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Abstract
When multiple wind turbines are positioned close
to one another, such as in a wind farm, wind tur-
bines located downwind of other turbines are not
100% efficient due to wakes, negatively affecting
the total power output of the wind farm. A way to
mitigate the loss of power is to steer the wake away
from the next turbine, which lowers the current tur-
bine’s power output but increases the turbine’s to-
tal power output. As the number of wind turbines
increases, how complex it is to calculate the op-
timal steering increases exponentially. Reinforce-
ment learning techniques have been a promising
candidate to solve this problem. However, single-
agent techniques are still very computationally ex-
pensive when the number of turbines is the same as
an average wind farm. Therefore, this paper aims
to see how the QMIX algorithm, a multi-agent rein-
forcement learning technique, can be efficiently ap-
plied to the problem of active wake control. QMIX
will be compared to the FLORIS model and a sin-
gle agent deep reinforcement learning technique
TD3 to see if it achieves a higher average reward
and converges faster. Finally, QMIX is tested on
a larger wind farm to see if it achieves any re-
sults in a reasonable amount of time, showing that
multi-agent reinforcement learning techniques are
more suitable to the problem. This paper shows
QMIX has the potential to outperform TD3; al-
though FLORIS is better for smaller wind farms but
more research has to be done in applying QMIX to
the problem.

1 Introduction
1.1 Active Wake Control
When a wind turbine extracts energy from the wind, it creates
a wake behind it, which is an area of high turbulence and low
wind speeds. Wind farm engineers place turbines close to-
gether due to external constraints, so when this wake reaches
another turbine, it negatively impacts the power output of that
turbine [1]. By turning the turbines, a controller determines
the direction of the wakes, and this process is known as ac-
tive wake control in wind farms [2]. Wake-induced losses can
be extremely high and range from 10-24%, depending on the
layout of the turbines [3]. With the number of wind parks and
their sizes increasing [4], the total wake-induced loss is in-
creasing along with it. Therefore the problem of active wake
control is becoming ever more critical.

More on the modelling side, research has been done into
wake aerodynamics, such as how the wake decays down-
stream, to estimate the effect on downstream turbines in
[1]. Researchers for wind farm control have created mul-
tiple strategies, and they differ by having different charac-
teristics, such as being closed-loop controllers, the type of
model they use, and the measurements they incorporate in the
model. Different types of closed-loop control strategies in-
clude: optimization-based closed-loop control, where a con-
troller is fed wind farm measurements and optimal control

inputs are output; linear dynamic closed-loop control, where
a dynamic controller is designed using linear models; and an
observer who can estimate the entire state and use that for
control. The fidelity of the model used also impacts the model
as a higher fidelity means the model is more computationally
expensive, making them less feasible for online control [5]. A
possible way to circumvent this is to use reinforcement learn-
ing, as this discards the wake model and learns an optimal
control policy for the wind farm.

1.2 Reinforcement Learning
Reinforcement learning (RL) is particularly well suited to the
problem as it involves an agent transitioning from one state
to the next, which is relevant to the dynamic nature of ac-
tive wake control. Additionally, RL can work with continu-
ous tasks where conditions change, which is especially useful
for active wake control. Some research has been done in us-
ing reinforcement learning for active wake control in [2; 6;
7]. The work done in these papers shows promise for rein-
forcement learning to be used by controllers for the problem.
However, more research can be done to improve it by looking
at action encoding, scalability for large wind farms, and ad-
ditional sensor data. Methods used in these papers are single-
agent reinforcement learning techniques which suffer from
the combinatorial explosion of adding more wind turbines as
the action space grows exponentially with each added turbine.
A way to mitigate this is to use multi-agent reinforcement
learning, where each turbine is an agent which learns the best
policy for that turbine and cooperates with other agents to
achieve the highest overall power output.

Multiple multi-agent reinforcement learning techniques
(MARL) exist; some are more suited to the problem than oth-
ers. In [8], four multi-agent algorithms suit the characteris-
tics of this problem, which include: Team-Q [9], Distributed-
Q [10], QMIX [11] and MADDPG [12]. Both Team-Q
and Distributed-Q are coordination-free methods [8]. Since
each turbine heavily depends on the previous turbine’s yaw,
this method is only somewhat applicable. Comparing these,
QMIX and MADDPG are a better fit for the problem as they
have a centralized critic, which can learn the best policies
more efficiently. For MADDPG, researchers have done some
work by applying it to the active wake control problem, as
seen in a paper titled: ”Decentralized yaw optimization for
maximizing wind farm production based on deep reinforce-
ment learning” [13]. Since there is no existing work on using
QMIX for active wake control, the decision was to explore the
QMIX algorithm as it is a value-based algorithm that might
work better with this problem than MADDPG, a policy-based
algorithm.

