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Summary

This thesis examines the use of a potential field model for simulating pedestrian dynamics in
complex environments. The study first reviewed the different types of pedestrian dynamics
models, highlighting their strengths and weaknesses. From this study, a research gap emerged
regarding hybrid pedestrian movement models. As a base for such a model, a microscopic
pedestrian dynamics model has been developed combining potential fields and gradient de-
scent optimization as the drivers for trajectory selection. In this formulation, agents follow
trajectories along the gradient of the potential field, naturally balancing goal seeking behavior
with obstacle and inter-agent avoidance. The potential field approach was also discussed as a
foundation for hybrid models, in which microscopic and macroscopic modeling strategies are
combined to exploit the advantages of both.

To evaluate and calibrate the model, real-world trajectory data from a bidirectional corridor
experiment and a bottleneck experiment were used. A surrogate model was constructed to
accelerate the optimization process, given the high computational cost of the original simu-
lation model. The surrogate model enabled systematic parameter calibration and sensitivity
analysis, focusing on three key parameters: the goal potential function weight (KG), the wall
potential function weight (KW), and the obstacle potential function weight (KO). The re-
sults demonstrated that the optimized model is capable of reproducing key crowd phenomena
observed in the empirical datasets.

A sensitivity analysis further showed the relative importance of the potential function weights
across different key performance indicators. Moreover, predictive uncertainty analysis con-
firmed that the model exhibited relatively high confidence around the optimum and avoided
regions of overfitting.

Despite these contributions, the research was constrained by the computational cost of the
simulation model. The reliance on a surrogate model limited the optimization to a small sub-
set of parameters, assuming that other model parameters were already sufficiently calibrated.
This assumption likely introduced some biases, such as underestimation of obstacle repulsion,
leading to overly frequent close inter-agent encounters. In conclusion, this thesis has demon-
strated that potential field models, when combined with real-world data and surrogate-based
optimization, provide a valid and powerful framework for simulating pedestrian dynamics
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in complex environments. Their ability to model pedestrian trajectories through potential
functions and gradient descent makes them conceptually simple yet effective, while their ex-
tensibility offers a pathway toward hybrid models. Nevertheless, computational burden and
limited parameter coverage remain key challenges, highlighting the need for more efficient
implementations and broader parameter optimization in future research.
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Chapter 1

Introduction

Understanding pedestrian dynamics is essential for the effective planning, design, and opera-
tion of public spaces. As urban environments grow more complex and densely populated, the
need to model and simulate pedestrian movement has become increasingly important across
a range of domains including transportation engineering, crowd safety, emergency evacuation
planning, and smart infrastructure development. Accurate modeling of pedestrian behavior
supports the optimization of circulation spaces, enhances user safety and comfort, and enables
data-driven decisions in both public and private infrastructure projects.

This research focuses on pedestrian dynamics within a university environment, and more
specifically, within the Mechanical Engineering faculty building at Delft University of Tech-
nology. The university is currently undergoing a major expansion, with plans to increase its
student population from approximately 25,000 to 40,000 [3]. To accommodate this growth,
new campus locations are being considered in The Hague and Rotterdam, alongside modi-
fications to existing infrastructure in Delft. As student numbers rise, gaining a deeper un-
derstanding of pedestrian dynamics within educational environments becomes increasingly
important. In particular, modeling pedestrian movement through corridors, lecture halls,
and communal spaces can inform the design of more efficient circulation routes and help
prevent congestion during peak transition periods. These insights are essential for designing
future campus infrastructure and improving the overall user experience.

However, modeling pedestrian behavior is inherently complex. Despite the development of
numerous pedestrian dynamics models [9, 19, 33, 16], accurately capturing the dynamics
of human movement remains a challenge due to its context-dependent, adaptive, and often
non-linear nature. Pedestrians continuously adapt to both static environmental features and
dynamic interactions with other individuals. These interactions often result in emergent
collective behaviors such as lane formation, bottlenecks, or stop-and-go waves that are difficult
to reproduce using simple rules or flow-based models.

To address these complexities, this study introduces a microscopic pedestrian dynamics model
based on agent-based potential fields. In this framework, each pedestrian is modeled as an
individual agent navigating a scalar potential landscape that encodes goals, obstacles, and
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2 Introduction

interactions with other pedestrians. The agents determine their paths using a gradient descent
optimization approach, allowing them to adaptively choose directions leading towards their
goals while avoiding collisions. This approach draws on principles from classical optimization
and control theory and offers a flexible, computationally tractable method for simulating
realistic pedestrian behavior in complex indoor environments.

The aim of this research is therefore captured by the following primary research question:

To what extent can pedestrian movement in complex indoor environments be effec-
tively modeled using a potential field model and calibrated using real-life trajectory
data?

To address this main question, the following subquestions are formulated:

1. What is the state-of-the-art for modeling pedestrian dynamics within a multi-
agent system?

2. What makes a potential field model suitable for simulating pedestrian dynamics
in complex environments?

8. How can a potential field model for pedestrian simulation be augmented and
optimized using real-life trajectory data?

4. What are the strengths and limitations of using a potential field model for
pedestrian simulation?

An overview of the research is depicted in Figure 1-1. To answer subquestion one, regarding
the state-of-the-art for modeling pedestrian dynamics within a multi-agent system, a literature
study has been conducted as described in Section 2-1. From this literature study, a research
gap has been identified and a certain method of modeling pedestrian dynamics has been
elected. This method has been explained further in Section 2-2, answering subquestion two.
Thereby, the first two subquestions from the basis of this study and scope the research.

Sub Questlon 2

Sub Questlon 1
Sub Question 3 Sub Question 4

Phase Scoping the Research Modelling Evaluation
Mathematical Programming Sensitivity Analysis
Method Literature study and Optimization Validation Analysis
Verification Scenario Analysis

Figure 1-1: Overview of the research.

Jesse Leijdekker Master of Science Thesis



| Simulation model » Surrogate model
Model Training

A Optimization

| Finding Optimal
N B |  Parameters

/ Datas i

v v
Simulation Model | Bidirectional | Surrogate Model
Testing Corridor Experiment| ! Validation

S
|/ !
F |

: ‘ Simulation Model

Eottleneck

Experiment Sensitivity Analysis

Validation

v

Conducting
Experiments

Figure 1-2: Overview of the research structure.

The third subquestion addresses how the developed potential field simulation model can
be improved and efficiently calibrated. The computational expense of the full-scale, agent-
based potential field model motivates the construction of a surrogate model that emulates the
simulation’s KPI outputs, as can be seen in Figure 1-2, in which the structure of the research
is depicted. The development of the optimization framework that leverages this surrogate is
detailed in Chapter 3 and Chapter 4.

The surrogate is trained on KPI data generated by the simulation model for the bidirectional
corridor experiment, and its predictive accuracy is quantitatively assessed and discussed in
Chapter 5. In that chapter the surrogate predictions are also compared with outputs from
the full-scale model at the parameter sets of interest for the bidirectional corridor experiment
to establish whether the surrogate can be trusted.

Following surrogate development and validation, the optimized parameter sets and the sim-
ulation model itself are tested and validated against real-life experiments. In Chapter 6 it is
described how the optimized potential field model is compared to the bidirectional corridor
and bottleneck datasets both in terms of the calibration KPIs and for additional emergent
phenomena not explicitly used during optimization. These tests quantify the model’s ability
to reproduce observed pedestrian behavior and identify remaining discrepancies.

To probe robustness and parameter influence, a sensitivity analysis is performed using the
surrogate model to limit computational cost; the methodology and results of the local and
parameter sensitivity analyses are reported in Chapter 7. By exploiting the surrogate’s effi-
ciency, these analyses explore uncertainty and parameter interactions that would be infeasible
to cover exhaustively with the full-scale simulation model.

Finally, the validated and optimized potential field model is applied to a corridor scenario with
lecture halls to demonstrate applicability in a more complex setting; results and interpretation
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4 Introduction

of these application experiments are presented in Chapter 8.

The complete workflow of how the simulation model, surrogate model, optimization, valida-
tion, sensitivity analysis, and final applications interrelate is visualized in Figure 1-2, which
serves as a roadmap for the thesis.
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Chapter 2

Previous Work

In this chapter, an overview of previously developed simulation models for pedestrian dynam-
ics is given. In Section 2-1 models from literature are highlighted and in Section 2-2 an earlier
developed potential field model is described.

2-1 Literature Study

This section provides a concise overview of previously developed models for pedestrian dy-
namics. In general, three categories of models are employed to simulate pedestrian behavior:
macroscopic models, microscopic models, and hybrid models. For a more in depth overview
of these types of models, the reader is referred to [25].

2-1-1 Macroscopic Models

Macroscopic models conceptualize pedestrian dynamics using continuous flows. Some of the
popular examples of macroscopic models are Network Models and Continuum Models [7].

In Network Models, Pedestrians are represented as agents navigating a specified network
consisting of nodes and links corresponding to physical spaces such as corridors, streets, and
intersections. Pedestrian movement is described as flow through the links, and route choices
are made at the nodes. These decisions are typically based on factors such as levels of
congestion, shortest path, or individual route preference [9]. One of the main shortcomings
of this approach is that decision is restricted to these single nodes and potentially may not
reflect pedestrian movement between decision points most accurately. Although this may be
improved by introducing additional decision nodes, this would lead to exponential growth in
possible routing options, significantly increasing computational cost. Conversely, when fast
approximate simulations suffice, the reduction of resolution by utilizing a macroscopic model
is beneficial since it reduces computational complexity.

Continuum Models depict pedestrian crowds as a continuous density field, analogous to fluid
or traffic flow models. Pedestrian motion is typically guided to accomplish tasks by a global
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6 Previous Work

potential field in Continuum Models [20, 21, 35]. Like other macroscopic models, Continuum
Models excel at simulating large-scale crowd behavior [20, 21, 35]. However, they lack the
capacity to model decision-making and anticipation at the individual level because pedestrians
react only to local and instantaneous information.

2-1-2 Microscopic Models

Microscopic models represent individual pedestrians as autonomous agents in order to repre-
sent intricate interaction and behavior. Widely-used microscopic modeling methods include
Cellular Automata, Social Force Models, and Obstacle Avoidance Models [7].

Cellular Automata (CA) are discrete mathematical models consisting of a grid of cells, with
each cell being able to assume one of a finite possible number of states [13, 22]. The condition
of each cell evolves at discrete time steps according to uniform, predefined rules, applied simul-
taneously over the grid. Pedestrian movement decisions are generally regulated by transition
probabilities dependent on the values of a floor field [24]. Floor fields are spatial overlays
that guide pedestrian movement, and they function in a similar manner to potential fields in
Continuum Models. CA models have demonstrated the ability to replicate various emergent
behaviors, such as jamming, lane formation, and oscillatory patterns [5, 24]. Moreover, they
provide insight into individual behavior as an agent-based framework is used for these models.
Nonetheless, incorporating agent-specific destinations is challenging, as floor fields generally
affect all pedestrians uniformly.

The Social Force Model describes pedestrian motion as a result of generalized forces. Pedes-
trians are driven to achieve a desired speed in the direction of their destination, and they
respond to environmental hindrances and interpersonal distance through repulsive forces [16].
It is a suitable model for modeling individual pedestrian behavior [16, 18]. However, it as-
sumes homogeneous response from all agents and lacks explicit route planning because the
movement is a result of force dynamics and not goal-oriented decision-making.

In Obstacle Avoidance Models, pedestrians select velocities to minimize the likelihood of col-
lisions based on real-time perception of the environment [8]. These models lack predictive
power, as decisions by pedestrians are made based on an instantaneous information input
based on a limited portion of the environment only. Furthermore, although Obstacle Avoid-
ance Models capture individual-level dynamics, their computational cost can be substantial
due to the agent-based representation.

2-1-3 Hybrid Models

As stated, macroscopic models offer high computational efficiency at the cost of behavioral
precision, and microscopic models offer high precision at the expense of increased compu-
tational effort. Hybrid models aim to merge the benefits of both paradigms, compromising
simulation speed and behavioral realism.

An example is provided in [37], where a multi-resolution approach is proposed that employs a
macroscopic density-based model under stable conditions and switches to a microscopic model
under dynamic or unstable conditions. Another example is provided in [38], where the space
is split spatially into areas, and each area is simulated using a microscopic or macroscopic
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2-2 Proposed Model 7

model depending on the suitability. In [2], the pedestrian dynamics are presented macro-
scopically through speed-density relations, and the route choice for pedestrians is addressed
microscopically.

2-1-4 Intermediate Conclusion

To conclude, pedestrian simulation models can be categorized as macroscopic, microscopic,
and hybrid. Macroscopic models are computationally efficient but sacrifice individual behavior
realism as pedestrians are modeled as continuous flows. Microscopic models achieve higher
fidelity by simulating individual agents at the cost of increased computational demands.
Hybrid models attempt to achieve a middle ground between these two extremes by exploiting
the strengths of both. However, most hybrid models are tailored to specific applications, or
they only partially combine the merits of the base approaches. This reveals a research gap in
the development of general-purpose hybrid pedestrian simulation models.

2-2 Proposed Model

To bridge the research gap addressed in Section 2-1, this research attempts to lay the ground-
work of a generalized hybrid pedestrian dynamics model. This is done by developing and
optimizing a microscopic model which is easily adaptable to a hybrid approach and can there-
fore serve as its base. Specifically, this study offers a potential field-based approach where
pedestrians are modeled as individual agents to enhance behavioral realism. The adaptability
towards hybrid modeling will be covered more broadly in Chapter 9.

An earlier study has laid the foundation of the proposed model, focusing exclusively on
the microscopic component [26]. In this section, the previously developed model is explained
briefly. The present research aims to enhance this model such that it is prepared for integration
into the hybrid modeling framework outlined earlier. However, the objective of the present
research is not to further extend the model towards such a hybrid model.

2-2-1 Base Model

As stated, this study concerns a microscopic potential field-based approach for pedestrian
simulation. The agents are modeled as a single point in space and find their goals by opti-
mizing a potential function using gradient descent optimization. The agent specific goals are
defined as the global minimum of the potential function. For every time step, the agents take
a step in the direction of the computed negative gradient. Furthermore, to prevent agents
from getting stuck in the environment, intermediate goals are defined, aiding the agents along
their trajectories.

The potential function consists of three separate potential functions: the obstacle potential
function VO, the wall potential function VW and the goal potential function VG. The
obstacle potential function is designed to prevent collisions with both agents and dynamic or
static obstacles. This is achieved by defining a potential function that exhibits a maximum
at the location of the obstacle. The wall potential function operates in a similar manner,
but employs a more elongated peak shape for each wall of the environment to represent the
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Figure 2-2: The corresponding environ-
ment for the local potential field. The walls
in the environment are depicted in orange.

agents in the environment are depicted in
red.

repulsive influence of the boundaries. In this way, agents are guided away from walls while still
maintaining realistic movement patterns. The summation of all these individual potentials
corresponding to a certain wall results in the complete potential function. The goal potential
function is used to attract the agents towards their goal location. For a more extensive
description of the individual potential functions, the reader is referred to [26]. An example of
an agent based potential function for a certain time step and the corresponding environment
is depicted in Figure 2-1 with its corresponding environment depicted in Figure 2-2.

The entire potential function is defined as follows:

Viot,i(Tit, Tjt,t) = Z;‘v:(?voj(xj,t) + VW (xis) + VGi(xiy,t) (2-1)

for j # i with x;; = |24 yi,t]T € R? being the coordinate vector for agent i at time ¢ and
N(t) being the number of agents present at time t. The movement of the agent then results
from the following gradient descent algorithm:

X1 = Tig — aVVier i (x4, x4, 1) (2-2)

Here, « is a parameter to control the step size and V'V, ;(x;+) represents the gradient of the
potential function at the agent’s current position.
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Chapter 3

Methodology

Given that this study focuses on researching to what extent a potential field model for pedes-
trian movement simulation can yield realistic results, it is crucial to find what areas the
previously developed model can be improved on. This chapter explains what improvements
have been applied to the model and how it is optimized such that improved realism can be
achieved.

3-1 Model Improvements

In this section, the improvements applied to the earlier developed model from [26] are ex-
plained.

