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A B S T R A C T

We report on a novel non-iterative phase retrieval method with which the complex-valued transmission
function of an object can be retrieved with a non-iterative computation, with a limited number of intensity
measurements. The measurements are taken in either real space or Fourier space, and for each measurement
the phase in its dual space is modulated according to a single optical parameter. The requirement found for the
phase modulation function is a general one, which therefore allows for plenty of customization in this method. It
is shown that quantitative Zernike phase contrast imaging is one special case of this general method. With
simulations we investigate the sampling requirements for a microscopy setup and for a Coherent Diffraction
Imaging (CDI) setup.

1. Introduction

There are many applications where one wants to find a complex-
valued function f(x), but only its modulus f x| ( ) | can be measured
directly. In the context of Coherent Diffraction Imaging (CDI) this
function may represent the transmission function of a sample, but
there are many other applications for phase retrieval as well (e.g.
quantum state tomography [1–4]). To find the function f(x) itself, one
must therefore find a method to retrieve the phase.

In particular, there are phase retrieval problems that involve either
measurements or some kind of constraints on a Fourier transform pair,
given by f(x) and its transform f x f x( ′) = { }( ′)∼

. An example of such a
case is found in CDI. In this case we have a two-dimensional object,
with a complex-valued transmission function O x( ). Here, x is a 2D
position vector. If we illuminate the object with a plane wave we can
measure the intensity of the diffraction pattern in the far field
I Ox x( ′) = | ( ′) |∼ 2, where O∼ denotes the Fourier transform of O, and x′
is a 2D vector in Fourier space. Suppose, as in the original proposal by
Gerchberg and Saxton [5], that we can only measure the intensity I x( ′)
directly, and of the function O x( ) we only know its support (i.e. our
object is an isolated object, of which we know its finite size). In other
words, we have an amplitude constraint in Fourier space, and a support
constraint in the object space. With projective algorithms such as the
Error Reduction algorithm [5] or the Hybrid Input–Output algorithm
[6], we alternatively apply the amplitude constraint and the support
constraint in the two dual spaces, and that way we can try to

reconstruct O x( ) and O x( ′)∼
. However, these algorithms are known to

not always converge to the correct solution. An alternative approach is
ptychography, for which algorithms have been developed such as the
ptychographic iterative engine (PIE) [7]. In ptychography, an illumina-
tion function P x( ) is used to illuminate different parts of an objectO x( ).
That is, we shift the illumination function by some vector Xj, and for
each Xj we measure intensity I O Px x x X x( ′) = | { ( ) ( − )}( ′)|j j

2. By
having P x X( − )j overlap for different Xj, there is redundancy in the
intensity measurements I x( ′)j , which is used as an extra constraint in
the reconstruction, which makes the algorithm more robust. The PIE
algorithm has been extended to ePIE [8], and it has been applied to
quantum tomography [4]. However, the algorithm is still a black box in
the sense that there are no known guarantees for convergence to the
correct solution.

The algorithms mentioned so far are all iterative methods. There
are also non-iterative methods to retrieve the phase from Fourier pairs.
An example of such a method is Zernike phase contrast microscopy [9].
If we have a 2D phase object O ex( ) = iφ x( ), we can Fourier transform it,
shift the phase of the 0th diffraction order by π /2, and apply an inverse
Fourier transform. We then find that the phase information has been
converted to amplitude information which can be measured directly.
However, the assumption has to be made that the object is a pure phase
object, and that the variation of the phase is small (i.e. the weak-phase
approximation should hold). A method in which these assumptions do
not have to be made is quantitative Zernike phase contrast imaging
[10]. In this method, we have an arbitrary 2D complex-valued object
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O x( ), and we shift the phase of the 0th diffraction order of its Fourier
transform O x( ′)∼

by A π∈ [0, 2 )j . We then apply an inverse Fourier
transform, and measure the intensity I x( )j . By taking three different
measurements for different Aj, the object O x( ) can be calculated
directly. However, this approach would make it desirable that O 0| ( ) |∼

is sufficiently large, because otherwise the variations in I x( )j are too
small, which makes the method very sensitive to noise.

