
Master of Science Thesis

Knowledge-based optimisation of
three-dimensional city models for car

navigation devices

Simeon Nedkov

August 2012

Knowledge-based optimisation of

three-dimensional city models for car

navigation devices

Master of Science Thesis

Simeon Nedkov

August 27, 2012

Graduation Committee
Prof. dr. Peter van Oosterom (Graduation professor)

GIS-Technology, OTB
Dr. Hugo Ledoux (Supervisor)

GIS-Technology, OTB
Dr. Gerwin de Haan (Co-reader)

Computer Graphics and Visualization Group,
Faculty of Electrical Engineering, Mathematics and Computer Science

Prof. Massimo Menenti (External examiner)
Geoscience and Remote Sensing, Faculty of Civil Engineering and Geosciences

TomTom contact
Boris Menkov (Reader)

Principal Architect, TomTom

Department of GIS Technology
OTB Research Institute for the Built Environment
Jaffalaan 9, gebouw 30 2628 BX Delft

Abstract

Three-dimensional maps are deemed better for navigation purposes as they of-
fer a larger number and more realistic navigation cues than two-dimensional
maps. Improvements in two key technologies have opened the doors towards
utilization of 3D maps for car navigation devices. Advances in data acquisition
technologies and data processing methods have made creating photorealistic
three-dimensional city models cheaper and to a large extent automatic, while
advances in mobile technologies have made e.g. modern smartphones powerful
enough to visualize photorealistic 3D graphics. Despite the latter improve-
ments, making three-dimensional mobile maps remains a challenge due to the
large amounts of data and the device’s limited amount of memory and pro-
cessing power. These limitations can be overcome by intelligently reducing the
amount of information that is handled and displayed by the device.

This thesis presents an information reduction and prototyping framework
that reduces the amount of information contained in city models so a to enable
their loading and display on car navigation devices. The information reduction
method consists of two steps. The first step selects buildings that are close to the
driver’s route with the idea that these aid the driver in navigating. Buildings
that are far from the route are discarded. In the second step, the selected
buildings’ external representation is adapted to match their navigational value
that is based on their thematic, semantic and cognitive properties. For instance,
a building of type ’restaurant’ and ’brand’ McDonald’s offers more navigational
cues than a block of gray, anonymous residential buildings. The latter are styled
in generic textures whereas the former is styled in photorealistic textures. The
relations between a building’s semantic and thematic properties and its external
representation are captured in visualisation rules.

A prototype is built that implements the designed information reduction
methods and tests their effectivity. The selection step is performed using a spa-
tial database while the visualisation rules are processed by an expert system.
The reduced 3D scenes are displayed in a game engine that also performs per-
formance measurements. The obtained results are conclusive: the performance
of a visualisaion in terms of frame rate and used graphics memory is governed
by the the amount of textures, much more so than the number of geometries.
Effort should therefore be directed towards the reduction and/or simplification
of textures rather than geometries.

v

Contents

1 Introduction 1
1.1 Related work . 2
1.2 Context and methodology . 4
1.3 Research objectives . 7
1.4 Project scope, design decisions and data sources 8
1.5 Thesis outline . 9

2 Data sources and information organisation 11
2.1 Geographical data . 11

2.1.1 Advanced City Model . 14
2.2 Semantic and thematic information 16

2.2.1 Principles of Linked Data 16
2.2.2 SPARQL . 18
2.2.3 DBpedia and LinkedGeoData 19

2.3 Data storage and information model 22

3 Information Reduction Pipeline 25
3.1 Information reduction . 25
3.2 Information Reduction Pipepline 27

3.2.1 Selection . 29
3.2.1.1 Operation . 31

3.2.2 Extraction and styling . 32
3.2.2.1 Operation . 33

3.2.3 Visualisation preparation 33
3.3 Designing and extending the IRP 33

3.3.1 Chaining . 34
3.3.2 Operator extension . 34

4 Prototyping, Benchmarking and Testing framework 35
4.1 Context . 35
4.2 Methodology . 36
4.3 Execution phase . 38

4.3.1 Spatial controller . 38
4.3.2 Semantic controller . 38

vii

4.3.2.1 Expert system 39
4.4 Visualisation, testing and benchmarking 40

4.4.1 Visualisation and testing 41
4.4.2 Benchmarking . 41

5 Prototype 43
5.1 Preparation phase . 45

5.1.1 Footprints . 45
5.1.2 Semantic data . 49

5.2 Execution phase . 50
5.2.1 Spatial controller . 50
5.2.2 Semantic controller . 52
5.2.3 IRP . 54

5.2.3.1 Route preparation 55
5.2.3.2 Selector . 56
5.2.3.3 Extractor and themer 60
5.2.3.4 Preparation for visualisation 60

5.2.4 Example IRP results . 61
5.3 Visualisation, simulation and benchmarking 63

6 Use case and PBT results 67
6.1 IRP operation . 67
6.2 Performance results . 76

7 Conclusion 81

8 Future work 85

A Geometry extraction 89
A.1 Buildings . 89
A.2 Tiles . 91

B Performance results 93

Chapter 1

Introduction

Three-dimensional city models are becoming easier to create. Advancements in
laser scanning, photogrammetry technologies and point cloud processing tech-
niques have resulted in a significant reduction in production cost. The whole
three-dimensional acquisition and modeling pipeline is becoming increasingly
more standardized and automatic. Efforts in city model standards have pro-
duced the semantically rich CityGML information model. As a result, munic-
ipalities and companies are gaining confidence in this field and are investing
in three-dimensional models of their cities. Companies like Apple, Google and
Nokia are slowly starting to use 3D models for their map making. An increasing
number of cities is thus becoming available in digital standardized form (Stoter
et al., 2011).

At the same time, navigating urban spaces using 3D information is thought
to be more intuitive than two-dimensional maps as it provides more natural and
realistic navigation cues (Jobst and Germanchis, 2007; Oulasvirta et al., 2009;
Schilling et al., 2005) thereby lowering the cognitive load which is inherent in
the constant mapping and transformation of 2D information, i.e. traditional
maps, to a 3D world (Crampton, 1992; Bessa et al., 2004). Companies such
as BMW are starting to experiment with 3D urban models for car navigation
applications.

The research presented in this thesis is conducted for the Dutch car navi-
gation company TomTom that seeks to combine 3D models with their existing
car navigation offerings. TomTom has 3D models of numerous major cities that
they want to incorporate in their 2D maps. TomTom is facing two challenges:
poor visualization performance of the 3D models on their mobile devices and a
lack of prototyping tools.

Visualization performance The first problem is caused by the sheer amount
of data: a city model may become as large as 8GB (Schilling et al., 2009).
Loading and displaying 3D models on mobile devices is therefore challenging
(Nurminen, 2008). The amount of information that can be visualized on a mo-
bile device is constrained due to limited memory and 3D rendering capabilities

1

(Capin et al., 2008). A model may not fit in memory or if it does, it will ren-
der slowly. Displaying too much information at once may also overload drivers
and hamper their navigation activities (Döllner and Kyprianidis, 2010). Simply
loading raw city model data to mobile devices is therefore not an option.

Hence, the two major challenges that need to be addressed are 1) an increase
in 3D model visualization performance on mobile devices while 2) limiting the
amount of shown information such that drivers are not overloaded. Tackling the
first challenge is the field of computer graphics where sophisticated algorithms
that run on dedicated hardware speed up the visualization of 3D models. The
second challenge, information overload, is tackled by the field of cartography
where information is reduced by techniques such as conceptualization and gen-
eralization.

Prototyping tools Two-dimensional cartography is a mature field that over
the years has developed a rich palette of visualization paradigms and techniques
that ensure (spatial) information is presented in a clear way. Such paradigms
and techniques are lacking in the field of three-dimensional maps. This is in
part due to the novelty of 3D information as well as the increase in complexity
i.e. the extra dimension. Finding suitable and effective visualization paradigms
is for now a highly iterative process: visualization experts ask the developers
to implement a visualization paradigm that is validated by presenting it to the
visualization’s users who’s comments are implemented, are then again presented
to them and thus the whole process repeats. This process repeats until both the
producers and the users of a map are satisfied. Implementing and reimplement-
ing changes, however, is a labor and resource intensive process as no standard
and streamlined prototyping tools exist.

This research aims to address both issues. TomTom’s first challenge, i.e. slow
visualization and information overload, is addressed by noting that both issues
are connected i.e. displaying a lot of information burdens the mobile device as
well as the driver. Reducing the amount of information that travels around the
device-driver system results in better performance on both ends. This research
thus sets out to explore data reduction mechanisms that use geographical, se-
mantic and thematic information to reduce the amount of data that is presented
to the driver.

TomTom’s second challenge is addressed by building a framework that 1)
allows for the assessment of the implemented data reduction strategies and 2)
acts as a rapid prototyping environment. Section 1.2 outlines the information
reduction method and prototyping tools in more detail.

1.1 Related work

Displaying three-dimensional maps i.e. city models on handheld devices, re-
quires knowledge and praxis from the three distinct fields of cartography, com-
puter graphics and geo-information modeling. The challenges posed by three-

2

dimensional mobile maps have thus far been tackled from these two angles:
computer graphics literature is exhaustive and therefore the current review has
been limited to mobile graphics. The same goes for cartography, and therefore
the current review is limited to three-dimensional cartography techniques. The
review as a whole is limited to city models and terrain models.

Mobile graphics pose a distinct set of challenges due to a lack of computing
power, memory, limited battery capacity and a lack of dedicated graphics pro-
cessing units (Capin et al., 2008). City models are difficult to render on mobile
devices as the amount of data is often much larger than the available device
memory (Nurminen, 2008). Speed up and data reduction techniques are needed
in order to successfully display and interact with 3D city models.

Several different methods of speeding up graphics loading and rendering ex-
ist. The most obvious and easy to implement is to wait for better hardware, but
as Nurminen (2006) and Bessa et al. (2004) point out, the increase in graphics
capabilities goes hand in hand with an increase in user’s expectations. Users
will always demand more than is possible on mobile devices as they expect to
see PC and gaming consoles quality graphics. Another speed up technique is
the development of highly efficient low-level rendering algorithms. Capin et al.
(2008) give an overview of some common algorithms and techniques. Compres-
sion techniques reduce the amount of data that travels between the device’s
memory and processing elements. Culling techniques such as z-buffering and
occlusion queries prevent the loading and processing of geometries which will
not be visible to the user. Nurminen (2006) describe a mobile 3D city model
rendering engine called m-LOMA which makes heavy use of culling. Two types
of culling are applied: preprocessed and runtime. Preprocessed culling is per-
formed by subdividing the space in a 3D grid and running visibility analyses
from the corners and center of each cell. Runtime culling is performed by inter-
secting geometry with the viewing angle or frustum which is commonly known
as view frustum culling. Marvie and Bouatouch (2004); Burigat and Chittaro
(2005) store the results of preprocessed culling directly in the data structure.
This technique is suited for static scenes where the results of visibility algo-
rithms do not change over time. Preprocessed culling’s main advantage is the
possibility of knowing beforehand which geometries will be invisible to the user
and preventing these from being loaded thereby removing the need for runtime
culling. Also, no unneeded geometries are retrieved and processed. Another
speed up strategy is the utilization of specialized hardware (Capin et al., 2008).
Some phones have a separate graphics rendering processor. Nurminen (2007)
discuss how the m-LOMA system has been deployed on hardware accelerated
devices. Recently, the PC world has experienced the rise of the so-called Graph-
ical Processing Unit (GPU). The GPU is a specialized processor that is tailored
specifically for performing computer graphics calculations (Owens et al., 2008).
However, mobile devices often do not have GPUs or if a GPU is present it is not
yet advanced enough to utilize the full potential of modern speed up algorithms
(Noguera et al., 2011).

Another way of relieving the mobile device from performing complex ren-
dering calculations is to outsource these to a more powerful server or a cluster

3

of servers. In this set-up, the mobile devices sends its position and viewing
direction to the server, the server performs the rendering and sends back an
image of the rendering. Examples of implementations can be found in Lamberti
and Sanna (2005); Jeong and Kaufman (2007). Hildebrandt et al. (2011) have
implemented the client-server architecture as a web service using existing OGC
standards.

They use OGC’s Web View Service to serve panorama image renderings of a
three-dimensional scene. However, these techniques require a device with a data
connection. Also, the latency in obtaining images prevents the application from
being responsive. Noguera et al. (2011) combine the best of the client-server
rendering set-up by building a hybrid server-client system. In their implemen-
tation, the foreground of the scene is rendered locally, while the background of
the scene is rendered remotely. A data reduction rate in the order of magnitude
of 100 is reached.

In general, reducing the complexity of the geometry results in a decrease in
handled data. Methods borrowed from cartography are implemented by Glander
and Döllner (2009, 2008). Here, the urban geometry is simplified by grouping
similar buildings together and representing them as a single block. The city
scene is kept recognizable by using local and global landmarks and adjusting
the size of the landmarks. Nurminen (2006) suggest to automatically cut away
geometry that will not be visible.

Oulasvirta et al. (2009) have determined through user trials using their m-
LOMA system that low-complexity geometries with high quality textures are
better suited for navigation purposes than complex geometries with low-quality
textures. Utilising textures is thus warranted. However, textures are in essence
raster images, they take a lot of memory to store and are bulky in transport.
Nurminen (2008) replace building textures by the dominant color in the build-
ing’s texture. Another approach is deploying automatically generated general-
ized textures (Coors and Zipf).

Amri Musliman et al. (2010) use GIS data and spatial analysis to achieve
data reduction and speed ups. A 3D buffer of the street network is calcu-
lated and only textures of buildings that intersect the buffer are loaded and
displayed. Buildings which do not intersect the buffer are displayed without
textures. Fisher et al. (2005) automatically find a landmark for each crossing
along the route. The saliency of buildings is based on GIS data and visibility
analyses performed on a Digital Elevation Model. However, only one landmark
is loaded for every crossing.

1.2 Context and methodology

The information reduction technique presented in this thesis revolves around
the idea that in the specific case of driving instructions drivers do not need to
see a highly detailed representation of the surroundings. Instead, only a detailed
representation of the actionable points such as junctions, lane switches, etc. on
the route is desired.

4

The main information reduction strategy I present and apply here is closely
related to Choreme map theory (Klippel et al., 2006). Choreme map theory is a
formalization of the mechanism by which humans exchange routing information.
When someone asks for the route to a certain destination, we do not give a
detailed account of the whole route. Rather, we mention only the points on the
route where the navigator has to take action i.e. change his driving direction.
Directions are often expressed as take a right turn, then follow the road to the
red gas station and turn right again. In this description it does not matter how
far the gas station is or what other buildings stand between the first and the
second right turn. The only thing that matters is the point (the red gas station)
where action (make a right turn) is needed. This mode of communication in
effect compresses the driving instructions i.e. it reduces the amount of conveyed
information.

I deploy the same strategy to reduce the amount of information that is dis-
played by car navigation devices. A driver who is following driving instructions
only needs to see 3D information that is 1) close to his route and 2) is relevant
for his navigation task; the remaining information is not useful and is thus not
visualized.

The information reduction process is split in three steps: selection, extraction
and styling and visualization preparation. The selection step determines which
buildings are relevant to the driver, the extraction step retrieves their geometries
from storage and styles them according to predefined rules, while the last steps
prepares them for visualization. A building’s relevancy is determined based
on its geographical, semantic and thematic properties. Far away buildings are
deemed less relevant and are thrown away. This information reduction process
is termed the Information Reduction Pipeline (IRP).

Two extraction and styling decision modes are defined, namely spatial and
semantic. In the the spatial mode, a building’s appearance depends solely on its
distance from the driver’s route and its action points. The semantic extraction
mode takes a building’s thematic and semantic properties into account when de-
ciding on the complexity of the building’s external representation. Salient and
popular buildings such as restaurants, malls, theaters, etc., are thus represented
in more detail than non-salient buildings such. Although highly realistic repre-
sentations help drivers to navigate, they are difficult to render and take up a
lot of storage space and processing power. Fortunately, complex representations
are not always needed. Buildings next to a highway, for instance, do not need
a complex representation as the driver passes them quickly and does not use
them to navigate. Replacing these buildings in with less details is beneficial for
the visualization performance and driver’s experience. I incorporate semantic
information when deciding how to visualize a structure by defining rules such
as if building is a restaurant, show in full detail that are evaluated by an expert
system.

The IRP’s input is a photorealistic three-dimensional urban scene containing
building geometries and a route that pases through the scene. The output is a
simplified scene that contains only buildings that are located close to the road,
some of which have simpler external representations. The IRP aims is to solve

5

TomTom’s first challenge i.e. improve the visualization performance.

Conceptually, the IRP is designed to run on the car navigation device. How-
ever, in this thesis it is implemented as a proof-of-concept that runs on a desktop
computer as part of the prototype presented below.

I address TomTom’s second challenge i.e. effective prototyping, by proposing
a prototyping framework that allows one to easily design and test different visu-
alization configurations. It is here termed the Prototyping, Benchmarking and
Testing framework (PBT). As discussed above, the experimental nature of 3D
cartography combined with the quirks of developing for mobile devices require
an iterative design process. The best visualization configuration is found by
creating many different visualizations, comparing them to each other using per-
formance metrics, showing them to drivers and reimplementing their feedback.
The PBT achieves this by allowing one to run many different IRP configura-
tions, visualize their results and collect performance measures. Figure 1.1 shows
a schematic overview of the IRP and PBT.

Figure 1.1: A schematic overview of the PBT and the therein contained PBT.

I have built a prototype application that implements both the PBT frame-

6

work and the Information Reduction Pipeline in order to test the developed
information reduction theories and provide the envisioned prototyping function-
ality. The prototype is built using Python (Lutz, 2006) in an object-oriented
design and runs on a desktop computer. The application consists of three phases:
preparation, execution and assessment.

In the preparation phase, TomTom’s geographical data is extracted from
COLLADA and KML files and stored in a spatial database. It is then enriched
with thematic and semantic data from Linked Data sources to allow the ex-
ecution of the information reduction algorithms contained in the IRP. I have
written custom classes for parsing COLLADA and KML files, interacting with
the database and extracting semantic information from Linked Data.

In the execution phase the prototype runs the IRP and the information re-
duction algorithms stored therein: information is selected, extracted and styled
according to spatial and semantic selection and visualisation rules. Spatial op-
erations, such as buffers and intersections, are performed within the database
and by Python spatial libraries. The result of this phase is a three-dimensional
scene that is simpler i.e. contains less information, than the input scene.

In the the last phase of the prototype, the IRP results i.e. the reduced scenes,
are run in a simulation in order to asses their performance and cognitive effec-
tivity. In the simulation, a vehicle moves through the urban scene following the
shortest path. The viewport simulates a traveling vehicle and mimmicks the
display of a real car navigation device. As the vehicle moves around, geometries
are dynamically loaded and unloaded as a means of keeping the used virtual
memory to a minimum. While the simulation runs, performance measures such
as frames-per-second, used virtual memory, etc. are collected with the purpose
of comparing the different visualization configurations to each other. The sim-
ulation is built using the Python game engine Panda3D.

The prototype plays a double role of an information reduction tool by im-
plementing the IRP, and a prototyping and experimentation framework by im-
plementing the PBT.

1.3 Research objectives

The main research objective is to investigate and implement data reduction
methods and mechanisms that

use geographical, semantic and thematic information, knowledge about
the routing solution, spatial analysis and pre-processing strategies to
reduce the information handled by the car navigation device, thereby
speeding up the loading and visualization of 3D navigational infor-
mation.

Geographical and semantical information refers to knowledge about road
and building types: whether a city surface is a wall or a roof, speed limits,
junction complexity, etc. The routing solution is the result of the shortest path

7

analysis (be it in terms of distance or time) performed by the car navigation
system after receiving a departure and arrival location from the user.

The objective is reached by answering the following research questions:

• What knowledge about the road network and specifically about the navi-
gation solution can be used to improve city model loading and rendering
speeds?

• Which semantic and thematic city model attributes and features (i.e.
building and road type, knowledge of walls, roofs, etc.) are usable for
the purpose at hand?

• What pre-processing techniques can be designed and implemented to im-
prove city model loading and rendering speeds?

