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Abstract

Seaports are often protected against waves and currents by rubble mound breakwaters. At the interface
between outer breakwater slope and seabed a toe structure is often build, which provides stability to the
outer slope. The toe consists of a relatively small heap of rock. Since 1977 dedicated studies are made to the
stability of these rock elements under wave attack. A large number of stability methods is available, but pre-
diction accuracy is low and validity ranges are too small for use in practice. Clarity on applicability of these
methods is desired by designers.

In Baart (2008) a new approach towards toe stability is defended. The ‘decoupled model approach’ determines
stability with a two-step model. In the first step local hydraulic conditions right above the toe bed are calcu-
lated. The second step uses these conditions in a general formula for stone motion to predict motion. In this
thesis the decoupled model approach is implemented and tested by means of the computational fluid dynamics
model ih-2vof. Prediction capacity of existing toe stability methods is reviewed against numerical results. The
approach predicts motion rather than an amount of damage. To achieve this, critical values for stability and
damage were imposed where necessary.

The ih-2vof model was reviewed first. Convergence tests gave recommendations for the computational grid
layout. During testing it was found that position of the partially standing wave, produced by breakwater re-
flection under regular waves, is of major importance when reviewing different tests. It was discovered also that
turbulence modelling in ih-2vof did not function properly. The Nammuni-Krohn (2009) cases were modelled
and numerical results were compared with physical measurements by Nammuni-Krohn. Little correspond-
ence was found, likely caused by differences between numerical and physical model. High sensitivity to stone
properties (diameter, porosity and Forchheimer coefficients) was encountered. Analytical solutions for flow
velocity either over- or underestimated the numerical results.

Work by Peters (2014a) increased confidence in the utility of ih-2vof for breakwater modelling. Under the
assumption that turbulence is not of large importance, the Ebbens (2009) cases were modelled. By literature
study the formulae by Izbash (1930), Rance and Warren (1968), Dessens (2004), Steenstra (2014) and Peters
(2014b) were selected to predict stone motion. Calibration of these formulae was necessary; Rance and Warren
(1968) and Peters (2014b) produced most reliable results. They probably do not need any calibration, making
them more universally applicable. Prediction of motion by toe stability methods and decoupled model ap-
proach were compared. The formulae by Van der Meer (1991), Gerding (1993) and Van der Meer (1998) give
good agreement when validity limits are respected. If neglected, prediction capacity did not decrease much.
Van Gent and Van der Werf (2014) and Muttray et al. (2014) then perform good as well. Low sensitivity to
the critical values for stability and damage was found.

The decoupled model approach is considered to be appropriate to determine toe stability. The results in this
study should on the other hand not be used for design purposes as long as some fundamental problems are not
solved. The incorrect turbulence calculation, high sensitivity to stone properties and velocity measurement
difficulties of the motion formulae are the main issues which should be investigated in further research.
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1
Introduction

1.1. Background
The topic of research is the stability of rubble mound breakwaters toes. Rubble mound breakwaters are
structures which consist of several layers of loose rock or (often concrete) units, forming together a barrier
for waves and currents near harbours and beaches, see figure 1.1. The toe berm is located at the border between
foreshore slope and breakwater slope, see figure 1.2. It has several functions, e.g. to inhibit the armour layer
material from sliding off, and to provide the required counter weight for the outer slope’s macro stability.
A toe structure must not be confounded with a berm. The latter has often much larger dimensions and is
intended to reduce wave attack, although in shallow water the difference between a toe and a berm can get
indistinguishable.

Figure 1.1: Breakwater structure at Dubai Maritime City

Since 1977 dedicated studies to toe stability have been made, resulting in a large number of design formulae
and methods (see appendix A and B). Accuracy is low and the validity range of the input parameters is very
limited (Muttray, 2013). In design of a certain new breakwater, Van Oord calculated that for only 30% of
breakwater stretch the commonly used formulae by Gerding (1993) and Van der Meer (1998) are valid. Van
Oord and the other members of Nevlock are thus interested in a design formula which is both accurate and
usable in practice.

In the past decade efforts have been made to filter out such a formula. Unfortunately this resulted quite
often in a new formula which in its turn does not fit all research data. In 2008 a new and more fundamental
approach is presented in Baart (2008) which gives promising results. In this research it will be attempted to
couple a numerical approach to Baart’s method.

1
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Figure 1.2: Principle sketch of a rubble mound breakwater

During the course of this research Ruben Peters, graduate student at Delft University of Technology, has
also conducted research on toe stability. For his Master’s thesis he tried to model motion of individual stones,
by carrying out flume experiments. To his work often reference will be made and some parts are elaborated
together.

In the following sections a detailed description of the problem at hand will be made, based on literature
study, after which the research questions are formulated. A proposal for the research methodology is then
given, i.e. how will the research questions be answered. The chapter ends with an overview of the report
structure.

1.2. Review of literature
To get grip on the subject of breakwater toe stability, a review of literature is required. This will give insight
in the problems at hand, but also in which efforts have already been made – it is useless to reinvestigate
approaches which proved to be inappropriate. Since we are interested in a design stability formula (i.e. under
which condition is the toe stable), no study will be made to design formulae for toe dimensions (i.e. how high
and wide must the toe be to fulfil its supporting function). Only research on breakwaters with toes consisting
of rock will be investigated.

In the Master’s thesis of Baart (2008) a very extensive literature study has been made for research on toe
stability up to 2008. Therefore only the headlines of research before 2008 will be given. For research after
2008 a more thorough review will be made. After stipulating the headlines of each research report in section
1.2.1, a comparison is made in section 1.2.2 for some aspects of research. It is already worth mentioning that
in appendix A a diagram of historical research is given. In appendix B an overview of formulae and methods
in literature is presented, together with all definitions of damage, advised design damage levels and a table
with the different datasets and stability methods. Figure 1.3 show how some of the governing parameters are
defined.

Before starting the review, it is useful to discuss some common terminology.

Stability method Since stability is not always calculated with a single formula, it is chosen to speak of
a stability method rather than a stability formula. This way the term also incorporates the more extensive
calculation methods, like for instance the method by Baart (2008).

Stability number Most stability methods work with a classical stability formula, which gives an expression
for the stability number Hs/∆Dn50 for structures built up of rubble under wave attack. In some research this
stability number is written as Ns as a shorthand version, so Ns ≡ Hs

∆·Dn50
. The stability number implies that

higher values of Ns allow for smaller or lighter stones under the same wave attack.

Definition of damage Together with stability a damage parameter is often included in the stability method
to give the engineer the possibility of tuning his design. By changing the damage parameter and thus allowing
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Figure 1.3: Important parameters in toe stability

a certain amount of damage, the stability number changes accordingly. The definition of damage and its
quantitative representation is subject of debate, as will be shown in the review of literature. In appendix B an
overview of existing damage parameters is given.

Depth conditions Since wave breaking conditions change with water depth (Holthuijsen, 2007, §7.6), most
stability methods are given either for shallow or deep water conditions. In research on toe stability one speaks
of ‘shallow water’ or ‘depth limited’ conditions when wave height is approaching mean water depth ( Hs/ℎm 6
0.5 according to e.g. Baart (2008)). This definition differs from the classical definition, as will be shown later
on in this chapter.

1.2.1. Review per author
Van der Meer (1991) Literature study starts in 1991, when Van der Meer presented a stability formula in
the Rock Manual by CIRIA et al. (1991). Van der Meer carried out scale tests in a flume with shallow water
conditions. He fitted a design curve, based on relative water depth ℎt/ℎm only. The formula is given in the
form of a classical stability equation. No damage parameter is included, so the design curve does not allow for
optimization of the structure dimensions.

Gerding (1993), Van der Meer et al. (1995) Gerding did extensive research on toe stability in his Master’s
thesis. He performed a large number of scale tests in a flume. Gerding presented a new definition of damage
in his stability formula. The amount of damage was defined as the number of stones removed from a strip of
the toe structure (see also appendix B). Three damage levels were defined. After curve fitting he presented two
design formulae, one with Hs and one with H2%. In 1995 Van der Meer presented the knowledge gained in a
paper, in which the formula with H2% was rejected as it “did not decease the existing scatter”. The formula
with Hs has been incorporated in the new Rock Manual by CIRIA et al. (2007) as equation 5.187.

The formulae use the damage parameter and water depth at the toe as input. From Gerding’s test data it
appeared that wave steepness and toe width is not of influence. This conclusion is however made on a very
limited number of test cases: for the steepness the conclusion is drawn based on only two test results per
situation.

The paper of Van der Meer mentioned that the design curve is not ideal since the stability number can
become zero. This does not allow for some natural minimal displacement beneath a threshold value of motion
(see §4.3.1 in Baart (2008)).

Burcharth and Z. Liu (1995) Burcharth and Liu did some toe stability analysis in the context of the Rubble
Mound Breakwater Failure Mode-project. Based on some flume experiments they presented a formula which
allows for the design of toe structures made of concrete cubes. A small deviation can be present in this research
since rock is modelled here.
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Docters van Leeuwen (1996) In the Master’s thesis of Docters van Leeuwen an assumption made by Gerd-
ing was verified. She examined the influence of stone density (incorporated in the relative stone density ∆)
on stability. It appears that this influence is modelled correctly by Gerding. She discovered that the influence
of the mean water depth ℎm cannot be neglected. The formula of Gerding is indeed correct for his range of
ℎm -values, but outside this range ℎm should be somehow accounted for in the stability formula. Docters van
Leeuwen did not propose a new formula.

Docters van Leeuwen was the first to investigate, to a very limited extent, the relation between flow velocity
and stability of stones. She calculated a wave-induced orbital flow velocity at the toe surface by using linear
wave theory. This again proves the need to incorporate ℎm in the formula. Subsequently the threshold of
motion was investigated by means of the criterion of Rance and Warren (1968). It appeared that this method
works quite well. With this investigation she made a start in a more fundamental approach of toe stability,
namely by decoupling the direct relation between wave action and damage by means of the flow velocity at
the toe surface.

Van der Meer (1998) Experience pointed out that use of the formula by Gerding (1993) could produce
unrealistic results – Van der Meer already made this consideration in his publication of 1995. He published
a new formula based on the work by Gerding. Now a minimal stability is provided by using an offset. The
validity range did not change, however.

This formula has also been incorporated in the new Rock Manual by CIRIA et al. (2007), as equation 5.188.
Still a limit of ℎm/Hs < 2.0 (γ > 0.5) is imposed, meaning that the formula is only valid for relatively shallow
water.

Sayao (2007) Formulae up to now did not take the foreshore steepness and the wave steepness into account.
Sayao performed dimensional analysis on new experimental data from 2005. He fitted a new design formula
which gives a value for Ns and which takes foreshore slope, relative water depth and the Iribarren number
as input. No configurable damage parameter is thus available. In further research it is proven that foreshore
slope and wave steepness (or wave length) indeed influence stability. Unfortunately his formula produced
quite some scatter for the test results, so no research has been appended directly to Sayao’s work. The formula
is conservative, since it models a condition with nearly no damage.

At this point the literature study by Baart ends, so a more extensive literature study will be given for the
remaining recent studies.

Baart (2008)
The subject of Stephan Baart’s Master’s thesis has its origin in the work and recommendations by Docters
van Leeuwen (1996). Stability methods up to now were empirically fitted stability formulae, which take
information on the hydraulic parameters and toe dimensions as input, and the stability number Ns as output.
This is quite a big step since there are a lot of processes involved in moving a stone. Baart made an extensive
analysis of the formulae by Gerding (1993) and Van der Meer (1998), from which followed that there are quite
some flaws and uncertainties remaining.

Baart proposed a new concept for the assessment of breakwater toe stability. His hypotheses, assumptions
and model will be cited here, as they are so clearly stated and so important for the new line of research:

“A new hypothesis is formulated to describe toe rock stability. Important propositions are:
a. There is a critical value for the load on toe rocks (threshold of movement), instead of a power relation

between damage and stability.
b. The stability problem should be regarded for local conditions at the top surface of the toe bund.

Two invalidated assumptions are made:
a. The combination of down rush and porous outflow of water is normative for toe rock stability. This

assumption follows from the theoretical view on the physical process and from suggestions in literat-
ure.

b. Flow, turbulence and accelerations can be represented by one characteristic parameter, namely the
velocity amplitude of local oscillatory flow.
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The concept for this study’s model is based on two steps:
Step 1: Assessment of the amplitude of local water velocity at the toe bund. This is calculated by summation

of the contributions of the incoming wave and down rush, taking a phase difference into account.
Step 2: Description of the critical velocity for a toe rock. The Rance/Warren stability criterion is used with a

theoretical adaptation, which accounts for the effect of porous outflow.

Coupling these two steps implies that a rock will move if the occurring velocity exceeds the critical velocity.”

(Cited from Baart (2008), page v-vi)

Baart thus proposed a two step model with flow velocity at the toe surface as intermediate result. He was
able to verify his hypotheses for the datasets from flume tests by Gerding (1993), from tests by the US Army
Corps of Engineers in 1987, and from tests during the first research project on berm breakwaters MAST I in
1992. The dataset of Docters van Leeuwen however did not give the expected results.

Baart derived flow velocity analytically by using down rush energy, a long wave approximation, a reflection
model and porous flow via a head gradient. This leaves room for improvement, as situations with complex
breakwater geometries or components make an analytical expression difficult or even impossible. After cal-
culating flow velocity he used the stability criterion by Rance and Warren (1968), which determines whether
stones in a horizontal bed will displace under oscillatory flow. Baart adapted the criterion to incorporate por-
ous flow. He also tested an adapted Izbash-criterion, but this did not give better results. Although Baart used
analytical expressions and an empirically determined stability criterion, still his method gives better results in
terms of accuracy of stability prediction compared with empirically derived formulae.

Baart also investigated a different description of damage, normalized by toe width. This is a next step
in percentual damage description. Unfortunately it seemed not to give any improvement in accuracy. Next
he proposed new limits for Nod which mark the threshold of motion rather than an acceptable amount of
damage. The first is of course less subjective than the latter and thus preferable.

Ebbens (2009)
The limited validity range of the formulae by Gerding (1993) and Van der Meer (1998) was of concern: their
formulae were not yet experimentally validated for very shallow water. Furthermore the change of hydraulic
conditions when waves break in front of the breakwater, and not on the armour layer or toe structure, were
not investigated thoroughly. For this Ebbens varied the foreshore slope in new flume experiments, like in
Sayao (2007). He defined very shallow water conditions to have ℎm/Hs < 2.0 (γ > 0.5). Wave breaking results
in a strong increase in turbulence, attacking the toe structure even more than under deep water conditions.
To incorporate wave steepness and foreshore slope, Ebbens used the Iribarren number:

ξ0p =
tan α f or e√

Hs/L0p

His first effort was to validate the formula by Van der Meer (1998) in the region for ℎt/ℎm < 0.4. For
this he simulated the experiments by Gerding with extended range in relative water depth. He concluded
that the formula by Van der Meer (1998) is more correct than the one by Gerding (1993). This only held for
experiments in which foreshore steepness had not been changed.

His second research aspect was the influence of foreshore slope and wave steepness, from which the latter
has a remarkable history in research (see section 1.2.2). His test results clearly show a decrease of damage
with increasing wave steepness and with decreasing foreshore steepness. This holds for very shallow water.
He included this effect in a new stability formula. It takes the Iribarren parameter (thus wave steepness and
foreshore steepness) and a new damage parameter as input. Ebbens proposed a percentual damage parameter
which scales the number of fully removed stones with toe stone porosity and volume. Toe dimensions are
thus included in the damage parameter.

Nammuni-Krohn (2009)
In 2009 Julia Nammuni-Krohn performed an additional Master’s thesis, or minor research project, in her
Master’s programme. She tried to find experimental proof for some aspects of Baart’s study in 2008. By means
of flume experiments she measured wave-induced flow velocity at breakwater toes.
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In her experiments she used Acoustic Doppler Velocimeters (ADVs) and wave gauges to measure the neces-
sary phenomena. With Fourier curve fitting a formula for maximum flow velocity near the toe was obtained.
Down rush seemed to form an additional component next to regular orbital velocities, as was expected by
Baart. Unfortunately she did not have enough time to analyse irregular wave results, so her formula is only
verified for regular waves. Besides, a lot of scatter was encountered.

Although she could not fully verify Baart’s analytical expressions, her work can be seen as a next step in
the line of research by Docters van Leeuwen and Baart.

Baart et al. (2010)
Work from Baart (2008), Ebbens (2009) and Nammuni-Krohn (2009) has been put together in this paper.
First the work by Ebbens is presented. Secondly the new approach investigated by Baart is discussed, after
which the validation by Nammuni-Krohn is given. Here it is clearly stated that Baart overestimated the flow
velocity with his analytical expressions, though it seems to be a constant deviation. The trends described by
Baart’s method are thus correct.

In 2008 Baart could not explain why the dataset of Docters van Leeuwen performed badly against his
formulae. Work by Ebbens had shown that foreshore steepness is of importance. A correction factor is thus
proposed, which scales the orbital flow velocity to the foreshore steepness. With this correction the dataset of
Docters van Leeuwen also fit the prediction method by Baart.

Muttray (2013)
In the work by Muttray it is attempted to give a new fundamental approach towards toe stability. The approach
also defines a critical flow velocity at which toe rock will start moving, which agrees with the hypothesis by
Baart (2008). The intermediate steps in derivation again use a lot of curve fitting. The formula presented is
thus nearly as empirical as the work by Gerding, Van der Meer and others, even though the background is
more fundamental. Muttray already acknowledged this by the comments he made in his paper.

Muttray started with an extensive review of existing toe stability formulae, together with their bias (differ-
ence between measured and calculated damage) and scatter (standard deviation with compensation for bias).
It must be remarked that this bias is not a very interesting tool, since it only presents how good a researcher
is able to fit a curve to his own data and not how this curve would perform against data from others. Muttray
concluded his review by two points: firstly it appeared that the water depth above the toe ℎt is most governing
in determining toe stability. Secondly he gave his concern that data points for higher waves are lacking.

For the stability analysis Muttray started with fundamental work by Izbash: stones will move “when a
critical flow velocity vc r is reached.” The formula for this vc r is reduced for deep lying surfaces, where wave-
induced flow velocities will be lower. Finally the formula is transformed into a calculation of Ns,c r , i.e. a critical
stability number which defines the threshold of motion. This coincides with the work in Baart (2008) in the
sense that they both define a threshold of motion, although Muttray does this by a simple linear approach and
curve fitting instead of an analytical approach. At this point indeed Muttray started with curve fitting to give
values for the coefficients in Ns,c r . Fitting is done based on datasets generated by Markle (1989), Gerding and
Ebbens.

Next, Muttray tried to couple the critical stability number Ns,c r with the amount of damage Nod . Again,
this is done by curve fitting. First he considered a linear function which has it offset at Ns = Ns,c r , which is
analogous to Baart (2008). Then he changed his mind:

“However, for practical applications it may be convenient to have a damage function that includes the range
of marginal damage (i.e., if Ns/Ns,c r < 1) and provides a slightly conservative estimate of the damage
numbers around the start of the damage. Approximating the damage progression by a cubic function [...]
has been proposed by Baart et al. (2010) and appears thus more favourable from a practical point of view.”

(Cited from Muttray (2013), page 60)

Muttray proposed the following relation, derived by curve fitting:

3
√

Nod =
Ns

Ns,c r

and joined it with the formula for Ns,c r . The result was a new stability formula in the classical representation.
Next he wrote the following consideration:
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“It should be noted that a cubic approach [...] does not necessarily provide a more meaningful description
of the physics involved in the toe damage progression than a linear or a polynomial approach.”

(Cited from Muttray (2013), page 60)

Some additional analysis of old datasets was made. According to Muttray, Ebbens made a mistake in meas-
uring wave heights. Muttray plotted a corrected stability value against foreshore steepness, from which he
concluded that there is no influence of steepness on toe damage. Also toe berm geometry has been invest-
igated for which he also stated that it does not influence stability. Both analyses showed however very large
scatter, so he concluded that “toe berm damage is apparently to some extent a random process that cannot be
described in explicit detail by a deterministic approach.”

Finally Muttray proposed a new percentual description for damage, based on toe dimensions, which is more
suited for use in practice.

Arets (2013)
Bachelor student Kees Arets investigated the use of numerical wave flume model ih-2vof to simulate flow
velocities near the toe. The model might be used as an alternative for flume experiments, since it is able to
calculate water levels, pressure and flow velocities at arbitrary points. Arets tried to simulate the experiments
by Nammuni-Krohn (2009). Model set-up took unfortunately a large amount of time, so not much time was
left to make an extensive comparison. However, some trials showed agreement with the results of Nammuni-
Krohn. Only regular waves have been modelled.

His work is very interesting since he suspects that the ih-2vof model is indeed suited to simulate toe stability
experiments. Experiments can thus be done with a computer instead of a physical flume, although calibration
might still be needed. This way the line of research started by Baart (2008) can be continued.

The model took quite a long time to run on a normal desktop computer, so for extensive simulations use
of a cluster computing system1 might be required. Arets advised to make the numerical flume as short as
possible, since this does not influence accuracy but reduces computation time.

Van Gent and Van der Werf (2014)
In 2014 Marcel van Gent and Ivo van der Werf published a paper with the results of their contribution to toe
stability. They were interested in the effect of the geometry on its stability. In previous research not much
attention was paid to toe height or width, or it was considered as not influencing stability. Result of new flume
experiments is a new stability formula, although it is presented as a calculation for Nod instead of Ns .

After reviewing existing literature the experimental set-up is presented. Two methods of counting damage
were investigated. The Nod value was calculated for stones which had been displaced “over a distance of
more than one stone diameter.” This was compared with a graphical method, in which stereo photography
combined with a conversion formula gave a relation between S (eroded area scaled with stone diameter) and
Nod . This appeared to work quite well.

Analysis of variation in toe dimensions demonstrated that damage increases for higher and wider toes. The
first is result of reduced water depth above the toe, which is confirmed in earlier formulae where ℎt ∝ N −1

od
for constant Ns . Next to toe geometry the influence of wave steepness was reinvestigated. It confirmed the
conclusion in Ebbens (2009), namely that higher wave steepness reduces damage.

For derivation of a new stability method, Van Gent and Van der Meer followed partially the approach
with a characteristic flow velocity at the toe. Previous research by Van Gent had proven that an approach
with linear wave theory is sufficiently accurate in predicting velocities. They confirmed this hypothesis by
analysing Nammuni-Krohn’s experiments with irregular waves:

“[It shows] that the calculated characteristic velocity [...] does not deviate much from the 2%-exceedance
value of the maximum velocity per wave. [...] the calculated characteristic velocity may be suitable for
estimates of rock toe stability.”

(Cited from Van Gent and Van der Werf (2014), page 171)

1A cluster computing system consists of several linked computers which together form a powerful system. Computation speed is
heavily increased by executing tasks in parallel.
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After curve fitting the new stability method is presented and tested against other datasets. Scatter is largely
reduced within its validity range.

Finally a new approach for damage allowance is given. Instead of working with percentual damage, they
proposed to scale the acceptable Nod -value with a factor based on toe width. Wider toes then allow for more
damage.

Muttray et al. (2014)
At the 34th International Conference on Coastal Engineering (ICCE) in 2014, Muttray changed his view
on toe stability drastically. He expressed his concerns on the classical approach in which curve fitting on
dimensionless parameters is used (see §1.2.2). In a conversation with Muttray on July 16, 2014, we discussed
his criticism and his presentation. He advises to use the approach with a critical flow velocity as proposed by
Baart.

Muttray composed a dataset from the research by Gerding (1993), Docters van Leeuwen (1996), Ebbens
(2009) and Van Gent and Van der Werf (2014). The formulae by Van der Meer (1998), Muttray (2013) and
Van Gent and Van der Werf (2014) were tested on their predictive capacity on this dataset. Stability was often
predicted rather well, but the damage number Nod had a lot of scatter. Accuracy was improved when applying
the formulae on their originating dataset only. Muttray writes:

“It appears from the above that the most recent [...] and the most accepted [...] toe stability formulae suffer
from a lack of accuracy and general validity. [...] This lack of general validity is considered as the main
shortcoming of the three toe stability formulae [...]”

(Cited from Muttray et al. (2014), page 5-6)

Muttray suspects that interdependencies between parameters, in particular the relation between Hs and ℎt ,
may result in incorrect representation of these parameters in the stability formulae. The dataset proves his
hypothesis.

A new toe stability formula is developed by a step-by-step approach. This approach starts with a very
simple case and is consecutively extended with more parameters. The final formula predicts the stability Ns
as a function of wave length, foreshore slope, toe berm slope, damage number Nod and water depth above the
toe. It corresponds to Hudson-approaches for armour layer stability. Muttray concludes with a warning that
the formula is not intended for design purposes, as many assumptions in the derivation could not be proven.
It may be used however “as a benchmark for toe berm testing and design.”

1.2.2. Review per aspect
Approach for toe stability
From the review above it appears that there exist two common approaches towards assessing toe stability
(see also appendix A). The first is an empirical approach by conducting physical experiments. It will be
called the empirical curve fitting approach. For the parameters varied in the experiments dimensional analysis
is done to create dimensionless parameter combinations. They are put into one or more formulae which are
subsequently fitted to the experimental data. Fitting is done either by statistical analysis or, in more ancient
research, just ‘by the eye’. Physical background is often not included in the formula, although the trends are
reviewed against this background. E.g. in the formula by Gerding (1993) the water depth ℎt is first fitted to
match the data; only afterwards in §5.6 he gives an explanation why this could be correct.

In the diagram in appendix A all research in the left hand box follows more or less this approach. Only
Docters van Leeuwen (1996), who adds a small part on characteristic velocities, and Muttray (2013), who
tries to use a fundamental background but eventually ends up with a lot of curve fitting, try to follow a more
fundamental approach.

The second approach is the approach initiated by Docters van Leeuwen (1996) and extensively investigated
by Baart (2008). It will be called the decoupled model approach. In this approach one attempts to decouple
the relation between boundary conditions (hydraulic and structural) and a damage parameter, by means of a
characteristic velocity. All researchers agree upon the definition of this characteristic velocity as being the flow
velocity right above the toe structure. This velocity can be result of many physical processes. Baart composes
it from orbital wave pattern, downrush on the armour slope, porous head gradient and wave reflection. The
next step is to use a stability criterion to check whether stones will start to move.
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In appendix A this approach can be found in the right hand box. In some way the work in Muttray (2013)
also belongs to this part since a critical flow velocity and a critical stability number is defined.

damage

wave properties

dimensions

ûc
porous �

lo
w

re�lection

downrush

wave action

motion

Figure 1.4: Principle sketches of the empirical curve fitting approach (left)
and the decoupled model approach (right)

Van Gent and Van der Werf (2014) end up in a combination of the two approaches. They incorporate a
flow velocity amplitude in their method which is based on linear wave theory. On the other hand they use
curve fitting to let their method match the experimental data. A drawback of their method is that the flow
velocity can only be calculated for rather deep water with waves breaking on the breakwater.

Van Oord, Delft University of Technology, Delta Marine Consultants (BAM Infraconsult) and Deltares
agree upon the choice of the decoupled model approach as the most promising line of research. The research in
this report is thus in line with this approach.

Benefits are the following:

– The approach has more physical background as it models the intermediate processes, so it is fundament-
ally more correct.

– Other influences on flow velocity, for instance currents or oblique wave impact, can easily be incorpo-
rated as an additional term or factor.

– Flow velocity is expected to be determinable using numerical models. A physical flume will then prob-
ably only be required to calibrate such a model.

– If flow velocity can be calculated numerically, complex geometries and wave patterns can be investigated.
This would be nearly impossible with analytical descriptions.

– It is easier to incorporate further research, e.g. modelling of turbulence.

Known drawbacks are the following:

– At this point in research only the threshold of motion can be modelled accurately, since stability criteria
by e.g. Izbash or Rance and Warren do not give a description of damage development. In research by
Baart no approximation of Nod was given; in research by Muttray and Van Gent and Van der Werf
curve fitting was used. Damage development is a time-dependent and complex process, which has not
been investigated yet.

– It takes more effort to use the decoupled model approach as more input parameters and more calcula-
tions are required. Accuracy can thus go down since more parameters, like for instance porosity, have
to be determined or measured, inherently imposing measurement and estimation errors.

Influence of wave steepness
As mentioned during review of the work by Ebbens, the influence of wave steepness has a remarkable his-
tory in research results. According to Ebbens (2009) Gravesen and Sørensen (1977) stated that higher wave
steepness induced more damage. Gerding (1993) however concluded that wave steepness does not influence
damage. It must be mentioned that this conclusion was drawn based on only two data points per situation.
Docters van Leeuwen (1996) could not prove anything on steepness due to a lack of data points on this topic.

Sayao (2007) reinvestigated the influence of the wave steepness. Both Sayao and Ebbens conclude that
higher wave steepness induce less damage, so the contrary of Gravesen and Sørensen. Muttray (2013) rejects
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the influence by correcting a mistake in the measured wave heights by Ebbens. Van Gent and Van der Werf
(2014) finally reconfirm the conclusion of Sayao and Ebbens.

Since steepness is defined as wave height over wave length ( s ≡ H /L, Holthuijsen (2007); Schiereck and
Verhagen (2012)), lower steepness means longer waves for the same wave height, which results in more wave
energy transport (Holthuijsen, 2007, §5.5). Longer waves can thus induce more damage to a structure, so the
observations by Sayao, Ebbens and Van Gent and Van der Werf seem to be physically correct.

In short we have:

s ∝ Nod Gravesen and Sørensen

s / Nod Gerding, Van der Meer, Muttray (2013)

s ∝ N −1
od Sayao, Ebbens, Van Gent and Van der Werf, Muttray (2014)

Description of damage
Several authors defined a method to describe toe structure damage (see appendix B). All of these formulae
make use of the number of displaced stones at the toe, but counting techniques and the way of relating them
to the toe structure dimensions give large variations in results. Already in the definition of N , the number of
displaced or removed stones, counting methods do not agree: one will count a stone when it has been removed
completely from the toe edge (e.g. in Gerding (1993), Baart (2008)), the other when the stone has displaced
over more than one stone diameter (Van Gent and Van der Werf, 2014).

Subsequently the N -value is related to the toe structure dimensions, to make it comparable for different
layouts. In this way a standardized definition for the amount of damage is available. Two methods are typical:
the first is to give the average loss per strip with a width of one stone, the second to give percentual damage.
Examples of the first can be found in Gerding (1993) and Docters van Leeuwen (1996), where Nod is defined.
This definition is again prone to interpretation: Gerding weighs against the number of strips, while Docters
van Leeuwen weighs against the mean number of stones per strip. Also in percentual descriptions opinions
vary. Baart (2008) uses toe length and width, Ebbens (2009) uses volume and porosity and Muttray (2013)
uses toe height, toe width and porosity. Design values proposed by the authors change accordingly with their
damage definitions.

Van Gent and Van der Werf (2014) propose a factor by which the design values for Nod by Gerding should
be multiplied to account for toe dimensions, but when we rewrite this definition, we get in fact a modified
Baart-definition:

Nod 6 Naccept ab l e · fB

N
L/Dn50

6 Naccept ab l e ·
√

Bt

3Dn50

N
L

Dn50

√
Bt

3Dn50

6 Naccept ab l e

Baart:
N

L
Dn50
· Bt

Dn50

= NodB

From the above we can conclude that there is nearly no consensus in the exact (practical) description of
damage. Also on the weighing principle (per strip or percentual) researchers do not agree. Baart even writes:
“Eventually the description of damage has proven not to be that important altogether. In any way NodB is not
better than Nod (for Gerding’s data set).” (Baart, 2008, p. 129). This creates a major problem in comparing
and using experimental data. Mostly the counting method imposes a big problem; if only there would be
photographs left, one could recount the displacements in a uniform fashion. It will also be difficult to adopt
the decoupled model approach to damage description since damage development is a time-dependent process.
This was already stated as a drawback of the approach.
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Definition of shallow water
A final aspect to consider is the definition of shallow water. In Ebbens (2009) toe damage development has
been investigated for very shallow water, which seems to be quite different from deep water. This means it is
important to consider the change in hydraulic conditions (mostly wave breaking) when comparing different
stability methods and experimental data.

