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THEORETICAL EXPLANATION OF THE 
MECHANO-SORPTIVE EFFECT IN WOOD 

T. A. C. M. van der Put 
Stevin Laboratory of the Faculty of Civil Engineering 

Delft University of Technology, The Netherlands 

(Received March 1988) 

ABSTRACT 

It is possible to explain the so called mechano-sorptive effect that occurs in wood by moisture 
cycling by an earlier derived general deformation kinetics model, as a bond breaking process of 
secondary bonds, causing internal shifts of adjacent layers with respect to each other, due to sorption. 

K<~~~~vor.d.s: Wood, timber, moisture changes, mechano-sorptive effect, visco-hydro-elasticity. 

NOTATIONS 

t is the strain; t,, elastic strain; E,, viscous strain 
a is the stress; (T,, the stress at site i; a,,, the mechano-sorptive part, a,,, the creep 

part of the stress; a,,, the flow stress at site i 
K, is the modulus of elasticity at site i. K = K,  + K, + K, + . . . , is the compound 

modulus of the matrix and the sites in a cross section 
M is proportional to K 
A,, B,, C,, Pi are constants at constant temperature 
w is the moisture concentration; we, concentration at the end; w,, total difference 

in m.c. 
p is the concentration of mobile bonds 
k is the reaction constant, k, for the forward and k, for the backward reaction 
a = 23D/d, where d is the diameter of a round specimen and D is the diffusion 

coefficient 

INTRODUCTION 

In van der Put (1 986) the mathematical derivation of a creep and damage model 
is given, solely based on the chemical reaction equations of plastic deformation 
at the deformation sites, and the transmission of stresses by the surrounding elastic 
material. This resulted in the following equations (with an elastic part t, due to 
the elastic stress redistribution and a viscous part t, due to the stress change by 
the reacting bonds): 

dt - ir , 
- - i = i,, + i,, = - + (A, + B,t,)sinh(a,P,(l - Citi)) 
dt Kl (1 

This can be visualized as a parallel system of Maxwell elements (this is a spring 
with a dashpot on top), where a, is the stress on element i; ti is the strain of the 
nonlinear dashpot and K, (the modulus of elasticity at the site) is the spring 
constant. A,, B,, C, and P, are constants at constant temperature. The terms with 
B, and C, give the small structural changes. As discussed in van der Put (1986), 
Citi is very small and can be neglected ifan ultimate strain condition is introduced. 
Hardening, therefore, is due to the influence of the parallel elements and a, has 
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the form of a, = a - ME, where M is proportional to the spring constants of the 
parallel elements and M >> C,, during most of the lifetime. The influence of C, 
is only noticeable at the end state of the element by a decrease in the overall 
stiffness. 

In most experiments, one of these processes controls the overall behavior. This 
means that all dashpots, except one, are frozen and a system of parallel springs 
with one Maxwell element remains. The parallel springs act as one spring with 
K = K, + K2 + K3 + . . . , and there remain only three elements (one spring K 
in parallel with a Maxwell element, being a spring and a dashpot in series) that 
have to be regarded. 

When, in a stress relaxation test, this three-element model is loaded to a, at 
strain t, at time to, then the Maxwell element (spring with dashpot) is loaded to 
a,, and the parallel spring receives the stress a, - a,,. This remains unchanged 
when by relaxation, stress a, on the Maxwell element decreases. 