2 Background
Before being able to answer the research question: ”How can
the QMIX algorithm be efficiently applied to the problem of
active wake control in wind farms?”, a few topics and tools
used in the paper should be introduced. These include an ex-
planation of the inner workings of the QMIX algorithm; the
OpenAI gym environment [14], which is utilised often in re-
inforcement learning research; and a background of FLORIS
[15] and TD3 [16] which the paper will compare to QMIX.



2.1 QMIX
QMIX (Monotonic Value Function Factorisation) is based
on the centralised training with decentralised execution
paradigm and learns a joint action-value function. It is a
model-free, value-based, off-policy algorithm that, in terms
of technique, lies between independent Q-learning and coun-
terfactual multi-agent policy gradients. Value decomposition
networks (VDN) were the basis of QMIX, which is a non-
linear extension. The difference is that QMIX does not do
a complete factorisation like in VDN to extract decentralised
policies.

To factorise the joint action-value function Qtot into indi-
vidual ones Qa, the global argmax performed on Qtot should
give the same result as the set of individual argmax opera-
tions on each Qa. QMIX does factorisation by representing
the joint action-value function as a monotonic function using
a constraint on the relationship between Qtot and Qa such
that ∂Qtot

∂Qa
≥ 0,∀a ∈ A.

The algorithm architecture consists of agent networks, a
mixing network and a hyper-network. Agent networks rep-
resent the agent’s individual value functions which are then
combined into a centralised action-value function using a
mixing network. An independent hyper-network generates
each weight for the mixing network. This network takes the
global state as input and outputs the weight of one layer. The
algorithm combines the functions non-linearly to ensure con-
sistency in the centralised and decentralised policies. Each
agent can choose actions in a decentralised matter by calcu-
lating their value functions and using the mixing network to
find the joint value function, after which the action with the
highest value can be chosen [11]. The structure of the mix-
ing network (a), overall QMIX architecture (b), and the agent
network structure (c) are found in Figure 1. A detailed expla-
nation of the implementation is found under section 4.1.

Figure 1: QMIX architecture showing agent and mixing network
structure [11]

2.2 OpenAI Gym Environment
The wind farm simulator used in [2] is based on the FLORIS
(Flow Redirection and Induction in Steady-State) [15] model
and was implemented as an OpenAI gym environment to
make it easier for other RL researchers to use. An open-
source library mainly used to develop RL algorithms, Ope-
nAI gym has much helpful functionality for developing RL
techniques. A gym environment has rewards, action spaces,
and observation spaces, which a program can retrieve with

simple function calls. Additionally, to observe the state and
get the rewards, the only thing that a program must do is pass
the actions to the environment. Therefore, the environment is
a black box and can be used with just a few simple function
calls, simplifying the RL algorithm creation process.

2.3 FLORIS
The FLORIS model includes an optimizer that works as fol-
lows: wake models and a set of atmospheric conditions are
provided by the user, after which the steady-state wake loca-
tions and the wind flows throughout the farm are predicted.
With this information, the optimizer creates a function that
calculates the farm’s total power output using the wind tur-
bines’ yaws. The optimizer then maximizes this function,
which works well for a few turbines, but it soon becomes too
complex when adding more turbines [2]. A few assumptions
are made in the FLORIS model to reduce the computational
complexity. One of these assumptions is that FLORIS as-
sumes the wake flow is axisymmetric. In essence, this allows
for a two-dimensional representation of the wake which is
simplified compared to three-dimensional models. Another
assumption is that the FLORIS model assumes the velocity
deficit in the wake follows a Gaussian distribution. These
assumptions make it less accurate and might not give the op-
timal solution.

2.4 TD3
Twin Delayed Deep Deterministic Policy Gradient (TD3)
[16] is based on Deep Deterministic Policy Gradient (DDPG)
[17] and aims to make the learning process more stable. TD3
is an actor-critic method, a class of algorithms often used in
reinforcement learning consisting of two components: the ac-
tor and the critic. The actor is responsible for taking actions
and learning an optimal policy, while the critic evaluates the
value of the actions taken by the actor. Feedback is then given
to the actor by the critic, and depending on whether the feed-
back is positive or negative, the actor’s policy is updated, and
this cycle repeats until convergence. TD3 makes the learn-
ing process more stable than DDPG by adding a second critic
and updating the policy less frequently. Like DDPG, TD3 is a
single-agent reinforcement learning technique with only one
actor carrying out the policy.