• What is an efficient and intelligent way of handling textures using road
semantic and thematic information? What (automatic) techniques and
strategies exist to reduce the amount of needed textures?

• What is the best of way of assessing the obtained results and comparing
these to one another?

1.4 Project scope, design decisions and data sources

The focus of this research lies in incorporating spatial analysis techniques to
speed up the visualisation of 3D urban models on mobile devices. These tech-
niques are set forth as an alternative to the more traditional speed up techniques
as are found in the field of computer graphics and cartography. This research
therefore does not aim to make advancements in these fields. It is assumed that
the majority of computer graphics (speed up techniques) and data reduction
methods are implemented in the chosen visualisation engine. The work carried
out is also not aimed at providing new ways of navigation or enhancing existing
navigation paradigms other than making 3D information fit for navigational use.
Finally, this research does not aim to provide new insights into user perception
of three-dimensional information. The proposed (spatial) techniques are not
meant to replace existing cartographic and data reduction techniques, but to
exist next to and on top of them.

Design constraints The researched and developed information reduction
methods are targeted to run on a car navigation device. Traditional mobile
devices are generally limited in processing power, battery capacity and avail-
able storage space. Car navigation devices, however, do not suffer from all of
these restrictions. Battery capacity is not a problem since the device draws
power from the vehicle as it drives through the urban landscape. Storage space
is not a limitation either as TomTom plans to offer 3D navigation only to high-
end systems that are built in luxurious vehicles where there is enough space
for a physical hard disk. An internet connection will not be available as that

8

is considered unreliable. The information reduction computations are therefore
performed locally on the device after the shortest-path calculations.

Semantic information Semantic information gives meaning to the data i.e.
it specifies the type, purpose of use, age, architectural style, etc. of the building
under consideration. Using semantics, the information reduction algorithms
are able to make choices that resemble human decision making. For instance,
semantic information makes it possible to adapt the external representation of
a building based on its type.

This information is already available in car navigation devices in the form
the so-called Points of Interest (POIs): a large database of categorised buildings.
This thesis sets to explore ways in which this information can be incorporated
in the decision making process.

TomTom’s dataset does, however, not contain enough semantic informa-
tion to enable the desired semantic and thematic data reduction operations. I
therefore enriched it with information that comes from Linked Data (LD) data
sources (see Section 2.2.1). The so enriched data set aims to demonstrate the
possibilities of semantic information rather than deliver a working product.

1.5 Thesis outline

The thesis begins by outlining the used data, its extraction and storage in a
spatial database (Chapter 2). The Information Reduction Pipeline and the main
information reduction functionality is discussed in Chapter 3. The prototyping
framework and its linkage to the IRP are discussed in Chapter 4. The prototype
that implements the ideas of the previous two chapters is introduced in Chapter
5. Chapter 6 provides a step-by-step discussion of the development methods and
the obtained results. The conclusions are presented in 7 while recommendations
and future work is presented in Chapter 8.

9

10

Chapter 2

Data sources and
information organisation

The previous chapter briefly introduced the main information reduction method
and termed it the Information Reduction Pipeline (IRP). The IRP, further dis-
cussed in Chapter 3 makes decisions about which buildings to display and how
to texture them based on two types of information: geographical and semantic.

Geographical knowledge is here taken to mean the routing solution as cal-
culated by the navigation device, but also spatial methods that operate on it
and the 3D dataset itself. Geographical information is what is shown on the
device’s screen.

Semantic knowledge on the other hand is defined as information that de-
scribes the meaning of the model and the buildings stored therein. Semantic
information is for example knowledge about the type of buildings (i.e. commer-
cial, industrial, residential, etc) and roads, but also information regarding the
state of the driver i.e. is he in a hurry, looking for a restaurant, etc. In this
thesis semantic information is used to make decisions about how to show the
geographical information.

This chapter describes the two types of information, how they are obtained
and stored in a spatial database. Section 2.1 describes the geographical data’s
extent, number of objects it stores, their properties and the used tiling scheme.
Section 2.2 discusses the used semantic data and its sources, and gives a short
introduction to Linked Data. Section 2.3 outlines how both types of data are
stored in a spatial database.

2.1 Geographical data

The primary data source used in this thesis is TomTom’s three-dimensional
COLLADA (Banes and Finch, 2008) model of the Dutch city Rotterdam. The
dataset covers an area of roughly 55 km2 that is divided in 333 tiles (Figure
2.1).

11

Figure 2.1: The extent of the dataset.

The model contains 3D textured boundary representations of buildings sit-
uated in the city. The dataset harbors 78566 buildings, 916924 faces and takes
7.3 GB of hard disk space, most of which is taken by the textures. The dataset
is a fourth class level-of-detail as defined below

LOD1 Geometry: simplified building ground structures with generalized heights.
Textures: none.

LOD2 Geometry: ground structures (footprints and facades), super structures,
pediments and roofs. Textures: buildings are colored using facade and roof
dominant colors.

LOD3 Geometry: same as LOD2. Textures: generalized image library for
facade and pediment textures.

LOD4 Geometry: same as LOD2. Textures: photorealistic image library for
facade, pediment and roof textures.

Note that these differ from the LODs defined by CityGML; TomTom’s
LOD definitions do not include building interiors. Hence LOD4 mathches to
CityGML’s LOD2.

COLLADA is an XML data model for exchanging digital assets. An asset
is anything from 3D geometries, lights, cameras, animations, materials but also
rigid bodies meant for inclusion in physics engines and simulations. Assets are

12

stored in libraries within the XML file and are linked to other assets. Each
COLLADA file contains one or more visual scenes. Each scene is a tree-like
conglomeration of nodes where each node represents a group. A scene may thus
contain a 3D model of a building as well as a definition for a camera which de-
termines how the scene should be viewed. COLLADA’s aim is to be a “one-stop
shop” for seamless exchange of complete scenes. Emphasis is put on informa-
tion transfer rather than processing. As such, COLLADA files are generally
transformed in more efficient (binary) render engine specific file formats.

XML files have a tree-like structure that is queried with the XML Path Lan-
guage (XPath). XPath enables one to search an XML document and select
nodes and elements based on numerous criteria. An XPath expression specifies
a pattern that selects a set of XML nodes much like one addresses the hierar-
chical directory structure of an operating system. For instance, a forward slash
(/) is used as a path separator, a double period (..) addresses the parent of the
current node, etc. XPath furthermore defines functions that operate on nodes
and their values e.g. max(), substring(), etc. and supports mathematical and
logical operators such as addition, subtraction, AND, OR, etc. Consider the
hypothetical XML document shown in Listing 2.2.

1 <bu i ld ing s>
<bu i l d i ng id=1>

3 <pos i t i on >51.900409 4.476714</ pos i t i on>
<geomet ry co l l e c t i on>

5 . . .
</geomet ry co l l e c t i on>

7 </bu i ld ing>
<bu i l d i ng id=2>

9 <pos i t i on >51.917591 4.43706</ pos i t i on>
<geomet ry co l l e c t i on>

11 . . .
</geomet ry co l l e c t i on>

13 </bu i ld ing>
<bu i l d i ng id=n>

15
</bu i ld ing>

17 </bu i ld ing s>
<t r e e s>

19 . . .
<t r e e s>

Figure 2.2: Fictional XML document that contains a collection of buildings and
their geometries, and a collection of trees.

Following are examples of XPath queries that query Listing 2.2.

• /buildings - selects all building nodes.

13

• /buildings/building[@id=1] - select all buildings nodes that have an at-
tribute with a value of 1.

• /buildings[n] - selects the n-th building node.

• /buildings/building[@id=1]/position/text() - selects the text value of the
first building’s position node.

• /buildings/building[max(@id)] - return the max id value of a building node

2.1.1 Advanced City Model

The TomTom data set defines a city by subdividing an area in tiles that are
filled with buildings. The tiles are defined and governed by a top-level Keyhole
Markup Language (KML) file containing the location of each tile as a WGS84
latitude/longitude pair, its extent and a link to the COLLADA model that
contains building geometries. The geometries themselves are stored in a local
coordinate reference system that is centered at the tile’s center. Figure 2.3a
shows a top-down 2D view of a selection of tiles. Figure 2.3b shows a close-up
of footprints triangles.

(a) COLLADA tiles. (b) An example of triangulated footprints

Figure 2.3: Top down views of the dataset.

Buildings are defined as aggregations of so-called building blocks. Each block
represents a building structure and is itself defined as collection of footprints,
facades and a roof (Figure 2.4).

Textures are stored as external PNG files that act as texture libraries (Figure
2.5).

Section (A.1) discusses the technical details involved in extracting informa-
tion from the XML files.

14

Figure 2.4: UML diagram of the dataset.

15

Figure 2.5: An example structure material.

2.2 Semantic and thematic information

TomTom’s 3D model contains basic implicit and explicit semantic information.
Implicit information here means knowledge that is indirectly deduced from the
model. For instance, building height is not explicitly stored but can be extracted
by finding a structure’s largest z-coordinate.

Explicit information is here defined as knowledge that is plainly accessible.
All stored buildings have an extra field that stores the building’s wall color, roof
color, function type and others (see Table 2.1).

Semantic and thematic information is used for visualisation purposes in
Chapter 3 and for making information reduction decisions in Chapter 4.

A part of these semantic properties are used in the styling part of the infor-
mation reduction algorithms presented in this thesis (Section 3.2.2).

However, the semantic information reduction algorithms presented in later
chapters require more and richer semantic information to function (see Section
4.3.2) such as the currently missing Architectural type and Functional type. To
obtain these properties I have extended the TomTom COLLADA dataset with
semantic data from the Linked Data store linkedgeodata.org.

2.2.1 Principles of Linked Data

Linked Data (Bizer et al., 2009a) captures meaning by storing the relation be-
tween pieces of information in triplets as cat is an animal. The base of Linked
Data is formed by the Resource Description Framework (RDF). The following
discussion is largely based on Manola and Miller (2004). RDF is a language for

16

Item Description Type
levels* Building storys int
wall color Wall color of real world structure hex
roof color Roof color of real world structure hex
door position Position of main building entrance percentage from left edge
type door Door type (4 types are defined) hex
type window Window type (7 types are defined) hex
mapped color hex
arch type* Architectural type int
mate type* Material type int
func type* Functional type int
fene type* Fenestration type int
geo lod The building’s LOD as defined in Section 2.1 int

Table 2.1: Basic building semantic information. Options marked with an aster-
iks are reserved for future use and currently have a null value.

representing information about resources (on the Web) by making statements
about their properties viz.

http ://www. example . org / index . html has a c r e a t o r whose value i s
John Smith

http ://www. example . org / index . html has a c rea t i on−date whose
value i s August 16 , 1999

http ://www. example . org / index . html has a language whose va lue s
i s Engl i sh

These statements consists of three parts:

• the subject : the thing described by the statement. In this case this is the
webpage.

• the predicate: the thing’s property. In this case these are the creator,
creation-date and language.

• the object : the value’s property. In this case John Smith, August 16 and
English, respectively.

These statements are made machine-readable by replacing each part with its
Uniform Resource Identifiers (URI). URIs can refer to network-accessible things
(e.g. electronic documents, images, groups of other resources, etc.), things that
are not network-accessible (e.g. human beings, corporations, books, etc.) and
abstract concepts such as “creator”. URIs are machine-readable address point-
ers much like a webpage’s URL. In fact, URLs are As such, the subject, prediacte
and object can be located anywhere on the web and in turn be RDF statements
themselves.

17

Rewriting the above statements using URIs results in:

<http ://www. example . org / index . html>
<http :// pur l . org /dc/ e lements /1 .1/ creator>
<http ://www. example . org / s t a f f i d /85740>

Here the URIs point to a machine readable definition of the concept “creator”
and a data record of John Smith. The abstract concept “creator” is itself defined
by a series of RDF triplets. The mechanism facilitating this is called RDF
Schema. RDF Schema defines several base classes and properties which are used
to define everything else. RDF Schema provides predefined RDF resources with
special meaning which can be used to construct new classes. One of the built-in
RDF Schema resource is a class which is used to denote “kinds of things” i.e.
types and categories. An important built-in property/predicate is type which is
defined to mean that an object is an instance of a class. It allows one to define
his own classes and properties i.e. it defines a type system.

2.2.2 SPARQL

Linked data is querryed with SPARQL Protocol and RDF Query Language
(Quilitz and Leser, 2008). SPARQL allows for SQL-like select statements to
be fired at a RDF triplet database. SPARQL statements consists of patterns
that are matched to entries in the database. Consider the following example,
where an answer is sought to the question “What are all the country capital in
Africa?”

PREFIX abc : <http :// example . com/exampleOntology\#>
SELECT ? c ap i t a l ? country
WHERE {

?x abc : cityname ? c ap i t a l .
?x abc : i sCap i t a lO f ?y .
?y abc : countryname ? country .
?y abc : i s InCont inent abc : A f r i ca .

}

Every SPARQL query starts by defining the needed prefixes. A SELECT
statement defines the sought values i.e. result. A WHERE statement defines
the conditions to which a matched triplet must conform. Evaluation of the
WHERE conditions is performed by pattern matching each clause to the entries
in the database. If a match is found, the result is bound to one of the variables
designated with a ? and used for the remaining matches. The WHERE clause
is successful only when all statements evaluate to true. A step-by-step execution
of the above WHERE clause is thus narrated as

• the first line finds all triplets the subject, ?x, of which is linked to the
object ?capital by a cityname predicate. In other words: find all objects

18

?x that are known to be names of capitals, and store the found subject in
?x and the capital’s name in ?capital.

• the second line checks whether any of the matched objects stored in ?x
have a relation isCapitalOf. If so, the name of the capital is saved in the
?y variable.

• The third line finds the country that belongs to the capital stored in ?y
by searching for a countryname relation. The result is stored in ?country.

• the last line checks whether the city stored in ?y has a relation isInCon-
tinent that points to the object Africa.

The result of this query is a table with the columns capital and country where
the rows list all cities cities that are the capital of African countries. SPARQL
queries are directed towards web-based endpoints that return the results of a
query in various formats.

2.2.3 DBpedia and LinkedGeoData

In this thesis two linked data sources are used: DBpedia and LinkedGeoData.
The DBpedia (Bizer et al., 2009b) project extracts and links the informa-

tion contained in Wikipedia’s infoboxes and categorisation information boxes
and stores this as RDF. Infoboxes contain the key facts of a Wikipedia article
whereas categorisation boxes describe to which categories the “thing“ described
in the article belongs. Figure 2.6 shows a part of Rotterdam’s infobox.

Figure 2.6: A Wikipedia infobox. Not shown here are facts about the city’s
location and geographical extent.

Rotterdam belongs to the categories Cities in the Netherlands, Populated
places of South Holland, Port cities and towns in the Netherlands, etc.

Information about other objects, such as buildings, is stored in the same
manner. DBpedia thus ”knows“ whether a building is a restaurant, theater,
cinema, etc. i.e. it contains the semantic information that TomTom’s dataset
lacks. The result of dbpedia.org’s efforts is a linked data version of Wikipedia
that is queryable with SPARQL and is linkable to other datasets.

19

LinkedGeoData (Auer et al., 2009; Stadler et al., 2012) transforms the Open-
StreetMap dataset into linked data and links it to DBpedia. The linkage process
begins by first transforming OpenStreetMap to RDF. Auer et al. (2009) first
subdivide OpenStreetMap’s attributes in three classes:

• classification attributes, identify the class a certain element belongs to.
For example, the elements motorway, secondary, path, etc. belong to the
highway class.

• description attributes, describe an element by attaching values to it that
have some predefined value. For example, an attribute lit with a value of
yes/no indicates whether a streetlight is on or off.

• data attributes, annotate the attribute with free text or values e.g. the
opening hours of shops.

The RDF class hierarchy is derived from the classification attributes: each
classification attribute becomes an RDF class, while its values become its sub-
classes. Thus secondary, motorway and path become subclasses of the class
highway. Description attributes are converted to object properties and their
values to sources, whereas data attributes are converted to datatype properties
and their values to RDF literals. Listing 2.7 shows the result of the transfor-
mation.

This schema is matched to DBpedia using machine learning techniques. The
training set consists of OSM entities that already have user-created links to
Wikipedia. These OSM entities are linked through owl:SameAs relations to
DBpedia during the transformation described above. The matching heuristic
is defined as a combination of three criteria: type information, spatial distance
and name similarity. A large heuristic value is obtained if both entities are of the
same time, are located close to one another and have a similar name. Matching
is then done by computing a heuristic value for all LinkedGeoData points within
the vicinity of a DBpedia point, and selecting the one with the highest score that
exceeds a certain threshold. The two entities are linked through a owl:SameAs
relation if the computed heuristic is high enough.

20

lgd−node :26890002 rd f s : comment ”Generated by T r i p l i f y V0.5” .
lgd−node :26890002 cc : l i c e n s e cc : by−sa /2 .0 .
lgd−node :26890002 lgd−vocabulary : a t t r i b u t i o n ”This data i s

der ived ” .
lgd−node :26890002# id rd f : type lgd−vocabulary : node .
lgd−node :26890002# id geo−wgs84 : long ”13.7416”ˆˆ xsd : decimal
lgd−node :26890002# id geo−wgs84 : l a t ”51.0519”ˆˆ xsd : decimal
lgd−node :26890002# id lgd−vocabulary : r e l i g i o n lgd : c h r i s t i a n .
lgd−node :26890002# id lgd−vocabulary : name ”Frauenkirche ” .
lgd−node :26890002# id lgd−vocabulary : tourism lgd : v iewpoint .
lgd−node :26890002# id lgd−vocabulary : amenity lgd :

p l a c e o f wo r sh i p .
lgd−node :26890002# id lgd−vocabulary : w ik iped ia%2525en .
” http :// en . w ik iped ia . org /wik i /Frauenkirche Dresden ” .
lgd−node :26890002# id lgd−vocabulary : denomination lgd : lu theran

.
lgd−node :26890002# id lgd−vocabulary : u r l ” http ://www.

f rauenk i r che−dresden . de/” .
lgd−node :26890002# id lgd−vocabulary : locatedNear lgd−way

:23040893> .
lgd−node :26890002# id lgd−vocabulary : locatedNear lgd−way

:23040894> .

Figure 2.7: An excerpt from the result of transforming OpenStreetMap to RDF
(Auer et al., 2009).

21

The TomTom dataset is enriched by retrieving all buildings from DBpedia
and LinkedGeoData that are close to Rotterdam, and intersecting them with
the COLLADA footprints. A semantic building’s properties are matched to
a TomTom building through the intersection between the two. Each seman-
tic building has a location, label and a type. The latter is later used in the
information reduction algorithms (Chapter 4).

Figure 2.8 shows an overlay of data from LinkedGeoData (red circles) and
TomTom’s footprints (yellow triangles). Note that many TomTom buildings do
not form pairs with a building from one of the linked datasets. This enrichment
method is meant as a showcase of the possiblities rather than a mature solution.

Figure 2.8: An overlay LinkedGeoData buildings (red circles) with TomTom’s
dataset (yellow triangles). The image shows a hotel, a parking place and a
restaurant.

2.3 Data storage and information model

The geographical and semantic data are stored in a spatial database. Spatial
databases have many advantages, the most interesting for this project being
spatial indexing and the ability to deal with the dataset as a whole rather than
as single files.

The database stores the dataset’s tiles and buildings as the schema shows in
Figure 2.9. The schema is modelled after the UML representation of the dataset
as displayed in Figure 2.4.

22

Figure 2.9: Database schema.

23

The Tiles tables stores the COLLADA tiles (Figure 2.1). The concept
”building“ is stored in the Buildings table. The semantic and thematic prop-
erties from Table 2.1 are also stored in the Buildings table, alongside the type
extracted from the Linked Data sources described in the previous section. A
building is made from several Structures each of which contains one or more
Blocks. Structures are linked to buildings through the foreign key relation build-
ing id in the Structures table. Each block consists of footprints, facades and
super structures. Blocks are linked to a structure through a the structure id for-
eign key relation. The type column stores the block’s designation i.e. whether
it is a collection of footprints, facades or super structures. Facades and super
structures have a material assigned to them which is a reference image contain-
ing the structure’s texture (Figure 2.5). The table Materials stores a reference
to the texture which reside outside the database.

