
 
 

Delft University of Technology

Predictive Control of Autonomous Greenhouses
A Data-Driven Approach
Kerkhof, L.; Keviczky, T.

DOI
10.23919/ECC54610.2021.9655228
Publication date
2021
Document Version
Final published version
Published in
Proceedings of the European Control Conference (ECC 2021)

Citation (APA)
Kerkhof, L., & Keviczky, T. (2021). Predictive Control of Autonomous Greenhouses: A Data-Driven
Approach. In Proceedings of the European Control Conference (ECC 2021) (pp. 1229-1235). IEEE.
https://doi.org/10.23919/ECC54610.2021.9655228

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.23919/ECC54610.2021.9655228
https://doi.org/10.23919/ECC54610.2021.9655228


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Predictive Control of Autonomous Greenhouses: A Data-Driven
Approach

L. Kerkhof1 and T. Keviczky2

Abstract— In the past, many greenhouse control algorithms
have been developed. However, the majority of these algo-
rithms rely on an explicit parametric model description of the
greenhouse. These models are often based on physical laws
such as conservation of mass and energy and contain many
parameters which should be identified. Due to the complex
and nonlinear dynamics of greenhouses, these models might not
be applicable to control greenhouses other than the ones for
which these models have been designed and identified. Hence,
in current horticultural practice these control algorithms are
scarcely used. Therefore, the need rises for a control algorithm
which does not rely on a parametric system representation but
rather on input/output data of the greenhouse system, hereby
establishing a way to control the system with unknown or
unmodeled dynamics. A recently proposed algorithm, Data-
Enabled Predictive Control (DeePC), is able to replace system
identification, state estimation and future trajectory prediction
by one single optimization framework. The algorithm exploits
a non-parametric model constructed solely from input/output
data of the system. In this work, we apply this algorithm in
order to control the greenhouse climate. It is shown that in
numerical simulation the DeePC algorithm is able to control
the greenhouse climate while only relying on past input/output
data. The algorithm is bench-marked against the Nonlinear
Model Predictive (NMPC) algorithm in order to show the
differences between a predictive control algorithm that has
direct access to the nonlinear greenhouse simulation model
and a purely data-driven predictive control algorithm. Both
algorithms are compared based on reference tracking accuracy
and computational time. Furthermore, it is shown in numerical
simulation that the DeePC algorithm is able to cope with
changing dynamics within the greenhouse system throughout
the crop cycle.

I. INTRODUCTION

The world population is increasing rapidly. According to
the United Nations, the world population will increase to
nearly 10 billion people in 2050 [1]. Recent estimates report
an amount of 821 million people undernourished worldwide
and this amount has been growing since 2014 [2]. Hence,
as the world population is growing, the demand for healthy
and fresh food grows as well.

Greenhouse cultivation plays an important role in provid-
ing fresh and healthy foods, such as fruits and vegetables.
Due to their enclosure, greenhouses enable the control of cli-
mate conditions inside the greenhouse. Hence, this controlled
indoor climate enables the manipulation of crop production
such as improving crop quality and decreasing the crop
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cultivation period [3]. Furthermore, the greenhouse provides
protection against insects, pests and diseases.

An important concern within the greenhouse industry is
sustainability. According to the European Union, the share of
energy consumption of agriculture with respect to the total
energy consumption was 8.2% in 2017 in the Netherlands
[4]. In addition, the 2020 CO2 emission target of the Dutch
greenhouse industry that was agreed upon in 2014 is proba-
bly not going to be reached [5]. Hence, advanced greenhouse
control algorithms could play an important role in reaching
higher resource use efficiency and decrease the total energy
and CO2 consumption in the greenhouse industry, leading to
a more sustainable horticultural sector.

Another important problem within the greenhouse industry
is finding sufficient experienced labor to manage crop pro-
duction because the amount of experienced growers world-
wide is declining [6]. A solution to overcome the shortfall
of experienced labor is to increase the level of autonomy in
greenhouse crop production. As the worldwide greenhouse
vegetable production is increasing [7] and the greenhouse
equipment is becoming more advanced [8], the necessity for
advanced greenhouse control algorithms grows.

