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Music is the pleasure the human soul experiences from
counting without it being aware that it is counting.

— Gottfried Leibniz

P R E FA C E

The Age of Enlightenment, which roughly took place between 1650

and the French Revolution, is held to be the source of critical ideas,
such as the centrality of freedom, democracy and reason as primary
values of society. It was a departure from the Middle Ages of religious
authority, guild-based economic systems, and censorship of ideas
toward an era of rational discourse and personal judgment, republi-
canism, liberalism, naturalism, scientific method, and modernity.

Open Design methodology, which is based upon the doctoral thesis
of van Loon [1998] entitled ‘Interorganisational Design’, is centered
around these values as, according to Open Design philosophy:

The design process of creating a new building or a new
urban area should, as far as possible, be open and trans-
parent. All stakeholders are to be treated equally. Pow-
erless stakeholders and laymen get the same ‘rights’ in
the design process as powerful stakeholders and experts.
Manipulation and abuse of knowledge power has to be
avoided where possible. (Lex A. van Gunsteren, valedictory
lecture 2003)

Open Design makes use of decision-oriented mathematical models
where the input is a reflection of each decision maker’s interests in the
design, i.e. their preferences, and the output is the result of applying
mathematical algorithms to the input. Thus, the process becomes
both transparent, as the model is a glass box, and non-manipulative,
as the model owner refrains from incorporating his own personal
preferences (see Figure 1).
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Figure 1: The Open Design approach improves transparency and reduces
room for manipulation.
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Incorporating decision makers’ preferences into mathematical mo-
dels means that preferences need to be modeled mathematically. This
is not new. The Pythagorean discovery that the pitch of a note depends
on the length of the string which produces it, and that concordant
intervals in the scale are produced by simple numerical ratios was
the first successful reduction of quality to quantity, the first step to-
wards the mathematization of human experience. In the domain of
architecture, Le Corbusier centered his design philosophy on systems
of harmony and proportion. Le Corbusier’s faith in the mathematical
order of the universe was closely bound to the golden ratio1 and the
Fibonacci series, which he described as ‘rhythms apparent to the eye
and clear in their relations with one another’.

Van den Doel [1978] mentions three schools of thought on the issue
of incorporating preferences: the Pigovian, the Bersonian and the
Paretian approach. From these, van Loon [1998, p. 84] chooses the
Paretian approach using the following motivation:

The Paretian approach is eminently suitable for optimi-
sation in interorganisational design. It avoids utility mea-
surement, which is difficult to perform, but does not lapse
into the subjective evaluation of utility.

At that time, avoiding preference measurement was a valid mo-
tivation as classical methodologies for measuring preference lack a
mathematical foundation. A new theory enabling preferences to be
taken into account in a mathematically correct way has been devel-
oped by Barzilai [2004, 2005]. This thesis addresses the challenge of
properly integrating preferences in Open Design methodology using
Barzilai’s theory, because early experiments [Binnekamp et al., 2006,
pp. 345-350] showed difficulties in properly doing so.

The relevance of this thesis is two-fold:

1. The quality of decisions is improved, since only feasible designs
are taken into consideration. In the current architectural practice
by contrast, designs that are initially chosen turn out to be

1 Two quantities are in the golden ratio if the ratio of the sum of the quantities to the
larger one equals the ratio of the larger one to the smaller.
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infeasible more often than not, making it necessary to introduce
all kinds of rather arbitrary modifications.

2. The acceptance of decisions is improved, since all decision makers
can see that their interests are genuinely taken into account.
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1I N T R O D U C T I O N

Design in the domain of architecture is a complex process where suc-
cess or failure depend on overcoming many difficulties. A substantial
amount of these difficulties relate to two prominent characteristics of
choice making in architecture: 1) multiple designs can fit into one in-
tended purpose, which raises the question: how to choose the design
that fits best, and 2) a multitude of decision makers have a say in the
design process, which is the problem of group choice making.

It is the field of decision theory which is concerned with the prob-
lems of identifying the best choice to take. Its practical application is
called decision analysis, which aims at finding tools, methodologies
and software to help people, or groups of people, make better choices.

An investigation of classical decision analysis reveals a wide variety
of methodologies which, however, produce contradictory results. This
indicates that they all, with possibly one exception, must be incorrect!
In physics, one can ask a group of people to individually perform
an experiment, say determining the ratios of the weights of a set of
objects, and expect each of them to return with the same results (apart
from some minor measurement error). In other words, in the material
sciences we would not consider using non-equivalent methodologies
that produce conflicting results. In the social sciences however, of
which decision theory is a part, this is commonplace. As in physics,
in decision theory, of all non-equivalent methodologies no more than
one can be correct.

The scientific foundation of selection (choice) is preference mea-
surement. The purpose of measurement, i.e. representing variables by
scales, is to enable the application of mathematical operations to these
scale values. Scales are mappings from empirical objects to mathemati-
cal objects that reflect specific empirical operations which characterize
a given property to corresponding operations in the mathematical
system. In order for such mathematical operations to be applicable,

1



2 introduction

it is necessary to specify which property (e.g. length or mass) of
the objects is being measured since it is not possible to ‘add objects’
without knowing whether what is being added is their mass, length,
temperature, etc. The only property of relevance in the context of the
mathematical foundations of decision theory is preference regardless
of how it is named, including utility, value, etc.

How can we determine the correctness of a decision analysis meth-
odology? Since the only property of relevance in the context of the
mathematical foundations of decision theory is preference, decision
making is founded on preference measurement. The correctness of
a decision analysis methodology is determined by the correctness
of the scales used for measuring preference. Recall that the purpose
of representing variables by scales is to enable the application of
mathematical operations to these scale values. As such, scales can be
classified by the type of mathematical operations that they enable.
Barzilai [2004, 2005] has shown that all of the classical models of the
theory of measurement generate scales to which the operations of ad-
dition and multiplication are not applicable. Classical decision theory
methodologies produce meaningless numbers, rendering them use-
less. The methodology developed by Barzilai [2005] called Preference
Function Modeling (PFM), by contrast, has a mathematical foundation
allowing the operations of addition and multiplication on the scales
it generates.

Rather than following the classical theory of decision making and
integrating preference in Operations Research (OR) techniques, our
Open Design group uses Linear Programming (LP) models to solve
design problems in the domain of architecture [Binnekamp et al.,
2006]. Each stakeholder represents his interest as an objective function
to be optimized. A linear program is then constructed where the
constraints are these individual objective functions. The individual
objective functions are aggregated in the linear program. The end
result is a single objective function (as is typically the case in multi-
objective optimization) that aims to reflect the goals of all decision
makers. In addition to the limitation to a linear program, the feasible
region is typically empty and negotiations outside the mathematical
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model are required in order to re-adjust the parameters of this linear
program.

As the Open Design group discovered in their applications, the
technique of LP with negotiable constraints is poorly equipped to help
decision makers in finding the design solution within the feasible set
they prefer most. It can only produce single-criterion design solutions,
which satisfy only one criterion of only one decision maker. This
technique, therefore, does not extend naturally to group decision
making. Our research group has attempted to integrate preferences
into LP by assuming a linear [Binnekamp et al., 2006, pp. 345-350] or
exponential [de Graaf and van Gunsteren, 2002] relationship between
decision variable values and a decision maker’s preference ratings,
but several problems remain: 1) the constraints divide all possible
solutions into either feasible or infeasible ones; black or white, no
gray which could eventually be acceptable to decision makers; 2) the
overall preference of a solution is determined as the weighted sum of
the preference rating of that solution on all criteria, which is merely
an approximation; 3) the results produced are still single-criterion
design solutions, thereby not extending to group decision making.

What is needed is a methodology to find the design that is both
feasible and most preferred by all decision makers. PFM offers a
correct model for the measurement of preference and for the selection
of the most preferred solution. In its current form however, PFM is an
evaluation methodology, helping decision makers to choose the most
preferred design alternative from a set of already existing alternatives.
In the domain of architecture a design methodology is needed, where
the design alternatives are not known a priori.

Can PFM be used as the basis for such a design methodology, which
removes the limitations of using the weighted sum approximation
to determine the overall preference rating and enables extension to
group decision making? The Preference-Based Design (PBD) proce-
dure proposed in this thesis offers such a design methodology. From
the LP technique, it takes the definition of a design alternative as a
combination of decision variable values and its feasibility determined
by design constraints and allowed decision variable value ranges.
Each decision maker can decide in which of the design’s decision
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variables he or she is interested and express his or her preference by
rating three values for the design variables concerned. The decision
maker thus rates a synthetic alternative – an alternative associated with
a value for a single decision variable, regardless of other decision
variables and regardless of its feasibility.

Throughout this thesis, it is assumed that the values of all variables
where preference is to be measured are known. Some of these vari-
ables are directly controlled by the designer while the values of other
variables are indirectly dependent on the values of those variables
that are under the direct control of the designer. All variables are
referred to as decision variables (or decision criteria) regardless of
whether they are controlled by the designer directly or indirectly.

Combinations of design decision variable values that satisfy the
design constraints constitute feasible alternatives. These are evaluated
using PFM’s algorithm, which enables finding the design that is both
feasible and most preferred by all decision makers as a group. This,
in principle, resolves the issue. However, rating only three design
decision variable values on preference entails a resolution problem as
no intermediate values will be considered.

Enhancing the resolution means finding preference ratings associ-
ated with intermediate design decision variable values. This can be
done by fitting a curve through the three coordinates defined by the
preference ratings associated with design decision variables. Testing
Lagrange polynomials and cubic spline curves for this purpose did
not produce satisfactory results. They oscillate between their roots
(knots), so they can take negative values representing negative pref-
erence ratings. This difficulty can be avoided by asking the decision
maker to construct a cubic Bézier curve to approximate the relation-
ship between preference ratings and decision variable values. Such
a curve (see Figure 2) is defined by four points; end points (x0, y0),
(x3, y3), and control points (x1, y1) and (x2, y2). The x coordinates
of the end points are used to represent the range of allowed design
decision variable values and the y coordinates the associated prefer-
ence ratings. The decision maker can then use the control points to
shape the curve, thereby relating intermediate design decision vari-
able values to preference ratings. This is a more satisfactory approach
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(x0,y0)

(x1,y1)

(x2,y2)

(x3,y3)

Figure 2: A cubic Bézier curve defined by four points; end points (x0, y0),
(x3, y3), and control points (x1, y1) and (x2, y2).

as it enables control over the derivatives of the end points of the
curve. By dividing the curve in an acceptable number of segments
the number of combinations of decision variable values is increased
thereby solving the resolution problem.

The proposed PBD methodology is applied to three cases: 1) North
Sea International Airport, 2) Amsterdam Museum and 3) Tilburg
urban development.

The North Sea International Airport case resulted in a slightly
different outcome using PBD as compared to using the constraint
method. However, the solution obtained using the constraint method
was the result of manipulation by the model owner. The PBD proce-
dure produced a comparable result without any interference by the
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model owner. The result is thus a more pure reflection of the decision
maker’s preferences.

The Amsterdam Museum case showed that, starting from one and
the same bill of requirements, the application of LP with negotiable
constraints and the application of PBD yield different outcomes. As
before, this can be explained by the observation that PBD represents a
more pure reflection of the decision makers’ preferences.

The Tilburg urban development case shows that the Bézier curve is
easy to work with and appeals to decision makers. The outcome of
the PBD procedure was considered to be plausible and satisfactory by
the decision makers of this project.

The following conclusions will be drawn:

1. The PBD procedure is not an extension of LP with negotiable
constraints, but an independent design methodology.

2. PBD is a design methodology leading to a design which rep-
resents a pure reflection of the decision makers’ preferences
without any interference from the part of design experts, as is
emphasized in the Open Design philosophy.

3. Outcomes from the PBD procedure are both plausible and satis-
factory to the decision makers.

4. The PBD procedure is an excellent starting point in any complex
architectural design problem.
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F O U N D AT I O N S & A N A LY S I S





2D I F F I C U LT I E S O F C H O I C E M A K I N G I N
A R C H I T E C T U R E

Nowadays the profession of architects is dominated by the view that
architecture is mainly a matter of aesthetics and that ‘form follows
form’ as opposed to ‘form follows function’ which adheres to the
principle that the shape of a building or object should be primarily
based upon its intended function or purpose.

An example of form follows function can be found in the domain of
car design where, after the introduction of the streamlined Chrysler
Airflow in 1935 (see Figure 3), the car industry halted serious aero-
dynamic research. Car makers realized that optimal aerodynamic
efficiency would result in a body shape that would hardly be distin-
guishable from other car makers which would not be good for unit
sales.

An example of form follows function in the domain of architecture
is the Van Nelle factory in Rotterdam, designed by Van Der Vlugt in
collaboration with Mart Stam and built between 1927 and 1929 (see
Figure 4). The factory occupies three volumes of decreasing height,
one of eight levels for tobacco, a coffee section of five levels with
a double-height entresol, and a three-level tea department. These
three factory zones adjoin a main service route and are connected by
bridges (see Figure 5) to a row along the water of dispatch and storage
spaces. The bridges connecting the three volumes exemplify the form
follows function principle as their position and size are derived from
their purpose to transport goods from the factory zones to the service
route. Yet, interestingly enough, these bridges are almost considered
its design hallmark.

For an example of form follows form in the domain of architecture
see Figure 6, showing the entries for the design competition for the
extension of the Amsterdam museum of contemporary art. Although
all designs are based upon the same bill or requirements, all are

9
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Figure 3: Chrysler advertising comparing the Airflow to a streamlined train.
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Figure 4: Van Nelle factory, overview.
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Figure 5: Van Nelle factory, bridges connecting the three volumes.
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completely different. In other words: form follows form means that
a multitude of design alternatives can be generated, each fitting the
same purpose but all being completely different.

Unlike car and aircraft design, where physics plays a major role in
the design process, in architecture people’s views and ideas can play
a far more dominant role. Physics only plays a minor role because
architecture is mainly focused on architectural space (rooms, corridors,
halls, etc.).

This chapter aims to elaborate on and illustrate the above mentioned
issues of choice making in architecture using two examples:

• The renovation and extension of the Amsterdam museum of
contemporary art – the Stedelijk Museum Amsterdam (SMA);

• The development of the new office for the VPRO broadcasting
company.

2.1 renovation of the stedelijk museum amsterdam

The following reconstruction is largely based on Sanders et al. [2003].
The Stedelijk Museum Amsterdam (SMA), designed by the architect

A.W. Weissman, opened its doors in 1895. The museum was founded
by a group of Amsterdam citizens. In the period 1945 to 1962, dur-
ing the time that Willem Sandberg was the managing director, it
established an international reputation as an institute focusing on the
cutting edge of modern and contemporary art.

The museum’s strengths are its contemporary art collection which
approaches that of the Museum of Modern Art, Centre Pompidou
and the Tate. It has a reputation for setting trends and for its openness
and dynamism. Its main building is well located in the very center of
Amsterdam and its archive and library are of high quality.

Its weaknesses are closely related to the deteriorating condition
of the building. The building has climate control problems and has
had to move part of its collection to a secondary location outside
the city center. The museum has been considered to lack a coherent
vision and to focus only on the quantitative aspects of exhibitions,
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(a) Exterior Claus and Kaan architects. (b) Interior Claus and Kaan architects.

(c) Exterior Dirrix architects. (d) Interior Dirrix architects.

(e) Exterior Henket architects. (f) Interior Henket architects.

Figure 6: Entries for the design competition for the extension and renovation
of the Amsterdam museum of contemporary art.
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not qualitative aspects. Visitor numbers are declining and as a result
the museum has a hard time finding (financial) support within the
municipality to extend and renovate the building.

2.1.1 Overview of plans made

In 1991, the municipality decided to ask four architects to make plans
for extending the existing building and commissions Venturi to make
final plans based on a budget of approximately 15 million euros.
Although Venturi finished the final design in 1994, the municipality
decided not to go ahead with these plans as they required a budget
of approximately 35 million euros. In 1995 the municipality com-
missioned the Portuguese architect Siza to make a design (Siza I)
for the extension which he finished in 1996, requiring a budget of
approximately 25 million euros. As the existing building, by that time,
also needed renovating and the floorspace for exhibitions was too
limited, the museum, in collaboration with the municipality devel-
oped five alternatives for extending and renovating the museum. The
municipality realized that its preferred alternative required a budget
of 90 million euros and decided that part of the budget needed to be
financed by other parties than the municipality. They commissioned
Siza to make a design (Siza II) based on that alternative. The mu-
seum, in particular its staff, was disappointed with Siza II as essential
elements of its organization are moved to the secondary location,
a large amount of floorspace is allocated for commercial activities
and because of logistic problems. They decided not to go ahead with
Siza and devised a new plan named 2A/B but even this plan was
not approved as the financial consequences of it were unclear. The
process then stopped.

To resolve this stalemate situation, the Open Design group became
involved and solved the problem by modeling the problem mathe-
matically [Binnekamp et al., 2006, pp. 363-366]. This model contained
detailed geometrical information about all the rooms in the existing
building and contained formulas linking floorspace to costs. This
model allowed the museum staff and management to find out which
bill of requirements would meet the budgetary and functional con-
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Figure 7: Exterior impression of the winning design for the extension and
renovation of the Amsterdam museum of contemporary art.

straints. In other words, this model was a tool they used to come up
with a feasible bill of requirements, both financially and geometrically.
This bill of requirements was later used for the design competition,
mentioned earlier in this chapter. The winning design is shown in
Figures 7 and 8.

2.1.2 Conclusion

This case shows two major benefits of using a mathematical model: an
increase in both the quality and the acceptance of the decision made.
Before the model was introduced, design decisions were made that
turned out to be either infeasible or unacceptable for the museum
staff. The model was used to generate two alternatives: 1) maximizing
the usage of the main location, as desired by the museum staff and
2) minimizing costs, as desired by the municipality. The model thus



2.2 development of the new office for the vpro 17

Figure 8: Interior impression of the winning design for the extension and
renovation of the Amsterdam museum of contemporary art.

enabled finding solutions that were both feasible and acceptable.
However, each of these two design alternatives fully satisfies only
a single criterion of one decision maker, either the museum staff
or municipality. In other words, the methodology used does not
extend naturally to group decision making. From a Multiple Criteria
Decision Analysis (MCDA) viewpoint we are interested in a multi-
criteria solution, satisfying all decision makers as much as possible
thus supporting group decision making. More detailed information on
MCDA can be found in Chapter 4. The survey of MCDA methodologies
in Chapter 5 includes the methodology behind the mathematical
model used for the SMA.

2.2 development of the new office for the vpro

The new office for the VPRO broadcasting company, called Villa VPRO
was completed in 1997. The dissatisfaction of the most important
stakeholder – the people who have to work in the building – has
been extensively documented in a booklet published three years after
commissioning [Paans, 2000] as well as in the press. How the design
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team developed innovative solutions has been described by Roelofs
[2001] and, looking at how the project was managed, by our Open
Design group [Binnekamp et al., 2006, pp. 137-150]. The essence of
the development process is reproduced below.

The design by MVRDV architects was based on an audacious
architectural concept, which required innovative solutions from all
parties involved. The main characteristic feature of the design was the
architectural open space concept: open floor areas with open views
from one floor to another. Two of the architects involved – Maas
and Van Rijs – had previously worked at the Office for Metropolitan
Architecture (OMA) of Rem Koolhaas, who had applied a similar
open space concept in his design for the competition in 1993 for the
Bibliotheque Jussieu in Paris.

The following key issues would have to be resolved for the realiza-
tion of the open space concept [Roelofs, 2001]:

• First, there is the issue of fire protection and escape routes. Once
ignited, a fire could spread through the building very quickly.
Corridors with fire doors would clearly be in conflict with the
open space concept.

• Second, the daylight distribution in the building constituted a
serious problem. The daylight in some working locations would
not meet the prevailing regulations for daylight at the working
place at all.

• Third, certain areas would have to be protected against too
much sunlight.

• Fourth, the installations for ventilation and heating would have
to be designed in such a way that all the connected open spaces
would be properly ventilated and heated.

• Finally, noise hindrance and acoustics are critical in such an
open, connected space. A broadcasting company is quite differ-
ent from, say, a software development firm where people are
quiet behind their computer screens. A lot of verbal communi-
cation and telephone conversations are inherent to the mission
of a broadcasting organization such as the VPRO.
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The first four of these issues were addressed successfully, the fifth
one, noise hindrance and acoustics, was not. It was considered suffi-
cient to provide for some quiet rooms and for an extra budget, which
would allow corrective measures to be taken after commissioning,
such as the application of noise damping materials at critical locations.
Not addressing this issue adequately made it unsuited to its very
purpose: providing an adequate working place for an organization
of (top) programme makers for television and radio. The architects
and management persisted in their view that the design reflected
the practical requirements of the users, who in turn maintained that
quite the opposite was true. The result has been that most of the
people who have to work in the building are extremely dissatisfied
and disappointed.