Two influences can be seen: relative wave height and relative depth. The first is the relation between wave
height and water depth, which is known as the breaker index γ ≡ H /ℎ (Holthuijsen, 2007; Schiereck and
Verhagen, 2012). Depending on this value, wave breaking occurs at or in front of the breakwater; the higher
the value, the shallower the hydraulic conditions, which results in more seawards breaking. When this occurs
water motion becomes highly turbulent which results in more toe damage (Ebbens, 2009). The second influ-
ence, relative depth, is known as the relation between the water depth above the toe and in front of the toe,
ℎt/ℎm . A lower value will result in less damage, since the toe then becomes small in relation to water depth,
thus imposing less hindrance to the wave (Gerding, 1993).

In literature on toe stability shallow water is often described with the breaker index γ, by giving validity
limits for this parameter (Baart, 2008; Ebbens, 2009; Muttray, 2013; Van Gent and Van der Werf, 2014).
The relative depth ℎt/ℎm is included in the stability formula. According to Gerding (1993) on page 17, the
formula by Van der Meer in 1991 is given for depth limited – shallow – situations, i.e. γ ≈ 0.5. In Gerding
(1993) it is simply stated that ‘a depth limited situation was present’; from his experiment data it appears that
indeed γ ≈ 0.5. Docters van Leeuwen states that using H2% instead of Hs is better for shallow water situations.
Baart assumes surging waves in transitional water depth for his analytical derivation of ûc . In Ebbens (2009)
research is done for very shallow water, i.e. γ > 0.5.

A final remark: in classic literature on waves (e.g. Holthuijsen (2007)) shallow or deep water is mostly
determined by the relation between water depth and wave length (ℎ/L or kd ).

1.3. Problem definition, target of research, scope
1.3.1. Problem definition
In the literature study of section 1.2 the historical efforts in clarifying breakwater toe stability have been
reviewed. There appear to be the following ways to determine stability formulae:

– Physical model tests – most commonly used
– Analytical approaches – tried by Baart (2008) and Muttray (2013), but inflexible
– ‘Real-world’ breakwaters – no data available, infeasible to measure
– Numerical model tests – not yet investigated thoroughly

Physical model tests are up to now most often used to fit a design method. An analytical description would be
academically interesting, but it is often based on assumptions and simplifications. When it comes to complex
situations it could become impossible to solve. Common problems with the empirical and analytical stability
methods are:

– There are too many methods. Which one should be used? Which approach is best?
– Experimental data show a lot of scatter, so accuracy of the methods is low.
– The validity range of the methods is small, or there exist large simplifications and assumptions.
– Each method performs well on data used for fitting, but not on data from other experiments.
– Researchers do not agree upon the definition of damage. What kind of damage number should be used

or is the threshold of motion more interesting?
– Fitted formulae often lack physical background for dimensionless parameters. Influence of e.g. foreshore

steepness or wave length is not always included, although research by others has proven that they do
influence stability.

It is clear that empirical and pure analytical stability methods impose a lot of problems and considerations. A
better approach for toe stability would be useful.
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1.3.2. Target of research
Main goal of this research is to reduce the problems described above. Researchers and companies agree upon
the fact that numerical methods could solve some problems in toe stability research. These methods are more
flexible than pure analytical approaches and they still have an analytical background. Nowadays computational
power required is widely available.

A numerical method will likely provide a practical tool to assess toe stability, however, it is not yet sure
whether it will be possible to produce a single design formula. On the other hand it is clear that the decoupled
model approach proposed by Baart (2008) is the best way to continue research. This is confirmed by conver-
sations with ir. Henk Jan Verhagen (Delft University of Technology), ir. Greg Smith (Van Oord), Markus
Muttray PhD (Delta Marine Consultants) and dr.ir. Marcel van Gent (Deltares).

The target of research is thus as follows:

To give advice on which method is most useful in determining breakwater toe stability, by evaluation
of existing stability methods with a numerical flume and the decoupled model approach.

1.3.3. Research questions
Two steps will be required to reach the target of research. They are defined in the following main research
questions:

1. Can the ih-2vof model be used to simulate physical flume experiments on breakwater toe stability?

2. Which existing method on breakwater toe stability gives, using the decoupled model approach and based on
calculations with a VOF model, best results for prediction of the threshold of motion?

To be able to answer these questions, some sub-questions must be answered:

a. Which are criteria on which VOF models should be evaluated in light of the target of research?

b. Which formula or method is best to determine whether toe stones will start to displace under influence of the
hydraulic load?

c. How can stability prediction by toe stability methods be transformed into a threshold of motion?

d. Which are criteria on which toe stability methods should be evaluated in light of the target of research?

1.3.4. Scope of research
In the research questions some terms have been used, for which it is useful to give a clarification and a limita-
tion in scope:

Useful Performing best against the evaluation criteria.

Breakwater toe Toe structure of a breakwater, constructed as a berm of loose rock supporting the armour
layer. Toes consisting of concrete elements, embedded toes or vertical breakwaters are thus not invest-
igated.

Existing methods In this study it is certainly not intended to create or fit a new stability formula. This would
require too much time and Van Oord is not interested in yet another inaccurate or incomplete stability
method.

Numerical flume The ih-2vof model is a 2D model. 3D effects will not be calculated, which imposes no
problem as most historical experiments are performed in flumes too. It must be stressed that no physical
experiments will be conducted. Existing experimental data will be used for comparison instead.

Decoupled model approach This method is described on page 8, in which a characteristic flow velocity at
or near the toe is calculated.
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Threshold of motion Instead of predicting damage, which from literature study appeared to be quite difficult
to model, a threshold of motion shall be calculated. This threshold is the point at which hydraulic load
will displace stones.

Hydraulic load The ih-2vof model calculates water levels, flow velocities and pressures at the points of in-
terest. In addition turbulence can be incorporated to some extent.

1.4. Strategy
Strategy will describe how research questions will be answered. This will be done with help of the diagram in
figure 1.5 on the next page.

Research questions show two phases in research. During the first phase it will be tried to simulate the flume
experiments by Nammuni-Krohn (2009) with the ih-2vof model. Flow velocities from these experiments will
be compared with values computed by the model. The ih-2vof model can then be evaluated with the criteria
from sub-question a.

The second phase can then start. Additional model runs will be done to simulate experiments by Ebbens
(2009). Stability methods will be evaluated based on the threshold of motion. Software will produce velocities,
which can be translated into a threshold of motion using the formula from sub-question b. The stability
methods should then be compared with this threshold. This is done by putting a critical value for Nod or N%,
based on how damage was defined and counted in the original research. Stability methods, with a fixed value
for N , can subsequently be transformed in a formula for the threshold of motion, e.g. motion if f (Hs,∆, ...) 6
1. Experimental and numerical thresholds of motion can then be compared, which forms basis for evaluation
of stability methods. From this an advice on stability methods will be given.

1.5. Report structure and datasets
This report will start with a description of the decoupled model approach in chapter 2. Datasets available are
reviewed. Then the report is split up in two parts representing the two phases above. In the first phase the
ih-2vof model is set up, configurations are explored and convergence tests are done to find optimal settings,
all of which can be found in chapter 3. Next the dataset by Nammuni-Krohn (2009) is modelled with ih-2vof
and the results are reviewed in chapter 4. An answer to the first research question is then obtained. In the
second phase the existing toe stability methods are reviewed with help of the decoupled model approach. This
is done in chapter 5. Research will finally be concluded with chapter 6.

The appendices contain among others listings of formulae, datasets and model configurations. A logbook
of the ih-2vof model and some information on running cases in batches is also provided.
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Implementation of the decoupled

model approach

2.1. Description of the decoupled model approach
The decoupled model approach is the new approach towards toe stability, as proposed by Docters van Leeuwen
(1996) and Baart (2008). Difference with the empirical curve fitting approach was already described in section
1.2.2. In the decoupled model approach hydraulic conditions above the toe act as a link between wave-induced
flow and stone stability, see figure 2.1. In Baart (2008) it was proposed that horizontal flow velocity above the
bed should be taken as the characteristic measure. Other measures like e.g. pressures or accelerations might
also be of importance.

The ih-2vof model will be used to obtain local hydraulic conditions above the toe. A yet to be chosen
formula for stone motion should translate these conditions into stone motion prediction. This prediction will
be compared with the prediction by toe stability methods.

ûc
porous �

lo
w

re�lection

downrush

wave action

motion

Figure 2.1: Principle sketch of the decoupled model approach

The following terms will be used frequently and require a definition to avoid confusion:

Stability method A single or multiple formulae together which determine whether a breakwater toe struc-
ture is stable under the prevailing wave climate (§1.2).

Motion formula A formula which gives information on stone stability in general situations.

Stability number The dimensionless Ns = Hs/∆Dn50 value for breakwater stone stability (§1.2).

Damage parameter Parameters in stability methods expressing the amount of damage. Typical examples are
Nod and N%. Note that exact definition of damage may vary per method.

15
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Stability parameter The typical dimensionless parameter Ψ in motion formulae. It is often related to trans-
port parameter Φ.

2.2. Formulae for the threshold of motion
2.2.1. Introduction to stone stability
This section gives a short overview of the existing motion formulae and their advantages and limitations. A
small-scale literature study has been performed towards stone stability. Criteria on which motion formulae
are evaluated will be formed and applied on the formulae available. It is beyond the scope of this research to
try to improve or adapt these formulae to the current situation1. They will be used “as is” for engineering
purposes. The section concludes with an overview of the required output from the numerical model, i.e. the
output from step one of the DMA. Literature study initiated with the work by Hofland (2005), Hoan (2008)
and Steenstra (2014). Their work focused on stability of stones attacked by non-uniform flow. The theses
contain extensive literature studies, to which reference is made for a complete and detailed overview.

Stone stability is the interaction between fluid flow and movement of the stone. The flow results in all
kinds of forces on the stones (Steenstra, 2014, §2.2) which might be sufficient to let the stone move. The
amount of movement, i.e. whether the stone will only be rocking or whether it will really move, is up to
now only predictable by empirical relationships. This is partially caused by the complex mutual interaction
between stone movement and fluid flow, and partially by the stochastical character of the process. Stones do
not possess a well-defined, simple shape and also turbulence – an important component of the stone forces –
is random in nature. They can both be described statistically (Schiereck and Verhagen, 2012, §2.2).

2.2.2. Threshold of motion
In figure 2.3 in Hoan (2008) a diagram presents the different approaches in general stone stability. They are
characterized by whether they are deterministic or probabilistic, and whether they define a threshold criterion
or an amount of transport. Older motion formulae are deterministic methods defining a threshold of motion,
e.g. formulae by Shields (1936) and Rance and Warren (1968). The threshold works with a critical value of the
hydraulic conditions at which a ‘considerable’ amount of movement is noticed. If stability could be expressed
in e.g. parameter X then the threshold is defined by a critical value Xc so that when X > Xc there would be
stone movement. In e.g. Schiereck and Verhagen (2012, §3.2.2) and Steenstra (2014, §2.3.2) it is described that
this condition is prone to the (subjective) interpretation of the researcher. This makes it a difficult parameter
to use in research as it is hard to compare between experiments, despite efforts made to make the condition
more defined. On the other hand a threshold of motion is an easy to understand condition, which is important
for engineering and communication practices.

More recent work follows the deterministic road towards transport formulae, to avoid subjectivity as far as
possible. Most motion formulae are presented using the dimensionless stability parameter Ψ and the dimen-
sionless transport parameter Φ. The first gives a ratio between load and resistance, the second is a measure
for the amount of stone movement. They are related to each other by a transport formula Φ = f (Ψ). This
relation also holds for non-uniform flow, see Steenstra (2014, §2.3.2). In design practices one could pose a limit
to the amount of transport allowed, say Φc , and verify whether the calculated Φ stays below this value. In fact
this is similar to the principle of a threshold of motion: the designer puts a subjective limit to the amount of
allowed stone displacement. The difference is that the designer can choose to let some displacement take place,
which is interesting for e.g. temporary structures. The similarity to damage number Nod is also described in
Schiereck and Verhagen (2012, p. 55): “The choice of Ψc depends on the amount of transport that is acceptable,
hence Ψc can also be regarded as a damage number.”

As already described in section 1.4 this research will use the threshold of motion concept. Can it be defended
to use this concept when it is such a subjective criterion? In the work by Baart (2008) it was proven that a
threshold of motion is a workable method for toe stability. Graphs in chapter 5 in Dessens (2004) confirm this
behaviour. For engineering practices it is an understandable and practical measure to work with. Designers
and contractor clients often choose for a conservative value for the damage number, which corresponds to
the subjective levels “hardly any damage” or “insignificant damage”, see appendix B. This corresponds to a
design for the threshold of motion. It is not the most economical choice, but from a political point of view

1In e.g. Baart (2008) the formula by Rance and Warren (1968) was adapted to account for porous flow.
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a logical choice. A third reason to use the threshold concept is the fact that in historical experiments damage
was recorded in different and incomparable ways. The amount of displaced stones is not reported in such
detail that they could be reassessed with a uniform parameter.

Finally it must be stated that the more recent motion formulae can be translated to a threshold criterion
by imposing a critical value of Φ and/or Ψ. By this they can be used in this research. This adds however
subjectivity to the formulae. This subjectivity is also visible in the defined damage levels for Nod : mostly a
transition range is given.

2.2.3. Requirements for motion formulae
The formulae for motion need to fulfil some requirements imposed by the research approach, the dataset and
the modelling possibilities of the ih-2vof model. The formulae will subsequently be reviewed against these
requirements and the best formulae will be chosen.

Formula for non-uniform flow Uniform flow can be defined as flow in which there are no changes of flow
velocity in the direction of the flow. The acceleration in space1 is thus zero. In case of breakwater toes, waves
and loose stone elements will form a flow which is certainly not uniform. Acceleration and deceleration of
the fluid produce additional pressure differences and generate turbulence, see e.g. Hofland (2005, §2.4, 2.5) or
Steenstra (2014, §2.1, 2.2). The motion formula should thus be intended for non-uniform flow. This is a strict
requirement.

Applicability for RANS-models The ih-2vof model solves the Reynolds-averaged Navier-Stokes (RANS)
equations, see chapter 3. The output of the model is therefore limited to discrete velocities, pressures, water
levels and, if implemented, values of turbulence intensity. The parameters of motion formulae should therefore
be given in, or derived from, the model output. This is a strict requirement.

Focus on coarse material Breakwater toes are constructed of stones which are large relative to the toe
dimensions; a toe is often only a couple of stones wide and high. The definition of stones or coarse material is
therefore open to discussion: what can be regarded as sand or gravel in a real-life breakwater could be regarded
as large rock in scale models. Hence this is not a strict requirement. The most important thing to verify is
whether the research focuses on non-cohesive, loose grains.

Availability of a threshold of motion criterion A motion formula which is intended for defining the
threshold of motion is easy to use, even though it is a subjective criterion. Transport parameter Φ however
can be converted to such a criterion with a subjective limit. If research would present such a limit, this would
be practical. In other cases a limit has to be chosen. This requirement is thus not strict.

A final comment should be made regarding turbulence modelling. It will be proven in section 3.5 that the
current version of the ih-2vof model is not able to model turbulence in a correct way. Use of a motion formula
which has the value of turbulence intensity k as input variable is therefore possible, but the outcome could
be of little use. A formula which uses a bulk coefficient, including turbulence effects, is then a better option,
although it is scientifically less correct.

2.2.4. Review of motion formulae
The motion formulae hereafter are found in work by Baart (2008), Hofland (2005), Hoan (2008) and Steenstra
(2014). The background of each formula will be discussed very briefly; for more detail reference is made to
the original works or the literature study in the theses cited. Each formula will be presented in its original
form. The subscripts to stability parameters Ψ is kept to these in the work by Steenstra (2014).

Izbash, as presented in Schiereck and Verhagen (2012) The approach by Izbash in 1930 was based on a
force balance on single stones: when a certain equilibrium condition is passed the stone will start to move.
It makes use of a characteristic velocity near the stone, which was not defined in more detail. The definition

1Note the difference with stationary flow, in which acceleration in time is zero.
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of the stone diameter is not known exactly either. Even though the formula is very old, it is often used as
reference in research on stone stability. The formula reads:

uc = 1.2
√

2∆gd (Izb30)

in which:
uc Critical velocity [m/s]

∆ Relative density [-]

d Stone diameter [m]

Shields (1936) Shields derived a stability parameter for granular beds under uniform flow. It is based on
local shear stress as load and stone weight as resistance. For situations with non-uniform flow an influence
factor Kv is defined. The factor is derived empirically and available for a limited number of situations only,
see Schiereck and Verhagen (2012, §3.4). Shields also defined a critical value of Ψ by means of a diagram, see
e.g. figure 3-2 in Schiereck and Verhagen (2012). The motion formula can be given in many forms, but here
the one with the bed shear stress is presented:

ΨS =
τb

(ρs − ρw )gd
(Shi36)

in which:
ΨS Shields stability parameter [-]

τb Bed shear stress [N/m2 ]

d Stone diameter [m]

Rance and Warren (1968) The work by Rance and Warren focused on finding a threshold of motion of
coarse material under oscillatory flow. The experiment results were originally presented in a diagram. In
Schiereck and Fontijn (1996) a formula for motion was fitted to the diagram data. In Baart (2008) the formula
was used and adapted to incorporate the head gradient due to porous flow in the breakwater toe. Both formulae
respectively read:

û2.5
bc = 2.15−1

√
T (∆g )1.5Dn50 (Ran68a)

û2.5
bc = 0.46

√
T

(
(∆ −CP F i)g

)1.5 Dn50 (Ran68b)

in which:
ûbc Critical horizontal orbital flow velocity above the bed [m/s]

T Wave period [s]

Dn50 Median nominal stone diameter [m]

CP F Coefficient for porous flow, fitted to a value of 0.4 [-]

i Head gradient over the toe due to porous flow [-]

Sleath (1978) Sleath extended the work by Shields to oscillatory flow, which is useful for wave loads. The
Shields parameter ΨS is kept, though a second line in the diagram for the threshold of motion is added. The
diagram is presented in figure 8-6 in Schiereck and Verhagen (2012).

Jongeling et al. (2003) The research by Jongeling et al. developed a method which couples stability of
granular materials to numerical RANS-models. The effect of turbulence is added with the k-ε model. The
formula uses a depth-averaged velocity and a critical stability value is provided. With depth-averaging Jongeling
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et al. break with the principle of a certain characteristic velocity near the stone. In Hoan (2008) the formula
has been critically reviewed and tested, which resulted in a new value for α. The Jongeling formula reads:

ΨW L =

〈(
u + α

√
k
)2〉

d
∆gDn50

(Jon03)

in which:
u Horizontal flow velocity at each depth level [m/s]

α Empirical turbulence magnification factor, Hoan (2008) fitted a value of 6.0 (originally 3.5) [-]

k Turbulence intensity [m2/s2 ]

〈. . .〉d Spatial average over a height d above the bed

d Water layer thickness which is important for stability, d = 5Dn50 + 0.2ℎ [m]

ℎ Water level above the bed [m]
A critical value for the stability was given as ΨW L,c = 8.

Dessens (2004) Dessens did research to accelerating flow. He fitted a motion formula which is based on the
local acceleration and velocity. The flow was accelerating so the influence of turbulence is low. The accelera-
tion is measured in space. No clear definition of the averaging process is given and it is questionable whether
for toe stability the averaging must be performed over the full water column. The coefficients contain the
influence of turbulence and are fitted based on a threshold of motion. The final formula reads:

ΨM S =

1
2CB u2 +CM da

∆gd
(Des04)

in which:
ΨM S Dessens stability parameter [-]

CB Bulk coefficient for drag and turbulence, fitted to a value of 0.10 [-]

u Horizontal (depth-averaged) flow velocity [m/s]

CM Inertia coefficient, fitted to a value of 3.92 [-]

d Stone diameter; in Dessens (2004, §3.9) it can be found that it is probably the Dn50-value [m]

a Horizontal (depth-averaged) flow acceleration in space, a = ū ∂ū
∂x [m/s2 ]

The critical value of ΨM S,c = 0.3 was found during fitting, see figure 5.19 in Dessens (2004).

Hofland (2005) In the PhD thesis by Hofland a thorough study was made towards mechanisms governing
stone stability. The effects of turbulence are investigated to a large extent. An important aspect of his formula
is the implementation of a mixing layer between laminar flow and a turbulent eddy. An other important
aspect is that the method was developed for use with a RANS-model, like the formula by Jongeling et al.
(2003). In Hoan (2008) the value for α was reviewed and fitted to a new value. In the conclusions of his thesis
Hofland mentions that the model “is not suited for waves”. The Hofland formula reads:

ΨLm =
max

[〈
ū + α

√
k
〉

Lm

Lm
y

]2

∆gd
(Hof05)
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in which:
ΨLm Hofland stability parameter [-]

ū Time-averaged horizontal flow velocity at each depth level [m/s]

α Empirical turbulence magnification factor, Hoan (2008) fitted a value of 3.0 (originally 6.0)
[-]

k Turbulence intensity [m2/s2 ]

〈. . .〉Lm Spatial moving average filter over the region y ± Lm/2

max[. . .]2 Spatial maximum over the water column ℎ. Note that max[x2 ] = (max[x ])2.

Lm Bahkmetev mixing length, Lm = κ · y
√

1 − y/ℎ [m]

y Measurement level above the bed; y = 0 at the theoretical bed level [m]

d Stone diameter; from §4.5.1 and §4.5.2 in Hofland (2005) it can be assumed that it is probably
the Dn50-value [m]

κ Von Kármán constant, κ = 0.41 [-]

ℎ Water level above the bed [m]

The discrete calculation method is as follows: at every y one takes the average of ū + α
√

k over the region
y ± Lm/2 in which also Lm is determined by y. Each average is multiplied with Lm/y. Afterwards the squared
maximum of these values is taken and divided by the stone properties. See also §8.4.1 and figure 8.2 in Hofland
(2005) for a visualization.

Hoan (2008) Hoan created a formula which uses a probabilistic approach for the derivation of an amount
of transport. Instead of a contribution of

√
k as in the formulae by Jongeling et al. and Hofland, the standard

deviation of the flow velocity σ(u) is used. Hoan defines this value as σ(u) =
√

u ′2. The k-ε model does not
provide this value and therefore this formula is difficult to implement with RANS-models. The final stability
parameter reads:

Ψu−σ(u) =

〈
[u + ασ(u)]2 ×

√
1 − z/ℎ

〉
ℎ

∆gd
(Hoa08)

in which:
Ψu−σ(u) Hoan stability parameter [-]

u Horizontal flow velocity at each depth level [m/s]

α Empirical turbulence magnification factor, fitted to a value of 3 [-]

σ(u) Standard deviation of the flow velocity, defined as σ(u) =
√

u ′2 [m/s]

z Measurement level above the bed; z = 0 at the theoretical bed level [m]

ℎ Water level above the bed [m]

〈. . .〉ℎ Spatial average over the water column above the bed

d Stone diameter; from §3.3 in Hoan (2008) it can be assumed that it is probably the Dn50-value
[m]

Steenstra (2014) Steenstra did additional research to the effects of accelerating flow and tried to combine
this with knowledge gained on turbulence in the work by Jongeling et al. (2003), Hofland (2005) and Hoan
(2008). From available experiment data and numerical simulations a stability parameter is derived which is
based on the Hofland stability parameter. An extra term is added which accounts for the acceleration and
which is comparable to the Dessens (2004) approach. Since the formula by Hofland was not intended for
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waves, this might also hold for this formula. The formula reads:

ΨRS =

(
max

[〈
ū + α

√
k
〉

Lm

Lm
z

]2)
+Cm:b

(
ū ∂ū
∂x

)
ℎa

d

K (β) · ∆gd
(Ste14)

in which:
ΨRS Steenstra stability parameter [-]

(max . . .) See the Hofland (2005) formula

z Measurement level above the bed; z = 0 at the theoretical bed level [m]

α Empirical turbulence magnification factor, fitted to a value of 3.75 [-]

Cm:b Empirical coefficient for turbulence and acceleration, fitted to a value of 23.0 [-]

(. . .)ℎa Values and derivative taken at a level of z = ℎa

ℎa The level above the bed where the advective acceleration should be measured, fitted to a value
of 9.0Dn50 [m]

d Stone diameter; from §2.4 and 3 in Steenstra (2014) it can be assumed that it is probably the
Dn50-value [m]

K (β) Correction factor for the bed slope [-]

K (β) =



sin(φ+β)
sin φ upward slope

sin(φ−β)
sin φ downward slope

β Angle of the bed slope in the direction of the flow [-]

φ Angle of repose of the bed material [-]

Peters (2014b) During the course of this research Ruben Peters published his Master’s thesis, in which the
stability of individual stones in a rubble mound breakwater toe was investigated. He defined a critical moment,
caused by the acting forces on a single stone, above which the stone will dislocate. It therefore gives a criterion
of motion. The formula incorporates drag, lift, weight and shear forces, see figure 2.2. The shear force turned
out to be negligible. Prediction of motion was found to be quite accurate and promising for further research.
The formulae read:

MA = FL · owl − FW · owl + FD · od (Pet14)

FL =
(
punder − pabove

) · D2
n50

FW = (ρs − ρw ) · D3
n50 · g

FD =
1
2

CD ρw A f u |u |
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in which:
MA Moment; motion if MB > 0 [Nm]

FL Lift force [N]

FW Weight force (submerged) [N]

FD Drag force [N]

owl Lever arm for lift and weight force [m]

od Lever arm for drag force [m]

p Pressure above/below stones in the top layer of the toe [Pa]

CD Drag coefficient based on Hofland (2005), with a value of 0.23 [-]

A f Frontal area of the stone, attacked by flow [m2 ]

u Flow velocity at a level of 0.15Dn50 above the toe bed, though estimated here as 0.9ufree flow [m/s]

Figure 2.2: Forces acting on a stone. Flow velocity is from right to left.
Image courtesy of R.B.M. Peters

Overview and selection The formulae will now be tested against the requirements. This is done with use of
table 2.1. We can see that already five of the ten formulae fulfil the strict requirements and two formulae can
be used if a subjective threshold value is imposed. The Izbash formula was originally rejected since definition
of flow velocity is unclear. However during evaluation in chapter 5 it was decided to use the formula as
others appeared to perform not very well. Formulae by Shields and Sleath were regarded as inappropriate due
to the use of a diagram, the correction factor Kv for non-uniform flow and the difficulty to measure shear
stresses. The Rance and Warren formula is kept since it is also used in Baart (2008). Regarding turbulence it
is dangerous to use a formula that requires a value for turbulence intensity k, since the current version of the
ih-2vof model can only calculate the instantaneous production. Besides turbulence, non-stationary flow by
wave attack was not investigated either. Care must be taken to use this formula for the purpose of breakwater
stability. Only the most recent formula will be tested for reference, i.e. the formula by Steenstra. A subjective
threshold value should be chosen. The formula by Dessens is also retained since it is a simple formula which
includes acceleration and which accounts for turbulence with a bulk coefficient.

The formula by Peters was also selected as it is state of the art and appeared to be quite promising. However
two problems arose. First problem was the necessity of accurate stone dimensions to find moment lever arms
and frontal area. Second and most important problem was necessity of pressures above and below the toe
bed level in FL. Peters’ work was published only after the Ebbens cases (see chapter 5) were run in ih-2vof
and therefore it was not known that pressures calculated should be stored. Both problems were overcome by
making assumptions and simplifications, which will be elaborated in section 5.3.

To conclude this section we will discuss which model output is required. Izbash requires flow velocities
above the toe. It is decided to use velocities at 1.0Dn50 above the toe, see section 5.3. The Rance and Warren
formula requires a local period and orbital horizontal flow velocity, which can be derived from horizontal
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Table 2.1: Overview of motion formulae properties
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Non-uniform flow (s) X x X X X X X X X X

RANS-model applicability (s) X x X x X X X x X X

Coarse material X x X x x X X X X X

Threshold criterion X X X X X X ∼ ∼ ∼ X

Requires k x x x x X x X x X x

Fulfils requirements X x X x X X ∼ x ∼ X

Chosen after review X X X X X

(s) strict requirement, X possible/available, x not possible/unavailable, ∼ available with subjective limit

flow velocity records above the toe. They have to be measured at each grid cell border and at a couple of
levels in vertical direction. The same holds for the Dessens formula, since the flow acceleration in space can
be derived from multiple velocity measurements in space. The Steenstra formula requires u and k values
measured over the full water column. It is therefore chosen to place u- and k-gauges at each vertical cell border
over the full toe width. The gauges store the necessary time records at each water level. Output of the water
level gauges is also retained. In section 5.2 configuration is explained in more detail.

2.3. Historical experiment data
Both phase one and two in this research require appropriate datasets. These datasets can be found in historical
experiments, as reported in appendix A. In this section it is described which datasets will be used and how
they are composed. In Appendix C a full description of datasets used is given.

In phase one the ih-2vof model will be validated regarding toe stability. Two researchers at Delft University
of Technology have performed flume tests in which flow velocities and pressures are measured, namely Julia
Nammuni-Krohn and Ruben Peters. The velocities and pressures measured can be compared with the results
of the ih-2vof model. The particularities of their datasets will now be described.

Julia Nammuni-Krohn (2009) performed flume tests to obtain the required data by which the hypothesis
by Baart (2008) could be proven. For this she reconstructed the experiments by Gerding (1993). The main
difference with his experiments is that she did not measure the amount of damage, but the flow velocities above
the toe. This was done on several locations with mainly regular waves. A total of 80 test cases is investigated,
of which 26 have irregular (jonswap) waves. Her research data are available at the Dutch 3TU.Datacentrum1

and consists mainly of horizontal flow velocities. In fact she recorded flow velocities in all directions, but she
did not review the other directions in her report. Therefore it is chosen to validate only the horizontal flow
velocities with the ih-2vof model.

Ruben Peters (2014) recently held flume tests dedicated to movement of single stones. For this he created
a single breakwater layout in which all stones were glued together, except for a couple of stones at the toe.
He recorded flow velocities above the toe and fluid pressure above and under the loose stones. Peters validated

1http://data.3tu.nl/

http://data.3tu.nl/
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the ih-2vof model on his test data in an additional thesis project, therefore his dataset will not be used for this
Master’s thesis. Section 4.5 provides a review of his work.

Phase two of this research requires datasets in which toe damage was recorded. This is done in the work by
Gerding, Docters van Leeuwen, Ebbens, Van Gent and Van der Werf, Burcharth and Liu, and Sayao. Datasets
of the latter two could not be obtained. The other four datasets will be discussed below.

E. Gerding (1993) presented a systematic way of describing damage and recorded this visually for a set of
flume tests. He performed 171 different test cases with irregular waves. The data are presented in the report.

Linda Docters van Leeuwen (1996) validated the formula by Gerding for different stone densities. For this
she recreated Gerding’s flume layout to some extent. She also recorded damage visually. The data available is
presented in her report. She states that 96 cases were performed, though in the dataset 98 different cases can
be observed.

Reinder Ebbens (2009) performed tests in the flume of Delta Marine Consultants (BAM Infraconsult)
with focus on very shallow water. 296 different test cases with irregular waves were constructed. His method
of counting stones differs from previous work in the sense that damage was visually counted with help of
a computer. The armour layer in his structure consists of Xbloc units, for which he gives a Dn50-value.
Experiment data are given in the report appendices.