A non-iterative phase retrieval method that in a way resembles
quantitative Zernike phase contrast imaging is Fourier transform
holography [11]. Whereas in the quantitative Zernike phase contrast
method a perturbation (i.e. a phase-shifted pixel) is introduced inside
the support of the field, in Fourier transform holography a perturbation
(i.e. a point source that is coherent with the incident field) is introduced
sufficiently far away from the support of the field. This way the
autocorrelation of the field (which can be found by inverse Fourier
transforming the intensity of the Fourier transform of the field)
contains information that is proportional to the original field. The
main advantage of this method is that only one intensity measurement
is needed. Similar methods that use holography-related techniques
with an extended reference are given in [12,13].

Another non-iterative method is the focus-variation method
[14,15], for which substantial progress was made during the 1996
Brite–Euram project [16–20]. In this method, we have a 2D object
O x( ), and we take intensity measurements in different defocus planes
I O ex x x( ′) = | { ( ) }( ′) |j

iA x| | 2j 2
. With these intensity measurements we can

directly calculate O x( ), but only in the approximation that O 0| ( ) |∼
is

sufficiently large. If the distance between two measurement planes is
sufficiently small, the Transport of Intensity Equation can be used to
solve the field non-iteratively [21,22]. In this method, the difference
between the intensities measured in the two planes is described with a
differential equation, from which the field can be solved. A related
method which uses shifting Gaussian filters is presented in [23].

A method similar to the focus-variation method is the 2D astigma-
tism variation method [24]. Instead of varying the defocus parameter
to get different intensity measurements, two second-order astigmatism
parameters are being varied. With this method, the object O x( ) can be
calculated non-iteratively, and no approximation needs to be made
about the magnitude of O 0| ( ) |∼

.
An overview of various non-iterative phase retrieval methods is

given in [25].
In this paper, we present another non-iterative phase retrieval

method based on parameter variation. Just like in the case of focus
variation and 2D astigmatism variation, we modulate the phase in one
space (real space or Fourier space) according to a parameter Aj, and we
measure intensities Ij in the dual space. However, as opposed to focus
variation, our method does not require the approximation of O 0| ( ) |∼

being large, and as opposed to 2D astigmatism variation, we only need
to vary one parameter. Our method gives a general form of the phase
modulation function we need to apply, and we will demonstrate that in
a special case this method reduces to quantitative Zernike phase
contrast. Thus, in a way our general method provides a framework
which connects focus variation and astigmatism variation with quanti-
tative Zernike phase contrast, while providing an entire class of
alternatives as well.

2. Method

The novel non-iterative phase retrieval method that we explain in
this section can be applied in a microscopy setup (see Fig. 1a), or in a
focused probe or CDI setup (see Fig. 1b). Let us for the sake of notation
decide that we are treating the case for the CDI setup, but the same
derivation holds for the microscopy setup if we interchange the roles of
object space and Fourier space (if we assume there are no incoherent
effects). It should be noted though that from a practical point of view
the microscopy setup would be easier to implement than the CDI setup:

in the microscopy setup one could with a Spatial Light Modulator
(SLM) directly alter the phase of the field in the Fourier plane, while in
the CDI setup it may not be so straightforward to shape the phase of the
probe.
O x( ) can be reconstructed non-iteratively from intensity measurements
as follows:

1. We have a complex-valued transmission function O x( ) of an object.
We illuminate it with an illumination function P ex( ) =A

πiAf x2 ( ).
2. For N different A, spaced by some interval ΔA, we measure the

intensity in the diffraction plane I O Px x( ′) = | { · }( ′) |A A
2.

3. We reconstruct the object in x 0≠ using

∑O O I H A e0 x x*( ) ( ) = { }( ) ( ) ,
A

A
πiAf x−1 −2 ( )

(1)

where H(A) is a sampling function which we can choose to be e.g.
Gaussian multiplied with a series of delta peaks that determine for
which A we sample.
4. To reconstruct the object in x 0= , we need to find O 0| ( ) |2. This is

done by solving a quadratic equation.

In the following paragraphs we will demonstrate that this method
works if f x( ) is chosen appropriately.