Immediately after the commissioning of the building in June 1997,
a stream of serious complaints from the users about noise and lack of
privacy began. Employees started to correct the situation right away
by building their own ‘walls’ with cupboards, boxes and curtains
(Fig. 9 and Fig. 10).

The fact that the key issue of noise and acoustics – and to a certain
extent also the lack of privacy – was largely ignored and played down
during the design phase of the project was not just a coincidence. The
ambition of realizing a daring architectural concept brought with it
that anything that could kill it was taboo: not open for discussion
because of too painful consequences.

The architects could not ignore the other four key issues. Fire
protection and escape routes concern personal safety which no one
is prepared to compromise. Daylight distribution and sun protection
affect the very nature of the work of an architect: playing with space
and light. Installations for heating and ventilation simply cannot be
left out.

Noise hindrance and privacy, by contrast, do not affect safety and
are subjective in the sense that different individuals perceive them
differently. They are, therefore, linked to the mission and culture of
the organization concerned.
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Figure 9: Interior VPRO office after the building was completed.
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Figure 10: Interior VPRO office after modification by the user.
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2.2.1 Conclusion

The design team successfully addressed the challenges posed by the
first four key issues, which can be considered quite an achievement.
However, with respect to the fifth key issue, the Dutch artist Lucebert’s
observation ‘Alles van waarde is weerloos’ (‘All things of value are
defenseless’) applies to the values – preferences – of the users. These
values being subjective, and according to Lucebert defenseless, the
architects could decide not to address the key issue related to noise
hindrance and privacy, thus ignoring the interests of the users. This
case shows the difficulty of properly taking into account each decision
maker’s interests or preferences in order to achieve the resulting
design to be acceptable to all concerned.

2.3 conclusions

Both cases show the difficulty, in the domain of architecture, of prop-
erly taking into account each decision maker’s interests or preferences
in order to achieve the resulting design to be acceptable to all decision
makers as a group.
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As shown in Chapter 2, in the domain of architecture we face the
problem of multiple stakeholders having to choose the design that
best fits their interests as a group.

The scientific foundation of selection (choice) is preference mea-
surement. This brings us into the domain of preference measurement.

The survey in Chapter 5 will reveal a wide variety of method-
ologies involving preference measurement which, however, produce
contradictory results. This indicates that they all, with possibly one
exception, must be incorrect.

This chapter describes the elements of preference measurement
theory (problems and solutions) providing the reader with the means
to evaluate the correctness of preference measurement methodologies.

3.1 preference measurement theory

Preference measurement underpins economic theory, the theory of
games and decision theory. Recent research has revealed errors at
the foundations of these theories and other disciplines, including the
inapplicability of the operations of addition and multiplication on
utility scale values. The essence of this research is reproduced in this
section which is based on Barzilai [to appear June 2010].

Whether psychological properties can be measured was an open
question in 1940 when the committee appointed by the British Associ-
ation for the Advancement of Science in 1932 ‘to consider and report
upon the possibility of Quantitative Estimates of Sensory Events’ pub-
lished its Final Report [Ferguson et al., 1940]. An Interim Report,
published in 1938, included ‘a statement arguing that sensation inten-
sities are not measurable’ as well as a statement arguing that sensation
intensities are measurable. These opposing views were not reconciled
in the Final Report.
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To re-state the opposing views in current terminology measurement
has to be defined formally.

3.1.1 The mathematical modeling framework

To clarify what is meant by ‘the mathematical modeling of measure-
ment’ some terminology is required. By an empirical system E we
mean a set of empirical objects together with operations (i.e. functions)
and possibly the relation of order which characterize the property un-
der measurement. A mathematical model M of the empirical system
E is a set with operations that reflect the empirical operations in E as
well as the order in E when E is ordered. A scale s is a mapping of
the objects in E into the objects in M that reflects the structure of E
into M. See Figure 11.

The purpose of modeling E by M is to enable the application of
mathematical operations on the elements of the mathematical system
M: As Campbell [1920, pp. 267-268] eloquently states, ‘the object
of measurement is to enable the powerful weapon of mathematical
analysis to be applied to the subject matter of science’.

The Principle of Reflection is an essential element of modeling that
states that operations within the mathematical system are applicable if
and only if they reflect corresponding operations within the empirical
system.

3.1.2 Foundational errors

The position that psychological variables cannot be measured was
supported by Campbell’s view on the role of measurement in physics
which elaborated upon Helmholtz’s earlier work on the mathematical
modeling of physical measurement [von Helmholtz, 1887].

Consider Guild’s statement in support of the position that math-
ematical operations are not applicable to non-physical variables as
summarized in Ferguson et al. [1940, p.345] in the context of measure-
ment of sensation:
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Mathematical system MEmpirical system E

scale s

Figure 11: A scale is a mapping of the objects in the empirical system into the
objects in the mathematical system.
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I submit that any law purporting to express a quantitative
relation between sensation intensity and stimulus intensity
is not merely false but is in fact meaningless unless and
until a meaning can be given to the concept of addition
as applied to sensation. No such meaning has ever been
defined. When we say that one length is twice another or
one mass is twice another we know what is meant: we
know that certain practical operations have been defined
for the addition of lengths or masses, and it is in terms of
these operations, and in no other terms whatever, that we
are able to interpret a numerical relation between lengths
and masses. But if we say that one sensation intensity is
twice another nobody knows what the statement, if true,
would imply.

This position, as well as the opposing position, were based on
incorrect arguments concerning the applicability of mathematical op-
erations to non-physical variables as will be explained in Section 3.1.3.

The task of constructing a model for preference measurement is
addressed by von Neumann and Morgenstern [1944] indirectly in the
context of measurement of individual preference. While the operation
of addition as applies to length and mass results in scales that are
unique up to a positive multiplicative constant, physical variables
such as time and potential energy to which standard mathematical
operations do apply are unique up to an additive constant and a
positive multiplicative constant. (If s and t are two scales then for
time or potential energy t = p + q× s for some real numbers p and
q > 0 while for length or mass t = q× s for some q > 0.) Seeking an
empirical operation that mimics the ‘center of gravity’ operation, they
identified the now-familiar utility theory’s operation of constructing
lotteries on ‘prizes’ to serve this purpose.

Stevens [1946], elaborating upon von Neumann and Morgenstern’s
concepts, proposed a uniqueness-based classification of ‘scale type’
and the focus on the issues of the possibility of measurement of psy-
chological variables and the applicability of mathematical operations
to scale values has moved to the construction of ‘interval’ scales,
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i.e. scales that are unique up to an additive constant and a positive
multiplicative constant.

It might be claimed that the characterization of scale uniqueness by
t = p + q× s implies the applicability of addition and multiplication
to scale values for fixed scales, but this claim requires proof. There is
no such proof, nor such claim, in the literature because this claim is
false [Barzilai, to appear June 2010].

3.1.3 Reconstructing the foundations

Since the purpose of modeling is to enable the application of math-
ematical operations, we classify scales by the type of mathematical
operations that they enable. We use the terms proper scales to denote
scales where the operations of addition and multiplication are en-
abled on scale values, and weak scales to denote scales where these
operations are not enabled.

In order for the operations of addition and multiplication to be
applicable, the mathematical system M must be (i) a field if it is a
model of a system with an absolute zero and an absolute one, (ii)
a one-dimensional vector space when the empirical system has an
absolute zero but not an absolute one, or (iii) a one-dimensional affine
space which is the case for all non-physical properties with neither
an absolute zero nor absolute one.

The one-dimensional affine space, is the algebraic formulation of
the familiar straight line of elementary (affine) geometry so that for
the operations of addition and multiplication to be enabled on models
that characterize subjective properties, the empirical objects must
correspond to points on a straight line of an affine geometry. In an
affine space, the difference of two points is a vector and no other
operations are defined on points.

The operation of addition is defined on point differences, which
are vectors. Multiplication of a vector by a scalar is defined and the
result is a vector. In the one-dimensional case, and only in this case,
the ratio of a vector divided by another non-zero vector is a scalar.

The expression a−b
c−d = k where a, b, c, d are points on an affine

straight line and k is a scalar is used in the construction of proper
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scales. The number of points in the left hand side of this expression
can be reduced from four to three (e.g. if b = d) but it cannot be
reduced to two and this implies that pairwise comparisons cannot be
used to construct preference scales where the operations of addition
and multiplication are enabled.

It follows that Campbell’s argument is correct with respect to the
application of The Principle of Reflection and the identification of
addition as a fundamental operation, but that argument does not take
into account the role of the multiplication operation and the modified
forms of addition and multiplication when the models correctly ac-
count for the degree of homogeneity of the relevant systems. Note
also that it is not sufficient to model the operation of addition since,
except for the natural numbers, multiplication is not repeated addi-
tion: In general, and in particular for the real numbers, multiplication
is not defined as repeated addition but through field axioms.

In summary, the fundamental issue of applicability of the operations
of addition and multiplication to scale values was not resolved by
von Neumann and Morgenstern’s utility theory and the mathematical
foundations of economic theory and other social sciences need to
be corrected to account for the conditions that must be satisfied for
the mathematical operations of linear algebra and calculus to be
applicable.

In order for the operations of addition and multiplication to be
applicable on preference scale values the mathematical system must
be a one-dimensional affine space. Addition and multiplication are not
applicable in von Neumann and Morgenstern’s utility model, which
underlies utility theory, because its axioms are not the axioms of a one-
dimensional affine space. This is also the case for later formulations
of utility theory.

3.2 conclusions

Recalling the main question to solve as stated in the beginning of this
chapter, the methodology to use should have a sound mathematical
foundation for measuring preferences.
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Recall that the purpose of measurement is to enable the application
of mathematics to the variables under measurement and that Barzilai
therefore classifies measurement scales by the mathematical opera-
tions that are enabled on the resultant scales and scale values. He
defines proper scales as scales to which the operations of addition
and multiplication (including subtraction and division) are applicable.
Those proper scales that also enable order and the application of the
limit operation of calculus are termed strong scales. All other scales
are termed weak.

In other words, to evaluate any methodology involving preference
measurement on whether it has a mathematical foundation we initially
only need to look at the scales used for measuring preference. If the
operations of addition and multiplication are being applied where
they are not applicable, the numbers generated are meaningless.

It is important to note that, according to utility theorists, utility is a
normative theory (see [Thurston, 2001, Section 1] and [Edwards, 1992,
p. 254]). Specifically, Coombs et al. [1970, p. 123] state that ‘utility
theory was developed as a descriptive theory’. However, von Neu-
mann and Morgenstern’s utility theory, as well as its later variants,
are mathematical theories and since mathematical theories do not
dictate assumptions to decision makers, there is no basis in mathe-
matical logic nor in modern utility for the claim that utility theory is
normative or prescriptive.
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A N A LY S I S

Multiple Criteria Decision Analysis (MCDA) is described by Belton
and Stewart [2003, p. 2] as ‘a collection of formal approaches which
seek to take explicit account of multiple criteria in helping individuals
or groups explore decisions that matter’.

As shown in Chapter 2, the main question to solve is: how to select
the design that meets all decision makers’ interests best, taking into
account each design’s attributes.

Given that deciding is choosing and criteria are interests we can
expect, that MCDA approaches should help solve the problems we face
in architecture.

4.1 multiple criteria decision analysis framework

The designs to choose from are the alternatives and in order to select
the most preferred alternative we need to find out which alternative
is preferred over the other by decision makers, i.e. rating an alterna-
tive’s performance. As decision makers have difficulties judging the
performance of an alternative as a whole, different attributes of the
alternatives are taken into account, termed criteria. These criteria may
be defined in a tree-like structure, using main criteria, sub-criteria,
sub-sub-criteria and so on. The relative importance of criteria and
decision makers are incorporated using weights. The overall prefer-
ence rating (performance) of an alternative is then determined by an
algorithm that takes into account each alternative’s performance on
each criterion and its weight.

The above is summarized in the following generic formal procedure:

1. Specify the alternatives.

2. Specify the decision maker’s criteria tree.

31



32 notes on multiple criteria decision analysis

3. Rate the decision maker’s preferences for each alternative against
each leaf criterion.

4. To each leaf criterion assign the decision maker’s weight.

5. Use an algorithm to yield an overall preference scale.

The procedure for a group of decision makers is identical to the
procedure for a single decision maker, with the exception that each
decision maker has to rate his preference for the alternatives on each
criterion.

4.1.1 Notes on preference measurement

The third step in the above procedure is very important as it involves
preference measurement, which underpins economic theory, the the-
ory of games and decision theory. Recent research, reproduced in
Chapter 3 [Barzilai, to appear June 2010], has revealed errors at the
foundations of these theories and other disciplines, including the in-
applicability of the operations of addition and multiplication on scale
values. This research provides the means to evaluate the correctness
of MCDA methodologies with respect to the scales used for measuring
preference.

Recall that Barzilai classifies measurement scales by the mathemati-
cal operations that are enabled on the resultant scales and scale values.
He defines proper scales as scales to which the operations of addition
and multiplication (including subtraction and division) are applicable.
Those proper scales that also enable order and the application of the
limit operation of calculus are termed strong scales. All other scales
are termed weak scales.

In other words, to evaluate any methodology involving preference
measurement on whether it has a mathematical foundation we initially
only need to look at preference scales. If the operations of addition
and multiplication are being applied where they are not applicable
the numbers generated are meaningless.

In contrast, Stevens [1946] proposed a uniqueness-based classifica-
tion of scales into nominal, ordinal, interval and ratio scales:
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nominal scale Nominal scales represent the most unrestricted
assignment of numerals. The numerals are used only as labels
or type numbers, and words or letters would serve as well.

ordinal scale Ordinal scales arise from rank ordering. A classic
example of an ordinal scale is Mohs scale of mineral hardness
which characterizes the scratch resistance of various minerals
through the ability of a harder material to scratch a softer mate-
rial.

interval scale Interval scales are scales that are unique up to ad-
ditive and (positive) multiplicative constants, i. e. the uniqueness
of the set of all possible scales is characterized by t = p + q× s.

ratio scale Ratio scales are scales that are unique up to a multi-
plicative constant, i. e. the uniqueness of the set of all possible
scales is characterized by t = q× s.

Concerning ordinal scales, we note that in the case of ordinal
systems, the mathematical image M of the empirical system E is only
equipped with order and the operations of addition and multiplication
are not applicable in M.

It is important to note that, as shown in Chapter 3 the operations of
addition and multiplication are, in general, not applicable to measure-
ment scales as proposed by Stevens, including to ratio and interval
scales. In fact, these operations are not applicable to any measurement
scales that are based on the models of classical measurement theory.

Stevens’ classification, which has become a key element of the
classical theory of measurement is used in a number of the models
surveyed in Chapter 5. However, it does not distinguish between
weak, proper, and strong scales and is the source of errors.

4.1.2 Notes on yielding an overall preference scale

Some of the MCDA models surveyed in Chapter 5 use the weighted
arithmetic mean to yield an overall preference scale. However, the
output of this procedure depends on the units by which the scales are
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Criterion

Opportunities Salary ($/Yr) Weighted sum

Position 1 15 50 000 20 009

Position 2 20 45 000 18 012

Weight 0.6 0.4

Table 1: Overall rating for two job positions using the arithmetic mean: prefer
position 1.

measured. This is an unacceptable property of any mapping used to
aggregate scales. As a consequence, we can construct examples where
a change of units leads to order reversals in the overall ranking.

Consider a person having to decide between two job positions. Posi-
tion 1 pays $50 000 per year but does not offer as many opportunities
for development as position 2 which pays $45 000 per year. Assume
that this person rates position 1 at 15 and position 2 at 20 on the
opportunities criterion. Also assume that the opportunities criterion
is weighted at 0.6 and the salary criterion at 0.4. Using the arithmetic
mean to determine the overall rating of each position shows that
position 1 is preferred over position 2 (see Table 1). However, if we
change the unit for the salary criterion from $/Yr to $K/Yr the order
is reversed and position 2 is preferred over position 1 (see Table 2).

It is important to distinguish coefficients in a linear expression,
which apply to scales, from importance which applies to criteria.
Length is an example of a criterion to which a weight can be at-
tached to express the relative importance of the criterion ‘length’ as
compared to other criteria. Length can be measured in kilometers or
meters, millimeters, etc., depending on the scale used. Not making
this distinction, i.e. interpreting the ratios of coefficients in a linear
expression as relative importance is a fundamental error. Since the
magnitude of coefficients ratio depends on the units in which the
preference on different criteria is measured, it cannot correspond to
relative importance: if a criterion - say the price of a house - is consid-
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Criterion

Opportunities Salary ($K/Yr) Weighted sum

Position 1 15 50 29

Position 2 20 45 30

Weight 0.6 0.4

Table 2: Overall rating for two job positions using the arithmetic mean: prefer
position 2.

ered an ‘important’ criterion and the preference on that criterion is
measured in dollars, it cannot become 1, 000 times ‘less important’ by
changing the unit to thousands of dollars. Criteria weights must be
independent of unit change. The coefficients in linear aggregation can
be interpreted as trade-off rates but this assumes that these rates are
constant and decision makers have great difficulty expressing these
rates.

4.1.3 Notes on group decision making

The common view in the classical literature, based on Arrow’s Impos-
sibility Theorem [Arrow, 1963], is that group decision making cannot
be modeled mathematically. However, Arrow’s theorem is a negative
result, indicating that a solution cannot be found when following a
given path. In the case of Arrow’s theorem the path is the way in
which he formulates a group decision making problem as an ordinal
voting system. Arrow’s theorem does not apply to group decision
making problems that are different from its formulation. In other
words, his theorem does not show that group decision making cannot
be modeled mathematically, but only that, if formulated in a very
specific way, namely as a voting system, this cannot be done.
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4.2 conclusions

To evaluate any MCDA methodology involving preference measure-
ment on whether it has a mathematical foundation we initially only
need to examine the preference scales using Barzilai’s classification of
scales. The operations of addition and multiplication are not applica-
ble to measurement scales as proposed by Stevens.

Employing the weighted arithmetic mean to yield an overall prefer-
ence scale is a mathematical modeling error. Equivalent descriptions
of the problem yield different solutions.

There is no proof in literature that group decision making cannot be
done. Arrow only showed that, if group decision making is formulated
in a very specific way, namely as an ordinal voting system, this cannot
be done.
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This chapter presents some multi-criteria methodologies as described
by Belton and Stewart [2003, p. 9]:

• Value measurement methodologies

• Goal, aspiration or reference level methodologies

• Outranking methodologies

Chapter 4, which builds upon Chapter 3 provides the means to
evaluate each of these methodologies.

5.1 value measurement methodologies

Value function methods synthesize assessments of the performance
of alternatives against individual criteria, together with inter-criteria
information reflecting the relative importance of the different criteria,
to give an overall evaluation of each alternative indicative of the
decision makers’ preferences [Belton and Stewart, 2003, p. 119].

These methods are based on evaluating alternatives in terms of an
additive preference function.

Once an initial model structure and a set of alternatives for evalu-
ation have been identified, the next step is to elicit the information
required by the methodology. There are two types of information,
sometimes referred to as intra-criterion information and inter-criterion
information, or alternatively as scores and weights [Belton and Stew-
art, 2003, p. 121].

The overall evaluation of an alternative is determined by its value
score on each bottom-level criterion and by the cumulative weight of
that criterion.

In the next subsections, the main value measurement approaches
will be investigated:
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• Multi Attribute Value Function (MAVF)

• Analytical Hierarchy Process (AHP)

• Preference Function Modeling (PFM)

5.1.1 MAVF

The MAVF makes use of the following value function:

V(a) =
m

∑
i=1

wivi(a) (5.1)

Where V(a) is the overall value or performance of alternative a,
vi the value score reflecting alternative a’s performance (score) on
criterion i and wi the weight assigned to reflect the importance of
criterion i.

Initial steps

The initial steps in using the MAVF are to develop a hierarchy of
criteria (value tree) and to identify the alternatives.

Eliciting scores

Belton and Stewart [2003, pp. 121-123] describe the eliciting of scores
as the process of assessing the value derived by the decision maker
from the performance of alternatives against the relevant criteria.
That is, the assessment of the partial value functions, vi(a) in the
above structure. They state that ‘these values need to be assessed on
an interval scale of measurement, i.e. a scale on which the difference
between points is the important factor’. However, as mentioned in
Chapter 4, interval scales, as proposed by Stevens [1946], do not
enable the operations of addition and multiplication and differences
of interval scale values are undefined.