3 Applying QMIX Efficiently
This paper investigates whether wind farms can efficiently
apply the QMIX algorithm to solve the active wake control
problem. The algorithm will be applied by using a wind
farm simulator and comparing the performance of QMIX to
FLORIS and a single agent RL technique TD3 [16]. Addi-
tionally, how fast QMIX learns will be compared by looking
at the convergence speed for each technique. Since FLORIS
and TD3 are not able to get any good results in a reasonable
amount of time for large wind farms, QMIX will be tested
on larger wind farms to see if it can get any results being a
multi-agent reinforcement learning technique. By investigat-
ing this, whether QMIX is an excellent approach to solving
the active wake control problem in wind farms should be an-
swered.



In order to find out if the QMIX algorithm can be effi-
ciently applied to the problem of active wake control, it is
vital to look at what is meant by something being applied ef-
ficiently. In the case of active wake control for wind farms,
an algorithm performs well by generating more energy on av-
erage, converging on an optimal solution in a period of time
that the owner of a wind farm would be willing to pay for, and
can work with large complex wind farms which are found in
reality. The QMIX algorithm will be compared to TD3 and
FLORIS to evaluate these metrics. In this section, an expla-
nation of performance, convergence and complexity in terms
of the problem of active wake control will be given.

3.1 Performance

The performance of the QMIX algorithm can be measured in
different ways when the overall goal is to produce the most
energy in the wind farm. A logical way to measure this would
be to take the average power output of the entire wind farm
over a certain period, as the individual turbine outputs are
not important in the overall context. It is essential to have
a baseline to compare the performance with; this is to have
all turbines pointed in the direction from where the wind is
coming. If the algorithm performs worse than this, there is no
point in applying it because the wind farm achieves a higher
power output without doing anything. Since QMIX and TD3
need to be trained, the performance can only be evaluated
after training, and no training should occur during the evalua-
tion. In this paper, therefore, the performance of an algorithm
for the active wake control problem is to compare the average
combined power output of all wind turbines over a specified
time.

3.2 Convergence

In reinforcement learning, convergence is the process of an
algorithm gradually improving its performance until reach-
ing an optimal or near-optimal policy. Convergence should
happen quickly but reach an optimal policy, as the wind farm
owners would not desire a less-than-optimal policy. In the
case of active wake control, if it takes a very long time to
reach convergence, it is costly to run the program, and it
might not be worthwhile for the wind farm to have the al-
gorithm trained for it. Therefore, It is important to compare
how fast convergence happens between QMIX and the other
algorithms to determine whether it is a valid option.

3.3 Complexity

The number of wind turbines in the wind farm determines
the complexity of the active wake control problem. Addition-
ally, the problem can become more complex due to how the
turbines are placed and the direction from which the wind is
coming. Since FLORIS and TD3 take very long to run when
the number of turbines grows to a large number of turbines,
it is not feasible to get any results with limited time. For
QMIX, it is then the question of whether it can get any re-
sults for large wind farms and if any improvements could be
applied to improve the training process.

3.4 Improving Training
How well a deep reinforcement learning algorithm is trained
can be measured in two ways: The value it converges at and
how fast it converges at a value. An improvement in one of
these factors, without negatively affecting the other, is an im-
provement in the training process. Here a few items are men-
tioned that could improve this process.

Since all states should be able to be explored while learn-
ing, an episode needs to run for a certain amount of time to
be able to turn the turbines entirely. Since each turbine has a
limit of turning 30 degrees in each direction from the wind, it
takes 30 steps to reach the maximum with an angular velocity
of 1.0. Therefore, a way to speed up training is to increase the
angular velocity so that the turbines can reach their optimal
yaw faster, which decreases the length of an episode. Increas-
ing the angular velocity will considerably shorten training as
simulating the environment is the most time-intensive process
due to limited parallelization possibilities.

Lastly, training speed can be improved by using paral-
lelization. The QMIX implementation can set the device to
cuda, which will use the GPU of a computer by using Py-
Torch. More information on how PyTorch works can be
found in [18]. Parallelization can significantly increase the
speed of calculations needed for training neural networks, de-
creasing training time.

These are a few ways the algorithm’s training is improved
in terms of performance and speed. There may exist other
ways the training could be improved, which could be ex-
plored in the future.