For the Maxwell element: i = 0, or: ir, = -K,i, or: 

CHANGING MOISTURE CONTENT 

At changing moisture content conditions, there is an extremely rapid reaction 
of water with the hydrogen bonds, such that a low activation energy and volume 
can be expected, and the equation for relaxation, Eq. (2) may be approximated 
to: 

ir, + K,A sinh(Pa,) u, + K,A1wPa, = 0 (3) 

where sinh(Pa,) - Pa, ,  A = A'w, and w is the change in moisture content. It is 
assumed that there is no swelling, or that the strain rate is directed in such a way 
that it follows the free swelling rate in order to achieve true relaxation. For creep, 
the same equation applies with K, replaced by K (1/K = l /Kl + 1/K2). The 
solution of this equation is: 

if w is the suddenly applied difference (step change) in moisture concentration. 
The rate of bond breaking can also be expressed as: 

p = - kpw (5) 

where p is the concentration of mobile bonds and k is the reaction constant, having 
as solution: 

and it is seen that this result is identical to Eq. (4). Consequently, the stress 
supported by the reactive bonds is proportional to the number of bonds and the 
ratio plp, can be determined from the stress relaxation test (or from creep tests). 
This derivation proves the assumption made in Krausz and Eyring (1975) that p 
is proportional to a in a relaxation test. 
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These equations apply for very thin specimens, where the step change of the 
moisture content is approximately possible. For thicker specimens, the moisture 
has to diffuse into the specimen. From Fick's second law, the concentration rate 
for a long, round specimen is: 

where r denotes the radial distances of the points to the center. The solution of 
this equation is (Krausz and Eyring, 1975): 

w 4 "  4Wn2 
J o + n r  exp ( - d= t) 

- W o  = ' - d = +nJl(+nd) 

where w, is the concentration surrounding the specimen, D is the diffusion coef- 
ficient, +,, is the n-th root of the zero-order Bessel function, d the diameter of the 
specimen and J, is the Bessel function of the order n. 

Because the mean strain in a specimen depends on the mean stress, it can also 
be expected that the overall stress relaxation depends on the mean stress in the 
specimen. Then only the mean concentration is of importance, as also follows 
from tests. The average concentration is therefore: 

" 4 
I - n = l  2 7 +n exp (-F t)] (9) 

Substituting ij in Eq. (3) or Eq. ( 5 )  will give the measured mean stress or bond 
decay. Because only the first term of the summation is of importance, and the 
other terms may be neglected, the equation becomes: 

or for the stress with c l  = 1 :  

where +, = 2.405 is the first root of the Bessel function. 
For long times, the exponential function is approximately zero, so this line 

becomes: 

The intercept of this line with the time axis is thus d2/DqI4 showing the time lag 
due to diffusion. For very thin specimens, this time lag is not noticeable and Eq. 
( 1  2) is equal to Eq. (4). Equation (12) applies exactly for human hair (Krausz and 
Eyring, 1975), where there is no swelling or shrinking during wetting and drying. 
At moistening, the stress quickly dropped to about one third of the applied value. 
At drying, the stress totally returns to the initial level before wetting in the relax- 
ation tests. This work, therefore, is due to the chemical energy ofbond reformation, 
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and there is no need to search for any other source of energy. This is in contrast 
to what is assumed for wood, that the energy for the slight restoring of the stess 
at wetting is delivered by the heat of diffusion. 

Tests with alkali solutions on cotton, which has a comparable structure to wood, 
showed an instantaneous relaxation as rapidly as the solution could be added. 
After that, a slower process occurred, with the conversion of the crystalline regions 
into an amorphous structure. The instantaneous stress reduction indicates a very 
fast reaction where equilibrium is directly reached according to the reaction (with 
reaction constants k,and k, for, respectively, the forward and backward reactions): 

or: 

or: 

where Aplp, = (p, - p)/po So Aplp, is about proportional to w (Aplp, a l), but 
this initial linear relation bends off to a limiting value at high values of w according 
to the measurements (Krausz and Eyring, 1975) and this is explained by Eq. (1 4). 
The limiting value of Aplp, for alkali hydroxides at high concentration seems to 
approach unity according to Eq. (14) (when p - 0), indicating that the structure 
of cotton may be completely accessible for alkali reagents. This reaction with both 
the amorphous and crystalline regions followed also from X-ray diffraction ex- 
periments. Because Ap is not noticeably dependent on the temperature, the en- 
thalpy will be small. 