Recall that for the operations of addition and multiplication to
be applicable to psychological scale values, the objects measured
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must be points in a one-dimensional affine space. The operations of
addition and multiplication are not enabled on scales constructed on
the basis of classical measurement theory for in this theory no model
corresponds to a one-dimensional affine space. The applicability of
these operations has nothing to do with scale uniqueness, i.e. ‘scale
type’ such as interval or ratio scales [Barzilai, to appear June 2010, p.
23].

They describe three ways to assess scores once the reference points
of the scale have been determined:

definition of a partial value function. This relates value
(preference) to performance in terms of a measurable attribute
reflecting the criterion of interest (such as the number of work
places an office building offers). The first step in defining a par-
tial value function is to construct a scale which is closely related
to the decision maker’s values. For example, in assessing the en-
vironmental impact of different cars, the CO2 emission (g/km)
of each car may serve as an appropriate indicator. Note that
this assumes the decision maker’s preference rating is linearly
related to the attribute value. Also note that this defines an in-
terval scale and that, as mentioned in Chapter 4, interval scales
do not enable the operations of addition and multiplication.

construction of a scale with a non-physical value. In
this case, the performance of alternatives is assessed by reference
to descriptive pointers to which numerical values are assigned
(such as rating a design on a scale ranging from ‘very good’ to
‘very poor’). Note that such a scale is in essence an ordinal scale
as it only allows to determine whether an alternative is rated
equally, higher or lower in comparison to other alternatives.
Ordinal scales do not enable the operations of addition and
multiplication.

direct rating of the alternatives. In this case, no attempt
is made to define a scale which characterizes performance in-
dependently of the alternatives being evaluated. The decision
maker simply specifies a number, or identifies the position on a



40 survey of current mcda approaches

visual analogue scale, which reflects the value of an alternative
in relation to the specified reference points (such as assigning
a score of 0 to the building with the worst layout, a score of
100 to the one with the best layout, and the others relative to
these). However, this defines an interval scale which does not
allow the operations of addition and multiplication as shown in
Chapter 4.

When assessing the value function directly, the decision maker
should begin by determining whether [Belton and Stewart, 2003, p.
123]:

• The value function is monotonically increasing against the natu-
ral scale – i.e. the highest value of the attribute is most preferred,
the lowest least preferred.

• The value function is monotonically decreasing against the
natural scale – i.e. the lowest value of the attribute is most
preferred.

• The value is non-monotonic – i.e. an intermediate point on the
scale defines the most preferred or least preferred point.

Eliciting weights

The weight assigned to a criterion is described by Belton and Stewart
[2003, p. 135] as a scaling factor which relates scores on that criterion
to scores on all other criteria and that thus, if criterion A has a weight
which is twice that of criterion B this should be interpreted that the
decision maker values 10 value points on criterion A the same as 20
value points on criterion B and would be willing to trade one for
the other. They refer to these weights as swing weights to distinguish
them from the, as they claim, less well defined concept of importance
weights.

They define swing weights as follows: Consider a problem in which
alternatives are assessed according to 3 criteria, C1 to C3, with the
scores for any alternative being represented by the set of values (c1,
c2, c3). Eliciting swing weights, assuming that the first criterion is the
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most highly ranked, requires the decision makers to specify values for
X such that an alternative defined by (X, 0, 0) is valued equally to the
alternatives (0, 100, 0) and (0, 0, 100). Suppose (50, 0, 0) is considered
to be of equal value to alternative (0, 0, 100), then w1 × 50 = w3 × 100
that is w3 = 0.5× w1.

It can be noted that swing weights, to some extent, correspond
with the way in which weights are derived from pairwise comparison
matrices as described by Barzilai [1997a]. In this procedure the deci-
sion maker has to use weights to make pair-wise trade-offs between
criteria. This is done for as many pairs as possible, after which the
weights are determined.

As mentioned in Chapter 4, people interpret the coefficients of a
linear aggregation rule as weights representing relative importance,
and this is an error. The coefficients in linear aggregation can be
interpreted as trade-off rates but this assumes that these rates are
constant and people have great difficulty expressing these rates.

Determining overall evaluations

The overall evaluation of an alternative is determined by first multi-
plying its value score on each bottom-level criterion by the cumulative
weight of that criterion and then adding the resultant values. If the
values relating to individual criteria have been assessed on a 0 to 100
scale and the weights are normalized to sum to 1 then the overall
values will lie on a 0 to 100 scale.

The use of the MAVF to solve a decision making problem can be il-
lustrated by means of a simple example in the domain of architecture.

The museum’s problem

Recall the problem the Stedelijk Museum Amsterdam (SMA) faces as
described in Chapter 2. Its current building no longer meets today’s
requirements. One of the main problems is a shortage of floorspace.
The museum tried to cope with this problem by moving part of its
organization to a building elsewhere in the city resulting in efficiency
problems. To solve these problems the museum wishes to extend and
renovate the existing building and, as it relies on public money, has
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Criterion

Alternative Expenditure Centralizing

Design A 100 0

Design B 28 56

Design C 0 100

Table 3: Scores for each design on each criterion: museum example (MAVF).

to do so within limitations set by the municipality. The municipality
wants to minimize the money spent on extending and renovating the
building whereas the museum wants to maximize the use of the main
location (existing building including its extension).

An architect made three preliminary designs all involving the com-
plete renovation of the existing building:

• Design A involving extending the existing building with 11 500
square meters costing € 82 000 000.

• Design B involving extending the existing building with 14 000
square meters costing € 95 000 000.

• Design C involving extending the existing building with 16 000
square meters costing € 100 000 000.

Assume that the decision makers agree on defining a partial value
function for rating the alternatives and that they use local scales. The
attribute information of each design then determines the score of each
design on each criterion. For instance, the performance of design B on
the centralizing criterion is 14000−11500

16000−11500 × 100 = 56 (on a 0 to 100 scale).
Each design’s performance on each criterion is shown in Table 3:

Assume that the decision makers agree on using the swing weight
method to determine the weights. They agree that the expenditure
goal is more important than the centralizing goal. Having established
the rank order for the criteria weights, the next step is to assign
values to them. They agree that an alternative with a score of 50
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Alternative Overall preference rating

Design A 0.67× 100 + 0.33× 0 = 67

Design B 0.67× 28 + 0.33× 56 = 37

Design C 0.67× 0 + 0.33× 100 = 33

Table 4: Overall rating for each design: museum example (MAVF).

on the expenditure goal and 0 on the centralizing goal is valued
equally to an alternative scoring 0 on the expenditure goal and 100
on the centralizing goal. Let w1 represent the weight attached to the
expenditure goal and w2 the weight attached to the centralizing goal.
Then w1 × 50 = w2 × 100, that is, 0.5× w1 = w2. Normalizing means
that w1 + w2 = 1 so, w1 + 0.5×w1 = 1 then w1 = 0.67 and w2 = 0.33.

We can then use Equation 5.1 to determine the overall preference
rating for each alternative as shown in Table 4.

Discussion

It has been suggested by von Winterfeldt and Edwards [1986] that,
if the problem has been well structured, then the value functions
should be regular in form – i.e. no discontinuities. They go further
to argue that all value functions should be linear or close to linear
and suggest that the analyst should consider restructuring a value
to replace non-monotonic value functions by one or more monotonic
functions. Belton and Stewart [2003, p. 124], however, caution against
over-simplification of the problem by inappropriate use of linear value
functions. They warn that the default assumption of linearity, which
is often made, may generate misleading answers.

It should be noted that the concepts of continuity and linearity
pre-suppose the application of addition and multiplication which, as
was already pointed out, do not apply to scales constructed by von
Winterfeldt and Edwards or Belton and Stewart.

It is not always possible to find a physical attribute which captures
a criterion. In such circumstances it is necessary to construct a scale
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for a non-physical attribute. In constructing such a scale, Belton and
Stewart [2003, p. 128] emphasize that it is necessary to use an interval
scale of measurement. However, Barzilai [to appear June 2010, p. 9]
has shown that the operations of addition and multiplication are
not applicable on scale values for any scale constructed on the basis
of this theory regardless of their ‘scale type’ including ‘ratio scales’
and ‘interval scales’ rendering the input, and therefore the output, of
Equation 5.1 meaningless.

Conclusion

Belton and Stewart [2003, p. 160] emphasize that they see Multiple
Criteria Decision Analysis (MCDA) methodologies as tools for learn-
ing, a sounding board against which decision makers can test their
intuition, not as a means of providing an ‘answer’ which is in some
way ‘objective’ or ‘right’. Because Barzilai has shown that the MAVF

has no mathematical foundation, even its use as a methodology for
learning or as a sounding board becomes questionable.

5.1.2 AHP

The AHP1, a method for MCDA developed by Saaty [1980], has in its
implementation many similarities with the MAVF approach. Both ap-
proaches are based on evaluating alternatives in terms of an additive
preference function.

Initial steps

As with the MAVF approach, the initial steps in using the AHP are to
develop a hierarchy of criteria and to identify the alternatives.

1 The concept of decomposition of criteria into a sub-criteria tree (i.e., the generation of
operational sub-criteria) was first proposed by Miller in his 1966 doctoral dissertation
Miller [1966] (see also Miller [1969, 1970]).
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Eliciting scores

Belton and Stewart [2003, p. 152] describe the major factors which
differentiate the AHP from the MAVF approach from a practical view-
point: the use of pairwise comparisons in comparing alternatives
with respect to criteria (scoring) and in comparing criteria within
sub-criteria (weighting), and the use of ratio scales for all judgments.

They then describe the procedure for eliciting scores [Belton and
Stewart, 2003, pp. 153-154]:

For example, in comparing alternative office locations with respect
to the criterion quality of life, decision makers would be asked: ‘Think-
ing only about the quality of life of the locations, which of the two
alternatives p or q do you prefer?’ The decision makers are then
asked to indicate the strength of their preference for p over q on the
following five-point scale [Saaty, 1980]:

1 Equally preferred

2 Weak preference

3 Strong preference

4 Demonstrated preference

5 Absolute preference

Note that this is a verbal scale which has no mathematical basis and
which does not enable the operations of addition and multiplication
and in fact this structure is not a scale by the formal definition of a
scale.

Once all pairs of alternatives have been compared in this way, the
numeric values corresponding to the judgments made are entered
into a pairwise comparison matrix. All diagonal entries are by def-
inition equal to 1. The method interprets the above numerical scale
of strengths of preference in a ratio sense. Thus if alternative p is
preferred to alternative q, with strength of preference given by apq = S
(where apq is the entry in the p-th row and the q-th column of the
comparison matrix), then the comparison of q with p is the reciprocal
of that value, i.e. aqp = 1

S .
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The aim in the AHP is to find the set of value scores v1, . . . , vn, such
that the matrix values apq are approximated as closely as possible by
the corresponding ratios vp

vq
. The standard AHP method of doing this is

to extract the eigenvector corresponding to the maximum eigenvalue
of the pairwise comparison matrix.

Note that the applicability of addition and multiplication must
be established before these operations are used to compute AHP

eigenvectors. In order for addition and multiplication to be applicable
on preference scale values, the alternatives must correspond to points
on a straight line in an affine geometry [Barzilai, 2005]. Since the ratio
of points on an affine straight line is undefined, preference ratios,
which are the building blocks of AHP scales, are undefined. In addition,
pairwise comparisons cannot be used to construct affine straight lines.
The fact that eigenvectors are unique up to a multiplicative constant
does not imply the applicability of addition and multiplication.

Eliciting weights

The next step is to compare all criteria which share the same parent
criterion using the same pairwise comparison procedure, deriving a
vector indicating the relative contribution of the criteria to the parent
(analogous to the weights in the MAVF approach).

Determining overall evaluations

The judgments are aggregated by working upwards from the bottom
of the hierarchy, as with the multi-attribute value function.

The previously used museum’s problem can be used to illustrate
use of the AHP to solve a decision making problem.

The museum’s problem revisited

The first step in the AHP is to decide on the relative importance of
the objectives by comparing each pair of objectives and rating them.
Assume that the museum and municipality decide that the expen-
diture goal (p = 1) is strongly more important than the centralizing
goal (q = 2). Then, using the five-point scale, ap,q = 5 and the entry
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Goal

Goal Expenditure Centralizing

Expenditure 1 5

Centralizing 1
5 1

Table 5: Weights for each goal: museum example (AHP).

Goal

Goal Expenditure Centralizing Average

Expenditure 0.83 0.83 0.83

Centralizing 0.17 0.17 0.17

∑ = 1

Table 6: Normalized weights for each criterion: museum example (AHP).

in the 1st row and the 2nd column of the comparison matrix, then
the comparison of q with p is the reciprocal of that value, aq,p = 1

5
resulting in Table 5:

The normalized weights for the expenditure and centralizing goal
are 1

1+5 = 0.17 and 1− 0.17 = 0.83 respectively (Table 6).

The second step is to rate each alternative on each criterion using the
same pair wise comparison procedure. Assume that the municipality
decides on the ratings on the expenditure criterion as shown in Table 7.
Normalizing produces the results shown in Table 8.

Assume that the museum decides on the ratings on the centralizing
criterion as shown in Table 9. Normalizing produces the results shown
in Table 10.

Using the normalized weights and ratings the overall preference
rating for each design is determined as shown in Table 11.
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Alternative

Alternative Design A Design B Design C

Design A 1 5 7

Design B 1
5 1 5

Design C 1
7

1
5 1

Table 7: Scores for each design on the expenditure goal: museum example
(AHP).

Alternative

Alternative Design A Design B Design C Average

Design A 0.74 0.81 0.54 0.70

Design B 0.15 0.16 0.38 0.23

Design C 0.11 0.03 0.08 0.07

∑ = 1

Table 8: Normalized scores for each design on the expenditure goal: museum
example (AHP).

Alternative

Alternative Design A Design B Design C

Design A 1 1
7

1
9

Design B 7 1 1
7

Design C 9 7 1

Table 9: Scores for each design on the centralizing goal: museum example
(AHP).
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Alternative

Alternative Design A Design B Design C Average

Design A 0.06 0.02 0.09 0.05

Design B 0.41 0.12 0.38 0.22

Design C 0.53 0.86 0.80 0.73

∑ = 1

Table 10: Normalized scores for each design on the centralizing goal: museum
example (AHP).

Alternative Overall preference rating

Design A 0.83× 0.70 + 0.17× 0.05 = 0.59

Design B 0.83× 0.23 + 0.17× 0.22 = 0.23

Design C 0.83× 0.07 + 0.17× 0.73 = 0.18

Table 11: Overall rating for each design: museum example (AHP).
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Discussion

There has been extensive debate about the AHP [Belton and Stewart,
2003, pp. 157-159]. It would take too long for the purpose of this
chapter to cover all the issues raised in detail, but the main points of
concern and debate will be briefly summarized below.

Pairwise comparisons (i.e. comparing two alternatives at a time) and
ratios of alternatives cannot be used in the construction of preference
scales to which the operations of addition and multiplication are
applicable. In order for addition and multiplication to be applicable
on preference scale values, the alternatives must correspond to points
on a straight line in an affine geometry [Barzilai, 2005]. Since the ratio
of points on an affine straight line is undefined, preference ratios,
which are the building blocks of AHP scales, are undefined. In addition,
pairwise comparisons cannot be used to construct affine straight lines.
The fact that eigenvectors are unique up to a multiplicative constant
does not imply the applicability of addition and multiplication.

Concerns have been expressed about the appropriateness of the
conversion from the semantic to the numeric scale used by Saaty as a
measure of strength of preference. As already mentioned, a semantic
or verbal scale has no mathematical basis and does not enable the
operations of addition and multiplication and in fact this structure is
not a scale by the formal definition of a scale.

Normalization is done in various stages of AHP computations. Nor-
malization is a mathematical operation and, as any other mathemati-
cal procedure, its use in any methodology must be justified, but this
operation has not been justified in the AHP literature [Barzilai, 2001, p.
3].

Many AHP errors are reviewed in Barzilai [1997a, 1998a,b, 2001] (see
also the references there).

Conclusion

The AHP is plagued by many flaws and these flaws are fundamental.
Claims that these flaws are easily corrected have been identified as
being false [Barzilai, 2001, p. 5].
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The AHP claims to measure preference on ratio scales. This is a
fundamental error because in order for the operations of addition
and multiplication to be applicable on preference scale values, the
scales must be affine. But in this case preference ratios are undefined
because the ratios of points in an affine space are undefined. Belton
and Gear [1983] suggested a change of AHP normalization which does
not result in affine scales and therefore does not solve this problem.
Dyer [1990, p. 250] states that the AHP ‘generates rank orderings that
are not meaningful’ and that ‘[a] symptom of this deficiency is the
phenomenon of rank reversal’ which is a circular argument: the only
AHP deficiency presented in his paper is rank reversal. Dyer also
states that the AHP’s multiple methodological flaws can be corrected
by ‘its synthesis with the concepts of multi-attribute utility theory’
but utility theory suffers from its own flaws. Kirkwood [1996, p. 53]
relies on Dyer and Sarin [1979, p. 820] which repeats the common
error that the coefficients of a linear value function correspond to
relative importance. Furthermore, ‘difference measurement’ which
is the topic of Dyer and Sarin is an incorrect model of preference
measurement.

5.1.3 PFM

A new theory of (preference) measurement has been developed by
Barzilai [2004, 2005]. The main results of this new theory are the
construction of measurement scales to which linear algebra and cal-
culus are applicable. Based on this theory, a practical methodology
for constructing proper preference scales, PFM, and a software tool
that implements it, Tetra, have been developed. For details on PFM

scale construction see Barzilai [1997b] and the axioms at Barzilai
[to appear June 2010]. The Tetra Online Reference can be found at:
http://scientificmetrics.com/TetraReference. The Tetra Quick-
tart Guide can be found at: http://scientificmetrics.com and con-
tains an example.

http://scientificmetrics.com/TetraReference
http://scientificmetrics.com
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Initial steps

As with the above approaches, the initial steps in using PFM are to
develop a hierarchy of criteria and to identify the alternatives.

Eliciting scores

Each decision maker’s preferences for each alternative against each
criterion are rated by first establishing reference alternatives:

• A ‘bottom’ reference alternative which is rated at 0

• A ‘top’ reference alternative which is rated at 100

Then, the other alternatives are rated relative to these reference
alternatives on the scale established.

Eliciting weights

To each leaf criterion each decision maker attaches a weight.

Determining overall evaluations

The PFM algorithm is used to yield an overall preference scale.
Its use in solving a decision making problem can, again, be illus-

trated by means of the before used museum’s problem.

The museum’s problem revisited

Assume that, using the rating procedure as described above, the
decision makers rate the alternatives on each criterion as shown in
Table 12.

The decision makers agree on attaching a weight of 67 to the
expenditure criterion and a weight of 33 to the centralizing criterion.

Using the above ratings and weights, the PFM algorithm yields the
overall preference scale as shown in Table 13.
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Criterion

Alternative Expenditure Centralizing

Design A 100 0

Design B 28 56

Design C 0 100

Table 12: Scores for each design on each criterion: museum example (PFM).

Alternative Overall preference rating

Design 1 55

Design 2 37

Design 3 45

Table 13: Overall rating for each design: museum example (PFM).

Discussion

As mentioned before, Barzilai [2004, 2005] developed a new theory
of measurement. The main result of this theory is that there is only
one model of strong measurement for preference. It also follows from
the Principle of Reflection2 that all the models of the classical theory
of measurement generate weak scales to which the operations of
addition and multiplication do not apply.

This new theory of measurement irrefutably invalidates common
Operations Research (OR) methodologies. In other words, apart from
PFM, there is no proof in literature that the mathematical operations
of addition and multiplication apply to scales that are based on those
common OR methodologies.

2 For a detailed discussion see The Principle of Reflection in Barzilai [2006, section 6.8]
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Conclusion

Based on a new theory of measurement, PFM is the only decision
theoretical methodology that enables the construction of measurement
scales to which linear algebra and calculus are applicable.

5.1.4 Conclusions on value measurement methodologies

Barzilai [2005] has established that the operations of addition and mul-
tiplication are not applicable to measurement scales (e.g. ratio scales
and interval scales) that are based on common OR methodologies. He
also established that the uniqueness of strong preference scale sets
implies that all correct methodologies for constructing strong prefer-
ence scales that assume no measurement error must produce identical
scale sets, i.e. these methodologies must be equivalent. Conversely, of
all non-equivalent methodologies, at most one can be correct.