First, we will rewrite Eq. (1) so that it becomes more apparent why
we can reconstruct O x( ) with this expression. Note that if H(A) consists
of multiple delta functions which indicate for which A we sample I x( ′)A ,
we can rewrite the right side of Eq. (1) as an integral over A

∫∑ I H A e I H A e Ax x{ }( ) ( ) ∝ { }( ) ( ) d .
A

A
πiAf

A
πiAfx x−1 −2 ( ) −1 −2 ( )

(2)

We can rewrite I x{ }( )A
−1 as an autocorrelation function

∫I O O ex y x y y{ }( ) = ( )* ( + ) d .A
πiA f fx y y−1 2 ( ( + )− ( ))

(3)

Plugging this into Eq. (2) and defining H A( ′)͠ as the Fourier transform
of H(A) we get

∬
∫

∑ I H A e

O O e H A

O O H f f f

x

y x y y

y x y x y y x y

{ }( ) ( )

= ( )* ( + ) ( )d dA

= ( )* ( + ) ( ( + ) − ( ) − ( ))d .͠

A
A

πiAf

πiA f f f

x

x y y x

−1 −2 ( )

2 ( ( + )− ( )− ( ))

(4)

Let us for now assume the ideal case that H A( ) = 1 so that
H A δ A( ′) = ( ′)͠ , i.e. we assume that we can sample I x( ′)A for all A
continuously. In that case Eq. (4) reduces to

∫∑ I H A e O O δ f f

f

x y x y x y y

x y

{ }( ) ( ) = ( )* ( + ) ( ( + ) − ( )

− ( ))d .
A

A
πiAf x−1 −2 ( )

(5)

Let us have a closer look at the argument of the delta function, which
we define as

g f f fx y x y y x( , ) = ( + ) − ( ) − ( ). (6)

Note that if x 0= or y 0= , then g x y( , ) = 0 (where we have assumed
without loss of generality that f 0( ) = 0). For now we will assume that
x 0≠ . Suppose that g x y( , ) = 0 only if y 0= . In that case Eq. (5) will
reduce to

∑ I H A e O Ox 0 x{ }( ) ( ) ∝ ( )* ( ),
A

A
πiAf x−1 −2 ( )

(7)

which is what we want (the expressions are in this case proportional to
each other, not equal, because the determinant of the Jacobian is
omitted. However, in case that we pixelate I x( ′)A and O x( ), i.e. we
discretize x, as will always be the case in practice, this factor is
irrelevant). Although the preceding derivation was not very rigorous
in using delta functions, it can be made mathematically rigorous by
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approximating the delta functions with narrow continuous functions.
The question we need to answer now is the following: how should we
choose f x( ), such that g x y( , ) = 0 only if y 0= or x 0= ?

2.1. Choosing f x( )

First, let us look at the method of focus variation and see why it fails
to meet our requirements. In case of focus variation, we have
f x x( ) = | |2, in which case we get

g x y x y x y y y x x x y( , ) = ( + )·( + ) − · − · = 2 · . (8)

Obviously, this fails our requirement because x y· = 0 whenever x and y
are orthogonal, not only if x = 0 or y = 0. We demonstrate that a
function of the following form will satisfy the requirement:

f h nx x( ) = ( ( )). (9)

Here, n x( ) is a vector norm (e.g. the Euclidean norm n x x x( ) = · ), and
h(a) is a monotonically increasing subadditive function, i.e.

h a b h a h b( + ) ≤ ( ) + ( ), (10)

where equality holds only when a=0 or b=0. An example would be
h a a( ) = K , with K ∈ (0, 1). To see why a function f x( ) of the form
h n x( ( )) works, consider the inequality

f h n h n n h n h n

f f

x y x y x y x y

x y

( + ) = ( ( + )) ≤ ( ( ) + ( )) ≤ ( ( )) + ( ( ))

= ( ) + ( ). (11)

The first inequality holds because of the triangle inequality (which
holds by definition of a vector norm) and because h(a) is a mono-
tonically increasing function. The second inequality holds because h(a)
is a subadditive function. Note that equality only holds when n x( ) = 0
or n y( ) = 0, which by definition of a vector norm holds only when x 0=
or y 0= . Thus, g f f fx y x y x y( , ) = ( + ) − ( ( ) + ( )) only vanishes when

x 0= or y 0= , which is what we required.