To increase the level of autonomy in the greenhouse indus-
try, various model based control algorithms, e.g., Nonlinear
Model Predictive Control (NMPC), have been developed
[9]. However, these algorithms usually exploit an explicit
parametric model of the system dynamics. Difficulties in
modelling the greenhouse dynamics arise in the fact that
greenhouses exhibit complex and nonlinear behaviour [10].
Data-driven control algorithms such as Data-Enabled Predic-
tive Control (DeePC) [11] could overcome these difficulties
since such algorithms do not rely on an explicit parametric
system representation but rather on input-output data of
the system. Therefore, in this paper the purely data-driven
DeePC algorithm is applied on a non-linear greenhouse
simulator and its performance is bench-marked against the
NMPC algorithm which has direct access to the greenhouse
simulator.

II. GREENHOUSE MODEL

A. Greenhouse Climate Model

In this section, a description of the greenhouse climate
system is given. Fig. 1 schematically shows how the green-
house climate interacts with the control inputs, the external
environment and the crop. In this scheme, the greenhouse
climate and crop are considered as two separate subsystems:
Sg and Sc, with states xg and xc, respectively.
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The solid arrows in this figure represent the mass and
energy fluxes whereas the dashed arrows represent the vari-
ables that influence these fluxes. These variables are the
control inputs, the greenhouse states, the crop states and
the disturbances acting on the greenhouse and will be called
’information flows’ for conciseness as is done in [3].

Fig. 1. Block scheme of the greenhouse climate system [3].

Mass and energy fluxes between four different parts
are distinguished: between the control equipment and the
greenhouse (je_g), between the greenhouse and the outside
environment (jg_o), between the greenhouse and the crop
(jg_c) and between the crop and output (jc_o). Mass fluxes
are e.g., the water and CO2 fluxes from and to the crop and
energy fluxes are e.g., the heating and solar energy fluxes
from and to the greenhouse. The information flows, denoted
by (1), ... , (10) are described below:

• (1) The control inputs that are used for active climate
control, e.g., heating, irrigation and CO2 supply.

• (2), (5), (6) The greenhouse climate states, e.g., the tem-
perature, humidity level and CO2 concentration of the
greenhouse air, the soil temperature and the temperature
of the heating pipes.

• (3) The control inputs that steer the window opening on
both the lee and wind side windows of the greenhouse
(passive climate control).

• (4) The exogenous signals, i.e., signals that come from
the outside environment such as the outside air temper-
ature and humidity, wind speed and solar radiation.

• (7), (9) The states of the crop e.g., the mass content of
the assimilate buffer, the weight of fruits and leafs and
the growth stage of the crop.

• (8) The solar radiation input to the crop. The only
exogenous signal that influences the crop since solar
radiation is directly involved in the photosynthesis pro-
cess. Hence, the solar radiation influences e.g., CO2
uptake and therefore the jg_c flux.

• (10) Crop labour actions such as picking leafs, pruning
and harvesting fruits. In commercial practice, these
actions are usually determined by the grower.

B. Greenhouse Crop Model

In Fig. 2, a block scheme is shown which shows the
main processes involved in the growth of a tomato crop. The

diagram starts with photosynthesis (1) where solar radiation,
water and CO2 are converted to assimilates. The assimilates
produced by photosynthesis are transferred (p) to the assimi-
late buffer (4) where accumulation of assimilates takes place.
From this buffer assimilates are again transferred (gr, g) in
order to be used for growth respiration (2) and distribution
(5) among the fruits, stems, leafs and roots as the crop grows.
Growth respiration is the process where assimilates are
combined with oxygen and converted to energy required for
crop growth. After distribution, the assimilates are converted
into biomass (6) or used for maintenance respiration (3, m).
Finally, the resulting biomass can be harvested in the form
of fruits (7, h1) or leafs (8, h2).

Fig. 2. Block scheme of the greenhouse tomato crop system [12].