5.2 goal , aspiration or reference level methodologies

Value measurement methodologies help decision makers to choose
the most preferred (design) alternative from a set of already existing
alternatives and are therefore classified as evaluation methodologies.
However, as mentioned in Chapter 2, in the domain of architecture
we face the problem that a multitude of design alternatives can fit
an intended purpose. It would be too time-consuming to ask an
architect to make drawings of every conceivable design that fits an
intended purpose and then analyze them by enumeration using the
previously mentioned methodologies. What we need, therefore, is a
design methodology where the alternatives to be evaluated are not
known a priori.

To clarify the issue of such a design methodology we can use the
concept of a design space as described by Dym and Little [2004, pp.
97-98]:

A design space is a mental construct of an intellectual
space that envelops or incorporates all of the potential
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solutions to a design problem. As a broad concept, the
utility of the notion of a design space is limited to its
availability to convey a feel for the design problem at
hand. The phrase large design space conveys an image of
a design problem in which (1) the number of potential
designs is very large, perhaps even infinite, or (2) the
number of design variables is large, as is the number of
values they can assume.

Mathematically, a design solution or design alternative is repre-
sented by a combination of design variable values. Design variables
are design attributes, e. g. a building’s lettable floorspace, number of
floors, the ratio between lettable and gross floorspace. The variables
express each decision maker’s interests in the design. By means of
optimization a combination of variables (design attributes) can be
found representing a design alternative. An example of such a design
alternative could be a building having a floorspace of 10 000 square
meters occupying 5 floors and having a ratio between lettable and
gross floor space of 85%. Constraints, goals, and objectives are used
in the optimization process.

Zeleny [1982, pp. 225-226] describes the conceptual and technical
differences between constraints, goals, and objectives:

a constraint is a fixed requirement which cannot be violated in
a given problem formulation. Constraints divide all possible
solutions (combinations of variables) into two groups: feasible
and infeasible.

a goal is a fixed requirement which is to be satisfied as closely as
possible in a given problem formulation.

an objective is a requirement which is to be followed to the great-
est extent possible (either by minimization or maximization)
given the problem’s constraints.

The use of constraints, goals and objectives means that we do not
need to define the alternatives to be evaluated a priori, only the design
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variables, constraints and objectives which classifies goal, aspiration
or reference level methodologies as design methodologies.

The following methodologies are investigated:

• Linear Programming (LP)

• Goal Programming (GP)

• Linear Multi Objective Programming (LMOP)

5.2.1 LP as used in Open Design

An LP model can be stated in what is called the canonical form:

Minimize Z =
n

∑
j=1

cjxj (5.2)

subject to:

n

∑
j=1

aijxj ≥ bi for i = 1, . . . , m

and

xj ≥ 0 for j = 1, . . . , n

Where the x1, x2, . . . , xn are non-negative decision variables or un-
knowns and the c1, c2, . . . , cn are contribution coefficients that repre-
sent the marginal contribution to Z for each unit of their respective
decision variable. This LP model seeks a single objective or single goal
of minimizing the objective function or Z function. In the model the
objective function is subject to a set of m constraints. In the constraints,
the aij, where i = 1, 2, . . . n and j = 1, 2, . . . m are technological coeffi-
cients that represent the per unit usage of the xj of the right-hand-side
coefficients of bi. In this model the n decision variables are required
to be non-negative.
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In LP models, the coefficients b1, b2, b3, . . . , bm are considered to
be fixed. Often they represent physical constraints that cannot be
changed, such as the dimensions (b1, b2, . . . , bm) of land available to
grow various vegetables (x1, x2, . . . , xn).

The Open Design group [Binnekamp et al., 2006] utilizes LP models
to solve design problems in the domain of architecture by considering
each of the model’s constraints as expressing a decision maker’s inter-
ests concerning the design attributes. Additionally, a limited degree
of group decision making is enabled by considering the coefficients
b1, b2, . . . , bm to be negotiable. A major advantage of this approach
is that it enables to determine whether the constraint conditions of
all decision makers can be satisfied by looking at whether or not the
model’s set of feasible solutions is empty. If the feasible set remains
empty following all negotiations, the problem is unsolvable; should
the feasible set be non-empty, the decision makers need to find the
design solution which they prefer most, within the feasible set.

In an attempt to find the most preferred design solutions, each
stakeholder’s objective is translated into an objective function. This
yields as many optimization models – design solutions – as there are
objective functions. Stakeholders then have to negotiate the solutions.

The use of an LP model to solve a decision making problem can be
illustrated by means of the previously used museum’s problem.

The museum’s problem revisited

The municipality, wanting to minimize the money spent on renovating
the building, wants to spend no more than € 90 000 000. The museum,
wanting to maximize the use of the main location, wants to allocate at
least 35 000 square meters floorspace to the existing building including
its extension. The museum’s total floor space requirement is 40 000
square meters, renovating the old building costs € 2 600 per square
meter and extending it costs € 3 000 per square meter. The existing
building has a capacity of 20 000 square meters.

If x1 represents the number of square meters floorspace renovated,
x2 the number of square meters extended and x3 the number of square
meters needed elsewhere in the city and if the before mentioned
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constraints and the municipality’s objective of wanting to minimize
the money spent (z1 = 2 600x1 + 3 000x2) is used then the LP model
is:

Min 2 600x1 + 3 000x2

s.t. 2 600x1 + 3 000x2 ≤ 90 000 000

x1 + x2 ≥ 35 000

x1 + x2 + x3 ≥ 40 000

x1 ≤ 20 000

This model has an empty feasible set which means that the decision
makers have to negotiate the constraints. Assume that the munici-
pality and museum agree to relax their constraints by 10%, then the
model changes:

Min 2 600x1 + 3 000x2

s.t. 2 600x1 + 3 000x2 ≤ 100 000 000

x1 + x2 ≥ 31 500

x1 + x2 + x3 ≥ 40 000

x1 ≤ 20 000

This model has a non-empty feasible set and the optimal solution is
to completely renovate the existing building and to build an extension
of 11 500 square meters. This would cost € 86 500 000. However, if we
choose to optimize using the museum’s objective of maximizing the
use of the main location (z2 = x1 + x2) the model changes:

Max x1 + x2

s.t. 2 600x1 + 3 000x2 ≤ 100 000 000

x1 + x2 ≥ 31 500

x1 + x2 + x3 ≥ 40 000

x1 ≤ 20 000
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Value obtained

Objective being maximized z1 z2

Minimize the money spent (z1) 86 500 000 31 500

Maximize the use of the main location (z2) 100 000 000 36 000

Table 14: Results of two optimization runs (LP)

The optimal solution of this model is different from the previous
with regards to the size of the extension which is 16 000 square meters
for this model. The associated costs are € 100 000 000. The results of
each run are shown in Table 14.

This tendency to extreme values, which is a typical feature of linear
programming formulations, is quite evident, so that compromise
solutions are not immediately obvious [Belton and Stewart, 2003, p.
71].

Discussion

Although LP can be used as a design methodology it has the following
major limitations: 1) single objective optimization 2) a harsh distinc-
tion between feasible and infeasible solutions and, 3) the linearity
requirement.

single objective optimization An important feature of all
optimization models is that there is only one objective function. In
other words: it can only produce single-criterion design solutions,
which fully satisfy no more than one of only a single decision maker’s
interests. Therefore, this technique does not extend naturally to group
decision making. When there are multiple criteria or multiple decision
makers, each criterion or decision maker is associated with its own
objective function. In that case there are multiple optimization models,
one for each criterion or decision maker, each having its own solution.
So, although this technique helps decision makers to find feasible
design solutions, it does not help them to select the most preferred
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solution from these. Decision makers have to find it by means of ne-
gotiation while, as stated at the beginning of this chapter, the purpose
of using an MCDA methodology is to mathematically support decision
making. In other words, the math is lost. More importantly, the nego-
tiations will not involve compromise solutions as each solution fully
satisfies only one decision maker (multiple single-criterion solutions).
An approach to overcome this problem is to use the constraint method
which operates by optimizing one objective while all of the others
are constrained to some value. In using this method our research
group [Binnekamp et al., 2006, pp. 351-358] discovered that the whole
process of choosing values for the constraints is completely arbitrary
and still relies on unstructured negotiation.

harsh distinction : feasible or infeasible As mentioned
before, the constraints divide all possible solutions (combinations of
decision variables) into two groups: feasible or infeasible. In other
words, a solution where € 100 000 000 is spent is considered feasible,
whereas a solution where € 1 more is spent is considered infeasible.
This is not a satisfactory representation of a stakeholder’s preferences
as it may well be that the stakeholder agrees to spending a little more
if that would produce a non-empty feasible set. Our research group
has made an attempt to remove this limitation where preferences were
integrated into LP by assuming a linear relationship between decision
variable values and a decision maker’s preference ratings [Binnekamp
et al., 2006, pp. 345-350]. However, the overall preference of a solution
is determined as the weighted sum of the preference rating of that
solution on all criteria which is an approximation. Furthermore, the
relationship between decision variable values and a decision maker’s
preference ratings is usually not linear.

linearity requirement As mentioned in the previous para-
graph, the relationship between decision variable values and a deci-
sion maker’s preference ratings is usually not linear. Our research
group [de Graaf and van Gunsteren, 2002] has also attempted to re-
move this limitation by assuming an exponential relationship between
decision variable values and a decision maker’s preference ratings.
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This, however, did not remove the limitation of an LP model of only
producing single-criterion design solutions.

Conclusion

Although LP-optimization constitutes a design methodology, the op-
timization framework does not extend naturally to group decision
making. The use of constraints to express a decision maker’s interests
results in a too harsh distinction between feasible and infeasible solu-
tions. The requirement of linearity can be removed by adopting the
assumption of non-linear preference behavior which is plausible in
many cases. The drawbacks of single-objective optimization and the
harsh distinction of feasibility, however, are fundamental.

5.2.2 GP

The technique of GP aims to remove the limitation of LP not being able
to handle decision problems involving multiple objectives. Charnes
and Cooper [1961] suggest that each constraint that makes up an LP

model is a separate function, called a functional. These functionals are
viewed as individual objectives or goals to be attained. In effect, the bi
are a set of objectives or goals that must be satisfied in order to have
a non-empty feasible set.

Referring to these functionals as goals, Charnes and Cooper sug-
gest that goal attainment is achieved by minimizing their absolute
deviation. They illustrate how that deviation can be minimized by
placing the variables representing deviation directly in the objective
function of the model. This allows multiple goals to be expressed in a
model as follows:

Minimize Z = ∑
i∈m

(d+
i + d−i ) (5.3)

subject to:
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n

∑
j=1

aijxj − d+
i d−i = bi for i = 1, . . . , m

and

d+
i , d−i , xj ≥ 0 for i = 1, . . . , m; for j = 1, . . . , n

As a way of prioritizing goals in the objective function of the GP

model Charnes and Cooper stated the weighted GP model as:

Minimize Z = ∑
i∈m

(w+
i d+

i + w−i d−i ) (5.4)

Where w+
i and w−i are non-negative constants representing the

relative weight to be assigned to the respective positive and negative
deviation variables.

The use of a weighted GP model to solve a decision making problem
can be illustrated by means of the previously used museum’s problem.

The museum’s problem revisited

Two objectives were identified: minimizing the money spent on ex-
tending and renovating the building and maximizing the use of the
main location.

The deviations from the goals can be defined as follows3:

d1 = under achievement of the expenditure goal
d2 = under achievement of the centralizing goal

Assume that the decision makers agree on assigning a weight of 0.67
(w1 = 0.67) to the expenditure goal and a weight of 0.33 (w2 = 0.33)
to the centralizing goal, then the goal programming model is:

3 In this example the implicit assumption is that a decision maker’s preference is linear
and rising until the aspiration level is achieved and constant thereafter.
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Min 0.67d1 + 0.33d2

s.t. 2600x1 + 3000x2 − d1 = 90 000 000

x1 + x2 + d2 = 35 000

x1 + x2 + x3 ≥ 50 000

x1 ≤ 20 000

The optimal solution is to build an extension of 12 667 square
meters. This means that the expenditure goal is fully met and the
centralizing goal falls 2 333 square meters short of the set goal of
35 000.

Discussion

Recall that in order for addition and multiplication to be applicable on
preference scale values, the alternatives must correspond to points on
a straight line in an affine geometry. Archimedean goal programming,
as well as other methodologies, has no mathematical foundation
because it does not satisfy this condition. Moreover, according to
Ignizio [1976, p. 183] ‘there are numerous approaches [for assigning
weights], each of which can lead to different results.’ The results then
depend on an arbitrary choice of weights: Since at most one approach
can be correct, all others must be incorrect and it is not known which
one, if any, is correct. Also, according to Ignizio [1976, p. 185] ‘weights
must be positive numbers where such numbers reflect the importance
associated with the minimization of a deviation variable assigned to
a given objective.’ Recall that the interpretation of coefficient ratios as
relative importance is a fundamental error.

In Archimedean goal programming piecewise linear functions and
weighted sums are assumed to reflect decision makers’ preferences
in order to enable the application of linear programming. In other
words, decision makers’ preferences are dictated by goal program-
ming researchers rather than by the decision makers.
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Conclusion

Although GP, as LP, can be considered a design methodology, it is,
like LP, prone to produce single criterion solutions which makes
it unsuitable for group decision making. Furthermore, the solution
produced depends on the norm used to handle the objective function.
It also suffers from the other limitations mentioned under LP: 1)
the harsh division of solutions (combinations of variables) into two
groups: feasible or infeasible without any further classification and
2) the linearity requirement. More fundamentally, Archimedean goal
programming has no mathematical foundation.

5.2.3 LMOP

Neither linear programming nor goal programming can handle mul-
tiple objectives. However, such problems can be dealt with by LMOP

and compromise programming. LP and GP are viewed as special cases
of these two methodologies, suitable only for specific and limited
applications.

LMOP can be used to find non-dominated solutions given the set of
functions to be optimized (minimized or maximized), i.e., objectives;
and the set of functions to be satisfied (in terms of their predetermined
values), i.e., constraints. A dominated solution means that there exists
at least one other feasible solution such that one of the objective
functions is improved. A non-dominated or Pareto optimal solution is
one in which any further improvement in any one of the n objectives
can be achieved only at the price of ‘worsening’ the value of at least
one of the remaining objective functions [Zeleny, 1982, p. 53]. The
Multi Criterion Simplex Method (MCSM) is used to identify all non-
dominated corner points. Some of its modifications help to identify
non-dominated segments or faces of a feasible set.

It would take too long for the purpose of this chapter to explain the
MCSM in detail, but its essence can be explained by means of graphical
analysis.



5.2 goal, aspiration or reference level methodologies 65

Consider the following problem as used by Zeleny [1982, p. 228]:

Max f1(x) = 4x1 + x2

Max f2(x) = x2
(5.5)

s.t. X =


2x1 + x2 ≤ 20
5
6 x1 + x2 ≤ 10

x1 + x2 ≥ 5

(5.6)

and the non-negativity conditions x1, x2 ≥ 0.

This problem is represented graphically in Figure 12. Take a look
at point D in the interior of X. Observe that D is a dominated point:
both functions can be improved in value at any point in the northeast
direction from D. All these dominated points are feasible.

The only non-dominated points of X are designated by the heavily
drawn boundary connecting points A, B and C. Points A, B, and C
are non-dominated corner points, and segments AB and BC are the
remaining regions of non-dominance.

The MCSM is explained in detail in [Zeleny, 1982, pp. 231-248].

To illustrate its use the previously mentioned problem of the mu-
seum is used.

The museum’s problem revisited

Two objectives were identified: minimizing the money spent on ex-
tending and renovating the building and maximizing the use of the
main location.

The problem can be formulated as an LMOP model:
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Figure 12: Drawing of constraints in two dimensions: the non-dominated set.
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Value obtained

Expenditure Use of main location

Solution z1 in euros z2 in m2

x1 86 500 000 31 500

x2 100 000 000 36 000

Table 15: Results of optimization run (MCSM).

Min 2 600x1 + 3 000x2

Max x1 + x2

s.t. 2 600x1 + 3 000x2 ≤ 100 000 000

x1 + x2 ≥ 31 500

x1 + x2 + x3 ≥ 40 000

x1 ≤ 20 000

The MCSM method reveals that this problem has two different non-
dominated corner points shown in Table 15.

Although the MCSM used does not identify non-dominated seg-
ments or faces of a feasible set4, it is not hard to imagine that the
remaining regions of non-dominance for this problem are represented
by a face, as this problem has three decision variables. This face
represents compromise solutions, but the methodology does not en-
able choosing from the compromise solutions the solution which is
preferred most.

Discussion

It is important to notice that the corner point solutions obtained are
identical to the solutions obtained when using LP, no corner point

4 Note that as a result resolving the two solutions in Table 15 with the solutions in
Figure 12 is problematic.
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solutions were found that could not have been found using LP which
is due to the simplicity of the example. Applying this methodology to
real life, more complex, problems with a multitude of constraints and
objective functions will probably yield non-dominated corner points
that could not have been found using LP.

Conclusion

Like LP and GP, LMOP can be considered a design methodology having
the advantage of enabling finding compromise solutions. However,
it does not offer an algorithm to choose between these solutions.
Although LMOP enables finding compromise solutions, it also suf-
fers from the limitations mentioned under LP: 1) the harsh division
of solutions (combinations of variables) into two groups: feasible
and infeasible without any further classification and 2) the linearity
requirement.

5.2.4 Conclusions on goal, aspiration or reference level methodologies

The goal, aspiration and reference level methodologies described in
this section can serve as design methodologies. However, both LP

and GP produce or are prone to produce single-criterion solutions,
rendering them unfit for solving group decision making problems.
Although LMOP is able to produce compromise solutions it does
not offer an algorithm to choose between them: it will still have to
rely on negotiations. All suffer from the following limitations: 1)
the harsh division of solutions (combinations of variables) into two
groups: feasible and infeasible without any further classification and
2) the linearity requirement – decision variable values and associated
preference ratings are assumed to be linearly related.

5.3 outranking methodologies

Outranking methodologies differ from the value function methodolo-
gies in that there is no underlying aggregative value function. The
output of an analysis is not a value for each alternative, but an out-
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ranking relation on the set of alternatives. An alternative a is said to
outrank another alternative b if, taking into account all available infor-
mation regarding the problem and the decision maker’s preferences,
there is a strong enough argument to support a conclusion that a is
at least as good as b and no strong argument to the contrary [Belton
and Stewart, 2003, p. 233].

The two most prominent outranking approaches, the ELimination
Et Choix Traduisant la REalité (ELECTRE) family of methods, devel-
oped by Roy and associates at Laboratoire d’Analyse et Modélisation
de Systèmes pour l’Aide à la Décision (LAMSADE), University of Paris
Dauphine, and Preference Ranking Organisation METHod for En-
richment Evaluations (PROMETHEE), proposed by Brans from the Free
University of Brussels, are investigated in this section.

5.3.1 ELECTRE

The family of ELECTRE methods differ according to the degree of
complexity, or richness of the information required or according to
the nature of the underlying problem [Belton and Stewart, 2003, p.
234]. This section will focus on ELECTRE I, the earliest and simplest of
the outranking approaches, which provides a good basis for under-
standing the underlying concepts. The remaining ELECTRE methods
(ELECTRE II and ELECTRE III) will be discussed in the discussion section.

Initial steps

The starting point for most outranking methods, including ELECTRE is
a decision matrix describing the performance of the alternatives to be
evaluated with respect to identified criteria.

Eliciting scores

ELECTRE is usually based on a concise set of criteria, typically around
6-10. Alternatives are rated using a 5-point verbal scale: Very Low
(VL), Low (L), Average (Av), High (H), Very High (VH). A higher
rating indicates a higher preference [Belton and Stewart, 2003, p. 234].
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Eliciting weights

Criteria are weighed such that a higher value indicates a greater
‘importance’. Unlike the weights used in value functions, however,
these do not represent trade-offs. Their psychological interpretation
is, in fact, not well-defined, although they have been interpreted as a
form of ‘voting power’ allocated to each criterion [Belton and Stewart,
2003, p. 234].

Determining overall evaluations

The ELECTRE methods are based on the evaluation of two indices,
namely the concordance index and the dis-concordance index, defined
for each pair of options a and b. The concordance index, C(a, b),
measures the strength of support in the information given, for the
hypothesis that a is at least as good as b. The dis-concordance index,
D(a, b), measures the strength of evidence against this hypothesis.
Note that the notion of strength of support is undefined.

There are no unique measures of concordance and dis-concordance
and a number have been used. In ELECTRE I the concordance index is
defined by:

C(a, b) =
∑i∈Q(a,b) wj

∑m
i=1 wj

(5.7)

where Q(a, b) is the set of criteria for which a is equal or preferred
to (i.e. at least as good as) b.