3-1-1 Computational burden

A significant performance enhancement to the simulation model was achieved through the pa-
rameterization of symbolic expressions. Initially, symbolic variables representing the potential
fields were redefined and differentiated at every simulation timestep, leading to substantial
computational inefficiency due to repeated symbolic processing and function generation. To
resolve this, all static symbolic expressions such as wall potentials and their gradients were
computed once outside the main simulation loop using MATLAB’s Symbolic Math Toolbox
and converted into anonymous function handles via matlabFunction. This eliminated redun-
dant symbolic differentiation and allowed for fast numerical evaluation during runtime. For
time-varying components, such as agent-specific obstacle potential functions, the symbolic
form was parameterized with agent-dependent coefficients (e.g., position and gain param-
eters), allowing the simulation to reuse a generic symbolic template and update only the
numerical values. This restructuring reduced simulation runtime by an order of magnitude in
larger scenarios and enabled efficient scaling with respect to both agent count and simulation
duration, without compromising the accuracy of the gradient-based movement dynamics.
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10 Methodology

The performance was improved further by simplifying the wall potential function. As stated
in [26], the wall potential function used to be defined as:

1 1 1 1
VW = <1 + e—cifi(zy) * 14 e—c2f2(y) 1) (1 4 e—cafa(zy) + 1+ e—cafalzy) 1> (3-1)

Here, VW}, is the wall potential for wall k, ¢; is the gain controlling the steepness of the wall
for the appurtenant side, fi(z,y) and fao(z,y) are the functions defining the location of the
borders of the wall and f3(x,y) and f4(z,y) are the functions defining the location of the
borders of the wall, generally perpendicular to fi(x,y) and fa(x,y). In the previous version
of the model, f1(z,y),...fa(x,y) used to be sigmoid functions. However, building an intricate
environment using these sigmoid functions results in a complex wall function with a lot of
terms. This increases the computational burden as the derivative of this wall function has to
be computed for the gradient descent algorithm. Therefore, in the new model, for straight
walls, the wall potential function is defined as:

1 1 1
VWi = 1) | — 3-2
k <1 4 e—cfi(zy) * 1 4+ e—c2fe(zy) ) (1 + c3f3(, y)) (3-2)

Here, f3(z,y) generally is a linear function with very few terms. This significantly reduces
the complexity of the derivative operation because of which the computational speed of the
model is improved.

3-1-2 Pedestrian behavior

In pedestrian dynamics, the speed-density relationship is well established. It has been shown
that free-flowing walking speeds of pedestrians decrease significantly as the density of people
walking around them increases [29]. This was not implemented in the base model, because
of which simulating pedestrian behavior in crowded areas was difficult. Furthermore, studies
have evinced the fact that interpersonal distance shrinks in crowded spaces [15]. This means
that pedestrians keep less distance to one another at higher densities. Again, this had not
been implemented in the original model. Therefore, two adaptations have been made to mimic
these phenomena.

First of all, the speed-density relationship has been altered to establish decreasing walking
speeds in high density environments. A commonly used formulation for modeling the rela-
tionship between pedestrian speed and local density is the exponentially decreasing function,
such as v(p) = voe~*", where v(p) is the pedestrian speed at density p, vo is the desired
(free-flow) speed, and « is a sensitivity parameter. This formulation captures the empirically
observed behavior that pedestrian speed decreases non-linearly as density increases. The ex-
ponential function e~ is strictly decreasing, continuous, and smooth, making it suitable for
gradient-based modeling approaches. Its asymptotic behavior ensures that speed never be-
comes negative, and its curvature naturally models the diminishing marginal effect of density
on speed at higher congestion levels. The speed-density relationship in this study is based on
the above formulation and was determined using an iterative process:
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3-2 Model Optimization 11

v; = e~ 00156 (3-3)

Here, ¢; is a measure of density, namely the number of agents within a certain vicinity of
agent i. The distance threshold establishing this vicinity is set to three meters. Thus, ¢;
is defined as the number of agents within a circle with a three meter radius and with the
centerpoint being agent i. Furthermore, a; ~ N (a,04) is the agent-based desired free-flow
speed scaling factor drawn from a Gaussian distribution with mean p, = 40 and standard
deviation o, = 10.

Such exponentially decreasing speed-density relationships have been used and validated in
various studies. A notable example is Weidmann’s fundamental diagram [36], which, al-
though originally presented as a tabulated relationship, is often approximated by exponential
forms in simulation models. Similarly, Helbing’s Social Force Model [17] includes exponential
functions to describe interpersonal repulsive forces and has inspired exponential decay models
in velocity-density contexts as well.

The use of an exponential speed-density model thus offers a balance between empirical realism
and mathematical tractability, making it a suitable choice for simulating and optimizing
pedestrian behavior in crowd dynamics scenarios in regards to real-life data.

Also, the obstacle potential function has been augmented to effectuate the decrease of inter-
personal distances in high density environments, thereby improving the realism of the model
under crowded conditions. As before, ¢; denotes the number of agents in the vicinity of agent
7 and is utilized here to account for local crowding effects. The obstacle potential function is
now defined as follows:

KO
0.05(1 +0.1(56 +¢;)) ((xj — @i)® + (yj — vi)?) +0.25

This formulation reduces the spatial reach of the repulsive influence from obstacles as lo-
cal crowd density increases. In effect, the potential peak becomes narrower in high-density
scenarios, as illustrated in Figure 3-1 and Figure 3-2. As a result, the agents are allowed
to navigate closer to obstacles when surrounded by many other pedestrians, reflecting more
natural behavior in congested environments.

3-2 Model Optimization

In this section, the optimization process of the previously developed potential field model,
including all earlier explained adaptations and augmentations, is unfolded. The optimization
is tailored towards improving the realism of the simulation put forward by the potential field
model. The optimization process is mapped by explaining the optimization parameters and
the optimization method, and describing the real-life data, the KPIs, and the hardware setup
and implementation.
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12 Methodology

Figure 3-1: Obstacle potential function for Figure 3-2: Obstacle potential function for
low density (c; = 1) low density (¢; = 50)

3-2-1 Optimization parameters

As a first step of the optimization process, the optimization parameters need to be exploited.
Possible optimization parameters include:

o Function weights K,,, K, and K.

e Time step size ot

e Speed distribution for the pedestrians

e Type of potential function for a static obstacle

o Type of potential function for a dynamic obstacle

The weights assigned to the different potential field components such as static obstacles,
dynamic obstacles, and goal attraction play a crucial role in shaping pedestrian behavior in
the simulation. These weights influence how strongly a pedestrian responds to environmental
cues like walls, other pedestrians, or destinations. Calibrating these weights is essential to
ensure that the simulated movement patterns align with real-life pedestrian behavior.

The time step size determines how frequently the pedestrian positions are updated during the
simulation. If the time step is too large, pedestrians may make unrealistically large jumps,
potentially skipping over obstacles or interacting unnaturally with the environment. If the
time step is too small, the simulation becomes computationally expensive without significant
gains in accuracy. Optimizing the time step size ensures a balance between numerical stability,
realism, and computational efficiency.

The speed distribution reflects the natural variability in how fast different pedestrians move.
In real-life scenarios, pedestrian speeds are not uniform. Factors like age, intent, or congestion
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3-2 Model Optimization 13

affect walking speeds. By tuning the speed distribution used in the simulation, the model
can better reproduce realistic crowd dynamics, such as lane formation in bidirectional flows
or slower movement near bottlenecks. Accurate modeling of speed variability is particularly
important when comparing temporal KPIs like time-to-target or dwell times.

Static obstacles like walls and furniture shape how pedestrians navigate the environment.
The mathematical form of the potential function used to represent these obstacles affects
how sharply or gradually pedestrians respond to their presence. For example, an exponential
decay may lead to smoother avoidance behavior, while strong repulsion may result in abrupt
changes in trajectory. Optimizing this function type helps capture realistic pedestrian-wall
interaction patterns, such as the tendency to avoid walking too close to walls in open spaces.

Dynamic obstacles, mainly other pedestrians, require special treatment to simulate crowd
behavior effectively. The potential function used for these interactions determines how pedes-
trians anticipate and avoid collisions with others. Choosing an appropriate function type
(e.g., isotropic vs. velocity-based repulsion) is crucial for reproducing emergent behaviors
such as self-organized lanes or synchronized movement patterns in crowded environments.
This parameter directly affects the realism of collective behavior in the simulation.

Although each of the aforementioned parameters plays a meaningful role in pedestrian sim-
ulation, optimizing all of them simultaneously would be computationally infeasible due to
the long simulation runtime and the high-dimensional search space. For this reason, the
optimization in this project was limited to adjusting the weights of the potential field com-
ponents. These weights have a strong and direct influence on pedestrian behavior and could
be calibrated using surrogate modeling techniques to reduce computational cost. By focusing
on the function weights, the study balances realism with tractability while still capturing the
core dynamics necessary for validation against real-life data.

3-2-2 Optimization strategy

After determining the optimization parameters, the optimization strategy has been elected.
Several optimization strategies were considered to calibrate the parameters of the pedestrian
simulation model. Each method differs in terms of how it interacts with the simulation
and balances computational cost, flexibility, and effectiveness. The optimization methods
scrutinized for this project are brute force optimization, curve fitting and surrogate modeling.

One of the most direct approaches is brute force optimization, sometimes referred to as black-
box or direct optimization. In this method, the pedestrian simulation itself is treated as an
opaque function: the optimizer does not need to know how the simulation works internally,
only what the input parameters are and what output it produces. The optimization algorithm
proposes new parameter sets in each iteration. For each proposal, the entire simulation is
run, and a set of performance indicators are computed. The optimizer then measures how
far these indicators deviate from real-life data and uses this error to guide the next iteration.
While conceptually simple and requiring minimal setup, this method is highly computation-
ally expensive. Each function evaluation may require minutes of simulation time, and the
optimization often requires a significantly large number of evaluations. Furthermore, if the
simulation includes randomness, the optimization landscape becomes noisy and potentially
misleading for gradient-based algorithms. This method is only viable if the number of pa-
rameters is very limited and if simulation time is not a constraint.
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Another method is curve fitting, which attempts to represent the relationship between input
parameters and output indicators with a known mathematical form, such as a polynomial
or exponential function. By running the simulation for various parameter combinations and
recording the outcomes, a regression model is fitted to the data. This fitted function can then
be used to predict outcomes for new parameter values. The advantage of curve fitting is that
it is fast and simple to implement. However, its performance heavily depends on the choice
of functional form. If the true relationship between parameters and performance indicators
is highly nonlinear or exhibits complex interactions, a simple curve-fitting model may fail to
capture these dynamics. This can result in significant prediction errors, especially outside
the range of the training data. Additionally, curve fitting typically does not offer any way to
estimate the uncertainty of its predictions, making it difficult to judge the reliability of the
results.

To overcome the limitations of both brute force optimization and curve fitting, surrogate
modeling can be used as a more advanced and efficient alternative. A surrogate model is a
data-driven approximation of the simulation that can predict outputs based on input param-
eters with far less computational cost than the actual model. The process begins by selecting
a diverse set of input parameters using a design of experiments method. The simulation
is then run once for each of these parameter sets to build a training dataset. A regression
model is then trained on this dataset to learn the mapping from inputs to outputs. Once the
surrogate model is trained, optimization can be performed quickly using standard algorithms
without running the full simulation. In addition, areas of high uncertainty can be identified
and used to guide additional simulations to iteratively improve the surrogate’s accuracy in
critical regions. This approach greatly reduces the number of full simulation runs needed,
making it highly suitable for expensive or noisy simulations.

In the context of this pedestrian simulation project, surrogate modeling offers the best balance
between computational efficiency and predictive power. The original simulation is complex,
stochastic, and time-consuming to run, making brute force optimization impractical. Mean-
while, as there is no apriori knowledge regarding the type of curve describing the relationships
between parameters and performance indicators, simple curve fitting cannot capture these re-
lationships reliably. Surrogate modeling enables the use of powerful optimization techniques
while keeping simulation cost under control and allowing for uncertainty-aware decision mak-
ing. As such, it forms a core component of the methodology used in this thesis.

To construct an efficient and accurate surrogate model for the pedestrian simulation, sev-
eral types of regression models and sampling strategies were considered. Regression models
serve as the core of surrogate modeling by learning the relationship between input parameters
and simulation outputs based on a limited set of training data. Common types include lin-
ear regression, polynomial regression, radial basis function (RBF) models, neural networks,
and Gaussian Process Regression (GPR). Linear and polynomial regressions are simple and
interpretable but often struggle to capture nonlinearities present in complex simulation out-
puts. RBF models are more flexible and can adapt to local variations, yet they lack built-in
uncertainty quantification [4]. Neural networks are powerful for modeling highly nonlinear
relationships but require a large amount of data and do not inherently provide uncertainty es-
timates [14]. In contrast, Gaussian Process Regression models are particularly well-suited for
surrogate modeling, especially when training data is limited and uncertainty quantification is
important. GPR models not only provide predictions but also quantify the confidence of each
prediction, which is valuable in guiding optimization and understanding model reliability [30].
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Mathematically, Gaussian Process Regression assumes that the function to be learned is a
sample from a multivariate Gaussian process defined by a mean function m(x) and a covari-
ance (kernel) function k(z,2’). Given training inputs X = {x1,x9, ..., 2, } and corresponding
outputs ¥y = {y1,¥2,..-,yn}, the GPR model predicts the output y. at a new input z, by
computing the conditional distribution of the joint Gaussian distribution of training and test
outputs. The prediction is given by a Gaussian distribution with mean

w(z) = k(zw, X)[K + 021y (3-5)

and variance

02(24) = (x4, 2) — k(ze, X)[K + 021 k(X 2,) (3-6)

where K is the covariance matrix constructed from the kernel function over the training
inputs, and o2 represents the noise variance. The kernel function encodes assumptions about
the smoothness and behavior of the underlying function, with its parameters learned from
the data [34].

The GPR model has been trained on data created by the pedestrian simulation model using
a number of parameter sets. The experiment which was used to create this data is explained
in Section 3-2-4. For effective surrogate modeling, the choice of the sampling for these pa-
rameter sets is of large importance. A naive approach would be to randomly sample input
parameters, but this often leads to clusters and gaps in the parameter space, especially in
higher dimensions. Latin Hypercube Sampling (LHS) divides the input parameter space into
equally probable intervals along each dimension and ensures that each interval is sampled
exactly once, resulting in a more uniform and efficient sampling distribution, especially in
higher dimensions [27]. For these reasons, LHS was selected as the sampling method when
developing the surrogate model.

In this project, a Gaussian Process Regression model was trained on data generated from
Latin Hypercube Sampling of the input parameter space. Each sample point represented a
unique configuration of the simulation parameters, and the associated outputs were the Key
Performance Indicators (KPIs) computed from the pedestrian simulation. This combination
of GPR and LHS enabled the construction of a surrogate model that was both computa-
tionally efficient and capable of generalizing across a broad parameter space with quantified
prediction uncertainty. This surrogate model was subsequently used for optimization, allow-
ing for rapid evaluation of model performance and efficient parameter calibration without
requiring repeated full simulation runs.

A critical component of GPR is the choice of kernel function, also known as the covariance
function, which defines the similarity between input points and encodes prior assumptions
about the smoothness and structure of the target function. Several types of kernel functions
are commonly used in GPR, each with distinct characteristics and suitability for different
modeling tasks [30].

One widely used kernel is the Squared Exponential (SE) kernel, also known as the Radial Basis
Function (RBF) kernel. It assumes the function being modeled is infinitely differentiable and
thus very smooth. Its covariance between two input points z and 2’ is given by:
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T — 2
ksp (2, 2") = szf exp <—H2€2”> (3-7)

where oj% is the signal variance and £ is the length-scale parameter controlling how quickly
the correlation decays with distance.

Another popular family of kernels is the Matern class, which introduces an additional smooth-
ness parameter v. The Matern kernel provides more flexibility in modeling functions with
varying degrees of differentiability. In particular, the Matern-3/2 kernel, defined as:

Fnsa (2, 2) = o (1 + W) exp (—W) (3-8)

assumes that the target function is once differentiable and is less smooth than the SE kernel,
while it still is assumed continuous [34].

Other commonly used kernels include the Matern-5/2 kernel, which assumes the function is
twice differentiable and offers a balance between flexibility and smoothness, and the Rational
Quadratic kernel, which can be seen as a scale mixture of SE kernels and is useful for modeling
functions with varying length scales [30].

In this study, the Matern-3/2 kernel was chosen for the GPR model. Compared to the SE ker-
nel, the Matern-3/2 kernel avoids over-smoothing and better captures localized variations in
the simulation response surface, which is particularly important given the noisy and nonlinear
nature of pedestrian dynamics.

3-2-3 Algorithm and search space

To identify the optimal parameters for the simulation model, the surrogate model was opti-
mized using the particle swarm optimization (PSO) algorithm. PSO is a population-based,
stochastic optimization method inspired by the social behavior of flocks of birds and schools
of fish [23]. In this approach, a set of candidate solutions (particles) explore the search space,
adjusting their positions based on their own best-found solutions and the global best solution
identified by the swarm. This mechanism enables a balance between exploration of the search
space and exploitation of promising regions, which is particularly beneficial for non-convex,
multimodal objective functions where gradient information is unavailable or unreliable.

A swarm size of 30 was chosen to provide a sufficient level of diversity in the search process
while keeping the computational cost of the surrogate-based optimization manageable. This
choice reflects a trade-off between the algorithm’s convergence speed and the likelihood of
escaping local optima.