Marcel van Gent and Ivo van der Werf (2014) held tests in one of the small-scale Deltares flumes. Although
they describe test set-up and parameter ranges in their paper, the final experiment data are not published.
Experimental results of Van Gent and Van der Werf (2014) have been digitised from plotted data in their paper.
The test conditions have been analysed backwards from these digitised data and from additional information
in the paper. Only test conditions and test results that could be clearly identified by this procedure have been
included. These are 122 of 192 tests conducted.

The experiment data for phase two were already gathered by Markus Muttray in 2014. He was so kind
to make this combined dataset available for this thesis project. The test cases by Nammuni-Krohn have been
appended to this database. A total of 767 test cases is obtained.

To be able to model these tests with the ih-2vof model details of the structure are required. Often original
reports do not give information on e.g. stone porosity, coefficients of the Forchheimer equation or detailed di-
mensions. This requires assumptions and approximations which might influence results, though it is expected
that the trends will stay the same since fundamental processes are not influenced. The final structure details
are given in appendix E.
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3
Running IH-2VOF

This chapter gives a description of the computational fluid dynamics model used in this research. Some basic
information on the model configuration is provided. To discover best settings for simulation performance
some convergence tests have been performed. Results are given in section 3.3. During testing some unexpected
behaviour was observed. In section 3.4 the phenomena are analysed. At the same time it was discovered that
the turbulence calculation of ih-2vof does not work properly. Details on this matter are given in section 3.5.

3.1. Description of the model
The ih-2vof model is a computational fluid dynamics (CFD) model. It has been developed by the Spanish
Instituto de Hidráulica Ambiental “IH Cantabria” (Environmental Hydraulics Institute “IH Cantabria”). For
a full description and mathematical formulation reference is made to IH Cantabria (2012) and Lara et al.
(2011). The most important features are summarized here. The model:

– is two-dimensional, providing a ‘side view’ model of a flume;
– can simulate on model and prototype scale;
– solves the Reynolds-averaged Navier-Stokes (RANS) equations in the clear fluid region;
– uses the nonlinear k-ε turbulence model when required (Lin and P. L.-F. Liu, 1999) (see also section

3.5);
– accounts for porous media by applying volume averaging in porous regions, resulting in the volume-

averaged RANS equations (P. L.-F. Liu et al., 1999). The additional terms due to volume averaging are
closed using the extended Forchheimer equation (P. L.-F. Liu et al., 1999; Van Gent, 1995);

– calculates free surface by applying the Volume of Fluid (VOF) technique (Lin and P. L.-F. Liu, 1999);
– provides flow velocities, pressure, turbulence intensity and VOF-values at each grid cell;
– uses grid generator Coral to set up the geometry;
– is written in Fortran and C++ and has been compiled for Windows and Linux computers. It is distrib-

uted with a Matlab-based graphical user interface (GUI) which makes pre- and post-processing very
easy.

The department of Coastal Engineering at Delft University of Technology has adopted the ih-2vof model
due to its capability of simulating porous flow, excellent pre- and post-processing facilities, portability and
reasonable pricing. It is valuable for modelling coastal structures since it can model wave overtopping, wave
transmission and resultant forces on structures.

The model is built to run on a single computer. Often a large number of simulations is needed for research
purposes and therefore the use of a computer cluster is useful. For this Master’s thesis the computer rooms at
the faculty of Civil Engineering of Delft University of Technology were used. Each computer could efficiently
run three simulations simultaneously. A description of how the program can operate on a computer cluster is
given in appendix I and J.

26
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Figure 3.1: Arbitrary screenshots of the ih-2vof GUI

3.2. Configuration
3.2.1. Workflow
The workflow for a typical simulation is pictured in figure 3.2. Pre-processing starts by creating the geometry
(water, air, solids and porous media) and the calculation grid (also called mesh) by using program Coral. Next
the incoming waves are generated using the GUI, which is able to generate solitary, regular and irregular
waves. Finally one can choose which output is stored, whether flume boundaries are absorptive and whether
turbulence should be included. All input and output values are in SI units. Now the calculation process can
start. Duration of calculation is dependent on structure modelled and computational power, but it quickly
reaches hours or days with a nowadays desktop computer. See appendix E for some values. When calculation
is finished the GUI enables quick data exploration by graphically showing the calculation results. With data-
analysing software more detailed post-processing is possible.
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Figure 3.2: Workflow in ih-2vof simulations
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3.2.2. Grid properties
Accuracy of a computational fluid dynamics model is dependent on the computational grid. The ih-2vof
model has a grid with rectangular elements. The ih-2vof manual imposes a limit of ∆x/∆y < 2.5 to avoid
false breaking effects, see IH Cantabria (2012). Element orientation is along the horizontal x -axis and vertical
y-axis. Origin of these axes is at the intersection between flume floor and wave generator, like shown in
figure 3.3. Convergence tests are required to check when accuracy of the model is sufficient. Computational
efficiency is investigated as well: a very dense grid is more accurate but implies a problematic computation
duration. For this report three types of convergence tests have been performed: one on flume length in front
of the structure, one on cell size in x -direction (their width, ∆x ) and one on cell size in y-direction (their
height, ∆y ). Since a lot of issues were encountered during these convergence tests, they will be discussed in a
separate section, see section 3.3 hereafter.

ℎ f

L f

x
y

u
v

∆y

∆x

flume floor

wave
generator

Figure 3.3: Defintions in the computational grid

With grid generator Coral one can create both a uniform and a non-uniform grid, in which cell dimensions
are respectively constant or variable along the domain. This could be interesting to get a higher level of
detail near the region of interest. In the ih-2vof manual it is strongly advised to use uniform grids because
of numerical errors in finite difference schemes. In the work by Arets (2013) this has been investigated. It
appears that constructing a non-uniform grid in x -direction gives severe changes and errors in calculation. A
non-uniform grid in y-direction has nearly no effect on accuracy, but it does not improve computation time.
Based on these observations and recommendations it is chosen to use a uniform grid in both directions.

3.2.3. Properties of porous media
The ih-2vof model uses the extended Forchheimer equation to solve the volume-averaged RANS equations
(P. L.-F. Liu et al., 1999). The Forchheimer equation has its basis in Darcy’s law, by giving the relation between
pressure gradient ∂p/∂x and a forcing due to turbulent flow through a porous medium. When non-stationary
flow is present, the classical Forchheimer must be extended with an additional term: accelerating flow leads to
the ‘added mass phenomenon’. This can be explained by the fact that it takes more momentum to accelerate
a volume of water in a porous medium than in unhindered flow. In Van Gent (1995, eq. 3.5 and 3.16) the
extended Forchheimer equation is given as

I = au + b u |u | + c
∂u
∂t
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with coefficients
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Coefficient a belongs to the linear contribution of the shear stress (according to Darcy’s law), b accounts
for turbulence and convective transport and c is result of accelerating flow. The coefficients a, b and c are
dimensional and contain dimensionless parameters α, βc and γ. It can clearly be seen that the coefficients, and
therefore the porous flow gradient, are largely determined by the porosity and the nominal stone diameter.
The KC denotes the Keulegan-Carpenter number and is given as KC = ûT /nDn50. In literature following
definitions are also found:

β = βc

(
1 +

7.5
KC

)
cA = γ

1 − n
n

This leads to some confusion, as β is sometimes mixed up with βc , and γ with cA. By analysing the computer
source code, the following can be found on how Forchheimer is implemented in ih-2vof:

Parameter α is called the linear friction coefficient in grid generator Coral. This is correct and indeed the α
value in the Forchheimer equation. Lara et al. (2011) advises to use α = 4409.22 · D0.43

n50 (with [Dn50 ] = m ) as
an estimation when no calibration tests have been performed.

Parameter βc is called the non-linear friction coefficient in Coral. In the ih-2vof manual this is mixed up
with β in equation 30: according to Van Gent (1995) one can use βc = 1.1 as an estimation, though in the
ih-2vof manual and in Hsu et al. (2002) it is stated that β = 1.1 should be taken. In P. L.-F. Liu et al. (1999),
on which the article of Hsu et al. (2002) is based, it is however correctly written that βc = 1.1 ( βc = βp in
the article). The ih-2vof model calculates the KC number for each time step and grid cell, and converts βc to
β accordingly.

Parameter γ is called the added mass coefficient in Coral. This is incorrect since in literature this name is
given to cA. One should therefore simply fill in the advised value of γ = 0.34 in Coral. The ih-2vof model
subsequently adds the factor (1 − n)/n.

In source code following calculations are performed in MCoralFiles.F90:

xa(n) : g a = α
(1 − n)2

n3
ν

D2
n50

xxb(n) :
gb

1 + 7.5
KC
= βc

1 − n
n3

1
Dn50

gc(n) : g c =
1 + γ 1−n

n
n

with α, βc , γ, n and Dn50 given in the mesh file from Coral. Thereafter in both IHC_deltadj.F90 and
CVTilde.cpp the gb -value is obtained by multiplying xxb(n) with 1 + 7.5/KC.

Usually a and b coefficients for a specific material are determined experimentally. This was not done during
the reviewed experiments on toe stability. The values are therefore estimated by using the recommendations
described above:

α = 4409.22 · D0.43
n50 with [Dn50 ] = m, βc = 1.1 and γ = 0.34 (3.1)



3. Running IH-2VOF 30

3.2.4. Wave generation
The ih-2vof GUI allows for easy wave generation. Users can choose amongst different wave types and wave
generation methods. In this research regular (harmonic, using the linear wave theory) and irregular (using a
jonswap spectrum) waves are used. The generation scripts make sure that a realistic record is obtained.

In Van den Heuvel (2013, appendix A) it has been investigated how many waves should be simulated to
obtain a full irregular wave spectrum; fewer waves imply a shorter simulation time and thus a reduction in
computation time. It was found that a minimum of 1000 waves are required. This coincides with most of
flume experiments conducted. When investigating processes like overtopping or forces on structures, extrema
are important and a more developed spectrum with 1000 waves is necessary. However, the creators of the
ih-2vof model use only 300-500 waves when investigating flow velocities. This is sufficient when extrema are
less important. It certainly reduces computation time.

For regular (harmonic) waves one can simply fill in the required wave height and period H and T . For
irregular waves the value of Hm0, Tp and the jonswap γ-value should be given. The script then generates waves
according to the spectrum. All parameters are target values at the wave generator. Simulation duration should
also be filled in. When one wants to obtain n waves, one can use following approximations for the simulation
duration:

tend = n · T (regular waves)
tend ≈ n · 0.8Tp (irregular waves)

In the ih-2vof model two methods of wave generation are possible: one is by using a Dirichlet boundary
condition (‘static paddle’), the other by using a moving boundary (‘dynamic paddle’). The latter produces
waves as how they would be generated in a laboratory flume by simulating a moving paddle. It therefore
requires a larger horizontal domain, which increases computation time. According to IH Cantabria (2012)
and Van den Heuvel (2013) the static paddle generates the same waves as the dynamic paddle. It is therefore
chosen to use the static paddle in this study.

3.3. Convergence tests
Convergence tests were performed to obtain sufficient simulation accuracy at a not too high cost of com-
putation time. In this section these convergence tests are described in detail since outcome is important for
modelling. Observations made during testing led to additional tests, which gave essential information on how
the model should be used later on. The convergence tests were made together with Ruben Peters, see Peters
(2014a). His findings and methodology are almost identical to these hereafter.

As mentioned earlier before three convergence tests have been performed: one on flume length, one on cell
width and one on cell height. The outcome of each test has been implemented in the next one. This might
lead to some conservative values, since more efficient combinations of grid properties might exist outside these
limits. In other words: some cell size ratios within the limit of ∆x/∆y < 2.5 have not been considered. Due
to time restrictions this was not investigated further; the method used gave sufficient accuracy and workable
computation durations.

Test set-up is based on Nammuni-Krohn experiment NK09-R016-L, see appendix E. This case was chosen
based on high influence of bottom friction (low water level), high chance of breaking (high steepness with
low water level) and low wave height. This results in smallest ∆x and ∆y. In appendix D the full test set-up
is described in more detail. Focus was put on peak values of the horizontal flow velocities, since the u values
will be compared with data from the Nammuni-Krohn tests. Verification of convergence is done in a similar
fashion for all tests. In short the following steps were taken:

1. Get the horizontal velocity record at each wave gauge, over the full vertical and for each case.

2. Shift the time domain so that velocity records coincide for different flume lengths.

3. Find the maximal difference in peak velocity after a certain spin-up time.
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4. Use this maximal difference to calculate a relative error in the following way:

rel.error =
�������

max. difference
max

{
peakvaluer e f e r ence,peakvaluec ur r ent

}
�������

5. Take the mean relative error over the wave gauge and subsequently the mean over the full flume.

It would be interesting to have errors less than 5%, since this is the typical accuracy of laboratory wave gauges
and velocity measurement devices. Appendix D contains a detailed description of step 1 to 3.

Flume length convergence tests In the ih-2vof manual it was advised to extend the flume (horizontal
domain) with at least 0.5 times the governing wave length, at both sides of the structure. This has been
tested with values of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 times L0 = 2.08 m of ‘free’ flume in front of the
foreshore. The structure itself has not been changed, nor wave parameters. After running the cases horizontal
flow velocities have been compared against the case with the longest flume. This is the reference case as it is
expected to have the most accurate solution.

In figure 3.4 a flume has been sketched. At each common gauge position the mean relative error over this
gauge has been plotted for the different flume lengths. The figure shows that with 0.5 – 2.0L0 the relative error
varies quite a lot over the flume. Near the toe errors fluctuate a lot due to wave breaking processes. It seems
that convergence is present since the errors diminish with longer flumes. When observing the relative error
for each case separately, we can observe a zigzag pattern over the gauges. This zigzag pattern becomes regular
starting from the 2.0L0-case.

When we average relative errors over the gauges, we obtain figure 3.5b. The relative error diminishes lin-
early. With convergence the error should approach a horizontal asymptote at zero like in figure 3.5a, but this
is clearly not the case. Convergence is thus not perceivable. One could argue that with 4.0L0 the relative error
would probably be zero, which would be ideal. This is not true, since we are comparing with a reference
case for which it is not proven that it contains correct (converged) results; we cannot be sure that with 4.5L0
flow velocities would be the same as with 4.0L0. To illustrate this, imagine taking 2.5L0 as reference case and
assessing only shorter flume lengths1. The ideal case would then seem to be 2.5L0 as it would have a relative
error of zero.

In the next section the linear pattern will be analysed and it will be proven that convergence is indeed not
present. Still a choice must be made on what flume extension in front of the breakwater should be. A low
value is preferable as it reduces the computational domain and thus the computation duration. The criterion
chosen is the stability of the fluctuating relative error pattern (the zigzag pattern) in figure 3.4. Starting from
2.0L0 the pattern fluctuates regularly around its mean value, in range of x from 0 m to 4.5 m. It is therefore
advised to extend the flume with 2.0L0 in front of the structure. The relative error is expected to be less than
10%, although this cannot be verified completely.

Cell width convergence tests In Van den Bos et al. (2014) it was advised to use about 150 grid cells per wave
length. This has been tested with values for L0/∆x of approximately 50, 100, 150, 200 and 250. The 250-case
has the smallest grid cells and is the reference case. The flume length determined in the previous paragraph
has been implemented. Due to rounding the flume lengths have been extended at the back of the breakwater
for some cases. This has no influence at all on flow pattern in front of the breakwater since the back of the
breakwater is an impermeable plate.

The averaged relative errors per gauge are plotted in figure 3.6. Diminishing relative errors for smaller cells
can be seen over all gauges. The case with L0/∆x = 50.7 show large deviations. This can be result of false
breaking since this case has ∆x/∆y = 4.1 > 2.5. In figure 3.7 we can clearly observe convergence, in contrary
with the convergence tests for flume length. Starting from L0/∆x = 104 the calculations appear to stabilize
with an error of less than 10% compared with the reference case.

1In fact this was the first set-up of the convergence tests. Based on the expectations of non-convergence it was chosen to run additional
tests with flume extensions up to 4.0L0, to verify whether this was indeed the case.



3. Running IH-2VOF 32

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0.00

0.05

0.10

0.15

x [m]

R
el
.e
rr
or

[-]
0.5 L0
1.0 L0
1.5 L0
2.0 L0
2.5 L0
3.0 L0
3.5 L0

Figure 3.4: Mean relative error per gauge for different flume lengths
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Figure 3.5: Total relative error over all gauges for different flume lengths

Computation time increases with the number of grid cells. Based on these observations and computation
durations it is advised to use a horizontal grid resolution of about L0/∆x = 150. The error is about 5%
compared with the reference case.

Cell height convergence tests Finally cell height convergence tests have been performed. The ih-2vof
manual gives a recommendation of 10 cells per wave height. In Van den Bos et al. (2014) it was found that cell
height was not of big importance. Therefore cell height configurations with values for H /∆y of about 5, 10,
15 and 20 have been tested. The 20-case has smallest grid cells and is the reference case. Flume length and cell
width recommendations from previous paragraphs have been implemented, without having to change flume
(domain) height.

Figure 3.8 shows diminishing relative errors with smaller cell heights. The H /∆y = 5-case is clearly unreli-
able as it has errors up to 40%. In figure 3.9 convergence is visible, although there are few data points. With
the H /∆y = 16.7-case the relative error is less than 10% and differences between toe and ‘sea’ gauges are nearly
gone. Unfortunately computation time increases rapidly with smaller ∆y: the total number of cells increases
with the number of cells in x -direction nx for every step in ny . Accuracy on the other hand is very important
to get realistic results.

Based on observations and computation duration it is advised to use a vertical grid resolution of about
H /∆y = 15. The error is about 5% compared with the reference case.

Summary Based on analysis of convergence tests the following conclusions are drawn:
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Figure 3.7: Mean relative error over all gauges for different cell widths

– A uniform grid should be used, based on advice in the ih-2vof manual and the work by Arets (2013).
– The flume requires an extension of 2.0L0 in front of the breakwater structure. A longer flume does not

increase accuracy, since other effects change the waves.
– A higher flume does not change computation time or accuracy, as long as the largest wave stays within

the domain.
– A uniform grid density of L0/∆x ≈ 150 and H /∆y ≈ 15 gives a good trade-off between accuracy and

computation time.
– The cell size ratio is limited by the restriction ∆x/∆y < 2.5. For some wave characteristics this will

imply that more dense grids must be constructed than these given in the previous point. It is chosen to
adapt the ∆x -value to fulfil the demand. This results in less additional grid cells than when adapting ∆y,
which is beneficial for the computation time.

3.4. Reflection, friction and absorption issues
During convergence tests on flume length it was discovered that total relative error decreases linearly with in-
creasing flume length, see figure 3.5b. We also saw a typical zigzag pattern of the relative error over subsequent
gauges, see figure 3.4, 3.6 and 3.8. In this section an effort is made to understand what causes these phenomena
and whether they are of influence on succeeding research steps.

A couple of possible explanations – in fact hypotheses – are investigated. In short the following will be
tested:

– Is there a substantial effect of wall friction, impacting wave energy?
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– To which extent does reflection create a standing wave pattern and what is the effect of this pattern?
What influences the standing wave?

– What is the contribution of numerical diffusion in the ih-2vof model?

3.4.1. Wall friction
A first explanation for the linear trend was sought in wall friction. In the ih-2vof model wall friction on
a smooth surface is included and modelled with a Von Kármán logarithmic velocity profile (IH Cantabria,
2012, eq. 54). The hypothesis is the following:

A progressive wave in a flume is influenced by wall friction and will therefore loose energy over the
flume. A longer flume will thus have smaller waves at the same gauge and convergence will not occur
since different waves are measured.

Figure 3.10 shows the principle. The hypothesis will be verified by some basic checks. No in-depth study is
made since it is far beyond the scope of this Master’s thesis.

First it has been verified whether flow velocities diminish indeed with increasing flume length. In figure
3.11 an example of two subsequent positive peaks in a velocity record is plotted. We see peak velocity values
for different flume lengths. Velocity decreases with longer flumes, except for the 3.5L0-case. The same trend
is observed at other measurement positions in front of the breakwater and at other depth levels. This agrees
with the decreasing relative error.

Additional model tests have been performed to investigate whether floor friction is the cause of the lower
velocities. For this a flume without structure was modelled with different flume lengths L f . The hydraulic
conditions of NK09-R016-L were implemented with absorptive boundaries at both flume ends. Multiple wave
gauges were positioned with equal distance from the right boundary (i.e. the boundary at x = L f ). Flume
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Figure 3.11: Measured velocity peaks at leftmost gauge and y = 0.2 m.
Velocity data are time-shifted gauge data.

lengths of 1.5 to 4.0 times L0 were tested. After calculation the surface elevation was read at the gauge positions.
The mean peak value after spin-up time was taken as envelope value. Note the use of surface elevation η instead
of flow velocities. This was done since it was easier to measure and since flow velocity is coupled to surface
elevation.

If friction would be present, one would expect that 1) the envelope value decreases with increasing x -
position (further away from the wave generator) for the same flume length, and 2) the envelope value at a
certain gauge decreases for longer flume lengths. In figure 3.12a these principles are sketched. The simulated
values are plotted in figure 3.12b and 3.12c (they have been split up in two figures for readability). It is clear
that observations 1) and 2) cannot be made: the envelope values vary seemingly arbitrarily over the different
positions. Wall friction does not seem to impact waves to a large extent. An interesting observation however
is the zigzag pattern of the dot groups around a certain mean value, in a similar way as in figure 3.4.

A final check is made using velocity data over the full domain. At two depth levels the envelope of velocity
data was composed for each flume length. Values are shown in figure 3.13; for readability only the positive
envelope is given. Here also some decrease of the velocity can be seen, though withouth a regular pattern. The
differences are less than 5%. In the figure an additional observation can be made, namely that the absorptive
boundaries seem not to be working efficiently: a standing wave pattern can be seen with a clear node on
the right boundary. This coincides with the zigzag pattern observed in 3.12. With perfect absorption a flat
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Figure 3.12: Envelope values of η over the flume. Waves propagate to the right.

envelope should be found. This phenomenon will be discussed later.

The basic checks on wall friction give verification nor disproof of the hypothesis. It seems that friction does
not influence the waves to a large extent; presumably it is only of interest for much longer flumes.
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Figure 3.13: Full positive velocity envelope of u over the flume

3.4.2. Reflection and standing waves
In the previous paragraphs and figures often a zigzag pattern was observed in the relative error and the wave
envelope was sinusoidal. This pattern is certainly result of reflection, as will be proven in the following para-
graphs. First we have to check whether reflection indeed exists and what its order of magnitude is. Next some
mathematics on standing waves will be given. With this we can give an explanation for the zigzag pattern.
Finally we will try to find an explanation for the linear decrease in relative error.

Verification of reflection Progressive waves reflect on a breakwater. A lot of research has been carried out to
quantify the amount of reflection, see e.g. Zanuttigh and Van der Meer (2007). Reflection is quantified using
reflection coefficient Kr defined as reflected wave height divided by incoming wave height. Typical values
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of Kr for rubble mound breakwaters are between 0.1 and 0.7, so it is a process which should certainly be
investigated.

To verify the magnitude of reflection in the convergence tests, the surface elevation records at the three
gauges in front of the foreshore have been decomposed in an incoming and reflected wave using the method
by Zelt and Skjelbreia (1992). Variance density spectra and zeroth order moments of both components have
been derived using Brodtkorb et al. (2000). The reflection coefficient is then Kr =

√
m0,r /m0,i (Goda, 2010).

Its value can be compared with the value measured by Nammuni-Krohn and with the value from the predic-
tion formula in Zanuttigh and Van der Meer (2007). Nammuni-Krohn also used decomposition by Zelt and
Skjelbreia (1992) and incoming and reflected wave energy based on wave spectra. The formula in Zanuttigh
and Van der Meer (2007) is an empirical formula intended for irregular waves and can therefore also deviate
slightly; bandwidth of the fit is in the order of 0.1.

In table 3.1 the values are presented. It appears that reflection in model and flume is equal. The prediction
formula gives a slightly lower value. Without any further analysis we can conclude that a considerable amount
of reflection is present.

Table 3.1: Measured and estimated reflection coefficients for case NK09-R016-L

IH-2VOF Nammuni-Krohn (2009) Zanuttigh and Van der Meer (2007)

Kr 0.358 0.360 0.329 ± 0.05

Mathematics of a standing wave Reflection creates a standing wave, for an extensive description reference
is made to Holthuijsen (2007, §7.3.6). When the incoming wave is not reflected entirely (i.e. when Kr < 1) a
partially standing wave is created. This is typical for a rubble mound breakwater.

It is useful to give a simple model for the reflection pattern. Since orbital velocity is related to the surface
elevation, we will model surface elevation η for simplicity. The story for velocity goes completely analogously.
In Holthuijsen (2007, §7.3.6) a mathematical formulation for a partially standing wave is given, composed
of an incoming propagating wave with amplitude ai and a reflected wave – propagating backwards – with
amplitude ar . The amplitudes are related through the reflection coefficient: ar = Kr ai . The domain is a flume
with length L f with an open boundary at x = 0 and a partially reflective boundary at x = L f . The formula
for surface elevation now reads:

η (x, t ) = ai sin(ωt − kx) + ar sin(ωt + kx) (3.2)

with ω = 2π/T and k = 2π/L. This equation holds for a situation in which flume length L f is an exact
multiplication of wave length L. In other situations there will be a phase shift for the reflected wave: it takes
L f
c =

L f
L T before the first incoming wave reaches the reflective boundary. The reflected wave will start under

the following conditions:

ηr (x, t ) = ar sin
(
ω

(
t − L f

L
T

)
+ k (x − L f )

)
= ar sin(ωt + kx − 2kL f )

The phase difference is therefore ϕL = 2kL f . Equation (3.2) thus becomes:

η (x, t ) = ai sin(ωt − kx) + ar sin(ωt + kx − ϕL) (3.3)

In figure 3.14 we can see the effect of phase difference for an arbitrary wave. Surface elevation is plotted
over flume length at an arbitrary point in time. Note the position of reflected wave peaks (yellow) in respect
to incoming wave peaks (green). It is also interesting to have a look at the envelope, since it takes away time-
dependence of the gauge record. The envelope shows the maximum and minimum value that η can have
at each x -position. If the envelope of the maxima would be denoted as mη (x ) then it can be calculated as
mη (x ) = maxt{η (x, t )}. An example of such an envelope can be found in figure 3.15. Note the anti-node at
the reflective boundary on the right.
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Figure 3.14: Flume view of a partially standing wave, with different phases
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Figure 3.15: Envelope of a partially standing wave (L f = 2L0 )

The phase shift due to a change in flume length does not lead to a phase shift in the envelope. This can be
verified by finding an analytical description of the envelope. Curve fitting has been used to find the functions.
There seem to be two limit states, one for ar ≈ 0 and one for ar ≈ ai (see the dashed lines in figure 3.15). A
transitional function could not be obtained within the time available. The limit functions are:

mη (x ) =




���2ai cos
(
kx − ϕL

2

) ��� if ar = ai

ai + ar cos(2kx − ϕL) if ar & 0

ai if ar = 0

(3.4)

The function for ar & 0 seems to represent the envelope quite well for values of Kr up to 0.6. Let us now
verify whether the change in flume length always imposes an anti-node at the reflective boundary:

mη,(ar=ai ) (L f ) =
������
2ai cos *

,
kL f −

2kL f

2
+
-

������
= 2ai

mη,(ar &0) (L f ) = ai + ar cos(2kL f − 2kL f ) = ai + ar

So indeed there will always be an anti-node at the reflective boundary. The same can be proven for a change
in wave length L.

The mathematical model can now be used to explain the observations in the convergence tests.
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Zigzag pattern in the relative error In the plots of the relative error over the flume in figure 3.4, 3.6 and
3.8, a zigzag pattern was observed. The hypothesis is the following:

The zigzag pattern of the relative error is caused by standing wave pattern and specific inter-gauge
distance.

Since the velocity difference is divided by maximum velocity at that point, the value of the envelope is of
importance. In figure 3.16 the velocity envelope is plotted with arbitrary values. The gauges have a spacing of
0.5 m ≈ L0/4 and are thus positioned (in the worst case scenario) at the nodes and anti-nodes of the envelope.
Velocity difference is then divided by a very large and a very small velocity value, resulting in different relative
errors although the difference ∆u itself stays the same. In formulae:

umax, A < umax, B

∆u
umax, A

>
∆u

umax, B

relerrorA > relerrorB

The result is indeed a fluctuating pattern of the relative error. Note that the position of wave gauges within the
envelope is extremely important. If all gauges would be positioned halfway between the nodes and anti-nodes
the zigzag pattern would not be present.

0.5 m 0.5 m

L0/2

A

B

node

anti-node

x

±m
u

(x
)

Figure 3.16: Gauge positions within the velocity envelope.
Red and green represent two different cases.

Impact of phase difference on velocities The envelope position is important when assessing measurements
of hydraulic parameters. Therefore the following hypothesis is formulated:

Reflection creates a partial standing wave. Decrease of flow velocities, as found in figure 3.4 and 3.11,
is result of different measurement positions within the envelope of this wave.

For clarification of the hypothesis, two sets of wave gauges are plotted in figure 3.16 (coloured in green and
red) for which it is clear that they will measure different maxima.

First we will discuss what generates a change in measurement position. We can start by excluding the
possibility of different gauge positions: the structure itself is the same for all flume lengths and wave gauges
are positioned relative to the structure. Differences due to rounding are not present, as the flume length is
extended with an exact multitude of the cell width.

Perhaps the structure itself creates a change in position of the envelope: due to the complex shape of a break-
water, one should see the reflection point as a virtual ‘wall’ on the breakwater. Position of this reflection point
is depending on breakwater layout, wave parameters and breakwater materials. Schoemaker and Thijsse (1949)
observed this effect when measuring harmonic waves on an impermeable slope. Scheffer and Kohlhase (1986)
investigated this analytically for irregular waves. Work by Büsching (2010) confirms this experimentally for
slopes with hollow revetment elements. The latter two papers represent the change of the reflection point as
a change in the phase difference of the reflected wave. This phase difference, caused by the structure proper-
ties, will now be called ϕS and must not be confused with ϕL, which was result of a change in flume length.
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Figure 3.17: Wave record at gauge 1
(1) Reflection at breakwater, (2) reflection at wave generator

Table 3.2: Reflection coefficients Kr for a single wave in case NK09-R016-L

Gauge x Breakwater Wave generator

1 1.00 m 0.62 0.08

2 5.11 m 0.65 0.10

Equation (3.3) and its envelope now becomes:

η (x, t ) = ai sin(ωt − kx) + ar sin(ωt + kx − ϕL − ϕS ) (3.5)

mη (x ) =




���2ai cos
(
kx − ϕL+ϕS

2

) ��� if ar = ai

ai + ar cos(2kx − ϕL − ϕS ) if ar & 0

ai if ar = 0

(3.6)

In the mathematical description of the standing wave it was found that change of flume length (change in ϕL )
does not change position of the anti-node. This is still the case in equation (3.6). To the contrary, it must be
stressed that change in ϕS certainly might change position of the envelope with respect to the breakwater.
This will be very important for the next research steps. For now we can conclude that since structure nor
hydraulic parameters change in the different cases, phase difference ϕS will not change either. A change of
measurement position within the envelope is therefore not obtained.

A final cause of changing measurement positions is sought in wave reflection on the wave generator. An
incoming wave will first reflect on the breakwater and subsequently re-reflect on the wave generator. The
ih-2vof model applies absorption on this boundary, but it might be insufficient. Unfortunately the method
by Zelt and Skjelbreia (1992) does not filter out higher harmonics and can therefore not be used to find the
amount of reflection on the wave generator. A simple check is thus performed: the NK09-R016-L model is run
again with a single (solitary) wave. The wave is generated by the ih-2vof GUI and follows Boussinesq theory.
The wave has a height of 0.1 meter and a duration of about 3 seconds. Two wave gauges have been placed in
the model: one in front of the wave generator and one at the beginning of the foreshore. The wave record at
the first gauge is shown in figure 3.17; the reflection coefficients in table 3.2. From the figure we can observe
that wave absorption on the generator is not perfect: some spurious oscillations are present after t = 13 s. The
table shows a rather high reflection coefficient of about 10% at the wave generator1.