2.2. The sampling function H(A)

In Eq. (5) we have assumed that H A( ) = 1, i.e. that we can sample
I x( ′)A continuously over an infinite range. Now we will have a look at
what happens when we sample A in a discrete number of N points
spaced by intervals of ΔA over a limited range NΔA. By the properties of
the Fourier transform, H A( ′)͠ will consist of aliases separated by
intervals of Δ1/ A. If we choose the envelope of H(A) to be a Gaussian
(to prevent sidelobes in H A( ′)͠ ), then the width of H A( ′)͠ is inversely
proportional to the width of H(A). This is illustrated in Fig. 2.

Ideally, H A( ′)͠ would be a delta function as is assumed in Eq. (5). In
practice, we can only make it a narrow peak with a finite width that is
inversely proportional to the sampling range NΔA. We can make the
following remarks about the required sampling range NΔA and how it is
affected by our choice of f x( ):

• For practical reasons, we want to make as few measurements as
possible. Thus, we desire the sampling range NΔA to be small, which
means H A( ′)͠ would have to be broad.

• At the same time, from Eq. (4) we see we want H g x y( ( , ))͠ to have
large values for a small range of y around y 0= . This could be
achieved by making H A( ′)͠ narrower, but this would be in conflict
with the previous point.

• Alternatively one could make sure that g x y( , ) is small for a small
range of y around y 0= , so that even if H A( ′)͠ is broad, H g x y( ( , ))͠
has a large value for only a small range of y around y 0= .

• If we choose f x x( ) = | |K , K ∈ (0, 1), then the region of y for which
g x y( , ) is small decreases as K decreases. As we will show in Section
2.4, for K → 0 our method is equivalent to quantitative Zernike
phase contrast.

Fig. 1. Illustrations of the microscopy setup and the CDI setup in which the proposed non-iterative phase retrieval method may be used.
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Fig. 2. Illustrations of the sampling function H(A) and its Fourier transform H A( ′)͠ which in Eq. (4) is evaluated in A g x y′ = ( , ).

Fig. 3. Plots showing cross-sections of autocorrelations for different choices of f x x( , )1 2 . The autocorrelation of O x x x( , , )D3 1 2 3 consists of a sum of copies of O x x x( , , )D3 1 2 3 (blue curves)

that are shifted by y y y(− , − , − )1 2 3 for those y y y( , , )1 2 3 for which O y y y( , , )D3 1 2 3 is nonzero (dotted red curve). The surface δ x f x x( + ( , ))3 1 2 is obtained by rotating the illustrated cross-

section around its symmetry axis (see Fig. 4), we see that in the case of f x y x y( , ) ∝ +2 2 the autocorrelation evaluated in a point on the red dotted surface (x f x x= (− , − )3 1 2 ) or green

dotted surface (x f x x= ( , )3 1 2 ) contains the contributions of multiple blue copies. However, in the case of f x x x x( , ) ∝ +
K

1 2 1
2

2
2 , K ∈ (0, 1) the autocorrelation evaluated in a point on the

red dotted surface or the green dotted surface contains the contribution of just one blue copy, so the values on the surfaces are directly proportional to the values of O x x( , )1 2 or

O x x(− , − )*1 2 . The only exception is at the cusp of the surface. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 4. Illustration of how the surfaces of Fig. 3 intersect. The red surface here corresponds to the red dotted surface in Fig. 3, and the blue surface here corresponds to the blue copies in
Fig. 3. In this 3D plot it becomes apparent that the paraboloids we get with focus variation intersect the red dotted surface of Fig. 3 in many points, while for the proposed method the
surfaces intersect in only two distinct points.
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The sampling interval ΔA determines how far the aliases lie apart. In
Eq. (4), we want the integrand to contribute to the integral only when
g x y( , ) is small. Thus, in order to prevent the aliases from contributing
to the integral, we require that O x( ) ≈ 0 for those g x y( , ). Thus, the
required sampling interval ΔA is determined by the extent of the object
O x( ), while the required sampling range NΔA is determined by the
resolution with which we want to reconstruct O x( ).