PSO was preferred over other global optimization methods such as genetic algorithms or
Bayesian optimization. Bayesian optimization is widely recognized for its efficiency in low-
dimensional, smooth problems. However, its performance can degrade in high-dimensional or
multimodal settings, which increases the sample complexity required to model the objective
function accurately [12]. Additionally, as bayesian optimization with GPR often assumes
some degree of smoothness, the GPR surrogate model can struggle to represent potential
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Environment of the bidirectional corridor experiment
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% Figure 3-4: A frame from the real-life bidi-
rectional corridor experiment. Taken from
Figure 3-3: The environment of the bidi- [11].

rectional corridor experiment. The walls are
depicted in red.

sharp discontinuities ingrained in the objective function, limiting its effectiveness in such
scenarios. As the objective function is unknown in this case, it is preferred to not presuppose
any smoothness assumptions.

Furthermore, genetic algorithms offer a comparable global search capability to PSO, but
often require more complex parameter tuning and can converge more slowly. In contrast,
PSO combines a relatively simple implementation with good empirical performance on high-
dimensional, non-convex optimization problems [32], making it a suitable choice for this ap-
plication. It requires relatively few design parameters and avoids gradient dependence, which
makes it attractive for optimization tasks where function smoothness or convexity is not
guaranteed.

Based on the initial parameter values of the original model from [26], the search space for the
PSO algorithm has been determined to be as follows:

0.001 < KW <0.15
0.001 < KG <0.2
0.0001 < KO <0.015

3-2-4 Simulated training data

As stated, the surrogate model is trained by a dataset created by running an experiment
with the simulation model over a number of parameter sets. This experiment is based on a
study consisting of an experiment conducted in a bidirectional corridor environment [11]. The
environment consists of two perpendicular walls, as depicted in Figure 3-3. The agents walk
into the environment either from the left or the right side to eventually reach the opposite side
of the corridor. A camera was mounted at the ceiling which recognizes the pedestrian by a
certain helmet that they are wearing, as can be seen in Figure 3-4. The agents are recognized
by the camera between approximately x = —5 and x = 5.
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3-2-5 Key performance indicators

To calibrate the pedestrian simulation model and ensure its outputs align with empirically
observed human behavior, a set of twelve key performance indicators (KPIs) has been defined.
These KPIs have been chosen to comprehensively capture both low-level interaction dynamics
and high-level behavioral patterns, ensuring that the model replicates real-life pedestrian
movement under a variety of conditions to a high degree.

The first four KPIs quantify the frequency of inter-agent proximity events within thresholds
of 0.1 m, 0.3 m, 0.5 m, and 1.0 m, respectively. These metrics are crucial for modeling social
spacing behavior, as humans tend to maintain a personal buffer zone to avoid discomfort or
collisions. By incorporating multiple distance thresholds, the model can be tuned to capture
not only hard collisions but also near misses and general crowding effects.

In addition to inter agent interactions, physical interactions with the environment are consid-
ered through the wall collision KPI, which measures the frequency with which agents collide
with walls and other static obstacles. This helps penalize unrealistic behavior such as direct
contact with impenetrable boundaries.

Beyond collision-related KPIs, the model’s ability to reproduce realistic movement patterns
is assessed via the distributional properties of agent speeds and lateral (y-axis) trajectories.
Specifically, the speed distribution is summarized by fitting a beta distribution to the observed
speed samples and extracting its « and [ parameters. These parameters serve as compact
representations of the underlying statistical behavior and allow for easy comparison between
simulated and experimental data. A similar approach is taken for the lateral distribution of
paths: since the experimental setup involves straight-line motion in a corridor along the x-
axis, only the y-coordinates are informative for analyzing how agents deviate from the central
path. Fitting a beta distribution to the y-positions across all trajectories again yields o and
£ parameters that serve as robust KPIs.

To further capture deviations in path smoothness and irregularities, the variance in the y-
direction of each trajectory is computed. This KPI quantifies the "squiggliness" of agent
paths, with higher variance indicating erratic or unstable behavior, which is generally not
observed in controlled pedestrian movement.

To obtain a more general and systematic assessment of the simulation model’s performance
relative to real-life data, a step-by-step comparison was conducted at the level of individual
agents and timesteps. Specifically, at each timestep in the empirical dataset, the complete
state of the system, that is, the positions of all agents and other obstacles, was provided as
input to the simulation model. The model then computed the subsequent position (or "next
step") for each agent based on this input. This predicted position was then compared to
the actual next position of the corresponding agent in the empirical data. The discrepancy
between the predicted and observed steps offers a direct validation of the model’s decision-
making process, allowing for a detailed evaluation of its ability to replicate pedestrian behavior
under realistic conditions.

Lastly, the goal reached percentage is included as a sanity check to ensure that the simulated
agents successfully complete their navigation tasks. This metric captures failure cases due to
poor potential field design, such as agents getting stuck in local minima or being blocked by
high-gradient regions.
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Since the sampling frequency of the empirical data (25 Hz) differs from that of the simulation
model (4 Hz), all KPIs that are influenced by the sampling rate, which are all collision-related
KPIs, the variance in y-direction KPI, and the goal reached percentage KPI, were normalized
to be invariant with respect to the sampling rate. This has been done by multiplying each
KPI by the sampling rate corresponding to its respective dataset. Furthermore, because the
number of agents spawning in the simulation is governed by a stochastic process and may
not match the number of agents observed in the real-life experiment, these KPIs were also
normalized by dividing by the total number of agents present in the corresponding dataset.
These adjustments ensure that the KPIs reflect per-agent and per-second rates, allowing for
meaningful comparisons between simulated and empirical data.

Together, these KPIs provide a multi-scale evaluation framework that enables robust op-
timization of the model parameters and ensures both physical plausibility and behavioral
realism.

The values for all KPIs cannot be less than zero. However, for some KPIs, e.g. the wall
collision KPI, the values for the training data will be close to zero. Therefore, to ensure that
the surrogate model does not predict any negative values for any of the KPIs, the surrogate
model has been trained on the square root of the training data values. The final predicted
KPI results from squaring the surrogate model prediction value. In this manner, no negative
values will be predicted by the surrogate model.

3-2-6 Hardware setup and implementation

For all computations in this study, the software used was MATLAB R2021b and it was
performed on a machine with a Ryzen 3700x CPU and 16GB of RAM.
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Chapter 4

Optimization Results

The optimization process was established by assigning an objective function of the form:

Join, @ =y-9"Sy -9 (4-1)

Here, y is a vector containing the values of the KPIs for the real-life bidirectional corridor
experiment, y is a vector containing the KPI values predicted by the surrogate model and X
is a weight matrix.

The optimization has been performed in three steps. First of all, the optimization was per-
formed by assigning unity weights to all KPIs by using an identity matrix as the weight
matrix. This optimization yielded the following results:

KW* = 0.0251, (4-2)
KG* =0.0192, (4-3)
KO* = 0.0045. (4-4)

Subsequently, a local linearization was performed around this optimum to estimate the covari-
ance matrix. Each parameter was perturbed five times with a maximum absolute perturbation
of 1074, For each perturbation, a vector was constructed containing the residuals between the
predicted KPI values at the optimum and those at the perturbed parameter values. These
residual vectors were assembled into a matrix, where each row corresponds to the perturba-
tions of a single parameter. The covariance matrix was then computed from this residual
matrix and the resulting covariance matrix is shown below:
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[ 1 099 099 097 091 —049 063 095 0.84 0.96 0.06 —0.45 ]
0.99 1 099 098 093 -054 062 095 087 097 0.15 —-0.54
0.99  0.99 1 098 092 —-054 063 09 08 096 0.16 —0.55
097 098 0.98 1 098 —-0.67 048 089 079 098 0.26 —0.58
091 093 092 0.98 1 -0.74 030 080 068 097 0.30 —-0.53

—-049 -0.54 —-0.54 —-0.67 —0.74 1 018 —-0.33 —-021 -0.64 -0.56 0.58
0.63 062 063 048 030 0.18 1 08 08 049 -0.17 -0.34
095 095 09 089 0.8 —-0.33 0.80 1097 090 0.06 —0.52
0.84 087 088 079 068 —-0.21 0.85 0.97 1 080 0.11 —-0.58
096 097 096 098 097 —-0.64 049 090 0.80 1 028 -0.57
0.06 015 016 026 031 -056 —-0.17 0.06 011 0.28 1 —-0.82

| 045 -0.54 -0.55 -0.58 -0.53 0.59 -0.34 -0.52 -0.58 -0.57 -0.82 1]

(4-5)

The inverse of this covariance matrix was used as the weight matrix in the second optimization
step, which yielded:

KW* =0.0117, (4-6)
KG* = 0.0045, (4-7)
KO* = 0.0016. (4-8)

Since this optimum differed substantially from the first, another linearization was performed
around the new optimum to obtain an updated covariance matrix:

[ 1 097 099 094 045 —0.77 043 097 095 0.68 —0.11 —0.54 ]
0.97 1 0.99 1 063 -08 020 091 095 083 —-0.06 —0.43
0.99  0.99 1098 059 —-082 029 09 097 079 —-0.06 —-0.46
0.94 1 098 1 069 -0.87 013 088 094 087 —-0.04 —-0.39
045 0.63 059 0.69 1 -0.65 —-052 046 062 095 031 0.24

—-0.77 —-0.86 —-0.82 —-0.87 —0.65 1 012 -0.63 -070 —-0.77 011 0.34
043 020 029 013 -052 0.12 1 047 031 -031 -047 -0.61
097 091 095 088 046 -0.63 0.47 1 098 0.67 —0.00 —0.43
095 095 097 094 062 —-0.70 031 0.98 1 081 0.02 —-0.33
068 083 079 087 095 —-0.77r —-0.31 0.67 081 1 026 0.04

-0.11 -0.06 -0.06 -0.04 031 011 -0.47 -0.00 0.02 0.26 1 0.52

| —0.54 -043 -046 -0.39 024 034 -0.61 -043 -0.33 0.04 0.52 1 ]

(4-9)

Using this covariance matrix as the weight matrix in the third optimization step yielded the
same optimum as in the second step. Consequently, this solution was adopted as the final
result of the surrogate-model-based optimization.

Since the optimization was performed on the surrogate model, minor adjustments were nec-
essary to obtain the corresponding optimum for the full simulation model. An iterative
refinement process was therefore applied, leading to the following best-performing parame-
ters:
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KW = 0.0128, (4-10)
KG = 0.0060, (4-11)
KO =0.0014. (4-12)
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Chapter 5

Surrogate Model Validation

In this chapter, the accuracy of the surrogate model is checked by means of a validation
analysis. This is done to validate its use for the optimization of the simulation model and the
sensitivity analysis.

As described, the surrogate model is a mathematical representation of the potential field
model. The surrogate model is used only for optimization purposes, not for direct simulation
or prediction. Therefore, the main goal of the validation analysis is to ensure that the sur-
rogate model is accurately mimicking the potential field model, especially around the found
optimum.

Three validation analysis methods are used to validate the surrogate model: coefficient of
determination analysis, local error analysis and predictive uncertainty analysis.

5-1 Coefficient of determination analysis

A coefficient of determination, R?, is a statistical measure used to assess how well a mathe-
matical model explains the variability in a set of observed data [31]. It is defined as follows:

Zg\il(yi,true - yi,pred)2

R*=1- i
Eﬁl(yi,true - ytrue)2

(5-1)

Here, N represents the number of data points, e is the true data and y,,..q is the output
predicted by the surrogate model. Generally, a surrogate model with an R? value above 0.8
is considered a ‘good’ model [6]. The R? values for the surrogate models for each KPI are
depicted in Table 5-1.

Among all surrogate models, the one predicting the 8 parameter of the path distribution in
the y-axis direction exhibits the lowest predictive accuracy, with an R? value falling below
the threshold of 0.8. A scatter plot comparing predicted and true values for this model is
shown in Figure 5-1, where the ten least accurate predictions are highlighted in red. Notably,
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the majority of these poorly predicted points correspond to scenarios with e > 1.3, a
region that is relatively sparsely populated in the dataset. This suggests that relatively few
simulations captured pedestrian dynamics resulting in such skewed path distributions. As
a consequence, the surrogate model has had limited training exposure to this region of the
parameter space, which likely contributes to the reduced accuracy.

Table 5-1: R™2 values for all surrogate models

KPI R™2

Agent collisions (<0.1 m) 0.9298
Agent collisions (<0.3 m) 0.9917
Agent collisions (<0.5 m) 0.9883
Agent collisions (<1.0 m) 0.9867
Wall collisions 0.8129
Speed distribution alpha 0.9184
Speed distribution beta 0.9284
Paths y-axis distribution alpha 0.9035
Paths y-axis distribution beta | 0.7891
Variance y-direction 0.9840
Discrepancies 1.00

Goal reached percentage 0.9957

Surrogate Fit of Beta Parameter Paths Distribution Y-Axis Model
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Figure 5-1: Scatter plot of surrogate fit of beta parameter paths distribution y-axis model. The
ten worst fitted points are depicted in red and the line visualizing a perfect fit is depicted in pink.

Despite the lower model fit, this limitation is unlikely to undermine the validity of the sim-
ulation outcomes. Since high £ values in the y-axis path distribution are relatively rare,
the model’s predictive performance remains reliable in the regions most relevant to practical
scenarios. This conclusion is supported by the true and predicted distributions for the three
worst-fitting cases, shown in Figure 5-2. Even in these cases, the surrogate model reproduces
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the general shape of the true distributions reasonably well, suggesting that the predictive
limitations are not critical.

Furthermore, Figure 5-3 displays the three best-fitting distribution cases, which illustrate the
surrogate model’s capacity to closely match the true distributions when sufficient training data
is available. These results underscore that the model is robust and accurate in the parameter
regions most frequently encountered during simulation, supporting its overall suitability for
the sensitivity and optimization tasks at hand.
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Figure 5-2: The three worst fitted distributions for the beta parameter paths distribution y-axis
model with appurtenant alpha values.

True vs Predicted Beta Distributions - Best Fits
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Figure 5-3: The three best fitted distributions for the beta parameter paths distribution y-axis
model with appurtenant alpha values.

5-2 Local Error Analysis

As an additional validation check, the values of the KPIs predicted by the surrogate model
are compared to the values of the KPIs produced by simulating the simulation model for the
bidirectional corridor experiment, as depicted in Table 5-2. The values are an average of three
separate simulations.
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Table 5-2: KPI values for simulation model and surrogate model at the optimum

KPI Simulation Model | Surrogate Model
Agent collisions (<0.1 m) 0.0823 0.0850
Agent collisions (<0.3 m) 1.7215 1.7335
Agent collisions (<0.5 m) 4.3509 4.7346
Agent collisions (<1.0 m) 15.6158 19.5395
Wall collisions 0 7.5813e-04
Speed distribution alpha 0.8199 0.7955
Speed distribution beta 20.3820 20.2791
Paths y-axis distribution alpha | 1.1252 1.2179
Paths y-axis distribution beta | 1.1736 1.2724
Variance y-direction 1.3246 1.5661
Discrepancies 2.2124e4-05 2.1420e+-05
Goal reached percentage 0.9576 0.9086

The comparison between the KPI values obtained from the surrogate model and the simulation
model indicates that the surrogate model reproduces the majority of the key behavioral and
interactional features of the pedestrian dynamics with high fidelity. For short-range inter-
agent proximity events (distances below 0.1 m and 0.3 m), the surrogate model shows excellent
agreement with the simulation model, suggesting that its learned interaction dynamics are well
calibrated for collision avoidance and close-range spacing. Similarly, the speed distribution
parameters (o and ) and the lateral trajectory distribution parameters are reproduced with
only minor deviations, indicating that both movement speeds and spatial positioning patterns
are faithfully captured.

However, discrepancies become more noticeable for longer-range proximity events (0.5 m and
1.0 m), where the surrogate model slightly overestimates the frequency of such events, poten-
tially reflecting a reduced sensitivity to mid-range personal space. A similar overestimation
is observed in the variance of the y-direction trajectories, suggesting a tendency towards
marginally more erratic lateral movement in the surrogate model compared to the simulation
model.

The wall collision rate in the surrogate model is negligible but not zero, whereas the simulation
model reported no wall collisions. Although the absolute magnitude of this difference is small,
it could indicate a subtle divergence in obstacle avoidance behavior. The “discrepancies” KPI,
which directly measures the difference between predicted and actual next-step positions, shows
close agreement, further confirming that the surrogate model’s decision-making is consistent
with the simulation model at the local, per-timestep level.

Finally, the goal completion percentage is slightly lower in the surrogate model, which may
reflect occasional inefficiencies in navigation or increased susceptibility to local minima in the
potential field. Overall, the surrogate model demonstrates strong predictive capability across
all KPIs, with only modest deviations in mid-range proximity handling and lateral stability,
making it a reliable computational proxy for the full simulation model in the studied scenario.
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Figure 5-4: Standard deviations for GPR model for agent collisions < 0.1 m KPI. Here, KO has
been kept fixed.

5-3 Predictive Uncertainty Analysis

Since the GPR model inherently provides estimates of the standard deviation, these were
utilized to perform a predictive uncertainty analysis in order to assess whether the model
exhibits sufficient certainty in the vicinity of the optimum. In this analysis, one parame-
ter was fixed (KO in this case), while the other two parameters were perturbed across the
search space defined for the optimization. The corresponding standard deviation values were
then computed and mapped for all KPIs. An illustrative example of the resulting standard
deviation distribution for one of the KPI models is presented in Figure 5-4.

