ωe

]
pred.

−
[
− a e,s,y

(
we,s,y,L′

M

(
u,u′, p′

)
y

)
Ωe

]
truth

≤ 0 ,

Cz :=
[
− a e,s,z

]
truth

[(
we,s,z,L′

M

(
u,u′, p′

)
z

)
Ωe

]
pred.

−
[
− a e,s,z

(
we,s,z,L′

M

(
u,u′, p′

)
z

)
Ωe

]
truth

≤ 0 .

(4)

where we have also loosened the constraint on the prediction to rely on the truth a (·), since the
generated model will not predict a (·). Equations (3) and Eqs. 4 form the necessary components
of a constrained optimisation problem ∀s, which reads:

argmin EM
x + EM

y + EM
z + EC ,

subject to Cx ≤ 0 , Cy ≤ 0 , Cz ≤ 0 .

The a (·) constants in Eqs. (4) are not factored out of the truth values due to the method chosen
to tackle the constrained problem (see Section 2.5). Correspondingly, the coefficients provide
bias such that larger closure-term resolved-scale kinetic-energy contributions are penalised more
than smaller contributions are.
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2.3 Test Case

We consider a Reτ = 180 TCF with constant forcing on a domain of size Lx × Ly × Lz =
6δ × 4δ × 2δ, with δ being the channel half height, and x, y, z being the streamwise, spanwise
and wall-normal directions, respectively. The resolved scales, U , are represented using a P1/P1
finite-element space on a 32× 32× 32 uniform hexahedral mesh indexed using i, j and k for the
x, y and z directions. Reference DNS data, UDNS, was generated using a spectral/finite-volume
code by starting from a statistically-converged initial condition and proceeding for four eddy
turnovers. 480 snapshots of this data were used to generate reference resolved-scale solutions
using H1 projections of the DNS data, U = PH1(UDNS). The corresponding unresolved scales
U

′
= UDNS − U , were used to compute truth/exact values for the closure terms. These were

used to train a ML model to predict tn+1 closure terms. Note that in this setting, exact ML
predictions used in LES computations with Eq. (1) will produce the desired projection of the
DNS solution, PH1(UDNS), as the resolved scales. Correspondingly, ML prediction error is the
only source of error in the formulation.

2.4 Architecture Selection

For simplicity, our ML model is comprised of eight multilayer perceptrons (MLP)s. The
(MLP)s network predicts the closure terms associated with the {we,s, qe,s} element weighting
function for all elements in the mesh. For an initial baseline version of the ML model, we use
dense and wide MLP networks, each with five hidden layers and 600 ReLU-activated neurons.

2.5 Objective Function

The ALM takes a constrained objective and transforms it to an unconstrained problem,
whilst replacing the row associated with the Lagrange multiplier in the system of equations
with an update scheme instead. This is useful for constrained neural network training as the
backpropagation step does not have to be modified to account for additional minimisation terms
that are part of the cost function (i.e. the Lagrange multiplier). Instead, the implementation
details are relegated to member functions that are called at the start-of-training step (setting
variables), or end-of-epoch step (update scheme), and are coupled to the loss function object.
The ALM is best described schematically for a simple non-ML constrained problem, as shown
in Fig. 1. Given an initial guess for parameters µk, λk, and a user-chosen scaling parameter β,
the k-th iterate minimisation problem is solved iteratively until its residual is lower than the
preset tolerance. Then an update for µk, λk occurs, for which the

(
k+1

)
-th iterate minimisation

problem is solved for. This is repeated until the solution does not change as a function of k.

5
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Given µ0 , λ0 , β

start

y
argmin

x
f(x)

subject to g(x) = a

ALM−−−−−→ argmin
x ; µk , λk

f(x) +
µk

2
ε2g − λkεg ≡ argmin

x ; µk , λk

f(x) + ρkg

res. < tol.

y xk → k + 1

µk+1 = βµk

λk+1 = λk − µkεg

Figure 1: Schematical representation of the ALM applied to a simple constrained problem.
εg = g(x) − a, ρkg = (µk/2)ε2g − λkεg, and the subscript references the constraint function of
interest. Inspired by [4].

We can extend the definition for the constraint error metric εg to inequalities constraints
using max functions (such that inequality constraints transform to equality constraints):

old constraint −−→ redefinition −−→ new constraint

g(x) ≤ a −−→ εg = max
(
0, g(x)− a

)
−−→ εg = 0

g(x) ≥ a −−→ εg = max
(
0, a− g(x)

)
−−→ εg = 0

A further extension to ML problems can be achieved by using MSE metrics, given a batch size
Nb,

C < 0 −−→
ML

C =
1

Nb

Nb∑
i=1

[
max

(
0, Ci

)]2
,

where we have specifically tailored this definition to be used with Eqs. (4). We convert Eqs. (3)
to MSE metrics as well:

E = 0 −−→
ML

E =
1

Nb

Nb∑
i=1

E2
i .