C. Discrete Time Model
Models for both the greenhouse climate and crop as

described before are obtained from [13]. The states of the
greenhouse climate that are considered in this model are
the greenhouse air temperature Tg [◦C], temperature of the
heating pipes Tp [◦C], temperature of the soil Ts [◦C],
CO2 concentration of the greenhouse air Ci [g/m3] and the
greenhouse air absolute humidity Vi [g/m3]. The states for
the greenhouse crop that are described in this model are the
assimilate buffer dry weight per ground area mB [g/m2],
the weight of the fruits per ground area mF [g/m2], the
weight of the leafs per ground area mL [g/m2] and the crop
development stage D [-]. The continuous time models are
discretized in order to obtain the following discrete time
systems:

xg(t+ 1) = fg(xg(t), xc(t), u(t), v(t)) (1)

xc(t+ 1) = fc(xg(t), xc(t), v(t), t) (2)

In (1), fg denotes the set of equations that describe the
dynamics of the greenhouse climate based on the greenhouse
climate state xg, greenhouse crop state xc, control inputs
u and outside conditions v. In (2), fc denotes the set of
equations that describe the dynamics of the greenhouse crop
based on the greenhouse climate state, greenhouse crop state
and outside conditions. Combining both greenhouse climate
and crop states and systems into one system renders the
following:

x(t+ 1) = fgh(x(t), u(t), v(t), t) (3)

Where x = col(xg, xc) := [xTg , x
T
c ]T and fgh combines the

state transition equations from both fg and fc.
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III. NONLINEAR MODEL PREDICTIVE CONTROL

In order to control the nonlinear discrete time system, the
Nonlinear Model Predictive Control (NMPC) algorithm is
applied. NMPC is a predictive control algorithm that makes
use of an explicit model of the nonlinear system that it aims
to control. At each time step, the algorithm computes the
optimal control input signal over a prediction horizon in
order to reach a certain objective [14].

In (4) the NMPC reference tracking optimization problem
is shown.

min
u

N−1∑
k=0

‖Tg,k − rk‖2Q + ‖uk‖2R + ‖uk − uk−1‖2R∆

subject to xk+1 = fgh(xk, uk, vk), ∀k ∈ {0, ..., N − 1},
x0 = x̂(t),

ul ≤ uk ≤ uu, ∀k ∈ {0, ..., N − 1}.
(4)

Here, Q � 0, R � 0 and R∆ � 0 are positive (semi-
)definite matrices that represent the cost on reference devia-
tion, control input and change of control input, respectively.
Besides, ‖uk‖2R denotes uTkRuk (similar for the other norms
used here). Furthermore, Tg,k, rk, xk, uk and vk denote the
temperature of the greenhouse air, the temperature reference,
the state of the greenhouse climate and crop, the control
input and the outside conditions at time index k, respectively.
Furthermore, ul and uu are the lower and upper bounds of
the control input, respectively.

IV. DATA-ENABLED PREDICTIVE CONTROL

A. Data-Enabled Predictive Control

DeePC is a predictive control algorithm that computes
optimal control policies using real-time feedback driving the
unknown system along a desired trajectory while satisfying
system constraints [11]. The algorithm uses a finite number
of data samples from the unknown system to create a
non-parametric system model that represents the dynamics.
This non-parametric system model is subsequently used to
implicitly estimate the state and to predict future input/output
trajectories of the unknown system. Hence, the DeePC
algorithm replaces system identification, state estimation and
trajectory prediction by one single optimization framework.

B. Data Collection

DeePC is a data-driven control algorithm. Hence, the
first step is to collect data. First, it is assumed that the
data is generated by an unknown controllable LTI system
represented in the behavioral framework [15] by B ∈ Lm+p,
where Lm+p denotes a linear, time-invariant and complete
system with m inputs and p outputs and B denotes the
behaviour of this system. Let T, Tini, Tf ∈ Z++ such that
T ≥ (m+1)(Tini +Tf +n(B))−1. Here, n(B) denotes the
smallest order of the minimal realisation of the underlying
system. Then in an offline procedure a sequence of T inputs
ud = col(ud1, ..., u

d
T ) ∈ RmT is applied to the unknown

system and the corresponding outputs yd = col(yd1 , ..., y
d
T ) ∈

RpT are collected. Here, the superscript d is used to denote
the offline collected data. Next, the data is used to form
Hankel matrices with Tini + Tf block rows, denoted by
HTini+Tf

(.), and these matrices are separated into a past and
future part:(

Up
Uf

)
:= HTini+Tf

(ud),

(
Yp
Yf

)
:= HTini+Tf

(yd) (5)

where Up consists of the first Tini block rows of
HTini+Tf

(ud) and Uf consists of the last Tf block rows
of HTini+Tf

(ud) (similarly for Yp and Yf ). The past data
matrices Up and Yp will be used to implicitly estimate the
initial state whereas the future data matrices Uf and Yf will
be used to predict the future trajectories of the system.