The results indicate that the optimum is located well within the 50th percentile of the pre-
dicted standard deviation values. This finding suggests that the model demonstrates relatively
high confidence in its predictions near the optimum. Furthermore, since multiple regions of
the parameter space exhibit comparable levels of standard deviation, the optimum does not
appear to be located in an overtrained region but rather in a representative and stable portion
of the parameter space.

Since this behavior is consistently observed across all KPIs, as demonstrated in Appendix A,
which provides an overview of the complete uncertainty analysis, the model outputs in the
vicinity of the optimum can be regarded as reliable, neither excessively uncertain nor indica-
tive of overtraining.
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Chapter 6

Simulation Model Testing and
Validation

In this chapter, the simulation model is subjected to testing and validation. Testing is con-
ducted by replicating the bidirectional experiment used for training the surrogate model and
comparing the simulation outputs with the real-life data. Validation is performed using both
additional metrics from the bidirectional corridor experiment and a distinct experiment in-
volving a bottleneck scenario.

6-1 Testing

Since the surrogate model was trained on data from a bidirectional corridor experiment, the
simulation model as explained in Chapter 4 is tested against this dataset as well. This dataset
concerns the experiment as explained in Section 3-2-4. For each agent, the captured data
consists of the agent’s ID, their position and the corresponding timestep of the experiment.
A twosome of these experiments has been used for the validation data, consisting of 151 and
176 agents, respectively.

As the simulation model is computationally heavy and it has to be ran for a lot of different
parameter sets to create a reliable surrogate model, the simulation time for the simulations
in the dataset cannot be too large. Therefore, for the real-life dataset to be suitable, it has
been filtered to only contain agents that spawn within the simulation time of the simulation
used when creating the training data for the surrogate model.

For testing, first of all, the KPIs of the simulation model have been compared to the real-
world dataset of the bidirectional experiments as presented in Table 6-1. As the discrepancies
KPI is only valuable for optimizing the surrogate model, this KPI has been left out for this
comparison.

First of all, the collision-related KPIs (<0.1 m, <0.3 m, <0.5 m, and <1.0 m) reveal several
important patterns. At the <0.1 m threshold, the real-life data reports no such close encoun-
ters, whereas the simulation yields a non-zero value (0.0823). Although this value is still low,
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Table 6-1: KPI values for simulation model and real-life data for bidirectional corridor experiment

KPI Simulation Model | Real-Life Data
Agent collisions (<0.1 m) 0.0823 0
Agent collisions (<0.3 m) 1.7215 0.3273
Agent collisions (<0.5 m) 4.3509 4.138
Agent collisions (<1.0 m) 15.6158 33.7264
Wall collisions 0 0
Speed distribution alpha 0.8199 0.7048
Speed distribution beta 20.3820 20.2518
Paths y-axis distribution alpha | 1.1950 1.3777
Paths y-axis distribution beta | 1.2696 1.7309
Variance y-direction 1.3246 0.4993
Goal reached percentage 0.9576 0.9432

it indicates that the model occasionally permits agents to approach distances that, in the
experiment, were never observed. Given that separations below 0.1 m represent near-physical
contact, this difference is notable. Moreover, for <0.3 m encounters, the simulation records
substantially more occurrences than the real-life data, pointing to a tendency for agents to
accept closer interpersonal distances than observed experimentally. Overall, it seems that the
model struggles somewhat to represent pedestrian dynamics at low proximities.

Second, in the intermediate range around <0.5 m, the simulation aligns closely with empir-
ical observations. This suggests that for medium-range avoidance, where pedestrians must
navigate but do not necessarily take evasive action, the model reproduces human behavior
with high fidelity. Furthermore, at the largest threshold (<1.0 m), the simulation produces
fewer proximity events than the empirical dataset, indicating that it may underestimate the
frequency of mild crowding situations or larger-scale interactions.

The wall collision KPI remains zero in both datasets, confirming that the simulation reliably
prevents agents from making contact with static boundaries.

Regarding movement-related KPIs, the fitted beta distribution parameters for both speed,
which are depicted in Figure 6-1 and Figure 6-2, are in close agreement with those from the
real-life data, indicating that the overall speed profiles. For the lateral (y-axis) positions,
which are depicted in Figure 6-3 and Figure 6-4, there is some difference as the trajectories
seem to be more spread out towards the edges of the corridor for the simulation experiment
while being slightly more concentrated towards the center fo the corridor for the real-life data.
However, as can be seen in the plots, the overall shape of the distribution is similar which
indicates that the general spatial usage of the corridor is captured well.

However, a more pronounced difference emerges in the variance of the y-direction: the real-life
trajectories exhibit a variance of 0.4993, whereas the simulation yields a higher value of 1.3246.
This indicates that the simulated agents follow more laterally oscillatory or “squiggly” paths
than their real-life counterparts. This could be a byproduct of the gradient-descent navigation
method producing small oscillations in direction.

Finally, the goal-reached percentage is nearly identical for simulation and reality, confirming

that almost all agents successfully reach their destination in both scenarios.
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In summary, the simulation model reproduces medium-range collision avoidance and overall
locomotion patterns with high accuracy, but diverges from the empirical data at very short
interpersonal distances (<0.1 m), overestimates the frequency of close encounters (<0.3 m),
and generates more laterally variable trajectories. These findings suggest that while the model
successfully captures the main features of the bidirectional corridor flow, further refinement
of short-range avoidance behavior and trajectory smoothness could yield even closer corre-
spondence with observed pedestrian dynamics. However, as the general characteristics of the
bidirectional corridor experiment are matched by the model, it is a reliable basis for further
validation and extension.
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6-2 Validation

In this section, the simulation model is validated by means of performance metrics that were
not employed during the optimization of the surrogate model. Specifically, this validation is
carried out by analyzing additional metrics from the bidirectional corridor experiment and
evaluating metrics derived from an separate scenario involving a bottleneck configuration.

6-2-1 Bidirectional Corridor Experiment

In addition to the tests presented in the previous section, the bidirectional corridor experiment
is further utilized to assess the validity of the simulation model. The focus of this assessment
lies on metrics related to the phenomenon of lane formation, which describes the self-organized
emergence of unidirectional paths within a crowd. Individuals entering such lanes tend to
remain within them by following those ahead, thereby reinforcing the structure.

As commonly observed in densely populated environments, lane formation also emerged in the
empirical bidirectional corridor experiment, despite the fact that participants were entirely
unconstrained in their point of entry and their choice of route through the corridor [11]. How-
ever, since the agents in the real-life experiment had already entered the corridor before their
positions were captured by the camera, formation characteristics were already present prior
to the start of the recorded experiment. To enable a meaningful comparison, the distribu-
tions of the agents’ initial y-coordinates for each walking direction were examined. Figure 6-7
and Figure 6-8 present histograms of these initial y-positions for both walking directions in
the empirical bidirectional corridor experiment. The results show that both distributions are
skewed toward the opposite side of the corridor, indicating that agents were more likely to
begin their trajectories near one side of the corridor depending on their walking direction.
To reproduce this effect in the simulated experiment, beta distributions were fitted to the
empirical starting y-coordinates for each walking direction, and the simulated agents’ initial
y-positions were subsequently sampled from these fitted distributions.

Figure 6-5 illustrates a snapshot of the real experiment, displaying the direction of the target
location for each participant. The snapshot corresponds to a time step 10 seconds after the
start of the experiment, which reflects the delay required for lane formation to develop. It can
be observed that the participants organized into two predominant groups moving in opposite
directions, with only a few individuals deviating from this structure.

For the simulated experiment, a snapshot at the same timestep is depicted in Figure 6-6. A
similar observation can be made as there are again two main groups, although they seem to
be slightly less organized than for the real-life experiment. Furthermore, it can be observed
that the agents seem to walk closer to each other, in line with the conclusion from model
testing.

Furthermore, Figure 6-9 presents two overlapping histograms of the lateral distributions of
agents walking from left to right and from right to left in the real-life experiment. It is
clearly observable that the peak of the histogram corresponding to one walking direction
generally coincides with the trough of the distribution for the opposite direction, and vice
versa. This pattern provides additional evidence for the presence of lane formation. Again, the
much similarity can be seen in Figure 6-10, which are the same histograms for the simulated
experiment, although the inverse correlation is less strong.
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Additionally, to get a more quantified understanding of the lane formation in the empirical
bidirectional corridor experiment, a number of metrics has been computed. First of all, the
overlap coefficient (OVL) is used. This metric is used to determine the overlap of distributions
and is defined as:

OVL = [ win{p (5).p-(1)}dy (6-)

Here, p4(y) is the distribution corresponding to the trajectories for the agents walking in the
positive x-direction while p_(y) is the distribution for the agents walking in the negative x-
direction. In this context, the OVL can be used to determine to what extent the distributions
of the lateral trajectory positions coincide for both walking directions. The coeflicient ranges
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from 0 to 1, with a value of zero meaning there is no coincidence of the two distributions
while a value of 1 means the distributions are exactly the same.

The second metric is the zero-lag coefficient which is derived from the cross-correlation be-
tween the two distributions for lag 7 = 0:

Rl = 0] = 53 p[n] - p-[n] (6-2)

Here, N is the number of bins for the histograms. When computing the zero-lag coefficient,
this number has been increased compared to the histograms in the figures, to create a more
accurate representation of the distribution.

A positive zero-lag correlation means that the density peaks of the two directions occur at
similar lateral positions, indicating a lack of lane segregation and more overlap between flows.
A negative zero-lag correlation implies that the peaks of one distribution align with the
troughs of the other. This is characteristic of interleaving lanes, where pedestrians moving in
opposite directions occupy alternating lateral positions. Finally, a value close to zero indicates
no clear relationship.

The third metric is average peak offset which quantifies the lateral misalignment between the
peak density locations of opposing pedestrian streams. In histograms of the lateral positions,
each direction tends to produce peaks corresponding to preferred walking lanes. In well-formed
bidirectional lanes, these peaks are interleaved: the maxima of one distribution coincide with
the minima of the other, minimizing conflicts. The peak offset is defined as the average lateral
distance between these peaks, serving as a measure of how well the two flows avoid spatial
overlap. A small peak offset implies weak or unstable lane segregation, whereas a larger
and more consistent offset indicates effective interleaving and stronger spatial coordination.
This metric complements lane spacing by directly measuring the spatial alignment between
opposing streams.
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Environment for bottleneck experiment

Figure 6-11: Environment for the bottleneck experiment.

A quantitative comparison of the lane formation metrics is depicted in Table 6-2. The OVL
was similar but slightly higher in the simulation than in the real data, suggesting that the sim-
ulated flows exhibit greater overlap between counterflowing streams and therefore less distinct
lane segregation, albeit only slightly. The zero-lag correlation was moderately negative for
the simulation and strongly negative for the real data, indicating that while both experiments
show a certain degree of alternating lane structure, the effect is more pronounced in reality.
Finally, the peak offset between the two directional histograms was very comparable in the
simulation and the real data. Taken together, these results indicate that the model captures
the qualitative tendency for lanes to emerge in bidirectional flow in a similar manner to the
real-life experiment, although the lanes are less pronounced and marginally more overlapping
than in the empirical data.

Table 6-2: Lane forming metrics for simulation model and real-life data for bidirectional corridor

experiment
Lane Forming Metric Simulation Model | Real-Life Data
Average overlap coefficient | 0.317 0.215
Average zero-lag correlation | -0.332 -0.708
Average Peak offset (m) 0.16 0.20

6-2-2 Bottleneck experiment

In addition to the bidirectional corridor experiment, the model was further validated using a
different experimental setup involving a bottleneck scenario, also with a corresponding real-life
dataset [10]. The corresponding environment is illustrated in Figure 6-11. In this experiment,
agents enter the environment from the negative y-direction and attempt to traverse the narrow
corridor toward the positive y-direction. There is a camera mounted on the ceiling which
detects and tracks the trajectories of all agents. As in [10], it is not mentioned what area is
captured exactly by the camera it has been assumed that the camera tracks agents between
y = —2.7, since this is the rounded average y-coordinate of the agents entering the experiment
and y = 4 as this is the boundary of the environment.
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This experiment has been run three times with the simulation model and the average outputs
have been documented. Again, the simulation time reduced for the simulation compared to
the real experiment, to decrease the computational burden. Therefore, the real-life data was
filtered regarding the agents’ spawning times just as with the bidirectional corridor experi-
ment. The resulting trajectories for the real-life experiment and one of the simulations are
depicted in Figure 6-12 and Figure 6-13, respectively.

A first observation from the inspection of the simulated agent trajectories is that some trajec-
tories extend beyond the camera’s field of view. This occurs because agents occasionally take
steps in the negative y-direction when the local density at their spawning location, which is
defined as —2.5 <z < 2.5, y = —2.7, is very high. In the real experiment, however, such be-
havior is not observed, since agents enter the environment at a position outside the camera’s
range. Consequently, any sorting behavior that prevents agents from stepping backward is
contained within portions of the trajectories that remain unrecorded. Moreover, even if such
behavior were to occur in reality, it would be impossible to be captured by the camera.

Moreover, the previously established KPIs have been used as a validation analysis for the
simulation model under the bottleneck conditions. However, since the KPIs regarding the
distribution for the lateral position of the trajectories are only valuable for the bidirectional
corridor experiment, these KPIs are left out for the bottleneck experiment. This is because
of the fact that in the bottleneck experiment, the distribution will always look very similar,
as all agents have to pass the narrow corridor, resulting in a large peak at those coordinates.
A comparison for the remaining KPIs is presented in Table 6-3.

For most KPIs the outcome is very similar to that of the test case, even under these more
congested circumstances. Compared to the real-life data, the simulation model again allows
significantly more close encounters, while being very comparable regarding the encounters for
a vicinity of 0.5 m and 1.0 m. Furthermore, there are no wall collisions, implying that, also
in this environment, the physical boundaries are respected by the agents.

The speed distribution parameters show partial agreement. The « values are close, indicating
that the shape of the speed profile is consistent across model and data. However, the
parameter differs substantially, implying that the simulation underestimates the skewness
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Table 6-3: KPI values for simulation model and real-life data for bottleneck experiment

KPI Simulation Model | Real-Life Data
Agent collisions (<0.1 m) | 1.4249 0

Agent collisions (<0.3 m) | 9.6964 0.6202

Agent collisions (<0.5 m) | 18.2232 15.8779

Agent collisions (<1.0 m) | 69.1577 61.7155

Weall collisions 0 0

Speed distribution alpha | 1.3858 1.4310

Speed distribution beta 4.8795 12.7046

Variance y-direction 1.3129 0.4993

Goal reached percentage | 0.3348 0.4471

of the empirical speed distribution, likely due to differences in how deceleration is handled
in high-density conditions. The variance in the y-direction is considerably higher in the
simulation than in the real data, showing that simulated trajectories are far more laterally
variable or “squiggly.” This suggests that the model generates excess oscillatory movement
when agents attempt to pass through the bottleneck.

The goal-reached percentage shows that the simulation yields a lower completion rate com-
pared to the empirical data. At first glance, this might suggest that the model underestimates
effective throughput. However, it must be taken into account that the simulated experiments
contain a larger total number of agents, namely 233 on average, than the real-life experiment,
which contains 170 agents. As a result, the lower goal-reached percentage in the simulation
does not necessarily indicate poorer congestion resolution, but rather reflects the fact that a
larger number of agents compete for passage through the same bottleneck within the fixed
simulation time.

This interpretation is supported by the throughput metrics in Table 6-4. The simulation
produces both a higher average total throughput and a higher average throughput per second.
It can be seen in Figure 6-14, which shows a comparison of the throughput of the real-life
experiment and one of the simulated experiments, that during most of the simulation the
throughput is very comparable, but the maxima for the simulated are slightly higher. These
results indicate that once agents are positioned favorably at the entrance of the bottleneck, the
model allows them to pass through slightly more efficiently than in the real-life experiment.
The discrepancy therefore arises primarily from differences in total population size and flow
demand, rather than from a fundamental misrepresentation of local congestion dynamics.

Table 6-4: Lane forming metrics for simulation model and real-life data for bidirectional corridor

experiment
Lane Forming Metric Simulation Model | Real-Life Data
Average total throughput 85 69
Average throughput per second | 2.12 1.73

Taken together, these findings suggest that the model successfully captures the qualitative
difficulty of bottleneck navigation although it slightly overestimates the achievable throughput
compared to the empirical data.
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6-3 Intermediate Conclusion

Overall, the simulation model demonstrates a satisfactory ability to reproduce pedestrian
dynamics in the two experiments used for testing and validation. Its primary limitation
appears to be an overestimation of close-proximity interactions between agents, particularly
in densely crowded conditions. Nevertheless, since the model is able to realistically capture
fundamental phenomena such as lane formation and throughput, it is considered sufficiently
validated for application in further investigations across different environments.
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Chapter 7

Sensitivity Analysis

To further examine the model’s robustness, a sensitivity analysis is performed around the
found optimum as determined in Chapter 4. The analysis is split up into a parameter sensi-
tivity analysis and a local sensitivity analysis.