That is, the concordance index is the proportion of criteria weights
allocated to those criteria for which a is equal or preferred to b.
The index takes on values between 0 and 1, such that higher values
indicate stronger evidence in support of the claim that a is preferred
to b. A value of 1 indicates that a performs at least as well as b on all
criteria (so that a dominates or is equivalent to b).

The dis-concordance index is determined by first defining a veto
threshold for each criterion i, say ti, such that a cannot outrank b if
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the score for b on any criterion exceeds the score for a on that criterion
by an amount equal or greater than its threshold. That is:

D(a, b) =

{
1 if zi(b)− zi(a) > ti for any i

0 otherwise
(5.8)

The concordance and dis-concordance indices for each pair of
options can be used to build an outranking relation. This process
starts by specifying concordance and dis-concordance thresholds, C∗

and D∗ respectively. Alternative a is defined as outranking alternative
b if the concordance coefficient C(a, b) is greater than or equal to the
threshold C∗ and the dis-concordance coefficient D(a, b) is less than
or equal to D∗. The values of C∗ and D∗ are specified for a a particular
outranking relation and they may be varied to give more or less severe
outranking relations - the higher the value of C∗ and the lower the
value of D∗, the more severe the outranking relation, that is the more
difficult it is for one alternative to outrank another. If the outranking
relation is made too severe, then almost all pairs of alternatives will
be deemed to be ‘incomparable’; while if the outranking relation is
not severe enough then too many alternatives will outrank too many
others (i.e. most are deemed to be essentially equally good in the
light of the current information). Since neither of these outcomes
is particularly useful, it is a matter of experimentation to find a C∗

large enough (but not too large) and a D∗ small enough (but not
too small) in order to define an informative and useful outranking
relation [Belton and Stewart, 2003, pp. 236-238]. The above process is
represented in Figure 13.

The museum’s problem revisited

Recall that an architect made three preliminary designs all involving
the complete renovation of the existing building:

• A design involving extending the existing building with 11 500
square meters costing € 82 000 000.
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Figure 13: Building an outranking relation.
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Criterion

Alternative Expenditure Centralizing

Design A VH VL

Design B L Av

Design C VL VH

Weights 67 33

Table 16: Scores and weights: museum example (ELECTRE)

Alternative

Alternative Design A Design B Design C

Design A 1 0.67 0.67

Design B 0.33 1 0.67

Design C 0.33 0.33 1

Table 17: Concordance indices: museum example (ELECTRE).

• A design involving extending the existing building with 14 000
square meters costing € 95 000 000.

• A design involving extending the existing building with 16 000
square meters costing € 100 000 000.

The municipality (interested in minimizing expenditure) and mu-
seum (interested in maximizing centralizing) agree on the preference
ratings and weight distribution as shown in Table 16. This table
generates the concordance indices shown in Table 17.

Assume that both decision makers agree on a veto threshold of 3,
in other words, a cannot outrank b if the score for b on any criterion
exceeds the score for a on that criterion by an amount equal or greater
than 3. This results in the disconcordance indices shown in Table 18
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Alternative

Alternative Design A Design B Design C

Design A 0 0 1

Design B 1 0 0

Design C 1 0 0

Table 18: Disconcordance indices: museum example (ELECTRE).

in which an entry of 1 in cell (a,b) indicates that the alternative in row
a cannot outrank the alternative in column b.

The outranking relation can then be built using the concordance
and dis-concordance indices. When setting C∗ = 0.3 and D∗ = 0.8
design A outranks design B but design B outranks design C while
design C outranks design B. To resolve this we can strengthen the
outranking relation by increasing D∗ to 0.5. As a result design A still
outranks design B but again, design B outranks design C while design
C outranks design B. To strengthen the outranking relation even more
we can set C∗ to 0.4 which results in design A outranking design B
and design B outranking design C.

Discussion

The usefulness of the outranking relation completely depends on the
values chosen for the concordance and dis-concordance thresholds,
C∗ and D∗, respectively. The experimental process to find suitable
values for these is completely arbitrary.

As the choice of procedure to make use of the outranking rela-
tion depends on the nature of the problem, this can only mean that
the output for decision aid or support also varies according to the
procedure used.

Most importantly, all members of the ELECTRE family suffer from a
fundamental problem. The verbal scales used at most supply ordinal
information. Ordinal scales do not enable the mathematical opera-
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tions of addition and multiplication. As all members of the ELECTRE

family carry out these operation on ordinal scales, their output is
meaningless.

Conclusion

The main problem with all members of the ELECTRE family lies in
the process of eliciting scores where the mathematical operations
of addition and multiplication are performed on numbers obtained
using either a partial value function, a non-physical scale or by direct
rating of the alternatives. Nowhere in the literature on ELECTRE is
there any proof that this is allowed.

5.3.2 PROMETHEE

The PROMETHEE method, developed by Brans and colleagues (Brans
et al. [1984]; Brans and Vincke [1985]; Brans et al. [1986]) is another
outranking approach.

Initial steps

The starting point, as with ELECTRE, is a decision matrix describing
the performance of the alternatives to be evaluated with respect to
identified criteria.

Eliciting scores

Rating each alternative on each criterion can be done by defining a
partial value function, a non-physical value scale or by directly rating
the alternatives.

Eliciting weights

As with ELECTRE, criteria are weighed such that a higher value indi-
cates a greater ‘importance’.
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Determining overall evaluations

Belton and Stewart [2003, pp. 252-255] describe how the overall eval-
uations are determined: The next step in the PROMETHEE method is
to define what Brans calls a preference function for each criterion.
Rather than the specification of indifference and preference thresholds
the intensity of preference for option a over b, Pi(a, b), is described by a
function of the difference in performance levels on that criterion for
the two alternatives, i.e. on zi(a)− zi(b). Note that this terminolog-
ical concept of intensity of preference is undefined. The preference
function takes on values between 0 and 1 and a number of suggested
shapes are illustrated in Figure 14. The decision maker selects the
desired shape of function, and specifies any parameters that are then
needed. As shown in the figure, the functions are symmetric around a
difference of zero. For positive differences (zi(a) > zi(b)), the function
value gives Pi(a, b) while Pi(b, a) = 0. Conversely, when zi(a) < zi(b),
Pi(a, b) = 0 and the chosen function from Figure 14 generates the
required value for Pi(b, a).

The next step is to determine a preference index for a over b as
a measure of support for the hypothesis that a is preferred over b.
The preference index P(a, b) is defined as a weighted average of
preferences on the individual criteria:

P(a, b) = ∑m
i=1 wiPi(a, b)

∑m
i=1 wi

(5.9)

The preference index is thus also defined to be between 0 and 1.
As with the ELECTRE methods, the weights do not represent scaling
factors, but some notation of global importance.

The preference index thus defines a valued outranking relation,
which, as in ELECTRE III, is exploited to determine an ordering of the
alternatives. Two further indices, the positive outranking flow, and
the negative outranking flow are defined as follows:

The positive outranking flow for a:

Q+(a) = ∑
b 6=a

P(a, b) (5.10)
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Usual Criterion

No threshold q threshold p threshold

U-shape Criterion U-shape Criterion
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q and p thresholds p threshold

Linear Criterion Gaussian Criterion

q and p thresholds

Figure 14: PROMETHEE preference functions.
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The negative outranking flow for a:

Q−(a) = ∑
b 6=a

P(b, a) (5.11)

where the sums are taken over all alternatives under consideration.
The positive outranking flow expresses the extent to which a out-

ranks all other options. The negative outranking flow expresses the
extent to which a is outranked by all other options. A complete pre-
order of alternatives is derived from the ‘net flow’ for each alternative
defined as:

Q(a) = Q+(a)−Q−(a) (5.12)

Then a outranks b if Q(a) > Q(b), with indifference if Q(a) = Q(b).
The museum’s problem is used again to illustrate the above proce-

dure.

The museum’s problem revisited

Recall that the architect made three preliminary designs all involving
the complete renovation of the existing building:

• A design involving extending the existing building with 11 500
square meters costing € 82 000 000.

• A design involving extending the existing building with 14 000
square meters costing € 95 000 000.

• A design involving extending the existing building with 16 000
square meters costing € 100 000 000.

The municipality (interested in minimizing expenditure) and mu-
seum (interested in maximizing centralizing) agree on the preference
rating and weight distribution as shown in Table 19. They both use
the linear criterion function. This information is then used to generate
the preference indices as shown Table 20.
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Criterion

Alternative Expenditure Centralizing

Design A 100 0

Design B 28 56

Design C 0 100

Weights 67 33

Table 19: Scores and weights: museum example (PROMETHEE)

Alternative

Alternative Design A Design B Design C

Design A 0 0.67 0.67

Design B 0.33 0 0.62

Design C 0.33 0.33 0

Table 20: Preference indices: museum example (PROMETHEE).
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Flows

Alternative Leaving flow Entering flow Net flow

Design A 1.340 0.660 0.680

Design B 0.950 1.000 −0.050

Design C 0.660 1.290 −0.630

Table 21: Leaving, entering and net flows: museum example (PROMETHEE).

The leaving and entering flows are shown in Table 21. As an exam-
ple: the leaving flow for design A is the sum of the preference indices
of the first row of this table (0 + 0.67 + 0.67 = 1.34). The entering flow
is the sum of the preference indices of the first column of this table
(0 + 0.33 + 0.33 = 0.66).

The resulting outranking relationships show that design A is pre-
ferred over design B which is in turn preferred over design C.

Discussion

The PROMETHEE method combines the simplicity and transparency of
the early ELECTRE methods with some of the increased sophistication
of preference modeling incorporated in ELECTRE III. However, in
common with ELECTRE III, the distillation process can yield results
which are counter intuitive (see, for example, Roy and Bouyssou
[1993]; de Keyer and Peeters [1996]).

More fundamental, there is no proof in literature that the mathemat-
ical operations of addition and multiplication apply to the scales used
by PROMETHEE to rate alternatives. In other words, the methodology
has no mathematical foundation.

Conclusion

The conclusion that PROMETHEE sometimes produces counter intuitive
results is related to its lack of a mathematical foundation which, as
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was the case with members of the ELECTRE family of methods, renders
its output meaningless.

5.3.3 Conclusions on outranking methods

The major drawbacks of outranking methods arise from the many
rather non-intuitive inputs that are required, such as: concordance
and dis-concordance threshold levels; indifference, preference and
veto thresholds; and the preference functions of PROMETHEE. Such
drawbacks assume particular importance when efforts are made to ex-
tend the outranking methods to produce explicit preference orderings
over the full set of alternatives. The impacts of the various inputs are
difficult to appreciate intuitively, and the algorithms themselves tend
to be complicated for decision makers fully to understand. As a result
of this, results can be counter-intuitive, with unexpected changes in
rank orderings arising in response to changes in the threshold levels
or to addition or deletion of alternatives [Belton and Stewart, 2003,
pp. 258-259].

More fundamentally, none of the scales used by these methods
enable the operations of addition and multiplication which means
that they all produce meaningless numbers.

5.4 conclusions

As mentioned in Chapter 2, the main question to solve is: how to
select the design that meets all decision makers’ interests best taking
into account each design’s attributes.

We therefore need a methodology that: 1) extends to group deci-
sion making and 2) has a mathematical foundation for measuring
preference.

This survey has shown that none of the discussed goal, aspiration or
reference level methodologies extends to group decision making. This
leaves us with value measurement and outranking methodologies
which, with the exception of PFM as shown by Barzilai, all lack a
correct mathematical foundation.
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6P R E F E R E N C E - B A S E D D E S I G N M E T H O D O L O G Y

Design is, for a large part, a process of making choices. Choosing
between the possible options for a given design question is funda-
mentally an issue of preference. As such, methods of preference
measurement and preference-based selection should be applicable to
design. In this chapter, we propose a design methodology in which
design choices are preference-based.

When faced with group design decision making problems, our
Open Design group tries to solve these using Linear Programming
(LP) models. However, fundamental limitations are encountered in
using these models, as described in Chapter 5: 1) only allowing
single objective optimization thus satisfying only one interest of one
decision maker thereby not extending to group decision making, 2)
the constraints divide all possible solutions into either feasible or
infeasible ones; black or white, no gray which could eventually be
acceptable to decision makers thereby poorly reflecting a decision
maker’s preferences.

This chapter proposes a Preference-Based Design (PBD) methodol-
ogy which removes these limitations. Its cornerstones are: 1) using
only the design optimization framework of LP, and 2) using Preference
Function Modeling (PFM) to incorporate preferences. The methodol-
ogy will be illustrated using the North Sea International Airport case
– the dilemma of Amsterdam Airport Schiphol of whether or not to
move the airport to an artificial island in the North Sea (see 6.3.1).

6.1 the preference-based design concept

In order for the operations of addition and multiplication to be ap-
plicable on preference scale values the mathematical system must
be a one-dimensional affine space. Addition and multiplication are
not applicable in any measurement model based on axioms other

85
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than those of a one-dimensional affine space. As a result, any deci-
sion methodology where addition and multiplication are used on
non-affine scale values, has no mathematical foundation. Not only
are all the models in the classical theory (see [Krantz et al., 1971] and
[Roberts, 1979]) non-affine but since 2005, Barzilai’s challenge to the
community failed to produce a single such model [Barzilai, to appear
June 2010, §10].

The survey of Chapter 5 shows that the only Multiple Criteria
Decision Analysis (MCDA) evaluation methodology enabling the op-
erations of addition and multiplication on preference scale values
is PFM. All other evaluation methodologies lack such a foundation.
However, PFM is an evaluation methodology, whereas in the domain
of architecture a design methodology is needed.

Of the three design methodologies surveyed in Chapter 5 – LP,
Goal Programming (GP), and Linear Multi Objective Programming
(LMOP) – none extend naturally to group decision making. This is
a pre-requisite for a design methodology in architecture. However,
the optimization framework of these methodologies, i.e. a set of
constraints defining a set of feasible alternatives, can be used to
express the interests or criteria of each decision maker involved in the
design process.

The concept of PBD is to 1) use constraints for expressing each
decision maker’s interests or criteria in terms of allowed decision
variables value ranges and relationships between decision variables
in order to define all feasible alternatives and 2) use PFM to select
from these the alternative with the highest overall preference rating.
A design alternative is then a combination of decision variable values
and its feasibility is defined by the constraints.

To illustrate this, consider the design process of a new office build-
ing. The new owner is interested in the investment costs (decision
variable x1) while the tenant is interested in the rent (decision variable
x2). Assume that the new owner wants to have an initial yield (first
year rent divided by the investment costs) of at least 8% and the
tenant is not willing to pay more than $ 150 per square meter. Assume
that the investment costs are at least $1 400 per square meter and
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that the tenant needs 1 000 square meters. The set of feasible design
alternatives is then defined by the following design constraints:

− 0.08x1 + 1 000x2 ≥ 0

x2 ≤ 150

0.001x1 ≥ 1 400

The combination of decision variables x1 = 1 400 000 and x2 =
112 is an example of a feasible design alternatives as it satisfies all
constraints. For this problem the combination x1 = 1 875 000 and
x2 = 150 is another example of a feasible design alternative.

6.2 problems and solutions

The first problem we encounter is that, if the alternative designs
are defined as combinations of decision variable values and their
feasibility by the constraints then, providing the feasible set is non-
empty, the number of feasible alternatives will be infinitely large1 and
evaluating each by exhaustive enumeration using a computer will be
fruitless.

6.2.1 Discretization of the solution space

One solution to limit the number of alternatives to evaluate is to
make use of discretization. For instance, when designing a new office
building the new owner may wish that it is at least 250 meters from
the nearest railway station but no more than 1 000 meters. Less than
250 meters and the noise of passing trains is considered too loud,
more than 1 000 meters and it will take personnel too long to still
be able to walk to the station from the office within an acceptable
amount of time. Assume that these are the only constraints for this
design problem, then the feasible set can be represented by a line

1 Unless the constraints define just one feasible point which is uncommon in real life
situations.
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segment containing an infinite number of solutions with regards to
the distance from the railway station. By means of discretization
the segment could be divided into, for instance, three segments and
the set of feasible solutions would be limited to 250/500/750/1 000

meters.

6.2.2 Introduction of synthetic alternatives

Although, by making use of discretization, the number of alternatives
will be finite, the constraints divide all possible solutions into two
groups: feasible or infeasible. Solutions are not further distinguished
which means that we only know whether an alternative is feasible
or infeasible. In other words, there is no way of choosing from the
feasible alternatives the most preferred one which is a requirement
the PBD. To resolve this problem, information needs to be provided
on the preference rating associated with different decision variable
values. Going back to the previous example, without knowing the
preference rating associated with each of the four feasible solutions
(distances) it will be impossible to choose between them.

Recall the process of utilizing PFM (single decision maker):

1. Specify the alternatives.

2. Specify the decision maker’s criteria tree.

3. Rate the decision maker’s preferences for each alternative against
each leaf criterion as follows:

a) For each criterion establish reference alternatives.
b) Rate the preference for the other alternatives relative to

these reference alternatives on the scale established.

4. To each leaf criterion assign decision maker’s weight.

5. Use the PFM algorithm to yield an overall preference scale.

Step 3 in the above procedure requires the decision maker to rate
an alternative against different criteria. This is what makes PFM an
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evaluation methodology as the alternatives to evaluate exist, in the
sense that they can be judged on different criteria or properties as a
whole. In the domain of architecture, however, a design methodology
is needed, where the design alternatives are not known a priori and
can therefore not be judged as a whole.

The problem of not knowing the alternatives in advance is solved
by introducing synthetic alternatives. A synthetic alternative is an
alternative associated with a value for a single decision variable value,
regardless of other decision variables and regardless of its feasibility.
An example of a synthetic alternative is an office building having five
stories, regardless of other decision variables and regardless of its
feasibility, given that one of the decision makers is interested in the
criterion or decision variable ‘number of stories’. Another synthetic
alternative could be an office building having ten stories. Of course
other decision variables – criteria – are likely to also play a role.
For example, if another decision maker is interested in the decision
variable investment costs then a building costing $1 000 000 would also
be a synthetic alternative as would be a building costing $1 250 000.

Every decision maker needs to rate each decision variable on at
least three values as pairwise comparisons cannot be used to construct
preference scales where the operations of addition and multiplication
are enabled as explained in Chapter 3.

The three design variable values are in essence value judgments of
the decision maker and correspond, to some extent, to the quantita-
tive goals of goal programming. However, in goal programming the
decision maker needs to state only one value for each goal whereas,
in the PBD procedure, the decision maker needs to rate at least three
values. In our experiments [van Gunsteren, 2005] we call these ideal,
acceptable and walk-out values and are usually based on both the
decision maker’s preference and experience.

Step 3 of the PBD procedure will thus be as follows:

Rate the decision maker’s preferences for at least three values for
each decision variable as follows:

a) For each decision variable establish (synthetic) reference alterna-
tives.
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b) Rate the preference for alternatives associated with the other deci-
sion variable values relative to these reference alternatives on the
scale established.

Going back to the railway station example, the owner may define a
bottom synthetic alternative (regardless of its feasibility) associated
with the value for the decision variable (or criterion) ‘distance’ of 250
meters (too close) at 0. Another synthetic alternative associated with
1 000 meters (too far away) is also rated at 0. The owner could then
define a top synthetic alternative (again, regardless of its feasibility)
associated with a decision variable value of 500 meters at 100. The
other synthetic alternative associated with 750 meters can then be
rated on the scale established.

Step 1 and 2 in PFM’s procedure also need to be modified as the
alternatives are defined as combinations of decision variable values
and not known a priori. So, instead of specifying the alternatives
and criteria we need the decision maker to specify in which decision
variable(s) he/she is interested including allowed ranges.

As decision variables in the PBD procedure are considered to be
synonymous to criteria each decision maker has to assign weights to
decision variables.

The way in which decision variables relate to each other determine
the design constraints. These determine whether or not an alternative,
as defined as a combination of decision variable values, is feasible.
Only feasible alternatives are evaluated using the PFM algorithm to
yield an overall preference scale of all feasible alternatives.

Given the design variables the decision makers are interested in
and allowed values (at least three per design variable) all possible
combinations constitute alternatives and are generated using a com-
puter procedure. The total number of alternatives generated equals
the number of design variable values the decision makers are inter-
ested in to the power of the number of design variables the decision
makers are interested in. Within this procedure they are evaluated
on whether they meet the design constraints so that only feasible
alternatives combinations can be filtered out which are subsequently
fed to the PFM software to yield an overall preference scale.
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The above adaptation leads to the following PBD procedure (note
that the numbering has changed as step 1 and 2 of the PFM procedure
have merged into one step):

1. Specify the decision variable(s) the decision maker is interested
in.

2. Rate the decision maker’s preferences for at least three values
for each decision variable as follows:

a) For each decision variable establish (synthetic) reference
alternatives.

b) Rate the preference for alternatives associated with the
other decision variable values relative to these reference
alternatives on the scale established.