With this it is proven that re-reflected waves do exist. Even very small, they might lead to a change of the
envelope. The effect of a re-reflected wave can be described mathematically as follows:

η (x, t ) = ai sin(ωt − kx ) + ar sin(ωt + kx − ϕL − ϕS ) + ar r sin(ωt − kx − ϕL − ϕS ) (3.7)
1Note that the reflection coefficient at the breakwater differs from the value for the original tests with regular waves (table 3.1). They

should not be compared since hydraulic conditions are totally different. It was originally tried to make a simulation with a wave train
of a couple of harmonic waves, but the GUI imposes some smoothing function over the boundary conditions. The result is that it takes
some waves before the target wave height is reached. Too many waves are then present within the flume. From a physical point of view
this is understandable, but for a reflection check it is undesirable.
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Also here a phase shift could occur during the absorption process at the wave generator, but it has been
neglected for convenience. From the analysis before, it is obvious that the third component, travelling with
the same phase speed as the other wave components, will contribute to a change in envelope height. It is
beyond the scope of this research to describe this analytically, therefore some numerical simulations with
Matlab have been performed. It appears that envelope magnitude is influenced by the relation between ar ,
ar r and L f . When L f = n · L (with n = 1, 2, ...) the envelope will always increase, in other situations the
envelope can both increase and decrease. Also envelope phase is slightly shifted, though this is very limited.

We can thus conclude that the re-reflected wave on the wave generator causes significant changes in the
envelope, in both magnitude and phase. The latter causes a change in measurement position.

Since a plausible cause for a change in measurement position has been found, it is analysed to which extent a
change in envelope really exists. The envelope of the convergence test on flume length is plotted in figure 3.18.
Positive peaks are marked with circles. The second envelope is taken at a deeper level, intersecting foreshore
at x = 5 m. First observation is the clear and regular decrease of the envelope with larger flume lengths. The
decrease goes with constant steps, agreeing with the linear decrease in relative error. A second observation is
that peaks also present a very small phase shift with increasing flume length. The phenomena coincide very
well with what was found for reflection on the wave generator.

Based on these observations we can finally review the hypothesis: it seems indeed that reflection on the
wave generator causes a change in the envelope. The change is however more present in magnitude than in
phase. Linear decrease in relative error is result of this decrease in envelope magnitude.

Observation of non-linear effects For completeness it must be mentioned that during calculations of the
envelope non-linear effects have been observed. Gauge records of the surface elevation η show higher maxima
than minima. In addition spectra at all wave gauges (see figure 3.19 for some examples) show additional peaks
at higher harmonics of the wave period, i.e. at 2T −1 = 1.58 Hz. These phenomena are caused by non-linear
wave effects, as described in Holthuijsen (2007, §5.6). With H /(gT 2) = 6.4 · 10−3 and d/(gT 2) = 2.5 · 10−2 we
can expect 2nd order non-linear Stokes waves according to figure 5.12 in the work cited. This kind of waves
has a higher harmonic with 2ωt , which creates the second peak in the wave spectrum.

3.4.3. Numerical diffusion
The third hypothesis on linear decrease in relative error was on the contribution of numerical diffusion. The
hypothesis is the following:

The ih-2vof model uses finite difference schemes (IH Cantabria, 2012). Depending on the scheme some
numerical diffusion may exist. This diffusion causes a loss of energy during numerical wave propagation
and therefore an additional change in relative error.

We already considered wall friction as a possible explanation for wave energy loss. With numerical diffusion
the same effect would be obtained, i.e. that two different waves are measured and compared. According to
dr.ir. Marcel Zijlema from Delft University of Technology numerical diffusion is only of importance for
longer flumes. The hypothesis will therefore be left unproven.

Combination of wall friction, bad absorption on the wave generator and numerical diffusion will certainly
contribute all together to reduction of wave energy and therefore to a decrease in relative error. No further
research will be done on the reduction of relative error since some plausible causes have been found and since
the error is probably less than 10%, which is acceptable.

3.4.4. Summary
In this section an explanation for linear decrease in relative error was sought. Also the zigzag pattern of
relative error over the gauges was analysed. Model case NK09-016-L was used. During analysis some interesting
observations were made, which impose very important limitations on the model evaluation process. Here is
a brief summary:

– Reflection on the breakwater creates a partially standing wave pattern.
– The zigzag pattern of relative error is caused by measuring at different positions within the standing

wave envelope.
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Figure 3.18: Full envelope of u over the flume with positive extrema marked
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Figure 3.19: Variance density spectra for η (t ) at the beginning of the foreshore

– Linear decrease of relative error is caused by the effect of bad absorption on the wave generator bound-
ary. It might also be caused, to a limited extent, by wall friction and numerical diffusion. Longer flumes
will eventually result in smaller waves since less wave energy will be present and since less reflection on
the wave generator is possible.

– Causes in the previous point will not affect the convergence tests on cell width and cell height as the
standing wave pattern does not change in these tests.

– The position of the virtual reflection point of the breakwater, and with that the position of the envelope
of the partially standing wave, is influenced by structure details. This is true both for regular and for
irregular waves.

– The position of a wave gauge within the envelope is of major importance when comparing different
tests. This applies to both numerical and physical tests. It imposes a severe limitation on the possibilities
of quantitative evaluation.

– According to Holthuijsen (2007, §5.6) 2nd order non-linear Stokes waves should be present, which is
confirmed by analysing gauge records and wave spectra.

In the chapter hereafter the model will be evaluated by comparing model results with physical measurements
by Nammuni-Krohn. The conclusions above impose limitations on quantitative evaluation, which will be
described in section 4.1.

3.5. Turbulence issues
The ih-2vof model uses the k-ε model for turbulence. Without going too deep into this matter, one can simply
state that turbulence is the governing process determining the flow pattern in non-laminar flow. Especially
in and near porous media turbulence plays an important role. Turbulence and flow velocities influence each
other mutually. During the course of this research it was discovered that turbulence calculation in ih-2vof
did not function properly. This section shortly discusses the flaws discovered and the implications for this
research.

Let us start by presenting the RANS equations for the clear fluid domain:

∂ui

∂t
+ ū j

∂ui

∂x j
= − 1

ρ

∂p
∂x i
+ gi +

1
ρ

∂τi j

∂x j
−
∂

(
u ′i u ′j

)
∂x j

Herein contains τi j the molecular viscosity. The final term is result of Reynolds averaging, leading to the
so-called Reynolds stress tensor u ′i u ′j . It is this term which is defined by the k-ε model as:

u ′i u ′j =
2
3

kδi j −Cd
k2

ε
(...) − k3

ε2 (...)
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One can find the eddy (turbulent) viscosity as νt = Cd k2/ε. In porous media the Forchheimer relation is
added, for which the k-ε model should be volume-averaged. Complete equations can be found in the ih-2vof
manual (IH Cantabria, 2012).

In ih-2vof the principal calculation cycle goes as shown in figure 3.20. Each time step the previously calcu-
lated viscosity (composed from molecular and eddy viscosity) is used to determine velocities. Together with
newly found pressures the Reynolds stress tensor is calculated. Also a small amount of turbulence is produced
as a random disturbance. From stress tensor and additional turbulence the values for k, ε and νt are derived.
Together with the stress tensor by kinematic viscosity everything is then available to obtain velocities in the
subsequent time step.

∆t viscosity un+1
i p ρu ′iu

′
j

turb. production k, ε, νt

τi j

Figure 3.20: Desired turbulence calculation in ih-2vof

Now when the ih-2vof model is configured to use the k-ε model, the input files (see figure 3.2) contain a
certain setting representing the k-ε model. The ih-2vof program itself uses an internal flag which should be
based on the input file setting, but this very flag is set before the input file is read. It results in an interruption
of the turbulence calculation loop, see figure 3.21. Velocities are then influenced by the molecular viscosity
only.

∆t viscosity un+1
i p ρu ′iu

′
j

turb. production k, ε, νt

τi j

= 0

only
molecular

Figure 3.21: True implementation of turbulence calculation in ih-2vof

Efforts to repair this programmatic flaw resulted in yet even more errors, stating that the “Linear Eddy
Visc turbulence model is not yet implemented”. Manual nor GUI contain any clue that the k-ε model is not
working properly. Only by analysing the code or by comparing measured velocities one can come to this
conclusion. No time is available for any other repair trials or to wait for a fix by IH Cantabria.

Together with the graduation committee it has been decided to accept this shortcoming and continue
research without turbulence modelling. The assumption made is that turbulence has a negligible effect
on hydraulic conditions near the toe structure. We cannot verify whether this assumption is valid
and therefore great care must be taken when using results of this report in further work or for design
purposes.
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Evaluating IH-2VOF

This chapter contains the evaluation of the ih-2vof model. Evaluation is done by simulating the Nammuni-
Krohn (2009) tests with the model and comparing flow velocities and surface elevations measured with focus
on extrema.

The tests by Nammuni-Krohn (2009) (in short NK09) consists of 54 cases with regular waves and 26 with
irregular (jonswap) waves. All cases are simulated with the ih-2vof model. The recommendations on grid
properties in section 3.3 are applied. No turbulence calculation was performed. In appendix E the implemen-
ted model layout and configuration is shown. Required grid files are automatically generated using scripting
language PHP1. Generation of cases in the ih-2vof GUI was automated by using the program SikuliX2. Simula-
tions were run on computers of Delft University of Technology, see appendix E for details on the simulations.

This chapter will start by analysing possibilities and restrictions for comparison of physical and numerical
measurements. It forms basis of criteria on which the NK09 tests can be evaluated. Before evaluation results
are presented some clarification on evaluation calculations is given. In addition to the NK09 evaluation also
evaluation results of the Peters (2014a) tests are reviewed. Finally conclusions on usability of the ih-2vof model
will be drawn.

4.1. Possibilities and restrictions
The evaluation of the NK09 tests is limited by some major restrictions. It is essential to mention them so that
the remaining evaluation possibilities are found. In section 3.4 impact of wave reflection was discussed. The
conclusions form basis of the topics in this section. Thereafter some important remarks on the NK09 dataset
will be given.

Change in envelope position The standing wave pattern, formed by wave reflection on the breakwater
under regular waves, is characterized by its envelope. Envelope position, i.e. its phase, depends on reflection
properties and might differ between physical and numerical tests. It was proven that it also might be the
case with irregular waves. Therefore one should be careful when comparing two corresponding gauges: in the
worst case scenario one gauge would be measuring at a node and the other at an anti-node. The flow velocities
change accordingly.

The true error can be estimated with linear wave theory if the position of the envelope would be known.
This requires surface elevation gauges in deep water, which are not present in the NK09 dataset (see further).
For that reason only the maximal error range can be given. Depending on the difference between node and
anti-node and depending on the phase difference between physical and numerical test, a difference in maximal
flow velocity may be present.

Note that for brevity and to avoid confusion this error and its estimation will now be addressed as the phase
shift velocity error.

1http://php.net/
2http://www.sikuli.org/ and http://www.sikulix.com/
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Figure 4.1: Applicable wave theory for the
NK09 tests. Background image courtesy of

L.H. Holthuijsen

2nd order Stokes waves It was discovered that 2nd order non-
linear Stokes waves are present in the NK09 tests. Figure 4.1
shows to which wave theory all NK09 cases belong according to
Holthuijsen (2007, §5.6). We can even expect 3th order Stokes
waves and cnoidal waves due to the relative shallow water. If the
ih-2vof model performs well, no difference should be present
between physical and numerical waves: the wave shape should
be the same. On the other hand use of linear wave theory for
estimating the phase shift velocity error range can only give an
approximation of the real non-linear waves.

Qualitative versus quantitative evaluation A lot of uncer-
tainties and differences are present between the physical and
numerical tests. For one thing the report by Nammuni-Krohn
lacks detailed information on the model she made. Approxima-
tions and assumptions were made to obtain all dimensions and
parameters required for the numerical model. Also wave gen-
eration is not exactly the same: the physical wave generator
produced different waves than requested, see Nammuni-Krohn
(2009, p. 12, 16 and 32). We cannot assess this since deep water wave gauge data lack. Uncertainties are also
present for wave absorption on the wave generator. For the numerical tests it is already proven that absorption
is not perfect. For the physical tests nothing is reported.

The influence of all these differences on the model results remains unknown, though we can expect that
they could be of importance. The utility of a quantitative analysis might thus be very low. Qualitative evalu-
ation is probably the best option. Two methods will be used. The first is the graphical presentation of some
representative, ‘typical’ situations. The second is the graphical presentation of bulk data points.

Dimensionless analysis could also be used to verify whether similar trends exist: does flow velocity increase
with e.g. higher waves? It is chosen not to perform this analysis because 1) it requires dimensionless para-
meters (which again creates uncertainties by choice of the combinations), 2) still a selection of cases must be
made when plotting them (which might hide deviating, thus very informative cases) and 3) because of time
limitations.

Lack of physical offshore gauge data In the NK09 dataset no processed data are available of the surface
elevation measured at the three deep water wave gauges. Calibration information is not present so we cannot
safely retrieve the surface elevation from the raw data files. A lot of important properties can therefore not
be derived: no reflection coefficient, no real generated wave height and period, no envelope phase, no wave
spectrum, etc. On the other hand the reflection coefficient is given in the ‘decomp’ files in the dataset, though
these ‘decomp’ files are not available for all cases.

Irregular wave simulations Analysis of simulation results with irregular waves differ strongly from these
with regular waves. While regular waves give the possibility to hold short simulation durations and derive
‘average’ waves, irregular waves require a statistical approach. Focus should be on extreme (peak) values: most
of the dislocating forces for stones are proportional to flow velocity, so movement will start at peak values.

The phase shift velocity error is still present with irregular waves. No estimation of the error can be made
based on the incoming wave height as the envelope will constantly shift. Perhaps the random nature might
smooth out effects a bit. The reflection coefficient Kr can still be derived from the spectra.

Nammuni-Krohn did not analyse her experiments with irregular waves; in §5.2 of her report she warns that
they are not reliable. We can thus expect large discrepancies with numerical results. The amount of ‘decomp’
files is also limited.

Simulation settings Besides the assumptions on model dimensions and stone properties, some limitations
exist by the grid properties. Cell size and flume length were chosen based on the convergence tests. Together
with the recommendation to use a uniform grid, this results occasionally in a rather coarse grid near the
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toe. Structure edges are shifted towards the cell edges by number rounding. A sloping border for instance is
modelled as a staircase border. This lack of detail might lead to slightly different results.

4.2. Evaluation criteria
Considerations from the previous section result in a set of evaluation criteria. They will be discussed hereafter.
Some criteria are dedicated to (ir)regular waves, some to both wave types.

Numerical performance A first important check is to compare numerical model output versus requested
wave properties. If wave production is not sufficiently accurate a comparison against physical tests would be
useless. Waves are characterized by their amplitude and period. The wave generator should produce waves in
such a way that the wave measured at offshore wave gauges should correspond to the required wave. We know
that envelope position can create differences in wave height with regular waves. A split-up in incoming and
reflected wave forms the solution. The qualitative evaluation followed will be the one of bulk data points. Each
time a scatter plot will be made with data points for all cases available (i.e. cases for which both numerical
and physical data are available). The scatter plots contain a 1:1-line with the 10% deviation area. The closer all
data points are to this 1:1-line, the better the performance. The following checks will be made:

Regular waves:

– Wave period: requested T versus generated Tm01 = m0/m1 representing mean wave period
– Wave height: requested H versus generated Hm0
– Wave height: requested H /2 (amplitude) versus time-averaged generated incoming amplitude ai at off-

shore wave gauges. The latter is derived by reflection decomposition.

Irregular waves:

– Wave period: requested Tp versus generated Tp
– Wave height: requested Hs versus generated Hm0

Reflection performance Wave reflection influences flow velocities above the toe. It is result of the breakwa-
ter structure: its dimensions and stone properties. By comparing the reflection coefficient we can get insight
in the modelling capabilities for porous media and fluid-solids interfaces. Three sources of data are present: the
numerical simulations with offshore surface elevation data, the Kr values in the ‘decomp’ analysis provided by
Nammuni-Krohn and the empirical formula in Zanuttigh and Van der Meer (2007). Numerical data have to be
processed, more on this in the following section. The ‘decomp’ analysis uses Kr =

√
m0,r /m0,i = Hm0,r /Hm0,i

from the decomposed wave spectra. The formula by Zanuttigh goes as follows:

Kr = tanh
(
aξb

0

)
(4.1)

with: ξ0 =
tan αar m√(

2πHm0,t
)
/
(
gT 2

m−1,0

) (4.2)

The values for a and b are taken for permeable rock being 0.12 and 0.87 respectively. The armour layer slope
is 2:3. Wave characteristics are measured at the toe, which might give a deviation when shoaling processes are
not modelled correctly.

The three values will be compared qualitatively with 1:1-scatter plots. High correspondence between phys-
ical/analytical and numerical coefficients signifies good fluid-structure interaction.

Local qualitative analyses The third evaluation will be zooming in on the processes near the toe: how
accurate is the local flow pattern modelled? Since we posses a full numerical velocity profile at each time
step at each wave gauge, it is interesting to plot the envelopes of these (see also the following section for
envelope definitions and calculations used). Physical velocity measurements are in fact discrete points on
these envelopes. For regular waves the error by possible phase shift due to reflection is estimated with linear
wave theory. In Van Gent and Van der Werf (2014) it was stated that an estimate for the flow velocity could
be made using linear wave theory. This approach will also be included in the envelope plots. A more complete
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estimation using linear wave theory and shoaling processes is also shown. Each case has its plot for each gauge.
Only the first, middle and last toe gauge will be shown for representative cases to reduce the amount of plots.

The flow pattern over time might also be of interest. Therefore some typical velocity and surface elevation
records (i.e. u (t ) and η (t )) will be plotted. Wave shape and amount of spikes in both signals can be compared
between physical and numerical tests.

In case of irregular waves some wave variance density spectra at the toe gauges will be plotted to verify
whether the full spectrum is present and similar. This is possible since surface elevation data are available at
all these gauges.

Summarizing the following plots will be made:

– Some representative velocity envelope over the vertical (profiles). Three discrete velocity values will also
be shown: 1) physical data points, 2) the estimate by Van Gent and Van der Werf (2014) right above the
toe bed, and 3) the estimate using linear wave theory and shoaling calculation at the physical data levels.

– Some representative u (t ) and η (t )-records at interesting gauge positions and water levels (for regular
waves only).

– Some representative variance density spectra at toe gauges (for irregular waves only).

x stronger

y stronger

x stronger

y stronger

x

y

Figure 4.2: Octants in a 1:1-scatter
plot

Bulk peak velocity analysis To get a global view on velocity modelling all
data points from the velocity envelopes will be presented in 1:1-scatter plots.
Envelope values at all physical gauge positions will be shown. Again we pos-
sess four data sources: numerical measurements, physical measurements, the
estimation by Van Gent and Van der Werf (2014) and the extended estima-
tion with linear wave theory and shoaling. The Van Gent estimation is only
available for the lowest gauge positions (right above the bed). For regular
waves the standard deviation of peak values can be shown; the larger this de-
viation the less reliable the measurement data are. Figure 4.2 is of help when
assessing the relative magnitude of a certain value in a 1:1-scatter plot.

Following analyses will be made:

– Numerical versus physical data
– Numerical and physical data versus linear wave theory and shoaling
– Numerical and physical data versus the Van Gent estimation

4.3. Preparation of evaluation
A lot of post-processing has to be done on simulation results. This section describes the outline of the most
important calculations.

4.3.1. General
Post-processing software used is Matlab version R2014a. Wave records were split up in an incoming and
reflected wave using the method by Zelt and Skjelbreia (1992). This method was coded to a Matlab script
by Barbara Zanuttigh. For common wave analysis, i.e. determination of wave statistics and energy density
spectra, the Matlab toolbox wafo was used (Brodtkorb et al., 2000; WAFO-group, 2000).

Post-processing is split up in cases with regular and irregular waves. In appendix H the outline of corres-
ponding Matlab routines is shown. Cases were given a code and a numeric identifier: e.g. NK09_xxx for
regular waves and NK09ir_xxx for irregular waves. In appendix E all cases are listed.

Two data sources are available. First data source is the numerical simulation data, i.e. output from ih-2vof.
Second data source is the Nammuni-Krohn dataset. Her data have been summarized so that only necessary
data are retained. In her test set-up two different toe stone sizes were modelled at the same time. For conveni-
ence these data are split up into two different cases. Numerical and physical output files are read and processed
with Matlab.

4.3.2. Gauge coupling
Numerical wave and velocity gauges were placed at the same x -positions as in the physical tests. The output
of velocity gauges in ih-2vof contains a u (t ) record at all y-levels. Levels corresponding with these of the
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physical tests must be found. At first the horizontal cell border closest to the physical y-level was taken. This
gave unrealistic results, probably because of structure edge shifting (see section 4.1). Best results were found
when numerical y was taken near physical y plus one Dn50.

4.3.3. Wave analysis
Spin-up time The numerical model requires some time before the original wave has run through the full
flume length and reflected on the breakwater. From visual observation of regular wave records spin-up time
is about 40 seconds, after which wave shape stabilizes. With 90 seconds of model time 50 seconds remain for
analysis. The same spin-up time is kept for irregular waves. Physical tests on the other hand do not posses such
spin-up time, likely because Nammuni-Krohn only started recording after the flume was filled with waves.

Reflection analysis As already discussed the waves measured at offshore wave gauges (i.e. at the beginning
of the foreshore) have to be split up in an incoming and reflected part. The method by Zelt and Skjelbreia
(1992) uses a minimum and maximum frequency which are set to 0 Hz and 4T −1 respectively. This method
returns an incoming and reflected surface elevation and wave amplitude record. The reflection coefficient is
then obtained as follows:

Kr =




ar /ai for regular waves√
m0,r /m0,i for irregular waves

(4.3)

in which a is the time-averaged wave amplitude and m0 the zeroth order moment of the wave spectrum. Note
that the ‘decomp’ files by Nammuni-Krohn use the same method.

Wave spectra and derived values Wave properties are based on wave spectra. The wafo toolbox provides
function dat2spec() which calculates the one-dimensional frequency energy density spectrum E ( f ). A
smoothing function is used, see WAFO-group (2000). A set of wave properties is then obtained with func-
tion spec2char(). At offshore wave gauges following values are derived:

– m0,i and m0,r for incoming and reflected wave
– Hm0 = 4

√
m0 as significant wave height

– Tm0,1 = m0/m1 as mean wave period
– Tp as peak wave period.
– Tm−1,0 = m−1/m0 as energy period for the velocity estimation by Van Gent and Van der Werf (2014)

At the first toe gauge Hm0 and Tm−1,0 are also calculated for the reflection estimation by Zanuttigh and Van
der Meer (2007).

4.3.4. Linear wave theory implementation
A set of calculations using linear wave theory is performed. Target is to obtain horizontal flow velocity
amplitude at a certain depth level, i.e. û (y). Point of start is wave amplitude and period offshore. By solving
the dispersion relationship wave number k can be found both offshore and above the toe.

ω2 = gk tanh(kd ) (4.4)

Shoaling coefficient Ksℎ is proportional to the ratio of group velocity cg .

Ksℎ =
√

cg,0/cg,t

cg =
1
2

(
1 +

2kd
sinh(2kd )

) √
g
k

tanh(kd )

in which d is local water depth. Multiplying shoaling coefficient with deep water wave amplitude gives us the
local amplitude above the toe. This local amplitude is then transformed to orbital velocity.

at = a0 · Ksℎ

û (y) = ωat
cosh(ky)
sinh(kd )
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in which y is zero at bed level.

For estimation of deviation by the partially standing wave, the û value is calculated based on time-averaged
amplitude of the reflected wave offshore, i.e. ar ,0. It represents possible deviation of peak velocity and will be
shown in plots as a hatched area around the envelope value measured. Of course this is only a rough estimation
as there exist non-linear and breaking waves.

Finally the velocity estimation proposed by Van Gent and Van der Werf (2014) is given. It estimates the
velocity right above the toe bed with a deep water approximation. Values of Hm0 and Tm−1,0 are based on the
first offshore gauge record.

k =
4π2

gT 2
m−1,0

û (y = 0) =
πHm0

Tm−1,0

1
sinh(kℎt )

4.3.5. Envelope and peak values
Definition of the peak value is different for both wave types. For regular waves the peak value is defined as
average maximum velocity per wave. For irregular waves maxima per wave are ordered in magnitude and the
2% value is taken as peak value. Taking the 5% or 10% value did not change results noticeably. For both waves
peak values are obtained for both maxima and minima, i.e. the flow respectively towards and returning from
the breakwater.

The method requires the wave record to be split up in multiple waves. For this the surface elevation record
η (t ) is taken first and split up at downcrossings of the still water level, which is a common approach in wave
analysis. Velocity record u (t ) is then split up at the same time steps and the minimum and maximum is taken.
Figure 4.4 shows the method.

The velocity signal had often a lot of spikes (spurious peaks). This would give false extrema. For regular
waves the requirement is set that every single wave should have a duration of at least 0.8T . For irregular
waves this method is not applicable since the period is changing constantly. Therefore a smoothing function is
applied on the velocity signal. The wafo function smooth() uses a cubic spline interpolation. The smoothing
parameter was fitted by the eye and needed to be about 0.999. Figure 4.5 shows an example of the smoothed
signal.

uu + σy

u − σy u + σxu − σx

Figure 4.3: Visualization of
standard deviation

For regular waves not only the mean peak value is taken, but also the
standard deviation σ of these peaks. The standard deviation is a measure for
reliability of the record: the lower the value, the more constant and stable
waves are. It will be shown in graphs as a shaded area around the mean
value, see figure 4.3. Officially the maxima are Rayleigh distributed, see e.g.
Holthuijsen (2007, §4.2.2). Standard deviation is then a different measure
than the more common definition for a normal distribution.

t

η
(t

)

t

u(
t)

Figure 4.4: Method of wave splitting on an irregular wave record.
Red dots are the selected minima and maxima.
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Figure 4.5: Method of wave smoothing on an irregular wave record. The red line is the original signal.

4.4. Performance of the IH-2VOF model
In the paragraphs hereafter evaluation results are presented. Each section starts on a separate page with a
description of results after which corresponding graphs are shown. Note that graphs are grouped and ordered
according to wave type.

4.4.1. Numerical performance
With both regular and irregular waves generation of waves in the ih-2vof model is in general very good, see
figure 4.6 to 4.8. All values are within the 10 – 20% range. In generation of regular waves the expected problem
with shifting envelope positions is clearly visible in comparison of wave heights (figure 4.7a). After retrieving
mean amplitude of the incoming wave a good production is found (figure 4.8a).
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Figure 4.6: Wave period production
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Figure 4.7: Wave height production
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Figure 4.8: Incoming wave amplitude production
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4.4.2. Reflection performance
Regular waves Before comparing reflected waves, let us validate the incoming wave amplitude in deep water.
This is feasible since Nammuni-Krohn provided this value in her ‘decomp’ files and since calculation methods
in her and this report are equal. High correlation is visible in figure 4.9a. Higher waves are within the 10%
range, lower waves in the 30% range.

Now since the incoming wave is equal we can safely use the Kr value to assess reflection properties. When
comparing numerical and physical values there is low correlation, see figure 4.9b. Reflection seems to be
modelled badly. There is no consistent over- or underestimation of reflected wave amplitude. Possible causes
are estimated stone properties and dimension dimensions, and incorrect Forchheimer coefficients.

Can we rely on physical Kr values? A verification is made by using the formula by Zanuttigh and Van
der Meer (2007). Values seem to correspond better than numerical values, see figure 4.10a. Since the formula
uses Hm0,t and Tm−1,0 measured with numerical data, possibility of a phase shift velocity error is still present.
Furthermore the formula is not intended for regular waves.

Irregular waves Nammuni-Krohn only provided a very limited amount of ‘decomp’ files in which the
reflection coefficient was present. A comparison between numerical and physical results is thus impossible.
Figure 4.10b shows how the Zanuttigh-formula performs. More than 50% difference is encountered; Zanuttigh
predicts much stronger reflection. The same reasoning as with regular waves can be kept.

Reflection modelling in ih-2vof is all together not very reliable. Maybe better values for stone properties and
dimensions would yield better results. This would prove on the other hand that sensitivity to these parameters
is high.
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Figure 4.9: Numerical reflection performance with regular waves
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Figure 4.10: Estimation of Kr by Zanuttigh and Van der Meer (2007)
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4.4.3. Velocity envelope profiles
Regular waves A couple of typical velocity envelope profiles, showing mean peak velocity in seaward and
landward direction, are given in figure 4.11. The different flow regimes near solids, porous media and free
surface are visible in the numerical profile. In other words structural definition of the model results in realistic
flow patterns. Wall friction is also modelled as we see a velocity gradient near the fluid-porous interface.

Correspondence between numerical and physical results is rather good if one takes the possible deviation
by the phase shift velocity error into account. The latter is shown by the grey boxes, which have a range of ±û.
Flow right above the bed level is numerically lower than in physical measurements. It is unknown whether this
is result of shifted structure dimensions, by too strong modelling of wall friction or by inaccurate parameters
for porous media. This is an important observation as it shows sensitivity of the flow measurement level.

Analytical approximation by linear wave theory and shoaling performs well. Note that wall friction is not
implemented and indeed, pure horizontal non-zero fluid motion above the bed is present, which is stated in
linear wave theory. Compared with physical tests linear wave theory always underestimates flow velocity with
a minimum of about 60% of the physical value. Possibly higher order effects or turbulence give slightly higher
velocities than predicted by linear wave theory.

The Van Gent estimation is mostly overestimating physical values, up to a factor of 2. Note that the estima-
tion uses values for Hm0 and Tm−1,0 at a certain gauge; the possibility of a phase shift velocity error is therefore
also present.

To conclude regular wave analysis it must be noted that near the corner between toe and armour layer the
observations above do not hold consistently. This can be explained by the local flow pattern which has to
change its direction from horizontal to sloping motion. Local eddies can easily be formed.

Irregular waves With irregular waves no estimation of the possible phase shift velocity error can be made. It
is expected that the effect with irregular waves is lower than with regular waves. Waves in the Nammuni-Krohn
measurements were reported to be lower, so lower velocities are to be expected.

In figure 4.12 some typical profiles of the 2% highest velocities are shown. The numerical profiles are not
as symmetric compared with regular waves. When comparing physical and numerical values one can observe
that they are quite corresponding once again, though the shape over the vertical is not always consistent. The
latter is difficult to compare since only a few measurement positions are available. Physical measurements are
slightly lower than numerical values, as expected.

The approximations with linear wave theory are very close to the physical values. Again a slight underes-
timation is present. The Van Gent estimation on the other hand is overestimating physical measurements.
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Figure 4.11: Regular wave envelopes
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Figure 4.12: Irregular wave envelopes, taken as u2%
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4.4.4. Representative records
Figure 4.13 shows a couple of typical free surface elevation records at multiple gauge positions. Wave shape in
both numerical and physical records is quite consistent. Magnitude is not always the same, probably by the
envelope phase shift. Note that the physical signal is shifted slightly upwards. This may result from how the
still water level is defined and measured.