7-1 Parameter Sensitivity

In this section the parameter sensitivity is explained. To avoid a redundantly long chapter,
this section focuses only on the most significant parameters for the sensitivity analysis. A full
overview of the parameter sensitivity analysis can be found in Appendix B.

The parameter sensitivity analysis was conducted by gradually perturbing each individual
optimization parameter by up to 10 %, while keeping all other parameters fixed. Each per-
turbed parameter set was then used as input to the surrogate model to predict the values
of all KPIs. For every parameter and each KPI, the standard deviation of the predicted
KPI values was computed as a measure of the variability induced by that parameter. These
standard deviations were subsequently normalized by dividing each value by the maximum
standard deviation obtained for the corresponding KPI.

As the simulation model is computationally heavy and the sensitivity analysis requires a
large number of simulations, the analysis was carried out using the surrogate model. As
demonstrated in Chapter 5, the surrogate model reliably reproduces the behavior of the
full simulation model and is therefore considered a valid tool for performing the sensitivity
analysis.

For all agent collision related KPIs (< 0.1 m - < 1.0 m), the sensitivity analysis yielded
very similar results. Therefore, only the agent collisions KPI regarding the 0.1 and 1.0 meter
vicinity will be analyzed further. Interestingly, Figure 7-1 and Figure 7-2 reveal that agent
collision-related KPIs are most strongly influenced by variations in the goal potential weight,
whereas changes in the wall potential weight and the obstacle potential weight have compar-
atively minor effects. This result indicates that the dominant driver of collision dynamics in
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the model is the strength with which agents are attracted to their goal. When K G is set too
high, agents prioritize goal-seeking behavior over avoidance, thus increasing the likelihood of
short-range interactions and collisions with other agents. On the other hand, when KG is
reduced, agents exhibit more cautious and adaptive trajectories, resulting in fewer collisions
but also potentially longer travel times.

The relatively lower sensitivity to KW and KO suggests that wall and obstacle avoidance
mechanisms are sufficiently robust across a broad range of values, ensuring that agents can
avoid static boundaries and dynamic obstacles regardless of precise parameter tuning. In con-
trast, KG directly regulates the balance between goal-directed urgency and social navigation,
making it the most critical parameter for calibrating realistic collision avoidance behavior
in the model. This finding underscores the importance of careful tuning of KG to achieve
a realistic compromise between efficient goal attainment and safe navigation in dense crowd
scenarios.

The sensitivity results further show that the relative influence of KW and KO decreases as
the collision threshold is relaxed: their relative effects are slightly stronger for the < 0.1m
KPI than for the < 1.0m KPI. This pattern is consistent with the short-range nature of
the repulsive potentials, whose gradients become dominant only when agents approach very
close to boundaries or each another. At larger interpersonal distances (e.g., < 1.0m), global
goal attraction, i.e. KG, plays a more significant role in shaping trajectories and inter-agent
spacing, thereby weakening the marginal impact of KW and KO. In practice, this implies
that calibration of KW and KO should be guided primarily by the tight-proximity KPIs
(< 0.1m, < 0.3m), while tuning of KG should target medium-to-long range interactions
(< 0.5m, < 1.0m). The result also suggests that the repulsive fields may be too short-ranged
relative to real behavior, because of which a slightly longer decay length or speed-dependent
anisotropy for KO could improve realism at intermediate distances without sacrificing near-
contact safety. This interpretation is also supported by the fact that the model allows more
close encounters between agents than in the real-life experiment, as explained in Chapter 6.

The parameter sensitivity for the variance in the y-direction is shown in Figure 7-3. For
this KPI as well, KG emerges as the most influential parameter with respect to sensitivity.
This indicates that deviations of agents in the y-direction are primarily governed by the

Jesse Leijdekker Master of Science Thesis



7-2 Local Sensitivity 43

Total Variance Y-Direction - Parameter Sensitivity 03 Goal R Per tage - Parameter
T T T . T T T

£

o
o

e
3

025

Co6t o
S S
g S o02f
J o5 3
g g
g 04 g 015}
= =
> >
Tosf g
2 g or
= =
A 3
0.05
0.1
0 0
KW KO
Figure 7-3: Sensitivity Analysis for vari- Figure 7-4: Sensitivity Analysis for goal
ance y-direction KPI. reached percentage KPI.

strength of their attraction towards the goal. This finding is intuitive: increasing K G reduces
the variance in the y-direction, as the gradient toward the goal, which is located in the -
direction, becomes steeper, thereby making motion along the z-axis more dominant at each
step. Conversely, decreasing K G diminishes the dominance of the x-direction, resulting in
greater variance in the y-direction.

Moreover, the results indicate that the influence of KO on the variance in the y-direction is
substantially larger than that of KW. This observation is also consistent with expectations:
in the bidirectional corridor experiment, agents frequently encounter other agents along their
trajectory and must avoid them by sidestepping in the y-direction, whereas wall-induced
deflections in the y-direction occur far less frequently.

Finally, for the goal-reached percentage KPI, KG once again appears as the most dominant
parameter in terms of sensitivity. This result is intuitive, as variations in K G directly affect
the degree to which agents are attracted toward their goal. However, the strong dominance
of KG over both KW and KO further implies that the likelihood of agents becoming stuck
due to modifications in their repulsive interactions with either other agents or the walls is
very low.

7-2 Local Sensitivity

To assess the robustness of the model, a local sensitivity analysis has been performed around
the optimum. For this the coefficient of variation (CV) has been used as a quantitative metric.
The CV is a normalized measure of statistical dispersion, defined as the ratio of the standard
deviation ¢ to the mean u:

CV = (7-1)

o
o
Unlike the standard deviation alone, the CV is dimensionless and therefore enables a relative
comparison of variability across quantities with different scales or units. In the context of this
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sensitivity analysis, the CV is used to quantify the robustness of a surrogate model output
with respect to perturbations in the input parameters. Low CV values indicate that the
KPI remains relatively stable under parameter variations, whereas higher CV values suggest
stronger sensitivity and a potentially less robust response.

Threshold values are often employed to classify the robustness of a KPI based on its CV.
Commonly used guidelines include CV < 0.05 indicating very robust, CV < 0.15 indicating
moderately sensitive, and CV > 0.30 indicating sensitive behavior [28, 1]. These thresholds
are context-dependent, but they provide a practical framework for interpreting sensitivity
results.

Figure 7-5 shows the CV for all KPIs around the optimal point. The results demonstrate
that most KPIs lie well below the threshold for moderate sensitivity, with only the Wall
Collisions KPI exhibiting slightly elevated variability, yet still within a robust to moderate
range. In contrast, KPIs such as goal reached percentage, path discrepancy, and total variance
in y-direction exhibit extremely low CV values, indicating high robustness. Overall, these
results suggest that the simulation model is largely insensitive to small perturbations of the
parameters, providing confidence in the stability and reliability of its predictions.
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Figure 7-5: Coefficient of variation for each surrogate model
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Chapter 8

Experiments and Results

In addition to the corridor and bottleneck validation experiments, three exploratory simu-
lations were conducted in a lecture hall environment, as depicted in Figure 8-1. The setup
consists of a central corridor with six lecture halls. Four of the lecture halls (A, B, C, and D)
are equipped with three separate entrances, while the remaining two lecture halls (E and F)
have only a single entrance each. The experiments were designed to assess the performance
of the simulation model under different usage scenarios, ranging from normal operation to
congested conditions. For all experiments, there are at least two types of agents: agents
entering the lecture halls and walking agents. Agents entering the lecture halls enter one of
the lecture halls through one of its entrances. Walking agents walk from one end to the other
end of the main hall. Both types of agents spawn at either x = —14.8 or x = 52.

For all experiments a simulation time 7" of 3600 time steps is used, with time step dt =
% s. The total simulation time is thus 15 minutes, which is the break time between lectures
at TU Delft. Within this time all students are thus entering the lecture halls in a real-
life scenario. The spawning probability of the agents is based on a normal distribution, as
depicted in Figure 8-2, with mean p at %T, assuming that most of the agents enter the
environment approximately five minutes before the lectures commence. Moreover, a standard
deviation o = %T was implemented. Finally, static obstacles will spawn at the beginning of
the simulation. These obstacles represent people located at the study areas present in the
main hall. The study areas are located at —6 < x < 5.5, 16 < x < 30.5 or 42.5 < x < 50 with

0.5 <y <2,

8-1 Experiment 1: Normal Conditions

In the first experiment, referred to as normal conditions, four of the lecture halls (A-D) are
open to the agents, each with three available entrances. Agents either enter one of the open
lecture halls or traverse the corridor from one end to the other. The probabilities for each
agent type and corresponding spawning location for this experiment are depicted in Table 8-1.
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Environment for lecture hall experiments
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Figure 8-1: Environment for the lecture
hall experiments, with indicated hall names
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function for agents in lecture hall experi-
ments.

Table 8-1: Absolute spawning probabilities of agents for the busy conditions experiment.

Agent Type | Spawn Location Destination Absolute Probability
Walking x = -14.8 - 0.40 x 0.60 = 0.24
Walking x = 52 - 0.40 x 0.40 = 0.16

Main Entrance x = -14.8 Hall A 0.45 x 0.60 x 0.37 = 0.0999
Main Entrance x = -14.8 Hall B 0.45 x 0.60 x 0.27 = 0.0729
Main Entrance x = -14.8 Hall C 0.45 x 0.60 x 0.18 = 0.0486
Main Entrance x = -14.8 Hall D 0.45 x 0.60 x 0.18 = 0.0486
Main Entrance x = 52 Hall A 0.45 x 0.40 x 0.37 = 0.0666
Main Entrance x = 52 Hall B 0.45 x 0.40 x 0.27 = 0.0486
Main Entrance x = 52 Hall C 0.45 x 0.40 x 0.18 = 0.0324
Main Entrance x = 52 Hall D 0.45 x 0.40 x 0.18 = 0.0324
Back Entrance x = -14.8 Upper Back Entrance | 0.15 x 0.60 x 0.50 = 0.045
Back Entrance x = -14.8 Lower Back Entrance | 0.15 x 0.60 x 0.50 = 0.045
Back Entrance x = -14.8 Hall A 0.15 x 0.60 x 0.37 = 0.0333
Back Entrance x = -14.8 Hall B 0.15 x 0.60 x 0.27 = 0.0243
Back Entrance x = -14.8 Hall C 0.15 x 0.60 x 0.18 = 0.0162
Back Entrance x = -14.8 Hall D 0.15 x 0.60 x 0.18 = 0.0162
Back Entrance x = 52 Upper Back Entrance | 0.15 x 0.40 x 0.50 = 0.03

Back Entrance x = 52 Lower Back Entrance | 0.15 x 0.40 x 0.50 = 0.03

Back Entrance x = 52 Hall A 0.15 x 0.40 x 0.37 = 0.0222
Back Entrance x = 52 Hall B 0.15 x 0.40 x 0.27 = 0.0162
Back Entrance x = 52 Hall C 0.15 x 0.40 x 0.18 = 0.0108
Back Entrance x = 52 Hall D 0.15 x 0.40 x 0.18 = 0.0108

The normal conditions experiment serves as a baseline, representing a standard level of activity
in the corridor. Agent trajectories for one of the simulations for this experiment are depicted in
Figure 8-3. Moreover, a quantitative representation of related KPIs is presented in Table 8-2.

The results demonstrate that the model produces smooth and efficient pedestrian flows when
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Trajectories for normal conditions experiment

20

Figure 8-3: Agent trajectories for one of the normal conditions experiments.

lecture halls are readily accessible and no artificial constraints are introduced. Collisions at
very short distances are rare and only slightly higher for the < 0.3 m threshold. At intermedi-
ate and larger distance thresholds (< 0.5 m and < 1.0 m), the values remain modest, consis-
tent with a setting characterized by moderate local interactions but no significant congestion.
Notably, no wall collisions occur, showing that agents respect the boundary conditions of this
environment.

Table 8-2: Average KPI values for normal conditions experiment

KPI Average Value
Agent collisions (<0.1 m) | 0.0926
Agent collisions (<0.3 m) | 0.6546
Agent collisions (<0.5 m) | 1.2586
Agent collisions (<1.0 m) | 5.4990

Wall collisions 0

Speed distribution alpha | 2.0190
Speed distribution beta 3.0480
Goal reached percentage | 0.9542

The speed distribution parameters indicate a stable velocity profile across agents, with a
slight bias towards walking faster, which aligns with expectations for a free-flow environment
where movement is not substantially delayed by bottlenecks or closures. Furthermore, it can
be seen that, although the vast majority of the agents does reach their goal successfully, the
goal reached percentage is lower than 100%. However, this does not necessarily imply that
agents get stuck in the environment. This is supported by the depicted spawning times of
agents that have not reached their goal for one of the delayed opening experiments depicted
in Table 8-3. It can be seen that all agents that have not reached their goal yet have spawned
in the latter part of the simulation. Furthermore, it only regards agents that are either of
the walking type and thus have to walk through the entire environment, or are spawning on
the opposite side of their goal destination. Thirdly, especially for the agents that spawned
earliest out of all agents in Table 8-3, the alpha values, as explained in Chapter 3, are quite
low. This means that their step size is relatively small, inducing a longer travel time before
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successfully reaching their destination. Therefore, they simply have not had enough time to
reach their goal yet. This thus represents agents that are late for the lecture or, in the case
of the ‘walking’ agents, have not reached the other side of the corridor yet.

Table 8-3: Characteristics of agents that have not reached their goal for one of the normal
conditions experiments.

Agent ID | Agent Type | Spawn Location | Alpha Value | Spawning Timestep
226 Hall D x = 52 8.9423 3074
233 Walking x = 52 18.6159 3136
238 Hall D x = 52 25.4062 3203
247 Walking x = 52 39.6489 3297
248 Walking x = 52 32.3886 3309
251 Walking x = 52 44.5988 3348
252 Walking x = -14.8 18.3900 3354
255 Walking x = 52 33.2503 3379
259 Hall A x = -14.8 51.9390 3463
260 Walking x = 52 35.1939 3478
261 Walking x = 52 36.3508 3509
262 Walking x = 52 46.2687 3536
263 Walking x = -14.8 32.0927 3543

Overall, these findings suggest that the model is able to reproduce realistic and efficient pedes-
trian dynamics in environments where capacity is not artificially restricted. The relatively
low incidence of close-proximity events, combined with a stable speed distribution and high
completion rate, highlight the robustness of the model in simulating baseline pedestrian traffic
patterns without emergent congestion effects.

8-2 Experiment 2: Delayed Opening

The second experiment, delayed opening, uses the same initial conditions as the normal con-
ditions experiment, but introduces a dynamic change in accessibility. Specifically, lecture hall
A keeps its entrances closed for half of the simulation time, i.e. for 1800 timesteps. Agents
assigned to this hall must wait in front of its main entrance until it opens, after which they
may enter. In this scenario, agents only enter hall A via its main entrance. This scenario is
designed to mimic real-life conditions where a classroom becomes available only after a delay,
leading to local crowding and temporary congestion. The average main KPIs for this experi-
ment are depicted in Table 8-4. Furthermore, the agent trajectories for one of the simulations
are depicted in Figure 8-4.

The results show that, although they increase compared to the normal conditions experiment,
the frequency of close interactions remains limited. Collisions at distances below 0.1 m are
rare, and even when extending the threshold to 0.3 m and 0.5 m, the number of events remains
low. This indicates that agents maintain realistic interpersonal spacing despite temporary
queuing in front of Hall A. However, due to the more congested conditions, the inter-agent
encounters are increased compare to the normal conditions. At the larger distance threshold
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Table 8-4: Average KPI values for delayed opening experiment with relative change compared
to baseline (normal conditions)

KPI Average Value | Relative Change (%)
Agent collisions (<0.1 m) | 0.1680 +81.5 %

Agent collisions (<0.3 m) | 1.0963 +67.5 %

Agent collisions (<0.5 m) | 1.9949 +58.5 %

Agent collisions (<1.0 m) | 7.1066 +29.2 %

Wall collisions 0 0.0 %

Speed distribution alpha | 2.1090 +4.5 %

Speed distribution beta 3.0135 1.1 %

Goal reached percentage | 0.9590 +0.5 %

Waiting times compared to spawning timestep
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Figure 8-5: Waiting times for agents en-
tering hall A in delayed opening experi-
ment.

Figure 8-4: Agent trajectories for one of
the delayed opening experiments.

of 1.0 m, more frequent interactions are observed, which is consistent with moderate local
crowding around the blocked entrance.

No wall collisions occur, confirming that agents respect the physical boundaries of the envi-
ronment even under waiting conditions. The fitted parameters of the speed distribution show
a slight deviation from the normal conditions experiment, indicating that the distribution is
slightly more skewed toward lower speeds as can be seen from the increase in the parameter
« and the decrease in the parameter 8. Such a shift is intuitive, as the average walking speed
of the agents is expected to be lower in this scenario due to the congestion caused by agents
waiting in front of hall A.