We tailor the ALM to update µk and λk each epoch, although this is not entirely necessary.
This was done to hasten the training process. We found better success by updating λk by C
calculated using the validation data, which makes the ALM scheme mathematically inconsistent
with [4]. The end schematic is found in Fig. 2.

6
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Given µ0
Cx , · · ·, λ

0
Cx , · · ·, βCx , · · ·

start epoch 0

y
argmin EM

x + EM
y + EM

z + EC

subject to Cx ≤ 0 , Cy ≤ 0 , Cz ≤ 0

ALM−−−−−→
ML

argmin
weights, biases;
µk,··· ,λk,··· ,
training data,

validation data

EM
x + EM

y + EM
z + EC

+ ρkCx + ρkCy + ρkCz

finish epoch k

y xk → k + 1

for Cx :

{
µk+1 = βµk

λk+1 = λk − µk Cvali.

...
...

Figure 2: Schematical representation of the ML model’s constrained objective, posed by Eqs. (3)
and Eqs. (4), in its ML-ALM formulation.

2.6 Feature Selection

We propose that Eq. (1) contains candidate features to predict the closure terms. Specifically,
its left-hand side evaluated at previous time levels provides the ML model the history of the
closure terms, which is useful for their prediction at tn+1. Correspondingly, we include the
resolved-scale weak-form terms in the features, except the time-derivative term. These are
supplemented with the sums of the weak-form terms, which do include the time-derivative
terms. Since the energy constraint Eqs. (4) are dependent on the velocity basis coefficients, we
include these as part of the features. Finally, we also include the wall-normal distance, d, as the
solution is anisotropic in the wall-normal direction.

The features mentioned above are associated with specific locations in space and time. We
include these features, for each element weighting function, from two spatiotemporal element
stencils, one for the features in the momentum equations and one for the features in the continuity
equation. To specify the extent of the momentum-equation stencil in space, we note that local
unresolved scales are dependent on inflow conditions, and thus it is logical to include upstream
elements. More precisely, in [5] it is demonstrated that the local unresolved scales associated
with H1 projections of exact 2D advective solutions are only strong functions of the residual
in a limited number of upstream locations, due to the form of the corresponding fine-scale
Green’s function. To capture this effect while limiting the size of the total feature set, we
use a spatial stencil which includes the considered element, and four elements upstream of the
considered element. We also include one downstream element. For the continuity-equation
stencil, we note that the fine-scale Green’s function for the H1 projection of exact 2D elliptic
operators is symmetric in nature [6]. Therefore, we use the momentum-equation stencil and
add both spanwise elements immediately adjacent to the element under consideration. For the

7



A. Bettini and S. J. Hulshoff

wall-normal direction, we include only one adjacent element that is dependent on the closest
channel wall, with elements closest to the z = 0 wall including the k + 1 element, and elements
closest to the z = 2δ wall including the k − 1 element. Finally, we include the velocity basis
coefficients from the continuity-equation stencil. Given that the problem at hand is unsteady,
we must also account for inflow dependency in time. We consider element-length CFL numbers
of O(1), so we provide the networks with the above-mentioned features from both time levels tn

and tn−1.
Based on the statistical histograms placed in Appendix A of [7], we observed strong corre-

lations between the weak-form terms against the closure terms, with stronger correlations from
upstream elements than from the weak-form terms of the current element. This confirms the
previous observations used to construct the spatiotemporal stencils. We also observed different
correlational strengths across the various element weighting functions, with various symmetries
between the functions. However, the correlational symmetries of one function with another
function is not the same for all features, making it difficult to categorise any of the functions
together. This motivated the use of one MLP per element weighting function instead of a single
MLP in order to simplify any of the relations between the weak-form terms and closure terms.
We did not omit any feature that showed no correlation to the closure terms, as a seemingly use-
less feature may show significant correlation when paired with another feature [8]. The summary
of the 217 features per MLP can be found in Tab. 1.

2.7 Training Routine

The 217 features and network architecture yields 1 575 604 free parameters to fit, per MLP.
One data example requires three time steps from the data set for construction, thereby removing
the first and last time steps from each eddy-turnover data set as a source of data examples. This
reduces the usable snapshots for data examples to 472 data snapshots, as we gathered the 480
snapshots in four segments. The data-to-parameter ratio is then ∼19.6 : 1 (30 932 992 : 1 575 604)
per MLP when considering a 2× data augmentation related to the wall-normal distance feature
being calculable from either of the two channel walls.

The MLP training was conducted using Tensorflow 2.11. The data was randomly split be-
tween test data and validation/training data of 25%−75%. The latter was further split 15%−85%
into validation and training data respectively. The batch size was kept to 2500.