Figure 4.14 shows typical horizontal velocity records. Physical records are often disturbed by spikes in
the signal. Certainly measurements in the corner between toe and armour layer are affected. For other meas-
urement positions often the positive (landward) velocity peak was not measured properly. When ignoring
the spikes one can observe that shape and magnitude are quite comparable between numerical and physical
signals.
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Figure 4.13: Surface elevation records
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Figure 4.14: Horizontal velocity records
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4.4.5. Variance density spectra
For irregular waves some wave variance density spectra are shown in figure 4.15. For each case the spectrum
is made at three gauge positions above the toe for both numerical and physical measurements. At first sight
spectra correspond quite well in shape. The physical spectrum is always lower than the numerical, which is
expected by the lower generated waves. One can also observe that the peak value is not always highest at the
first or last gauge. This might point at the phase shift difference in the standing wave envelope. Finally one
can often find a secondary peak at a lower frequency in the numerical signal. It is not known what causes this
peak.
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Figure 4.15: Variance density spectra
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4.4.6. Bulk peak velocity analysis
Regular waves The scatter plots show peak velocity values at each physical gauge. Colouring of the dots
corresponds to different cases. It was tried to colour them according to the case parameters, but this did not
give any valuable extra information.

We will start again by comparing physical and numerical values in figure 4.16a. For landward (positive)
flow most data points are within the 30 – 40% range. Seaward flow has larger deviations, up to more than
50%. With most velocities less than 0.5 m/s it is also less strong than landward flow, which has velocities up
to 1.0 m/s. There are some serious outliers, which seem to be from certain cases.

As we now plot the standard deviation of peaks as a grey box in figure 4.16b, we can see that these outliers
often have a large standard deviation in physical direction. The darkest area (most overlapping points) is still
within the 40% range for landward flow and within the 50% range for seaward flow. Numerical standard
deviation is in most cases very low. For a couple of cases with large standard deviation the velocity record is
analysed. Two scenarios can be found. The first is visible in figure 4.17: a constant pattern and smooth signal
is available, but physical peaks are not constant. This is a natural effect. The second scenario is shown in figure
4.18 where a signal disturbed with a lot of spikes and irregularities is found. These irregularities result in a
high standard deviation.

When comparing physical values with the linear wave theory approximation in figure 4.19a, we see quite
inconsistent results. When compared with numerical results in figure 4.19b better results are found. Accuracy
is still low: for seaward flow the error is up to 50%, for landward flow even higher.

Finally the Van Gent approximation is compared with numerical and physical measurements in figure
4.20a and 4.20b. Values are only shown for lowest gauge levels, for which the formula is intended. As expected
from velocity envelope profile analysis, a big overestimation is present, up to a factor 3. It seems that the
approximation is not very reliable for regular waves. Note again that the approximation is based on wave
statistics from a numerical wave gauge, which will probably differ from the physical record.

Irregular waves With irregular waves the error between physical and numerical values in figure 4.21 seems
to be the other way around: now seaward flow has a slightly lower deviation (but still up to 40%). Landward
flow has deviations up to 60% and is again stronger than seaward flow. Note that nearly all dots are positioned
in the octants where numerical flow is stronger than physical flow, which is expected by the lower waves.

When linear wave theory approximation is compared with numerical values in figure 4.22b low correspond-
ence is found, certainly for landward flow. Linear wave theory is strongly underestimating flow velocities.
Compared to physical values in figure 4.22a better results are found, within the 30 – 40% range. Note however
that physical velocities are higher, while this should not be the case since waves were lower. In that way linear
wave theory might again underestimate flow velocity.

Finally the approximation by Van Gent is analysed. With numerical results in figure 4.23b a remarkable
good correspondence is found for landward flow (up to 30%), while for seaward flow it overestimates the
velocity with an error up to 60%. Compared to physical results a constant overestimation up to 60% is found,
see figure 4.23a.
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Figure 4.16: Regular waves, numerical versus physical data
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Figure 4.17: Horizontal velocity record for case NK09_720
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Figure 4.18: Horizontal velocity record for case NK09_760
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Figure 4.19: Regular waves, comparison with linear wave theory
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Figure 4.20: Regular waves, comparison with Van Gent and Van der Werf (2014)
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Figure 4.21: Irregular waves, numerical versus physical data
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Figure 4.22: Irregular waves, comparison with linear wave theory
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Figure 4.23: Irregular waves, comparison with Van Gent and Van der Werf (2014)
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4.4.7. Summary
The analyses performed will now be summarized in next few points:

– Numerical performance is very good: requested waves are well present in the model results.
– Modelling of reflection in ih-2vof is not consistent with results measured in the flume. The formula by

Zanuttigh and Van der Meer (2007) gives good values compared with physical tests. Though since the
formula uses input from the numerical model and since it is not intended for regular waves, one should
be careful to draw conclusions from this observation.

– Physical tests with irregular waves show too low produced waves as expected. This was found in velocity
comparison and in variance density spectra. Velocity records contain a lot of spikes. For regular waves
this resulted in high standard deviations for velocity peaks. For irregular waves numerical smoothing of
the signal was essential.

– Approximation with linear wave theory and shoaling underestimates velocities with respect to both
physical and numerical tests.

– Approximation by Van Gent and Van der Werf (2014) gives only good results for landward flow under
irregular waves. With respect to physical values, an overestimation up to 60% is visible. It must be noted
that wave properties were derived from numerical results.

– Numerical and physical velocity envelope profiles have often an inconsistent shape near the bed. Prob-
ably wall friction is modelled too strong, giving a high velocity gradient. It is therefore difficult to
compare values right above the bed. The measurement level seems to be very sensitive to variations.

– From bulk velocity analysis one can see that landward flow is stronger than seaward flow, up to factor 2.

There are too many unknowns (model layout, stone properties, turbulence, reflection modelling, etc.) to
give well-founded advice on applicability of the ih-2vof model to this research. Lack of information makes it
difficult to compare Nammuni-Krohn measurements with numerical model output. If the estimations made
would be correct, one could state that overall numerical results are not very reliable for detailed work on
extrema, even given the restrictions discussed in section 4.1 and the fact that turbulence is not modelled
correctly.

Analytical approaches do not provide consistent solutions either, with physical nor with numerical values.
On the other hand they could be used to give a lower and upper limit for velocities, as it turned out that
the Van Gent approximation often overestimates, and linear wave theory with shoaling underestimates flow
velocities.

Since velocities by ih-2vof are within the values by analytical approaches, one could state that the order of
magnitude is correct. Therefore one might use ih-2vof to get information on trends rather than on absolute
values. For design purposes, relative behaviour analysis of different breakwater layouts is possible.

4.5. Ruben Peters’ evaluation
Parallel to this research Ruben Peters validated his experimental data with the ih-2vof model. He prepared
flume experiments in such way that good numerical modelling was possible, with as few uncertainties as
possible. In Peters (2014a) his findings were reported, which will be summarized here.

Contrary to the Nammuni-Krohn experiments Peters did measure the Forchheimer coefficients for the
stones used. Next to surface elevation and horizontal flow velocity he recorded pressure data. Peters modelled
63 cases with regular waves. Parameters changed were water depth, wave height and wave period; breakwa-
ter dimensions remained the same. No turbulence calculation was performed. The convergence tests on the
computational grid were performed in an equal fashion as for this research. Following recommendations were
used:

– Use of a uniform grid.
– Flume extension length ratio of 3.5L0 (here 2.0L0 ).
– Cell width ratio of L0/∆x = 200 (here ≈ 150).
– Cell height ratio of H /∆y = 15 (equal here).

During analysis a clear and distinct boundary layer was observed on the interface between fluid and
solids/porous media. It has a thickness of about one cell. The hydraulic conditions within these cells were
found to be unreliable.
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To compare physical and numerical measurements, Peters concentrated on the signal extrema. The root
mean squared value of the extrema and a relative error were calculated with following formulae:

ur ms =

√√√
1
N

N∑
i=1

u2
i

error =
ur ms,me asur ed − ur ms,I H 2V O F

ur ms,me asur ed
· 100%

For horizontal flow velocities a mean error of 18% for landward flow and 6% for seaward flow was found.
The standard deviation of the error was respectively 9% and 16%. In nearly all cases the ih-2vof results were
lower than measured.

The free surface record had larger errors, between 13% and 30% with standard deviations of 16 to 30%. The
waves in the model were clearly lower than in the flume.

Pressures finally were measured above and within the toe structure. They appeared to be modelled very
accurately: with an error in the range of 10-20% and standard deviations of less than 10% a very consistent
result was found.

Peters therefore concludes his research as follows:

“[. . . ] it can be concluded that IH2VOF performs reasonably well at computing the hydraulic properties
near breakwater toes. Since a lot of the computed errors are relatively consistent they can be accounted for
in further analysis.”

(Cited from Peters (2014a), page 26)

The experiment by Peters points out that ih-2vof is rather capable of correctly modelling the flow. What
causes then poor results in the Nammuni-Krohn cases? Following the experience of the graduation committee
it is found that the ih-2vof model is very sensitive to the Forchheimer coefficients, which had to be estimated
for this research. Even if they are measured in detail for modelling purposes, some amount of calibration
work is still necessary. For prototype modelling this poses a problem since measuring the coefficients is in
such circumstances rather infeasible.

Peters did measure the Forchheimer coefficients in detail for his research. In table 4.1 his measured Forch-
heimer coefficients are shown. They were taken as the average value of a couple of experiments per stone class.
In the same table the estimated coefficients according to equation 3.1 are given. It seems that linear friction
coefficient α is highly variable. The equation both over- and underestimates the value measured up to 50%.
Non-linear friction coefficient βc has a smaller spread, though again the equation deviates up to 30%. Peters
assumed that the non-linear coefficient is more important since flow within breakwaters is expected to be
highly turbulent.

All together it seems that estimation of the coefficients is not very reliable. Together with high sensitivity
to these parameters, it is likely the most important cause of bad resemblance between Nammuni-Krohn data
and data from ih-2vof

Table 4.1: Measured and estimated Forchheimer coefficients in Peters (2014a)

α [-] βc [-]

Dn50 [m] Range Average Eq. 3.1 Range Average Eq. 3.1

Armour 0.044 1816 - 1836 1826 1151 1.70 - 1.71 1.70 1.1

Core 0.022 483 - 830 627 854 1.34 - 1.39 1.36 1.1

Toe 0.025 496 - 688 591 903 1.12 - 1.33 1.23 1.1



4. Evaluating IH-2VOF 68

4.6. Summary
In this chapter the first research question was answered: can the ih-2vof model be used to simulate physical
flume experiments on breakwater toe stability? Evaluation was performed by comparing physical measure-
ments by Nammuni-Krohn with the numerical model outcome. Work by Ruben Peters was also reviewed.
Focus was on extrema in horizontal flow velocity above the toe. Qualitative evaluations were found to be
most appropriate for the comparisons.

Next to a validation of model results it was tested to which extent linear wave theory could provide an
alternative for physical and numerical tests. Two applications with linear wave theory were investigated: one
incorporating shoaling effects and one based on deep water situations, as proposed in Van Gent and Van der
Werf (2014).

Modelling the Nammuni-Krohn flume required estimation of several breakwater dimensions and stone
properties. Wave parameters were set to values which Nammuni-Krohn used to configure the physical wave
generator; physical irregular waves turned out to be smaller than requested. The numerical model did not
incorporate effects of turbulence, i.e. fluid viscosity was always the molecular viscosity.

The ih-2vof model produced the waves requested with sufficient accuracy. Comparison between numerical
and physical flow velocities gave generally poor results with relative differences up to 50%. Linear wave theory
with shoaling mostly underestimated velocities while the Van Gent estimation overestimated them. They were
not very consistent with numerical measurements either.

Question is now whether numerical or physical measurements are reliable. We know that ih-2vof does
not model turbulence correctly and that estimated dimensions and properties are used. The Nammuni-Krohn
dataset on the other hand is also incomplete, lacking deep water gauge data, corresponding calibration results
and reflection properties. The ih-2vof model was also evaluated by Ruben Peters against a different physical
dataset. He found much better results with relative errors of at most 20% for flow velocities. Also pressures
were modelled with high accuracy. Moreover errors were much more consistent and standard deviation of the
error had low values of less than 15%. A note was made on the existence of a distinct boundary layer between
fluid and solids/porous media, in which measurements should be avoided.

The work by Peters points out that the Nammuni-Krohn tests and dataset are not appropriate for this
evaluation. Assumptions had to be made on dimensions and stone properties, and certain information lacked
in dataset and report. It was found that Forchheimer coefficients impact the reflection process to a large
extent, impacting velocities in its turn. We must be aware that ih-2vof is very sensitive to inaccuracies in
model definition.

It is decided to continue using the ih-2vof model since flow velocities are modelled quite accurately. The
model is considered to be appropriate to model flume experiments on breakwater toe stability given the
availability of accurate dimensions and stone properties. For continuation of this research this imposes no
problem: estimated values are used in both ih-2vof and the toe stability methods. No discrepancies between
model and method parameters will then exist.
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5
Evaluating stability methods

Phase two of this study focuses on evaluation of the stability methods. This is done by simulating the Ebbens
(2009) tests (in short Eb09) with ih-2vof and using the local hydraulic conditions to predict motion by means
of motion formulae from section 2.2.4. This prediction will be compared with prediction by the stability
methods.

This chapter starts with a detailed description of the approach. Modelling of the Eb09 cases is then discussed.
Section 5.3 presents main steps taken to couple stability methods and motion formulae to the output data from
ih-2vof. Full conversion of the formulae is given in appendix F. After applying the motion formulae on output
data, it appeared that some calibration was necessary, this is discussed in section 5.4. Finally comparison results
are presented and discussed.

5.1. Evaluation procedure
5.1.1. Evaluation target
Target of evaluation is to see which toe stability method has the most consistent prediction of motion. A set
of cases is run, for which motion is determined using motion formulae from section 2.2.4. Of course validity
of the formulae should be taken into account. In the end one can find a percentage for each stability method,
giving the amount of equal motion respectively immobility predictions.

5.1.2. Evaluation steps
In figure 5.1 a scheme shows the stepwise evaluation procedure. Point of start is the set of Ebbens cases, defined
by breakwater layout, wave climate and stone properties. The cases are modelled in ih-2vof to find velocities,
surface elevation and turbulence intensities above the toe. These values are put into the motion formulae.
Calibration is then applied to verify when one can consider the case as having motion. This way for each case
motion is predicted.

Left side of the scheme shows the route which is taken for the stability methods. They directly accept
parameters of the breakwater structure. For some methods wave properties are required, which are derived
from deep water surface elevation data. Each formula predicts an amount of damage, which can be transformed
to a prediction of motion using a subjective threshold. This threshold is based on the description of damage
given in the corresponding reports.

Finally prediction of motion by both routes are compared in light of evaluation target. Details on all steps
are found in the sections hereafter.

An additional evaluation will be performed in which validity ranges for parameters in the stability method
are ignored. With this we obtain information on prediction capacity of the methods outside their validity
limits. No new calibration is necessary since the motion formulae are not affected.

70
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Figure 5.1: Scheme of the evaluation procedure

5.1.3. Sensitivity analysis
Subjectivity of the threshold of motion should be investigated with a sensitivity analysis. As a matter of
fact the transition zone from immobility to motion is always given as a range of the damage parameter.
Sensitivity analysis is performed as follows: firstly limits of the transition zone are obtained from original
reports, secondly an intermediate value is taken as the base situation, finally for each formula individually this
threshold value is taken towards the range limits and motion prediction is reassessed. The different situations
are shown in table 5.4 below.

5.1.4. Output presentation
For each case and for each stability formula we get an indicator whether there is motion or not. A tabular
overview can be made on prediction performance. Validity of these formulae should also be shown: if a certain
formula is very accurate but only for a very limited range of case parameters, it might be questionable whether
the formula is universally applicable. Note that the tables below contain arbitrary values.

Prediction table 5.1 depicts the main evaluation results. It shows how often predictions match. Bold figures
show performance of toe stability methods as the average over all motion formulae (vertically). In “x x%
(yy%)” the values are defined as follows:

x x = # joint motion + # joint immobility
#joint valid · 100% percentage of joint equal prediction for cases where both for-

mulae are valid
yy = #joint valid

#cases · 100% percentage of cases where both formulae are valid

For sensitivity analysis the final row of the prediction table will be shown for each situation. This forms
sensitivity table 5.2. Validity ranges do not change in the situations. Finally motion table 5.3 will be constructed
for reference. It shows motion prediction per case.
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Table 5.1: Layout of the prediction table

V
dM

91

... M
ut

14

Performance motion
formulae

Izb30 60% (100%) ... 80% (60%) 70% (80%)

... ... ... ... ...

Ste14 70% (80%) ... 90% (80%) 80% (80%)

Performance toe
stability formulae

65% (95%) ... 85% (80%)

Table 5.2: Layout of the sensitivity table
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Situation 2 80% ... 87%

... ... ... ...
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Table 5.3: Layout of the motion table
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% valid 30 ... 85 70 ... 65

% motion if valid 75 ... 35 85 ... 50
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Table 5.4: Situations for sensitivity analysis.
Values equal to the base case are omitted for clarity.

Nod,c N%,c FS ΨRS,c ΨM S,c

Min. 0.4 5% 0.91 0.54 0.25

Max. 0.8 20% 0.95 0.79 0.35

(Base) 1 0.6 10% 0.95 0.6 0.3

2 0.4

3 0.8

4 5%

5 10%

6 0.91

7 0.55

8 0.65

9 0.25

10 0.35

Nod,c based on Baart (2008), used for Ger93a, Bur95, VdM98, VGe14 and Mut14

N%,c based on Ebbens (2009), used for Ebb09, Mut13

FS safety factor for Baa08, not to be confused with Γ in his fitting procedure

ΨRS,c based on figure 8.11 and 8.12 in Hofland (2005): stone movement started for
ΦE ∈

[
10−10, 10−9

]
⇔ ΨRSc ∈ [0.54, 0.79]

ΨM S,c based on figure 5.19 in Dessens (2004)

5.2. The Ebbens model
Global description of the Eb09 cases was already given in section 2.3. All 296 cases were modelled in ih-2vof.
Configuration was made based on recommendations and principles of chapter 3. All configuration data are
given in appendix E. Note that for the longest foreshore (slope 1:50) it was decided to use only 1000 mm as
flume extension to reduce grid size. The model layout is shown in appendix E as well. Just like with the NK09
cases pre-processing was automated with PHP and SikuliX.

For stone properties again some estimations had to be made. Forchheimer coefficients had to be estimated
once again with formula 3.1. For the porosity of the core and the underlayer an estimated value is used.
Porosity of the armour layer was obtained from the Xbloc brochure. Note that the back side of the breakwater
is modelled as a vertical slope. This is physically impossible without a wall structure, but it turned out to be
necessary for the calculation process. It is expected not to be of any problem since the right boundary is
absorptive.

Simulations were also run on university computers. Some cases took too much time to complete in a
weekend. In the end 185 cases (63%) were finished. It is not expected that simulating the rest of the cases
would add much relevant information to the evaluation hereafter. Details on the simulations can be found in
appendix E.

(Very) shallow water is defined as situations in which γ = Hs/ℎm > 0.5. The Eb09 cases had both deep and
shallow water situations. From the cases which were run successfully 78% have shallow water conditions.

Requirements on output data were given in section 2.2.4. To fulfil the requirements three sets of wave
gauges are placed in the model, each recording local surface elevation and values for u and k in every grid cell
in vertical direction. The three sets are the following:
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– Three offshore (deep water) gauges: spaced 200 mm and 650 mm right in front of the foreshore
– Three onshore gauges: spaced 160 mm and 240 mm right in front of the bedding layer
– A number of wave gauges, spaced ∆x , spanning at least 150 mm and positioned above the toe. The

number of gauges is ranging between 13 and 23.

Spacing for offshore and onshore gauges is kept the same as in the original Eb09 model. In general the min-
imum spacing for gauges is ∆x .

Regarding turbulence the remarks from section 3.5 should be kept in mind. The formula by Steenstra
requires turbulence intensity k so the partial turbulence calculation had to be switched on. The k value is
then the instantaneous production and might be very inaccurate.

5.3. Implementation of formulae
A large number of formulae and methods was used to determine motion for each case. Matlab was used for
post-processing. This chapter describes the most important calculations aspects. Converted stability methods
and motion formulae are given in detail in appendix F. From now on abbreviated formula names will be used.

Motion in stability methods Nearly all stability methods give a relation between damage, wave and struc-
ture parameters. This is converted into a stability criterion, i.e. a relation in the form:

motion occurs if 1 > f
(
Hs,Dn50,Nod, ...

)
In this criterion the damage parameter is then set to a defined critical value. The formula provides a single
indication of motion per case.

Discrete value probing For Des04 and Ste14 velocity, turbulence intensity and advective acceleration are
determined pairwise per gauge couple. This is allowed for small ∆x , see e.g. §4.4 in Steenstra (2014). Following
conventions are used, in which the index denotes the gauge:

u ≈ ui + ui+1

2

k ≈ ki + ki+1

2
a ≈ u

ui+1 − ui

∆x

Wave properties Several formulae need wave properties as input. They should be established as values for
the undisturbed situation (i.e. without breakwater) in all cases. This is achieved through wave decomposition
in an incoming and reflected wave with the method by Zelt and Skjelbreia (1992). Methods in the wafo
toolbox are then applied on the incoming wave signal. To obtain wave lengths the dispersion relation from
equation 4.4 is used.

One exception is on value L0m , based on mean wave period in deep water T0m . In Holthuijsen (2007, §4.2.2)
it was discouraged to use the estimate

√
m2/m0. The mean wave period is thus determined by splitting the

wave signal on its downcrossings and simply taking the average of the individual periods.

Validity ranges Most formulae have validity ranges for certain parameters, outside which the formula may
not be used. If the Eb09 case investigated does not comply to the requirements of a certain formula, it is not
evaluated. For motion formulae it is additionally verified whether measurement level lies above the still water
level. Three exceptions are made to prevent the formulae being inappropriate for all cases.

– Stability method VGe14 requires the armour layer to have a slope of 1:2. This has been ignored since
the Eb09 model slope is 2:3.

– As described in table 5.4 ΨRS,c for Ste14 should be in the range [0.54, 0.79] which is smaller than the
minimum 0.9 (Steenstra, 2014, eq. 6-3).
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– Where measurement level ℎg lies outside the range for α and Cm:b in Ste14, the closest defined value is
used (see further).

For the second evaluation validity ranges of the stability methods will be ignored completely.

Measurement levels Except for Pet14 all motion formulae have one major drawback in common: they do
not define a (practical) measurement level for hydraulic properties. In the original experiments for Ran68a an
oscillating water tunnel was used, for which the (mean) velocity is simply discharge divided by area. Formulae
Des04 and Ste14 used stationary situations with rather deep water. In Ste14 advective acceleration should be
measured at a level ℎa above toe level, which is above the still water level in 90% of the Eb09 cases.

The formulae use input data from the free flow region. Due to relatively low water level the velocity profile
is somewhat blockwise shaped when flow is maximal in a direction. This can be seen in figure 5.2. It is then
acceptable to let the measurement level be halfway the water column, i.e. at ℎg = (ℎt + η)/2. Drawback of
this choice is that there might be an overestimation of motion due to higher velocities.

For Izb30 an exception is made since it is intended for individual stones, requiring local flow forces. It
is chosen to take the flow velocity at a level of ℎg = 1.0Dn50 as a workaround for modelling effects in the
boundary layer, as described in Peters (2014a).

Pet14 finally measures velocities at ℎg = 0.05 m as described in Peters (2014b, §4.2).
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ℎg = (ℎt + η)/2
ℎg = 1.0Dn50
ℎg = 0.05 m

Figure 5.2: Velocity profiles and
measurement levels ℎg in a typical situation

Baa08 Baart provided an analytical description which is completed with formulae in the Rock Manual
(CIRIA et al., 2007) to determine values for wave run-up and run-down. All formulae are presented in ap-
pendix F. In the main stability check a safety factor 0.91–0.95 is given (noted as FS in this report) which is
varied in sensitivity analysis.

Ran68a The formula by Rance and Warren is applied per wave. For this the surface elevation record is split
at downcrossings and corresponding velocity record parts are obtained. Orbital velocity and period is then
obtained as depicted in figure 5.3a. Note that velocity is about in phase with surface elevation, so down- or
zerocrossings take place almost simultaneously.

Ste14 The formula by Steenstra contains a complex moving-average calculation together with measurement
of the advective acceleration at a certain level. This level was defined to be at 9.0Dn50 since it gave highest
correlation for entrainment. Figure 5-3 in his report showed however that correlation for lower levels is not
much worse ( R2 ∈ [0.69, 0.80]). It is therefore acceptable to use the measurement level halfway the water
column.

Coefficients α and Cm:b in the formula are dependent on the measurement level. Since ℎg is chosen to
be dependent on η , coefficients are updated at every time step. It is chosen to use interpolation with splines
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(a) Ran68a: Definitions for a single wave
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Figure 5.3: Details on Ran68a and Ste14

between the fitted values from table 5-2 in the report. For measurement levels outside the fitted range, values
for the closest measurement level defined are used (shown as dots in figure 5.3b).

Pet14 Peters’ formula uses detailed information on stone dimensions. Individual stones are not modelled in
ih-2vof and therefore this information should be estimated. It is chosen to consider stones as randomly placed
cubes1. It can then be argued that average frontal area is 0.5D2

n50. It is advised to perform sensitivity analysis
on this estimation in further research.

Pressures required for Peters’ formula were unfortunately not stored. With output available the Bernoulli
approach for pressures above the stones (as presented by Peters) can still be used:

pabove ≈
(
ℎt + η +

u |u |
2g

)
ρg

Within the toe one could use the Forchheimer formula to obtain pressures. In that case an accurate boundary
condition is required, though unavailable. This method was consequently considered inappropriate. It was
then tried to approximate pressures with a hydrostatic approach, which is acceptable since velocities within
the toe are relatively low:

punder ≈
(
ℎt + η

)
ρg

This approximation agreed well with measurement data by Peters. Pressure difference then becomes ∆p =
1
2 ρu |u |.

Regarding stability lift force is always upwards: velocities above the stones are higher than within the toe,
thus resulting in lower pressure above. Drag force also destabilizes stones. Stone weight is consequently the
single stabilizing force. Under oscillatory flow the pivot point position depends on flow direction. Therefore
it is chosen to take absolute values of flow velocity (i.e. squared values) and account for correct directions in
the moment calculation.

5.4. Calibration of motion formulae
5.4.1. Necessity
Contrary to stability methods, the motion formulae should be applied over all time steps and all toe wave
gauges. Should a case then be considered as having motion when the criterion is passed a single moment in
all these steps? This would be nonsense, as it takes some time to dislocate the stone. A minimum period
of subsequent motion indications could be interesting to define, but elaboration of this approach is beyond
the scope of this research. A practical approach is then to measure the percentage of motion indications in
time/position and calibrate them to the original Eb09 damage recordings. Determination of stability is then

1This is defendable based on definition of Dn50.
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performed in these steps:

motion-% =

∑
x

∑
t

motion at (x i, ti )∑
x

∑
t

1
· 100%

motion occurs if motion-% > calibrated motion-%

For Ran68a motion is counted per wave rather than per time step.

5.4.2. Approach
For every Eb09 case a damage recording was reported by Ebbens, i.e. a Nod value. By imposing a limit on this
value one can state per case whether motion has occurred in the flume. The limit chosen is taken equally to
the value in the base situation in table 5.4: Nod,c = 0.6. Of course some natural randomness is present in the
Eb09 tests: depending on stone configuration and waves more displacement will occur, or there might be no
displacement at all. This uncertainty was already described in literature study in section 1.2. Therefore two
calibration steps will be taken.

In the first calibration step the number of Eb09 cases with recorded (physical) motion is counted. The
numerical cases are analysed and for each case the motion percentage is obtained. Ordered on this percentage
a cumulative distribution can be made. Let C (pm ) be the value at motion percentage pm , then the following
holds:

C (pm ) =
(
# cases with motion-% 6 pm

) ∩ valid cases

C (100%) will consequently be the number of cases for which the motion formula gave valid results. The
percentage for which C (pm ) is equal to the Eb09 count, is then the calibrated motion percentage. The principle
advantage of this step is that information on the distribution of motion percentages is obtained.

In figure 5.4a some ideal graphs of C (pm ) are shown as green curves. The blue line is the amount of cases
for which Eb09 recorded motion. It would be good to have a single very steep slope at the intersection: low
sensitivity to Nod is then present.
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Figure 5.4: Calibration graphs

A drawback of the first step is that no information is given on whether there is consistency in predicting
motion: if many cases with physical motion would be predicted as having immobility, a very dangerous
situation is present. In the second step measurements and predictions are compared casewise.

Figure 5.4b shows how the check will be made. All Nod and motion percentage combinations are shown
as single dots. The green dots together represent an almost ideal situation. Two lines are drawn at the chosen
calibration levels. Area B and C contain points in which motion is given equally by formula and measurement.
Note that area C mostly contains points created by initial instabilities. For points within area A the motion
formula would give an overestimation of motion; area D consequently represents underestimation.
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Now with help of the first step a preliminary estimate of the calibrated motion percentage is made. The
second step is then used to get best joint equal prediction, i.e. the amount of points in region B and C should
be maximized by shifting the horizontal division line.

5.4.3. Calibration results and selection
Now it has been discussed what kind of results we would like to get, we will present the values calculated. In
figure 5.5 to 5.8 the two calibration graphs are presented for each motion formula.

Izb30 gives reasonably good results. A low sensitivity on Nod is present. The first step gives 48%, which is
refined to 55% in the second step. The joint equal prediction is then 75%. Unfortunately quite some points
exist in region A and C. Moreover the points are grouped closely together, giving quite some sensitivity on
joint equal prediction. We can also see that in all cases the Izb30 criterion predicts much instability. This is
perhaps due to the measurement level of 1.0Dn50, giving higher velocities than right above the bed.

Ran68a is a reliable formula. It fulfils the requirement in the first step by which 0.03% is found as first
estimate. The second step tunes the estimate to 0.1%. A joint equal prediction of 78% is then found. Interesting
to see is that there are a lot of points in area C where Ran68a does not predict stone motion. This is a sign
that the formula gives a good indication of real stone displacement. Even though a lot of points in area A is
found, reliability is considered to be best.

Des04 has high sensitivity to Nod according to the first calibration step. 5.5% is taken as a first calibrated
value. Unfortunately in the second step one can see a lot of points in area A and D. The formula thus over-
and underestimates motion. This might be result of taking the measurement level halfway the water column,
since flow velocities are higher there. By tuning the calibration level a joint equal prediction of 72% is found.

Ste14 gives almost random results. Both over- and underestimation of motion is present, with a very curious
white area around 60% motion. The first calibration step gives us a calibrated percentage of 38% but sensitivity
to Nod at this point is very high. Next to the problem with measurement level, as in Des04, the incorrect
calculation of turbulence might lead to the nearly random results. A calibrated motion percentage of 37% is
maintained, giving a joint equal prediction of 45%.

Pet14 has equal behaviour as Ran68a and is also considered to be reliable. The first estimate gave 0.08%,
which was refined to 0.6% in the second step. Joint equal prediction went up to 84%. With this prediction
agreement Pet14 performs best of the five motion formulae, even though pressures and stone sizes were estim-
ated.

All together most formulae perform reasonably well in calibration, except for Ste14. Agreement of more
than 70% is obtained, which is a sign that the decoupled model approach is capable of predicting stone motion.
No perfect prediction is present, though. Overestimation of motion is present in all formulae, but this would
not lead to an unsafe design. The undefined or infeasible measurement level for velocities might be a cause.
Lower measurement levels might give more reliable results, but as it was shown in section 4.5 flow modelling
in the boundary layer right above the toe bed is not reliable either.

Table 5.5 summarizes calibration results. Ran68a and Pet14 are considered as best predictors: they have
highest joint equal prediction and a low amount of cases in which motion is underestimated (leading to an
insecure design). Furthermore they have very low motion percentages, so almost no calibration is required.
This makes them more robust and perhaps more generally applicable. Evaluation of stability methods will be
made based on these two formulae.