3. To each decision variable assign decision maker’s weight.

4. Determine the design constraints.

5. Combine decision variable values to generate design alternatives
and use the design constraints to test their feasibility.

6. Use the PFM algorithm to yield an overall preference scale of all
feasible alternatives.

6.3 illustration : schiphol’s dilemma

To illustrate the PBD methodology, the design problem of the extension
of Amsterdam Airport Schiphol is used. After a short introduction to
Schiphol’s dilemma each step of the PBD procedure is described.

6.3.1 Schiphol’s dilemma

The dilemma for Schiphol is the following [van Gunsteren, 2005]:

• To maintain its position as a main port, the number of flight
movements per year should be above a certain threshold.
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Figure 15: North Sea International Airport as envisioned by Royal Haskoning
& Van Oord in 2008.

• To keep the environmental effects within acceptable limits, in
particular noise hindrance but also air pollution, the number of
flight movements should be kept below a certain level.

This dilemma could be resolved by the North Sea Island option:
moving the take-off and landing of airplanes to an artificial island
in the North Sea which is connected by a train shuttle to the present
airport. Preliminary studies of such an artificial island by Royal Has-
koning & Van Oord are shown in Figure 15 and Figure 16.

Van Gunsteren solved this problem using the constraint method
within Open Design methodology. As discussed in Chapter 5, this
process has significant arbitrary elements in the sense that its final
solution relies on unstructured negotiation.
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Figure 16: North Sea International Airport as envisioned by Royal Haskoning
& Van Oord in 2008, close-up.
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6.3.2 Using PBD methodology to solve this problem

To test the PBD methodology an experiment was carried out where
colleague experts from our university were asked to play the role of
the decision makers for this design problem (Workshop, July, 2007).

Step 1: Specify the decision variables the decision maker is interested in

The following decision makers are identified along with the decision
variables they are interested in:

• The Ministry of Finance is interested in the investment (decision
variable i in billion dollars).

• The airlines are interested in the time (decision variable t in
hours) passengers would have to spend in the shuttle.

• The Ministry of Environment is interested in the distance (deci-
sion variable d in kilometers) between the island and the shore.

• The airport is interested in the number of flight movements
(decision variable f in 100k flight movements).

Step 2: Rate the decision maker’s preference for at least three values for each
decision variable value

The Ministry of Finance rates a (synthetic) alternative that would cost
15 billion dollars at 100 and an alternative that would cost 40 billion
dollars at 0. A third alternative costing 20 billion dollars is rated at
20.

The airlines rate an alternative that requires passengers to spend
0.5 hours in the shuttle at 100 and an alternative that requires them
to spend 0.9 hours at 0. A third alternative that would require them
to spend 0.7 hours is rated at 45.

The Ministry of Environment rates an alternative that has a distance
of 40 kilometers between the island and the shore at 100 and an
alternative that has a distance of 20 kilometers at 0. A third alternative
that has a distance of 30 kilometers is rated at 70.
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The airport rates an alternative with 10 ×100k flight movements at
100 and an alternative with 6 ×100k flight movements at 0. A third
alternative with 8 ×100k flight movements is rated at 20.

Step 3: To each decision variable assign decision maker’s weights

For this experiment all decision variables are weighted equally.

Step 4: Determine the design constraints

For this experiment two design constraints were used. The first relates
the distance between the island and the shore (decision variable d
in kilometers) and the time passengers have to spend in the shuttle
(decision variable t in hours) using a postulated shuttle speed of 120
kilometers per hour:

d
120
≤ t (6.1)

The second design constraint relates the number of flight move-
ments (decision variable f in 100k flight movements), the distance
between the island and the shore (decision variable d in kilometers)
and the investment (decision variable i in billion dollars). Given that
building an island for 600k flight movements at a distance of 10 kilo-
meter from the shore would cost 15 billion dollars, the investment
increases with 0.15 billion dollars per 100k flight movements more
than 600k and increases with 0.2 billion dollars per kilometer more
distance from the shore than 10 kilometer:

15 + 0.15( f − 6) + 0.2(d− 10) ≤ i (6.2)

Step 5: Combine decision variable values to generate design alternatives and
use the design constraints to test their feasibility

All alternatives were analyzed on their feasibility and the feasible
ones were fed into the PFM software. For instance, the combination of
i = 15, t = 0.5, d = 40 and f = 10 satisfies the first design constraint
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as it will take the shuttle 0.33 hours to travel 40 kilometers which is
less than 0.5 hours:

40
120
≤ 0.5 (6.3)

However, it fails the second design constraint as it will cost more
than 15 billion dollars to build the island at 40 kilometers from the
shore while supporting 10×100k flight movements:

15 + 0.15(10− 6) + 0.2(40− 10) 6≤ 15 (6.4)

Step 6: Use the PFM algorithm to yield an overall preference scale of all
feasible alternatives

Table 22 shows the top 10 (out of 36) feasible alternatives (combina-
tions of decision variable values that satisfy the design conditions),
ordered on the overall preference rating yielded by the PFM algorithm.
From this table it can be concluded that alternative 27 requiring the
passengers to spend 0.5 hours in the shuttle at a distance of 40 kilo-
meters from the shore with 10×100k flight movements costing 40
billion dollars is both feasible and the most preferred alternative.

6.4 remaining problems and solutions

Table 22 also shows the drawback of using only three discrete values
for each decision variable. Alternatives 27 and 24 differ only with
respect to the value of decision variable d (40 and 30 kilometers
respectively) and the associated preference rating. The investment
is the same. One would expect that the real investment associated
with alternative 24 would be lower, because building the island 10
kilometers closer to the shore would reduce the construction costs,
which in turn might promote alternative 24 to first place. In other
words, why is alternative 24 combined with the value of 40 billion
dollars in second place, and not the equivalent alternative with the
value of 20 billion dollars for the investment?
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Decision variable

Alt. i t d f Pref.

27 40 0.5 40 10 59

24 40 0.5 30 10 57

18 40 0.7 40 10 56

26 40 0.5 40 8 54

15 40 0.7 30 10 51

21 40 0.5 20 10 50

25 40 0.5 40 6 50

36 40 0.5 20 10 50

9 40 0.9 40 10 50

23 40 0.5 30 8 49

Table 22: Top 10 feasible alternatives with associated decision variable values
and preference ratings.
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Equation 6.2 can be used to determine the investment as a function
of the number of flight movements and distance. For alternative 24
the investment would be:

i = 15 + 0.15(10− 6) + 0.2(30− 10) = 23.6 (6.5)

As a result the values f = 10 and d = 30 cannot be combined
with the value of 20 billion dollars for the investment as 23.6 billion
dollars is larger than 20 billion dollars. In other words the combination
f = 10, d = 30, i = 20 fails the second design constraint.

This is in essence a resolution problem and can be dealt with by:

• Asking the decision makers to rate their preference for more
decision variable values.

• Deriving a curve that relates the decision maker’s preference
ratings to decision variable values.

The first approach is an iterative fine tuning approach requiring the
decision makers to invest time in finding a satisfactory combination
of decision variable values. The second approach aims to find the
satisfactory combination in one go, but takes up more computer time.

6.4.1 Asking decision makers to rate more synthetic alternatives

This approach requires each decision maker to rate his preference for
more decision variable values. For an illustration of this approach see
Figure 17 showing three values for the investment decision variable
on the x-axis (15/20/40) and associated preference ratings on the y-
axis (100/20/0). This defines three coordinates (15, 100), (20, 20) and
(40, 0). The effect of asking the decision maker to rate his preference
for more decision variable values is shown in Figure 18.

A similar approach is to use a more iterative procedure whereby
the outcome of the first preference rating may lead a decision maker
to focus on a range of values close to the decision variable value
associated with the most preferred alternative. For instance, if the
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Figure 17: Values for the investment variable and associated preference rat-
ings.
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Figure 18: Effect of asking the decision maker to rate more decision variable
values.
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highest rated alternative is associated with an investment of 20 billion
dollars, the decision maker could rate his preference for alternatives
associated with 15 and 25 billion dollars. Other decision makers could
decide to do the same after which the overall preference rating can be
determined again.

In this way, only the relevant part of the feasible set need be ex-
plored to a depth/resolution necessary to find a satisfying solution.

6.4.2 Deriving a curve corresponding with the decision maker’s preference
ratings for three decision variable values

The time required by each decision maker to rate his preference for
more decision variable values and the time required by the iterative
procedure is a serious drawback. This can be removed by means
of curve fitting: to fit a curve through the decision variable value -
preference rating coordinates. Curves commonly used in Operations
Research (OR) for this purpose are Lagrange polynomials and cubic
spline curves.

Finding the Lagrange curve relating the decision maker’s preference ratings
to decision variable values

The Lagrange interpolating polynomial is the polynomial P(x) of
degree ≤ (n− 1) that passes through the n points (x1, y1 = f (x1)),
(x2, y2 = f (x2)), ...,(xn, yn = f (xn)), and is given by:

P(x) =
n

∑
j=1

Pj(x) (6.6)

where

Pj(x) = yj

n

∏
k=1;k!=j

x− xk
xj − xk

(6.7)

The formula was first published by Waring [1779], rediscovered by
Euler in 1783, and published by Lagrange in 1795.
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The quadratic form of the Lagrange polynomial interpolates three
points, (x0, y0), (x1, y1), and (x2, y2). Equations 6.6 and 6.7 can be
rewritten explicitly for n = 3 points:

P(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
y1

+
(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
y2

+
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
y3 (6.8)

Equation 6.8 can be used to find the curve defined by the three
decision variable value - preference rating coordinates for the invest-
ment variable, (15, 100), (20, 20), and (40, 0) as shown in Figure 19.
Lagrange polynomials oscillate between their roots (knots), therefore
they can take negative values. In this case, the preference rating would
be negative for investment values between 22 and 40 billion dollars
which is not what the decision maker intended, making the Lagrange
curve not a suitable representation of the decision variable value -
preference rating curve.

Finding the cubic spline corresponding with the decision maker’s preference
ratings for possible decision variable values

Another option is to use cubic spline interpolation. A cubic spline is
a function constructed by piecing together cubic polynomials pk(x)
on different intervals [xk, xk+1]. It has the form:

f (x) =


p1(x) x1 ≤ x < x2

p2(x) x2 ≤ x < x3
...

...

pm−1(x) xm−1 ≤ x ≤ xm

(6.9)

Consider points (x1, y1), (x2, y2), . . . , (xm, ym), with x1 < x2 < . . . <
xm. A cubic spline is constructed by interpolating a cubic polynomial
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Figure 19: The Lagrange curve defined by three decision variable value -
preference rating coordinates for the investment variable.
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pk between each pair of consecutive points (xk, yk) and (xk+1, yk+1)
according to the following constraints:

Each polynomial passes through its respective end points:

pk(xk) = yk and pk(xk+1) = yk+1 (6.10)

First derivatives match at interior points:

d
dx

pk(xk+1) =
d

dx
pk+1(xk+1) (6.11)

Second derivatives match at interior points:

d2

dx2 pk(xk+1) =
d2

dx2 pk+1(xk+1) (6.12)

Second derivatives vanish at the end points:

d2

dx2 p1(x1) = 0 and
d2

dx2 pm−1(xm) = 0 (6.13)

The above conditions specify a system of linear equations that can
be solved for the cubic spline.

The cubic spline defined by the three decision variable value -
preference rating coordinates for the investment variable, (15, 100),
(20, 20), and (40, 0) is shown in Figure 20. As with the Lagrange
polynomials, cubic splines oscillate between their roots (knots), and
can also take negative values. It can be concluded that the cubic spline
is also not a suitable representation of the curve.

6.4.3 Letting the decision maker construct the curve relating preference
ratings to decision variable values

The proposed solution to find intermediate coordinates, is by asking
the decision maker to construct a curve to approximate the relation-
ship between preference ratings and decision variable values. To avoid
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Figure 20: The cubic spline defined by three decision variable value - prefer-
ence rating coordinates for the investment variable.
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negative preferences, the derivatives at the endpoints must be control-
lable by the decision maker. A Bézier curve is used for this purpose,
as this is also considered an intuitive way of constructing a curve.

Note the difference between this approach and the before men-
tioned curve fitting approaches. Instead of fitting a curve through
a set of coordinates, this approach requires the decision maker to
actually construct the curve by positioning the end points and shaping
the curve using its control points.

A Bézier curve in its most common form is a simple cubic equa-
tion that can be used in any number of useful ways. Bézier curves
were separately and simultaneously developed for car body design at
French manufacturers by Pierre Bézier at Renault and Paul de Castel-
jau at Citroën. In vector graphics, Bézier curves are an important tool
used to model smooth curves that can be scaled indefinitely.

A cubic Bézier curve (see Figure 21) is defined by four points. Two
are endpoints: (x0, y0) is the origin endpoint, (x3, y3) is the destination
endpoint. The points (x1, y1) and (x2, y2) are the control points.

The curve as shown in Figure 21 could be used to define a prefer-
ence curve where the preference rating (along the y-axis) decreases
against the decision variable value (along the x-axis). Allowed decision
variable values range between x0 and x3 and the preference ratings
range between y0 and y3. The control points (x1, y1) and (x2, y2) are
used to control the curve’s slope. Note that the coordinates associated
with the control points have no meaning in real life, they only serve
to shape the curve and do not represent decision variable values and
associated preference ratings.

Similarly, Figure 22 shows an example of how a Bézier curve could
be used to define a preference curve where the preference rating
increases against the decision variable value.

Figure 23 can be used when the most preferred decision variable
value lies between allowed decision variable values. An example
is the distance of an office to the nearest railway station discussed
earlier. In this case coordinate (x4, y4) represents the decision variable
value that is most preferred and is defined indirectly (not input) by
manipulating the two control points.
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(x0,y0)

(x1,y1)

(x2,y2)

(x3,y3)

Figure 21: A cubic Bézier curve defined by four points; endpoints (x0, y0),
(x3, y3), and control points (x1, y1) and (x2, y2).
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(x3,y3)

(x2,y2)

(x1,y1)

(x0,y0)

Figure 22: Defining a Bézier curve where the preference rating (y-axis) in-
creases against the decision variable value (x-axis).
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(x0,y0)

(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)

Figure 23: Defining a Bézier curve where the preference rating (y-axis) peaks
between allowed the decision variable value (x-axis).
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This means that the preference rating step of the PBD procedure
changes as follows.

Step 2: Rate the decision maker’s preferences for each decision variable by
using a Bézier curve

Assume that instead of asking the decision makers to rate their pref-
erence for three decision variable values they were asked to construct
a Bézier curve to relate preference ratings to the decision variable
values.

Figure 24 shows the Bézier curve as defined by the Ministry of
Finance, interested in the investment (decision variable i). First the
decision maker has to decide on the coordinate of the origin endpoint
(15, 100) and the destination endpoint (40, 0). The decision maker then
uses the two control points to shape the curve until its slope corre-
sponds to how the decision maker relates decision variable values to
preference ratings. The curve shows that the Ministry of Finance’s
preference rating sharply drops from 100 to 20 as the investment
variable increases from 15 to 20 billion dollars.

Figure 25 shows the Bézier curve as defined by the airlines, inter-
ested in the travel time (decision variable t). The curve shows that the
airlines’ preference rating drops almost linearly from 100 to 45 as the
travel time variable increases from 0.5 to 0.7 hours.

Figure 26 shows the Bézier curve as defined by the Ministry of En-
vironment, interested in the distance (decision variable d). The curve
shows that the Ministry of Environment’s preference rating drops
rather gradually from 100 to 70 as the distance variable decreases
from 40 to 30 kilometers.

Figure 27 shows the Bézier curve as defined by the airport, inter-
ested in the flight movements (decision variable f ). The curve shows
that the airport’s preference rating sharply drops from 100 to 20 as
the flight movements variable decreases from 10×100k to 8×100k
flight movements.

The information contained in these figures is summarized in Ta-
ble 23.
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Figure 24: Investment variable value vs. preference rating.

Decision variable

Point i t d f

(x0, y0) (15, 100) (0.5, 100) (20, 0) (6, 0)
(x1, y1) (15, 12.5) (0.7, 48) (26.5, 60) (9, 15)
(x2, y2) (20, 7.5) (0.7, 40) (27.5, 67) (9, 55)
(x3, y3) (40, 0) (0.9, 0) (40, 100) (10, 100)

Table 23: End points (x0, y0) and (x3, y3) and control points (x1, y1) and
(x2, y2) for all Bézier curves.
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Figure 25: Travel time variable value vs. preference rating.
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Figure 26: Distance variable value vs. preference rating.
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Figure 27: Flight movements variable value vs. preference rating.
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A cubic Bézier curve drawn over the interval 0 ≤ t ≤ 1 is produced
by a relation which has its x and y coordinates, respectively, specified
by the cubic polynomial functions:

x = x0(1− t)3 + 3x1t(1− t)2 + 3x2t2(1− t) + x3t3 (6.14)

and

y = y0(1− t)3 + 3y1t(1− t)2 + 3y2t2(1− t) + y3t3 (6.15)

These equations can then be used to find coordinates along the
curve using different values for t (0 ≤ t ≤ 1).

For example: the x-coordinate for decision variable i for t = 0.5 is
given by Equation 6.14 (using the information in Table 23):

x = x0(1− t)3 + 3x1t(1− t)2 + 3x2t2(1− t) + x3t3

= 15(1− 0.5)3 + 3× 15× 0.5(1− 0.5)2

+3× 20× 0.52(1− 0.5) + 40× 0.53

= 20

Similarly, the y-coordinate is given by Equation 6.15:

y = y0(1− t)3 + 3y1t(1− t)2 + 3y2t2(1− t) + y3t3

= 100(1− 0.5)3 + 3× 12.5× 0.5(1− 0.5)2

+3× 7.5× 0.52(1− 0.5) + 0× 0.53

= 20

Each Bézier curve can then be divided in, say, ten segments yielding
eleven points on each curve by setting t to 0, 0.1, 0.2, 0.3, 0.5, 0.6, 0.7,
0.8, 0.9 and 1. By comparison, in the previous procedure we only had
three points. The coordinates obtained using Equation 6.14 and 6.15

for each decision variable are shown in Table 24.
Having increased the number of combinations of decision variable

values we can now go to step 5 and 6 of the PBD procedure.
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Decision variable

i t d f

t xt yt xt yt xt yt xt yt

0 15.00 100.00 0.50 100.00 20.00 0.00 6.00 0.00

0.1 15.16 76.14 0.55 85.64 21.80 16.49 6.81 5.23

0.2 15.68 56.72 0.60 73.47 23.38 30.27 7.47 11.84

0.3 16.62 41.23 0.64 63.03 24.82 41.82 8.00 19.71

0.4 18.04 29.16 0.67 53.86 26.25 51.62 8.42 28.72

0.5 20.00 20.00 0.70 45.50 27.75 60.13 8.60 38.75

0.6 22.56 13.24 0.73 37.50 29.43 67.82 9.02 49.68

0.7 25.78 8.37 0.76 29.41 31.40 75.19 9.26 61.39

0.8 29.72 4.88 0.80 20.77 33.74 82.69 9.49 73.76

0.9 34.44 2.26 0.85 11.12 36.58 90.80 9.73 86.67

1 40.00 0.00 0.90 0.00 40.00 100.00 10.00 100.00

Table 24: Eleven coordinates along all Bézier curves.
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Step 5: Combine decision variable values to generate design alternatives and
use the design constraints to test their feasibility

The information in Table 24 is used to generate 14 641 possible combi-
nations of decision variable values (the number of decision variable
values to the power of the number of decision variables). Then, all
alternatives are analyzed on their feasibility and the feasible ones are
fed into the PFM software.

Step 6: Use the PFM algorithm to yield an overall preference scale of all
feasible alternatives

Table 25 shows the top 10 of feasible alternatives (combinations of
decision variable values that satisfy the design conditions) ordered on
the overall preference rating yielded by the PFM algorithm. From this
table it can be concluded that alternative 396 requiring the passengers
to spend of 0.5 hours in the shuttle at a distance of 31.4 kilometers
from the shore with 10×100k flight movements costing 20 billion
dollars is both feasible and the most preferred alternative.