4 Experimental Setup
4.1 QMIX Implementation
A few QMIX implementations exist for different gym envi-
ronments, such as StarCraft [19] and multi-agent particles
[20]. The multi-agent particle environment was closer to the
wind farm environment. Hence, the paper uses this imple-
mentation as adapting the algorithm to fit the current envi-
ronment was less effort. The code provided by Steven Ho in
[20] was relatively simple, making it easy to understand and
adapt for this research. The repository has a few implementa-
tions consisting of a buffer for the batches, a network model,
a training class, and some utility functions.

The buffer and utilities assist the training process and con-
tain functions that the training uses during this process. The
buffer stores the observations, actions, and rewards for each
episode which can be sampled from the storage in batches to
be used during training. In the utilities, there are a couple
of functions, including Gaussian logarithm, LogSumExp and
hard and soft update functions for updating the parameters of
a neural network. The training file uses these functions, and
nothing needs to be changed to make it work with the wind
farm environment.

In the model, three classes exist using the neural network
module from PyTorch to implement their neural network.
The first is a policy network with a recurrent neural network,
which aims to sample actions for its agent. Next, the model
implements a recurrent neural network for approximating Q-
values. This class can then be used to estimate the value of



joint actions. Finally, the last class implements the overall
architecture of the QMIX algorithm and estimates the joint
action values. Putting it all together, these classes form the
basis of the QMIX algorithm and allow for training and eval-
uation.

Moving on to the final part of the QMIX implementation,
the training part. One class is located here, which is responsi-
ble for training the agents. The class contains multiple func-
tions where the initialization sets up the networks for the ac-
tors, critics and the QMIX network. It is used to select ac-
tions for the agents depending on their observations, and the
class inputs the observations into the neural networks. Fur-
thermore, the reset function returns the hidden states to their
initial values for the actors. Lastly, it updates the parameters
for the neural networks and returns the critic and actor loss
for monitoring purposes. The class trains the QMIX algo-
rithm, but more is needed to make it work with an OpenAI
gym environment.

An example of training is in a file where the QMIX algo-
rithm is used for the multi-agent particle environment. Al-
though a different environment is used in the paper, most of
the code is still valid when adapted to the wind farm environ-
ment, especially the arguments used in the training loop. A
few essential arguments are the number of episodes, length
of the episodes, learning rates, batch size, gamma, tau, and a
few more. Providing a way to change these is important and
makes the training process more manageable. The structure
of this training loop is almost entirely kept when it is changed
to work with the wind farm environment.

4.2 Setup

In order to run experiments, the QMIX implementation was
adapted to be used with the wind farm environment. The au-
thors of [2] made the environment to research single-agent
reinforcement learning. Therefore several functions had to be
changed in the implementation of the environment to work
with the chosen QMIX algorithm implementation. These
changes included giving the observations as individual arrays
per agent and splitting up the reward so the reward given is
per agent. Initially, the reward is the total power output of all
turbines, so to split it up, each agent gets the power output of
the turbine they represent. The code in [21] was used to set
up the experiments and get the results. With all the require-
ments, the experiments can be run that the following sections
carry out. For the wind farm, some parameters can be ad-
justed, of which some values were changed and the rest left
to their default values. A parameter that was adjusted was
the turbine layout, as the different experiments have differ-
ent turbine layouts. Another adjustment was the desired yaw
boundaries to decrease the actions each turbine can take, pos-
sibly improving training. The action representation chosen
was wind-based as this was the representation that performed
the best in [2] and is when the direction of the wind deter-
mines the value of the yaw. Lastly, the maximum angular
velocity is two degrees in some experiments to use a shorter
episode length.

4.3 Hyperparameters
Since many hyperparameters can be adjusted, some ex-
ploratory experimentation was done by changing these values
to get good results. Reinforcement learning is very sensitive
to changes in the hyperparameters, so if one thing is changed
a bit, the algorithm’s performance could change drastically.
The reason for choosing a specific value for a hyperparame-
ter will be explained, and its impact on the results. A quick
overview of the parameters and their values are given below
that were chosen using exploratory experimentation:

• Maximum episodes: 10000

• Episode length: 25

• Policy learning rate: 0.00005

• Critic learning rate: 0.0005

• Alpha: 0.01

• Tau: 0.05

• Gamma: 0.99

• Batch size: 256

• Hidden dimensions: 128

The first two parameters that could be adjusted for train-
ing are the maximum number of episodes and the maximum
length. As for the number of episodes, the required value is
how many episodes until convergence, as there is no point
in training anymore after this. Exploratory experimentation
found that the algorithm converged on a policy after around
four to five thousand episodes. However, this depends on the
learning rate and the size of the wind farm. The environment
is reset in each episode so the algorithm can see the same
states again, which is crucial for its learning process. If the
episode is short, the turbines do not have enough time to turn
to the optimal angle as they move at a certain velocity. Since
the maximum angle is 30 degrees from the wind direction on
both sides, and the angular velocity is 2, it takes 15 steps to
move to the maximum yaw. Since moving to the maximum
yaw is rarely required, 25 steps were chosen as the episode
length. Increasing this to more than 25 only increased the
training time but did not have better performance.

Regarding the learning rate, QMIX has two learning rates
that can be adjusted: the policy learning rate and the critic
learning rate. The critic learning rate should be higher than
the actor learning rate, as otherwise, the estimated Q-value
will not correctly represent the value of the actions. There-
fore, the critic learning rate was 0.0005, and the policy learn-
ing rate was 0.00005. These values were chosen as they con-
verged at a relatively optimal result. However, the rate could
be lowered more, and the number of episodes increased to get
better results at the cost of training time.

Just as important are the alpha, tau and gamma values. Al-
pha is the policy entropy term coefficient and determines the
exploration and exploitation trade-off. A high value promotes
exploration, while a lower value promotes the exploitation of
current knowledge. For the alpha value, 0.1 was chosen as
this gave the best results because some exploration is done,
but mainly the current information is exploited. The tar-
get network smoothing coefficient (Tau) decides the rate by



which the target network parameters are updated—a smaller
value results in updates being slower and, therefore, more sta-
ble learning. Next is the gamma value or the discount factor,
which represents the choice of an agent between short-term
and long-term rewards. A higher gamma value means the
agents prioritize future rewards, and since, for the AWC prob-
lem, immediate rewards are less relevant, the value is placed
at 0.99.

Finally, there are the batch size and hidden dimensions.
There also exists a seed value to replicate the results. The
hidden dimensions are set at 128, which should be enough to
model the complexity for each agent as they only get three
inputs. As for the batch size, it is placed at 256 because the
program can run on a GPU to take advantage of parallel pro-
cessing. This size could be increased but with a decreased
learning rate as it converged too fast with the current values
of the other parameters.

5 Results
Three versions of the main experiment were run, with the
only change being the number of turbines and the layout. This
change in the number of turbines and layout is supposed to
answer the question of how well QMIX handles more com-
plexity. For each layout, the performance and rate of con-
vergence are observed to answer the other two sub-questions,
which connects back to the main question. The following
subsections highlight the results of the experiments.

5.1 3 Turbines
The algorithm was first tested on a 3-turbine layout as seen in
Figure 2, where each black line represents a turbine, and the
darker blue it is, the lower the wind speed. Each turbine is
located 750m away from the others, around six rotor diame-
ters. This simple layout of turbines in a row was also used in
[2] with TD3 and FLORIS, and as such, the experiments can
easily compare QMIX to these methods.

Figure 2: Layout of 3 turbines [22]

With the hyperparameters mentioned in the previous sec-
tion, the program trained the QMIX algorithm for 10,000
episodes with the environment set up with three turbines. For
simplicity, the experiments kept the wind direction from the
west, and the wind speed was constant at 20m/s. The out-
put of episodes was averaged over the last 50 episodes to
smoothen out the graph to help gain a better insight into any
trends in the chart. Figure 3 shows the average power out-
put per episode against episodes. The baseline is when no
control policy exists, and all turbines point toward the wind.
FLORIS represents the value calculated by the FLORIS op-
timizer but is not necessarily the global optimum value. The
QMIX algorithm was run ten times with different seeds, and
the results averaged to ensure that a single run was not an
outlier, shown in QMIX avg. In addition to FLORIS, QMIX

and the baseline, the training for TD3 was plotted in Figure 3.
The graph shows that QMIX avg converges at a value higher
than the baseline but lower than the calculations by FLORIS.
Compared to TD3, QMIX avg converges at a later point than
TD3, and TD3 converges at a higher point than QMIX. TD3
was run with the standard parameters provided by the imple-
mentation, so this could still be improved, but the same goes
for QMIX. The general trend of the QMIX algorithm aver-
age power output per episode over episodes goes upwards,
which shows it does learn over time, but it does not look like
QMIX avg has converged yet.