Izb30 and Des04 perform acceptably good, though more points with over- and underestimation are present.
Ste14 is considered as inappropriate due to the incorrect turbulence calculation. Results from these three
formulae will be given for reference purposes.
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Table 5.5: Calibration results

Motion formula Motion percentage Joint equal prediction Reliability

Izb30 55% 75% medium

Ran68a 0.1% 78% high

Des04 8% 72% medium

Ste14 37% 45% very low

Pet14 0.6% 84% high
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Figure 5.5: Calibration of Izb30
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Figure 5.6: Calibration of Ran68a
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Figure 5.7: Calibration of Des04
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Figure 5.8: Calibration of Ste14
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Figure 5.9: Calibration of Pet14
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5.5. Results
5.5.1. Validity
Now calibration has given us the percentages determining motion for the four motion formulae, we can con-
tinue evaluation. Motion has been recalculated for all cases and the motion table is constructed. In appendix
G the full list is given for reference purposes. Interesting in the motion table is the second last row. It contains
for each method and formula the percentage of cases where it is valid. It is repeated here.

Table 5.6: Validity of methods and formulae (excerpt from the motion table)
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The validity range is quite low for some cases. Most extreme is VGe14: even after making exception for armour
layer slope, the formula is hardly applicable for the Eb09 cases. The validity parameter violating its limits is
tt/ℎm , being larger than 0.3 for most cases (i.e. a too low water level above the toe). For Bur95, Say07 and
Mut14 no validity limits were imposed, hence the 100%. Pet14 encountered many cases in which measurement
level was above the still water level.

5.5.2. Prediction
In table 5.7 main evaluation results are presented. Figure 5.10a and 5.10b give a graphical representation. Aver-
age performance is measured over Ran68a and Pet14 only since calibration showed that they are most reliable
in determining motion. As somehow expected performance of the motion formulae – given the reliability of
the stability methods – is almost equal for Izb30, Ran68a, Des04 and Pet14 (coloured in purple). As expected
Ste14 performs much worse.

Bold values show prediction by stability methods compared with Ran68a and Pet14. Best predictors are
VdM91, Ger93a and VdM98, but with low joint validity. They have been coloured in blue. Mut13 and Mut14
are reliable as well according to Pet14. Finally Baa08 and Ebb09 are the two worst predictors. For Ebb09 this
is surprising since his cases are modelled and high agreement was found during calibration. It is questionable
how robust this top three is, since their validity is low and statistical sensitivity accordingly high.

In the second evaluation validity ranges are ignored. The adapted motion table is also given in appendix G.
Table 5.8 shows new evaluation results. In general one can conclude that the range of performance values
becomes narrower. VdM91, Ger93a and VdM98 are still at the top, but with slightly lower agreement (about
75% instead of 80%). However now VGe14 and Mut14 are joining the top (coloured in orange), something
both Ran68a and Pet14 agree upon. VGe14 even has an agreement of 91% with Pet14. Based on these results
one could argue that the stability methods have too strict validity limits. Baa08 and Ebb09 are least reliable.

5.5.3. Sensitivity
Before drawing any final conclusions on prediction capacity, results of sensitivity analysis should be reviewed.
Table 5.9 shows these results. Note that analysis is performed on the average prediction by Ran68a and Pet14.
Combinations where parameters were not changed for that method are left out for readability.

In general sensitivity to the damage parameters chosen is rather low. Mostly a maximum of 5% deviation
is found. Exceptions are Ger93a, Mut13 and VGe14. The first two have deviations of up to 8%, which might
still be acceptable. Sensitivity of VGe14 is not of interest since only six (3%) valid cases were tested. For the
other stability methods we can thus rely on prediction values found in the prediction table.

For situation 7 to 10 critical stability for Ste14 and Des04 is varied. Sensitivity cannot be tested since this
analysis is based on Ran68a and Pet14 only. When verified individually it turned out that changing these
parameters gave at most 1% difference with the base case.

Sensitivity analysis for the second evaluation (without validity limits) was also performed. Only for VGe14
new interesting information was found: for situation 2 and 3 prediction performance went to 68% and 80%
respectively (base performance 77%).
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Table 5.7: The prediction table with joint equal prediction percentages. Average is based on Ran68a and Pet14.
( Joint validity percentages between parentheses.)
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Table 5.8: The prediction table with the equal prediction percentages with ignored validity ranges
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Izb30 77% 66% 60% 73% 71% 50% 61% 61% 73% 68% 81% 66%

Ran68a 64% 58% 51% 68% 67% 40% 66% 53% 64% 65% 92% 60%

Des04 86% 76% 70% 80% 77% 59% 52% 73% 79% 73% 100% 72%

Ste14 30% 44% 46% 37% 28% 63% 40% 48% 39% 43% 95% 42%

Pet14 83% 85% 75% 87% 72% 56% 54% 78% 91% 83% 65% 76%

Average 74% 71% 63% 78% 69% 48% 60% 66% 77% 74%
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(a) Respecting validity limits, based on Ran68a
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(b) Respecting validity limits, based on Pet14
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(c) Validity limits ignored, based on Ran68a
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(d) Validity limits ignored, based on Pet14

Figure 5.10: Performance of the stability methods

Table 5.9: The sensitivity table with joint equal prediction based on Ran68a and Pet14
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Base 81% 78% 63% 84% 69% 44% 37% 66% 67% 74%

Validity 29% 41% 78% 41% 78% 64% 44% 74% 3% 78%

Sit. 2 Nod,c ↓ 71% 60% 83% 33% 69%

Sit. 3 Nod,c ↑ 78% 64% 84% 83% 74%

Sit. 4 N%,c ↓ 40% 58%

Sit. 5 N%,c ↑ 35% 71%

Sit. 6 FS ↓ 44%

Sit. 7 ΨRS,c ↓ — Ste14 not reviewed —

Sit. 8 ΨRS,c ↑ — Ste14 not reviewed —

Sit. 9 ΨM S,c ↓ — Des04 not reviewed —

Sit. 10 ΨM S,c ↑ — Des04 not reviewed —
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5.6. Summary
In this chapter toe stability methods are tested on their motion prediction. After modelling the Eb09 cases
with ih-2vof five motion formulae are applied on model output. These formulae were calibrated to give a
distinct prediction of motion. Joint equal prediction of the toe stability methods was then calculated and
presented.

The calibration approach is generally applicable. However without any further verification one cannot be
certain that calibration results may be applied on other datasets. They are directly linked to the Eb09 cases by
hydraulic situation and stone motion definition.

Measurement level for hydraulic conditions is a serious issue. In the calibration process it was clear that
all formulae, maybe except for Ran68a and Pet14, suffer from this problem: they overestimate motion due to
higher measured velocities. Only Ran68a and Pet14 predicted damage reliably, possibly without necessity of
calibration. Izb30 and Des04 do not perform all too bad, though calibration is required and a certain amount
of cases is present in which motion is underestimated. Ste14 is considered as inappropriate for this study due
to an incorrect turbulence calculation and measurement level issues.

When prediction of motion by Ran68a and Pet14 is compared with the toe stability methods, three formulae
give rather good agreement: VdM91, Ger93a and VdM98. Agreement is about 80% for cases for which the
formulae are valid. They have a limited validity range though. All three formulae have low sensitivity to their
damage number Nod . Verified against Pet14 only, Mut13 and Mut14 perform quite good as well. The method
VGe14 could not be verified since it was only applicable in 3% of the cases. It is clearly not intended for
shallow water conditions. Baa08 and Ebb09 performed worst.

A second evaluation was performed, in which validity limits of the toe stability methods were ignored.
VdM91, Ger93a and VdM98 still perform well, but now VGe14 and Mut14 join the top. Agreement is about
75% in average.

Note that the relatively low validity ranges are result of shallow water situations. Recall that 78% of cases
used for this evaluation are such. Evaluation results should therefore not be generalized without additional
research.

In the Rock Manual (CIRIA et al., 2007) the methods Ger93a and VdM98 are presented in equation 5.187
and 5.188. This manual is widely used by coastal engineers. Fortunately these methods performed relatively
good in evaluation, making the constructed breakwaters in the world a bit more trustworthy given the reliab-
ility of the decoupled model approach.

Now one can speculate on the value of the evaluation results for design purposes. There are so many
summarizing calculations, statistical variations, uncertainties and adaptations required to get the decoupled
model approach implemented, that it is highly questionable whether we can rely on the outcome of this
evaluation at this stage. In further research aspects of this approach can be investigated further. Interesting
routes are:

– Find a better measurement level of hydraulic conditions under wave action
– Develop a new motion formula
– Define a minimum period of subsequent motion indications so that real stone dislocation can be deter-

mined
– Verify whether calibration results are generally applicable, so for other damage recordings and other

hydraulic conditions
– Evaluate more situations with deep water conditions
– Verify the boundary layer at the toe-fluid interface and, if modelled correctly, check performance of

Izb30 on water levels closer to the toe
– Implement a correct turbulence calculation



6
Conclusions and recommendations

Target of this research was to give advice on stability methods for breakwater toe stability. For this the de-
coupled model approach was applied using numerical model ih-2vof and general formulae for stone motion.
This chapter contains answers to the research questions, general conclusions, recommendations for further
studies and a discussion on value of the research outcome.

6.1. Answers to the research questions
This section gives a brief answer to research questions posed in section 1.3. Report sections which answer the
questions in detail are appended.

Main research question 1 Can the ih-2vof model be used to simulate physical flume experiments on breakwater
toe stability?
The ih-2vof model is able to determine local hydraulic conditions near the toe. Accuracy is sufficient to
determine toe stability. Still some fundamental defects are present, i.e. the broken turbulence calculation and
incorrect Forchheimer coefficient definitions in grid generator Coral. Aspects which should be studied in
more detail are the high sensitivity to properties of porous media ( Dn50, porosity, Forchheimer coefficients)
and the boundary layer effects. (§4.6)

Main research question 2 Which existing method on breakwater toe stability gives, using the decoupled model
approach and based on calculations with a VOF model, best results for prediction of the threshold of motion?
The formulae by Van der Meer (1991), Gerding (1993) and Van der Meer (1998) give good agreement with
motion prediction by Rance and Warren (1968) and Peters (2014b). Their validity range is small however.
When validity limits of all methods are ignored, formulae by Van Gent and Van der Werf (2014) and Muttray
et al. (2014) also performed well.
Note that additional verification on turbulence and calibration is recommended before using this answer for
design purposes. (§5.6)

Sub-question a Which are criteria on which VOF models should be evaluated in light of the target of research?
Four criteria have been defined (§4.2):

– Numerical performance: does the model produce the waves requested?
– Reflection performance: is reflection behaviour of the breakwater similar?
– Local qualitative analysis: how accurate is the local flow pattern modelled?
– Bulk peak velocity analysis: are the maximal flow velocities similar?

Sub-question b Which formula or method is best to determine whether toe stones will start to displace under
influence of the hydraulic load?
No motion formula is fully suitable for purpose of determining toe stone motion. From ten formulae reviewed
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five have been retained: Izbash (1930), Rance and Warren (1968), Dessens (2004), Steenstra (2014) and Peters
(2014b). By calibration it was found that Rance and Warren (1968) and Peters (2014b) are most reliable.
Possibly they do not require calibration at all. Izbash (1930) and Dessens (2004) also give good agreement but
lack a practical definition of flow velocity. Steenstra (2014) was not suitable for this study since turbulence
calculation in ih-2vof is incorrect. (§2.2.4, 5.4)

Sub-question c How can stability prediction by toe stability methods be transformed into a threshold of motion?
A critical value is given to the damage parameter in the stability method. Motion occurs when this value is
exceeded. Sensitivity of the critical value has been tested. (§5.1, 5.3, 5.5).

Sub-question d Which are criteria on which toe stability methods should be evaluated in light of the target of
research?
Prediction of motion should be equal to prediction by the motion formulae. Agreement should be as high as
possible, preferably with a large number of cases for which the method is valid. (§5.1)

6.2. Conclusions
Many aspects of toe stability modelling have been studied. Per aspect some conclusions are given, together
with a reference to relevant report sections.

Numerical modelling with ih-2vof (general)

– ih-2vof is a user friendly computational fluid dynamics model. Setting up a case is straightforward and
simple visualization of results for a first impression is available. (§3.1, 3.2)

– Grid generator Coral uses incorrect and ambiguous descriptions for the Forchheimer coefficients. By
following the recommendations in §3.2.3 this issue can be overcome. (§3.2.3)

– Wall friction and numerical diffusion were not of substantial importance for the models considered in
this research. (§3.4)

– Reflection absorption at model boundaries is not perfect. For the model considered 10% of the reflected
wave was re-reflected at the wave generator. (§3.4)

– Turbulence modelling in ih-2vof is not performed, even when the model is requested to do so. (§3.5)
– ih-2vof produces requested waves in a reliable way. (§4.4)
– ih-2vof models are sensitive to stone properties ( Dn50, porosity and Forchheimer coefficients). (§4.6)
– Simulating a large set of cases requires modifications to the model output and is best performed on a set

of computers. Parallel computing is not supported. When run on Windows computers each process is
best assigned to a single CPU core with high priority. (§I, J)

Numerical modelling of breakwaters with ih-2vof

– Convergence tests gave the following recommendations for calculation grid layout (§3.3):
– Use a uniform grid
– Extend the flume with a minimum length of 2.0L0 on seaward side of the structure
– Use a grid density of L0/∆x ≈ 150 and Hs/∆y ≈ 15 for a good trade-off between accuracy and

computation time
– Under regular waves a partially standing wave pattern is generated in front of a breakwater. According to

Scheffer and Kohlhase (1986) and Büsching (2010) this phenomenon also exists under irregular waves.
The position of the standing wave envelope, and with that the position of wave gauges, is of major
importance when hydraulic conditions are compared quantitatively. (§3.4)

– Linear wave theory with an estimation of shoaling underestimates flow velocities above the toe. This is
partly result of non-linear wave effects. (§3.4, 4.1, 4.4)

– Velocity estimation by Van Gent and Van der Werf (2014) overestimates flow velocities above the toe,
because it is a deep water approximation. (§4.4)

– The model by Nammuni-Krohn (2009) was simulated with ih-2vof. The dataset with physical measure-
ments was found to be inappropriate for this research because certain model information required for
numerical modelling lacked. Agreement between numerical and physical measurements was low. (§4.4)
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– In Peters (2014a) much better agreement was found between ih-2vof and physical measurements, than
for the Nammuni-Krohn (2009) measurements. This is because Peters measured parameters required for
numerical modelling in detail. (§4.5)

– A distinct boundary layer is present on the interface between fluid and solids/porous media. Within
this boundary layer it is questionable whether hydraulic conditions are reliable. (§4.4, 4.5)

Decoupled model approach

– The decoupled model approach, which determines toe stability in two steps by calculating local hy-
draulic conditions at the toe, is appropriate for toe stability. It is capable to predict stone motion for the
Ebbens (2009) cases with an accuracy up to 84%. (§1.2.2, 2.1, 5.4, 5.6)

– Major advantage of the decoupled model approach is the ability of modelling other breakwater geomet-
ries and sea states than those which are accounted for in classical toe stability methods. (§1.2.2)

– Determining a threshold of motion is presumably the only way how historical toe stability tests can be
compared, since damage definitions and counting methods are unlike. (§1.2, 2.2.4)

– No general formula for stone motion was found which is perfectly applicable for toe stability, except
for Peters (2014b). Wave action is often not accounted for or flow velocity measurement is not feasible.
Peters’ formula on the other hand requires detailed information on stone dimensions. (§2.2.4, 5.3, 5.4)

– Calibration of motion formulae is possible by comparing numerical prediction with original damage
measurements in the lab. The approach is generally applicable, though current knowledge implies that
recalibration of formulae to each new dataset is mandatory. The motion formulae by Rance and Warren
(1968) and Peters (2014b) probably do not need calibration and are therefore interesting for design
purposes. (§5.4)

– Large scatter in motion prediction by the motion formulae is present. Toe stability is a stochastic pro-
cess. (§5.4)

Toe stability methods

– No reliable conclusions on the toe stability methods can be drawn without any further verification of
the impact of the incorrect turbulence calculation in ih-2vof.

The conclusions hereafter are applicable under the assumption that turbulence is not of large importance in toe
stability. The motion formula by Steenstra (2014) was not suited for this research since it requires information on
turbulence. (§3.5)

– The toe stability methods have been tested against the Ebbens (2009) cases. In 78% of cases modelled
shallow water was present, i.e. Hs/ℎm > 0.5. (§5.2)

– The motion formulae by Rance and Warren (1968) and Peters (2014b) give on average similar results
for the performance of toe stability methods. (§5.5)

– When respecting validity limits of the toe stability methods, the formulae by Van der Meer (1991),
Gerding (1993) and Van der Meer (1998) give good agreement with motion prediction by Rance and
Warren (1968) and Peters (2014b). The validity range is however small. (§5.5)

– When ignoring validity limits of the toe stability methods, methods from previous point still perform
well. Also Van Gent and Van der Werf (2014) and Muttray et al. (2014) give good agreement with
prediction by the decoupled model approach. Validity ranges of current toe stability methods might
therefore be too strict. (§5.5)

– Sensitivity to the damage parameters is generally low, giving less than 5% deviation in performance
prediction. Gerding (1993), Muttray (2013) and Van Gent and Van der Werf (2014) are more sensitive,
up to 10% deviation. (§5.5)

6.3. Discussion
In this research an effort is made to determine toe stability using the decoupled model approach. Many prob-
lems had to be solved, mostly arising from non-complementary research or incomplete model descriptions.
One should certainly be cautious when conclusions above are used for design purposes. On the other hand
motion was predicted successfully with agreement of more than 70%. What then is the value of the DMA for
design purposes?
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Stone stability and damage Stability prediction was done in terms of motion rather than an amount of
damage. For design purposes often the first is more suitable since clients tend to choose a conservative design,
i.e. no motion may be present. A toe structure consists of a small amount of stones, so when one stone is
removed out of the toe the situation may already become dangerous. Motion is also a more comprehensible
and practical measure for non-experts.

One may question the utility of a damage parameter. Motion is initiated when certain hydraulic conditions
are present. The longer the conditions are present, the more stones can displace. This process however is highly
dependent on exact stone dimensions, wave variation and duration of the conditions. This is an issue which
is not studied in detail in historical research – one often tests for a ‘design’ storm of 1000 waves. In numerical
research this time dependency is not modelled either. A threshold of motion is then a more practical and
less time dependent measure than a cumulative damage parameter. The subjectivity on the exact threshold is
probably a minor problem for toe structures.

Decoupled model approach Regarding results of the DMA it seems that the approach yields reasonable
results, despite all estimations and limitations. Performance is in the range of 70 – 90% — it could have been
much worse. This is an indicator that the DMA is suitable for further use. Moreover it provides a method to
verify toe stability in complex breakwater geometries. For design purposes a stability method consisting of
one or more formulae would be preferable though. This is useful for conceptual design to get a first insight
into stability, without the need for a time-consuming numerical model.

An additional problem encountered was sensitivity of ih-2vof to stone properties. For real-life breakwaters
it is difficult to determine accurately all properties required for a numerical model. On the other hand it shows
that stone properties have influence on local hydraulic conditions, and with that on toe stability. This influ-
ence is not accounted for in current stability methods, making them possibly incomplete in representation
of physical processes involved. Further research should verify relative importance of stone properties for toe
stability.

Decoupled model approach in practice Does a lack of detailed information on stone properties imply that
the DMA cannot be used for design purposes? Probably not. In practice a certain breakwater layout is often
tested with a physical model. On beforehand the DMA can assist in conceptual design and benchmarking.
For instance an engineer could design a couple of breakwater layouts and test them using ih-2vof. Complex
geometries can be accounted for. Keeping wave climate and grid definition constant between layouts is recom-
mended. Model output is then transformed into a prediction of stone motion with the formulae by Rance
and Warren (1968) and Peters (2014b), which possibly do not require calibration. Also deep water conditions
might change calibration results. Note that it is advised to verify this behaviour in further research.

Calibration also provides a tool to get higher safety. By shifting the calibrated motion percentage in such
way that the amount of underestimations of motion is reduced to an acceptable amount, say e.g. 5%, one can
benchmark toe stability methods for a more safe design. In other words one should take the calibrated motion
percentage low enough so that area D in figure 5.4b is almost empty. A drawback of this approach is that the
outcome is still linked to the Ebbens cases.

In an ideal situation one should be able to use the DMA with a numerical model to create a new stability
method without requirement of physical flume test (perhaps except for calibration purposes). Much larger
validity ranges can then be explored, something which is highly desirable for designs purposes. With more
detailed numerical models and more appropriate motion formulae this ideal situation may perhaps be reached
in the future.

6.4. Recommendations
For further research a couple of recommendations are given hereafter. They intend to give more insight in toe
stability with use of the decoupled model approach. At this time not all suggestions are feasible by practical
limitations, though it is expected that it will be achievable in the near future.

– Repair the turbulence calculation in ih-2vof or find an other suitable computational fluid dynamics
model.

– Obtain better estimations for the Forchheimer coefficients.
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– Find or derive a more suitable formula for motion, or improve current formulae.
– Calibrate motion formulae on other datasets, preferably with deep water situations. Compare them with

current calibration results to discover whether calibrated motion percentages are universally applicable
in toe stability and whether Rance and Warren (1968) and Peters (2014b) do not require calibration.

– Model other toe stability tests (e.g. Gerding (1993), Docters van Leeuwen (1996) and Van Gent and
Van der Werf (2014)) to study performance of the toe stability methods in these cases.

– Investigate reliability of hydraulic conditions in the boundary layer as modelled by ih-2vof.
– Use a 3D-model in which single stones are modelled. This is interesting since the toe structure often

consists of a small amount of stones. Statistical research on stability of these stones is then possible.
– Verify where and how long the stability criterion of the motion formulae is exceeded.
– Obtain insight in the influence of certain model and structure parameters on stability.

An integrated study towards toe stability is maybe the most interesting step forward in toe stability research. It
would comprise physical flume tests to calibrate motion, numerical modelling of these tests and the derivation
of a (new) formula for motion of single stones under wave action. By this one can calibrate the numerical
model and use it to explore a large number of breakwater layouts and sea states. A new toe stability method
might then be obtained.
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List of symbols

Common indices and mathematical symbols

Symbol Description

xb Value measured at or near the bed level

xc r , xc Critical value for x

xdr Value for wave run-down (downrush)

x g Measurement level (gauge level)

x i Value for the incoming wave

x i , x j Value in a certain dimension (Einstein notation)

xm Mean value

xm0 Based on the zeroth order moment of the wave spectrum

xm01 Based on the zeroth and first order moment of the wave spectrum

xm−1,0 Based on the first negative and zeroth order moment of the wave spectrum

xn Value at time step n

xp Peak value of x

x r Value for the reflected wave

x r r Value for the re-reflected wave

x s Significant, or based on Hs

x t Value measured at the toe

x0 Value measured in deep water/offshore

x0m Mean value measured in deep water

x#% Value that is exceeded by #% of the values in a dataset

x̄ Mean value of x , often time-averaged

x̂ Amplitude of x

tan−1 α Denotes a slope of 1:tan−1 α (V:H); tan−1 α ≡ cot α

∝ Proportional to

Roman symbols

Symbol Unit Description

a m
m/s2

s/m

1. Wave amplitude
2. Flow acceleration in space, a ≡ u ∂u

∂x
3. Forchheimer coefficient (linear contribution)

Ae m2 Eroded area, in Van Gent and Van der Werf (2014)

A f m2 Frontal stone area, in Peters (2014b)
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Symbol Unit Description

b s2/m2 Forchheimer coefficient (turbulent contribution)

Bt m Toe width (measured along wave ray)

c m/s
s2/m

1. Wave celerity or phase speed, c ≡ L/T
2. Forchheimer coefficient (added mass contribution)

cg m/s Group velocity of a wave

CB - Bulk coefficient for drag and turbulence, in Dessens (2004)

Cd - Empirical coefficient for the eddy viscosity

CD - Drag coefficient, in Peters (2014b)

Cm:b - Coefficient for turbulence and acceleration, in Steenstra (2014)

CM - Inertia coefficient, in Dessens (2004)

CP F - Factor to account for porous flow, in Baart (2008)

C (pm ) - Amount of valid cases with motion percentage lower than pm

d m
m

1. Water depth
2. Stone diameter

Dn50 m Median nominal (rock) diameter

E ( f ) m2 s Variance density spectrum

f H z Frequency

fB - Correction factor for toe damage, in Van Gent and Van der Werf (2014)

FS - Safety factor, in Baart (2008)

F N Force on stone, in Peters (2014b)

g m/s2 Gravitational acceleration

ℎ m Water depth

ℎa m Level where the advective acceleration should be measured, in Steenstra (2014)

ℎ f m Flume height

ℎm m Mean water depth in front of the toe

ℎt m Water depth above the toe

H m Wave height

i - Head gradient over the toe, in Baart (2008)

I - Forchheimer pressure gradient

k m−1

m2/s2
1. Wave number, k ≡ 2π/L
2. Turbulence intensity

K (β) - Correction factor for the bed slope, in Steenstra (2014)

K C - Keulegan-Carpenter number

Kr - Reflection coefficient, Kr ≡ Hi/Hr

Ksℎ - Shoaling coefficient, Ksℎ = at/a0

L m
m

1. Wave length
2. Toe length (measured along wave crest)

L f m Flume length

Lm m Bahkmetev mixing length, Lm = κ · y
√

1 − y/ℎ, in Steenstra (2014)
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Symbol Unit Description

LT A m Distance determining ϕT A, in Baart (2008)

m - Foreshore slope, in Sayao (2007) and Muttray et al. (2014)

m# #’th order moment of the wave spectrum. Unit depends on the order.

my (x ) Envelope of a wave record y (x, t ), taken over the extrema in time,
my (x ) ≡ maxt

{
y (x, t )

}
M# k g Mass of the element that is exceeded by #% of the elements

n - Porosity, volume of voids divided by total volume

nt - Toe front slope, in Muttray et al. (2014)

nx - Number of grid cells in x-direction (horizontally)

ny - Number of grid cells in y-direction (vertically)

N -
-

1. Number of displaced toe elements
2. Number of waves

Nod - Damage parameter, standardized number of displacements

NodB - Damage parameter including toe width, in Baart (2008)

Ns - Stability number, Ns ≡ Hs/∆Dn50

N% - Percentual damage parameter (definition varies)

o m Moment lever arm, in Peters (2014b)

p P a Pressure

pm - Motion percentage

P - Notional permeability factor

R2 - Coefficient of determination

Rd m Wave run-down, in Baart (2008)

Ru m Wave run-up, in Baart (2008)

s - Wave steepness, s ≡ H /L

S - Damage parameter based on erosion profile, in Van Gent and Van der Werf (2014)

t s Time

tb m Bedding layer thickness

tend s End time of the simulation (model time)

tt m Toe thickness, measured above mean bed level

T s Wave period

ûδ m/s Characteristic velocity amplitude at the toe, in Van Gent and Van der Werf (2014)

u m/s
m/s

1. Velocity (no direction defined)
2. Horizontal flow velocity

v m/s
m/s

1. Velocity (no direction defined)
2. Vertical flow velocity

V m3 Volume

x m Horizontal coordinate, various definitions

y m Vertical coordinate, various definitions

z m Vertical coordinate, various definitions
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Greek symbols

Symbol Unit Description

α rad
-
-

1. Steepness of a slope (armour/foreshore/toe), 1 : tan−1 α

2. Turbulence magnification factor, in Steenstra (2014)
3. Parameter in the Forchheimer a-coefficient; called linear friction coefficient in
Coral

βc - Parameter in the Forchheimer b -coefficient; called non-linear friction coefficient in
Coral

γ -
-
-

1. Breaker index, γ ≡ H /ℎ
2. jonswap peak-enhancement factor
3. Parameter in the Forchheimer c -coefficient; incorrectly called added mass
coefficient in Coral

γdr - Coefficient for wave run-down, in Baart (2008)

γ f or e - Correction factor for foreshore steepness, in Baart et al. (2010)

Γ - Fit coefficient, in Baart (2008)

δi j - Kronecker delta

∆ -
-

1. Relative density, ∆ ≡ ρs/ρw − 1
2. Difference

∆x m Grid cell width (horizontal dimension)

∆y m Grid cell height (vertical dimension)

ε m2/s3 Turbulent dissipation rate

η m Surface elevation

κ - Von Kármán constant, κ = 0.41

ν m2/s Kinematic viscosity of water

νt m2/s Eddy (turbulent) viscosity

ξ - Surf similarity number or Iribarren number, ξ ≡ tan α/
√

s

ρs k g/m3 Density of stones or sediment

ρw k g/m3 Density of water

σ Standard deviation of a dataset

τ N /m2 Shear stress

ϕL rad Phase difference between incoming and reflected wave, due to flume length

ϕS rad Phase difference between incoming and reflected wave, due to the structure

ϕT A rad Phase difference due to wave run-down, in Baart (2008)

Φ - Dimensionless transport parameter

Ψ - Dimensionless stability parameter. ΨM S in Dessens (2004), ΨRS in Steenstra (2014).

ω H z Wave period, ω ≡ 2π/T

Descriptions are partly based on Schiereck and Verhagen (2012) and CIRIA et al. (2007).
For motion formulae in section 2.2.4 which have not been retained, their particular symbols are not shown above. They were already
described in that section.
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Acoustic Doppler Velocimeter (ADV) A measurement device that makes use of the Doppler shift effect to
measure flow velocities at a certain point. Nammuni-Krohn used ADVs in her research.

Computation time/duration Real-world time it takes a computer to perform its modelling tasks.

Computer cluster A ‘computer cluster’ or ‘cluster computing system’ consists of several linked computers
which together form a powerful system. Computation speed is heavily increased by executing tasks in
parallel.

Damage parameter Parameters in stability methods expressing the amount of damage, i.e. the amount of
moved rock. Typical examples are Nod and N%.

Decoupled model approach (DMA) Approach for toe stability applied in this research. It uses local hy-
draulic conditions above the toe bed to decouple wave and structure properties from stone stability.
Also see §1.2.2.

Empirical curve fitting approach (ECFA) Approach for toe stability which uses experimental models and
curve fitting methods. Also see §1.2.2.

Envelope An envelope is a curve that connects all extrema of a signal. The extrema can be measured in any
dimension, but often time is taken. The dataset is then reduced with this dimension.

Graphical user interface (GUI) Part of a computer program that interacts with the user by means of visual
elements rather than with pure text or code. Common elements are e.g. buttons and text fields.

Grid A ‘grid’ or ‘mesh’ divides a certain space into smaller cells. It is required for numerical modelling, since
governing equations are applied per grid cell.

Mesh See ‘grid’.

Model time/duration Time scale of the computed model.

Motion formula A formula which gives information on stone stability in general situations. Examples are
the formulae by Rance and Warren (1968) or Dessens (2004).

Moving average (filter) A signal filtering technique that uses averaging over a certain subset of data. For each
new point the subset is taken around that point.

Numerical diffusion A process in numerical calculations where energy is diffused faster than what would
happen in reality.

Reynolds-averaged Navier-Stokes (RANS) equations A particular set of equations describing fluid motion.

Shoaling The process in which a wave becomes higher when it moves from deep to shallow water.

Spectrum A ‘wave spectrum’ or ‘variance density spectrum’ represents distribution of wave energy over
different frequencies in an irregular wave record. The jonswap spectrum is a standardized spectrum of
the wave climate in the North Sea.

Stability method A single or multiple formulae together which determine whether a breakwater toe struc-
ture is stable under the prevailing wave climate. Examples are the formulae by Gerding (1993) or Mut-
tray (2013).

Stability number The dimensionless Ns = Hs/∆Dn50 value for breakwater stone stability. The stability
number implies that higher values of Ns allow for smaller or lighter stones under equal wave attack.
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Stability parameter The typical dimensionless parameter Ψ in motion formulae. It is often related to trans-
port parameter Φ.

Uniform flow Flow in which acceleration in space is zero. Not to be confused with stationary flow, in which
acceleration in time is zero.