Now using the result of Lemma 4.2 in [11]: with the
collected data, any trajectory of BTini+Tf

of length Tini +Tf
could be constructed, assuming the control input data ud

is persistently exciting the system. Let col(uini, yini) denote
an initial trajectory of the system with length Tini and
col(uf , yf ) a future trajectory of the system of length Tf .
It follows that a trajectory col(uini, uf , yini, yf ) belongs to
BTini+Tf

if and only if there exists g ∈ RT−Tini−Tf+1 such
that: 

Up
Yp
Uf
Yf

 g =


uini
yini
uf
yf

 (6)

Now using the result of Lemma 4.1 in [11]: if Tini ≥ l(B),
yf is uniquely determined by solving the first three block
rows of (6) for g. Here, l(B) denotes the lag of the under-
lying system. Hence, a unique output yf can be computed
based on inputs uf and the initial trajectory col(uini, yini).

C. Data-Enabled Predictive Control
Next, the DeePC algorithm will be formulated. Consider

the following optimal control problem:

min
g

Tf−1∑
k=0

(‖yf,k − rt+k‖2Q + ‖uf,k‖2R)

subject to


Up
Yp
Uf
Yf

 g =


uini
yini
uf
yf

 ,

uk ∈ U , ∀k ∈ {0, ..., Tf − 1},
yk ∈ Y, ∀k ∈ {0, ..., Tf − 1}.

(7)

Where Tf ∈ Z++ is the time horizon, r = (r0, r1, ...) ∈
RpTf is the output reference trajectory, col(uini, yini) ∈ BTini

is the past input and output data, U ⊆ Rm is the input con-
straint set, Y ⊆ Rp is the output constraint set. Furthermore,
R ∈ Rm×m denotes the positive definite control cost matrix
and Q ∈ Rp×p denotes the positive semi-definite reference
deviation cost matrix.

The optimization problem in (7) is solved at every time
step t ∈ Z+ as part of the DeePC scheme described in
Algorithm 1.
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Algorithm 1: DeePC

Input: col(ud, yd) ∈ BT , reference trajectory
r ∈ RpTf , past input/output data
col(uini, yini) ∈ BTini , constraint sets U and Y
and cost matrices Q and R;

1) Solve (7) for g?.
2) Compute the optimal input sequence u? = Ufg

?.
3) Apply input u(t), ..., u(t+ s) = (u?0, ..., u

?
s) for

some s ≤ N − 1.
4) Set t to t+ s and update uini and yini to the Tini

most recent input/output measurements.
5) Return to 1.

V. GREENHOUSE CONTROLLED BY DEEPC

A. Including Exogenous Signals

In this section, the DeePC algorithm is used to control the
greenhouse system. Since the exogenous inputs such as solar
radiation and outside temperature have large effects on the
states of the greenhouse, these exogenous input signals need
to be taken into account as well besides only the control input
and output signals. Hence, the DeePC algorithm in (7) needs
to be extended in order to include these exogenous signals. In
case of the greenhouse system, the exogenous inputs are the
outside weather conditions. These conditions are measured in
the past and forecasts are available for the future. Therefore,
a Hankel matrix is constructed in the same way as is done
in (5) but it is built from measured exogenous signal data.
Hence, given the recorded data vd = col(v1, ..., vT ) ∈ RqT
a Hankel matrix is constructed such that:(

Vp
Vf

)
:= HTini+Tf

(vd) (8)

where Vp consists of the first Tini block rows of
HTini+Tf

(vd) and Vf consists of the last Tf block rows
of HTini+Tf

(vd). In the same way as is done in (6), the
past Tini measurements of the external signals are stored in
vini ∈ RqTini and the future Tf forecasts of the external signals
are stored in vf ∈ RqTf . The equality constraints in (6) are
then augmented with the aforementioned data matrices and
vectors such that: 