The Triangles table stores the triangles that make up the block’s geometry.
Each triangle is a collection of vertices and texture coordinates. The tables
and classes presented up to this point are conceptual classes i.e. they do not
define any geometry, this is defined in the Vertices table. Vertices are related
to triangles through the foreign key relation triangle id in the Vertices table.

The Footrpints table stores the building’s footprint triangles as polygons.
This table is used extensively in the spatial lookups involved in the information
reduciton process and is therefore indexed with an R*Tree spatial index.

Note that when transforming the COLLADA data structure into a database
schema effort is put into optimizng the database for needed applications and
not in the creation of a complete COLLADA-to-database converter. Therefore
only information that is relevant to the task at hand is extracted and stored in
the database.

24

Chapter 3

Information Reduction
Pipeline

Displaying 3D graphics on mobile devices is challenging. Mobile devices often
have limited processing power and storage space. Visualisations for mobile
devices need to take these limitations into account in order to run smoothly. A
selection of optimization strategies is presented in section 1.1. The presented
research aims to investigate alternative methods optimization methods that are
based on geographical and thematic information. This chapter presents the
conceptual basis of the Information Reduction Pipeline presented in the previous
chapter. This chapter aims to give a bird’s-eye-view of the main information
reduction method. It abstains from discussing implementation details, these are
outlined in Chapter 5.

This chapter starts by discussing the merits of 3D information for urban
navigation purposes. Section 3.1 presents the main information reduction idea
on a conceptual level. Section 3.2 presents the information reduction methods,
here collectively termed as the Information Reduction Pipelien, by which the
envisioned information reduction is achieved. The chapter ends with a discussion
on the extensibility of the proposed pipeline.

3.1 Information reduction

The act of information reduction can be modified so that it becomes an act of
smart and intelligent information selection. Instead of presenting information
to the driver as-is in full detail, one can choose to show only information that
is relevant to the driver’s current context and that aids him in performing his
current task. When a person is navigating “less is more”.

That is why we use maps to navigate instead of raw satellite images. The
latter contain too much information which is presented in a flat manner i.e. as if
all of it is of equal value. The value of information, however, depends on the task
for which it is used. For instance, knowing where cycleways and parklanes are

25

when driving a car is not relevant as these are not traversable by car. Traditional
two-dimensional maps, therefore, display a selection of the available information
that supports the map’s purpose, be it navigation, reference, wayfinding or
other.

I apply the same strategy to 3D city models that are used for navigation
purposes. Instead of showing the complete 3D model to the driver and running
the risk of overloading him as well as the device, a smart information selection
is performed based on the shortest route as calculated by the device between
the driver’s current position and desired destination. Objects are loaded and
displayed only if they are deemed relevant to the navigation process. A build-
ing’s relevancy depends on its location and semantic and thematic properties
(Table 2.1). For instance, buildings located close to the driver’s route are prob-
ably more useful to his navigation than buildings that are far off. Its visual
appearance is varied according to the context of the situation.

This idea shows parallels with Choreme map theory (Klippel et al., 2006).
Choreme maps convey information much like humans exchange routing infor-
mation. Consider the Choreme map shown in Figure 3.1.

Figure 3.1: Left: bold line represents a “conventional” shortest-path visuali-
sation. Right: The Choreme map representation of the same route. (Klippel
et al., 2006)

The desired route (in bold) is shown to the left of the image alongside the
city’s complete road network. Starting from the top-left corner, this route can
be conveyed to a driver as drive to the first crossing and make a left turn, make
a right turn at the fourth crossing, take a right turn at the crossing after that
and a left at the crossing after it. The image to the right of Figure 3.1 shows
the visualisation of this description. The actionable points in this description
are the crossings at which the driver needs to turn. Information reduction is
achieved by 1) showing/mentioning only the streets the driver passes and 2)
showing/mentioning only the action points on these streets and diminishing
non-actionable portions of the route. Choreme map theory thus acts as a com-
pressor of navigation information: actionable and important parts of the route
are emphasized and enlarged while less important and non-actionable parts are

26

minimized or not mentioned at all.
Choreme map theory is used as a starting point for the here devised in-

formation reduction/selection methodology as it closely resembles the driver’s
mode of operation when using a navigation device, where driving instructions
are presented as a list of actions that the driver needs to perform in order to
reach his destination.

3.2 Information Reduction Pipepline

The information reduction strategies discussed in the previous section are bun-
dled and formalised in the Information Reduction Pipeline (IRP). The IRP is
a set of operations that select relevant buildings for navigation and optimize
their external representation with the aim of reducing the amount of displayed
information in terms of number of buildings as well as their external complex-
ity. The IRP functionality is based on two information compaction strategies,
namely

1. Select buildings that are close to the driver’s route or actionable points
on the route

2. Adapt building external representation to fit their navigational function

The rationale behind the first strategy, as discussed in the previous section,
is that a driver who is following driving instructions does not need to see in-
formation that is not related to the driving instructions, and thus does not aid
him in his navigation activities. Such is the case with information about objects
that are, for example, on the opposite side of the region that is being navigated.
Discarding this information removes the burden on the device and driver. The
device does not have to load the information while the driver does not have to
interpret and process it.

The second strategy adapts the appearance of buildings to their role in the
navigation process. A building’s role is determined based on its location as well
as its semantic and thematic properties. Buildings that are close to Choreme
actions points and thus aid the navigation process are shown in full detail.
Buildings that are situated in the compacted portion of a route are shown in less
detail. For instance, the verbal instruction drive straight for 10 km compacts
a route of 10 km into a single statement. The visual equivalent of this is to
simplify the appearance of the buildings in that stretch.

A building’s semantic and thematic properties such as type, dominant facade
color, etc., determine its suitability for navigation purposes. Well known build-
ings, such as restaurants and malls, act as navigational aids. These buildings
are rendered in greater detail than less significant buildings such as residential
blocks.

The IRP is designed to run on the car navigation device. It starts functioning
right after the shortest route is calculated by the device:

1. driver requests a route from the device

27

2. the device calculates a shortest path from the driver’s current posi-
tion to the desired destination

3. the devices passes the route to the Information Reduction Pipeline

4. for each route segment

1. select buildings that are close to the route

2. extract building geometry from storage and apply vi-
sualisation styles

3. create visualisation asset and pass to navigation device

5. navigtion device displays visualisation asset

The Information Reduction Pipeline forms the center of the information re-
duction functionality. Its input is a 3D urban model that contains building
geometries, and the result of the shortest path calculations as performed by the
device. The IRP consists of three steps each defining operators that together
implement the two information reduction strategies introduced above (Figure
3.2). In the selection phase, buildings that are close to the driver’s route are
selected for display (Section 3.2.1). In the extraction phase, the selected build-
ings are retrieved from geometry and themed according to visualisation rules
(Section 3.2.2). The last IRP phase creates a visualisation asset that is passed
back to the navigation device for display (Section 3.2.3. A visualisation asset is
the result of the IRP operations encoded in a format that can be displayed by
the navigation device’s rendering engine.

single

double

junction

plain

colored

textured

spatial queries

building ids

build
ing id

s

3D geometrie
s

color/te
xture

building ids

3D geometries

d
a
ta

b
a
se

visualisation
preparation

selection

extraction

Reduced 3D scene
as Wavefront .obj file

Figure 3.2: A schematic overview of the Information Reduction Pipeline.

The functionality of the selection and extraction phase is implemented as a
set of operators. Each operator performs a single action; it is the smallest unit

28

of functionality that can perform a selection or extraction. These operators are
introduced in order to make the IRP phases more versatile and open ended.
For instance, the selection phase defines three operators (see Section 3.2.1) each
of which selects geometry in a different and distinct way. Running the IRP
three times and invoking a different selection operator produces three distinct
IRP results. This functionality allows the rapid prototyping introduced in the
Introduction to work and is a part of the prototyping framework discussed in
Chapter 4.

The product of the Information Reduction Pipeline is a 3D scene which con-
tains less information, both in terms of number of buildings as well as their
complexity, than the original and unprocessed scene.

The remainder of this section discusses each of the three IRP phases and
the operators they define. The discussions are on a conceptually high level.
Implementation details are discussed in Chapter 5.

3.2.1 Selection

The basic idea of the selection phase is to use the routing solution to smartly
select information that is relevant to the driver and disregard information that
is of no use to him. Relevancy is defined as stating that relevant buildings are

those buildings that are close to the road on which the driver is driv-
ing or going to drive.

This IRP phase is the practical manifestation of the first information reduc-
tion strategy introduced in Section 3.2.

Vast 3D geographical information is typically visualised by tiling it and show-
ing a small selection of the tiles to the user at any given time. New tiles are
loaded and displayed as the user explores the data. Since it is impossible to
predict in which direction the user will drag the map, new tiles are only loaded
once the user’s viewport hovers over them. The loading process becomes visible
as every new tile “pops” into existence.

One way to prevent new geometries from popping into existence when not
knowing beforehand where the driver will travel is to load the current tile’s
neighbouring tiles before they are needed and smoothly bring their geometries
into view as the driver travels through the 3D model. Figure 3.3a shows this
arrangement; the driver’s vehicle is represented by the triangle located in tile
1. The tiles adjacent to tile 1 are all loaded and ready for display as it is yet
unknown in which direction the driver will travel. In this case, the driver de-
cides to travel North to tile 2. As he enters tile 2, its not yet loaded neighbors,
depicted by the dashed region to the North are loaded and prepared for dis-
play. The dashed tiles on the bottom are unloaded to free resources. Instead of
continuing North, the driver decides to travel West to tile three instead (Figure
3.3b). Keeping with the tile loading scheme, the engine loads and prepares the
tiles in region 3 and discards the right most tile of region 2. That tile was loaded
in vain and so are the remaining tiles in region 2 if the driver continues traveling

29

West.

1

23

2

(a) Initial configuration.

1

23

2

3

(b) Position of vehicle prior to turning
left.

Figure 3.3: A vehicle approaches a junction following a shortest path as calcu-
lated by a navigation device.

In the specific case of car navigation devices, however, knowledge about
the driver’s traveling direction is available in the form of the shortest route as
calculated by the device. Loading only buildings that are close to the driver’s
route greatly decreases the amount of loaded and displayed information while at
the same time minimizes unneeded loading and unloading of geometry. Figure
3.4a shows a schematic of the proposed method: the navigation route is used to
load a fraction of the tile-based approach which loads nine tiles at the beginning
of every journey and three for every tile transition.

The selection method also has merit on the street level. Figure 3.4b shows
the gains of the proposed method when compared to loading geometry in tiles.
The triangle again represents the driver’s vehicle while the two diagonal lines
represent the driver’s field of view. The bottom of the image shows the situation
in the tile-based case (location 1). Whenever a driver enters a tile the render
engine loads all of its geometries into memory. It then checks which buildings
intersect the driver’s field of view and displays them on the screen (shown in
black). The major drawback of this approach is that it loads and processes
buildings that in the end may not be visible to the user (shown in white). And
even if they are visible, they may be unnecessary for his navigation task.

The top of Figure 3.4b shows the effect of the proposed selection method
(location 2): only buildings that are close to the road are selected (shown in
black, all remaining buildings (dashed) are left untouched i.e. they are not loaded
into memory and processed by the rendering engine. The result is a smaller
memory footprint and less visibility calculations. Note that using the route for
building selection makes tiles obsolete.

30

1

23

(a) The vehicle travels from point 1 to point
3. The dashed rectangles represent the tiles
that are no longer needed. The dash-dotted
line depicts the new building search region.

1

23

(b) Tiled case (bottom) versus non-tiled case
(top). Black buildings in location 1 are visi-
ble, white building are loaded but not visible.
Black buildings in location 2 are loaded as they
are close to the route, dashed buildings are not
loaded.

Figure 3.4: Schematics of the proposed selection method.

Although simple, this idea is powerful as it is straightforward to implement
and results in a significant reduction of information (Chapter 6). This approach
has the following benefits:

• we load a small subset of all the available information

• we can deploy smart geometry pre-fetching and caching tech-
niques

• deploy just-in-time geometry preparation and loading

• we can deploy visualisation rules based on building positions

At the same time it is easily extended with more sophisticated building
selection strategies.

An evident drawback of this method is the case in which drivers do not
follow the navigation route due to a mistake, closed road, faulty map data, etc.
This situation can be remedied by segmenting the route in short segments and
loading small chunks of data at a time. Whenever a driver misses a turn, a new
route is calculated and the process starts over. Responsiveness is guaranteed by
making the segments sufficiently short.

3.2.1.1 Operation

The selection phase is implemented by calculating a 2D buffer around the route
and intersecting it with nearby building footprints. Buildings that intersect the

31

buffer are, by the definition given above, selected as important and passed to
the next IRP phase.

The IRP selection phase defines three operators. The single operator is a
simple buffer of width w as shown in Figure 3.5a. The double operator is a more
complex selector that consists of two buffers with different widths as shown in
3.5b. Buildings in red are located closer to the road the green buildings. Figure
3.5c shows the junction operator. This operator selects buildings that are close
to junctions.

More complex buffers can easily be designed and implemented by visualisa-
tion experts (Chapter 6) as the need arises.

(a) The single selec-
tion buffer

(b) The double selec-
tion buffer.

(c) The junction se-
lection buffer.

Figure 3.5: The three Selection operators.

The selection phase’s input is the shortest path as calculated by the device, a
3D (tiled) urban scene and the location of junctions. It outputs a list of building
IDs that are passed to the next IRP phase.

3.2.2 Extraction and styling

The IRP’s extraction and styling fetches building geometries from storage and
applies visualisation rules designed by visualisation experts (Chapter 6). The
visualisation rules define how detailed the exterior of a building should be based
on its thematic and semantic properties. The extraction and styling IRP phase
is the implementation of the second information reduction strategy presented
in Section 3.2. It forms the second step in the information reduction process:
after selecting a limited amount of buildings to display in the selection phase,
this step aims to simplify their appearance in order to reduce the burden on
device and driver. The designed simplifications act on a building’s texturing
style. The extractor defines, just like the selector, a set of operators that harbor
the functionality:

Plain extract and paint all buildings in the same color theme (lowest level of
detail)

Colored extract and paint each building in its dominant color

32

Textured extract and paint each building using its textures (highest level of
detail)

The plain operator paints the selected buildings in a pre-defined color scheme
with different colors for the roof and facades. As a result, all buildings look
the same. This is the lightest operator in terms of amount of extracted and
visualised information as all buildings have the same appearance.

The colored operator fetches buildings from storage and paints them in their
dominant color. The dominant color of a building is defined as the color that
best characterizes the building’s texture color. Dominant colors are defined for
building facades and roofs and were available from TomTom’s dataset (Table
2.1). Since each building has its own color, this style generates more traffic
between storage and renderer and also requires more storage space.

The textured operator is the heaviest of all defined extractors. It paints the
building using their textures as supplied in the COLLADA files.

These extraction and theming operators together with the visualisation rules
allow the building relevancy measure presented in Section 3.2.1 to be extended.
A relevant building is now defined as a building that

is close to the road on which the driver is driving or going to drive
AND has certain semantic and thematic properties

In other words, the extraction and styling step allows for a variation of a
building’s external representation based on its type, age, use, etc.

3.2.2.1 Operation

The extractor mainly acts as an interface to the the database. It receives build-
ing ids from the selector, extracts their 3D geometries from and styling infor-
mation from storage and sends it to the next IRP phase.

3.2.3 Visualisation preparation

The final IRP phase receives the building geometries from the extractor and
prepares these for visualisation in a rendering engine. It transforms the geome-
tries into a format that the device’s rendering engine understands and creates
the visualisation asset. The visualisation step thus acts as a link between the
processing and visualisation of the data making the IRP rendering engine ag-
nostic. This is also beneficial for extension purposes where the visualisation can
be extended to support several output modes.

3.3 Designing and extending the IRP

The Information Reduction Pipeline is a collection of functionalities that aim to
reduce the amount of information that is displayed to the user. As discussed in
the Introduction and further detailed in Section 1.4, this thesis aims to create a
framework for performing 3D experiments quickly and efficiently. It is therefore

33

important that the IRP can be extended so it becomes a general methodology
instead of a one-off specific tool. The IRP is designed so it can easily be extended
with extra functionality.

The operators presented above are presented as examples and points of de-
parture that are to be extended by visualisation experts. Extending the IRP’s
functionality is achieved through chaining and operator extension.

3.3.1 Chaining

The first mechanism of extending the IRP is by invoking a number of operators
of the same type one after the other using different parameters. Linking two
selector operators with each other results in a more complex selection pattern.
For instance, linking two plain selectors (introduced in section 3.2.1.1) of 5 m
and 10 m each, results in a two-tier selection pattern in the spirit of the sized
selector.

Chaining keeps the selectors simple, while enabling complex selection pat-
terns to be achieved. Instead of predefining and hard coding each selector, the
IRP is designed such that selectors can be chained to conjure more sophisticated
selections. Chaining is beneficial as it reduces the number and complexity of
selectors, and prevents duplication of functionality.

3.3.2 Operator extension

The second extension mechanism is one of designing completely new IRP se-
lector and extractor operators. The simple selectors and extractors presented
above may not suffice. More powerful selectors allow the construction of more
sophisticated and refined selection and extraction scenarios.

As long as each operator respects the information exchange format, operators
can be extended and linked in any way wished.

Extending the extraction operators is done much in the same way as the ex-
tension of selectors as described above. The extractors described above retrieve
the whole building from storage. In some cases, however, retrieving the roof of
a building is not needed as it will not be visible to the driver. An additional
extractor is thus one that selects only the facades of buildings. An advanced
version is one that selects only the facades that are facing the street.

34

Chapter 4

Prototyping, Benchmarking
and Testing framework

The Information Reduction Pipeline presented in the previous chapter reduces
the amount of information that a car navigation devices displays to the driver by
selecting only information that is close to the driver’s route. A further decrease
is realized by varying the complexity of the 3D building models based on their
usefulness in the navigation process. Both reduction strategies are governed by
selection and theming rules. These rules are written by visualization experts
that seek to create a 3D map that renders smoothly on a mobile devices, while
at the same time is useful to the driver. Writing these rules and discovering
the correct IRP configurations is an iterative process that is facilitated by the
Prototyping, Benchmarking and Testing framework (PBT).

This chapter begins by discussing the need for the PBT framework. Sec-
tion 4.2 gives a high-level overview of the framework and presents the three
phases that contain its functionality. Section 4.3 discusses the execution phase
that is responsible for running the numerous IRP configurations. Section 4.4
concludes this chapter by presenting the evaluation phase which runs the IRP
configurations in a game engine and collects performance indicators.

4.1 Context

A visualization designer’s task is to find the best visualization configuration in
terms of technical performance and cognitive aspects. This is a highly iterative
process that on one hand calls for hard performance measurements, while on
the other hand requires soft knowledge in the form of user questionnaires and
interaction design assessments that gauge the cognitive aspect of a visualization
produced by the IRP.

What both cases have in common is that they need to be compared to other
configurations in order to determine what the influence of, for example, a fully
textured representation of the data is on the visualization performance, but also

35

on the driver i.e. is the textured model useful and worth the extra burden on the
device. While the IRP acts as a tool to decrease information, it is not designed
and equipped for answering such questions. I designed the The Prototyping,
Benchmarking and Testing (PBT) framework to address these questions.

The PBT framework helps 3D map designers to find an IRP configuration
that suits their needs by providing facilities with which to control the behavior
of the IRP, automatically run many different configurations, visualize and test
their performance.

To this end, the framework allows visualization designers to create custom
controllers that govern the IRP’s behavior. It facilitates searching for an optimal
IRP configuration by automatically running multiple IRP configurations while
at the same time recording per-configuration performance measures. The PBT
thus wraps the Information Reduction Pipeline and extends it with automa-
tisation, benchmarking and comparison facilities. Visualization designers can
then use these measurements, here termed performance indicators, to quickly
understand the impact of a design decision, compare it to other configurations
and choose a ”best” configuration.

4.2 Methodology

The PBT consists of three phases, namely preparation, execution and evaluation
(Figure 4.1).