Validity range/limits Limits set to parameters of a certain formula. They define the range of parameters for
which the formula may be used.

Velocity profile A graphical representation of flow velocity along a certain cross-section. One axis follows
the cross-section, the other gives the velocity.

Volume of fluid (VOF) A method in numerical fluid modelling by which the free surface can be determined.
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A
Diagram of historical research

On the following page a diagram of historical research can be found. This diagram displays in a chronological
order how research and experiments are related. Blue boxes are papers, theses and other reports; green boxes
are physical experiments conducted.

The left branch of the graph contains the empirical curve fitting approach, as described in section 1.2.2.
The right branch contains research based on the decoupled model approach. Central on the graph commonly
used experimental data are placed.
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Decoupled model approachEmpirical curve fitting approach
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2009
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2013
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2014
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Baart
2008

Nammuni-Krohn
2009

Determination ûc

by experiments

Baart et al.
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1987
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1989
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1992
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1993
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1996
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(2005, unpublished)

Aalborg University
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2013
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2014
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2014
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B
Stability methods

This appendix contains all stability methods reviewed in this study. An important remark: to make com-
parison between stability methods possible, parameters used are uniformized. In the sketch below the most
important parameters are given. The ‘undisturbed’ situation is the situation without a breakwater, i.e. without
reflection.

SWL
H, L, T, ...

hm

ht

tan-1αarm

tan-1αfore

1

1

Dn50, n, ...

Bt

tt

tan-1αtoe

1

Figure B.1: Uniformized parameters

B.1. Stability and damage methods
B.1.1. Van der Meer (1991)
As found in the CUR/CIRIA Rock Manual (1991).

ℎt

ℎm
= 0.22

(
Hs

∆ · Dn50

)0.7

(VdM91)

Hs

∆ · Dn50
= 8.7

(
ℎt

ℎm

)1.4

No information on where to take the wave characteristics.
Validity: 0.5 < ℎt/ℎm < 0.8

B.1.2. Gerding (1993), Van der Meer et al. (1995)
Formula with Hs :

Hs

∆ · Dn50
=

(
0.24

ℎt

Dn50
+ 1.6

)
N 0.15

od (Ger93a)
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Formula with H2% (disposed of in Van der Meer et al. (1995)):

H2%

∆ · Dn50
=

(
0.34

ℎt

Dn50
+ 2.2

)
N 0.15

od (Ger93b)

Wave characteristics measured at the toe in the undisturbed situation.
Validity:

0.4 < ℎt/ℎm < 0.9
3 < ℎt/Dn50 < 25

B.1.3. Burcharth and Liu (1995)
Modified Gerding (1993) for concrete cubes:

Hs

∆ · Dn50
=

1.6

N −0.15
od − 0.4 ℎt

Hs

(Bur95)

No information on where to take wave characteristics.

B.1.4. Van der Meer (1998)
Based on work by Gerding (1993):

Hs

∆ · Dn50
= *

,
6.2

(
ℎt

ℎm

)2.7

+ 2+
-

N 0.15
od (VdM98)

Wave characteristics measured at the toe in the undisturbed situation.
Validity:

0.4 < ℎt/ℎm < 0.9
3 < ℎt/Dn50 < 25

B.1.5. Sayao (2007)
Re-written to conventional indices, with m being the foreshore slope and ξ0p the Iribarren number based on
Hs and L0p .

ρs · H 3
s

∆3 · M50
= 4.5m−2/3 · e5.67ℎt /ℎm−0.63ξ0p (Say07)

Herein: m = tan α f or e and ξ0p = tan αar m/
√

Hs/L0p . The significant wave height is measured at the toe.
The wave length is measured in deep water. From the case study in the report it can be assumed that peak
wave length should be used. No information is given on whether they should be measured in an undisturbed
situation.

B.1.6. Baart (2008)
The method proposed by Baart is a two-step model, which gives a critical velocity:

ûbc =
(
0.46
√

T · ((∆ −CP F · i) g
)1.5 · Dn50

)2.5−1

with i =
H /2 + Ru

LT A + Ru/ tan αar m

etc.
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and a load:

ûb =

√(
ûbi · sin ϕT A

)2
+

(
ûbi · cos ϕT A + ûbdr

)2

with ûbdr = γdr

√
2g

(
Ru/3 + Rd/2

)
ûbi = ω

H
2

cosh
(
k

(
ℎm − ℎt

))
sinh

(
kℎm

)
ϕT A = kx =

2π
L
· LT A

Finally a design criterion is given, using the relative load with an overall fit factor Γ:

Γ · ûb
ûbc
= 0.91 − 0.95 (Baa08)

which can be plotted against Nod for test results.
For the derivation of ûbc Baart uses Tp and Hs (in i ).
For the derivation of ûbi and ϕT A one should take the Hs , Tm−1,0 and Lm−1,0 values measured at the toe.
Baart used formulae from the Rock Manual (CIRIA et al., 2007) to determine Ru and Rd .

Validity:

Hs/ℎt > 0.5
Hs/ℎm > 0.35

tan αar m ≈ 0.67

permeable rubble mound breakwater with a rough front slope

B.1.7. Ebbens (2009)
Stability for very shallow water:

Hs

∆ · Dn50
= 3.0 · N 1/3

%√
ξ0p

(Ebb09)

Herein: ξ0p = tan α f or e/
√

Hs/L0p .
The significant wave height is measured at the toe. Peak wave length is measured in deep water. It is not
reported specifically that wave characteristics should be taken in the undisturbed situation, but since Ebbens
performed reflection analysis with multiple wave gauges it can be assumed that the formula is based on the
incoming wave characteristics.
Validity: ℎm/Hs < 2.0

B.1.8. Baart et al. (2010)
Adding foreshore slope to Baart (2008) to match values of Docters van Leeuwen (1996):

ûb → ûb · γ f or e

γ f or e =

( tan α f or e

0.05

)0.5

B.1.9. Muttray (2013)
Theoretical derivation.

3
√

Nod =
Ns

Ns,c r

Hs

∆ · Dn50
=

2.4N 1/3
od

1.4 − 0.4 ℎt
Hs

(Mut13)
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The method by Muttray is based on old experiments which probably use wave characteristics for the undis-
turbed situation. Muttray states that Hs in his formula should be the local, incoming significant wave height.
Validity: ℎt/Hs < 3

B.1.10. Van Gent and Van der Werf (2014)
No stability number, but a prediction of damage:

Nod = 0.032
(

tt

Hs

) (
Bt

Hs

)0.3 (
Hs

∆ · Dn50

)3
*
,

ûδ√
gHs

+
-

(vGe14)

with ûδ =
πHs

Tm−1,0

1
sinh kℎt

k =
2π

Lm−1,0
=

2π2

g
2πT 2

m−1,0

The wave characteristics are taken for the undisturbed situation. For the estimation of ûδ Van Gent and Van
der Werf use linear deep water theory, “irrespective of the actual situation being in deep water or in shallow
water”. The wave characteristics should therefore be measured at the toe. Validity:

0.1 < tt/ℎm < 0.3
tan αar m = 1 : 2

1.2 < ℎm/Hs < 4.5

B.1.11. Muttray et al. (2014)
Muttray provided two formulae. The formula with the toe berm slope is presented here. Muttray warns that
the formula is not intended for design purposes.

Hs

∆ · Dn50
=

(
(4nt )1/3 +

ℎt

Lp
m

)
N

1
3

od (Mut14)

with parameter limits:

Nod = max{Nod, 0.25}
ℎt = max{ℎt , 0}
m = min{m, 50}
nt ≈ 1.5

Herein: m = tan−1 α f or e and nt = tan−1 αtoe . The wave characteristics should probably be measured in the
undisturbed situation. Lp is measured at the toe. No validity limits are given; this is somewhat included in the
parameter limits.

B.2. Definition of damage
B.2.1. Gerding (1993)
Nod is defined as number of stones removed from the toe structure in a strip with a width of 1 Dn50, i.e.:

Nod =
total number of removed stones

number of strips
=

total number of removed stones
toe bund length/Dn50

This definition is also used in Van der Meer et al. (1995). Baart (2008) makes the definition more concrete for
‘removed’: “The damage number Nod is the amount of elements that have actually displaced from the toe bund edge,
with respect to the amount of elements that were lying on the toe bund edge before the test.” (Baart, 2008, p. 62)
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B.2.2. Docters van Leeuwen (1996)
Nod is defined as the number of stones removed from the toe structure in seaward direction divided by the
number of stones in a strip with a width of 1 Dn50, i.e.:

Nod =
total number of removed stones
mean number of stones in a strip

B.2.3. Baart (2008)
As a second option, Baart proposes a percentual damage: “The damage number NodB is the amount of elements
that have actually displaced from top surface layer of the toe bund, with respect to the amount of elements that were
lying in this layer before the test.” (Baart, 2008, p. 64)

NodB =
total number of removed stones

toe bund length
Dn50

· toe bund width
Dn50

=
N

L
Dn50
· Bt

Dn50

Baart concludes that NodB is not significantly better than Nod , although the definition of damage has proven
not to be very important.

B.2.4. Ebbens (2009)
A “displaced" stone is defined as a stone which is not in place anymore after the test, i.e. moved (in a detectable
way by using digital image processing) in any direction.

New percentual damage, using porosity, as percentage of the total volume:

N% = N · D3
n50

(1 − n)Vtot
%

B.2.5. Muttray (2013)
New percentual damage, based on volumes:

N% =
displaced stone volume

total stone volume
=

Nod D2
n50

(tt − tb )B̄ (1 − n)

B.2.6. Van Gent and Van der Werf (2014)
The value for Nod is based on the amount of stones which have been replaced over more than one stone
diameter. It seems that this value can also be approximated using the erosion profile (S = Ae/D2

n50 ) and a
conversion formula from S to Nod .

B.3. Damage levels
B.3.1. Gerding (1993)
Nod = 0.5 hardly any damage
Nod = 2 acceptable damage, design criteria
Nod = 4 unacceptable damage
Confirmed in Van der Meer et al. (1995) and Van der Meer (1998).

B.3.2. Baart (2008)
Nod < 0.4 insignificant damage
0.4 < Nod < 0.8 transition
0.8 < Nod significant damage

B.3.3. Ebbens (2009)
For interlocking armour units:
N% = 5% for swell waves ( s0p = 0.01)
N% = 10% for wind waves ( s0p = 0.035)
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B.3.4. Muttray (2013)
N% < 5% insignificant damage
5% < N% < 10% start of damage
20% < N% < 40% flattening, still functional
N% > 50% loss of functionality

B.3.5. Van Gent and Van der Werf (2014)
Multiply the damage level values of Gerding (1993) with a factor fB :

fB =

(
Bt

3Dn50

)0.5



B.4. Tabular overview of datasets and formulae

Research Approach Target New dataset Wave type Material Dependency Damage
parameter

Rock Manual (1991) ECFA Design formula Yes ? Rock ℎt /ℎm -

Gerding (1993)
Van der Meer et al. (1995)

CIRIA et al. (2007)

ECFA Systematic approach, reliable
parameters

Yes Irregular Rock ℎt /Dn50 Nod

Burcharth and Z. Liu (1995) ECFA Formula for concrete cubes Yes ? Concrete cubes ℎt /Hs Nod

Docters van Leeuwen (1996) ECFA Proof of Gerding (1993) for ∆ Yes Irregular Rock - Nod (new)

Van der Meer (1998)
Rock Manual (2007)

ECFA New formula based on work
by Gerding (1993)

No - Rock ℎt /ℎm Nod

Sayao (2007) ECFA Encorporate foreshore slope,
steepness, breaker index

Yes ? Rock α f or e , ℎt /ℎm , ξ0p -

Baart (2008) DMA,
analytical

Define critical load via
threshold of motion

No Regular and
irregular

Rock L, H , Ru , Rd , LT A, ℎt ,
ℎm

Nod , NodB (rejected)

Ebbens (2009) ECFA Very shallow water Yes Irregular Rock ξ N%

Nammuni-Krohn (2009) - Measure umax Yes Regular and
irregular

(Rock) - -

Baart et al. (2010) - Combine Baart (2008), Ebbens
(2009) and Nammuni-Krohn
(2009)

No - Rock ûb · γ f or e Nod , N%

Muttray (2013) ECFA Analytical derivation of
‘classical’ stability formula

No - Rock ℎt /Hs Nod , N% (new)

Arets (2013) DMA,
numerical

Numerical simulation of
Nammuni-Krohn (2009)

No Regular (Rock) - -

Van Gent and Van der Werf (2014) DMA and
decoupled model

Gain higher accuracy by
combining both methods,
validate more toe dimensions

Yes Irregular Rock, concrete V-units tt /Hs , Bt /Hs , ûδ/
√
gHs Nod

Muttray et al. (2014) ECFA Step-by-step derivation of
simple benchmark formula,
avoiding interdependency of
parameters

No Irregular Rock ℎt /Lp , α f or e , αtoe Nod

ECFA = empirical curve fitting approach
DMA = decoupled model approach



C
Datasets

On the following pages historical datasets used for this research are described in detail. For Nammuni-Krohn
(2009) and Ebbens (2009) a structure drawing of the model implemented in ih-2vof can be found in appendix
E. Per dataset the following topics are given as complete as possible:

– Where to obtain data
– Number of tests
– Test set-up, flume and wave characteristics, method of measurement
– Particularities
– Parameters changed with their ranges
– Constant parameters
– Measured/derived values available

C.1. Gerding (1993)
– Data in report, page 91-100
– 171 test composed as 57 cases x 3 stone sizes
– Irregular waves, jonswap-spectrum, γ unknown, 1000 waves per run
– Wave height and wave period are measured using wave gauges, at the wave generator and at the toe.

Damage is recorded as stones removed completely from the toe.
– Parameters changed:

Bt = 0.12, 0.20, 0.30 m
Dn50 = 0.017, 0.025, 0.035, 0.040 m
ℎm = 0.3, 0.4, 0.5 m
Hs = 0.15, 0.20, 0.25 m (target at toe)
s0p = 0.02, 0.03, 0.04 (target at wave generator)
tt = 0.08, 0.15, 0.22 m

– Constant parameters:
ρs = 2680 kg/m3

ρw = 1000 kg/m3

∆ = 1.68
D85/D15 = 1.15 − 1.30

– Measured/derived values:

At wave generator: H2%,0
At toe: Tp , H2%, damage
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C.2. Docters van Leeuwen (1996)
– Data in report, page 102-106 (appendix C1)
– 98 tests composed as 16 cases x 6 stone types and 2 additional runs
– Irregular waves, jonswap-spectrum, γ = 3.3, 2000 waves per run
– Wave height and wave period are measured using wave gauges, at the wave generator and at the toe.

Damage is recorded as stones removed completely from the toe in seaward direction.
– Parameters changed:

Dn50 = 0.0098, 0.0102, 0.0144, 0.0151, 0.021, 0.0231 m
ℎm = 0.30, 0.45 m
Hs = 0.10, 0.14, 0.17, 0.20 m (target at toe)
tt = 0.08, 0.15 m

ρs = 1900, 2550, 2850 kg/m3 → ∆ = 0.90, 1.55, 1.85
– Constant parameters:

s0p = 0.04 (target at wave generator)

ρw = 1000 kg/m3

– Measured/derived values:

Tp (probably at toe)
Damage

C.3. Ebbens (2009)
– Data in report, page 102-114
– 296 tests
– Irregular waves, jonswap-spectrum, γ = 3.3, 1000 waves per run. The armour layer consists of Xbloc-

elements.
– Wave height and period are measured using wave gauges, at the wave generator and in front of toe. The

‘toe’ measurement was at a position where the bed level was 4.2 cm lower than the bed level at the
toe (i.e. water level 4.2 cm larger than ℎm ). This means that Hs at the toe is different due to shoaling.
Muttray corrected this by assuming no change in Hs if no breaking was present ( Hs,0

ℎm+42 mm < 0.6). When
wave breaking was present, an adaption was made, see Muttray (2013).
Damage is presumably recorded as stones removed completely from the toe (separately up/down),
though his choice is not clear since he wrote: “A division can be made in stones moving downwards (away
from the breakwater), stones moving upwards (to primary armour layer) and movind [moving] within the
toe profile (more than its own diameter).” (Ebbens, 2009, p. 20). He did not give the values for the last
measurement though.

– Parameters changed:
tan(α f or e ) = 1:10,1:20,1:50

Dn50 = 18.8, 21.5, 26.8 mm with ρs = 2650, 2700, 2750 kg/m3 and n = 0.36, 0.33, 0.32
ℎt = 0.00, 0.02, 0.04, 0.06, 0.08, 0.13, 0.18, 0.266 m

ℎt should be corrected with −0.07 m (Ebbens, 2009, p. 44).
Hs = 0.06, 0.08, 0.10, 0.12 m (target at wave generator)
s0p = 0.02, 0.03, 0.04 (target at wave generator)

– Constant parameters:
ρw = 1000 kg/m3

Armour layer: Xbloc, Dn50 = 0.040 m , M50 = 49 · 10−3 kg

First underlayer: Dn50 = 0.0124 m, M50 = 5.0 · 10−3 kg

Core: Dn50 = 0.0111 m, M50 = 3.6 · 10−3 kg
Structure dimensions are constant, except foreshore steepness

– Measured/derived values:
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At wave generator: Tp
At toe: Hm0, Tp , Tm−1,0, H1/3, H2%, damage

– See appendix E for the structure layout as implemented in ih-2vof.

C.4. Nammuni-Krohn (2009)
– Data at 3TU.Datacentrum. An additional (though incomplete) table with calculations can be found in

the report on page 84-95.
http://dx.doi.org/10.4121/uuid:91312903-7701-406e-a1b0-2d7bc456155c.

– 80 tests composed as 40 cases x 2 stone sizes
– The toe structure has two toe rock sizes, horizontally divided. 27 cases have regular waves, 50 waves per

run. 13 cases have irregular waves, jonswap-spectrum, γ unknown, 1000 waves per run.
– Wave height and wave period are measured using wave gauges, at the wave generator and at the toe.

Flow velocities are measured with an ADV (Acoustic Doppler Velocimeter). ADV1 is located in the
centre line of the larger rock section, ADV2 at the smaller rock section. The orientation of both ADVs
is not the same, see Table 2 in the report.

– Parameters changed:
Dn50 = 0.035, 0.025 m
ℎm = 0.2, 0.3, 0.4 m
Hs = 0.10, 0.15, 0.20 m (target in front of foreshore)
ℎt = 0.08, 0.15 m
sp = 0.02, 0.04 (target in front of foreshore)

– Constant parameters:
ρw = 1000 kg/m3

D85/D15 = 1.15 − 1.30
– Measured/derived values: Hm0 and Tp at the wave generator, from spectral analysis
– See appendix E for the structure layout as implemented in ih-2vof.

C.5. Van Gent and Van der Werf (2014)
– Test set-up in article.
– 192 tests. For 122 of them a dataset could be obtained from the digitised data and additional information

in the paper.
– Wave height and wave period are measured using wave gauges, at the wave generator and at the toe.

Damage is recorded as stones which have moved over a distance more than Dn50.
– Parameters changed:

Dn50 = 14.6, 23.3 mm
Bt = 0.044, 0.070, 0.131, 0.210 m
tt = 29, 47, 58 mm
ℎm = 0.2, 0.3, 0.4 m
sp0 = 0.018, 0.048 mm

– Constant parameters:
∆ = 1.7

Dn85/Dn15 = 1.17

ρw = 1000 kg/m3

– Measured/derived values: Hs and Tp at the toe

http://dx.doi.org/10.4121/uuid:91312903-7701-406e-a1b0-2d7bc456155c


D
Convergence tests

Convergence tests were performed to obtain sufficient simulation accuracy at a not too high cost of compu-
tation time, see section 3.3. In this appendix some additional details and figures on the convergence tests are
presented. Details on the exact grid properties are given in appendix E.

D.1. Set-up of the base case
Three convergence tests have been performed. The recommendation of each set of tests has been implemented
in the next. The base case NK09-R016-L by Nammuni-Krohn was implemented in grid generator Coral after
estimating missing structure dimensions. Porosity has been set on 0.4 and standard1 Forchheimer coefficients
were used, i.e. α = 200, β = 1.1 and γ = 0.34. Wave length is calculated from wave period for transitional
water depths, see Schiereck and Verhagen (2012, p. 175). The calculation resulted in L0 = 2.086 m, which has
been rounded to L0 = 2.08 m for easy model set-up. The base domain, grid size and simulation settings have
been chosen as follows:

Flume length In the ih-2vof manual it was advised to let the grid extend at both sides of the structure with
at least half a wave length. This formed the case with the minimum flume length. The ‘structure’ includes the
foreshore. Behind the structure the grid was extended only 0.195 m, since the structure contained a vertical
impermeable wall and since overtopping was not expected.

Flume height The original flume height of 0.9 m was taken. Higher flume heights do not influence calcu-
lations since this only adds air. It is only important that the domain is sufficiently high so that wave crest do
not reach the edge.

Grid uniformity As described in section 3.2 a uniform grid has been used.

Cell width Cell width is the cell size in horizontal ( x ) direction. In Van den Bos et al. (2014) use of at
least 150 cells per wave length was advised (L/∆x > 150). The ih-2vof manual additionally puts the criterion
∆x < 2.5∆y to prevent false breaking effects. In the base case it is therefore chosen to take ∆x = 0.013 m
which gives L0/∆x = 160.

Cell height Cell height is the cell size in vertical (y ) direction. The ih-2vof manual advises to use a minimum
of 10 cells per wave height. A criterion of H /∆y > 10 is thus advised. For the base case this resulted in
∆y = 0.01 m with H /∆y = 10. The ∆x/∆y-criterion is fulfilled.

1Extensive study to the Forchheimer coefficients was not yet performed when working on the convergence tests.
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Simulation settings All simulations have been performed with regular waves with initial duration of 180 s.
Wave height is 0.10 m and wave period is 1.265 s, both measured in ‘deep’ water i.e. near the wave generator. A
typical plot of the flow velocity over time is shown in figure D.1. It can be seen that it takes about 30 seconds
of spin-up time to let waves reach their regular pattern. Therefore it is chosen to reduce simulation duration to
90 seconds, so that for the longest flume a sufficient 50 seconds of stable waves is obtained. Other simulation
settings are as follows:

– Linear wave generation theory
– Static paddle
– Left and right boundary absorption. No turbulence calculation.
– Wave gauges are positioned relative to the structure to make comparison possible. At the toe they are

positioned with spacing of 0.05 m and 0.10 m; in front of the toe spacing is 0.50 m.
– Only output of wave gauge data, with a sampling frequency of 30 Hz. The convergence tests on flume

length have been re-run in a later stage to obtain u-data over the full domain.
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Figure D.1: Typical record of horizontal flow velocity over time.
Note the time required for the wave to reach the structure (∼5 s) and the spin-up time (∼35 s).

The dataset consists of a time record of horizontal flow velocities u at all y-grid points at each wave gauge
(see figure D.1 for an example). They have to be compared in some way. Figure D.2 represents the method.
A first trial was to simply subtract one velocity record from the reference case, at each x -y-point. For this
wave records have been resampled at the time points of the reference case. This has been done with linear
interpolation, which is sufficiently accurate due to the high sampling frequency. Differences in flume length
imply a time shift between cases, for when the first wave reaches the gauge. Therefore all velocity records have
been shifted to the ‘left’ in the time domain, so that they start at the 5th positive peak. Choice for the 5th peak
is result of trial and error. Now the velocity records can be subtracted.

Unfortunately this resulted in a unworkable solution due to small phase shifts over the record, giving
false differences (see figure D.2c). Since toe stone stability is presumably result of velocity peaks, it is chosen
to compare the values of the velocity peaks (for now only the positive peaks). At x -y-points where air is
sometimes present (near the still water level) false peaks can occur: the velocity suddenly drops to zero when
no fluid is present. Peaks are therefore filtered so that time difference between two peaks should be more than
0.9T0. Finally peaks can be subtracted, resulting in a stable description of the velocity variation (see figure
D.2d).

The relative error is calculated as the difference in peak velocity divided by the highest peak velocity at that
peak. The maximum over the time record (after spin-up time) is taken and subsequently the average per gauge
is calculated. It must be remarked that relative error is not calculated above the still water line, since wave
breaking is not of interest. The error within non-permeable cells is also ignored as it is always zero.
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Figure D.2: Comparison method of time-velocity records.
The horizontal axis is t in seconds, the vertical u in metres per second.
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D.2. Additional figures on flume length convergence
In figure D.3 a flume has been represented. At all wave gauges maximal peak difference per x -y position has
been plotted. We can observe that around the still water level and near the toe there is greater difference with
the reference case due to wave breaking. When we zoom in on the toe, we see that velocity records seem to
converge with increasing flume length. A clear answer to which flume length is best is not obvious.
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Figure D.3: Maximal peak difference at each gauge x-y-position for different flume lengths
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D.3. Additional figures on cell width convergence

Maximal peak difference at each gauge position is plotted in figure D.4 with a zoomed in version in figure
D.4b. It shows convergence for smaller cells. The case with a L0/∆x -value of 50.7 shows large deviations and
may certainly not be used.
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Figure D.4: Maximal peak difference at each gauge x-y-position for different cell widths
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D.4. Additional figures on cell height convergence
In figure D.5 we can observe convergence in cell height. Certainly the case with H /∆y = 5 still has large errors.
The same can be seen in figure 3.8 as well. Although calculation with H /∆y = 10 seems to be much more
accurate, it still shows extensive fluctuations over the wave gauges. This is largely gone with H /∆y = 16.7.
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Figure D.5: Maximal peak difference at each gauge x-y-position for different cell heights



E
Model configurations

The following pages show configurations for the ih-2vof models. Three models have been made:

– The convergence test model, based on NK09-R016-L (simulation ID NK09_741)
– The NK09 (Nammuni-Krohn, 2009) models (simulation ID NK09_688 to NK09_767)
– The Eb09 (Ebbens, 2009) models (simulation ID Eb09_172 to Eb09_467)

Simulation IDs are identifiers used in this research. In fact all Gerding (1993), Docters van Leeuwen (1996)
and Van Gent and Van der Werf (2014) cases have also been assigned an ID, though they are not modelled
with ih-2vof due to time limitations.

For NK09 and Eb09 the model implemented is drawn. The model is dependent on case parameters. Then a
table follows in which the configuration per case is shown. Only relevant parameters which cannot be deduced
from the model drawing are given. Estimated values are shown between parentheses.

At the end of the chapter a table is presented containing information on the performance of the calculations.

E.1. Convergence tests
The convergence tests are based on test NK09_741. See also section 3.3 and appendix D for details on the
choices made. The model layout is given in the NK09 model description.

Table E.1: Flume length convergence

Flume extension L f ℎ f ∆x ∆y nx ny

[m] [m] [m] [m] [-] [-]

0.5L0 6.825 0.900 0.013 0.01 525 90

1.0L0 7.865 0.900 0.013 0.01 605 90

1.5L0 8.905 0.900 0.013 0.01 685 90

2.0L0 9.945 0.900 0.013 0.01 765 90

2.5L0 10.985 0.900 0.013 0.01 845 90

3.0L0 12.025 0.900 0.013 0.01 925 90

3.5L0 13.065 0.900 0.013 0.01 1005 90

4.0L0 14.105 0.900 0.013 0.01 1085 90
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Table E.2: Cell width convergence

L0/∆x L f ℎ f ∆x ∆y nx ny

[-] [m] [m] [m] [m] [-] [-]

50.7 10.988 0.900 0.041 0.01 268 90

104 11.000 0.900 0.020 0.01 550 90

160 10.985 0.900 0.013 0.01 845 90

208 10.990 0.900 0.010 0.01 1099 90

260 10.992 0.900 0.008 0.01 1374 90

Table E.3: Cell height convergence

H /∆y L f ℎ f ∆x ∆y nx ny

[-] [m] [m] [m] [m] [-] [-]

5 10.985 0.900 0.013 0.020 845 45

10 10.985 0.900 0.013 0.010 845 90

16.7 10.985 0.900 0.013 0.006 845 150

20 10.985 0.900 0.013 0.005 845 180

Table E.4: Friction check, see §3.4.1

Flume extension L f ℎ f ∆x ∆y nx ny

[m] [m] [m] [m] [-] [-]

1.5L0 3.133 0.9 0.013 0.006 241 150

2.0L0 4.173 0.9 0.013 0.006 321 150

2.5L0 5.226 0.9 0.013 0.006 402 150

3.0L0 6.266 0.9 0.013 0.006 482 150

3.5L0 7.306 0.9 0.013 0.006 562 150

4.0L0 8.346 0.9 0.013 0.006 642 150
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E.2. Nammuni-Krohn (2009)
Some details on the NK09 model:

– The model was reported in low level of detail. Consequently a lot of assumptions on stone properties and dimensions had
to be made.