2.3. Reconstructing O x( ) in x 0=

Looking at Eq. (5) we see that if x 0≠ , then the integrand only
contributes to the integral when y 0= , giving a direct reconstruction of
O O0 x( )* ( ). However, for x 0= we want to reconstruct O 0| ( ) |2, but, if we
discretize x (since the image is pixellated), the integral of Eq. (5) gives

Fig. 5. Simulation results showing how the sampling interval ΔA and the sampling range NΔA affect the reconstruction quality for different K in case we choose f x x( ) = | |K . We assume

the microscopy setup as in Fig. 1(a).
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⎪

⎪⎧⎨
⎩

O
O O

Ox
0 x x 0

y x 0( ) =
( )* ( ) if ≠ ,

∑ | ( )| if = .y
recon 2

(12)

From this we can derive the equation

∑ O O O Oy 0 0 0| ( ) | = | ( ) | ( ) − | ( )| .
y 0≠

recon
2 2

recon
4

(13)

This quadratic equation in O 0| ( ) |2 can be solved as

O
O O O

0
0 0 y

| ( ) | =
( ) ± ( ) − 4 ∑ | ( )|

2
.

y 02
recon recon

2
≠ recon

2

(14)

To determine which sign gives the correct answer, one can see for
which of the two possible values of O 0| ( ) |2 the calculated intensity
patterns I A O Px x x( ′; ) = | { ( ) ( )}|2 best match the measured intensity
patterns. With this, the reconstruction of O O0 x( )* ( ) is completed.

2.4. Quantitative Zernike phase contrast as a special case

It was argued before that if we choose f x x( ) = | |K , then for K → 0
few measurements are needed for a good reconstruction. In this section
we demonstrate that for K → 0 the method reduces to quantitative
Zernike phase contrast. When K → 0 we get

⎧⎨⎩f x x
x( ) = 0 if | | = 0,

1 if | | ≠ 0. (15)

Thus, we are changing the phase in all but one pixel, which is
equivalent to changing the phase in only one pixel. With this choice
of f x( ), it follows that if x 0≠

⎧
⎨⎪
⎩⎪

g x y
y
y x( , ) =

0 if | | = 0,
− 2 if = − ,
− 1 otherwise. (16)

Thus, according to Eq. (4), we must choose H(A) such that

H H H(0) = 1 (−1) = 0 (−2) = 0.͠ ͠ ͠ (17)

An option would be

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟H A δ A δ A δ A( ) ∝ ( ) + − 1

3
+ − 2

3
.

(18)

That is, we need to take three measurements, namely with A=0, A = 1
3 ,

and A = 2
3 . This procedure is the same as in quantitative Zernike phase

contrast. However, if one changes the phase in only one pixel, the
variation in the measured intensity patterns will be very small (unless
the amplitude in that one pixel is very large), and thus the method can
be very sensitive to noise. By choosing K small but finite, one can still
obtain a non-iterative reconstruction, while having a larger diversity in
the intensity measurements. However, one would then need to take
more than three measurements.

2.5. Reconstructing the twin image O x(− )*

The reconstruction formula in Eq. (1) was chosen such that in the
autocorrelation integral of Eq. (3), O O0 x( )* ( ) is sifted out. This means
that the argument of the delta function in Eq. (5), which we defined to
be g x y( , ), should vanish only in x 0= or y 0= . However, one may ask
if it is also possible to sift out O Ox 0(− )* ( ) instead. This would mean
g x y( , ) would have to vanish in x y= − . We can achieve this by
choosing as our reconstruction function

∑O O I H A ex 0 x(− )* ( ) = { }( ) ( ) .
A

A
πiAf x−1 2 (− )

(19)

In this case, we get for the argument of the delta function

g f f fx y x y y x( , ) = ( + ) − ( ) + (− ). (20)

Indeed one can simply verify that this function vanishes if x 0= or
x y= − (assuming f 0( ) = 0 as before). Now we need to make sure that
f x( ) is chosen such that g x y( , ) vanishes only in these points. One can
substitute a x y= + , b x= − to get

g f f fa b a a b b( , ) = ( ) − ( + ) + ( ). (21)

This equation has, aside from a minus sign, the same form as Eq. (6).
Also, we impose the same condition on f a( ): it should be such that
g a b( , ) vanishes only for a 0= or b 0= . Thus, the function f x x( ) = | |K
is also in this case a valid solution. Because f fx x(− ) = ( ), the difference
between the reconstruction formulas of Eqs. (1) and (19) is merely the
sign in the complex exponential.