In the preparation phase or pre-processing phase all the required informa-
tion is collected, organized and stored in the spatial database. The building
geometries are extracted from the COLLADA files while thematic information
is retrieved from the LinkedGeoData Linked Data source (Chapter 2). This
phase is executed only once when the system is set up, consecutive runs of the
PBT start at the execution phase.

In the execution phase the IRP is run for each distinct configuration. The
IRP is controlled by the rules set forth in the controllers by the visualisation
designers.

The evaluation phase runs the different configurations in a simulator. The
simulation’s performance in terms of e.g. FPS and used virtual memory depend
on the the number of loaded geometries and textures and their complexity as
complex models require more processing power and virtual memory to run.
The simulation’s performance is thus a measure for the performance of an IRP
configuration. These measures of a configuration’s technical performance are
termed performance indicators (4.4.2).

The PBT framework runs on the development machine. Its aim is to allow
to quickly run and test different scenarios in order to determine the correct IRP
parameters. Once these are known the IRP and the found rule sets are uploaded
to the device, integrated with the navigation application and executed each time
the user requests a routing solution.

This thesis does not aim to define what a “best” configuration means as
that requires one to also measure the cognitive effectivity of a visualisation

36

Figure 4.1: A schematic view of the PBT framework.

37

i.e. a technically well performing configuration may be ineffective in conveying
information to the use (Section 1.4). Rather, I aim at creating a framework that
allows technical and non-technical visualization experts to apply their knowledge
to the case of 3D maps by quickly building numerous prototypes which can be
presented to potential drivers. The idea is to facilitate and enable the iterative
workflow described in the Introduction.

4.3 Execution phase

The PBT has two modes of operation that use the same IRP operators. The
spatial mode uses geographical information and operations to select and visualize
buildings. In this mode, an object’s distance from the driver’s route is the
only discriminating factor and relevancy measure. The IRP is controlled by
an execution plan that is written by the framework users i.e. designers and
developers.

The semantic mode uses knowledge about the semantic and thematic prop-
erties of buildings and roads to decide what to select and how to visualize it.
In this mode, an object’s relevancy depends not only on its distance from the
route, but also on its thematic and semantic properties. This is mode is richer
as it is able to incorporate context in the selection and visualization procedure.
The IRP is controlled by rules such as if road type is local and building type is
residential, render building in full detail.

The link between the execution plan and rules, and the IRP are the so-called
controllers. The spatial controller is a simple execution plan parser, whereas the
semantic controller is an expert system that links the rules to IRP operators.

4.3.1 Spatial controller

The spatial controller is implemented as an execution plan that explicitly speci-
fies which IRP operators are invoked with what parameters. An execution plan
is a branch-like structure that lists which operators are to be invoked in each
phase of the IRP. The execution plan is written by a visualization expert who
wants to test different configurations. An example plan is shown in Figure 4.2.

Each branch signifies a different visualization configuration. Running several
different configuration is done by extending the plan with more branches.

As discussed in section 3.3, the IRP can be extended to wield more func-
tionality by chaining the atomic operators. Chaining is achieved by calling a
single selector/extractor multiple times.

4.3.2 Semantic controller

The semantic controller governs the Information Reduction Pipeline by inter-
preting rules which encode the desired type of visualization. These rules trans-
late semantic building properties into IRP selection and extraction operations.

38

S
e
le

ct
o
rs

co
lo

re
d

p
la

in

Junction
100 m

Single
50 m

Double
80/30 m

te
x
tu

re
d

co
lo

re
d

p
la

in

te
x
tu

re
d

co
lo

re
d

p
la

in

te
x
tu

re
d

E
x
tr

a
ct

o
rs

Figure 4.2: An example execution plan. Each branch resembles a single visual-
isation configuration. Each node in a branch signifies an IRP operation.

Using semantic and thematic building information allows for geometry load-
ing strategies based on knowledge instead of spatial and visibility algorithms
(Section 1.4).

For instance, easily recognizable buildings such as banks and fast-food restau-
rants may help the user orient himself more easily. A sensible choice is to display
these types of building in full detail. This rule is formalised as

If building is close to route AND is of type restaurant THEN display it in
full detail

The semantic controller translates the distance measure close to a numerical
value and calls an IRP selector with that value. From the list of returned
buildings the controller selects the buildings of type restaurant and invokes the
textured IRP extractor and themer (Section 3.2.2).

Translating the rules to IRP instructions is performed by an expert system.
Following is a short conceptual description of an expert system.

4.3.2.1 Expert system

An expert system consists of three parts: a knowledge base, a rule set and a
ruling engine that makes inferences. The knowledge base contains statements
that connect pieces of knowledge together to form facts. The rules describe how
a set of facts is related and lead to a different set of facts. An expert system thus
deduces new information from known information by way of rules that capture
the system’s behavior. The workings of an expert system are explained through
family relations.

Consider the case where Thomas and Norma have two sons, Bruce and Sam.
Bruce and Sam are thus brothers. An expert system can deduce the second fact
from the first through a rule connecting the two facts. The facts are formalised
as

39

son_of(bruce, thomas, norma)

son_of(sam, thomas, norma)

These rules state that Bruce is a son of Thomas and Norma. The rule
relating these facts to information about brotherhood is written as

then brother_of($person1, $person2)

if

son_of($person1, $father, $mother)

son_of($person2, $father, $mother)

check $person1 != $person2

This rule checks whether two people are brothers based on information about
their parents. The conclusion brother of is reached only after each of the if
conditions are met. Conditions are facts themselves which are pattern matched
with known facts in the knowledge base. Say that $person1 is Sam and $person2
is Bruce. The first condition of the above rule is checked and a fact is found
that matches

son_of(sam, thomas, norma)

The same goes for the second condition. The last conditions ensures that
$person1 and $person2 are the same. The result of a rule is a new fact that is
added to the knowledge base. In the example above the new fact is

brother_of(sam, bruce)

In other words, a new piece of knowledge is created stating that Sam and
Bruce are brothers. Note that the first two clauses passed despite the lack of
information about the $father and $mother variable. When no information is
provided about a part of the fact variables are assigned values that belong to
the matched fact i.e. since $person2 equals Bruce, and the only fact involving
him states him to be the Thomas and Norma’s son, they are assigned to the
values of $father and $mother, respectively. Rules are thus pattern matched and
assigned values from the facts whenever a value is ommited upon the invocation
of a rule.

An expert system is thus able to validate rules and produce new informa-
tion. Making it fit for use in the current application is done by writing the cor-
responding rules. The facts are provided by the building’s themselves through
their semantic properties. Section 5.2.2 discusses the implementation of the
ruling engine for the case of buildings.

4.4 Visualisation, testing and benchmarking

The last phase of the Prototyping, Benchmarking and Testing framework is the
assessment of each visualisation configuration. This process is split in two parts:
visualisation and testing, and benchmarking.

40

4.4.1 Visualisation and testing

The visualisation and testing step is meant to visualise each IRP configuration
such that the effects of the design choices can be seen. To this end a simu-
lation is run that mimmicks the display of a car navigation device. A moving
viewport is implemented that follows a shortest route around the urban environ-
ment thereby showing the effects of the IRP selection and extraction operators.
Section 5.3 outlines the implementation details.

4.4.2 Benchmarking

The goal of a visualisation designer is to craft a visualisation that is cognitively
effective while at the same time runs smoothly on a mobile device. Measur-
ing the cognitive effectiveness of a visualisation is a difficult task as it entails
performing live user tests. A possible set-up involves potential users looking at
a running simulation and commenting on in either through questionnaires or
simply by discussing their observations. Such tests are not performed in this
project.

Optimizing a visualisation for speed and smoothness entails making correct
choices about the number and complexity of geometries that are displayed, the
number and complexity of textures, etc. Predicting beforehand what the im-
pact of a certain configuration will be on the performance is difficult. The best
way of addressing this issue is by defining a set of performance indicators that
characterize the performance of a visualisation configuration, running different
visualisation configuration and observing and recording the values of the indi-
cators.

Table 4.1 lists the performance indicators used in this research.

Performance indicator Unit
1. Frames per second fps
2. Virtual memory MB
3. Graphics memory MB
4. Drawing time ms
5. Culling time ms
6. Number of scene nodes [-]
7. Number of geometries [-]
8. Number of vertices [-]
9. IRP: selection time s
10. IRP: extraction time s
11. IRP: preparation time s
12. Storage space MB

Table 4.1: Performance indicators

Note that the PBT is run on a desktop machine and not on a mobile device.
The thus captured performance indicators will therefore characterize its per-
formance instead of the mobile device’s. The produced performance indicators

41

are thus meaningless in absolute terms as they capture the performance of the
simulation on the hardware it is running on. They do give insights when seen
in relative terms i.e. compared to one another they do allow the determination
of a best configuration.

42

Chapter 5

Prototype

The previous chapters introduce the Information Reduction Pipeline that is
aimed at reducing the amount of information handled and displayed by the
mobile device, and the Prototyping, Benchmarking and Testing framework that
is aimed at easing the task of finding and optimal IRP configuration.

This chapter presents a prototype application that implements the theories
and ideas presented in the previous chapters. The prototype implements the
methods set forth in the IRP: data selection, extraction and theming as well
as operator chaining. The three PBT phases i.e. preparation, execution and
assessment are implemented as well. Users are thus able to input a 3D city
model, a route and a set of visualisation rules and the prototype will create a
reduced scene, run simulations and deliver a report on the performance of each
configuration.

The prototype is built with Python using an object-oriented design. The
following tools and additional libraries are used:

• Linked Data sources are quiried with SPARQL using the Python SPARQL-
wrapper (Herman et al.) library. XML files such as COLLADA and KML
are parsed using the Python lxml (Behnel et al.) library which is also used
to execute XPath queries. Coordinate transformations are performed us-
ing the proj library which is a Python Interface to PROJ.4 proj4. Shapely
is used for spatial operations that are performed outside the database.
These libraries are chosen as they are the defacto standard for performing
the needed tasks.

• The spatial database SpatiaLite (Furieri) is used for storing geographical
data and performing spatial analysis on it. SpatialLite is the spatial exten-
sion of the SQLite database. SpatiaLite is a lightweight serverless trans-
action SQL database engine that has an almost complete implementation
of SQL-92 standard and is OGC-SFS complaiant. Its (2D) functional-
ity is comparable to that of PostGIS and Oracle Spatial e.g. it supports
spatial operations such as buffers, intersections, etc., and indexes, namely

43

R*Tree and MbrCache. SpatiaLite is self-contained; the entire database
i.e. its definitions, tables, indexes, and the data itself is stored in a single
cross-platform file. SpatiaLite is therefore suited for single-user embdedd
applications. SpatiaLite is chosen for this project as it provides the needed
functionality within the posed constraints i.e. absence of an internet con-
nection (hence no access to a PostGIS/Oracel Spatial server), but more
importantly because it is readily available on modern mobile devices. Port-
ing the functionalities developed in this prototype is then simply a matter
of copying the database file and wrapping the SQL queries in the device’s
native language.

• The simulation is implemented on top of a game engine. A game engine is
a system designed for the development of interactive 2D and 3D computer
visualisations such as video games and augmented reality installations.
Game engines facilitate development by providing ready-made facilities
for rendering, sound, animation, events, scripting, artificial intelligence,
networking, streaming, memory management, scene graph, benchmarking
facilities, etc. Such facilities greatly simplify development of interactive
applications as they provide ready-made functionality that a developer
can readily re-use and does not need to develop himself.

The game engine of choice is Panda3D (Goslin and Mine, 2004) as it
is entirely written in Python. Panda3D therefore integrates easily with
the rest of the developed functionalities. It furthermore has a very ma-
ture documentation and a lively community. These factors are important
when picking up a new technology as tremendously speeds up the learn-
ing process. In contrast, other game and render engines such as Ogre
(ogr, 2012) and OpenSceneGraph that are ported to Python often lack a
thorough Python documentation or a community using the port as the
attention generally goes to the platform’s native language (C++ in both
cases). Furthermore, most ports are a work-in-progress which means that
a Python developer runs the risk of needing functionalities that are not
ported yet, although they are spoken of in the original documentation.
The second major reason to choose for Panda3D is its extensive bench-
marking facilities (Figure 5.8). Panda3D provides real-time graphical and
command-line tools to check and record the performance of the running
visualisation. This functionality aligns perfectly with the purpose of the
PBT; compare the performance of different IRP configurations.

• The expert system of choice is Python Knowledge Engine (Frederiksen).
The knowledge-based inference discussed there is implemented through
the Python Knowledge Engine (PyKE). PyKE is an inference engine that
brings Prolog-like logic programming to the Python language. PyKE sup-
ports the creation of a knowledge base and rules that link facts together
to form new knowledge. It is mainly chosen for its simplicity and the fact
that it is written in Python.

The prototype is a direct implementation of the Prototyping, Benchmarking

44

and Testing. Like the PBT, it consists of three phases as shown in Figure 4.1.
The preparation phase extracts the data from the various data sources files and
populates the database. The execution phase executes the information reduction
process by parsing user created visualisation rules and invoking the IRP. The
final PBT step produces runs the various IRP configurations in a simulation
and shows their performance measures.

The IRP, as noted in the previous chapters, plays a double role in this re-
search. On one hand it incorporates the main information reduction algorithms
as a stand alone piece of functionality that is intended to run on the car naviga-
tion device, and on the other it is a core part of the PBT and the prototyping
process.

This chapter discusses the prototype’s implementation details. Section 5.1
discusse the prototype’s preparation phase. The IRP implementation is dis-
cussed in the execution phase in Section 5.2. Section 5.3 discusses the built
simulation and the results it is capable of producing.

5.1 Preparation phase

The first step of the PBT is the preparation step where geographical and seman-
tic information is extracted from the COLLADA/KML files and Linked Data
sources, and stored in the database. Three types of data are inserted in the
database: 3D building geometries, 2D footprints, and semantic and thematic
information obtained from Linked Data sources.

The building geometries are displayed in the simulation; the only processing
performed on them is their extraction from the COLLADA files. The extraction
process is trivial and is documented in Appendix A.

5.1.1 Footprints

The building footprints are central to the information reduction methods dis-
cussed in Section 5.2.3; they are used to determine which buildings are located
close to the shortest route.

As discussed in section 2.1, COLLADA assets are stored in libraries. Each
library contains a different type of asset e.g. reference to images, effects, scenes,
materials, etc. The building geometries are stored in the geometries library.
Figure 5.1 shows its location in the COLLADA tree.

A building consists of three types of structures: footprint, facade and su-
per. COLLADA geometries are triangulated, hence each structure is described
by a collection of triangles. There are three type of triangle collections that
correspond to the three structure types. Listing 5.1 shows the geometry def-
inition of a single building. Each building has a collection of sources (lines 4
and 7) that hold, amongst other, the triangle vertex coordinates and texture
coordinates. The triangles themselves are stored in typified triangle elements
(lines 11 and 16). There are as many triangle collections as the structures of a

45

Figure 5.1: The COLLADA libraries

building. The footprints geometry is contained in the triangle element with the
material=”footprint” property. COLLADA does not define geometry explicitly,
but uses a referencing scheme (Appendix A).

46

1 < l i b r a r y g e ome t r i e s xmlns=”http ://www. co l l ada . org /2005/11/
COLLADASchema”>

2 <geometry xmlns=”http ://www. co l l ada . org /2005/11/
COLLADASchema” id=”ground42242−geometry” name=”
ground42242−geometry”>

3 <mesh>
4 <source id=”ground42242−geometry−po s i t i o n”>
5 < f l o a t a r r a y id=”ground42242−geometry−pos i t i on

−array ” count=”24”>−6.28 5 .19 0 .06 −11.30
−0.88 . . . </ f l o a t a r r a y>

6 </source>
7 <source id=”ground42242−geometry−uv”>
8 . . .
9 </source>

10 . . .
11 <t r i a n g l e s mate r i a l=” f o o t p r i n t ” count=”2”>
12 <input semantic=”VERTEX” source=”#ground42242−

geometry−ver tex ” o f f s e t =”0”/>
13 <input semantic=”category ” source=”#

ground42242−geometry−category ” o f f s e t
=”1”/>

14 <p>2 0 1 0 0 0 0 0 3 0 2 0</p>
15 </t r i a n g l e s>
16 <t r i a n g l e s mate r i a l=”tex 300210310123310 0001 ”

count=”8”>
17 . . .
18 </t r i a n g l e s>
19 . . .
20 </mesh>
21 </geometry>
22 <geometry>
23 . . .
24 </geometry>
25 . . .
26 </ l i b r a r y g eome t r i e s>

Listing 5.1: Footprint triangle definition

47

Extracting the footprints boils down to retrieving the triangle vertices stored
in the float array on line 5 and their pointers contained in the <p> element on
line 17. The XPath expressions that extracts these from the COLLADA file are
given as:

/c :COLLADA/c : l i b r a r y g e ome t r i e s /c : geometry [@id=”ground42242−
geometry ”]/ c : mesh/c : source [@id=”ground42242−geometry−
po s i t i o n ”]/ c : f l o a t a r r a y / text ()

/c :COLLADA/c : l i b r a r y g e ome t r i e s /c : geometry [@id=”ground42242−
geometry ”]/ c : mesh/c : t r i a n g l e [@material=” f o o t p r i n t ”]/ c : p/
text ()

Where c is a shorthand for the COLLADA XML namespace http://www.

collada.org/2005/11/COLLADASchema. The first line extracts vertices that
make up the triangle, while the second line extracts the pointers to their values.

The triangles are then dereferenced,their coordinates are transformed to the
Dutch Rijksdriehoek (de Bruijne et al., 2005) coordinate system (Appendix A)
and stored as Polygons in the database as:

INSERT INTO f o o t p r i n t s (bu i l d i ng i d , geom) VALUES (’ ground42242
+300210310123310 ’ , GeomFromText(t r i ang l e geom)) ;

Where a building’s id is a concatenation of its geometry id and the tile id as
geometry ids are not globally unique, and triangle geom is a Well-Known Text
representation of a footprints triangle polygon.

The footprints table is extensively used during the buffer/footprints inter-
section process described in Section 5.2.3. Its geom column is therefore indexed
with SpatiaLite’s R*Tree index as:

SELECT CreateSpat ia l Index (’ f o o tp r i n t s ’ , ’ geom ’) ;

This builds a R*Tree index and stores the results in four distinct tables, three
of which contain the tree itself. The first table is called indexname name and
stores binary data corresponding to each tree node. The table indexname parent
stores the tree nodes hierachy i.e. the relations between the parent and child
nodes. The table indexname rowid associates each tree node to the row id of
the indexed data. These are internal tables that cannot be queried.

The fourth table, indexname, contains the geometry ids along with their
bounding box coordinates. This table is queried whenever a bounding box
operation is needed with SpatiaLite’s built-in RTreeIntersects, RTreeWithin,
etc. functions as explained in Section 5.2.3.2.

48

http://www.collada.org/2005/11/COLLADASchema
http://www.collada.org/2005/11/COLLADASchema

5.1.2 Semantic data

Semantic data is extracted from the linkedgeodata.org datastore using SPARQL
queries. LinkedGeoData’s backend is a spatial database (PostGIS); one is thus
able to perform well-known spatial operations on the linked data. Extracting
all the information around Rotterdam is done as

PREFIX lgdo : <http :// l inkedgeodata . org / onto logy/>
PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

Se l e c t ? geo ? type ? l a b e l {
?n a lgdo : Node .
?n r d f s : l a b e l ? l a b e l .
?n lgdo : d irectType ? type .
?n geo : geometry ? geo .
{ Se l e c t ?n {

?n geo : geometry ?g .
F i l t e r (b i f : s t i n t e r s e c t s (? g , b i f : s t p o i n t (4 .479166508 ,

51 .92166519) , . . .
2 .527677297573578)) .

F i l t e r (b i f : s t x (? g) > 4 .3567 && b i f : s t x (? g) < 4 .5750 &&
b i f : s t y (? g) . . .
> 51.8335 && b i f : s t y (? g) < 51 .9962) .

}
}

}

Listing 5.2: SPARQL query that fetches all objects that have a type property
and are close to Rotterdam.