Each MLP was initialised with µ0 = 0 and λ0 = 0 for all constraints, default weights and
biases, and trained for 100 epochs with a cyclical learning rate. This yields a suitable initial
condition for the constrained optimisation problem. The next 200 epochs began with µ99 = 2
and λ99 = 0, and a β such that µk doubles every 25 epochs. These 200 epochs also used a cyclical
learning rate. These choices were mostly arbitrary in nature, chosen to be fairly “aggressive”
so that constraint effects can be observed while maintaining low training times. The change
between µ98 and µ99 was made internally in the beginning-of-epoch member function using a
conditional statement.

3 RESULTS AND DISCUSSION

3.1 Network Histograms

We limit our discussion to the momentum term predictions from the s = 1 MLP, and consider
the amount of energy these predictions drain/add to the test case. Figure 3 and Fig. 4 display

8
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the tn+1 closure-term resolved-scale kinetic-energy contribution predictions compared with truth
values in histogram format based on 500 000 samples. The data was normalised between -1.0
and 1.0 relative to the truth. The Pearson correlation coefficient is given in the bottom right
corner of the graphs.

The results in Fig. 3a were calculated using a network with both µk and λk set to zero, for
all constraints, for the entire training procedure, producing a data footprint centred around the
y = x curve. In comparison, the results in Fig. 3b were calculated using a network as mentioned
in Section 2.7, which produces a footprint centred below the y = x curve. The latter is in
the excessive dissipation region, thus demonstrating the efficacy of the aforementioned energy
constraints. However, both the data footprint in Fig. 4a and Fig. 4b remain nearly centred along
the y = x curve. This likely results from the dominating magnitude of the x component of the
energy constraint.

3.2 Wall-Normal Correlations

The Pearson correlation coefficient between the ML predictions and their truth values is also
plotted as a function of wall-normal coordinates in Fig. 5. It is notable that the penalty term
does not induce a change in the profiles between the two subfigures, suggesting that the ALM
loss function is inducing a bias in the predictions, while not degrading prediction capability.
The slightly asymmetrical profiles are due to the transient nature of the relatively short time
period considered for data collection. Generally, the centre-channel correlations are the weakest,
and are attributed to the lack of energy production/dissipation in that region (hence, smaller
in magnitude to zero). Therefore, the correlations calculation in the channel centre are more
sensitive to erroneous predictions than those in the near-wall region.
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]
Figure 3: x-momentum closure-term kinetic-energy contributions without penalty (a) and with
penalty (b). Perfect-relation line, Denormalised data axes
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Figure 4: y-momentum (a) and z-momentum (b) closure-term kinetic-energy contributions with
penalty. Perfect-relation line, Denormalised data axes
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Figure 5: Closure-term kinetic-energy contribution correlations as a function of wall-normal
coordinate. x-momentum, y-momentum, z-momentum

4 CONCLUSION

We introduced an energy-biased ML training approach for the prediction of VMS Navier-
Stokes closure terms, such that excessive backscatter / insufficient dissipation predictions are
reduced. This was achieved by formulating model requirements from which a constrained prob-
lem is generated, then modifying the ALM to suit ML training methods. As a test case, the
closure terms associated with a Reτ = 180 TCF flow case were predicted using MLPs. The
a-priori results successfully showed the desired biased energy predictions.
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Table 1: Feature set associated to (MLP)s and the (i, j, k)-th element. indicates inclusion in feature set. Temporal index of
the relevant term is given by the relevant column entry. See Section 2.3 for (i, j, k) index definitions.

Feature

Stencil(
i, j, k

) (
i - 1, j, k

) (
i - 2, j, k

) (
i - 3, j, k

) (
i - 4, j, k

) (
i + 1, j, k

) (
i, j - 1, k

) (
i, j + 1, k

) (
i, j, k ± 1

)
tn tn - 1 tn tn - 1 tn tn - 1 tn tn - 1 tn tn - 1 tn tn - 1 tn tn - 1 tn tn - 1 tn tn - 1

Coar.
Scale
Sums

(
we,s,x, LM

(
u, p

)
x

)
Ωe(

we,s,y, LM

(
u, p

)
y

)
Ωe(

we,s,z, LM

(
u, p

)
z

)
Ωe

Conv.
Terms

(
we,s,x,

(
u · ∇u

)
x

)
Ωe(

we,s,y,
(
u · ∇u

)
y

)
Ωe(

we,s,z,
(
u · ∇u

)
z

)
Ωe

Pres.
Terms

(
we,s,x,

(
∇p

)
x

)
Ωe(

we,s,y,
(
∇p

)
y

)
Ωe(

we,s,z,
(
∇p

)
z

)
Ωe

Diff.
Terms

(
∇we,s,x,

(
∇su

)
x

)
Ωe(

∇we,s,y,
(
∇su

)
y

)
Ωe(

∇we,s,z,
(
∇su

)
z

)
Ωe

Div.
Term

−
(
∇qe,s, u

)
Ωe

Vel.
Basis

Coefs.

ae,s,x

ae,s,y

ae,s,z

Norm.
dist.

d
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