Up
Vp
Yp
Uf
Vf
Yf

 g =


uini
vini
yini
uf
vf
yf

 (9)

B. Extension to Nonlinear Systems

Since the dynamics of the greenhouse system are non-
linear, the equation Ypg = yini might become infeasible in
nonlinear regions of the system dynamics. Therefore, the
constraint is softened by using a slack variable to allow
constraint violation. Besides, due to the stochastic nature
of the exogenous signals, the equations VP g = vini and

Vfg = vf might become infeasible as well. Therefore, these
equations are relaxed with a slack variable in the same way in
order to avoid possible infeasibilities. Hence, the constraints
in (9) are extended with auxiliary slack variables σy ∈ RpTini ,
σv1
∈ RqTini and σv2

∈ RqTf :
Up
Vp
Yp
Uf
Vf
Yf

 g =


uini
vini
yini
uf
vf
yf

+


0
σv1

σy
0
σv2

0

 (10)

C. Window Constraint

When cooling the greenhouse, the wind side window has a
larger effect on the ventilation rate compared to the lee side
window. Hence, it might be desirable to keep the wind side
window opening at a relatively lower opening compared to
the lee side window. Therefore, an inequality constraint will
be added in order to preserve the difference between the lee
side and wind side window openings:

Uf,leeg ≥ 2Uf,windg (11)

Here, Uf,lee and Uf,wind denote the rows of the Uf Hankel
matrix that correspond to the lee side and wind side window
openings, respectively.

D. Regularized DeePC

By including the constraints formulated in (10) and (11),
we arrive at the following optimization problem:

min
g

Tf−1∑
k=0

(‖yf,k − rt+k‖2Q + ‖uf,k‖2R)

+ λy‖σy‖1 + λv‖σv‖1

subject to


Up
Vp
Yp
Uf
Vf
Yf

 g =


uini
vini
yini
uf
vf
yf

+


0
σv1

σy
0
σv2

0

 ,

Uf,leeg ≥ 2Uf,windg,

uk ∈ U , ∀k ∈ {0, ..., Tf − 1}.

(12)

Here, λy ∈ R+ and λv ∈ R+ are regularization parameters
on the constraint violations and σv = [σTv1

, σTv2
]T . The

optimization problem in (12) is subsequently solved at each
time step t ∈ Z+ as part of the extended regularized DeePC
scheme shown in Algorithm 2.

VI. CASE-STUDY: NMPC VS DEEPC

In this section a case study will be performed in order to
compare the NMPC and DeePC algorithms. The objective for
both algorithms will be to track a temperature reference with
the greenhouse air temperature on a similar day. From this
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Algorithm 2: Extended regularized DeePC

Input: col(ud, vd, yd) ∈ BT , reference trajectory
r ∈ RpTf , past input/output data
col(uini, vini, yini) ∈ BTini , constraint sets U
and Y and output cost matrix Q and control
cost matrix R;

1) Solve (12) for g?.
2) Compute the optimal input sequence u? = Ufg

?.
3) Apply input u(t), ..., u(t+ s) = (u?0, ..., u

?
s) for

some s ≤ Tf − 1.
4) Set t to t+ s and update uini, vini and yini to the
Tini most recent input/output measurements.

5) Return to 1.

day, the recorded weather conditions will be used as exoge-
nous inputs. Afterwards, both algorithms will be compared
based on tracking accuracy and computational time.

In practice it is often not desired or even impossible to
apply a random generated excitation signal to a system. In
case of the greenhouse system, the greenhouse crop is sen-
sitive to rapid changes in greenhouse air temperature which
may occur by applying a random control input. Therefore,
a control input sequence will be generated using NMPC in
order to represent past operational data from previous days
such that a safe input can be applied to the greenhouse in
order to capture its dynamics.

Furthermore, the importance of the representativeness of
this data will be shown in this chapter. In another example,
the DeePC algorithm will be leveraged twice in order to
control the greenhouse system. In the first case, the Hankel
matrices will be constructed from input/output data where the
crop is still young. In the second case, the control input and
exogenous signals will be the same, however, the system will
be initialized such that the output represents the dynamics
of the greenhouse with a full grown crop. For both cases,
a reference tracking example will be given. Afterwards,
the tracking accuracy and computational time of both these
simulations will be shown as well.