This query retrieves all objects from the data store that has a type, a label
and a geometry property and resides close to Rotterdam’s center the latitude/-
longitude position 4.479, 51.92. The result is a list of points that denote the
locations of all buildings alongside their OpenStreetMap and Wikipedia type
and label designations as JavaScript Object Notation (Listing 5.3. This infor-
mation is stored in the database as:

INSERT INTO landmarks l inkedgeodata (type , l abe l , geom)
VALUES (’ FastFood ’ , ’La Luna ’ , GeometryFromText (’POINT(4 .46043

51 .9265) ’ , 4326)) ;

The TomTom dataset is enriched by intersecting these points with the build-
ing footprints. Currently this is done manually with QGIS.

Figure 2.8 shows the result. The enriched dataset is used in the semantic
extractor as discussed in the following sections.

49

[{
” type ” : {

” type ” : ” u r i ” , ” va lue ” : ” http :// l inkedgeodata . org / onto logy
/FastFood”

} ,
” geo ” : {

”datatype ” : ” http ://www. openl inksw . com/schemas/ v i r t r d f#
Geometry ” ,

” type ” : ” typed− l i t e r a l ” , ” va lue ” : ”POINT(4 .46043 51 .9265) ”
} ,
” l a b e l ” : {

” type ” : ” l i t e r a l ” , ” va lue ” : ”La Luna”
}

} , { . . . }]
Listing 5.3: Results of above SPARQL query as JSON

5.2 Execution phase

In the execution phase, the PBT interprets the rules written by visualisation
experts and runs the various IRP configurations. IRP configurations differ be-
cause their selection and extraction phases are run with different operators that
in turn are invoked with different parameters. An example IRP configuration is
one that is run with a 50 m single selector coupled to a textured extractor, while
another is one that is run with a 40/80 m double selector that is coupled to a
colored extractor. To this end two controllers are developed that form the bridge
between the spatial and semantic rules, and the functionality defined in the IRP.

This section first presents the two controllers and then moves to a discussion
about the IRP itself.

5.2.1 Spatial controller

The spatial controller directs the IRP by way of an execution plan. It parses the
plan and directly invokes the IRP operators in the encoded order. Execution
plans are written by visualisation experts and are essentially recipes that tell
the IRP exactly how to operate. This mode of operation is termed spatial as
selection and styling decisions are solely based on the building’s distances from
the route. Listing 5.4 shows an example execution plan that results in three
distinct IRP configurations.

This plan schedules the execution of a single selector with a width of 50 m
that is coupled to three distinct extractors. Adding an additional selector is
done by adding the element shown in Listing 5.5 to the children list on line 3 of
the original plan. This adds a 100 m single selector piped to a plain extractor
to the plan.

50

1 {
2 ”name” : ” S e l e c t o r ” ,
3 ” ch i l d r en ” : [
4 {
5 ”name” : ” s i n g l e ” ,
6 ” opt ions ” : {” d i s t ance ” : [5 0] } ,
7 ” ch i l d r en ” : [
8 {
9 ”name” : ”Extractor ” ,

10 ” opt ions ” : [{ }] ,
11 ” ch i l d r en ” : [
12 {
13 ”name” : ” p l a i n ”
14 } ,
15 {
16 ”name” : ” co l o r ed ”
17 } ,
18 {
19 ”name” : ” textured ”
20 }
21]
22 }
23]
24 }
25]
26 }

Listing 5.4: An example execution plan.

{
”name” : ” s i n g l e ” ,
” opt ions ” : {” d i s t ance ” : [1 0 0] } ,
” ch i l d r en ” : [
{

”name” : ”Extractor ” ,
” opt ions ” : [{ }] ,
” ch i l d r en ” : [
{

”name” : ” p l a i n ”
}

]
}

]
}

Listing 5.5: Extending the execution plan of lst:exec plan.

51

5.2.2 Semantic controller

The semantic controller is implemented using the Python Knowlede Engine
(PyKE) expert system. In this prototype, PyKE is used to decide which opera-
tors to execute in each IRP phase, and what parameters to execute them with.
Currently, decisions are based on a building’s type that is extracted from the
LinkedGeoData and DBpedia data sources (5.1.2). Note that because the data
provided by TomTom lacks a road network (and thus road semantics such as
type, width, etc.), only styling decisions are made i.e. what extractor to use.
Making selection decision require a road network.

In this prototype, the expert system fulfills the role of a decision system,
more so than a reasoning engine. It separates the prototype’s execution logic
from the rules; the Python implementation details are abstracted to PyKE’s
structured language. Users can therefore perform experiments without needing
to know the internal workings of the IRP. The alternative to an expert system
is a collection of if-else statements that check the rules and call the appropriate
IRP operators. However, this approach is not suited for complex rules; imple-
menting and maintaining it quickly becomes a burden.

Section 4.3.2.1 introduced the conceptual workings of an expert system. The
expert system is executed for each building separately. Telling PyKE that a
building is of type fast food is done by creating a corresponding fact:

bu i l d i ng (f a s t f o o d)

This statment creates a fact called building and gives it a fast food value.
This fact states that the building under consideration is of type fast food. PyKE
collects facts in a knowledge base a.k.a. fact base and rules in a rule base. The
above fact already forms a small knowledge base on which simple rules can be
applied. The most simple visualisation rule one can come up with is if building
is of type ’fast food restaurant’, style it with textures.

This rule is written in PyKE as:

1 s t y l i n g c o l o r e d
2 use s t y l e (co l o r ed)
3 when
4 bu i l d i ng (f a s t f o o d)

The first line defines a new rule called styling colored. The second line acts
as the rule’s then clause i.e. its conclusion, namely: use a colored style. The
third line acts as the rule’s if clause. PyKE evaluates this rule by checking all
statements in the when clause against the knowledge base. If it finds a piece of
knowledge that supports the statement it moves on to the next statement until
it raches the last one. If all statement evaluate to “true” i.e. knowledge is found

52

that supports them, PyKE reaches the conclusion in the use clause and adds it
to the knowledge base.

In the example case above, PyKE searches for knowledge supporting the use
clause and finds it in the form of the building(fast food) fact and concludes that
the style must be colored. Invoking this rule in Python is done by calling the
PyKE prove goal() function as:

1 a d d c a s e s p e c i f i c f a c t (’ bu i ld ing ’ , ’ f a s t f o od ’)
2 prove goa l (’ s t y l e ($ s t y l e) ’)

Here, the first line adds the building type to the knowledge base, the second
line starts the decision process. The result of prove goal is the string “colored”,
which means that this particular building should be styled with the colored op-
erator. A call to the IRP’s extractor is made accordingly.

A more involved rule is stated as display all fast food restaurants in their
dominant colors, except if they are near a junction. A new rule is added to the
rule base as:

1 s t y l i n g t e x t u r e d j u n c t i o n
2 use s t y l e (textured)
3 when
4 bu i l d i ng (f a s t f o o d)
5 junc t i on (yes)

Listing 5.6: Styling fast food restaurants with textures when near a junction.

This rule is an extension of the first rule: the last line checks whether the
building is located near a junction. Knowledge about whether a building is
near a junction comes from the junction selector. This rule is executed like the
previous one, but now the additional fact junction(yes):

1 a d d c a s e s p e c i f i c f a c t (’ bu i ld ing ’ , ’ f a s t f o od ’)
2 a d d c a s e s p e c i f i c f a c t (’ junct ion ’ , ’ yes ’)
3 prove goa l (’ s t y l e ($ s t y l e) ’)

PyKE automatically checks all rules that have identical use clauses and eval-
uates the correct one. In this case, since the fact junction(yes) is found in the
knowledge base, PyKE evaluates the second rule that requires knowledge about
the junction and reaches the style(textured) conclusion. If it fails to find a junc-
tion(yes) fact, it evaluates the first rule and reaches a style(colored) conclusion.
Thus fast food buildings that are near junctions are styled with the textured
extractor, while all other buildings are styled with the colored extractor.

53

Facts produced by rules can be used as conditions in other rules. Upon
execution the latter are also tested so as to retrieve the corresponding fact.
Consider the case where the driver wishes to temporarily lower the textural
level of detail of the whole scene i.e. textured buildings become colored and
colored buildings become plain. This is done by introducing a new rule that
relies on the outcome of the previous style() rules as:

1 s t y l i n g t e x tu r ed r edu c ed
2 use s t y l e (co l o r ed)
3 when
4 s t y l e (textured)
5 reduced (yes)

Listing 5.7: A rule that downgrades the textural complexity of buildings.

Upon execution PyKE starts to evaluate the when clauses of the above rule.
It searches the knowledge base for the fact style(textured) but does not find
any matches. It does, however, find a rule with that name and sets out to
evaluate it first and, upon a successful evaluation, continues with the next fact
i.e. reduced(yes).

Suppose PyKE is called as:

1 a d d c a s e s p e c i f i c f a c t (’ bu i ld ing ’ , ’ f a s t f o od ’)
2 a d d c a s e s p e c i f i c f a c t (’ junct ion ’ , ’ yes ’)
3 a d d c a s e s p e c i f i c f a c t (’ reduced ’ , ’ yes ’)
4 prove goa l (’ s t y l e ($ s t y l e) ’)

This call extends the previous one by adding the reduced fact to the knowl-
edge base i.e. an indication that the textured must be donwgraded. Executing
this query makes PyKE find proofs for all (style($style)) rules. The result is
an ordered list of rules that validate given the provided facts. In this case,
the styling textured junction (Listing 5.6) rule evaluates and validates first as it
matches the first two facts i.e. building(fast food and junction(yes)). It thereby
adds the fact style(textured) to the knowledge base. The rule of interest i.e.
styling textured reduced (Listing 5.7) is evaluated and valiadte next as all the
needed knowledge is available. The first item in the list contains the result of
the styling textured reduced list as it evaluated last.

The semantic controller thus controls the IRP by deciding which extractor
opertor to call based on visualisation rules that incorporate thematic, spatial,
driver-derived, etc. information.

5.2.3 IRP

The main Information Reduction Pipeline functionality is selection and extrac-
tion of building objects and painting these in a certain style. The IRP defines

54

three operators that perform these tasks: a selector, an extractor and styler,
and a visualisation preparer. It takes a 3D scene and a shortest route as input
and returns a reduced scene that contains only buildings close to the road that
are styled according to visualisation rules.

The IRP execution consists of the following steps:

• receive and prepare shortest route

• segment route in segments of user specified length

• for each segment: execute selector and extractor operators, and create
visualisation asset i.e. a geometry file

Its output is a 3D geometry file, in this case a Wavefront OBJ file (see Section
5.12), that is visualised in Panda3D.

5.2.3.1 Route preparation

The IRP starts immediately after it receives the shortest route between the
user’s current location and desired destination. Conceptually, this route comes
from the navigation device. However, since the prototype is implemented on a
desktop computer, the shortest route is calculated with Google Maps’ Direction
Service 1 (Figure 5.2). The Directions Service calculates the shortest route
between two points on Google’s road network and returns the solution in a
KML file. This file is parsed with lxml, the coordinates of the therein contained
route are transformed to the Dutch coordinate reference system using pyproj.

Figure 5.2: An example of a shortest route calculation as performed by Google’s
Direction Service.

1https://developers.google.com/maps/documentation/directions/

55

Next, the route is segmented using SpatiLiate’s ST Line Substring function
as:

SELECT ST Line Substr ing (ST GeomFromText(geometry , 28992) ,
s t a r t f r a c t i o n , e nd f r a c t i o n)) ;

Listing 5.8: SQL line segmentation query

where geometry is a Well-Known-Text representation of the route as ex-
tracted from the KML file. The resulting segments are stored in the segments
view and are used as input for the first IRP phase. Each of the IRP phases is
executed at least once on each segment.

5.2.3.2 Selector

The selector is the first IRP phase; its task is to identify buildings that are close
to the shortest route. The selector is implemented as an intersection between a
2D buffer of the route and the 2D building footprints. As discussed in Section
3.2.1.1, the selector defines three operators. The single and double operators
are explained first as their implementation is similar. The junction operator is
discussed afterwards.

Single and Double operators The selector receives a route segment as input
in the form of a LineString object. The selection process consists of four steps:

1. buffer route segment

2. create buffer bounding box

3. intersect buffer bounding box with building footprints

4. intersect result of 3 with the buffered segment

The first step is calculating a buffer around the segments using ST Buffer
as:

SELECT ST Buffer (geom , ?) FROM segments WHERE id=1;

Listing 5.9: Buffering of a route segment

The so calculated buffer is stored in the buffers view. Directly intersecting
the calculated buffer with the building footprints is not efficient as ST Intersect
does not use the spatial index. The spatial index is used only when perform-
ing bounding box operations. SpatiaLite supports four bounding box search
operations, namely within, contain, intersects and distance within. Each has a
corresponding function that takes the two extreme bounding box coordinates
that form the search area. Upon execution, the function searches through the

56

index for all geometries that intersect it, and returns a list of their ids. The
following query retrieves all buildings that intersect the buffer’s bounding box.

SELECT DISTINCT id , f o o t p r i n t s . geom , FROM fo o t p r i n t s
WHERE id IN (SELECT pkid FROM idx foo tpr in t s geom , bu f f e r s
WHERE bu f f e r s . id=1 AND idx f oo tp r i n t s g eom . pkid
MATCH RTree Inte r s ec t s (MbrMinX(bu f f e r s . geom) , MbrMinY(bu f f e r s .

geom) , MbrMaxX(bu f f e r s . geom) , MbrMaxY(bu f f e r s . geom))) ;

Listing 5.10: Boundig box intersection using SpatiaLite’s R*Tree index

The result of this query is stored in a view called footprints selected. Here,
idx footrprints geom is the queryable spatial index table mentioned in Section
5.1.1 that contains the footprint’s bounding boxes (Figure 5.3.

Figure 5.3: The COLLADA libraries

In the final step, the footprints that came from the previous query are in-
tersected with the buffer itself as:

SELECT bu i l d i ng i d , ST In t e r s e c t s (b u f f e r s . geom ,
f o o t p r i n t s s e l e c t e d . geom) AS i n t e r s e c t s

FROM buf f e r s , f o o t p r i n t s s e l e c t e d
WHERE bu f f e r s . id = 1 AND i n t e r s e c t s = 1 AND bu i l d i n g i d
NOT IN (SELECT id FROM f o o t p r i n t s r e s u l t)

Listing 5.11: SQL query intersecting the building footrpints with a buffer
selector

This is the final result i.e. the buildings that are within the specified distance
from the route. These results are returned to Python and passed on to the next
IRP phase.

57

The buffers of two consecutive segments overlap; some buildings will there-
fore be selected twice (Figure 5.4. To prevent this, a list of already selected
buildings is kept in the footprints result table. Newly selected buildings are
that are contained in this list ared dropped.

Figure 5.4: A sized selector with two distinct themes.

The double selector is implemented much like the single. The only difference
is that the last step is executed twice i.e. once for the inner buffer and another
for the outer buffer. Note that in this arrangement, the ordering of the buffers
is important: applying the large buffer first will prevent the smaller buffer from
selecting anything since the footrpints result table will be populated with the
larger buffer’s results. This is automatically taken care of in the Python imple-
mentation.

Junction operator The junction operator is implemented as a proof-of-
concept as there the provided dataset lacked a road network. Junctions locations
are therefore handpicked from OpenStreetMap and inserted into a temporary
table called junctions as points.

Processing junctions is five step process:

1. find junctions near the route with bounding box queries

2. apply a buffer of 5 m to junction

3. intersect junction buffer with route to determine correspondence

58

4. apply buffer of desired size

5. intersect with building footprints

The first step finds potential junctions by intersecting all junctions with a
bounding box of the route, thereby using the database’s spatial index.

SELECT id , geom from junc t i on s
WHERE id IN (SELECT pkid FROM idx junct ions geom , route
WHERE pkid MATCH RTree Inte r s ec t s (MbrMinX(route . geom) , MbrMinY(

route . geom) , MbrMaxX(route . geom) , MbrMaxY(route . geom))) ;

This result is stored in a view called nearby junctions. The second step
buffers the junction points in order to account for mistmatches between the
junctions dataset and the road network. The third step intersects the buffer
with the route as:

SELECT id , ST In t e r s e c t s (ST Buffer (nea rby junc t i on s . geom , 5) ,
segments . route) as i n t e r s e c t s from nearby junct ions ,
segments

WHERE i n t e r s e c t s=1 AND nearby junc t i on s . id AND id NOT IN (
SELECT id from pro c e s s ed j un c t i on s) ;

Since buffers may overlap, the danger exist that a junction intersects two
buffers, thereby selecting buildings twice. To prevent this, processed junctions
are stored in the temporary processed junctions table. The result of this query
is stored in a view called selected junctions Once the junctions that intersect
the route are found, the desired buffer size is applied and intersected with the
building footprints that fall within the route’s bounding box as:

SELECT bu i l d i ng i d , ST In t e r s e c t s (ST Buffer (s e l e c t e d j u n c t i o n s
. geom , <s i z e >) , f oo tpr in t s geom) as i n t e r s e c t s from
s e l e c t e d j un c t i o n s , f o o t p r i n t s

WHERE i n t e r s e c t s=1
AND f o o t p r i n t s i d NOT IN (SELECT id FROM f o o t p r i n t s r e s u l t) ;

where <size> specifies the desired buffer size. The results of this query are
added to the footprints result table.

When combining the junction selector with other selectors care should be
taken to combine them in the correct order. Junction selectors need to be
applied first or they will not achieved the desired result. For instance, applying
a single buffer before a junction buffer will leave a stroke of single buildings
running right through the junction selector.

59

5.2.3.3 Extractor and themer

The extractor’s task is to retrieve the 3D geometries of buildings that are se-
lected by the selector and theme them. The theming consists of fetching cor-
responding pieces of information from the database such that the visualiser
described in the next section can prepare the geometries for visualisation. Sec-
tion 3.2.2 defined three operators that effectively result in three themes, namely
plain, colored and textured.

The three operators first extract the building’s 3D geometry and, in the case
of the colored and textured operators, augment it with other properties.

SELECT type , ST AsText (xyz) FROM t r i a n g l e s j o i n coo rd ina t e s ON
t r i a n g l e s . id = t r i a n g l e i d

WHERE bu i l d i n g i d=<id> AND t i l e i d=<id>;

Note that the tile id is passed to this query as building ids are not unique
across tiles. The plain operator is the most simple of all: it simply fetches the
geometry by executing the above query and returns the result. The colored
operator returns, next to a building’s geometry, also a color for the roof and
facade (Figure 5.5a). This information is extracted from the extra field of each
building as:

SELECT id , wa l l c o l o r , r o o f c o l o r FROM bu i l d i n g s
WHERE id = <id> AND t i l e i d=<id>;

The textured extractor also extracts information about the building’s tex-
turing (Figure 5.5b). The textured extractor consists of two statements: an
alternative geometry extraction one and one filling the buildings geometry.

SELECT texture FROM bu i l d i n g s WHERE id=<id> AND t i l e i d=<id>;

SELECT type , ST AsText (xyz) , uv FROM coord ina t e s JOIN
t r i a n g l e s ON t r i a n g l e i d = t r i a n g l e s . id where bu i l d i n g i d
= <id>;

5.2.3.4 Preparation for visualisation

The last phase of the IRP is responsible for encoding the information retrieved
from the database into a format that is readable by Panda3D. The format of
choice is Wavefront as it is a lightweight plain-text format. It is easy to create
and is recognized by many visualisation softwares. Wavefront supports storage
of materials and their properties. These are stored in an auxillary file with
an .mtl exension. Materials are defined by specyfing a set of properties such as

60

ambient color, diffuse color, specular color, etc. The location of texture libraries
are also stored in the materials file.

Listing 5.12 shows an excerpt from a Wavefront .obj file. A Wavefront file
first lists the geometry’s vertices. Each vertex is preceded with a v, followed by
a coordinate triplet. Vertex normals are stored next and are preceded by a vn.
Faces are formed by reffering to individual vertices, normals and texture coordi-
nates by their location in each of the three lists. For instance, line 18 creates a
face that consits of three vertices; the first vertex’ coordinates/normals/texture
coordinates are located in the 10th/1st/1st location in each of the lists.