Importantly, the goal reached percentage is very similar to that of the normal conditions
experiment, showing that the temporary closure of Hall A does not prevent the agents from
successfully reaching their destinations once the entrance becomes available. furthermore,
a plot of waiting times for the agents entering hall A against the simulation timestep is
depicted in Figure 8-5. It can be seen that agents spawning earlier in the simulation undergo
long waiting times and, as expected, these waiting times are significantly lower for agents
spawning after hall A has opened.
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Trajectories for busy conditions experiment
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Figure 8-6: Agent trajectories for one of the busy conditions experiments.

Overall, these results suggest that the model produces realistic dynamics under delayed ac-
cessibility conditions: queuing behavior leads to mild local congestion but without excessive
collisions or boundary violations, and nearly all agents eventually reach their goals. This in-
dicates that the potential-field framework can reproduce adaptive crowd behavior in scenarios
where access is temporarily restricted.

8-3 Experiment 3: Busy Conditions

The third experiment, busy conditions, represents a high-demand scenario. Here, all six
lecture halls (A-F) are open, and the expected number of agents is increased compared to
the first two experiments from 250 to 450, of which 200 are leaving lecture hall A to move
out of the environment via the main corridor. In this setup, agents are either entering lecture
halls or traversing the corridor, but overall density levels are higher, producing more frequent
interactions and potential congestion effects. Furthermore, an additional mechanism inducing
local crowding effects arises from the interaction between opposing flows: agents attempting
to enter Hall A are likely required to wait until agents exiting Hall A have completed their
departure. The spawning probabilities for this experiment are depicted in Table 8-5.

The trajectories of one of the busy conditions simulations are depicted in Figure 8-6. The
results of the busy conditions experiment, shown in Table 8-6, highlight the effects of increased
congestion caused by the additional outflow of agents from lecture hall A. The most notable
impact is observed in the collision metrics. Very short-range collisions (< 0.1 m) increase by
more than a factor of three (+281%), while medium-range collisions (< 0.3 m and < 0.5 m)
approximately double compared to the baseline experiment. Even at the larger threshold of
< 1.0 m, collisions rise by 68.1%, confirming that dense conditions substantially elevate local
interaction frequencies. Wall collisions remain absent, indicating that, although the additional
density affects agent-to-agent interactions, boundary adherence is kept in this experiment.

The speed distribution parameters exhibit only minor deviations, with increases of 4.5% in
«a and 3.8% in (3, suggesting that the overall velocity profile of the population is robust to
crowding effects. Counterintuitively, the goal reached percentage increases slightly to 97.1%,
compared to 95.4% under baseline conditions. This outcome can be attributed to the larger
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Table 8-5: Absolute spawning probabilities of agents by type, x-location, and destination.

Agent Type | x-location Destination Absolute Probability
Walking -14.8 - 0.40 x 0.60 = 0.24
Walking 52 - 0.40 x 0.40 = 0.16

Main Entrance -14.8 Hall A 0.45 x 0.60 x 0.325 = 0.08775
Main Entrance -14.8 Hall B 0.45 x 0.60 x 0.225 = 0.06075
Main Entrance -14.8 Hall C 0.45 x 0.60 x 0.15 = 0.0405
Main Entrance -14.8 Hall D 0.45 x 0.60 x 0.15 = 0.0405
Main Entrance -14.8 Hall E 0.45 x 0.60 x 0.075 = 0.02025
Main Entrance -14.8 Hall F 0.45 x 0.60 x 0.075 = 0.02025
Main Entrance 52 Hall A 0.45 x 0.40 x 0.325 = 0.0585
Main Entrance 52 Hall B 0.45 x 0.40 x 0.225 = 0.0405
Main Entrance 52 Hall C 0.45 x 0.40 x 0.15 = 0.027
Main Entrance 52 Hall D 0.45 x 0.40 x 0.15 = 0.027
Main Entrance 52 Hall E 0.45 x 0.40 x 0.075 = 0.0135
Main Entrance 52 Hall F 0.45 x 0.40 x 0.075 = 0.0135

Back Entrance -14.8 Upper Back Entrance 0.15 x 0.60 x 0.50 = 0.045
Back Entrance -14.8 Lower Back Entrance 0.15 x 0.60 x 0.50 = 0.045

Back Entrance -14.8 Hall A 0.15 x 0.60 x 0.325 = 0.02925
Back Entrance -14.8 Hall B 0.15 x 0.60 x 0.225 = 0.02025
Back Entrance -14.8 Hall C 0.15 x 0.60 x 0.15 = 0.0135
Back Entrance -14.8 Hall D 0.15 x 0.60 x 0.15 = 0.0135
Back Entrance 52 Upper Back Entrance 0.15 x 0.40 x 0.50 = 0.03
Back Entrance 52 Lower Back Entrance 0.15 x 0.40 x 0.50 = 0.03
Back Entrance 52 Hall A 0.15 x 0.40 x 0.325 = 0.0195
Back Entrance 52 Hall B 0.15 x 0.40 x 0.225 = 0.0135
Back Entrance 52 Hall C 0.15 x 0.40 x 0.15 = 0.009
Back Entrance 52 Hall D 0.15 x 0.40 x 0.15 = 0.009

number of agents entering from lecture hall A, who spawn into the environment towards the
beginning of the simulation and thus are highly unlikely to not reach their goal within the
simulation time. As a result, the completion rate increases despite the higher density and
collision frequency.

Overall, the busy conditions experiment demonstrates that the model appropriately captures
the nonlinear effects of congestion: higher collision frequencies emerge as density rises, while
global efficiency indicators such as speed distribution and completion rates remain relatively
stable or even improve due to changes in population composition.

8-4 Computation Time

Although the simulation model is capable of producing realistic results, as demonstrated in the
previous sections of this chapter, a major drawback of this approach lies in its computational
burden. Specifically, at each time step, the potential function must be recalculated for every
agent, since agent positions change dynamically over time. While the static component of
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Table 8-6: Average KPI values for busy conditions experiment with relative change compared to
baseline (normal conditions)

KPI Average Value | Relative Change (%)
Agent collisions (<0.1 m) | 0.3528 +281.0 %

Agent collisions (<0.3 m) | 1.8053 +175.7 %

Agent collisions (<0.5 m) | 2.7380 +117.6 %

Agent collisions (<1.0 m) | 9.2448 +68.1 %

Wall collisions 0 0.0 %

Speed distribution alpha | 2.1092 +4.5 %

Speed distribution beta 3.1648 +3.8%

Goal reached percentage | 0.9708 +1.7 %

the potential function remains constant and therefore does not require recomputation, the
dynamic component still results in substantial computational demands, leading to very long
computation times, as shown in Table 8-7.

Table 8-7: Average computation times for all experiments

Experiment Average Computation Time (minutes)
Normal conditions | 61

Delayed opening 87

Busy conditions 132
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Chapter 9

Conclusion and Discussion

The research is concluded by answering the research questions as formulated in Chapter 1.
Additionally, key limitations of the research are discussed and suggestions for future research
are presented.

9-1 Research Findings

This study regards augmenting and optimizing an existing pedestrian movement model based
on a potential field. Multiple experiments were performed to answer the research question:
“To what extent can pedestrian movement in complex indoor environments be effectively
modeled using a potential field model and calibrated using real-life trajectory data?” To
answer this question, four subquestions were formulated.

1. What is the state-of-the-art for modeling pedestrian dynamics within a multi-
agent system?

The literature review showed that there are generally three types of pedestrian simulation
models: macroscopic models, microscopic models and hybrid models. Macroscopic model are
best used for applications in which computational costs are a constraint and behavioral realism
on an individual level is not required. Microscopic models are fit for applications in which
high fidelity is necessary at the cost of a large computational burden. Hybrid models attempt
to exploit the strengths of both of these model types. However, hybrid models are generally
designed for very specific applications or the advantages of the macro- and microscopic models
are only partially implemented. There thus seems to be a research gap in the development of
general-purpose hybrid pedestrian simulation models.
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2. What makes a potential field model suitable for simulating pedestrian dynamics
in complexr environments?

Potential field models are suitable for simulating pedestrian dynamics because they provide
a principled mathematical framework in which pedestrian behavior is represented as move-
ment along the gradient of a potential function. This formulation enables the simultaneous
modeling of attractive forces, such as the tendency of agents to move toward a goal, and repul-
sive forces, such as avoidance of other pedestrians and obstacles. Through gradient descent
optimization, pedestrian trajectories naturally emerge from the minimization of the underly-
ing potential landscape. In addition, as discussed in the review of previous work, potential
field models can form a foundation for hybrid approaches that incorporate complementary
modeling techniques.

3. How can a potential field model for pedestrian simulation be augmented and
optimized using real-life trajectory data?

The potential field model was augmented and optimized through the integration of real-
life trajectory data. By training a surrogate model and employing experimental datasets
from bidirectional corridor and bottleneck scenarios, parameter calibration was systematically
performed. This data-driven approach enhanced the realism of the simulations and also
enabled a sensitivity analysis, highlighting the influence of parameters KG, KW, and KO
on key performance indicators. The results demonstrate that coupling potential field models
with empirical data constitutes a promising avenue for bridging the gap between theoretical
models and observed pedestrian behavior.

4. What are the strengths and limitations of using a potential field model for
pedestrian simulation?

Finally, the strengths and limitations of the potential field approach were critically assessed.
On the one hand, the model succeeds in reproducing collective crowd phenomena and pro-
vides interpretable dynamics that align with empirical findings. It also offers flexibility and
extensibility, allowing for adaptation to a variety of scenarios. On the other hand, a major
limitation lies in its computational burden: the need to recompute potential functions for
every agent at every time step renders large-scale simulations resource-intensive. Addition-
ally, while the model captures macroscopic patterns effectively, certain aspects of microscopic
pedestrian behavior may be oversimplified.

To what extent can pedestrian movement in complex indoor environments be effec-
tively modeled using a potential field model and calibrated using real-life trajectory
data?

This work has demonstrated that potential field models, when combined with real-world data
and systematic optimization, constitute a valid and powerful framework for simulating pedes-
trian dynamics in complex environments. Nevertheless, their computational cost and inherent
simplifications highlight the importance of ongoing efforts to balance realism, scalability, and
efficiency in pedestrian simulation research.
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0-2 Limitations and Recommendations

The most significant limitation of this research is the computational cost of the simulation
model. Due to its slow performance, a surrogate model was introduced to facilitate the op-
timization process. Although the surrogate model provided accurate approximations of the
simulation, its construction required the generation of a dataset by executing the simulation
model over a wide range of parameter values. Because this procedure was computationally
expensive, the parameter space could not be explored exhaustively. Consequently, the op-
timization was restricted to three parameters, namely the potential function weights, while
all other parameters were assumed to be fixed at their default values. As a result, the opti-
mization focused only on a subset of the full parameter space, which may limit the generality
of the conclusions. For example, the obstacle potential function appears to underestimate
repulsive effects, leading to an overestimation of close inter-agent encounters. This could for
instance be improved by also optimizing over a number of different obstacle potential function
types. Future work should therefore extend the optimization framework to include additional
parameters once more computationally efficient implementations of the simulation model are
available.

Another limitation of the current simulation model is that agents are unable to change their
assigned goal destination once it has been assigned. This restricts the model’s ability to cap-
ture adaptive route choice behavior, which is a central characteristic of pedestrians navigating
complex and dynamic environments. In reality, individuals frequently adjust their trajectories
in response to local crowding, congestion, or perceived alternative routes.

To overcome this limitation, future work could explore the integration of the presented po-
tential field model within a hybrid modeling framework. In such a setup, the potential
field formulation would serve as the microscopic layer, governing local pedestrian interactions
through attractive and repulsive potential functions. At the same time, a macroscopic route
choice algorithm could be implemented to dynamically determine agents’ paths. For example,
the environment could be represented as a network of nodes and edges, where the pedestrian
density along each edge provides information about congestion levels. These congestion esti-
mates could then influence route selection at the macroscopic level, enabling agents to adapt
their decisions throughout the simulation.

This hybrid approach would combine the strengths of both modeling paradigms: the micro-
scopic realism of potential fields in capturing inter-agent interactions and the macroscopic
adaptability of network-based route choice. Such a framework would not only improve the
realism of pedestrian simulations but also expand their applicability to scenarios involving
dynamic environments.
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Overview of Uncertainty Analysis

This is an overview of all plots for the
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Appendix B

Overview of Parameter Sensitivity
Analysis

This is an overview of all plots for the sensitivity analysis of the surrogate model.
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Overview of Parameter Sensitivity Analysis
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Figure B-3: Sensitivity Analysis for agent
collisions (<0.5 m) KPLI.
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Pedestrian Movement Simulation through
Augmented Potential Field Model

Jesse Leijdekker
Delft Center for Systems and Control, Delft University of Technology

Abstract—This research investigates the development and
application of an augmented potential field model for simu-
lating pedestrian dynamics in complex indoor environments.
A comprehensive literature review identified a research gap
in general-purpose hybrid pedestrian movement models. As
a foundation for such an approach, a microscopic pedestrian
dynamics model was developed, utilizing potential fields and
gradient descent optimization for trajectory selection, thereby
balancing goal-seeking behavior with obstacle and inter-agent
avoidance.

To calibrate and validate the model, real-world trajectory
data from bidirectional corridor and bottleneck experiments
were utilized. A surrogate model was constructed to accelerate
the optimization process, given the high computational cost
of the original simulation model. The surrogate model enabled
systematic parameter calibration and sensitivity analysis, focus-
ing on three key parameters: the goal potential function weight
(K G), the wall potential function weight (K11), and the obsta-
cle potential function weight (K O). The results demonstrated
that the optimized model is capable of reproducing key crowd
phenomena observed in the empirical datasets.

However, the research also identified significant limitations,
primarily the computational burden of the simulation, which
constrained parameter optimization to a subset of parameters
and potentially led to an underestimation of obstacle repul-
sion, resulting in overly frequent close inter-agent encounters.
Despite these challenges, the work establishes potential field
models as a valid and powerful framework for pedestrian
simulation, offering extensibility towards future hybrid models,
while highlighting the need for more efficient implementations
and broader parameter coverage in subsequent research.

Index Terms—Pedestrian Dynamics, Potential Field Model,
Multi-Agent Systems, Gradient Descent Optimization, Surro-
gate Modeling, Gaussian Process Regression, Crowd Simula-
tion.

I. INTRODUCTION

Understanding pedestrian dynamics is crucial for the
effective planning, design, and operation of public spaces.
As urban environments become more complex and densely
populated, the need for accurate models and simulations
of pedestrian movement has intensified across various do-
mains, including transportation engineering, crowd safety,
emergency evacuation planning, and smart infrastructure
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development. Accurate modeling helps optimize circulation
spaces, enhance safety and comfort, and inform data-driven
decisions in infrastructure projects.

This research specifically focuses on pedestrian dynamics
within a university environment, particularly the Mechanical
Engineering faculty building at Delft University of Tech-
nology. With an anticipated increase in student population
from approximately 25,000 to 40,000 [1], understanding
pedestrian movement through corridors, lecture halls, and
communal spaces is vital for designing efficient circulation
routes and preventing congestion during peak transition peri-
ods. These insights are essential for designing future campus
infrastructure and improving the overall user experience.

However, modeling pedestrian behavior is inherently com-
plex due to its context-dependent, adaptive, and often non-
linear nature. Pedestrians continuously adapt to both static
environmental features and dynamic interactions with others,
leading to emergent collective behaviors such as lane forma-
tion, bottlenecks, or stop-and-go waves, which are difficult
to reproduce using simple rules or flow-based models.

A literature review identified three main categories of
pedestrian dynamics models: macroscopic, microscopic, and
hybrid models [2]. Macroscopic models are computationally
efficient but sacrifice individual behavioral precision, as
pedestrians are treated as continuous flows [3]-[6] and not
as individuals. Microscopic models, on the other hand, offer
higher fidelity by simulating individual agents separately but
incur increased computational demands [3], [7]-[12]. Hybrid
models aim to combine the advantages of both approaches,
seeking a balance between simulation speed and behavioral
realism [3]. However, most existing hybrid models are
tailored to specific applications or only partially integrate
the merits of their base approaches [13]-[15], revealing a
research gap in the development of general-purpose hybrid
pedestrian simulation models.

To address this gap, this study introduces a microscopic
pedestrian dynamics model based on agent-based potential
fields. In this framework, each pedestrian is modeled as an
individual agent navigating a scalar potential landscape that
encodes goals, obstacles, and interactions with other pedes-
trians. The agents determine their paths using a gradient
descent optimization approach, allowing them to adaptively
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choose directions leading towards their goals while avoiding
collisions. This approach leverages principles from classical
optimization and control theory, offering a flexible and
computationally tractable method for simulating realistic
pedestrian behavior in complex indoor environments. The
potential field approach is also discussed as a foundational
step towards developing future hybrid models.