6.5 evaluation of the pbd procedure

The result obtained using Bézier curves to enhance the resolution is
more satisfying as the value of 20 billion dollars for the investment
variable is closer to the calculated value of 19.88 billion associated
with the construction of an island at a distance of 31.4 kilometers
accommodating 10×100k flight movements obtained using Equa-
tion 6.5 earlier. Remember that before introducing the Bézier curves,
only three decision variable values were used resulting in a value of
40 billion dollars being combined with the construction of an island
at 30 kilometers from the shore. It will be clear that the higher the
number of segments each curve is divided in, the more satisfying
the result will be with regards to getting closer to the value of 19.88
billion dollars.

Table 24 can be used to find the preference rating associated with
the decision variable values of alternative 396 for each decision maker
as shown in Table 26.
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Decision variable

Alt. i t d f Pref.

396 20 0.5 31.40 10 80.144

1430 22.56 0.5 40 10 79.969

385 20 0.5 29.43 10 79.281

1419 22.56 0.5 36.58 10 78.677

374 20 0.5 27.75 10 78.318

1429 22.56 0.5 40 9.73 78.255

1551 22.56 0.55 40 10 78.151

1408 22.56 0.5 33.74 10 77.852

363 20 0.5 26.25 10 77.157

1397 22.56 0.5 31.40 10 77.083

Table 25: Top 10 of feasible alternatives with associated decision variable
values and preference ratings.

Decision variable Value Rating

Investment i [$ billion] 20.00 20.000

Travel time t [hours] 0.50 100.000

Distance d [km] 31.40 75.190

Flight movements f [×100k] 10.00 100.000

Overall preference rating 80.144

Table 26: Decision variable values and preference ratings for the highest rated
alternative.
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As mentioned before, the Ministry of Finance’s preference rating
sharply drops from 100 to 20 as the investment variable increases
from 15 to 20 billion dollars. The curve as defined by the airport
also shows a sharp drop in preference rating as the number of flight
movements deviates from the most preferred value. On the other
hand, the curves of the two other decision makers show a far less
sharp drop in preference rating as soon as their decision variable
deviates from the most preferred value. Therefore one would expect
an alternative associated with an investment close to 15 billion dollars
and 1 000 000 flight movements to be selected as the highest rated
alternative. Looking at alternative 396 this is true with respect to
the number of flight movements, but not true with respect to the
investment.

This can be explained by looking at the second design constraint, see
Equation 6.2. Consider an alternative associated with an investment
of 15 billion dollars:

15 + 0.15( f − 6) + 0.2(d− 10) ≤ 15 (6.16)

In order to satisfy this constraint the number of flight movements f
needs to be equal to 6 and the distance d equal to 10 (both need to
be larger than or equal to zero). As the Ministry of Environment’s
preference rating vs. decision variable value curve shows that the
lowest allowed value for the distance equals 20, any alternative asso-
ciated with an investment of 15 billion dollars is infeasible. In other
words, as the Ministry of Finance will need to ‘give in’ anyway, it
makes sense that alternative 396 has the highest overall preference
as, although it is not the highest rated alternative by the Ministry of
Finance, it is for the airlines and the airport and is also highly rated
by the Ministry of Environment.

6.5.1 PBD methodology as compared to the constraint method

To compare the solution obtained using PBD with the solution using
the constraint method proposed by van Gunsteren [2005], we need to
determine the overall preference rating associated with the solution
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van Gunsteren PBD

Decision variable Value Rating Value Rating

Investment i [$ billion] 20.60 18.048 20.00 20.000

Travel time t [hours] 0.65 59.325 0.50 100.000

Distance d [km] 35.00 86.369 31.40 75.190

Flight movements f [×100k] 10.00 100.000 10.00 100.000

Overall preference rating 73.521 80.144

Table 27: Comparison of alternatives.

he obtained. For this, we need to determine the preference rating
associated with each decision variable value obtained in his final run:
i = 20.6, t = 0.65, d = 35 and f = 10. Using the coordinates of the
end and control points of the curves we can use Equation 6.14 to
determine the value for t associated with each decision variable value.
Using the obtained value for t, we can use Equation 6.15 to find the
associated preference rating. For instance, using the coordinates of the
control and endpoints of the curve associated with decision variable i,
setting t to 0.53 produces x = 20.6 and y = 18.048. The PFM algorithm
can then be used to yield the overall preference rating associated
with the solution van Gunsteren obtained compared to the overall
preference rating obtained using the PBD procedure. The results are
shown in Table 27.

Professionals from practice involved in this experiment considered
the solution proposed by van Gunsteren close to the solution obtained
using the PBD procedure. In the judgment of these professionals the
difference was insignificant. However, his solution is the result of
manipulation by the model owner with respect to the constraint value
for the distance d associated with the Ministry of Environment.

The model was run several times, selecting different decision vari-
ables to optimize, and changing constraint values from walk-out to
ideal. It appeared that i could be set to a value halfway between
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acceptable and ideal values, both t and d to acceptable values and
f to the ideal value. Considering these results, van Gunsteren then
decided to satisfy in particular the Ministry of Environment by setting
the constraint value for the distance d to a value halfway between
acceptable and ideal values, but not doing so for the airlines interested
in the travel time t. His reasoning was that increasing the distance
from 30 to 35 kilometer constitutes a major improvement for the Min-
istry of Environment as opposed to a diminishable improvement for
the airlines if the travel time would decrease from 0.7 to 0.6 hours.

We can therefore conclude that the PBD produces a result similar
to the result using the constraint method, but without relying on
negotiation or suffering from manipulation, in other words, without
losing the math. We can also conclude that, although the quality of the
decision is almost the same, the acceptance of the solution obtained
using the PBD procedure will be higher as it does not require any
manipulation by the model owner.

6.6 summary of the pbd procedure

The above leads to the following PBD procedure, incorporating the
use of Bézier curves to relate decision variable values to preference
ratings:

1. Specify the decision variable(s) the decision maker is interested
in.

2. Rate the decision maker’s preferences for each decision variable
as follows:

a) For each decision variable establish (synthetic) reference
alternatives which define the endpoints of a cubic Bézier
curve:

i. Define a ‘bottom’ reference alternative, the alternative
associated with the value for the decision variable that
is least preferred, rated at 0. This defines the origin
endpoint of the curve, (x0, y0).
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ii. Define a ‘top’ reference alternative, the alternative as-
sociated with the value for the decision variable that is
most preferred, rated at 100. This defines the destina-
tion endpoint of the curve, (x3, y3).

b) Rate the preference for alternatives associated with the
other decision variable values relative to these reference
alternatives by manipulating the two control points (x1, y1)
and (x2, y2).

3. To each decision variable assign decision maker’s weight.

4. Determine the design constraints.

5. Combine decision variable values to generate design alternatives
and use the design constraints to test their feasibility.

6. Use the PFM algorithm to yield an overall preference scale of all
feasible alternatives.

Required graphical interface

The above procedure needs to incorporate a graphical interface so that
a decision maker can quickly find the Bézier curve that approximates
the relation between decision variable values and preference ratings.
As an illustration how this interface could work we take the example
of the Ministry of Finance. We could start with an arbitrarily chosen
curve as shown in Figure 28.

The first step for the decision maker would be to change the scale
of the x-axis to reflect the range of allowed decision variable values, in
this case 15 to 40 (billion $). The result of this is shown in Figure 29.

In the second step, the decision maker moves the endpoints to the
desired positions (15, 0 to 15, 100 and 40, 100 to 40, 0) to reflect that
the preference rating decreases as the investment increases. Finally,
the decision maker moves the control points (20, 80 to 15, 12.5 and
20, 80 to 20, 7.5) to express how intermediate decision variable values
are rated on preference resulting in Figure 30.
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Figure 28: Arbitrary starting point for manipulating the Bézier curve.
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Figure 29: Bézier curve after the scale for the x-axis has been changed.



6.6 summary of the pbd procedure 125

0

20

40

60

80

100

10 15 20 25 30 35 40 45

P
re

fe
re

n
c
e
 r

a
tin

g
 (

-)

Decision variable value (-)

(15,100)

(15,12.5)
(20,7.5)

(40,0)

(20,20)

Figure 30: Bézier curve after the endpoints and control points have been
moved.
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6.7 conclusions

The PBD proposed in this chapter fulfills both requirements as stated
in Chapter 5 as, being built upon PFM, it extends to group decision
making and has a sound mathematical foundation for measuring
preference. It also removes all limitations of using either LP, GP or
LMOP as it removes the harsh division of solutions into feasible or
infeasible and the linearity requirement by introducing curves to
represent how decision variable values relate to preference ratings.

Applying the PBD methodology to the North Sea International
Airport case successfully produced results. The outcome is slightly
different as compared to using the constraint method. However, the
solution obtained using the constraint method was the result of ma-
nipulation by the model owner. The PBD procedure produced a compa-
rable result without any interference by the model owner. The result
is thus a better reflection of the decision maker’s preferences.
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This chapter serves to illustrate the application of the Preference-
Based Design (PBD) methodology described in Chapter 6 on problems
in the domain of architecture.

Devising an interface to let the decision maker construct a Bézier
curve as described in Chapter 6 is beyond the scope of this thesis. In-
stead, a set of pre-determined Bézier curves as shown in Appendix A
is used so that decision makers can quickly relate preference rat-
ings to decision variable values. A drawback of using this limited
amount of curves is that, because they are pre-determined, they only
approximately reflect a decision maker’s preferences.

The following cases will serve to further illustrate the PBD method-
ology:

• The Stedelijk Museum Amsterdam (SMA)

• The Tilburg area development

7.1 the stedelijk museum amsterdam case

See Chapter 2 for an overview of this case. The main problem to
solve: which allocation of functions to the primary location (existing
building and extension) and secondary location is feasible and most
desirable?

Specifying the decision variable(s) the decision maker is interested in

The following decision makers are identified along with the decision
variables they are interested in:

• The municipality interested in the investment (decision variable
i) which is allowed to range between 71.2 and 73.4 million euros.

127
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Space requirement (m2)

Space type Var. Minimal Ideal

Exhibitions p1 7 901 10 154

Workshops
p2 1 354 1 438

s1 693 714

Education
p3 941 1 378

s2 56 84

Depots
p4 525 721

s3 7 423 9 960

Installations
p5 6 264 7 031

s4 1 207 1 648

Public p6 3 167 3 990

Offices
p7 1 624 2 230

s5 168 281

Total 31 742 40 048

Table 28: Minimal and ideal values for the allocation of floor space for the
Amsterdam museum case.

• The museum staff interested in the floor space allocated to
7 functions on the primary (p1 . . . p7) and 5 functions on the
secondary (s1 . . . s5) location which are allowed to range between
values as shown in Table 28.

Determining the Bézier curves as defined by the decision makers

The set of pre-determined Bézier curves in Appendix A is used so that
decision makers can quickly relate preference ratings to the decision
variable values as shown in Tables 29 and 30.
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End and control points

Var. Curve (x′0, y′0) (x′1, y′1)

p1 10 (7 901, 0) (9 929, 10)
p2 3 (1 354, 0) (1 371, 80)
s1 2 (693, 0) (695, 90)
p3 3 (941, 0) (1 028, 80)
s2 2 (56, 0) (59, 90)
p4 8 (525, 0) (662, 30)
s3 2 (7 423, 0) (7 677, 90)
p5 2 (6 264, 0) (6 341, 90)
s4 2 (1 207, 0) (1 251, 90)
p6 8 (3 167, 0) (3 743, 30)
p7 3 (1 624, 0) (1 745, 80)
s5 2 (168, 0) (179, 90)
i 3 (73 400 000, 0) (73 180 000, 90)

Table 29: End points (x0, y0) and control points (x1, y1) for all Bézier curves
for the museum case.

The lower and upper values as shown in Table 28 then represent
the x-coordinates of the end points for each decision variable. Because
the x-coordinates of the end and control points of the pre-determined
curves are known, the x-coordinates of the control points of the curves
associated with each decision variable can be determined.

As the y-coordinates of the end and control points for the pre-
determined curves and the curves associated with the decision vari-
able values both range from 0 to 100, the y-coordinates of the end
and control points for both are equal. The only information needed
from the decision maker are the x-coordinates for the end points x′1
and x′3 and the curve chosen.
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End and control points

Var. Curve (x′2, y′2) (x′3, y′3)

p1 10 (9 929, 10) (10 154, 100)
p2 3 (1 371, 80) (1 438, 100)
s1 2 (695, 90) (714, 100)
p3 3 (1 028, 80) (1378, 100)
s2 2 (59, 90) (84, 100)
p4 8 (662, 30) (721, 100)
s3 2 (7 677, 90) (9 960, 100)
p5 2 (6 341, 90) (7031, 100)
s4 2 (1 251, 90) (1 648, 100)
p6 8 (3 743, 30) (3 990, 100)
p7 3 (1 745, 80) (2 230, 100)
s5 2 (179, 90) (281, 100)
i 3 (73 180 000, 90) (71 200 000, 100)

Table 30: End points (x3, y3) and control points (x2, y2) for all Bézier curves
for the museum case.
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Decision variable

p1 p2 s1

t xt yt xt yt xt yt

0.00 7 901 0 1 354 0 693 0

0.33 9 336 10 1 368 57 695 64

0.67 9 920 36 1 390 83 701 90

1.00 10 154 100 1 438 100 714 100

Table 31: Four coordinates along Bézier curves for the museum case (decision
variables p1, p2 and s1).

Each Bézier curve is divided in three segments yielding four points
on each curve by setting t to 0, 0.333, 0.667 and 1 using Equation 6.14

and 6.15 for each decision variable. The reason for dividing the curve
into only three segments is to keep the number of combinations to
evaluate relatively low. This will, however, result in a low resolution.

Assigning weights to decision variables

For this experiment all decision variables are weighted equally.

Determining the design constraints

For this experiment the first design constraint relates the floorspace
to the investment and depends on the characteristics of the candidate
solution:

If the total amount of floorspace on the central location is below
the capacity of the existing building (14 142 m2):

2 580
7

∑
i=1

pi + 1 400
5

∑
i=1

si ≤ i (7.1)
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Decision variable

p3 s2 p4 s3

t xt yt xt yt xt yt xt yt

0.00 941 0 56 0 525 0 7 423 0

0.33 1 015 57 59 64 624 24 7 686 64

0.67 1 129 83 66 90 675 50 8 344 90

1.00 1 378 100 84 100 721 100 9 960 100

Table 32: Four coordinates along Bézier curves for the museum case (decision
variables p3, p4, s2 and s3).

Decision variable

p5 s4 p6

t xt yt xt yt xt yt

0.00 6 264 0 1 207 0 3 167 0

0.33 6 344 64 1 253 64 3 582 24

0.67 6 542 90 1 367 90 3 795 50

1.00 7 031 100 1 648 100 3 990 100

Table 33: Four coordinates along Bézier curves for the museum case (decision
variables p5, p6 and s4).
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Decision variable

p7 s5 i

t xt yt xt yt xt yt

0.00 1 624 0 168 0 73 400 000 0

0.33 1 727 57 180 64 73 171 852 64

0.67 1 884 83 209 90 72 601 481 90

1.00 2 230 100 281 100 71 200 000 100

Table 34: Four coordinates along Bézier curves for the museum case (decision
variables p7, s5, and i).

If it exceeds the capacity of the existing building:

(2 580− 2 950)× 14 142 + 2 950
7

∑
i=1

pi + 1 400
5

∑
i=1

si ≤ i (7.2)

The second constraint relates the floorspace on the central location
to the capacity of the existing building and extension:

7

∑
i=1

pi ≤ 14 142 + 24 007 (7.3)

The third relates the floorspace on the secondary location to the
capacity of the building on the secondary location:

5

∑
i=1

si ≤ 13 000 (7.4)

The information gained from dividing each curve in three segments
is used to generate 67 108 864 possible combinations of decision vari-
able values (the number of decision variable values to the power of the
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number of decision variables). A script is used to combine decision
variable values that satisfy the earlier mentioned design constraints to
yield feasible alternatives and feed these to the Preference Function
Modeling (PFM) software.

Using the PFM algorithm to yield an overall preference scale

The decision variable values, and preference ratings, associated with
the highest rated feasible alternative as determined using the PFM

algorithm is shown in the first column of Table 35 (rated at 46). The
second column shows the preference rating (34) associated with the
solution obtained using Linear Programming (LP) maximizing the
usage of the primary location. The preference ratings associated with
each decision variable value were obtained as described in Section 6.5.

This comparison, also looking at the individual preference ratings,
shows even more clearly the advantages of using PBD instead of using
LP with negotiable constraints. The solution obtained using the PBD

procedure is a result of maximizing overall preference (multi-criterion)
while the solution obtained using LP is a result of maximizing the
usage of the primary location (single criterion). This is why, although
the solution obtained using LP has a higher amount of floorspace
allocated to the primary location, its overall score is lower than that of
the solution obtained using the PBD procedure. Also, the LP algorithm
does not take into account the individual preference ratings for each
space type, it ‘simply’ maximizes the total floorspace allocated to
the primary location. This is why the individual preference ratings
associated with the design variables, with the exception of p2, p3,
and p4 are equal to zero. This tendency to extreme values, already
mentioned in Chapter 5, is a typical feature of linear programming
formulations, making it difficult to find compromise solutions. In con-
trast, the very nature of PBD allows finding such solutions enhancing
both the quality of the decision (functionality) and the acceptance of
the solution obtained as it involves no manipulation.
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Methodology

PBD LP

Space type Var. Value Rating Value Rating

Exhibitions p1 7 901 0 7 901 0

Workshops
p2 1 438 100 1 438 100

s1 714 100 693 0

Education
p3 941 0 1009 54

s2 84 100 56 0

Depots
p4 721 100 721 100

s3 7 423 0 7 423 0

Installations
p5 6 264 0 6 264 0

s4 1 253 64 1 207 0

Public p6 3 167 0 3 167 0

Offices
p7 1 624 0 1 624 0

s5 180 64 168 0

Total costs i 73 400 000 0 73 400 000 0

Overall rating 46 34

Table 35: Two feasible alternatives with associated decision variable values
and preference ratings for the Amsterdam museum case.
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Figure 31: A design by BDP. Khandekar to develop part of the railway zone
connecting the city center of Tilburg to the northerly residential
areas.

7.2 the tilburg area development case

Tilburg is one of the larger cities within the province of Noord Brabant,
the Netherlands, and serves as a public transport hub connecting some
major cities within the province: Breda, Den Bosch and Eindhoven.
The railway zone running through Tilburg acts as a barrier between
the city center to the South and the residential areas to the North and
plans are being developed to solve this problem. An example of such
a plan is shown in Figure 31.

The idea is that by developing a mix of different functions within
the railway zone the barrier is removed so that the center is connected
to the northerly residential areas. The question then arises: What mix
of functions is both feasible and most desirable?

Whereas the desirability aspect is determined by the municipal-
ity’s wishes with respect to what amount of what function is most
desirable, the feasibility aspect is determined by the actual plot
size and density indicators (Floor Space Index (FSI)/Ground Space
Index (GSI)/Open-Space Ratio (OSR)).



7.2 the tilburg area development case 137

Space requirement

Space type Var. Unit Lower Upper

Student houses h1 - 80 180

Starter houses h2 - 60 140

Remaining houses h3 - 60 80

Offices o m2 28 000 40 000

Cultural facilities c m2 30 000 80 000

Open space s - 0.30 0.45

Table 36: Lower and upper values for the allocation of space for the Tilburg
area case.

Specifying the decision variable(s) the decision maker is interested in

The municipality’s urban design department is interested in the com-
position of the new area. The design department defines the compo-
sition by allowed lower and upper decision variable values for each
function; the amount of square meters floorspace for three types of
houses (h1, h2, h3), offices (o), cultural facilities (c) and the percentage
open space (s):

Determining the Bézier curves as defined by the decision makers

The set of pre-determined Bézier curves in Appendix A is used so that
decision makers can quickly relate preference ratings to the decision
variable values as shown in Tables 37 and 38.

The lower and upper values as shown in the previous table then
represent the x-coordinates of the end points for each decision vari-
able. Because the x-coordinates of the end and control points of the
pre-determined curves are known, the x-coordinates of the control
points of the curves associated with each decision variable can be
determined.
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End and control points

Var. Curve (x′0, y′0) (x′1, y′1)

h1 9 (80, 0) (160, 20)
h2 9 (60, 0) (124, 20)
h3 6 (60, 0) (70, 50)
o 11 (40 000, 0) (28 000, 0)
c 9 (30 000, 0) (70 000, 20)
s 4 (0.30, 0) (0.345, 70)

Table 37: End points (x′0, y′0) and control points (x′1, y′1) for all Bézier curves
for the area development case.