For strong acids Ap/p, approaches a limiting value well below 1, being of the 
same order as the quantity of disordered regions reported from X-ray measure- 
ments. The value (Aplp,),,, can be, therefore, expected to be a direct measure of 
the accessibility of the amorphous regions. The value of (Aplp,),,, increases linearly 
with the temperature, in concert with a negative entropy increase, which shows 
the equilibrium between ordered and disordered regions. The equilibrium constant 
IC, is: 

and the energy of cellulose conversion, E, - E, = - RT.In(&), was found to be 
4 kcal/mol. 

The same can be expected for wood, because acids affect only the amorphous 
regions and because the limiting value (AP/~,),~, is far below 1, there is no cross 
section that is totally disordered and the ordered region is the continuous phase. 

The nature of the reagents and the rapidity of the reactions indicate an attack 
of the secondary hydrogen bonds between the cellulose chains. After removal of 
the reagents, the bonds are unable to return to their original positions, but combine 
with new neighbors in a relaxed position. 
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The influence of water on the hydrogen bonds is comparable with the influence 
of acids because only the amorphous regions are affected, and Aplp, will be pro- 
portional to w. Although there is an immediate reaction with water, there is no 
instantaneous stress drop in a relaxation test because the water must diffuse into 
the structure, and the rate of diffusion determines the reaction rate with the 
hydrogen bonds. There is, therefore, an equilibrium, and any change of moisture 
content gives a reaction close to the equilibrium in the rate ofthe moisture supply. 
For the reaction near equilibrium, Eq. (13) is: 

- p  = pwk, - k,(p, - p) = pkdw - w,) (16) 

where: w, = k,(p, - p)/(kf-p) is the equilibrium moisture content (where p = 0). 
A moisture increase from zero to w,, is represented by Eq. (9). The first expanded 

term, with a rounding off to account for the other terms, is approximately: 

where a = 4D1,b,~/d~ = 23D/d2, and w, is the maximal amount of adsorbed water. 
For a loaded test specimen, with a moisture content w, that is placed in a dry 

environment, causing a moisture content of w, - w, after an extended time, Eq. 
(1 7) is modified to: 

and the solution of Eq. ( 5 )  becomes: 

or with Eq. (18): 

where: In(pf/p',) = - k(w, - w,)t is the relaxation (or creep) at the constant equi- 
librium moisture content w, - w,. 

The same solution is obtained from Eq. (3) and the equations can be read by 
replacing p by cr and with k = K,AIP for relaxation and k = KA'P for creep. So 
Eq. (20) for desorption is: 

It is seen that In - . - = c.(w, - w) is a straight line, that is exactly the same (;a 
as given in Takemura (1 966), and Fig. 1, where w, - w = the amount of desorbed 
water. 

For adsorption, when a loaded test specimen with a moisture content w, is 
placed in a wet environment, causing a moisture content of w, after a long time, 
Eq. (1 7) is modified to: 
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FIG. 1 .  Comparison of the theoretical Eq. (21) with measurements of [3]. 

ij = w ,  - (wI - wO).exp(-at) 

and the solution of Eq. ( 5 )  is: 

or: 

or: 

where: In(p'/pl,) = -kw,t, is the relaxation at constant maximum moisture content 
w,. This equation is identical to Eq. (20) if the adsorbed amount: w - w, can be 
regarded as a negative desorption. Eq. (20) shows that there is an increase in 
deformation on drying, and Eq. (25) shows a restoring of the bond structure on 
rewetting. These phenomena are caused by the sorption effects and can explain 
the mechano-sorptive effect. 