The primary research question guiding this research is:
”To what extent can pedestrian movement in complex indoor
environments be effectively modeled using a potential field
model and calibrated using real-life trajectory data?”. To
answer this, four sub-questions were formulated:

1) What is the state-of-the-art for modeling pedestrian
dynamics within a multi-agent system?

2) What makes a potential field model suitable for simu-
lating pedestrian dynamics in complex environments?

3) How can a potential field model for pedestrian sim-
ulation be augmented and optimized using real-life
trajectory data?

4) What are the strengths and limitations of using a
potential field model for pedestrian simulation?

II. PROPOSED MODEL AND METHODOLOGY

The proposed model builds upon an earlier microscopic
potential field-based approach [16]. In this model, individual
agents, represented as single points in space, find their goals
by optimizing a potential function using gradient descent
optimization. The agent-specific goals are defined as the
global minimum of this potential function. At each time
step, agents take a step in the direction of the computed
negative gradient. Furthermore, to prevent agents from get-
ting trapped, intermediate goals are also defined along their
trajectories.

The total potential function (Vi,;) for an agent 7 is a
summation of three separate potential functions:

N(t)

Viot,i (Tit, Tje,t) = Z VO, (21)+VW (2 ) +VGi(z4,t)
J#i

(1)

where x;; = [z;4 yis]T € R? is the coordinate vector

for agent ¢ at time ¢, and N(¢) is the number of agents
present at time ¢. The obstacle potential function (VO) is
designed to prevent collisions with both agents and dynamic
or static obstacles. It defines a potential function that exhibits
a maximum at the location of the obstacle, creating repulsion
at that location:

KO,
Hwo,j,t - mi,tHQ +1

VO; jit(®it, @0 jt) =

2
Here, VO, ; is the obstacle potential function computed

for agent ¢, considering obstacle j, KO; is the gain for
obstacle j, @o .t = [Tojt Yo i)’ denotes the location, i.e.
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coordinates, of obstacle j at time ¢. Note that the obstacle
is treated as a single point in space.

The wall potential function (VW) is similar to the ob-
stacle potential but employs a more elongated peak shape
for each wall of the environment, guiding agents away from
walls while still maintaining realistic movement patterns:

1
14+ e—Cckfir(®ie) +

VWk (wiﬂg) = (

1
1+ e—c2.rf2k(®i) - 1)
1
. 1 4+ e—csrfan(®mi) +

1
1+ e—Cakfar(Tize) B 1) &)

Here, VW, is the wall potential for wall £, c; is the
gain controlling the steepness of the wall for the appurtenant
side, f1x(z,y) and fo,(z,y) are the functions defining
the location of the borders of the wall and f5(z,y) and
fax(x,y) are the functions defining the location of the
borders of the wall, generally perpendicular to fi x(z,y)
and fo 1 (z,y).

Finally, the goal potential function (V' G) attracts agents
towards their designated goal location:

KG
|

||t — Tg,ist

VGi(xit, xgit) = “4)

Here, VG; the goal potential for agent i, K G is the goal
gain, xg ;; denotes the goal location coordinates for agent
¢ and at time ¢.

The movement of agent ¢ at time ¢ is thus determined by
the following gradient descent algorithm:

&)

Here, «; is an agent-specific parameter to control the step
size.

Titr = Tit — 4 VVii(Tit, Tjt, t)

A. Model Improvements

Model Improvements were implemented to enhance real-
ism and computational efficiency. A significant performance
enhancement was achieved through the parameterization
of symbolic expressions. Initially, symbolic variables for
potential fields were redefined and differentiated at every
time step, causing inefficiency. This was resolved by com-
puting static symbolic expressions (e.g., wall potentials)
once outside the main simulation loop and converting them
to fast numerical functions. Time-varying components (e.g.,
agent-specific obstacle potentials) were parameterized with
agent-dependent coefficients, allowing reuse of a generic
symbolic template. This restructuring reduced simulation
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runtime by an order of magnitude. Furthermore, the wall
potential function was simplified for straight walls from the
complex form in Equation 3 to:

1 1
1+ e—crrfir(®i) + 1+ e—C2.kfan(®it)

1
a 1) . <1 + cB,kf3,k(wi,t)> ©

where f3(x,y) is typically a linear function with very
few terms, which significantly reduces the complexity of
derivative operations and improves computational speed.

To address pedestrian behavior realism, two key adapta-
tions were made:

VVV]€ (a:,-ﬂg) = <

o A speed-density relationship was introduced, based on
the empirically observed phenomenon that free-flowing
walking speeds of pedestrians decrease significantly as
the density of people walking around them increases
[17]. The model adopted an exponentially decreasing
function:

v; = ae—0-015¢ )
Here, c¢; is a measure of density, namely the number
of agents within a three-meter radius of agent 7. a; ~
N (o, 04) is the agent-based desired free-flow speed
scaling factor drawn from a Gaussian distribution with
mean ., = 40 and standard deviation o, = 10.

o The obstacle potential function was augmented to ac-
count for the decrease of interpersonal distances in
high-density environments [18], thereby improving the
realism of the model under crowded conditions. The
augmented obstacle potential function is defined as:

VOi (@i, @o 1) = 0.05(1+0.1(5+cj))Iﬁgo_,,ﬁmi:t||‘2+0425

®)
This formulation reduces the spatial reach of the repul-
sive influence from obstacles as local crowd density (c;)
rises, allowing agents to navigate closer to one another
in congested areas, reflecting more natural behavior in

congested environments.

B. Model Optimization

The model optimization process aimed to improve the
realism of the simulation. Due to the high computational
cost of running the full simulation, the optimization was
limited to three key parameters: the goal potential function
weight (KG), the wall potential function weight (KW),
and the obstacle potential function weight (/K O). Other
parameters, such as time step size, speed distribution, and
types of potential functions, were assumed to be sufficiently
calibrated to manage the high-dimensional search space.
The search space for these parameters was determined
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as: 0.001 < KW < 0.15, 0.001 < KG < 0.2, and
0.0001 < KO < 0.015.

A surrogate modeling strategy was chosen over brute force
optimization or simple curve fitting due to computational
burden of the full simulation model and the complex, non-
linear relationships involved. A surrogate model provides
a data-driven approximation that can predict outputs with
significantly less computational cost than the actual model.
The surrogate model was trained on data generated by
running the simulation model in a bidirectional corridor
experiment setup. This experiment setup will be explained
in more detail in Section III. The input parameters used to
run these simulations were determined by Latin Hypercube
Sampling (LHS) of the input parameter space, ensuring a
uniform and efficient sampling distribution. Gaussian Pro-
cess Regression (GPR) was selected as the regression model
for the surrogate due to its ability to provide predictions
and quantify the confidence (uncertainty) of each prediction,
which is valuable for optimization and understanding model
reliability. The GPR model used a Matern-3/2 kernel, which
is better suited for capturing localized variations in the noisy
and nonlinear nature of pedestrian dynamics compared to
over-smoothing kernels [19].

The surrogate model was then optimized using the Particle
Swarm Optimization (PSO) algorithm. PSO is a population-
based, stochastic method known for balancing exploration
and exploitation in high-dimensional, non-convex objective
functions where gradient information might be unavailable
or unreliable [20]. The optimization minimized an objective
function that quantified the difference between the surrogate
model’s predicted Key Performance Indicator (KPI) values
and real-life KPI values, weighted by a covariance matrix to
account for correlations between parameters. The KPIs were
defined as follows:

« Agent collisions <0.1 m, <0.3 m, <0.5 m, <1.0 m:
These four KPIs quantify the frequency of inter-agent
proximity events at different distance thresholds. They
capture not only hard collisions but also near misses
and general spacing behavior, allowing the model to
reflect realistic human tendencies to maintain personal
space and avoid crowding.

« Wall collisions: This KPI measures the frequency with
which agents collide with walls or static obstacles. It
penalizes unrealistic behaviors such as agents walking
into impenetrable boundaries, thereby ensuring that the
simulated trajectories remain physically plausible.

o Speed distribution parameters (o, (3): The speed
distribution of agents is summarized by fitting a beta
distribution to observed speed samples and extracting
its o and [ parameters. These parameters provide a
compact statistical representation of pedestrian speed
patterns and allow straightforward comparison between
simulated and empirical data.

Master of Science Thesis



69

o Lateral distribution parameters («, (3): Since the
corridor experiment involves straight-line motion along
the x-axis, only the y-coordinates are relevant for lateral
positioning. By fitting a beta distribution to the y-
positions, the a and [ parameters serve as robust
indicators of how agents distribute themselves laterally
within the corridor.

o Variance in the y-direction: This KPI quantifies the
variability of agent trajectories along the lateral axis.
Higher variance indicates irregular or unstable move-
ment patterns, while lower variance corresponds to
smoother, more controlled pedestrian motion as ob-
served in real experiments.

« Step-by-step positional discrepancy: At each
timestep, the model’s predicted next position for each
agent is compared to the actual next position observed
in the empirical data. This discrepancy provides a
fine-grained measure of how accurately the model
replicates pedestrian decision-making at the individual
level.

o Goal reached percentage: This KPI measures the pro-
portion of agents that successfully reach their assigned
goals. It serves as a sanity check to detect failure cases,
such as agents becoming stuck in local minima of
the potential field or blocked by unrealistic gradient
configurations.

All sampling rate-dependent and agent count-dependent
KPIs were normalized to ensure meaningful comparisons be-
tween simulated and empirical data, reflecting per-agent and
per-second rates. The computational work was performed
using MATLAB R2021b on a machine with a Ryzen 3700x
CPU and 16GB of RAM.

III. EXPERIMENTAL SETUPS

Three experimental setups were used to test and validate
the augmented potential field model: a bidirectional corridor,
a bottleneck, and a lecture hall environment. Each setup
targeted different aspects of pedestrian dynamics.

A. Bidirectional Corridor

The bidirectional corridor experiment is an earlier studied
setup for pedestrian dynamics [21]. In this setup, two groups
of agents walk in opposite directions through a straight
corridor, resulting in head-on interactions and potential self-
organized lane formation. The environment for this experi-
ment is depicted in Figure 1.

Empirical data from controlled laboratory studies [21]
were used for comparison. The corridor had a width of 4
meters, and agents were instructed to walk from one side
to the other in a bidirectional manner. This setup is par-
ticularly suited to analyze interpersonal distances, collision
avoidance, and the emergence of lane structures.
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Environment of the bidirectional corridor experiment

Fig. 1. Environment of the bidirectional corridor experiment.

B. Bottleneck

The bottleneck scenario represents a common source of
congestion, where a crowd must pass through a narrow open-
ing [22]. The setup consisted of a corridor section leading
to a constriction of 0.9 m width. This configuration created
high-density interactions and queuing behavior upstream of
the bottleneck.

The bottleneck experiment tests the model’s ability to
reproduce throughput, congestion buildup, and close-range
interactions under pressure. Real-world trajectory data from
laboratory bottleneck experiments served as reference [22].

Environment for bottleneck experiment

Fig. 2. Environment of the bottleneck experiment.

C. Lecture Hall Environment

To assess the model’s applicability in a realistic and
complex indoor setting relevant for a university setting, a
lecture hall environment was designed. The setup includes
a central corridor with six adjacent lecture halls with a
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probability of there being static obstacles representing study
areas and furniture as depicted in Figure 3.

Environment for lecture hall experiments

20
16
Hall D Hall C Hall B Hall A
gw
= /

Hall E

: T

Hall F

F .

Study Areas

X (m)

Fig. 3. Environment for the lecture hall experiments, with indicated hall
names and study areas.

Three scenarios were simulated: (i) normal conditions
with four lecture halls open, (ii) delayed opening of Hall
A, and (iii) busy conditions with all lecture halls active
and a larger agent population together with agents leaving
Hall A at the beginning of the simulation. Each scenario
simulated a 15-minute break period between lectures, being
the period in which students and teachers enter the lecture
halls. The agents’ spawning location, -time and end goal
were determined according to a probability distribution.

The lecture hall setup highlights how the model performs
in multi-room environments with dynamic demand, conges-
tion, and multiple entry- and exit points.

Iv.
A. Optimization and Surrogate Validation

RESULTS

The surrogate-based optimization yielded final parameters
of Ky = 0.0128, K¢ = 0.0060, and Ko = 0.0014,
reflecting a balance between goal pursuit, wall avoidance,
and inter-agent repulsion. The Gaussian Process surrogate
accurately reproduced the behavior of the full potential
field model, achieving Coefficient of Determination (R?)
values above 0.9 for most KPIs as depicted in Table 1. As
for the comparison between the surrogate model and the
simulation model for the bidirectional corridor experiment
using the optimal parameters, minor deviations occurred in
the prediction of lateral trajectory variance and medium-
range interactions, as can be seen in Table II.

B. Bidirectional Corridor Experiment

The bidirectional corridor experiment served as the pri-
mary test case for evaluating model realism against empirical
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TABLE I
R"2 VALUES FOR ALL SURROGATE MODELS
KPI R™2
Agent collisions (<0.1 m) 0.9298
Agent collisions (<0.3 m) 0.9917
Agent collisions (<0.5 m) 0.9883
Agent collisions (<1.0 m) 0.9867
Wall collisions 0.8129
Speed distribution alpha 0.9184
Speed distribution beta 0.9284
Paths y-axis distribution alpha | 0.9035
Paths y-axis distribution beta 0.7891
Variance y-direction 0.9840
Discrepancies 1.00
Goal reached percentage 0.9957
TABLE II
KPI VALUES FOR SIMULATION MODEL AND SURROGATE MODEL AT THE
OPTIMUM
KPI Simulation Model | Surrogate Model
Agent collisions (<0.1 m) 0.0823 0.0850
Agent collisions (<0.3 m) 1.7215 1.7335
Agent collisions (<0.5 m) 4.3509 4.7346
Agent collisions (<1.0 m) 15.6158 19.5395
Wall collisions 0 7.5813e-04
Speed distribution alpha 0.8199 0.7955
Speed distribution beta 20.3820 20.2791
Paths y-axis distribution alpha | 1.1252 1.2179
Paths y-axis distribution beta 1.1736 1.2724
Variance y-direction 1.3246 1.5661
Discrepancies 2.2124e+05 2.1420e+05
Goal reached percentage 0.9576 0.9086

trajectory data. The model successfully reproduced medium-
range collision avoidance and general locomotion patterns.
However, it overestimated the frequency of very close inter-
personal encounters (< 0.1 m and < 0.3 m) and generated
higher lateral variance compared to real observations. The
complete comparison of the KPIs outputted by the simula-
tion model and the real-life data is depicted in Table III.

TABLE III
KPI VALUES FOR SIMULATION MODEL AND REAL-LIFE DATA FOR
BIDIRECTIONAL CORRIDOR EXPERIMENT

KPI Simulation Model | Real-Life Data
Agent collisions (<0.1 m) 0.0823 0

Agent collisions (<0.3 m) 1.7215 0.3273

Agent collisions (<0.5 m) 4.3509 4.138

Agent collisions (<1.0 m) 15.6158 33.7264

Wall collisions 0 0

Speed distribution alpha 0.8199 0.7048
Speed distribution beta 20.3820 20.2518
Paths y-axis distribution alpha | 1.1950 1.3777
Paths y-axis distribution beta 1.2696 1.7309
Variance y-direction 1.3246 0.4993
Goal reached percentage 0.9576 0.9432
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C. Lane Formation

Lane formation, a hallmark of bidirectional flow, emerged
in both the empirical and simulated datasets of the bidi-
rectional corridor experiment. The simulation captured the
general tendency toward self-organized lanes, though the
simulated lanes were less distinct and slightly more over-
lapping than in the empirical data as is shown in Table IV.

TABLE IV
LANE FORMING METRICS FOR SIMULATION MODEL AND REAL-LIFE
DATA FOR BIDIRECTIONAL CORRIDOR EXPERIMENT

Lane Forming Metric

Simulation Model

Real-Life Data

Average overlap coefficient 0.317 0.215
Average zero-lag correlation | -0.332 -0.708
Average Peak offset (m) 0.16 0.20

D. Bottleneck Experiment

In the bottleneck scenario [22], the model reproduced
the qualitative difficulty of passage and congestion buildup.
Compared to real-world data, the simulation produced higher
average throughput than the real-life experiments (85 vs 69),
but also significantly more short-range encounters, just as in
the bidirectional corridor experiment, indicating that agents
passed more efficiently yet with reduced interpersonal spac-
ing. The comparison of KPIs for the bottleneck experiment
is shown in Table V.

TABLE V
KPI VALUES FOR SIMULATION MODEL AND REAL-LIFE DATA FOR
BOTTLENECK EXPERIMENT

KPI Simulation Model | Real-Life Data
Agent collisions (<0.1 m) | 1.4249 0

Agent collisions (<0.3 m) | 9.6964 0.6202

Agent collisions (<0.5 m) | 18.2232 15.8779

Agent collisions (<1.0 m) | 69.1577 61.7155

‘Wall collisions 0 0

Speed distribution alpha 1.3858 1.4310
Speed distribution beta 4.8795 12.7046
Variance y-direction 29129 0.4993
Goal reached percentage 0.3348 0.4471

E. Application in Lecture Hall Environment

To assess the applicability of the model in a more complex
environment, three exploratory experiments were conducted
in a lecture hall setting consisting of a central corridor and
six lecture halls. Agents either traversed the corridor or
entered one of the lecture halls, with spawning probabilities
drawn from a normal distribution peaking five minutes
before the lecture start.
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1) Normal Conditions: In the baseline scenario, four
lecture halls (A-D) were open. The model produced smooth
pedestrian flows with few close encounters and no wall
collisions. Speed distributions were stable and nearly all
agents reached their goals, indicating realistic behavior under
free-flow conditions.