Figure 3: Average power output over 10000 episodes while learning
for three turbines, using a moving average of 50

There was quite a lot of variation between the QMIX runs
with different seeds. Three of the ten runs converged at
the same value TD3 did, with the best run converging after
around 1500 episodes as seen by QMIX best in Figure 3. An-
other three runs learned a bit but did not converge at a value,
while the last four runs stayed around the baseline where the
worst result is plotted as QMIX worst in Figure 3. A possible
explanation of this discrepancy is a phenomenon known as
catastrophic forgetting [23]. This issue could be improved in
several ways, and section 6.3 discusses this occurrence fur-
ther. Another factor might be that the hyperparameters are
not optimal such as the learning rate not being at the correct
value or the update rate of the target network not being set
quite right. Since QMIX still learned an optimal result a few
times, there is a high probability that the issue is a hyperpa-
rameter configuration.

5.2 16 Turbines
After observing some positive results for the three-turbine
wind farm, the next step was to test the algorithm on a larger
wind farm. A four-by-four grid consisting of 16 turbines was
chosen where each turbine is spaced 750m away from the
others, and the visual representation can be seen in Figure 4.

Similarly to the training on the 3-turbine wind farm, the
QMIX algorithm was trained for 10,000 episodes with the
environment set up with 16 turbines. Figure 5 shows the aver-
age power per episode against episodes for 16 turbines. Like
the three-turbine experiment, the baseline is when no control



Figure 4: Layout of 16 turbines in a four-by-four grid [22]

policy exists, and all turbines point toward the wind. FLORIS
can also still calculate a value and reaches an optimum aver-
age output of 0.0063124794MWh. Since QMIX takes much
longer to run for 16 turbines, it was run three times with dif-
ferent seeds, and the results were averaged and plotted as seen
in QMIX avg. TD3 was also trained on the 16-turbine wind
farm, and the results were plotted. The averaged results are
better than the baseline but are significantly lower than the
value TD3 converges at.

Figure 5: Average power output over 10000 episodes while learning
for 16 turbines, using a moving average of 50

The same issue as with the three-turbine experiment occurs
with the 16-turbine wind farm: a few runs do very well while
the rest get mediocre results and stay near the baseline. Com-
paring the best run of QMIX with TD3, we see it converge
at a similar point; however, QMIX has more fluctuations and
does not converge to a single value. The worst run learns ini-
tially but then drops to around the baseline and stays there for
the rest of the 10,000 episodes. This drop could happen for
the same reasons mentioned in the three turbine experiment
section, and since the problem is very similar, fixing it for one
experiment has a high probability of fixing it for another.

5.3 Princess Amalia Wind Farm
The Princess Amalia Wind Farm is an existing wind farm lo-
cated around 23km off the coast of IJmuiden consisting of 60
wind turbines. Figure 6 presents the layout using the gym

environment with the exact coordinates retrieved from [24].
As the primary purpose of this research is to find out whether
QMIX can be applied to active wake control, large existing
wind farms should be experimented on to see if it could work
in practice.

Figure 6: Layout of the Princess Amalia Wind Farm [22]

Training for the Princess Amalia Wind Farm takes a
long time; therefore, the training time was reduced to 2400
episodes to see the initial learning curve, and the batch size
decreased to 32 for QMIX. In Figure 7, the initial learning
curve of the QMIX algorithm applied to the Princess Amalia
Wind Farm is plotted. In addition to QMIX, the baseline was
plotted, which is done using the same policy for the 3 and 16
wind turbines. Next, TD3 was also run for 2400 episodes and
plotted to compare it with QMIX. Looking at the QMIX line,
right after it starts learning, it drops to under the baseline and
converges at a value of around 0.263MWh. TD3 performs
much better than QMIX, and even though it drops under the
baseline, around episode 2000, the average power output is
above the baseline.

Figure 7: Average power output over 10000 episodes while learning
for Princess Amalia Wind Farm, using a moving average of 50

Due to the long training times for the Princess Amalia
Wind Farm, running the algorithms multiple times was not
feasible to see if one run might be an outlier. The result of the
QMIX training might therefore be an outlier, and for other
runs, it might learn better. Having a large variety in results
was also the case for the 3 and 16 turbine training runs, where
some did very well and others did not. In order to fully say



whether QMIX works for the Princess Amalia Wind Farm,
it should be run multiple times, and section 6.3 recommends
this for future research.

6 Discussion
This section looks at the research’s limitations, followed by
a discussion of the results with the limitations considered. It
ends with recommendations on how the research can be ex-
tended or improved.