The next subsection shows the recorded weather condi-
tions and NMPC control input data that is used within this
case-study.

A. Weather conditions and control input signals

Identical weather conditions are used in order to compare
both algorithms. These weather conditions are shown in Fig.
3. This data is used to construct the data matrices Vp and Vf
in (6). Besides, in Fig. 3 is shown which part of the data is
used to construct the data matrices. The right green line until
the beginning is used for Vp and the left green line until the
red line is used for Vf as is indicated by the arrows.

Furthermore, in Fig. 4 the NMPC control input signal is
shown that is used to construct the Hankel matrices Up and
Uf . The data is selected in the same way as is done in Fig.
3. Furthermore, a necessary condition for (12) to be feasible
is that matrix Up has full rank (persistence of excitation),

Fig. 3. Measured weather conditions used in the DeePC algorithm.

which holds for this data set. Hence, the control input data
in Fig. 4 seems to be appropriate to be used as past recorded
control input data for the DeePC algorithm.

Now with both the recorded weather data shown in Fig.
3 and the control input signal shown in Fig. 4, the data is
available to generate the output data signals (not shown here)
to construct the final two Hankel matrices Yp and Yf .

Fig. 4. Generated NMPC input signals used in the DeePC algorithm.

B. Controlling the Greenhouse

Now all required data is available, both algorithms can
be used to track a temperature reference. The reference tra-
jectory is chosen such that the 24-hour average temperature
is approximately 21 ◦C, which also occurs in commercial
practice. Besides, the trajectory exploits the energy of the
sun by having higher temperatures in the middle of the day
and lower temperatures at the start and end of the day, hence
saving energy. Furthermore, the aim is to minimize the abso-
lute control input to avoid unnecessary energy consumption.

A half day of measurements with 5 minute sampling is
used to construct the Hankel matrices leading to T = 144.
Furthermore, Tini = 5, i.e., the last 5 samples are used to
implicitly estimate the system state and Tf = 12, i.e., the
prediction horizon over which the future trajectory of the sys-
tem is predicted is 12 samples (1 hour). Other parameters that
are used in the DeePC algorithm are: Q = diag(105, 0, ..., 0),
R = diag(0.1, 5, 5), λv = 104, λε = 105, ul = [10, 0, 0]T

and uu = [80, 100, 100]T .
For the NMPC algorithm, the following parameters are

used: N = 12, Q = diag(500, 0, ...0, ), R = 0.1I3, ∆R = I3,
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ul = [10, 0, 0]T and uu = [80, 100, 100]T . The parameters
are chosen after careful tuning to ensure the best performance
of both algorithms. The introduced slack variables modify
the cost function of DeePC, hence making both functions
not directly comparable. Furthermore, both algorithms are
implemented in MATLAB and the SNOPT solver from
TOMLAB is used to solve the optimization problems.

In Fig. 5 and Fig. 6, the states and control inputs computed
by both NMPC and DeePC are shown. From these figures it
can be seen that both algorithms are able to accurately track
the desired reference. Furthermore, a noticeable difference
is that the NMPC algorithm returned smoother control input
signals compared with the DeePC algorithm.

Fig. 5. Greenhouse air and heating pipe temperatures controlled by both
DeePC and NMPC.

Fig. 6. Heating water temperature and window positions computed by both
DeePC and NMPC.

C. Comparison of Algorithm Performance

In Table I the tracking accuracy, average computation
time and total computation time are shown for both the
NMPC and DeePC algorithms. The RMSE metric is used to
calculate the tracking accuracy. From this table can be seen
that the NMPC algorithm has a higher reference tracking
accuracy compared to the DeePC algorithm. Furthermore,
the average computation time for NMPC is approximately
30 times smaller. However, since the sampling time is 5
minutes, the DeePC algorithm would still be able to control
the greenhouse in real-time.

TABLE I
TRACKING ACCURACY AND COMPUTATION TIME OF NMPC AND

DEEPC.