2.6. Geometric interpretation using 3D autocorrelation functions

We can interpret the results found previously in a geometric way
using autocorrelation functions. To do this, we interpret the set of

Fig. 6. Plots of the reconstruction error for the microscopy setup in case K=0.1 and K=0.3. It is seen that once the sampling range NΔA and the sampling interval ΔA exceed certain

thresholds, the reconstruction is successful.
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intensity measurements as one 3D object I x x A( ′ , ′ , )D3 1 2 , rather than a
sequence of 2D objects I x x( ′ , ′ )1 2 . We can transform the two-dimen-
sional object O x x( , )1 2 into a 3D object O x x x( , , )D3 1 2 3 by defining

O x x x O x x δ x f x x( , , ) = ( , ) ( + ( , )),D3 1 2 3 1 2 3 1 2 (22)

which means we stretch out O x x( , )1 2 over a surface x f x x= − ( , )3 1 2 . For
example, in the case of paraxial focus variation we have
f x x x x( , ) ∝ +1 2 1

2
2
2, which means O x x( , )1 2 is stretched out onto a

paraboloid. With this definition of O x x x( , , )D3 1 2 3 we find that

Fig. 7. Simulation results showing how the sampling interval ΔA and the sampling range NΔA affect the reconstruction quality for different K in case we choose f x x( ) = | |K . We assume

the CDI setup as in Fig. 1(b).
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∬I x y A I x x O x x e e x x

O x y A

( ′ , ′ , )≔ ( ′ , ′ ) = ( , ) d d

= { }( ′ , ′ , ) .

D A
πi x x x x πiAf x x

D D

3 1 2 1 2 1 2
−2 ( ′ + ′ ) 2 ( , )

1 2

2

3 3 1 2
2

1 1 2 2 1 2

(23)

Since I x x A O x x A( ′ , ′ , ) = { }( ′ , ′ , )D D3 1 2 3 1 2
2, I x x x{ }( , , )D

−1
3 1 2 3 gives the

3D autocorrelation function of O x x x( , , )D3 1 2 3 . In Eq. (5) we evaluate this
autocorrelation function in x f x x= − ( , )3 1 2 (and in Eq. (19) we evaluate
it in the surface x f x x= (− , − )3 1 2 ). In the derivation that followed, we
essentially demonstrated that this region of the autocorrelation func-
tion is directly proportional to the original object O x x( , )1 2 (or in the
case of Eq. (19) to its twin image O x x(− , − )*1 2 ).

There are two reasons why this interpretation may be valuable:

1. It allows for a visual interpretation (see Fig. 3) of why certain choices
of f x x( , )1 2 may or may not work, and, using the theory of sampling
in the Fourier domain, one may better understand how the discrete
sampling of A may affect the object reconstruction.

2. It makes more obvious the link to other reconstruction methods that
also obtain a direct reconstruction of the object from a certain region
of the autocorrelation function. These methods would include digital
holography, and, when speaking in the context of CDI, Fourier
transform holography [11] in particular. In all these methods, there
is a region that corresponds to the original object O x x( , )1 2 , and a
region that corresponds to its twin image O x x(− , − )*1 2 .

3. Simulations

In Section 2.2 we discussed the importance of a correct sampling
interval ΔA and sampling range NΔA. In Figs. 5 and 7 simulations are
shown for respectively the microscopy setup (Fig. 1a) and the CDI
setup (Fig. 1b). The difference is that in the microscopy setup we
reconstruct the Fourier transform O x( ′)∼

from which we find the
complex-valued object O x( ), whereas in the CDI setup we reconstruct
O x( ) directly.