1 mt l l i b /home/simeon/tomtom/data/ t i l e 300210310310130 . mtl
2
3 v 91407.056566 437048.018263 −1.1
4 v 91406.336566 437041.448263 11 .9
5 v 91406.336566 437041.448263 −1.1
6
7 . . .
8
9 vn −0.3300 −0.9440 0 .0

10 vn −0.3300 −0.9440 0 .0
11 vn −0.3300 −0.9440 0 .0
12 . . .
13
14 vt 0 .7676 0 .4443
15 vt 0 .7637 0 .4404
16 vt 0 .7549 0 .4951
17 . . .
18
19 usemtl tex 300210310311013 0023
20 f 10/1/1 48/3/1 11/2/1
21 f 10/1/2 47/4/2 48/3/2
22 f 11/5/3 49/7/3 12/6/3

Listing 5.12: An example Wavefront file

The mtlib command on line 1 specifies the location of the auxillary material
file. The usemtl command on line 17 specifies the material of following faces.
This material is used until a new usemtl directive is found.

This IRP phase produces a Wavefront file for each individual segment and
IRP configuration. A route of seven segments with two IRP configurations thus
produces 14 files.

5.2.4 Example IRP results

This section shows some example IRP configurations.
Figure 5.5 displays the result of a colored and textured extractor.

61

(a) The result of a colored extractor. (b) The result of a textured extractor.

Figure 5.5: Raw colored and textured extractors.

Figure 5.6a displays the result of a 100/30 m sized selector piped to the three
types of extractors. The result of these configurations is that buildings that are
closer than 30 meters to the road are are styled in a richer theme than buildings
further away. The second tier of buildings is 100 m away form the road.

(a) The result of a 100/30 m sized selector piped
to a colored and plain extractor (white build-
ings).

(b) The result of a 100/30 m sized selector piped
to a textured and colored extractor (outer build-
ings)

Figure 5.6: The results of a sized selector.

Figure 5.7 displays the result of coupling a 100 m junction and 30 single
selector to the three types of extractors. The result of these configurations is
that buildings close to junctions are styled in a richer theme than buildings not
within 100 m of a junction.

62

(a) The result of a 100 m junction selector and
a 30 single selector piped to a colored and plain
extractor.

(b) The result of a 100 m junction selector and a
30 single selector piped to a textured and colored
extractor.

Figure 5.7: Results of the junction selector.

5.3 Visualisation, simulation and benchmarking

The PBT framework’s goal is to enable visualisation designers to quickly ex-
periment with, and test and evaluate different ways of visualizing 3D data for
navigation purposes. To this end a simulation is built that visualises the numer-
ous IRP configurations and collects performance measures. It also facilitates the
assesment of a visualisation’s cognitive effectivenes by mimicking the display of
a real world navigation device: a moving viewport is implemented that creates
an impression of a vehicle that travels through the digital city. Vehicle motion
is simulated by making the camera drive over i.e. move on top of, the shortest
route as calculated by the device and is used to select the buildings. While
the simulation runs it collects the afore mentioned performance indicators dis-
cussed in Section 4.4.2. Performance metrics are recorded by Panda3D’s PStats
5.8 facility and graphed using the Python matplotlib graphing library.

Figure 5.8: A selection of Panda3D’s benchmark information streams.

63

The simulation is also aimed at exploring various data loading strategies.
This is an interesting issue as mobile devices are limited in available virtual
memory. This imposes limits on the amount of data the device can visualise
at once. Seeing that TomTom’s data exceeds 7 GB it becomes evident that it
cannot be loaded all at once, but needs to be sliced and visualised in pieces. A
sensible approach is to load and display data only when it is needed and unload
it immediately when it becomes useless.

In the current case this means loading and displaying information that is
“in front of the driver” and unloading it once the driver passes it. Reading
information from a hard disk is, however, a slow operation that will disturb the
visualisation if it takes too long to complete. A balance must thus be found
between the number of disk reads, the amount of information contained in each
read and the available virtual memory.

To explore these issues a “on-the-fly” data loading strategy is implemented
i.e. geometries are loaded as soon as they are needed, not before. Data loading
events are triggered by Panda3D’s collision detection system. The collision
system allows one to create so-called collision objects that fire collision events
whenever they intersect.

In the current implementation one such collision object, namely a sphere, is
placed on the virtual moving vehicle and another at the center of each geometry
region or tile. The first sphere has a diameter of 10 units, whereas the second
is set to 800-1000. The second diameter is chosen to be much larger than the
extent of the geometry region itself. As the vehicle moves around the three-
dimensional world it will collide with the spheres of the tiles thereby triggering
collision events, but since the spheres are much larger than the tiles the collisions
will occur well outside the visibile range. The scene thus appears continous to
the user, when in reality it is not.

The geometry loading strategy is defined as

1 load t i l e 0
2 c u r r e n t t i l e = 0
3 n e x t t i l e = c u r r e n t t i l e + 1
4
5 load geometry o f c u r r e n t t i l e
6
7 add c o l l i s i o n sphere at l o c a t i o n o f n e x t t i l e
8 s t a r t motion
9 upon c o l l i s i o n with n e x t t i l e

10 load geometry o f n e x t t i l e
11 c u r r e n t t i l e += 1
12 n e x t t i l e += 1
13 p lace a c o l l i s i o n sphere at the l o c a t i o n o f n e x t t i l e

Listing 5.13: Geometry loading using Panda3D’s collision spheres

Early experiments revealed that loading geometry in memory and immedi-

64

Figure 5.9: A top-down display of the the collision spheres used for loading
information in the game engine. The larger of the two sphere is the one triggering
the loading of a tile, while the smaller triggers its visualisation.

ately displaying it costs too much resources. A better solution is to first load
the geometry in memory and display it a couple of frames later. To facilitate
this an extra sphere is introduced: one that triggers the loading of data, and
one that triggers the display of data. Figure 5.9 shows an example of this set
up.

Unloading tiles is performed on the same principle: the collision system
triggers a new collision event when the camera leaves the tile’s collision sphere.

Controlling the size of the collision spheres as well as the tiles allows one
to control the amount of information that is transported around the system.
Bigger spheres result in more information as more tiles are loaded at once which
directly translates into a larger virtual memory usage. The tile size determines
the amount of information that is loaded per load action. Bigger tiles result in
less loads, but longer load times.

The simulation ends when the virtual vehicle arrives at the end of the route.

65

66

Chapter 6

Use case and PBT results

This chapter demonstrates the workings of the IRP and its effects in a concise
and graphical manner by going through the execution steps of several visual-
ization configurations in a step-by-step manner. The effects of the exemplified
IRP configurations are visualised and explained by applying them a simple route
and comparing their outcomes. The content of this chapter sits in between the
conceptual discussion of Chapters 3 and 4, and the technical implementation
discussion of Chapter 5.

The chapter starts with a step-by-step explanation of the workings of an
IRP configuration which uses a single selection buffer with varying parameters,
and two different extractors, namely colored and textured. Section 6.2 presents
the results of running this IRP configurations in the simulator.

6.1 IRP operation

This section aims to explain the workings of each IRP stage in a graphical and
step-by-step manner. The technical implementation details are discussed in the
previous chapter, the purpose of this section is to show the effects of invoking
the IRP phases with different parameters. The section begins with an example
IRP configuration that uses a single selector with width 50 m together with
a colored and textured extractor, and ends by comparing it to configurations
which have single selector widhts of 10, 25 and 80 m.

The Information Reduction Pipeline starts operating immediately after the car
navigation device calculates the shortest route between the driver’s current po-
sition and his desired destination. For illustration purposes, this example runs
the different IRP configurations on a simple, short and straight route that has
a length of 870 m. Figure 6.1 shows the test route (blue) overlayed on top
of OpenStreetMap (black lines) and the COLLADA footprints (green). The
OpenStreetMap data is retrieved through a QGIS plugin and is here used as a
visualisation aid. In this case the driver travels from the right edge of the image

67

to left.

Figure 6.1: The test route on top of OpenStreetMap and the COLLADA footr-
pints.

The first IRP phase is selection. In this example configuration a single
selector that has a width of 50 m is used.

Figure 6.2: Segmented route

The selector’s first action is to segment the route in segments of a certain
length. In this first example, the route is split in three segments. The first two
having a length of 300 meter, while the third has a length of 270 m. Figure 6.2
shows the segmented route. The segment length is a design parameter that is
chosen by the map maker. Note that at this point it is unknown what the effect
of this length will be on the performance of the simulation. A long segment

68

contains more information that a short one which may stall the simulation
during the geometry loading process. Section 6.2 investigates this issue further.

The selector then proceeds to find which buildings are within 50 meters of
the route. As discussed in previous chapters, this is performed by calculating a
2D buffer around the route and intersecting it with the building footprints. The
sheer number of building footprints prevents us from directly intersecting them
with the buffer as that would take too much time. Therefore a preselection of
buildings is made that are located in the vicinity of the segment and its buffer.

The buffer/building intersection process consists of four steps. First, a 50
m buffer is calculated around the first segment (Figure 6.3a). Next, a boundig
box is calculated around the buffer as shown in Figure 6.3b. The third step
intersects the buffer’s bounding box with the building footprints. This uses
the database’s spatial index and is therefore fast and efficient. The result is a
selection of footprints that fall within the buffer’s bounding box ((Figure 6.4a).
The number of footprints that have to be intersected with the buffer is reduced
from 258093 (total) to 802.

(a) The first segment (yellow) is buffered
(red dashed line) with a 50 m buffer.

(b) The black rectangle represents the
buffer’s minimal bounding box.

Figure 6.3: Preparing the buffer for intersection calculations with the building
footprints.

In the last step the buffer itself is intersected with the remaining footprints,
shown in yellow in Figure 6.4b. The first segment is processed. The building
id that belongs to each footprints is stored in a list and passed to the next IRP
phase.

The selection procedure is repeated for all the segments of a route. Figure
6.5 shows the buffer of the second segment in green. Note that buffer segments
overlap, which means that buildings will be selected twice. This is prevented
by keeping a list of buildings that are selected in the previous segment and
discarding them from the current selection.

The result of the total selection operation is a list of buildings that are within
50 meter of the buffer (Figure 6.6).

69

(a) The result of the bounding boxes in-
tersection: the blue footprints intersect the
bufer’s bounding box.

(b) The yellow buildings intersect the buffer,
they are thus within 50 meters of the route.

Figure 6.4: The last two steps of the building selection process.

Figure 6.5: The second segment’s buffer.

70

Figure 6.6: The result of the selection phase: all buildings that are within 50
meters of the route are shown in yellow.

The next IRP phase is extraction. In this phase the 3D building geometries
are extracted from the database and styled with either a pre-defined simple
color scheme, their dominant color or their textures. The modularity of the
IRP allows one to run one selector type and visualise it different ways by piping
the result of the first IRP phase to different and distinct extraction phases.

In this example, the single 50 m selector above is piped to a colored and
textured extractor. In the first case, the extractor retrieves a building’s 3D
geometry and its facade and roof color as stored in the database. In the second
case, the extractor retrieves a buildings’ 3D geometry, the location of its texture
file and the u, v coordinates that map the texture to the geometry. The extractor
pases this information to the last IRP phase, Visualisation preparation, which
encodes it in a render-friendly format, which in this case is Wavefront OBJ file.
Since the IRP operates on segments, each segment is stored in a separate file.
This example produces three files as the route is split in three segments.

Choosing for a 50 meter wide selector is at this point an arbitrary decision.
At the same time, choosing an optimal selector size is key to the whole process.
A selector that is too small will not select enough buildings making the visuali-
sation useless to the driver as it will contain few navigation cues. A selector that
is too big is a waste as it may select too much information that unnecessarily
burdens the device, or worse, the driver.

Finding an optimal buffer size is done by comparing several different sizes
to one another and inspecting their cognitive and technical effectivity. Figure
6.7 shows a collection of selectors all having different sizes. To make the figure
more legible, the buffers are applied to the whole route and not its segments.

Clearly, the 10 m selector (shown in red) is not useful as it selects too

71

Figure 6.7: A number of single selectors with different sizes: 10 m (red), 25 m
(yellow), 50 m (light-blue), 80 m (green). The blue line represents the route.

little information. The 25 meter selection (shown in yellow) is somewhat better
although it fails to select enough buildings in the vicinity of junctions. Especially
the large junction left from the center of the figure is completely ignored. The 80
meter selector (shown in green) on the other hand selects too much buildings;
it selects buildings that sit behind the first row of structures. The buildings
are theoretically invisible to the driver, or if visible, add little to his ability to
navigate. The 50 meter selector (shown in blue) strikes a good balance: it selects
only the buildings directly adjacent to the road and also manages to capture
capture junctions.

Figures 6.8 - 6.10 show the result of these selectors as seen from the driver’s
perspective in the simulator. They confirm what is also observed from Figure
6.7: the 25 m selector is clearly not fit as it selects too few buildings, the 50
meter selector gives a good impression of the situation, and although the 80
meter selector selects more information than the 50 meter selector, most of it
falls outside of the driver’s viewing field and adds little to the visible part of the
scene and, by extension, to the driver’s situational awareness.

72

Figure 6.8: The result of a 25 meter selector.

Figure 6.9: The result of a 50 meter selector.

73

Figure 6.10: The result of a 80 meter selector.

74

A slightly more realistic route that involves a turn is shown in Figure 6.11.
The first part of the route now visits smaller streets and it becomes clear that
the 50 meter selector is too large as it selects buildings that are not directly
adjacent to the road. In this case it is the 25 m selector that suffices. This need
for different buffer sizes points at linking the selector size to the type and size of
the road it is applied to; a bigger road warrans a larger selector. An alternative
to this method is running a preprocessing method which counts the number of
intersected building for each road stretch. If the number of selected buildings
is below a certain threshold the selector size is probably too small and a bigger
one should be selected.

But in the end, all depends on the desires and goals of the visualisation
designers, and the experiences of the drivers themselves. For instance, the case
may be such that choosing the second row of buildings is desirable; that will
make the 80 meter selector fit for purpose instead of the 50 meter version.
These considerations have to be linked to the technical performance of each
visualisation to make the visualisations effective on a cognitive and performance
level.

Figure 6.11: the same situation as Figure 6.7 now including a turn.

75

6.2 Performance results

This section presents and discusses the performance measures of the selector/ex-
tractor combinations discussed in the previous section. The presented results
showcase only results obtained by simulating a drive over the straight route.
The route with a turn is not presented as it is expected that the performance
indicators will be similar.

Figure 6.12 shows the frames-per-second measurements for the textured and
colored styles. Figure 6.12a shows an expected pattern: the highest frame rate
is obtained with the 10 meter selector when there are few objects to display.
The frame rate gradually drops as the selectors increase in size: the 25 meter
selector runs at an average FPS of 300, the 50 meter slightly above 300 and
the 80 a little below that at 200. The graphs increase towards the end as the
number of visualised buildings gradually decreases.

0 5 10 15 20 25 30 35 40 45
time [s]

0

100

200

300

400

500

600

700

fr
am

es
-p

er
-s

ec
on

d
 [
-]

FPS - Single/Textured

10 m

25 m

50 m

80 m

(a) Frames-per-seconds measurements for the
textured extractor.

0 5 10 15 20 25 30 35 40 45
time [s]

0

100

200

300

400

500

600

700

fr
am

es
-p

er
-s

ec
on

d
 [
-]

FPS - Single/Colored

10 m

25 m

50 m

80 m

(b) Frames-per-seconds measurements for the
colored extractor.

Figure 6.12: Frames-per-seconds measurements for the two extractors.

After ten seconds into the drive, the virtual vehicle nears the second seg-
ment. A load event is triggered and the simulation starts loading the geometry
from disk. This is reflected in the drop of frame rate. Avoiding this drop in
frame rate is achieved by reducing the amount of information that has to be
loaded at once. This either means using a smaller selector width (observe that
the 10 m case does not exhibit such a severe drop) or by reducing the segment
length.

Figure 6.12b shows the frame rates of the colored extractor. These are,
as expected, considerably higher than the textured case. All of them except
the 10 m case hover at around 650 FPS. The 10 m graph is slightly lower in
the beginning due to a temporary external load on the test machine. These

76

graphs suggest that reducing the amount of displayed geometry does not have a
significant influence on the frame rate. To confirm this, the colored results are
compared to the lightest and most simple extractor that styles all buildings in
the same color i.e. plain shown in Figure 6.13a. Here too the graphs do not differ
much and hover around 630 FPS; it is therefore safe to conclude that reducing
the number of geometries has less impact on the frame rate than reducing the
amount of textures.

0 5 10 15 20 25 30 35 40 45
time [s]

250

300

350

400

450

500

550

600

650

700

fr
am

es
-p

er
-s

ec
on

d
 [
-]

FPS - Single/Plain

10 m

25 m

50 m

80 m

(a) Frames-per-seconds measurements for the
plain extractor.

0 5 10 15 20 25 30 35 40 45
time [s]

100

200

300

400

500

600

700

fr
am

es
-p

er
-s

ec
on

d
 [
-]

FPS - Single 50 m selector

textured

colored

plain

(b) Frames-per-seconds measurements for the
colored extractor.

Figure 6.13

Figure 6.13b compares all three extractors to each other using a 50 meter
selector. It is evident that the textured case is the heaviest to render as it has
the lowest frame rate from all 50 meter extractors. These results show that
textures do have a significant impact on the frame rate. In search of better
performance, efforts should therefore be directed towards reducing the amount
of textures and/or their complexity instead of the geometry.

Figures 6.14 and B.4 show graphs of the graphics memory usage and the
number of vertices for the textured and colored cases. Figure 6.14a shows the
real impact of using a textured scene: the used memory reaches a maximum
of 250 MB, compared to 0.35 MB in the non-textured case (Figure 6.15a).
Reducing the selector size to 50 m yields a maximum memory usage of 180 MB.
A decrease of 70 MB is significant and underlines the point made in the previous
section that it is important to choose the right buffer size. These values can
further be reduced by reducing the occurrence of textured buildings by showing
them only when needed.

The geometry load event at the tenth second is reflected in these figures as
the increase in memory usage at the 18th second as that is the point at which
the loaded geometry is displayed i.e. sent to the graphics card.

The cause of the difference in maximum reported vertices between the colored

77

0 5 10 15 20 25 30 35 40 45
time [s]

0

50

100

150

200

250
G

ra
p
h
ic

al
 m

em
or

y
 [
M

B
]

Memory - Single/Textured
10 m

25 m

50 m

80 m

(a) Graphics memory usage of the textured ex-
tractor.

0 5 10 15 20 25 30 35 40 45
time [s]

0

2

4

6

8

10

12

14

16

#
 o

f
v
er

ti
ce

s
x
10

00

Vertices - Single/Textured
10 m

25 m

50 m

80 m

(b) Number of vertices.

Figure 6.14: Performance metrics for the textured extractor.

0 5 10 15 20 25 30 35 40 45
time [s]

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

G
ra

p
h
ic

al
 m

em
or

y
 [
M

B
]

Memory - Single/Colored
10 m

25 m

50 m

80 m

(a) Graphics memory usage of the colored extrac-
tor.

0 5 10 15 20 25 30 35 40 45
time [s]

0

2

4

6

8

10

12

14

16

18

#
 o

f
v
er

ti
ce

s
x
10

00

Vertices - Single/Colored
10 m

25 m

50 m

80 m

(b) Number of vertices.

Figure 6.15: Performance metrics for the colored extractor.

78

and textured case is difficult to pinpoint. Panda3D transforms the Wavefront
files to an internal binary format and performs a number of undocumented
optimizations that may explain the differences.

Figure 6.16 show graphs depicting the time the renderer requires to draw a
frame and determine which geometries are visible from the driver’s position (this
is known as culling). These results rhyme with the previous findings. Drawing
more geometries in a textured scene takes longer to cull (Figure 6.16a) and draw
(Figure 6.16b) a scene.

0 5 10 15 20 25 30 35 40 45
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
u
ll
in

g
ti

m
e

[m
s]

Cull time - Textured
10 meter

80 meter

(a) Time required to determine which geometries
are visible.

0 5 10 15 20 25 30 35 40 45
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
u
ll
in

g
ti

m
e

[m
s]

Draw time - Textured
10 meter

80 meter

(b) Time required to draw a scene.

Figure 6.16: Performance metrics for the textured extractor.