NMPC DeePC
Tracking accuracy [RMSE] 0.0461 0.2572
Average computation time [seconds] 0.5347 15.425
Total computation time [seconds] 160.42 4642.9

VII. ADJUSTED GREENHOUSE DYNAMICS

This section presents the results of two numerical sim-
ulations that illustrate the effect of initialization data on
performance of the DeePC algorithm. In the first simulation
the input/output data in the Hankel matrices will be the
same as in the previous example. This data was obtained
in a period where the crop was still young. However, in
this simulation the state of the crop will be initialized in
such a way that it represents a full grown crop. Hence, this
will influence the dynamics of the greenhouse climate while
these effects are not present in the data stored in the Hankel
matrices. This is done in order to show the sensitivity of the
DeePC algorithm when data is used that is less representative
for the current dynamics of the system. Hence, in the second
simulation the Hankel matrices will be updated with data
from the greenhouse where the crop is fully developed.
With these updated data matrices the algorithm is used again
to control the greenhouse climate to show that the DeePC
algorithm is able to control the system while the dynamics
have changed. Within these examples, the same values as in
Section VI-B are used.

In Table II, the tracking accuracy of both simulations are
shown. The tracking accuracy of the simulation with the
new data is comparable with the tracking accuracy from the
simulation in the previous example. However, the RMSE in
case of the simulation with the old data has almost doubled
compared to the case with the new data. This shows the
effect that where old data does not accurately represent the
dynamics of the system anymore whereas the updated data
does. The computation time of both numerical simulations
here are roughly equal. In Fig. 7 and Fig. 8 the results
from these numerical simulations are shown. As can be
seen from these figures the DeePC algorithm is sensitive
to time-varying systems when the data in the Hankel ma-
trices becomes less representative for the current greenhouse
dynamics. However, when the data is updated with recent
input/output data, the algorithm is able to recover and control
the system accordingly. In these figures the simulation of the
DeePC algorithm with the data of the young crop is indicated
as ’DeePC; Old data’ and the simulation with the updated
data is indicated as ’DeePC; New data’.

TABLE II
TRACKING ACCURACY OF BOTH DEEPC SIMULATIONS.

DeePC; Old data DeePC; New data
Tracking accuracy [RMSE] 0.8045 0.3800
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Fig. 7. Greenhouse air and heating pipe temperatures controlled by DeePC
based on both the old and updated data.

Fig. 8. Heating water temperature and window positions computed by
DeePC based on both the old and updated data.

VIII. CONCLUSION

In this paper, a data-driven predictive control algorithm,
DeePC, was applied in order to control a greenhouse system.
The performance of the DeePC algorithm was bench-marked
to a model based control algorithm, NMPC. The NMPC al-
gorithm had direct access to a greenhouse simulator whereas
the DeePC algorithm only relied on a non-parametric model
which was built from data from this greenhouse simulator.
The goal for both algorithms was to control the greenhouse
air temperature by tracking a temperature reference.

In numerical simulations has been shown that the DeePC
algorithm was able to track the reference trajectory. The
performance in terms of tracking accuracy was lower for the
DeePC algorithm, which is not surprising since the NMPC
algorithm had direct access to the greenhouse simulator.
Hence, the NMPC algorithm could accurately see the effects
of the control inputs over which it optimized whereas the
DeePC algorithm could only rely on the dynamics of the
greenhouse captured in the data that was used to construct
the Hankel matrices. Although the computation time of the
DeePC algorithm was on average 30 times larger compared
to the NMPC algorithm, it would still be able to control the
greenhouse system in real-time.

Furthermore, it has been shown that the DeePC algorithm
would automatically adapt to the changing behaviour of the
greenhouse climate through a growing cycle. This was done
in numerical simulation by providing two simulations with

the exact same input data but with different output data due
to a different crop stage. The simulation which used the
most recent data in the Hankel matrices showed that the
algorithm accounted for the adapted behaviour and controlled
the system accordingly.

IX. FURUTE WORK

Recommendations for future work are to compare the
performance of the NMPC and DeePC algorithms in pres-
ence of unmodeled conditions, e.g., in a real greenhouse.
Furthermore, using stochastic approaches to robustify the
algorithms for uncertain weather conditions could be a topic
for further research. Finally, using an economic objective in
the cost function could be interesting in order to shift the
focus to cost-effectiveness instead of reference tracking.
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