As the y-coordinates of the end and control points for the pre-
determined curves and the curves associated with the decision vari-
able values both range from 0 to 100, the y-coordinates of the end
and control points for both are equal. The only information needed
from the decision maker are the x-coordinates for the end points x′1
and x′3 and the the curve chosen. The decision maker associates curve
22 with decision variable h, curve 12 with decision variable o and
f and curve 9 with decision variable s. The resulting coordinates of
all control and end points of the Bézier curves associated with each
decision variable are shown in Table 37 and 38.

Each Bézier curve is then divided in five segments yielding six
points on each curve by setting t to 0, 0.2, 0.4, 0.6, 0.8, and 1 using
Equation 6.14 and 6.15 for each decision variable. The reason for
dividing the curve into only five segments is to keep the number of
combinations to evaluate relatively low. This will, however, result in a
low resolution.

Assigning weights to decision variables

For this experiment all decision variables are weighted equally.
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End and control points

Var. Curve (x′2, y′2) (x′3, y′3)

h1 9 (160, 20) (180, 100)
h2 9 (124, 20) (140, 100)
h3 6 (70, 50) (80, 100)
o 11 (28 000, 0) (28 000, 100)
c 9 (70 000, 20) (80 000, 100)
s 4 (0.345, 70) (0.45, 100)

Table 38: End points (x′3, y′3) and control points (x′2, y′2) for all Bézier curves
for the area development case.

Decision variable

h1 h2 h3

t xt yt xt yt xt yt

0.0 80 0 60 0 60 0

0.2 119 10 91 10 65 25

0.4 144 21 111 21 68 42

0.6 159 36 123 36 72 58

0.8 170 61 132 61 75 75

1.0 180 100 140 100 80 100

Table 39: Six coordinates along all Bézier curves for the area development
case (decision variables h1, h2, and h3).



140 preference-based design applications

Decision variable

o c s

t xt yt xt yt xt yt

0.0 40 000 0 30 000 0 0.30 0

0.2 34 144 1 49 600 10 0.32 34

0.4 30 592 6 62 000 21 0.34 57

0.6 28 768 22 69 600 36 0.36 72

0.8 28 096 51 74 800 61 0.40 85

1.0 28 000 100 80 000 100 0.45 100

Table 40: Six coordinates along all Bézier curves for the area development
case (decision variables o, c, and s).

Determining the design constraints

For this experiment two design constraints are used. The first relates
the floorspace of each function and the required open space to the
available amount of land:

0.1(100h1) + 0.16667(80h2) + 0.2(120h3)
+0.1o + 0.25(40h1 + 35h2 + 28h3)

+0.33c + 100 500s + 40h1 + 40h2 + 28h3

+0.3(o + (40h1 + 35h2 + 28h3) + c)
≤ 100 500 (7.5)

The second relates the required amount of open space per house to
the available amount of open space:

85h1 + 85h2 + 75h3 ≤ 100 500s (7.6)
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Combining decision variable values that satisfy the design constraints

The information in Tables 39 and 40 is used to generate 46 656 possible
combinations of decision variable values (the number of decision vari-
able values to the power of the number of decision variables). Then,
all alternatives were analyzed on their feasibility and the feasible ones
were fed into the PFM software.

Using the PFM algorithm to yield an overall preference scale

Table 41 shows the top 10 of feasible alternatives (combinations of
decision variable values that satisfy the design conditions) ordered
on the overall preference rating yielded by the PFM algorithm. From
this table it can be concluded that alternative 4 245, and alternative
9 188 are both feasible and most preferred. The preference ratings
associated with the decision variable values are shown in Table 42.
As can be seen, these alternatives only differ with respect to h1, and
h2 and the preference rating associated with an alternative having
119 student houses and 140 starter houses is equal to an alternative
having 180 student houses, and 91 starter houses. This explains why
both have the same overall preference rating.

7.3 conclusions

As we have seen in Chapter 6, the North Sea International Airport
case resulted in a slightly different outcome using PBD as compared to
using the constraint method. The tunnel length is 35 kilometer in the
solution obtained using the constraint method aimed at satisfying the
Ministry of Environment. Its length is 31 kilometer according to the
PBD procedure. However, the solution obtained using the constraint
method was the result of manipulation by the model owner. The PBD

procedure produced a comparable result without any interference by
the model owner. The result is thus a better reflection of the decision
maker’s preferences.

The Amsterdam Museum case showed that, starting from one
and the same bill of requirements, application of LP with negotiable
constraints and PBD yield different outcomes. Again, this can be
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Decision variable

Alt. h1 h2 h3 o c s Pref.

4 245 119 140 80 28 000 49 600 0.32 68.343

9 188 180 91 80 28 000 49 600 0.32 68.343

5 884 144 140 75 28 000 49 600 0.32 67.646

5 692 144 132 80 28 000 49 600 0.32 66.636

5 850 144 140 72 28 000 49 600 0.32 66.403

3 973 119 132 80 28 000 49 600 0.34 66.186

4 159 119 140 72 28 000 49 600 0.34 65.692

9 148 180 91 75 28 000 49 600 0.32 65.283

4 202 119 140 75 28 000 49 600 0.32 65.283

5 813 144 140 68 28 000 49 600 0.32 65.199

Table 41: Top 10 of feasible alternatives with associated decision variable
values and preference ratings for the area development case.

Alt. 4 245 Alt. 9 188

Decision variable Value Rating Value Rating

Student houses h1 [-] 119 10 180 100

Starter houses h2 [-] 140 100 91 10

Remaining houses h3 [-] 80 100 80 100

Offices o [m2] 28 000 100 28 000 100

Cultural facilities c [m2] 49 600 10 49 600 10

Open space s [-] 0.32 34 0.32 34

Overall preference rating 68.343 68.343

Table 42: Decision variable values and preference ratings for two the highest
rated alternatives.
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explained by the observation that PBD represents a better reflection of
the decision makers’ preferences.

The Tilburg urban development case shows that the Bézier curve is
easy to work with and appeals to the decision makers concerned. The
outcome of the PBD procedure was considered to be plausible and
satisfactory by the decision makers concerned.





8C O N C L U S I O N S

The Preference-Based Design (PBD) methodology proposed in this
thesis fulfills the requirements outlined in Chapter 5 as it, being
built upon Preference Function Modeling (PFM), 1) extends to group
decision making and 2) has a correct mathematical foundation for
measuring preference. It also removes the limitations of using either
Linear Programming (LP), Goal Programming (GP) or Linear Multi
Objective Programming (LMOP) as it avoids single objective optimiza-
tion and it removes the harsh division of solutions into feasible or
infeasible ones.

The following conclusions are drawn:

1. The PBD procedure is not an extension of LP with negotiable
constraints, but an independent design methodology.

2. PBD is a design methodology leading to a design which repre-
sents a more pure reflection of the decision makers’ preferences
without any interference from the part of design experts, as
is emphasized in the Open Design philosophy. As a result the
quality of the design decision is higher and the outcome more
acceptable.

3. Experiments show that the results obtained using the PBD proce-
dure are both plausible and satisfactory to the decision makers.

4. The PBD procedure is an excellent starting point in many com-
plex architectural design problems.

8.1 future research

A drawback of using a limited amount of Bézier curves as described
in Chapter 7 is that they, because they are pre-determined, do not
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purely reflect a decision maker’s preferences. Future research aimed
at devising a user friendly interface so that the decision maker can
directly shape the preference curve is desirable.

A limitation of the PBD procedure is that it requires generating
alternatives by combining all values for all decision variables and
then filtering from these the feasible alternatives using the design
conditions. This makes it a ‘brute force’ approach. As the number of
possible combinations equals the number of decision variable values
to the power of the number of decision variables, the number of
combinations will be very large for more complex problems as these
normally have a greater number of decision variables. Filtering and
evaluating each combination will then take up (too) much computer
time.

In general, given function values, a non-linear optimization algo-
rithm proceeds by computing from the current point or points the
next one higher value. In the PBD procedure Bézier curves and PFM

algorithm are functions. The first outputs a preference rating given a
decision variable value (or vice-versa). The second outputs the over-
all preference rating given a set of preference ratings and weights.
Therefore, given the control and end points of all Bézier curves and
PFM’s algorithm, an optimization algorithm can be used to directly
compute the best design (at least approximately). We then have a
design methodology which takes into account each decision maker’s
preferences. Recall that in fact the ‘design’ part of the LP process is
due to its optimization step.



Part III

A P P E N D I X





AS A M P L E P R E F E R E N C E C U RV E S

A set of pre-determined curves is used so that decision makers can
quickly relate preference ratings to the decision variable values. The
curves as shown in Figure 32 to Figure 42 could be used to define
a preference curve where the preference rating (along the y-axis) in-
creases or decreases (mirror image) against the decision variable value
(along the x-axis). Allowed decision variable values range between
x0 and x3 and the preference ratings range between y0 and y3. The
control points (x1, y1) and (x2, y2) are used to control the curve’s
slope. This also allows for defining curves should an intermediate
point between allowed decision variable values be most preferred, see
Figure 43 to Figure 53. In this case coordinate (x4, y4) represents the
decision variable value that is most preferred and is defined by two
control points.
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Figure 32: Preference curve 1.



sample preference curves 151

0

20

40

60

80

100

-20 0 20 40 60 80 100 120

P
re

fe
re

nc
e 

ra
tin

g 
(-

)

Decision variable value (-)

(0,0)

(10,90)

(100,100)

Figure 33: Preference curve 2.
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Figure 34: Preference curve 3.
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Figure 35: Preference curve 4.
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Figure 36: Preference curve 5.
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Figure 37: Preference curve 6.
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Figure 38: Preference curve 7.
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Figure 39: Preference curve 8.
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Figure 40: Preference curve 9.
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Figure 41: Preference curve 10.
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Figure 42: Preference curve 11.
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Figure 43: Preference curve 12.
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Figure 44: Preference curve 13.
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Figure 45: Preference curve 14.
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Figure 46: Preference curve 15.
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Figure 47: Preference curve 16.
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Figure 48: Preference curve 17.
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Figure 49: Preference curve 18.
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Figure 50: Preference curve 19.
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Figure 51: Preference curve 20.
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Figure 52: Preference curve 21.
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Figure 53: Preference curve 22.
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S A M E N VAT T I N G

voorkeur-gebaseerd ontwerpen in de bouwkunde

Bouwkundige ontwerpprocessen zijn complex doordat een veelheid
van factoren bepaalt of een project slaagt of mislukt. Een aanzien-
lijk deel van deze factoren heeft betrekking op twee prominente
kenmerken van besluitvormingsprocessen in de bouw: 1) meerdere
ontwerpen kunnen eenzelfde doel dienen, waarbij de vraag zich aan-
dient: hoe het ontwerp te kiezen dat het doel het beste dient, en 2)
een veelheid van beslissers heeft een stem in het ontwerpproces. Dit
is een probleem van groepbesluitvorming.

Besluitvormingstheorie betreft het vaststellen van de beste keuze.
De praktische toepassing hiervan is gericht op het vinden van instru-
menten, methoden en software om mensen, of groepen van mensen,
te helpen in het maken van hun keuzes.

De bestaande besluitvormingsmethoden vertonen een grote ver-
scheidenheid en leveren tegenstrijdige uitkomsten. Dit impliceert dat
ze allemaal, op mogelijk één uitzondering na, incorrect moeten zijn.
Men kan een groep mensen vragen om individueel een natuurkundig
experiment uit te voeren, bijvoorbeeld de bepaling van de verhou-
dingen van de gewichten van een reeks van voorwerpen en mag
dan verwachten dat elk van hen met hetzelfde resultaat terugkomt
(afgezien van kleine meetfouten). Met andere woorden, in de natuur-
kunde wordt het bestaan van niet-equivalente methodologieën die
tegenstrijdige uitkomsten opleveren niet geaccepteerd. In de sociale
wetenschappen waar voornoemde besluitvormingsmethoden worden
gebruikt, wordt dit wel geaccepteerd doordat de onjuistheid niet volgt
uit de verkregen tegenstrijdige uitkomsten. Wat geldt in de natuurkun-
de, moet logischerwijs ook gelden voor besluitvormingsmethoden in
de sociale wetenschappen: van alle niet-gelijkwaardige methodieken
kan er niet meer dan één correct zijn.
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Hoe kunnen we de juistheid bepalen van een besluitvormingsme-
thode anders dan door naar de uitkomsten te kijken? De wetenschap-
pelijke grondslag van selectie (keuze) is voorkeursmeting. De juistheid
van een besluitvormingsmethode wordt bepaald door de juistheid
van de gebruikte schalen voor het meten van voorkeur. Het doel van
het weergeven van variabelen via schalen is om de toepassing van
wiskundige operaties mogelijk te maken. Schalen kunnen worden
ingedeeld naar de aard van wiskundige operaties die zij toestaan. Bar-
zilai [2004, 2005] heeft aangetoond dat alle bestaande meetschalen de
operaties van optellen en vermenigvuldigen niet toestaan. Klassieke
besluitvormingsmethoden produceren slechts betekenisloze getallen.
De methode, ontwikkeld door Barzilai [2005], Preference Function
Modeling (PFM), heeft een correcte wiskundige basis. PFM is derhalve
de aangewezen methode om voorkeuren te meten.

Onze Open Design groep [Binnekamp et al., 2006] volgt niet de
klassieke besluitvormingsstheorie voor de integratie van voorkeuren.
In Open Design worden Lineaire Programmering (LP) modellen ge-
bruikt om bouwkundige ontwerpproblemen op te lossen. Elk van
de randvoorwaarden van het model drukt het belang van een be-
slisser uit betreffende een eigenschap van het ontwerp. Daarnaast
wordt in beperkte mate groepsbesluitvorming mogelijk gemaakt door
sommige randvoorwaarden als onderhandelbaar te beschouwen. Een
groot voordeel van deze aanpak is dat deze het mogelijk maakt te
bepalen of aan de randvoorwaarden van alle beslissers kan worden
voldaan. Als de verzameling van toegestane oplossingen leeg blijft
na alle onderhandelingen, is het probleem onoplosbaar. Indien die
verzameling niet leeg is kunnen de beslissers de ontwerpoplossing
selecteren door onderhandeling.

Toepassing van deze techniek van LP met onderhandelbare rand-
voorwaarden bracht aan het licht dat deze slechts in beperkte geschikt
is om beslissers te helpen bij het vinden van de ontwerpoplossing met
de hoogste groepsvoorkeur. De LP techniek kan alleen ontwerpoplos-
singen genereren gericht op één criterium van slechts één beslisser.
In essentie is deze techniek is dus niet gericht op groepsbesluitvor-
ming. Onze onderzoeksgroep heeft geprobeerd om voorkeursmeting
te integreren in LP door uit te gaan van een lineaire [Binnekamp
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et al., 2006, pp. 345-350] of exponentiële [de Graaf and van Gunsteren,
2002] relatie tussen waarden van beslissingsvariabelen (eigenschappen
van het ontwerp) en voorkeurscores. Toch blijven ook dan sommige
problemen bestaan: 1) de randvoorwaarden verdelen alle mogelijke
oplossingen in ofwel toegestaan of niet toegestaan, zwart of wit, geen
grijs dat uiteindelijk acceptabel zou kunnen zijn voor de beslissers,
2) de voorkeurscore van een oplossing wordt bepaald als het gewo-
gen gemiddelde van de voorkeurscores van deze oplossing op alle
criteria, hetgeen een benadering is, 3) de uitkomsten zijn nog steeds
ontwerpoplossingen gericht op één criterium van één besluitvormer,
niet op groepbesluitvorming.

Het gaat er om een methode te vinden die leidt tot een ontwerp
dat zowel haalbaar is als de hoogste voorkeur heeft van alle beslis-
sers. PFM biedt een correct model voor de meting van voorkeur en
voor de selectie van de oplossing met de hoogste voorkeur. In zijn
huidige vorm is PFM een evaluatiemethode. Dat wil zeggen PFM helpt
beslissers het alternatief te kiezen met de hoogste voorkeur uit een
verzameling van reeds bekende alternatieven. Voor toepassing binnen
de bouwkunde is echter een ontwerpmethodologie nodig. Dat wil
zeggen een methode die leidt tot (ontwerp)alternatieven die a priori
niet bekend zijn.

De ontwerpmethode Preference-Based Design (PBD) als beschreven
in dit proefschrift, biedt een dergelijke ontwerpmethodologie. Van
de LP-techniek, gebruikt PBD de definitie van een ontwerpalternatief
als een combinatie van waarden van ontwerpvariabelen en de haal-
baarheid bepaald door randvoorwaarden en toegestane marges van
de ontwerpvariabelen. Elke beslisser kan bepalen in welke van de
ontwerpvariabelen hij of zij is geïnteresseerd en zijn of haar voorkeur
geven voor drie waarden van de betrokken ontwerpvariabele. De be-
slisser beoordeelt dus een alternatief bekeken vanuit een waarde voor
een ontwerpvariabele, onafhankelijk van andere ontwerpvariabelen en
ongeacht de haalbaarheid. Verschillende ontwerpvariabelen vertegen-
woordigen daarmee verschillende criteria. Combinaties van waarden
voor ontwerpvariabelen die voldoen aan de ontwerprandvoorwaar-
den vormen toegestane alternatieven. Deze worden geëvalueerd aan
de hand van het PFM algoritme. Dat maakt het mogelijk het ontwerp
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te vinden dat zowel haalbaar is als de hoogste voorkeur heeft van
alle beslissers. Hiermee is het probleem in principe opgelost. Echter,
de beoordeling van slechts drie waarden per ontwerpvariabele op
voorkeur brengt een resolutieprobleem met zich mee doordat er geen
tussenliggende waarden worden beoordeeld.

Verbetering van de resolutie impliceert het vinden van voorkeur-
scores betreffende tussenliggende waarden van de ontwerpvariabelen.
Dit kan worden gedaan worden door het aanbrengen van een curve
door de drie coördinaten van de voorkeurscores, dat wil zeggen door
interpolatie. Tests voor dit doel met Lagrange polynomen en cubische
splines leverden geen bevredigende resultaten. Beide oscilleren tussen
hun wortels (knopen). Dit probleem kan worden vermeden door de
beslisser te vragen om een cubische Bézier curve te construeren als
weergave van de relatie tussen zijn voorkeurscores en de waarden
van de ontwerpvariabelen. Een dergelijke curve (Figuur 54) wordt
bepaald door twee punten en de afgeleiden in die twee punten. Het
resolutieprobleem is hiermee opgelost.

De voorgestelde PBD methode is toegepast op drie cases: 1) Noord-
zee eiland voor een internationaal vliegveld, 2) Stedelijk Museum
Amsterdam en 3) Spoorzone Tilburg.

De case van het Noordzee eiland resulteerde in een vrijwel gelijke
uitkomst met PBD als de uitkomst verkregen met de op LP gebaseerde
constraintmethode. De oplossing verkregen met de constraintmethode
geeft een resultaat beïnvloedt door de modeleigenaar. De PBD procedu-
re, daarentegen, levert een vergelijkbaar resultaat zonder inmenging
van de modeleigenaar. Het resultaat is een zuivere weerspiegeling
van de voorkeuren van de beslissers, hetgeen van belang is voor de
acceptatie.

De case van het Stedelijk Museum Amsterdam levert verschillende
uitkomsten voor de twee toegepaste methoden: LP met onderhandel-
bare randvoorwaarden en PBD. Dit eveneens als gevolg van het feit
dat het PBD resultaat een zuivere weerspiegeling is van de voorkeuren
van de beleidsmakers.

De Tilburg case toont dat gebruikers van mening zijn dat Bézier cur-
ves gemakkelijk zijn om mee te werken. Door de gebruikers werden
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(x0,y0)

(x1,y1)

(x2,y2)

(x3,y3)

Figuur 54: Een cubische Bézier curve gedefineerd door vier punten; eindpun-
ten (x0, y0), (x3, y3), en controlepunten (x1, y1) en (x2, y2).
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de uitkomsten als aannemelijk gezien en het gebruik van de Bézier
curves als gebruikersvriendelijk.

De volgende conclusies worden getrokken:

1. De PBD procedure is niet een uitbreiding van LP met onderhan-
delbare randvoorwaarden, maar een zelfstandige ontwerpme-
thodologie.

2. PBD is een ontwerpmethodiek die leidt tot een model waarin
de voorkeuren van de beslissers zuiver zijn afgebeeld zonder
inmenging van experts.

3. Resultaten uit de PBD procedure zijn zowel aannemelijk als
bevredigend voor de beslissers.

4. De PBD procedure is een uitstekend startpunt in elk complex
bouwkundig ontwerpprobleem.
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