The colored extractor cull and draw time measurements are shown in Figure
6.17. The spikes at the beginning of the graph are caused by the engine starting
up and displaying the first geometries. The graphs near the 10 s mark are
caused by the loading of the second segment. It is, however, unclear why the
10 m case which contains less geometries has higher peaks. The cull and draw
times stabilize after the 20 s mark and hover around 0.2-0.3 ms which is, despite
the spikes, lower than the textured case.

Decreasing the segment size also has the anticipated effect on the perfor-
mance of the simulation. Figure 6.18 shows the performance indicators of a tex-
tured extractor combined with the 300 m selector shown earlier (Figure 6.12a),
and a single selector with a width of 100 m. The 100 meter case (Figure 6.18b)
does not exhibit the huge frame drop of the 300 meter case. The cost of this
is, however, a lower average frame rate as the engine is constantly reading data
from disk which is a slow operation.

The remaining 100 m results are quite similiar to their 300 m and can there-
fore be found in Appendix B.

79

0 5 10 15 20 25 30 35 40 45
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
C

u
ll
in

g
ti

m
e

[m
s]

Cull time - Colored
10 meter

80 meter

(a) Time required to determine which geometries
are visible.

0 5 10 15 20 25 30 35 40 45
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

C
u
ll
in

g
ti

m
e

[m
s]

Draw time - Colored
10 meter

80 meter

(b) Time required to draw a scene.

Figure 6.17: Performance metrics for the textured extractor.

0 5 10 15 20 25 30 35 40 45
time [s]

0

100

200

300

400

500

600

700

fr
am

es
-p

er
-s

ec
on

d
 [
-]

FPS - Single/Textured

10 m

25 m

50 m

80 m

(a) Frames-per-seconds measurements fot the
textured extractor using 300 m segments.

0 5 10 15 20 25 30 35 40 45
time [s]

0

100

200

300

400

500

600

fr
am

es
-p

er
-s

ec
on

d
 [
-]

FPS - Single/Textured, 100 m

10 m

25 m

50 m

80 m

(b) Frames-per-seconds measurements fot the
colored extractor using 100 m segments.

Figure 6.18: Frames-per-seonds measurements for the two extractors.

80

Chapter 7

Conclusion

This thesis presents an information reduction and prototyping framework that
reduces the information contained in three-dimensional city models so a to en-
able their loading and display on car navigation devices where they aid drivers
to navigate better. The research is subdivided in two parts. In the first part
a method is designed and implement that reduces the information contained
in three-dimensional city models by extracting only information that is valu-
able to drivers. In the second part a prototyping framework is designed and
implemented that automates and smartens the developed information reduc-
tion method such that it can be used to explore different information selection
schemes and find an optimal one.

The main information reduction method consists of two steps. First, a se-
lection of buildings is made that are located close to the driver’s route. The
rationale at play is that drivers are only aided by 3D information that is directly
related to their current navigation task. Second, the selected building’s textural
level of detail is adapted to reflect their significance in the navigation process.
Buildings that do no aid the navigation process are styled in a lower textural
level of detail.

The prototyping framework automates and smartens the information reduc-
tion method’s execution thereby turning it into a prototyping tool that is used
to find an optimal information selection scheme. Different selection and styling
schemes are run in a simulator that captures their performance characteristics.

In this research, the information reduction method is applied to a three-
dimensional model of Rotterdam. Four selection distances (10 m, 25 m, 50
m and 80 m) combined with textured and non-textured styling of buildings
are applied to a short test route. These selections are run in the simulator,
performance measures are collected and the 8 cases are compared. The obtained
results are promising; reducing the amount of selected and displayed information
results in overall improvement of visualisation performance. Decreasing the
selection size from 80 to 50 m in the textured case results in an increase of 80
FPS and a reduction of used memory equal to 80 MB.

81

The tests clearly reveal that textures are resource hungry. They consume
a large amount of processing power, virtual memory and storage space. The
biggest gains in overall performance i.e. used memory and frame rate, are ob-
served when the amount of textured structures is reduced. The effect of reducing
the number of untextured geometries, on the other hand, is less drastic: while
the used memory decreases significantly, the change in the frame rate is negli-
gible.

It is therefore concluded that in the quest to reduce the information con-
tained in 3D city models efforts should be directed at minimizing the amount
and/or complexity of textures rather than implementing geometry optimization
techniques.

Completely removing textures, however, is not an option as they are deemed
valuable by users that use 3D maps to navigate the real-world. Fortunately, not
all structures need to be textured, and not all textures are equally valuable.
Non-salient buildings such as identical rows of residential homes contain less
navigational cues than salient buildings such as fast food restaurants, gas sta-
tions, banks, etc. Styling the former with simple textures while keeping the
latter with complex textures reduces a scene’s total texturing footprint. This
research implements a simple texture simplification strategy that replaces tex-
tures with a building’s dominant facade and roof colors. The results look sensible
and are a better solution than textureless buildings as the former style produces
easily distinguishable buildings.

Reducing the amount of textures can also be achieved by removing low qual-
ity textures from the dataset. For instance, a large number of the data set’s 3D
facades are obstructed by trees thereby making the whole building green during
visualisation. These textures have zero navigational value and should not be
shown during visualisation, or better yet, be removed from the model during
a preprocessing step. Deciding which textures to use is sometimes a technical
question, and sometimes a cognitive one.

This research addresses the cognitive question by implementing an expert
system that decides on the appropriate textural level of detail based on a build-
ing’s thematic and semantic properties, as well the cognitive aspects discussed
above. The saliency of a building depends on more than its visibility from afar.
The structure of a fast food restaurant might not be salient in the geographical
sense, but it may nonetheless act as a landmark because people recognize it
from far since it is their favourite restaurant, because it is a well known brand,
it has a memorable logo, etc. This kind of saliency is captured and linked to
a building’s external representation by encoding it in visualisation rules. Rules
can be complex or simple, they act on a single building or on many buildings
at once and they take geographical, thematical and user-generated data into
account. The expert system combined with the visualisation rules allow for
powerful decision making about when to use which texturing scheme on what
building. This flexibility and power allows designers to experiment with differ-
ent configurations and fine tune their 3D scenes An expert system abstracts the
implementation details by hiding them behind the relatively simple visualisation

82

rules.
However, rule based decision systems have their drawbacks. The rule base of

an expert system quickly becomes verbose as the number and complexity of rules
increase. A set of complex rules might undermine the purpose of the prototyping
framework i.e. the complexity of the rules might endanger the quickness and
agility of the experimentation process.

Crafting sensible rules requires additional, non-geographical information.
This is currently lacking in the COLLADA data set; as an experiment, in-
formation about a building’s type is obtained from the LinkedGeoData data
set. LinkedGeoData contains information from Wikipedia and OpenStreetMap
and is theoretically a good source of urban semantic and thematic information.
The nature of the two parent data sources is such that LinkedGeoData itself
is incomplete; it contains relatively few buildings. Enriching every building in
the COLLADA dataset is thus not feasible; LinkedGeodata should rather be
used as a source of semantically salient buildings by the rationale that if it is in
Wikipedia, it must be noteworthy.

To fully leverage the expert system’s potential, TomTom needs to craft a
high-quality semantic data set that contains information about most buildings
and write rules that link the therein contained information to external repre-
sentations.

In general, the developed information reduction methods can also be used
in other navigation applications where a route is being followed such as walking
or cycling. It less suitable for exploration or orientation types of use as these
generally lack routes, but functionality can still be derived by taking the user’s
current location and using it as the location of a virtual junction by using
the junction selector i.e. load geometry that is within a certain distance of his
current position. Loading new geometry can either be triggered by the user or
automatically by keeping track of users’ displacement.

83

84

Chapter 8

Future work

Currently, the information reduction process operates on the whole route; all
road segments and buildings are processed and their results stored as files prior
to their visualisation in the simulation. This results in a slow visalisation startup
time and makes the system inflexible to changes in the route. If a driver misses
a turn the device has to drop the previously calculated segments, calculate a
new route and process all of its segments priot to visualising them. This is
wasteful and annoying for the driver as the whole process become sluggish, the
long wait after a wrong turn being especailly confusing as the driver needs to
receive a new route and navigation aids as soon as possible.

A “select and render as you go” approach i.e. streaming, of segments is much
more desirable as it makes the system process the minimum amount of informa-
tion needed to create a sensible visualisation and it is able to quickly produce
new results in the case of a detour from the computed route. Streaming can
be implemented by first making the IRP process route segments in batches of
3-4 and feed them “just in time” to the game engine. Batch processing has to
be triggered by the game engine itself; a third collision sphere can be imple-
mented that, upon intersection with the vehicle, starts an IRP batch processing
cycle. The size of these spheres must be large enough so that the segments are
processed and available by the time the driver arrives near them.

The sphere size can be a function of distance or speed of the vehicle. The
first option is the safest but may also result in tiles being loaded too soon if the
driver’s speed is low, or too late if the driver’s speed is high. The second option
may prove difficult to implement robustly as it is difficult to predict how long
each segment takes to process.

The vehicle speed can also be used as input for deciding which buildings to
select and how to style them. For instance, when the speed is high it makes
sense to reduce the textural complexity of buildings as the driver is probably
on a high-speed road such as a highway and is not navigating.

Currently, route/footprint intersection are performed using triangles. While

85

this works for small datasets such as single cities, the number of triangles may
slow down the search when the number of cities increases. An initial step in
dealing with this is to convert the footprint triangles into polygons and index
the latter. This reduces the number of bounding boxes that need to be searched
and will keep lookup speeds high as the index grows.

The data used in this research lacks a road network. While this does not
hamper the operation of the spatial controller, it does prevent the semantic con-
troller i.e. the expert system, from controlling the IRP selector phase as it lacks
information about, for instance, the road type. This problem can be alleviated
in two ways 1) include a semantically rich road network to the available data
set or 2) provide semantic information about the road type through the shortest
route that is provided to the IRP. The first option is preferred as it opens the
door to new type of selectors altogether and it will enable the use of the expert
system and its visualisation rules in the selection phase of the IRP. It will then
be possible to use base the selector type and size choices on the road’s thematic
and semantic properties and thereby address the problem described in Section 6
where the 50 m selector is sufficiently large for one road type, but is too big for
another. Furthermore, rules that act on a road/building combination become
possible e.g. style commercial buildings next to a highway in a lower level of
detail than buildings next to a residential road.

A road network furthermore enables the automatic extraction of junctions
(this is currently done manually) and creating rules based on their complexity.
For instance, buildings in the vicinity of simple T-shaped junctions my be ren-
dered with low textural quality, whereas buildings next to complex junctions
may be rendered in a higher level of detail.

As discussed in the Conclusions, a large amount of the textures contained
in the COLLADA model are not sufficient for navigation purposes as they are
covered by trees. These textures should be removed from the dataset by either
replacing them with generic textures or marking the building as having bad
texturing and treat it accordingly by, for instance, not displaying the textured
model upon visualisation.

The COLLADA texture files contain texture information about several build-
ings. When the game engine loads textured geometry it reads the whole texture
file even when it is referenced by a single building. Further reducing the peak
load on the game engine during geometry loading can therefore be achieved
by processing the texture images such that they contain only textures that are
actually referenced by a geometry. Two processing options are proposed: color
all non-referenced texture pixels black and let the PNG comperssion algorithm
reduce the size of the texture, or cut out the referenced pixels and create a new
smaller PNG image and pass it to the game engine instead of the original 1.5
MB texture.

A major drawback of the main information reduction method is its inability

86

to select highly visible buildings that are located outside the buffer. Altgough
not an an issue in densely constructed areas, this shortcoming may be the source
of confusion at locations with less dense construction, or locations with large
open spaces such as parks, rivers, bridges, etc. This issue is solveable in several
different ways: use predefined landmarks, find landmarks based on a building’s
geometric, semantic and thematic properties or deploy visibility algorithms that
determine which buildings are visible from a certain position.

The first approach uses already existing manually created landmark databases
that on most devices are implemented as Points of Interest. The drawback of
these landmarks is that they are chosen primarily for their use and tourist at-
traction value e.g. gas stations, hotels, restaurants, sights such as The Louvre,
Euromast, etc., and not for their saliency i.e. fitness for navigation. Hence,
these sets do not contain tall non-tourist buildings such as high-rise offices and
residential towers.

The second approach entails finding buildings that act as landmarks based
on properties such as height, color, volume, type, purpose, age, etc. Using this
approach it is possible to analyse a city model and label buildings that are higher
than, say, 30 meter as landmarks. Another approach is to base the saliency of
a building on its volume e.g. in the case of shopping malls, theaters, cinemas,
etc. with the idea of displaying they are big objects that are recognizable across
a large open space. Another approach is to select popular building types such
as fast food restaurants, popular shops, banks, etc. Once a building is found
and labeled as landmark it can be displayed to the driver by searching for it
using a bounding box that is placed in the driver’s looking direction outside the
buffer. The problem with these landmarks is, however, that they may not be
visible from the driver’s current position. This is for instance the case when
traveling in an urban canyon. Loading buildings that are not visible is pointless
and defies the purpose.

Performing visibility calculations is the best approach to selecting far off
buildings. Visibility calculations are expensive and are therefore not fit for mo-
bile devices. An implementation strategy therefore is to run them as a prepro-
cessing step off the device and upload their results to the device as annotations
on the street network i.e. divide the street network in nodes, perform a visibility
analysis at each node and save the building ids that are visible from that node
as an extra piece of information. With this information the IRP is able to load
and display landmarks even though they do not intersect the buffers.

Showing 3D geometry that is far off is, however, a waste of processing power
and virtual memory as the buildings will probably be too small for the driver
to appreciate their three-dimensionality. A better solution is to render far off
structures (and even whole cityscapes) as billboards. These can be generated on
the fly on the 3D model. These billboards are created by placing the renderer’s
virtual camera in front of the desired scene and performing a render-to-texture
action i.e. the desired 3D scene is rendered and turned into a 2D raster image.
A billboard is created by assigning the texture to a 3D plane and placing it in
the scene. Panda3D, for instance, has a native billboard node.

87

In the ideal case, the built framework acts as a very high level experimen-
tation tool in which users are able to graphically build the execution plan and
semantic rules by dragging and visually connecting the various operators to-
gether. To facilitate this the PBT may be packed in a Graphical User Interface
that, for instance, uses a single sample building to display the effect of a decision
in real-time prior to unleashing it on the whole model.

88

Appendix A

Geometry extraction

A.1 Buildings

The building geometries are stored in the COLLADA files. The COLLADA
data model defines so-called libraries that store the numerous assets that form
a scene (see section 2.1). The concept building is stored in the visual scenes
library where it acts as a placeholder for all elements that constitute a building.
Each building is composed of structures and meta information that is applicable
to the building as a whole.

A building consists of three types of structures: footprint, facade and super.
facades structures contain the facades of buildings, but also simple i.e. flat
roof shapes. Super structures contain complex roof shape that sit on top of
a building. COLLADA geometries are triangulated, hence each structure is
a collection of triangles, which in turn are defined as collections of vertices.
Facades and super structures have a material attached to them.

Each geometry contains three or more triangle sets, called triangles, that
make up the structure. Most triangles consist of three parts: vertices, texture
coordinates and category viz:

Here, the first line defines a triangle set with a certain material and 13
triangles. The following three lines define the sources of information for the
triangles’ vertices, texture coordinates and category values, respectively. The
information itself is stored in data sources defined elsewhere in the structure’s
geometry definition (see next paragraph). Access to these sources is handled
by the indices defined in the < p > element. Each index points to a piece of
information for a single vertex; a triangle is made of three vertices, hence the
first 9 indices define a single triangle. Consider the first three indices 5, 12 and
6. The first index points to the location of the triangle’s first vertex coordinate
triplet in the vertices source. The second index points to the location of the
texture coordinates for the triangle’s first vertex, while the third points to the
location of the triangle’s cateogry value. The vertex source is defined as

89

1 <t r i a n g l e s mate r i a l=” tex 300210310311013 0023 ” count=”13”>
2 <input semantic=”VERTEX” source=”#ground35730−geometry−

ver tex ” o f f s e t=”0”/>
3 <input semantic=”TEXCOORD” source=”#ground35730−geometry−uv”

o f f s e t=”1” s e t=”0”/>
4 <input semantic=” category ” source=”#ground35730−geometry−

category ” o f f s e t=”2”/>
5
6 <p>5 12 6 19 14 6 6 13 6 5 12 6 18 15 6 19 14 6 22 45 14 21

44 14 20 43 . . . </p>
7 </ t r i a n g l e s>

Listing A.1: An example of a triangle definition

1 <source xmlns=” ht tp : //www. co l l ada . org /2005/11/COLLADASchema”
. . .

2 id=”ground35730−geometry−po s i t i o n ”>
3 < f l o a t a r r a y xmlns=” ht tp : //www. co l l ada . org /2005/11/

COLLADASchema” . . .
4 id=”ground42242−geometry−pos i t i on−array ” count=”24”>
5 −6.28 5 .19 0 .06 −11.30 −0.88 0 .09 −13.26 0 .74 0 .11 −8.24

6 .81 0 .07 −11.30 . . .
6 −0.88 4 .10 −6.28 5 .19 4 .10 −13.26 0 .74 4 .10 −8.24 6 .81 4 .10
7 </ f l o a t a r r a y>
8 <technique common>
9 <a c c e s s o r source=”\#ground42241−geometry−pos i t i on−array ”

count=”16” s t r i d e=”3”>
10 <param name=”X” type=” f l o a t ”/>
11 <param name=”Y” type=” f l o a t ”/>
12 <param name=”Z” type=” f l o a t ”/>
13 </ a c c e s s o r>
14 </technique common>
15 </ source>

90

The vertex coordinates are stored in the float array element as a sequence
of floats. The technique common defines what the string of numbers represents.

An index equal to 5 thus refers to the fifth coordinate triplet defined in
the source, which is located at the 5*13 = 15th position in the float array ele-
ment. The first coordinate in this case equals x=-6.28, y=5.19, z=4.10. Texture
coordinates and categories are accessed int the same way.

The Python Facades class is responsible for extracting building geometry
from the COLLADA/XML files. Figure A.1 shows its UML definition.

Figure A.1: The Facade class’ UML diagram.

The get all() method contains all the functionality. It selects all buildings
nodes with this XPath epxression

geometry = /c:COLLADA/C:library geometries/c:geometry[@id="<building id>"]

The triangles are unpacked i.e. de-indexed and the vertices are saved in the
Vertex table.

The result of this function is a dictionary that stores the buildings, faces,
vertices, etc. as

dict[building id][face id] = {vertices, verices indices, uv coordinates,

uv coordinate indices, triangle category, /i}

A.2 Tiles

Information about the tiles is stored in the top-level KML file. The extent of
each tile is stored as a KML LatLonAltBox of which the north, south, east and
west corners are known. The COLLADA models are embedded in the KML file
as a Placemark viz.

The Placemark element defines a latitude/longitude center point for the
model and a link to the COLLADA file that contains the model. Knowing the
tile’s center coordinates is important as the COLLADA files are not georefer-
enced.

The Python Tile class contains the functionality that parses the KMl file
and extracts all the relevant information. Figure A.2 shows a UML definition
of the class.

91

1 <Placemark id=” t i l e \ 300210310123310 ”>\\
2 <name> t i l e \ 300210310123310</name>\\
3 <Region>\\
4 <LatLonAltBox>\\
5 <north>51.94176632</north>\\
6 <south>51.94009723</ south>\\
7 <ea s t>4.39512567</ ea s t>\\
8 <west>4.39044874</west>\\
9 </LatLonAltBox>\\

10 </Region>\\
11 <Model id=”m\ 300210310123310 ”>\\
12 <Locat ion>\\
13 <l ong i tude>4.39316759</ l ong i tude>\\
14 < l a t i t u d e>51.94191261</ l a t i t u d e>\\
15 <a l t i t u d e>0 .00</ a l t i t u d e>\\
16 </Locat ion>\\
17 <Link>\\
18 <hr e f>300210310123310/m\ 300210310123310 . dae</ h r e f>\\
19 </Link>\\
20 </Model>\\
21 </Placemark>
22 }

Figure A.2: The Tile class’ UML diagram.

92

Appendix B

Performance results

This appendix lists the 100 meter performance measurements of the test cases
desribed in Chapter 6.