6.1 Limitations
As with any research, there are limitations to what can be
done and the results that can be achieved. The most impor-
tant limitations that affected this research are mentioned and
explained below.

Time span
An important thing to consider is that the research took place
over nine weeks, with the first week mainly consisting of de-
ciding the research question. This duration limited the pos-
sibilities for experiments as even the experiments that were
done now take a significant time to run. Therefore, the ex-
periments could not deliver the optimal results or display the
true capabilities of the QMIX algorithm. Training the QMIX
algorithm can be parallelized; however, running the OpenAI
gym environment can not, which means the time spent train-
ing is not something that can easily be improved. Therefore,
the results of this research were highly dependent on the time
spent on this paper.

Accuracy
Another limitation of the paper’s results is the wind simula-
tor’s accuracy. In order to run wake calculations and do the
simulation in a time so that it can run often, the model is sim-
plified. Using this model means the results might not be as
expected if the algorithm were applied to an existing wind
farm with natural atmospheric properties. However, the mod-
els are accurate enough that when the optimal policies pro-
vided by the algorithms are applied to an existing wind farm,
the results should be similar.

Implementation
Lastly, a factor that could have affected the experiments’ re-
sults is the QMIX algorithm’s implementation. It was as-
sumed that the implementation works and is a valid imple-
mentation of QMIX. In the interest of time, the full imple-
mentation was not examined, so this could still be looked at in
the future. If the implementation is wrong but gives positive
results, it could become a variation of QMIX, or the results
could be improved if the issues are fixed.

6.2 Results
With all the experiments run with the different wind farm lay-
outs and the results observed, the three subquestions of the
main research question of this paper can be answered. The
trends across the different wind farm layouts will be observed
and analysed.

Performance was the first component of whether the algo-
rithm could be efficiently applied to the active wake control

problem. FLORIS performed the best by far for the three and
16-turbine wind farms, so there is no reason to use TD3 or
QMIX for these layouts in terms of performance. The aver-
age runs of QMIX performed worse than TD3, but this was
because QMIX either converged to a good value or the base-
line. The best runs of QMIX performed the same as TD3
and converged around the same value except for the Princess
Amalia Wind Farm training. Since there is only one training
run for this layout, no definite conclusions can be made on
the performance of QMIX. To summarise, QMIX performs
worse than FLORIS for the 3 and 16 turbine layouts but the
same as TD3, which does better than the baseline. FLORIS
cannot compute a value for the Princess Amalia Wind Farm,
so it performs the worst, and QMIX performed worse than
the baseline and TD3.

Convergence is the second aspect of the question and rep-
resents how much training time is needed to calculate a good
policy for each algorithm. If the training time takes very long,
it is very costly for the wind farm owners. FLORIS outper-
forms QMIX and TD3 in this area for the less complex wind
farms as it calculates the policy in the first iteration but can
not calculate a value within a reasonable timeframe for vast
wind farms. Each episode takes around the same time with
the same hardware for QMIX and TD3 as this is because
giving the environment actions is the deciding factor for the
length of an episode. For the three-turbine wind farm, QMIX
does better than TD3 in terms of convergence and finds a
policy after around 1500 episodes compared to TD3’s 3500
episodes. If QMIX heads to the baseline, it does fluctuate
a bit and does not fully converge. QMIX convergences at a
similar rate as TD3 for the 16-turbine wind farm and faster
for Princess Amalia but has a worse performance. Overall
the rate of convergence and, therefore, the training time is
better for QMIX than TD3 and worse compared to FLORIS
for small wind farms.

Lastly, how the algorithm handles complexity was used
to answer the main research question. Different wind farm
layouts used the same experimental setup to test complexity.
FLORIS can handle wind farms with 16 turbines but 60 tur-
bines is too much, and it will not be able to calculate a value.
QMIX and TD3 can calculate policies for all the wind farm
layouts used, but they are not necessarily good policies. For
the three and 16-turbine wind farms, QMIX and TD3 cal-
culate a policy that gives around 8-9% more power output.
Since the increase in power stays the same even though the
layout complexity increases, it shows that the performance of
QMIX and TD3 stays the same with an increase in wind tur-
bines. Limited experimentation was done with the Princess
Amalia Wind Farm, so it is possible that QMIX could cal-
culate a policy that gives 8-9% more power output for other
experiment configurations.

6.3 Future Work

Due to the limited time span of the research and how broad
the subject is, more research can be done, and the current
research can be extended.