For the derivation of this effect, a three-element model was used consisting of 
a Maxwell element and a parallel spring. The nearly total unloading in the relax- 
ation test by a high moisture change as shown in Fig. 1 ,  demonstrates that both 
springs have dashpots. There may be another very weak parallel spring if there 
is hardening, but this can be neglected as a first approximation and the behavior 
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can be described by two parallel Maxwell elements. For large stresses, the deri- 
vation is more complicated because the linearization of Eq. (3) is not allowed. Of 
interest for mechano-sorptive effects, is creep loading at sufficiently high stresses 
where sinh(x) can be approached by (exp(x))/2. The strain rate equations for the 
two nonlinear Maxwell elements 1 and 2 are then: 

In these equations a, = a - a ,  or ir, = 5 - ir, = -ir,, because the total stress a is 
constant. Elimination of i gives: 

where 1/K = 1/K, + 1/K2. 
Assuming for simplicity the same sites in the different layers for the mechano- 

sorptive effect, or 9 ,  = P, = 9, Eq. (28) becomes (a, = a - a,): 

where C = d m ,  and /3 = d m .  SO: 

The integration of this equation has the form: 

or with: w = w, + (w, - w,)(l - ec"'), where we is the moisture content at the 
end, this is: 

or in terms of Eq. (29) becomes: 

Pa,  Pa  1 - - - + - 1n(A',/A1,) = C, - ( P K ~ " ~ / ~ ~ A ' , A ' ~  
2 4 4  

It can be seen that for very small values of a, because eca' - 1 -at, the right- 
hand term of this equation can be written as: 
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and the mechano-sorptive effect is not noticeable. Calling: 

p = ' P ~ e " ' / ~ a .  wet + C2 

and 

Eq. (30) is: 

'Pa, 'Pa 1 + - 1n(A',/At2) = arctanh(exp(-p - q)) 
2 4 4  

and: 

Pa,  Pa  1 + - 1n(At,/A',) = 
2 4 4  

It is seen in this equation that for infinite time, x - GO, tanh(x) - 1, and ln(1) = 

0, such that Eq. (32) is: 

'Pa, - 'Pa, + 1n(A1, /A1,) - 0 (33) 

and the stress distribution is in accordance with flow at the constant strain rate 
test (van der Put 1986). For higher stresses, creep fades into viscous flow of both 
Maxwell elements at extended times, while for short times the creep influence is 
small and the mechano-sorptive effect may dominate. In that case p is small and 
q large and Eq. (32) is: 

and Eq. (32) is: 

a 'Pa 1 + - 1n(A1,/A',) = 
2 4 4  

or: 

'Pa, - 'Po, + 1n(A',A1,) = -2 In tanh - - 2 In 1 + --- ( (;)) ( s i n ~ ( q J  ( 3 5 )  

If one of the stresses p.e. a ,  starts to flow: 'Pa, = 1n(2i/A1,), then this equation 
becomes: 
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and because the mechano-sorptive effect is a matter of bond breaking and bond 
reformation in a possible shifted position, this equation gives the strain rate for 
slip due to the mechano-sorptive effect when one of the elements flows. Because 
Eq. (36) can be written: 

the slip due to the mechano-sorptive effect can be seen as a lowered flow value 
a,, of element 2. 

Equation (35) can be split into a small creep part and a mechano-sorptive part. 
So: 

'Pa,, - 'Pa,, = -2 In 1 + - ( sin:(qJ 

'Pa,, - 'Pa,,= - 2 l n  tanh - - In - , ( (9 (:::) 
because: ln(tanh(x)) = ln((ex - e-")/(ex + e-")) = ln((1 - e-,")/(l + e-,")) 

ln(1 - 2e-*") " - 2e-,", is Eq. (39): 

'Pa,, - 'Pa,, + 1n(At,A1,) - 4e-q 

= Pal, - 'Pa,, - 'Pa,, + 'Pa,, 

= C4exp(- ' P ~ e & / ~ m .  (a, - w)/a) (40) 

where: C, = 'Pa,,, - 'Pa,,, + 1n(A',/A1,). The equation shows that the stresses 
are limited by the ultimate values. If this kept in mind then, because the strengths 
of the elements will not be far apart and In(At,/A',) will be small, Eq. (40) is 
approximately: 