0 5 10 15 20 25 30 35 40 45
time [s]

0

100

200

300

400

500

fr
am

es
-p

er
-s

ec
on

d
 [
-]

FPS - Single/Textured, 100 m

10 m

25 m

50 m

80 m

(a) Frames-per-seconds measurements fot the
textured extractor.

0 5 10 15 20 25 30 35 40 45
time [s]

100

200

300

400

500

600

fr
am

es
-p

er
-s

ec
on

d
 [
-]

FPS - Single/Colored, 100 m

10 m

25 m

50 m

80 m

(b) Frames-per-seconds measurements fot the
colored extractor.

Figure B.1: Frames-per-seonds measurements for the two extractors.

93

0 5 10 15 20 25 30 35 40 45
time [s]

0

100

200

300

400

500

600
fr

am
es

-p
er

-s
ec

on
d
 [
-]

FPS - Single/Plain, 100 m
10 m

25 m

50 m

80 m

(a) Frames-per-seconds measurements fot the
textured extractor.

0 5 10 15 20 25 30 35 40 45
time [s]

0

100

200

300

400

500

600

fr
am

es
-p

er
-s

ec
on

d
 [
-]

FPS - Single 50 m selector, 100 m

textured

colored

plain

(b) Frames-per-seconds measurements fot the
colored extractor.

Figure B.2: Performance metrics for the textured extractor

0 5 10 15 20 25 30 35 40 45
time [s]

0

50

100

150

200

250

300

G
ra

p
h
ic

al
 m

em
or

y
 [
M

B
]

Memory - Single/Textured, 100 m
10 m

25 m

50 m

80 m

(a) Graphics memory usage of the textured ex-
tractor.

0 5 10 15 20 25 30 35 40 45
time [s]

0

5

10

15

20

25

30

#
 o

f
v
er

ti
ce

s
x
10

00

Vertices - Single/Textured, 100 m
10 m

25 m

50 m

80 m

(b) Number of vertices.

Figure B.3: Performance metrics for the textured extractor.

94

0 5 10 15 20 25 30 35 40 45
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

G
ra

p
h
ic

al
 m

em
or

y
 [
M

B
]

Memory - Single/Colored, 100 m
10 m

25 m

50 m

80 m

(a) Graphics memory usage of the colored extrac-
tor.

0 5 10 15 20 25 30 35 40 45
time [s]

0

5

10

15

20

25

30

35

40

#
 o

f
v
er

ti
ce

s
x
10

00

Vertices - Single/Colored, 100 m
10 m

25 m

50 m

80 m

(b) Number of vertices.

Figure B.4: Performance metrics for the colored extractor.

0 5 10 15 20 25 30 35 40 45
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
u
ll
in

g
 t

im
e

[m
s]

Cull time - Textured, 100 m
10 meter

80 meter

(a) Time required to determine which geometries
are visible.

0 5 10 15 20 25 30 35 40 45
time [s]

0

100

200

300

400

500

600

700

800

C
u
ll
in

g
 t

im
e

[m
s]

Draw time - Textured, 100 m
10 meter

80 meter

(b) Time required to draw a scene.

Figure B.5: Performance metrics for the textured extractor.

95

96

Bibliography

OGRE - Open Source 3D Graphics Engine. 2012.

Ivin Amri Musliman, Behnam Alizadehashrafi, Tet-Khuan Chen, and Alias
Abdul-Rahman. Modeling Visibility through Visual Landmarks in 3D Navi-
gation using Geo-DBMS Developments in 3D Geo-Information Sciences. Lec-
ture Notes in Geoinformation and Cartography, chapter 9, pages 157–180.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-04790-
9. doi: 10.1007/978-3-642-04791-6\ 9. URL http://dx.doi.org/10.1007/

978-3-642-04791-6_9.

Sören Auer, Jens Lehmann, and Sebastian Hellmann. LinkedGeoData: Adding
a Spatial Dimension to the Web of Data The Semantic Web - ISWC 2009.
volume 5823 of Lecture Notes in Computer Science, chapter 46, pages 731–
746. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-
04929-3. doi: 10.1007/978-3-642-04930-9\ 46. URL http://dx.doi.org/

10.1007/978-3-642-04930-9_46.

M. Banes and E. L. Finch. COLLADA-Digital Asset Schema Release 1.5.0
specification, April 2008.

Stefan Behnel, Martijn Faassen, and Ian Bicking. lxml - XML and HTML with
Python. http://lxml.de/ Accessed on 13 August 2012.

Maximino Bessa, António Coelho, and Alan Chalmers. Alternate feature loca-
tion for rapid navigation using a 3D map on a mobile device. In Proceed-
ings of the 3rd international conference on Mobile and ubiquitous multimedia,
MUM ’04, pages 5–9, New York, NY, USA, 2004. ACM. ISBN 1-58113-
981-0. doi: 10.1145/1052380.1052382. URL http://dx.doi.org/10.1145/

1052380.1052382.

Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data - The Story So
Far. International Journal on Semantic Web and Information Systems, 5(3):
1–22, MarMar 2009a. ISSN 1552-6283. doi: 10.4018/jswis.2009081901. URL
http://dx.doi.org/10.4018/jswis.2009081901.

Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian
Becker, Richard Cyganiak, and Sebastian Hellmann. DBpedia - A crystalliza-
tion point for the Web of Data. Web Semantics: Science, Services and Agents

97

http://dx.doi.org/10.1007/978-3-642-04791-6_9
http://dx.doi.org/10.1007/978-3-642-04791-6_9
http://dx.doi.org/10.1007/978-3-642-04930-9_46
http://dx.doi.org/10.1007/978-3-642-04930-9_46
http://dx.doi.org/10.1145/1052380.1052382
http://dx.doi.org/10.1145/1052380.1052382
http://dx.doi.org/10.4018/jswis.2009081901

on the World Wide Web, 7(3):154–165, September 2009b. ISSN 15708268.
doi: 10.1016/j.websem.2009.07.002. URL http://dx.doi.org/10.1016/j.

websem.2009.07.002.

Stefano Burigat and Luca Chittaro. Location-aware visualization of VRML
models in GPS-based mobile guides. In Proceedings of the tenth international
conference on 3D Web technology, Web3D ’05, pages 57–64, New York, NY,
USA, 2005. ACM. ISBN 1-59593-012-4. doi: 10.1145/1050491.1050499. URL
http://dx.doi.org/10.1145/1050491.1050499.

T. Capin, K. Pulli, and T. Akenine-Moller. The State of the Art in Mobile
Graphics Research. Computer Graphics and Applications, IEEE, 28(4):74–
84, July 2008. ISSN 0272-1716. doi: 10.1109/MCG.2008.83. URL http:

//dx.doi.org/10.1109/MCG.2008.83.

Volker Coors and Er Zipf. Mona 3d– mobile navigation using 3d city models.
URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.

1269.

J. Crampton. A cognitive analysis of wayfinding expertise. Cartographica, 29
(3):46–65, 1992.

Arnoud de Bruijne, Joop van Buren, Anton Kösters, and Hans van der Marel.
Geodetic reference frames in the Netherlands. Netherlands Geodetic Commis-
sion, March 2005. ISBN 90 6132 291 X.

Jürgen Döllner and Jan E. Kyprianidis. Approaches to Image Abstraction
for Photorealistic Depictions of Virtual 3D Models Cartography in Central
and Eastern Europe. Lecture Notes in Geoinformation and Cartography,
chapter 17, pages 263–277. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010. ISBN 978-3-642-03293-6. doi: 10.1007/978-3-642-03294-3\ 17. URL
http://dx.doi.org/10.1007/978-3-642-03294-3_17.

Peter Fisher, Birgit Elias, and Claus Brenner. Automatic Generation and
Application of Landmarks in Navigation Data Sets Developments in Spa-
tial Data Handling. In Developments in Spatial Data Handling, chapter 36,
pages 469–480. Springer Berlin Heidelberg, Berlin/Heidelberg, 2005. ISBN
3-540-22610-9. doi: 10.1007/3-540-26772-7\ 36. URL http://dx.doi.org/

10.1007/3-540-26772-7_36.

Bruce Frederiksen. Python Knowledge Engine. http://pyke.sourceforge.net/
Accessed on 16 August 2012.

Alessandro Furieri. SpatiaLite. https://www.gaia-
gis.it/fossil/libspatialite/index Accessed on 13 August 2012.

Tassilo Glander and Jürgen Döllner. Techniques for Generalizing Building
Geometry of Complex Virtual 3D City Models Advances in 3D Geoinfor-
mation Systems. In Peter Oosterom, Sisi Zlatanova, Friso Penninga, and

98

http://dx.doi.org/10.1016/j.websem.2009.07.002
http://dx.doi.org/10.1016/j.websem.2009.07.002
http://dx.doi.org/10.1145/1050491.1050499
http://dx.doi.org/10.1109/MCG.2008.83
http://dx.doi.org/10.1109/MCG.2008.83
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.1269
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.1269
http://dx.doi.org/10.1007/978-3-642-03294-3_17
http://dx.doi.org/10.1007/3-540-26772-7_36
http://dx.doi.org/10.1007/3-540-26772-7_36

Elfriede M. Fendel, editors, Advances in 3D Geoinformation Systems, Lec-
ture Notes in Geoinformation and Cartography, chapter 21, pages 381–400.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-72134-
5. doi: 10.1007/978-3-540-72135-2\ 21. URL http://dx.doi.org/10.1007/

978-3-540-72135-2_21.

Tassilo Glander and Jürgen Döllner. Abstract representations for interac-
tive visualization of virtual 3D city models. Computers, Environment and
Urban Systems, 33(5):375–387, September 2009. ISSN 01989715. doi:
10.1016/j.compenvurbsys.2009.07.003. URL http://dx.doi.org/10.1016/

j.compenvurbsys.2009.07.003.

M. Goslin and M. R. Mine. The Panda3D graphics engine. Computer, 37(10):
112–114, October 2004. ISSN 0018-9162. doi: 10.1109/MC.2004.180. URL
http://dx.doi.org/10.1109/MC.2004.180.

Ivan Herman, Sergio Fernández, and Carlos Tejo. SPARQL Endpoint Interface
for Python. http://sparql-wrapper.sourceforge.net/ Accessed on 13 August
2012.

Dieter Hildebrandt, Jan Klimke, Benjamin Hagedorn, and Jürgen Döllner.
Service-oriented interactive 3D visualization of massive 3D city models on
thin clients. In Proceedings of the 2nd International Conference on Computing
for Geospatial Research & Applications, COM.Geo ’11, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0681-2. doi: 10.1145/1999320.1999326.
URL http://dx.doi.org/10.1145/1999320.1999326.

Seok-Jae Jeong and Arie E. Kaufman. Interactive wireless virtual colonoscopy.
The Visual Computer, 23(8):545–557, August 2007. ISSN 0178-2789.
doi: 10.1007/s00371-007-0117-8. URL http://dx.doi.org/10.1007/

s00371-007-0117-8.

Markus Jobst and Timothy Germanchis. The Employment of 3D in Cartography
An Overview Multimedia Cartography. In William Cartwright, Michael P.
Peterson, and Georg Gartner, editors, Multimedia Cartography, chapter 15,
pages 217–228. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. ISBN
978-3-540-36650-8. doi: 10.1007/978-3-540-36651-5\ 15. URL http://dx.

doi.org/10.1007/978-3-540-36651-5_15.

Alexander Klippel, Kai-Florian Richter, and Stefan Hansen. Wayfinding
Choreme Maps Visual Information and Information Systems. volume 3736
of Lecture Notes in Computer Science, chapter 9, pages 94–108. Springer
Berlin / Heidelberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-30488-3. doi:
10.1007/11590064\ 9. URL http://dx.doi.org/10.1007/11590064_9.

Fabrizio Lamberti and Andrea Sanna. A solution for displaying medical data
models on mobile devices. In Proceedings of the 4th WSEAS International
Conference on Software Engineering, Parallel & Distributed Systems, Stevens
Point, Wisconsin, USA, 2005. World Scientific and Engineering Academy and

99

http://dx.doi.org/10.1007/978-3-540-72135-2_21
http://dx.doi.org/10.1007/978-3-540-72135-2_21
http://dx.doi.org/10.1016/j.compenvurbsys.2009.07.003
http://dx.doi.org/10.1016/j.compenvurbsys.2009.07.003
http://dx.doi.org/10.1109/MC.2004.180
http://dx.doi.org/10.1145/1999320.1999326
http://dx.doi.org/10.1007/s00371-007-0117-8
http://dx.doi.org/10.1007/s00371-007-0117-8
http://dx.doi.org/10.1007/978-3-540-36651-5_15
http://dx.doi.org/10.1007/978-3-540-36651-5_15
http://dx.doi.org/10.1007/11590064_9

Society (WSEAS). ISBN 960-8457-09-2. URL http://portal.acm.org/

citation.cfm?id=1365774.1365790.

Mark Lutz. Programming Python. O’Reilly Media, Inc., 2006. ISBN 0596009259.
URL http://portal.acm.org/citation.cfm?id=1199154.

Frank Manola and Eric Miller. RDF Primer. http://www.w3.org/TR/rdf-
primer/ Accessed on 21 August 2012, 2004.

Jean E. Marvie and Kadi Bouatouch. A VRML97-X3D extension for massive
scenery management in virtual worlds. In Proceedings of the ninth interna-
tional conference on 3D Web technology, Web3D ’04, pages 145–153, New
York, NY, USA, 2004. ACM. ISBN 1-58113-845-8. doi: 10.1145/985040.
985062. URL http://dx.doi.org/10.1145/985040.985062.

José M. Noguera, Rafael J. Segura, Carlos J. Ogáyar, and Robert Joan-Arinyo.
Navigating large terrains using commodity mobile devices. Computers &
Geosciences, 37(9):1218–1233, September 2011. ISSN 00983004. doi: 10.1016/
j.cageo.2010.08.007. URL http://dx.doi.org/10.1016/j.cageo.2010.08.

007.

A. Nurminen. Mobile 3D City Maps. Computer Graphics and Applications,
IEEE, 28(4):20–31, July 2008. ISSN 0272-1716. doi: 10.1109/MCG.2008.75.
URL http://dx.doi.org/10.1109/MCG.2008.75.

Antti Nurminen. m-LOMA - a mobile 3D city map. In Proceedings of the
eleventh international conference on 3D web technology, Web3D ’06, pages
7–18, New York, NY, USA, 2006. ACM. ISBN 1-59593-336-0. doi: 10.1145/
1122591.1122593. URL http://dx.doi.org/10.1145/1122591.1122593.

Antti Nurminen. Mobile, hardware-accelerated urban 3D maps in 3G networks.
In Proceedings of the twelfth international conference on 3D web technology,
Web3D ’07, pages 7–16, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-
652-3. doi: 10.1145/1229390.1229392. URL http://dx.doi.org/10.1145/

1229390.1229392.

Antti Oulasvirta, Sara Estlander, and Antti Nurminen. Embodied interaction
with a 3D versus 2D mobile map. Personal Ubiquitous Comput., 13(4):303–
320, May 2009. ISSN 1617-4909. doi: 10.1007/s00779-008-0209-0. URL
http://dx.doi.org/10.1007/s00779-008-0209-0.

J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips.
GPU Computing. Proceedings of the IEEE, 96(5):879–899, May 2008. ISSN
0018-9219. doi: 10.1109/JPROC.2008.917757. URL http://dx.doi.org/

10.1109/JPROC.2008.917757.

Bastian Quilitz and Ulf Leser. Querying Distributed RDF Data Sources
with SPARQL The Semantic Web: Research and Applications. In Sean
Bechhofer, Manfred Hauswirth, Jörg Hoffmann, and Manolis Koubarakis,

100

http://portal.acm.org/citation.cfm?id=1365774.1365790
http://portal.acm.org/citation.cfm?id=1365774.1365790
http://portal.acm.org/citation.cfm?id=1199154
http://dx.doi.org/10.1145/985040.985062
http://dx.doi.org/10.1016/j.cageo.2010.08.007
http://dx.doi.org/10.1016/j.cageo.2010.08.007
http://dx.doi.org/10.1109/MCG.2008.75
http://dx.doi.org/10.1145/1122591.1122593
http://dx.doi.org/10.1145/1229390.1229392
http://dx.doi.org/10.1145/1229390.1229392
http://dx.doi.org/10.1007/s00779-008-0209-0
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1109/JPROC.2008.917757

editors, The Semantic Web: Research and Applications, volume 5021 of
Lecture Notes in Computer Science, chapter 39, pages 524–538. Springer
Berlin / Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-68233-2.
doi: 10.1007/978-3-540-68234-9\ 39. URL http://dx.doi.org/10.1007/

978-3-540-68234-9_39.

Arne Schilling, Volker Coors, and Katri Laakso. Dynamic 3D Maps for Mobile
Tourism Applications Map-based Mobile Services. In L. Meng, T. Reichen-
bacher, and A. Zipf, editors, Map-based Mobile Services, chapter 15, pages
227–239. Springer Berlin Heidelberg, Berlin/Heidelberg, 2005. ISBN 3-540-
23055-6. doi: 10.1007/3-540-26982-7\ 15. URL http://dx.doi.org/10.

1007/3-540-26982-7_15.

Arne Schilling, Sandra Lanig, Pascal Neis, and Alexander Zipf. Integrating
Terrain Surface and Street Network for 3D Routing 3D Geo-Information Sci-
ences. In Jiyeong Lee and Sisi Zlatanova, editors, 3D Geo-Information Sci-
ences, Lecture Notes in Geoinformation and Cartography, chapter 8, pages
109–126. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-
540-87394-5. doi: 10.1007/978-3-540-87395-2\ 8. URL http://dx.doi.org/

10.1007/978-3-540-87395-2_8.

Claus Stadler, Jens Lehmann, Konrad Höffner, and Sören Auer. LinkedGeo-
Data: A core for a web of spatial open data. Semantic Web, 2012. doi:
10.3233/SW-2011-0052. URL http://dx.doi.org/10.3233/SW-2011-0052.

Jantien Stoter, Joris Goos, Rick Klooster, Marcel Reuvers, Edward
Verbree, Gebrand Vestjens, and George Vosselman. 3D Pilot Man-
agementsamenvatting. Technical report, Geonovum, June 2011.
URL http://www.geonovum.nl/sites/default/files/standaarden/

managementsamenvatting3Dpilot.pdf.

101

http://dx.doi.org/10.1007/978-3-540-68234-9_39
http://dx.doi.org/10.1007/978-3-540-68234-9_39
http://dx.doi.org/10.1007/3-540-26982-7_15
http://dx.doi.org/10.1007/3-540-26982-7_15
http://dx.doi.org/10.1007/978-3-540-87395-2_8
http://dx.doi.org/10.1007/978-3-540-87395-2_8
http://dx.doi.org/10.3233/SW-2011-0052
http://www.geonovum.nl/sites/default/files/standaarden/managementsamenvatting3Dpilot.pdf
http://www.geonovum.nl/sites/default/files/standaarden/managementsamenvatting3Dpilot.pdf

	Introduction
	Related work
	Context and methodology
	Research objectives
	Project scope, design decisions and data sources
	Thesis outline

	Data sources and information organisation
	Geographical data
	Advanced City Model

	Semantic and thematic information
	Principles of Linked Data
	SPARQL
	DBpedia and LinkedGeoData

	Data storage and information model

	Information Reduction Pipeline
	Information reduction
	Information Reduction Pipepline
	Selection
	Operation

	Extraction and styling
	Operation

	Visualisation preparation

	Designing and extending the IRP
	Chaining
	Operator extension

	Prototyping, Benchmarking and Testing framework
	Context
	Methodology
	Execution phase
	Spatial controller
	Semantic controller
	Expert system

	Visualisation, testing and benchmarking
	Visualisation and testing
	Benchmarking

	Prototype
	Preparation phase
	Footprints
	Semantic data

	Execution phase
	Spatial controller
	Semantic controller
	IRP
	Route preparation
	Selector
	Extractor and themer
	Preparation for visualisation

	Example IRP results

	Visualisation, simulation and benchmarking

	Use case and PBT results
	IRP operation
	Performance results

	Conclusion
	Future work
	Geometry extraction
	Buildings
	Tiles

	Performance results