2) Delayed Opening: In this experiment, lecture hall A
remained closed for the first half of the simulation. This
created temporary queuing and moderate local congestion
near the blocked entrance, reflected in increased collision
frequencies across all thresholds (see Table VI). However,
wall collisions were absent and completion rates remained
high, confirming that agents adapt realistically to delayed
accessibility.

3) Busy Conditions: Here, all six lecture halls were open
and the number of agents was increased from 250 to 450,
including 200 agents exiting hall A into the corridor. As
expected, collisions rose sharply (up to +281% at <0.1
m) due to crowding effects, but wall collisions remained
zero and speed distributions were only slightly affected.
Interestingly, the goal-reached percentage increased, since
many agents exited hall A early in the simulation and thus
completed their trajectories within the available time.

4) Computation Time: Across all lecture hall experi-
ments, computation time was significant due to the need
to update dynamic potentials at each time step. Average
runtimes ranged from 61 minutes (normal conditions) to 132
minutes (busy conditions), highlighting a major drawback of
the approach.

V. CONCLUSION AND DISCUSSION

This work has shown that potential field models, when
systematically calibrated with empirical data and optimized
using surrogate modeling, provide a viable framework for
simulating pedestrian dynamics in complex environments.
The model successfully reproduced key collective phenom-
ena such as lane formation in bidirectional flows and con-
gestion effects in bottleneck scenarios, and demonstrated
realistic behavior in a lecture hall environment under varying
usage conditions. These findings highlight both the potential
and the current limitations of the approach.

A major strength of the model lies in its interpretabil-
ity: the balance of attractive and repulsive forces offers
a transparent representation of pedestrian decision-making,
and systematic tuning of key parameters (Kqg, Kw, Ko)
proved effective in aligning the simulation with real-world
data. Furthermore, the experiments in the lecture hall en-
vironment illustrated how the framework can be applied to
study practical scenarios such as delayed accessibility and
crowding during peak demand.

At the same time, several limitations were identified. The
computational burden of recalculating dynamic potentials
at each time step remains a significant drawback, limiting
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TABLE VI
AVERAGE KPI VALUES FOR THE THREE LECTURE HALL EXPERIMENTS. RELATIVE CHANGE (%) FOR DELAYED OPENING AND BUSY CONDITIONS
IS SHOWN COMPARED TO BASELINE (NORMAL CONDITIONS).

KPI Normal Conditions Delayed Opening Busy Conditions
Value Value  Rel. Change | Value Rel. Change
Agent collisions (<0.1 m) 0.0926 0.1680 +81.5% 0.3528 +281.0%
Agent collisions (<0.3 m) 0.6546 1.0963 +67.5% 1.8053 +175.7%
Agent collisions (<0.5 m) 1.2586 1.9949 +58.5% 2.7380 +117.6%
Agent collisions (<1.0 m) 5.4990 7.1066 +29.2% 9.2448 +68.1%
Wall collisions 0 0 0.0% 0 0.0%
Speed distribution « 2.0190 2.1090 +4.5% 2.1092 +4.5%
Speed distribution 3 3.0480 3.0135 -1.1% 3.1648 +3.8%
Goal reached percentage 0.9542 0.9590 +0.5% 0.9708 +1.7%

the parameter space that can be explored and restricting
optimization to a small subset of variables. Moreover, while
the model captures short- and medium-range interactions,
it tends to overestimate close interpersonal distances under
crowded conditions. Finally, the current formulation assumes
fixed destinations, limiting the ability to reproduce adaptive
route choice behavior that is characteristic of real pedestri-
ans.

A. Recommendations

As stated, a key limitation of this work is the high
computational cost of the simulation model, which required
the use of a surrogate model to enable optimization. While
effective, this approach restricted optimization to three po-
tential function weights, leaving other parameters fixed and
potentially limiting the generality of the results. For exam-
ple, the obstacle potential function tended to underestimate
repulsion, leading to an overestimation of close encounters.
Future research should extend the optimization framework
to a broader parameter set, ideally supported by more
computationally efficient implementations.

Furthermore, incorporating adaptive destination and route
choice mechanisms would be another improvement to the
model. A promising direction is to embed the potential field
formulation within a hybrid framework, where microscopic
interactions are governed by potential fields and macroscopic
route choice adapts dynamically to congestion levels.

In summary, potential field models offer a promising
foundation for hybrid pedestrian modeling approaches. With
further refinement to improve computational efficiency and
behavioral flexibility, they can provide valuable insights into
pedestrian movement in complex real-world environments,
such as university buildings undergoing expansion.

REFERENCES

[1] S. Bonger, “Tu delft wants to grow to 40 thousand students,” 2022.
[Online]. Available: https://delta.tudelft.nl/en/article/tu-delft-wants-g
row-40-thousand- students

[2] J. Leijdekker, “Pedestrian movement simulation,” 2024.

[3] D. C. Duives, W. Daamen, and S. P. Hoogendoorn, “State-of-the-art
crowd motion simulation models,” Transportation Research Part C:
Emerging Technologies, vol. 37, pp. 193-209, 2013.

Jesse Leijdekker

[4] R. Hughes, “The flow of large crowds of pedestrians,” Mathematics
and Computers in Simulation, vol. 53, no. 4, pp. 367-370, 2000.

[5] R. L. Hughes, “A continuum theory for the flow of pedestrians,”
Transportation Research Part B: Methodological, vol. 36, no. 6, pp.
507-535, 2002.

[6] A. Treuille, S. Cooper, and Z. Popovi¢, “Continuum crowds,” ACM
Trans. Graph., vol. 25, no. 3, p. 1160-1168, 2006.

[71 G. N. Gilbert and K. G. Troitzsch, Simulation for the social scientist.
Open University Press, 2005.

[8] S. Jamshidi, M. Ensafi, and D. Pati, “Wayfinding in interior envi-
ronments: An integrative review,” Frontiers in Psychology, vol. 11,
2020.

[9] C. Burstedde, K. Klauck, A. Schadschneider, and J. Zittartz, “Sim-

ulation of pedestrian dynamics using a two-dimensional cellular

automaton,” Physica A: Statistical Mechanics and its Applications,

vol. 295, no. 3, pp. 507-525, 2001.

A. Kirchner and A. Schadschneider, “Simulation of evacuation pro-

cesses using a bionics-inspired cellular automaton model for pedes-

trian dynamics,” Physica A: Statistical Mechanics and its Applica-

tions, vol. 312, no. 1, pp. 260-276, 2002.

D. Helbing, I. Farkas, and T. Vicsek, “Simulating dynamic features

of escape panic,” Nature, vol. 407, pp. 487-490, 2000.

P. Fiorini and Z. Shiller, “Motion planning in dynamic environments

using velocity obstacles,” The International Journal of Robotics

Research, vol. 17, no. 7, pp. 760-772, 1998.

M. Xiong, W. Cai, S. Zhou, M. Y. H. Low, F. Tian, D. Chen, D. Ong,

and B. Hamilton, “A case study of multi-resolution modeling for

crowd simulation,” in Proceedings of the 2009 Spring Simulation

Multiconference, 2009.

M. Xiong, M. Lees, W. Cai, S. Zhou, and M. Y. H. Low, “Hybrid

modelling of crowd simulation,” Procedia Computer Science, vol. 1,

no. 1, pp. 57-65, 2010, iCCS 2010.

B. Banerjee, A. Abukmail, and L. Kraemer, “Advancing the layered

approach to agent-based crowd simulation,” in 2008 22nd Workshop

on Principles of Advanced and Distributed Simulation, 2008, pp. 185—

192.

J. Leijdekker, “Pedestrian movement simulation through potential field

model,” 2024.

M. Nazir, K. Razi, Q. Hossain, and S. Adhikary, “Pedestrian flow char-

acteristics at walkways in rajshahi metropolitan city of bangladesh,”

in 2nd International Conference on Civil Engineering for Sustainable

Development, 2014.

A. Gorrini, S. Bandini, and M. Sarvi, “Group dynamics in pedes-

trian crowds estimating proxemic behavior,” Transportation Research

Record Journal of the Transportation Research Board, vol. 2421, pp.

51-56, 2014.

M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging.

Springer, 1999.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in

Proceedings of ICNN’95 - International Conference on Neural

Networks, ser. ICNN-95, vol. 4. 1IEEE, 1995, p. 1942-1948.

[Online]. Available: http://dx.doi.org/10.1109/ICNN.1995.488968

[10]

[11]

[12]

[13]

[14]

[15]

[16

[17]

[18]

[19]

[20

Master of Science Thesis



[21]

[22]

73

Forschungszentrum Jiilich, University Of Wuppertal, University
Of Siegen, S. Holl, M. Boltes, W. Mehner, and A. Seyfried,
“Corridor, bidirectional flow,” 2013. [Online]. Available: http:
/Iped.fz-juelich.de/da/2013bidirectional

Forschungszentrum Jiilich, University of Wuppertal, Cologne
University, Boltes, Maik, Seyfried, Armin, Schadschneider, Andreas,
and Winkens, Andreas, “Bottleneck, caserne,” 2006. [Online].
Available: http://ped.fz-juelich.de/da/2006bottleneck

Master of Science Thesis

Jesse Leijdekker



74 Scientific Paper

Jesse Leijdekker Master of Science Thesis



1]

2]

Bibliography

A. C. Atkinson and A. N. Donev. Optimum FExperimental Designs. Oxford University
Press, Oxford, UK, 1992.

B. Banerjee, A. Abukmail, and L. Kraemer. Advancing the layered approach to agent-
based crowd simulation. In 2008 22nd Workshop on Principles of Advanced and Dis-
tributed Simulation, pages 185-192, 2008.

S. Bonger. Tu delft wants to grow to 40 thousand students, 2022.

M. D. Buhmann. Radial Basis Functions: Theory and Implementations. Cambridge
University Press, 2003.

C. Burstedde, K. Klauck, A. Schadschneider, and J. Zittartz. Simulation of pedestrian
dynamics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics
and its Applications, 295(3):507-525, 2001.

D. Chicco, M. J. Warrens, and G. Jurman. The coefficient of determination r-squared is
more informative than smape, mae, mape, mse and rmse in regression analysis evaluation.
PeerJ Computer Science, 7:€623, 2021.

D. C. Duives, W. Daamen, and S. P. Hoogendoorn. State-of-the-art crowd motion sim-
ulation models. Transportation Research Part C: Emerging Technologies, 37:193-209,
2013.

P. Fiorini and Z. Shiller. Motion planning in dynamic environments using velocity ob-
stacles. The International Journal of Robotics Research, 17(7):760-772, 1998.

G. Flotterod and G. Ladmmel. Bidirectional pedestrian fundamental diagram. Trans-
portation Research Part B: Methodological, 71:194-212, 2015.

Forschungszentrum Jilich, University of Wuppertal, Cologne University, Boltes, Maik,
Seyfried, Armin, Schadschneider, Andreas, and Winkens, Andreas. Bottleneck, caserne,
2006.

Master of Science Thesis Jesse Leijdekker



76

Bibliography

[11]

[12]

[13]

[14]

[15]

[20]

[21]

22]

23]

Forschungszentrum Jiilich, University Of Wuppertal, University Of Siegen, S. Holl,
M. Boltes, W. Mehner, and A. Seyfried. Corridor, bidirectional flow, 2013.

P. I. Frazier. A tutorial on bayesian optimization, 2018.

G. N. Gilbert and K. G. Troitzsch. Simulation for the social scientist. Open University
Press, 2005.

1. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

A. Gorrini, S. Bandini, and M. Sarvi. Group dynamics in pedestrian crowds estimat-
ing proxemic behavior. Transportation Research Record Journal of the Transportation
Research Board, 2421:51-56, 2014.

D. Helbing, 1. Farkas, and T. Vicsek. Simulating dynamic features of escape panic.
Nature, 407:487-490, 2000.

D. Helbing, P. Molnéar, I. J. Farkas, and K. Bolay. Self-organized pedestrian crowd dy-
namics: Experiments, simulations, and design solutions. Transportation science, 39(1):1—
24, 2001.

S. Hoogendoorn, P. Bovy, and W. Daamen. Microscopic pedestrian wayfinding and
dynamics modelling. In M. Schreckenberg and S. Sharma, editors, Pedestrian and evac-
uation dynamics, pages 123—154. Springer, 2001.

R. Hughes. The flow of large crowds of pedestrians. Mathematics and Computers in
Simulation, 53(4):367-370, 2000.

R. Hughes. The flow of large crowds of pedestrians. Mathematics and Computers in
Simulation, 53(4):367-370, 2000.

R. L. Hughes. A continuum theory for the flow of pedestrians. Transportation Research
Part B: Methodological, 36(6):507-535, 2002.

S. Jamshidi, M. Ensafi, and D. Pati. Wayfinding in interior environments: An integrative
review. Frontiers in Psychology, 11, 2020.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN’95
- International Conference on Neural Networks, volume 4 of ICNN-95, page 1942-1948.
IEEE, 1995.

A. Kirchner and A. Schadschneider. Simulation of evacuation processes using a bionics-
inspired cellular automaton model for pedestrian dynamics. Physica A: Statistical Me-
chanics and its Applications, 312(1):260-276, 2002.

J. Leijdekker. Pedestrian movement simulation, 2024.
J. Leijdekker. Pedestrian movement simulation through potential field model, 2024.

M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21(2):239-245, 1979.

Jesse Leijdekker Master of Science Thesis



7

[28] D. C. Montgomery. Design and Analysis of Experiments. Wiley, Hoboken, NJ, 9th
edition, 2017.

[29] M. Nazir, K. Razi, Q. Hossain, and S. Adhikary. Pedestrian flow characteristics at
walkways in rajshahi metropolitan city of bangladesh. In 2nd International Conference
on Civil Engineering for Sustainable Development, 2014.

[30] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT
Press, 2006.

[31] W. S. Correlation and causation. Journal of agricultural research, 20(7):557, 1921.

[32] S. Sengupta, S. Basak, and R. Peters. Particle swarm optimization: A survey of his-
torical and recent developments with hybridization perspectives. Machine Learning and
Knowledge Extraction, 1(1):157-191, Oct. 2018.

[33] D. Stauffer. Cellular automata: Applications. In J. M. L. M. Palma, J. Dongarra, and
V. Hernandez, editors, Vector and Parallel Processing — VECPAR 2000, pages 199-206,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[34] M. L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer, 1999.

[35] A. Treuille, S. Cooper, and Z. Popovi¢. Continuum crowds. ACM Trans. Graph.,
25(3):1160-1168, 2006.

[36] U. Weidmann. Transporttechnik der Fufginger. ETH Ziirich, 1993.

[37] M. Xiong, W. Cai, S. Zhou, M. Y. H. Low, F. Tian, D. Chen, D. Ong, and B. Hamilton.
A case study of multi-resolution modeling for crowd simulation. In Proceedings of the
2009 Spring Simulation Multiconference, 2009.

[38] M. Xiong, M. Lees, W. Cai, S. Zhou, and M. Y. H. Low. Hybrid modelling of crowd
simulation. Procedia Computer Science, 1(1):57-65, 2010. ICCS 2010.

Master of Science Thesis Jesse Leijdekker



78 Bibliography

Jesse Leijdekker Master of Science Thesis



	Front Matter
	Cover Page
	Title Page
	Table of Contents

	Main Matter
	Introduction
	Previous Work
	Literature Study
	Macroscopic Models
	Microscopic Models
	Hybrid Models
	Intermediate Conclusion

	Proposed Model
	Base Model


	Methodology
	Model Improvements
	Computational burden
	Pedestrian behavior

	Model Optimization
	Optimization parameters
	Optimization strategy
	Algorithm and search space
	Simulated training data
	Key performance indicators
	Hardware setup and implementation


	Optimization Results
	Surrogate Model Validation
	Coefficient of determination analysis
	Local Error Analysis
	Predictive Uncertainty Analysis

	Simulation Model Testing and Validation
	Testing
	Validation
	Bidirectional Corridor Experiment
	Bottleneck experiment

	Intermediate Conclusion

	Sensitivity Analysis
	Parameter Sensitivity
	Local Sensitivity

	Experiments and Results
	Experiment 1: Normal Conditions
	Experiment 2: Delayed Opening
	Experiment 3: Busy Conditions
	Computation Time

	Conclusion and Discussion
	Research Findings
	Limitations and Recommendations


	Appendices
	Overview of Uncertainty Analysis
	Overview of Parameter Sensitivity Analysis
	Scientific Paper

	Back Matter