'Pa,, - 'Pa,, ('Pa,,,, - ' P a 2 , 0 ) e x p ( - ' P ~ e " q / 2 ~ ~ ( ~ 0  - a)/a) (4 1) 

Equation (38) is: 

where C, is determined by the zero values of the stresses: 

or neglecting smaller terms the equation will approximately be: 

'Pazc - 'Palc In 1 + ('Pa,,, - ~ a ~ , ~ ) ' P ~ ~ w , t  



228 WOOD AND FIBER SCIENCE, JULY 1989, V. 21(3) 

SIMPLIFICATION OF THE MODEL 

For the purpose of explaining the behavior for creep at high moisture content 
cycles and higher stresses, it is sufficient to neglect the logarithmic creep and to 
use the property of the nonlinear Maxwell elements of an approximate elastic- 
full plastic behavior. This model can be compared with the model of Mukudai 
and Yata (1 986) that consists of two parallel strings, each consisting of a Maxwell 
element and a Voigt element (i.e. a dashpot and a parallel spring) in series. This 
is totally equivalent to a model with four parallel Maxwell elements, and these 
four parallel Maxwell elements can be replaced by two parallel Maxwell elements 
with nonlinear dashpots since those dashpots contain one more parameter than 
the linear dashpots. It can be seen that each of the two strings of elements of 
Mukudai and Yata (1986) can be replaced by a spring attached to a nonlinear 
dashpot as was assumed for the derivation of the sorption equations. The loading 
of the two parallel strings in a creep test in the model (Mukudai and Yata 1986) 
was done by a running block that moved the total load between the strings by 
means of a hygroscopic element. This block may, however, be removed because 
this sorption effect is given by Eq. (20) or (40) and the behavior of the hygroscopic 
material is exactly the same as can be seen in Eq. (19), where the part: (kw,/a)(l 
- exp(-at) is identical to the time function of that element. The swelling and 
shrinkage are proportional to the sorption of the amount of water and have this 
form: w = w,(l - exp(-at)). In the model of Mukudai and Yata (1986) it is also 
assumed that the viscoelastic constants change according to this function; however 
Eq. (1 9) and Eq. (24) immediately show creep at the equilibrium moisture content 
of the end states, and also this changing constants function may be removed. The 
model of Mukudai and Yata (1986) shows that there are two diffusion processes, 
one slow process of sorption of water in the whole specimen with a small value 
of a = 23D/d2 = 0.06 of Eq. (30), and one quick process with a larger value of a 
= 0.5, affecting the load bearing bonds. This means that the sorptive force redis- 
tribution probably does not interact with the forces due to differential swelling or 
shrinking of the layers, and the swelling and shrinking forces will develop after 
the sorptive force redistribution. 

In the following scheme, the influence of moisture cycling is given where the 
two elastic-plastic elements consist of 11, the layers with a dominating slip at 
desorption and I, layers with a pronounced slip at adsorption which show, for 
this scheme, (in point A) more shrinking and swelling than the layers of 11. 

I An extcrnal stress P 

I- possibility of slip in both directions 
A 

Pz initial loading of element I and 11. P = P, + P2 (internal stresses) 

For an initially wet specimen, the first drying cycle will give: 
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I I1 

Pl 1 1 p2 
P I  1 T P, sorptive bond breaking and reformation in a shifted position of 11. 

(ps 1 T P,) force due to shrinking of element I. 

P I  1 1 P', 

Total forces: P, may reach the order of P, in 11. However, in I: P, + P, - P > 
P,, , where Pul is the force for flow of I. So: P',  = P,, and P', = P - Pul and there 
will be a large flow of I and a large slip of 11, to be calculated from a hardening 
term or by the small parallel spring that has been thus far neglected. The force P, 
cannot occur because of the flow of element I. 