If we choose f x x( ) = | |K , then for K=0.1 it is shown in Figs. 5a–c for
the microscopy setup how the sampling interval and the sampling
range affect the quality of the reconstruction. Indeed, if K is increased
to K=0.3, it is shown in Fig. 5d that a larger sampling interval is
required by increasing N. In Fig. 6 it is shown that there is indeed a
relatively sharp threshold for ΔA and NΔA for the reconstruction to be
successful. The functional we have used to characterize the reconstruc-
tion error is

∫
∫

E O
O cO

O
x

x x x

x x
[ ( )] =

| ( ) − ( )| d

| ( ) | d
.recon

recon
2

2
(24)

Here, c is a complex constant that minimizes E. This assures that if
O e Ox x( ) = ( )iθ

recon , the error is 0 as it should be. c is found by solving
E cd /d = 0, which gives

∫
∫

c
O O

O

x x x

x x
* =

*( ) ( )d

| ( ) | d
.

recon

recon
2

(25)

In Fig. 7 we see that for the CDI setup we need significantly more
measurements to reconstruct the object correctly. This is because in the
CDI setup we reconstruct O x( ) directly, while in the microscopy setup
we reconstruct O x( ′)∼

from which we can find O x( ). It should be noted
that O x( ′)∼

peaks sharply at x 0′ = , whereas O x( ) does not peak sharply
anywhere. The reconstruction error that comes from integral of Eq. (4)
is (for x 0≠ )

∫ O O H f f fy x y x y y x y( )* ( + ) ( ( + ) − ( ) − ( ))d .͠
y 0≠ (26)

In case we reconstruct O x( ) directly (as in the CDI setup), the value of
O Oy x y( )* ( + ) has the same order of magnitude for all y, so the
reconstruction error is mainly determined by how sharply H g x y( ( , ))͠
peaks at y 0= for all x 0≠ , which is determined by the sampling range

NΔA. When reconstructing O x( ′)∼
however (as in the microscopy setup),

the error term is

∫ O O H f f fy x y x y y x y( ′)* ( ′ + ′) ( ( ′ + ′) − ( ′) − ( ′))d ′.͠∼ ∼
y 0′≠ (27)

In this case, the value of O Oy x y( ′)* ( ′ + ′)∼ ∼
peaks sharply at y 0′ = and

y x′ = − ′, because O x( ′)∼
peaks at x 0′ = . The reconstruction will there-

fore be approximately proportional to

O O H O O H f0 x x 0 x( )* ( ′) (0) + (− ′)* ( ) (−2 ( ′)).͠ ͠∼ ∼ ∼ ∼
(28)

Thus, whereas when reconstructing O x( ) we have to make sure that
H g x y( ( , ))͠ peaks very sharply at y 0= , when reconstructing O x( )∼

it
suffices to make sure that H g H fx x x( ( ′, − ′)) = (−2 ( ′))͠ ͠ is small for
x 0′ ≠ . This is a much less strict requirement, meaning the required
sampling range for reconstructing O x( ′)∼

is much smaller than the
required sampling range for reconstructing O x( ). If H f x(−2 ( ′))͠ does
not decrease quickly enough with increasing x| ′|, we will get an error in
reconstructing the lower spatial frequencies of O x( ). The mixing of
amplitude and phase information which is observed in Fig. 5b confirms
this.

We have noted before that a high 0th diffraction order is beneficial
for phase contrast methods such as Zernike phase contrast imaging [9],
quantitative Zernike phase contrast imaging [10], and the focus-
variation method [14,16]. Indeed, seeing how these methods are very
much related to our proposed phase retrieval method, it is not
surprising that a high 0th diffraction order is also beneficial for our
method.

4. Conclusion

We have derived a non-iterative phase retrieval method where by
modulating the phase in one plane (real space or Fourier space) by
ei πAf x2 ( ) and measuring the intensity patterns I x( ′)A in the dual space, we
can reconstruct the object transmission function. For the phase
modulation function f x( ) we found a general requirement: it has to
be a composition of a vector norm and a monotonically increasing
subadditive function. A particular set of functions that satisfy this
requirement is f x x( ) = | |K , K ∈ (0, 1), and in case we choose K → 0 the
method reduces to quantitative Zernike phase contrast as in [10].
Moreover, we have shown how this method can be interpreted as
obtaining an object reconstruction directly from a part of an auto-
correlation function, as is also the case in Fourier transform hologra-
phy [11]. We have discussed how the sampling function H(A) affects
the reconstruction, and illustrated this statement with simulations. The
method can be applied in either a microscopy setup or a CDI setup,
though we have shown that the number of intensity measurements
required for successful object reconstruction is significantly larger for a
CDI setup. Given the general formulation of the phase retrieval method
which allows for plenty of customization, the applications may be
diverse.
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