More episodes
A simple way to extend this research is to run each exper-
iment longer. Currently, each experiment is run for 10000
steps which are enough to allow it to converge, but if some
parameters are changed, it could run a lot longer than that
and might find a better policy.

Realistic wind conditions
Another point that could be extended is to use more realistic
wind conditions. For the experiments conducted in this pa-
per, the algorithms were trained on a constant wind direction
and speed. A simple way to make the wind conditions more
complex is to have either the wind move between a range
of directions or have random changes in the wind speed. If
the algorithm can be trained when there is an increase in the
complexity of the wind conditions, the wind conditions at the
wind farm it is trained on can be studied and then simulated
in the environment. The overall goal of this research is to get
a higher power output for wind farms. Since the wind condi-
tions vary a lot in practice, the algorithms should be trained
for many variations, although this might make the training
time extremely long and too costly.

Larger wind farms
The QMIX algorithm was tested on the Princess Amalia Wind
Farm for a limited period. This experiment was to observe
whether anything would be learned for such a complex wind
farm. More experiments could be run on the Princess Amalia
Wind Farm or any other existing wind farm to confirm that
QMIX can handle complex wind farms.

Catastrophic forgetting
A problem that deep reinforcement learning faces while
continuously learning is: that knowledge of the previously
learned tasks is forgotten when learning information for the
current task. This process is known as catastrophic forget-
ting [23] and was observed in many experiments in this pa-
per. Since the QMIX implementation uses batches, a way to
solve this is first to fill the sample memory with random re-
sults so that it does not forget and get a terrible result, even
though it might still forget a bit. There may exist other ways
to solve this problem, such as by changing the hyperparam-
eters or augmenting the algorithm, and further research can
look at this.

Hyperparameter tuning
Lastly, better hyperparameter tuning could be done to extend
this research. The full range of values that could be used was
not fully explored, and other combinations of values may pro-
vide excellent results. Exploration could be done in multiple
ways, such as randomized search and grid search, although
these methods take very long and will take even longer with
the algorithm’s runtime. Research could then be done to de-
velop a better way of exploring the hyperparameters for this
algorithm being used for the active wake control problem.

7 Responsible Research
This section reviews the experimental setup (Section 4) and
looks at the reproducibility of the results. Additionally, the
scientific integrity of the research is considered, and the ethics
of the research are discussed.

7.1 Reproducibility
For this paper, reproducibility was a goal to ensure that other
scientists could get the same results that were achieved in this
paper. The ability to reproduce the results was done by up-
loading the code onto GitHub and ensuring instructions were
left behind so anyone could follow the same steps used in the
paper to run the program. Additionally, all the parameters
used are provided, and a seed was used such that if all the
parameters are the same, the results should be the same. The
running time, however, will depend on the hardware used.

7.2 Scientific integrity
This research involved collaboration with J. Yeh, G. van der
Schaaf, I. Plamadeala, and M. Filimon. They tested other
multi-agent reinforcement learning algorithms for the active
wake control problem, and some discussions were held on
their findings. All research from external sources has been
cited.

7.3 Ethics
The outcome of this research is positive for society because
if the results are promising, wind farms can produce more
energy. More energy from wind increases the amount of sus-
tainable energy available, which is positive for society. No
personal data is used, and the experiments were all simulated
on a computer, so there are no ethical issues.

8 Conclusion
This paper aimed to determine whether the QMIX algorithm
can be efficiently applied to the problem of active wake con-
trol. The research was done by comparing the performance,
rate of convergence and ability to handle complexity with
other algorithms or methods that have been applied previ-
ously. Additionally, if multi-agent reinforcement learning
techniques are better than single-agent reinforcement learn-
ing, this problem should also be answered. Looking at the
results and the analysis, QMIX has many variations in its re-
sults, but the best results outperform TD3. With better hyper-
parameter tuning and possibly other improvements, QMIX
could outperform TD3 consistently in terms of performance
and in training time.

QMIX showed promising results in this research; there-
fore, multi-agent reinforcement learning algorithms are a
promising method to outperform their single-agent coun-
terparts for the problem of active wake control. Many
other multi-agent reinforcement learning algorithms exist that
might outperform QMIX, and research could be done to com-
pare different multi-agent algorithms for the problem. In the
same sense, different single-agent reinforcement learning al-
gorithms may perform better than TD3, which could also be
researched.

Solving the active wake control problem is challenging,
and more research will have to be done to solve it. This paper
highlights one possible method, and although it gave some
positive results, more work will need to be done for it to be
applied effectively in practice.
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