For small values of P, p.e. for P = 0, P, will not develop because the bonds 
are not stressed and will, after breaking by a moisture change, reform in the same 
position. If there is some interaction of this bond breaking and reformation with 
the force of differential shrinking, then P, may eventually occur but will be small, 
having the opposite sign against the force of shrinking. Because the bond breaking 
process is eight times faster than the development of the shrinking stresses, the 
process will be finished before the shrinking stresses occur, and it can be expected 
that an unloaded specimen will get only the internal shrinking stresses on drying 
and wetting (swelling stresses). 

For rewetting the specimen, after the first drying cycle, the forces will be: 

I I1 
P~~ 1 1 P - PUl initial values due to first drying cycle. 

Pm T 1 Pm due to sorptive bond and slip restoring I1 and slip of 1. 

(ps T 1 Ps) force due to swelling of element 1. 

P'l 1 1 P'z 

Total forces: in general P', = P, - P,, < P,, except for unloading and P', = P 
- P,, + P, < P,, and the recovery of the deformation will be approximately: 
P,,/Kl. Also in the next drying and rewetting cycles, the increase and decrease of 
the deformation will be approximately this amount, and the increase of the max- 
imal deformation and the decrease of the amplitude will depend on the slow creep 
process, giving an additional stress redistribution. Stresses due to differential 
shrinking and swelling will have an influence at a later stage. 

For high loading P', may reach P,,. At this point there is an increase in flow 
and slip in each cycle and the maximum deformation will not tend to a limiting 
value but increases until fracture. This is also known from measurements p.e. in 
Hearmon and Paton (1984) where, for P of about one eighth to one quarter of 
the ultimate load, this boundary of flow of element I1 is reached for bending. An 
analogous scheme for an initially dry specimen on first wetting is given below. 

I I1  
pl 1 1 P, initial values. 

Pm T 1 P, sorptive bond restoring of I1 and slip of I. 

(Ps T 1 P,) force due to swelling of element I. 

PI 1 1 p12 

Total forces: P', = P,, causing flow of element 11. P', = P - P,,. Element I slips 
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and will get the swelling deformation later, because the swelling force will not 
develop due to the flow of element 11. 

If the differential swelling movement is dominant for the large deformation, 
then an unloaded specimen will also give a flow of one element at large moisture 
changes. Because of the restraint of the other element, the large flow movement 
is against the swelling or shrinking movement, and is hardly noticeable as external 
movement. 

For redrying the specimen, after the first wetting cycle, the forces will be: 

I I1 

P Pu2 1 1 P,, initial values. 

pm 1 T P, sorptive bond breaking and reformation causing slip in 11. 

(Ps 1 T Ps) force due to shrinking of element I. 

P'l 1 1 P'Z 

Total forces: P', < P,, in general, and the increase of deformation will be of the 
order of Pm/K,. Also in the next drying and rewetting cycles the increase and 
decrease of the deformation will be approximately this amount, and the increase 
of the maximal deformation at each cycle will depend on the slow creep process 
giving an additional stress redistribution. For greater loadings P', may reach P,, 
and the stress situation of first drying occurs. In that case, however, there will 
always be an increasing slip at each cycle leading to fracture when the ultimate 
strain condition (van der Put 1986) is reached. 

The schemes given here for tension can be the same for compression, because 
other layers may be involved for compression. For compression, the interaction 
with the lignin can be more pronounced and the swelling and shrinkage of element 
I1 may then dominate above element I. This will be investigated as part of a 
program of work sponsored by the Commission of the European Economic Com- 
munities. For bending, the situation is complex because every layer has another 
plastic and elastic deformation, and because of the different effects for compression 
and tension, there is quite a change of the internal lever arm. 

CONCLUSION 

It can be concluded that it is for the first time possible to describe the mechano- 
sorptive effect by the kinetic theory, and a preliminary indication is given of 
dominant model parameters when external loads produce a tensile or compressive 
stress in the fibers. 

The model predicts that for large dimensions "dm of the test specimens, when 
a = 23D/d2 is sufficiently small, there will be only a small force exchanged between 
the layers, and the sorption effect is of minor importance. 
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