– Three offshore gauges were placed
– Multiple gauges above the toe were placed, according to the xADV positions in the NK09 report
– The origin of the ADV coordinate system moves with a higher toe

Table E.5: NK09 stone properties

Material Dn50 n α βc γ

[m] [-] [-] [-] [-]

Toe stone 1 0.0250 (0.40) 903 1.1 0.34

Toe stone 2 0.0350 (0.40) 1043 1.1 0.34

Armour 0.0400 (0.40) 1105 1.1 0.34

Core (0.0111) (0.38) 637 1.1 0.34
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Figure E.1: Geometry of NK09
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Figure E.2: Detailed geometry of NK09
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Table E.6: NK09 configuration with regular waves

Sim. ID NK09-ID ℎ0 H T Dn50 tt L0 L f ℎ f ∆x ∆y nx ny tend
[m] [m] [s] [m] [m] [m] [m] [m] [m] [m] [-] [-] [s]

688 R001-S 0.6 0.10 1.790 0.025 0.08 3.80 15.210 0.90 0.015 0.006 1014 150 90
689 R002-S 0.6 0.10 1.265 0.025 0.08 2.31 11.505 0.90 0.015 0.006 767 150 90
690 R003-S 0.6 0.15 2.197 0.025 0.08 4.88 17.925 0.90 0.025 0.010 717 90 90
691 R004-S 0.6 0.15 1.898 0.025 0.08 4.09 15.950 0.90 0.025 0.010 638 90 90
692 R005-S 0.6 0.15 1.550 0.025 0.08 3.13 13.540 0.90 0.020 0.010 677 90 90
693 R006-S 0.6 0.20 2.531 0.025 0.08 5.75 20.097 0.91 0.033 0.013 609 70 90
694 R007-S 0.6 0.20 1.789 0.025 0.08 3.79 15.200 0.91 0.025 0.013 608 70 90
695 R008-S 0.5 0.10 1.790 0.025 0.08 3.55 14.580 0.90 0.015 0.006 972 150 90
696 R009-S 0.5 0.10 1.265 0.025 0.08 2.22 11.270 0.90 0.014 0.006 805 150 90
697 R010-S 0.5 0.15 2.197 0.025 0.08 4.53 17.050 0.90 0.025 0.010 682 90 90
698 R011-S 0.5 0.15 1.898 0.025 0.08 3.81 15.250 0.90 0.025 0.010 610 90 90
699 R012-S 0.5 0.15 1.550 0.025 0.08 2.95 13.110 0.90 0.019 0.010 690 90 90
700 R015-S 0.4 0.10 1.789 0.025 0.08 3.25 13.830 0.90 0.015 0.006 922 150 90
701 R016-S 0.4 0.10 1.265 0.025 0.08 2.09 10.933 0.90 0.013 0.006 841 150 90
702 R017-S 0.4 0.15 2.197 0.025 0.08 4.11 16.000 0.90 0.025 0.010 640 90 90
711 R030-S 0.6 0.10 1.790 0.025 0.15 3.80 15.210 0.90 0.015 0.006 1014 150 90
712 R031-S 0.6 0.10 1.265 0.025 0.15 2.31 11.505 0.90 0.015 0.006 767 150 90
713 R032-S 0.6 0.15 2.197 0.025 0.15 4.88 17.925 0.90 0.025 0.010 717 90 90
714 R033-S 0.6 0.15 1.898 0.025 0.15 4.09 15.950 0.90 0.025 0.010 638 90 90
715 R034-S 0.6 0.15 1.550 0.025 0.15 3.13 13.540 0.90 0.020 0.010 677 90 90
716 R035-S 0.6 0.20 2.531 0.025 0.15 5.75 20.097 0.91 0.033 0.013 609 70 90
717 R036-S 0.6 0.20 1.789 0.025 0.15 3.79 15.200 0.91 0.025 0.013 608 70 90
718 R037-S 0.5 0.10 1.790 0.025 0.15 3.55 14.580 0.90 0.015 0.006 972 150 90
719 R038-S 0.5 0.10 1.265 0.025 0.15 2.22 11.270 0.90 0.014 0.006 805 150 90
720 R039-S 0.5 0.15 2.197 0.025 0.15 4.53 17.050 0.90 0.025 0.010 682 90 90
721 R040-S 0.5 0.15 1.898 0.025 0.15 3.81 15.250 0.90 0.025 0.010 610 90 90
722 R041-S 0.5 0.15 1.550 0.025 0.15 2.95 13.110 0.90 0.019 0.010 690 90 90
728 R001-L 0.6 0.10 1.790 0.035 0.08 3.80 15.210 0.90 0.015 0.006 1014 150 90
729 R002-L 0.6 0.10 1.265 0.035 0.08 2.31 11.505 0.90 0.015 0.006 767 150 90
730 R003-L 0.6 0.15 2.197 0.035 0.08 4.88 17.925 0.90 0.025 0.010 717 90 90
731 R004-L 0.6 0.15 1.898 0.035 0.08 4.09 15.950 0.90 0.025 0.010 638 90 90
732 R005-L 0.6 0.15 1.550 0.035 0.08 3.13 13.540 0.90 0.020 0.010 677 90 90
733 R006-L 0.6 0.20 2.531 0.035 0.08 5.75 20.097 0.91 0.033 0.013 609 70 90
734 R007-L 0.6 0.20 1.789 0.035 0.08 3.79 15.200 0.91 0.025 0.013 608 70 90
735 R008-L 0.5 0.10 1.790 0.035 0.08 3.55 14.580 0.90 0.015 0.006 972 150 90
736 R009-L 0.5 0.10 1.265 0.035 0.08 2.22 11.270 0.90 0.014 0.006 805 150 90
737 R010-L 0.5 0.15 2.197 0.035 0.08 4.53 17.050 0.90 0.025 0.010 682 90 90
738 R011-L 0.5 0.15 1.898 0.035 0.08 3.81 15.250 0.90 0.025 0.010 610 90 90
739 R012-L 0.5 0.15 1.550 0.035 0.08 2.95 13.110 0.90 0.019 0.010 690 90 90
740 R015-L 0.4 0.10 1.789 0.035 0.08 3.25 13.830 0.90 0.015 0.006 922 150 90
741 R016-L 0.4 0.10 1.265 0.035 0.08 2.09 10.933 0.90 0.013 0.006 841 150 90
742 R017-L 0.4 0.15 2.197 0.035 0.08 4.11 16.000 0.90 0.025 0.010 640 90 90
751 R030-L 0.6 0.10 1.790 0.035 0.15 3.80 15.210 0.90 0.015 0.006 1014 150 90
752 R031-L 0.6 0.10 1.265 0.035 0.15 2.31 11.505 0.90 0.015 0.006 767 150 90
753 R032-L 0.6 0.15 2.197 0.035 0.15 4.88 17.925 0.90 0.025 0.010 717 90 90
754 R033-L 0.6 0.15 1.898 0.035 0.15 4.09 15.950 0.90 0.025 0.010 638 90 90
755 R034-L 0.6 0.15 1.550 0.035 0.15 3.13 13.540 0.90 0.020 0.010 677 90 90
756 R035-L 0.6 0.20 2.531 0.035 0.15 5.75 20.097 0.91 0.033 0.013 609 70 90
757 R036-L 0.6 0.20 1.789 0.035 0.15 3.79 15.200 0.91 0.025 0.013 608 70 90
758 R037-L 0.5 0.10 1.790 0.035 0.15 3.55 14.580 0.90 0.015 0.006 972 150 90
759 R038-L 0.5 0.10 1.265 0.035 0.15 2.22 11.270 0.90 0.014 0.006 805 150 90
760 R039-L 0.5 0.15 2.197 0.035 0.15 4.53 17.050 0.90 0.025 0.010 682 90 90
761 R040-L 0.5 0.15 1.898 0.035 0.15 3.81 15.250 0.90 0.025 0.010 610 90 90
762 R041-L 0.5 0.15 1.550 0.035 0.15 2.95 13.110 0.90 0.019 0.010 690 90 90

54 cases in total

Table E.7: NK09 configuration with irregular waves

Sim. ID NK09-ID ℎ0 Hs Tp Dn50 tt L0p L f ℎ f ∆x ∆y nx ny tend
[m] [m] [s] [m] [m] [m] [m] [m] [m] [m] [-] [-] [s]

703 I020-S 0.6 0.10 1.790 0.025 0.08 3.80 15.210 0.90 0.015 0.006 1014 150 716
704 I021-S 0.6 0.10 1.265 0.025 0.08 2.31 11.505 0.90 0.015 0.006 767 150 506
705 I022-S 0.6 0.15 2.197 0.025 0.08 4.88 17.925 0.90 0.025 0.010 717 90 879
706 I023-S 0.6 0.15 1.550 0.025 0.08 3.13 13.540 0.90 0.020 0.010 677 90 620
707 I026-S 0.5 0.10 1.790 0.025 0.08 3.55 14.586 0.90 0.017 0.007 858 129 716
708 I027-S 0.5 0.10 1.265 0.025 0.08 2.22 11.270 0.90 0.014 0.006 805 150 506
709 I028-S 0.5 0.15 2.197 0.025 0.08 4.53 17.050 0.90 0.025 0.010 682 90 879
710 I029-S 0.5 0.15 1.550 0.025 0.08 2.95 13.110 0.90 0.019 0.010 690 90 620
723 I049-S 0.6 0.10 1.790 0.025 0.15 3.80 15.210 0.90 0.015 0.006 1014 150 716
724 I050-S 0.6 0.10 1.265 0.025 0.15 2.31 11.505 0.90 0.015 0.006 767 150 506
725 I051-S 0.6 0.15 2.197 0.025 0.15 4.88 17.925 0.90 0.025 0.010 717 90 879
726 I052-S 0.6 0.15 1.550 0.025 0.15 3.13 13.540 0.90 0.020 0.010 677 90 620
727 I055-S 0.5 0.10 1.790 0.025 0.15 3.55 14.586 0.90 0.017 0.007 858 129 716
743 I020-L 0.6 0.10 1.790 0.035 0.08 3.80 15.210 0.90 0.015 0.006 1014 150 716
744 I021-L 0.6 0.10 1.265 0.035 0.08 2.31 11.505 0.90 0.015 0.006 767 150 506
745 I022-L 0.6 0.15 2.197 0.035 0.08 4.88 17.925 0.90 0.025 0.010 717 90 879
746 I023-L 0.6 0.15 1.550 0.035 0.08 3.13 13.540 0.90 0.020 0.010 677 90 620
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Table E.7: NK09 configuration with irregular waves (continued)

Sim. ID NK09-ID ℎ0 Hs Tp Dn50 tt L0p L f ℎ f ∆x ∆y nx ny tend
[m] [m] [s] [m] [m] [m] [m] [m] [m] [m] [-] [-] [s]

747 I026-L 0.5 0.10 1.790 0.035 0.08 3.55 14.586 0.90 0.017 0.007 858 129 716
748 I027-L 0.5 0.10 1.265 0.035 0.08 2.22 11.270 0.90 0.014 0.006 805 150 506
749 I028-L 0.5 0.15 2.197 0.035 0.08 4.53 17.050 0.90 0.025 0.010 682 90 879
750 I029-L 0.5 0.15 1.550 0.035 0.08 2.95 13.110 0.90 0.019 0.010 690 90 620
763 I049-L 0.6 0.10 1.790 0.035 0.15 3.80 15.210 0.90 0.015 0.006 1014 150 716
764 I050-L 0.6 0.10 1.265 0.035 0.15 2.31 11.505 0.90 0.015 0.006 767 150 506
765 I051-L 0.6 0.15 2.197 0.035 0.15 4.88 17.925 0.90 0.025 0.010 717 90 879
766 I052-L 0.6 0.15 1.550 0.035 0.15 3.13 13.540 0.90 0.020 0.010 677 90 620
767 I055-L 0.5 0.10 1.790 0.035 0.15 3.55 14.586 0.90 0.017 0.007 858 129 716

26 cases in total

E.3. Ebbens (2009)
Some details on the Eb09 model:

– The foreshore slope was varied. For the longest slope a flume extension of only 1000 mm instead of 2.5L0p was applied.
– The breakwater dimensions are fixed, i.e. only one geometry was tested
– A number of gauges with spacing ∆x was placed above the toe, so that a range of at least 150 mm was covered
– Three offshore and three onshore gauges were placed in addition
– The crown wall dimensions were undefined and estimated
– The back side of the breakwater was cut off and modelled as a vertical edge. This is physically impossible, but the effect on

the simulation is negligible.

Table E.8: Eb09 stone properties

Material Dn50 n α βc γ

[m] [-] [-] [-] [-]

Toe stone 1 0.0188 0.360 798 1.1 0.34

Toe stone 2 0.0215 0.330 846 1.1 0.34

Toe stone 3 0.0268 0.320 930 1.1 0.34

Armour 0.0400 0.587 1105 1.1 0.34

Underlayer 0.0124 (0.400) 668 1.1 0.34

Core 0.0111 (0.380) 637 1.1 0.34
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Figure E.3: Geometry of Eb09
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Figure E.4: Detailed geometry of Eb09

Table E.9: Eb09 configuration

Sim.
ID

Eb09-
ID

tan−1

α f or e

ℎ0 Hs Tp Dn50 tt L0p L f ℎ f ∆x ∆y nx ny tend ng aug e s

[-] [m] [m] [s] [m] [m] [m] [m] [m] [m] [m] [-] [-] [s] [-]
172 1 50 0.594 0.061 1.16 0.0188 1.65 2.00 19.300 1.000 0.010 0.004 1930 250 464 21
173 2 50 0.594 0.085 1.31 0.0188 1.65 2.44 19.305 1.002 0.015 0.006 1287 167 524 16
174 3 50 0.594 0.115 1.56 0.0188 1.65 3.15 19.300 1.000 0.020 0.008 965 125 624 14
175 4 50 0.594 0.125 1.73 0.0188 1.65 3.62 19.300 1.000 0.020 0.008 965 125 692 14
176 5 50 0.544 0.063 1.16 0.0188 1.65 1.97 19.300 1.000 0.010 0.004 1930 250 464 21
177 6 50 0.544 0.085 1.31 0.0188 1.65 2.39 19.305 1.002 0.015 0.006 1287 167 524 16
178 7 50 0.544 0.106 1.56 0.0188 1.65 3.06 19.312 1.001 0.017 0.007 1136 143 624 15
179 8 50 0.544 0.129 1.73 0.0188 1.65 3.51 19.316 1.008 0.022 0.009 878 112 692 13
180 9 50 0.494 0.058 1.16 0.0188 1.65 1.94 19.300 1.000 0.010 0.004 1930 250 464 21
181 10 50 0.494 0.076 1.33 0.0188 1.65 2.38 19.308 1.000 0.012 0.005 1609 200 532 19
182 11 50 0.494 0.094 1.56 0.0188 1.65 2.97 19.305 1.002 0.015 0.006 1287 167 624 16
183 12 50 0.494 0.113 1.73 0.0188 1.65 3.39 19.300 1.000 0.020 0.008 965 125 692 14
184 13 50 0.474 0.060 1.07 0.0188 1.65 1.69 19.300 1.000 0.010 0.004 1930 250 428 21
185 14 50 0.474 0.063 1.56 0.0188 1.65 2.92 19.308 1.000 0.012 0.005 1609 200 624 19
186 15 50 0.474 0.082 1.21 0.0188 1.65 2.05 19.308 1.000 0.012 0.005 1609 200 484 19
187 16 50 0.474 0.086 2.13 0.0188 1.65 4.27 19.305 1.002 0.015 0.006 1287 167 852 16
188 17 50 0.474 0.103 1.46 0.0188 1.65 2.68 19.312 1.001 0.017 0.007 1136 143 584 15
189 18 50 0.474 0.106 2.56 0.0188 1.65 5.25 19.312 1.001 0.017 0.007 1136 143 1024 15
190 19 50 0.474 0.126 1.73 0.0188 1.65 3.33 19.300 1.000 0.020 0.008 965 125 692 14
191 20 50 0.474 0.126 3.05 0.0188 1.65 6.35 19.300 1.000 0.020 0.008 965 125 1220 14
192 21 50 0.454 0.058 1.07 0.0188 1.65 1.67 19.300 1.000 0.010 0.004 1930 250 428 21
193 22 50 0.454 0.058 1.49 0.0188 1.65 2.71 19.300 1.000 0.010 0.004 1930 250 596 21
194 23 50 0.454 0.078 1.21 0.0188 1.65 2.03 19.308 1.000 0.012 0.005 1609 200 484 19
195 24 50 0.454 0.077 2.07 0.0188 1.65 4.06 19.305 1.002 0.015 0.006 1287 167 828 16
196 25 50 0.454 0.097 1.36 0.0188 1.65 2.40 19.305 1.002 0.015 0.006 1287 167 544 16
197 26 50 0.454 0.099 2.56 0.0188 1.65 5.15 19.312 1.001 0.017 0.007 1136 143 1024 15
198 27 50 0.454 0.117 1.73 0.0188 1.65 3.28 19.300 1.000 0.020 0.008 965 125 692 14
199 28 50 0.454 0.117 3.05 0.0188 1.65 6.23 19.300 1.000 0.020 0.008 965 125 1220 14
200 29 50 0.434 0.061 1.07 0.0188 1.65 1.66 19.300 1.000 0.010 0.004 1930 250 428 21
201 30 50 0.434 0.064 1.73 0.0188 1.65 3.22 19.308 1.000 0.012 0.005 1609 200 692 19
202 31 50 0.434 0.085 1.21 0.0188 1.65 2.00 19.305 1.002 0.013 0.006 1485 167 484 18
203 32 50 0.434 0.084 2.07 0.0188 1.65 3.98 19.305 1.002 0.015 0.006 1287 167 828 16
204 33 50 0.434 0.105 1.36 0.0188 1.65 2.37 19.305 1.001 0.015 0.007 1287 143 544 16
205 34 50 0.434 0.105 2.56 0.0188 1.65 5.05 19.312 1.001 0.017 0.007 1136 143 1024 15
206 35 50 0.434 0.126 1.88 0.0188 1.65 3.56 19.300 1.000 0.020 0.008 965 125 752 14
207 36 50 0.434 0.127 3.05 0.0188 1.65 6.10 19.300 1.000 0.020 0.008 965 125 1220 14



E. Model configurations 124

Table E.9: Eb09 configuration (continued)

Sim.
ID

Eb09-
ID

tan−1

α f or e

ℎ0 Hs Tp Dn50 tt L0p L f ℎ f ∆x ∆y nx ny tend ng aug e s

[-] [m] [m] [s] [m] [m] [m] [m] [m] [m] [m] [-] [-] [s] [-]
208 37 50 0.414 0.059 1.07 0.0188 1.65 1.64 19.300 1.000 0.010 0.004 1930 250 428 21
209 38 50 0.414 0.058 1.73 0.0188 1.65 3.16 19.300 1.000 0.010 0.004 1930 250 692 21
210 39 50 0.414 0.078 1.26 0.0188 1.65 2.10 19.308 1.000 0.012 0.005 1609 200 504 19
211 40 50 0.414 0.078 2.29 0.0188 1.65 4.37 19.305 1.002 0.015 0.006 1287 167 916 16
212 41 50 0.414 0.098 1.46 0.0188 1.65 2.56 19.312 1.001 0.017 0.007 1136 143 584 15
213 42 50 0.414 0.097 2.56 0.0188 1.65 4.94 19.312 1.001 0.017 0.007 1136 143 1024 15
214 43 50 0.414 0.118 1.73 0.0188 1.65 3.16 19.300 1.000 0.020 0.008 965 125 692 14
215 44 50 0.414 0.118 3.05 0.0188 1.65 5.96 19.300 1.000 0.020 0.008 965 125 1220 14
216 45 50 0.594 0.061 1.16 0.0215 1.70 2.00 19.300 1.000 0.010 0.004 1930 250 464 21
217 46 50 0.594 0.085 1.31 0.0215 1.70 2.44 19.305 1.002 0.015 0.006 1287 167 524 16
218 47 50 0.594 0.115 1.56 0.0215 1.70 3.15 19.300 1.000 0.020 0.008 965 125 624 14
219 48 50 0.594 0.125 1.73 0.0215 1.70 3.62 19.300 1.000 0.020 0.008 965 125 692 14
220 49 50 0.544 0.063 1.16 0.0215 1.70 1.97 19.300 1.000 0.010 0.004 1930 250 464 21
221 50 50 0.544 0.085 1.31 0.0215 1.70 2.39 19.305 1.002 0.015 0.006 1287 167 524 16
222 51 50 0.544 0.106 1.56 0.0215 1.70 3.06 19.312 1.001 0.017 0.007 1136 143 624 15
223 52 50 0.544 0.129 1.73 0.0215 1.70 3.51 19.316 1.008 0.022 0.009 878 112 692 13
224 53 50 0.494 0.058 1.16 0.0215 1.70 1.94 19.300 1.000 0.010 0.004 1930 250 464 21
225 54 50 0.494 0.076 1.33 0.0215 1.70 2.38 19.308 1.000 0.012 0.005 1609 200 532 19
226 55 50 0.494 0.094 1.56 0.0215 1.70 2.97 19.305 1.002 0.015 0.006 1287 167 624 16
227 56 50 0.494 0.113 1.73 0.0215 1.70 3.39 19.300 1.000 0.020 0.008 965 125 692 14
228 57 50 0.474 0.060 1.07 0.0215 1.70 1.69 19.300 1.000 0.010 0.004 1930 250 428 21
229 58 50 0.474 0.063 1.56 0.0215 1.70 2.92 19.308 1.000 0.012 0.005 1609 200 624 19
230 59 50 0.474 0.082 1.21 0.0215 1.70 2.05 19.308 1.000 0.012 0.005 1609 200 484 19
231 60 50 0.474 0.086 2.13 0.0215 1.70 4.27 19.305 1.002 0.015 0.006 1287 167 852 16
232 61 50 0.474 0.103 1.46 0.0215 1.70 2.68 19.312 1.001 0.017 0.007 1136 143 584 15
233 62 50 0.474 0.106 2.56 0.0215 1.70 5.25 19.312 1.001 0.017 0.007 1136 143 1024 15
234 63 50 0.474 0.126 1.73 0.0215 1.70 3.33 19.300 1.000 0.020 0.008 965 125 692 14
235 64 50 0.474 0.126 3.05 0.0215 1.70 6.35 19.300 1.000 0.020 0.008 965 125 1220 14
236 65 50 0.454 0.058 1.07 0.0215 1.70 1.67 19.300 1.000 0.010 0.004 1930 250 428 21
237 66 50 0.454 0.058 1.49 0.0215 1.70 2.71 19.300 1.000 0.010 0.004 1930 250 596 21
238 67 50 0.454 0.078 1.21 0.0215 1.70 2.03 19.308 1.000 0.012 0.005 1609 200 484 19
239 68 50 0.454 0.077 2.07 0.0215 1.70 4.06 19.305 1.002 0.015 0.006 1287 167 828 16
240 69 50 0.454 0.097 1.36 0.0215 1.70 2.40 19.305 1.002 0.015 0.006 1287 167 544 16
241 70 50 0.454 0.099 2.56 0.0215 1.70 5.15 19.312 1.001 0.017 0.007 1136 143 1024 15
242 71 50 0.454 0.117 1.73 0.0215 1.70 3.28 19.300 1.000 0.020 0.008 965 125 692 14
243 72 50 0.454 0.117 3.05 0.0215 1.70 6.23 19.300 1.000 0.020 0.008 965 125 1220 14
244 73 50 0.434 0.061 1.07 0.0215 1.70 1.66 19.300 1.000 0.010 0.004 1930 250 428 21
245 74 50 0.434 0.064 1.73 0.0215 1.70 3.22 19.308 1.000 0.012 0.005 1609 200 692 19
246 75 50 0.434 0.085 1.21 0.0215 1.70 2.00 19.305 1.002 0.013 0.006 1485 167 484 18
247 76 50 0.434 0.084 2.07 0.0215 1.70 3.98 19.305 1.002 0.015 0.006 1287 167 828 16
248 77 50 0.434 0.105 1.36 0.0215 1.70 2.37 19.305 1.001 0.015 0.007 1287 143 544 16
249 78 50 0.434 0.105 2.56 0.0215 1.70 5.05 19.312 1.001 0.017 0.007 1136 143 1024 15
250 79 50 0.434 0.126 1.88 0.0215 1.70 3.56 19.300 1.000 0.020 0.008 965 125 752 14
251 80 50 0.434 0.127 3.05 0.0215 1.70 6.10 19.300 1.000 0.020 0.008 965 125 1220 14
252 81 50 0.414 0.059 1.07 0.0215 1.70 1.64 19.300 1.000 0.010 0.004 1930 250 428 21
253 82 50 0.414 0.058 1.73 0.0215 1.70 3.16 19.300 1.000 0.010 0.004 1930 250 692 21
254 83 50 0.414 0.078 1.26 0.0215 1.70 2.10 19.308 1.000 0.012 0.005 1609 200 504 19
255 84 50 0.414 0.078 2.29 0.0215 1.70 4.37 19.305 1.002 0.015 0.006 1287 167 916 16
256 85 50 0.414 0.098 1.46 0.0215 1.70 2.56 19.312 1.001 0.017 0.007 1136 143 584 15
257 86 50 0.414 0.097 2.56 0.0215 1.70 4.94 19.312 1.001 0.017 0.007 1136 143 1024 15
258 87 50 0.414 0.118 1.73 0.0215 1.70 3.16 19.300 1.000 0.020 0.008 965 125 692 14
259 88 50 0.414 0.118 3.05 0.0215 1.70 5.96 19.300 1.000 0.020 0.008 965 125 1220 14
260 89 20 0.698 0.062 0.98 0.0188 1.65 1.49 11.664 1.000 0.009 0.004 1296 250 392 23
261 90 20 0.698 0.060 1.56 0.0188 1.65 3.30 16.190 1.000 0.010 0.004 1619 250 624 21
262 91 20 0.698 0.080 1.21 0.0188 1.65 2.20 13.440 1.000 0.012 0.005 1120 200 484 19
263 92 20 0.698 0.088 2.07 0.0188 1.65 4.82 19.995 1.002 0.015 0.006 1333 167 828 16
264 93 20 0.698 0.101 1.28 0.0188 1.65 2.42 14.000 1.001 0.016 0.007 875 143 512 16
265 94 20 0.698 0.114 2.37 0.0188 1.65 5.68 22.140 1.000 0.020 0.008 1107 125 948 14
266 95 20 0.698 0.122 1.46 0.0188 1.65 2.99 15.409 1.000 0.019 0.008 811 125 584 14
267 96 20 0.698 0.129 2.91 0.0188 1.65 7.19 25.916 1.008 0.022 0.009 1178 112 1164 13
268 97 20 0.562 0.061 0.98 0.0188 1.65 1.48 11.619 1.000 0.009 0.004 1291 250 392 23
269 98 20 0.562 0.059 1.56 0.0188 1.65 3.10 15.670 1.000 0.010 0.004 1567 250 624 21
270 99 20 0.562 0.079 1.14 0.0188 1.65 1.93 12.756 1.000 0.012 0.005 1063 200 456 19
271 100 20 0.562 0.084 2.07 0.0188 1.65 4.43 19.020 1.002 0.015 0.006 1268 167 828 16
272 101 20 0.562 0.098 1.31 0.0188 1.65 2.41 13.952 1.001 0.016 0.007 872 143 524 16
273 102 20 0.562 0.109 2.46 0.0188 1.65 5.42 21.471 1.001 0.017 0.007 1263 143 984 15
274 103 20 0.562 0.117 1.56 0.0188 1.65 3.10 15.680 1.000 0.020 0.008 784 125 624 14
275 104 20 0.562 0.129 2.91 0.0188 1.65 6.53 24.266 1.008 0.022 0.009 1103 112 1164 13
276 105 20 0.512 0.060 0.98 0.0188 1.65 1.46 11.592 1.000 0.009 0.004 1288 250 392 23
277 106 20 0.512 0.059 1.46 0.0188 1.65 2.75 14.800 1.000 0.010 0.004 1480 250 584 21
278 107 20 0.512 0.079 1.14 0.0188 1.65 1.90 12.684 1.000 0.012 0.005 1057 200 456 19
279 108 20 0.512 0.089 2.07 0.0188 1.65 4.27 18.600 1.002 0.015 0.006 1240 167 828 16
280 109 20 0.512 0.100 1.28 0.0188 1.65 2.27 13.620 1.001 0.015 0.007 908 143 512 16
281 110 20 0.512 0.112 2.37 0.0188 1.65 4.99 20.400 1.001 0.017 0.007 1200 143 948 15
282 111 20 0.512 0.117 1.56 0.0188 1.65 3.00 15.440 1.000 0.020 0.008 772 125 624 14
283 112 20 0.512 0.121 2.91 0.0188 1.65 6.26 23.580 1.000 0.020 0.008 1179 125 1164 14
284 113 20 0.698 0.062 0.98 0.0215 1.70 1.49 11.664 1.000 0.009 0.004 1296 250 392 23
285 114 20 0.698 0.060 1.56 0.0215 1.70 3.30 16.190 1.000 0.010 0.004 1619 250 624 21
286 115 20 0.698 0.080 1.21 0.0215 1.70 2.20 13.440 1.000 0.012 0.005 1120 200 484 19
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Table E.9: Eb09 configuration (continued)

Sim.
ID

Eb09-
ID

tan−1

α f or e

ℎ0 Hs Tp Dn50 tt L0p L f ℎ f ∆x ∆y nx ny tend ng aug e s

[-] [m] [m] [s] [m] [m] [m] [m] [m] [m] [m] [-] [-] [s] [-]
287 116 20 0.698 0.088 2.07 0.0215 1.70 4.82 19.995 1.002 0.015 0.006 1333 167 828 16
288 117 20 0.698 0.101 1.28 0.0215 1.70 2.42 14.000 1.001 0.016 0.007 875 143 512 16
289 118 20 0.698 0.114 2.37 0.0215 1.70 5.68 22.140 1.000 0.020 0.008 1107 125 948 14
290 119 20 0.698 0.122 1.46 0.0215 1.70 2.99 15.409 1.000 0.019 0.008 811 125 584 14
291 120 20 0.698 0.129 2.91 0.0215 1.70 7.19 25.916 1.008 0.022 0.009 1178 112 1164 13
292 121 20 0.562 0.061 0.98 0.0215 1.70 1.48 11.619 1.000 0.009 0.004 1291 250 392 23
293 122 20 0.562 0.059 1.56 0.0215 1.70 3.10 15.670 1.000 0.010 0.004 1567 250 624 21
294 123 20 0.562 0.079 1.14 0.0215 1.70 1.93 12.756 1.000 0.012 0.005 1063 200 456 19
295 124 20 0.562 0.084 2.07 0.0215 1.70 4.43 19.020 1.002 0.015 0.006 1268 167 828 16
296 125 20 0.562 0.098 1.31 0.0215 1.70 2.41 13.952 1.001 0.016 0.007 872 143 524 16
297 126 20 0.562 0.109 2.46 0.0215 1.70 5.42 21.471 1.001 0.017 0.007 1263 143 984 15
298 127 20 0.562 0.117 1.56 0.0215 1.70 3.10 15.680 1.000 0.020 0.008 784 125 624 14
299 128 20 0.562 0.129 2.91 0.0215 1.70 6.53 24.266 1.008 0.022 0.009 1103 112 1164 13
300 129 20 0.512 0.060 0.98 0.0215 1.70 1.46 11.592 1.000 0.009 0.004 1288 250 392 23
301 130 20 0.512 0.059 1.46 0.0215 1.70 2.75 14.800 1.000 0.010 0.004 1480 250 584 21
302 131 20 0.512 0.079 1.14 0.0215 1.70 1.90 12.684 1.000 0.012 0.005 1057 200 456 19
303 132 20 0.512 0.089 2.07 0.0215 1.70 4.27 18.600 1.002 0.015 0.006 1240 167 828 16
304 133 20 0.512 0.100 1.28 0.0215 1.70 2.27 13.620 1.001 0.015 0.007 908 143 512 16
305 134 20 0.512 0.112 2.37 0.0215 1.70 4.99 20.400 1.001 0.017 0.007 1200 143 948 15
306 135 20 0.512 0.117 1.56 0.0215 1.70 3.00 15.440 1.000 0.020 0.008 772 125 624 14
307 136 20 0.512 0.121 2.91 0.0215 1.70 6.26 23.580 1.000 0.020 0.008 1179 125 1164 14
308 137 20 0.612 0.059 1.16 0.0215 1.70 2.01 12.960 1.000 0.010 0.004 1296 250 464 21
309 138 20 0.612 0.083 1.33 0.0215 1.70 2.51 14.220 1.002 0.015 0.006 948 167 532 16
310 139 20 0.612 0.107 1.49 0.0215 1.70 2.98 15.385 1.001 0.017 0.007 905 143 596 15
311 140 20 0.612 0.122 1.64 0.0215 1.70 3.41 16.460 1.000 0.020 0.008 823 125 656 14
312 141 20 0.562 0.059 1.16 0.0215 1.70 1.99 12.900 1.000 0.010 0.004 1290 250 464 21
313 142 20 0.562 0.078 1.33 0.0215 1.70 2.46 14.100 1.000 0.012 0.005 1175 200 532 19
314 143 20 0.562 0.098 1.49 0.0215 1.70 2.91 15.198 1.001 0.017 0.007 894 143 596 15
315 144 20 0.562 0.120 1.73 0.0215 1.70 3.55 16.820 1.000 0.020 0.008 841 125 692 14
316 145 20 0.512 0.058 1.16 0.0215 1.70 1.95 12.810 1.000 0.010 0.004 1281 250 464 21
317 146 20 0.512 0.076 1.26 0.0215 1.70 2.22 13.488 1.000 0.012 0.005 1124 200 504 19
318 147 20 0.512 0.095 1.46 0.0215 1.70 2.75 14.805 1.002 0.015 0.006 987 167 584 16
319 148 20 0.512 0.114 1.73 0.0215 1.70 3.43 16.520 1.000 0.020 0.008 826 125 692 14
320 149 20 0.492 0.058 1.02 0.0215 1.70 1.56 11.840 1.000 0.010 0.004 1184 250 408 21
321 150 20 0.492 0.060 1.49 0.0215 1.70 2.79 14.900 1.000 0.010 0.004 1490 250 596 21
322 151 20 0.492 0.078 1.16 0.0215 1.70 1.94 12.768 1.000 0.012 0.005 1064 200 464 19
323 152 20 0.492 0.080 2.07 0.0215 1.70 4.20 18.420 1.002 0.015 0.006 1228 167 828 16
324 153 20 0.492 0.099 1.28 0.0215 1.70 2.25 13.560 1.001 0.015 0.007 904 143 512 16
325 154 20 0.492 0.100 2.37 0.0215 1.70 4.90 20.196 1.001 0.017 0.007 1188 143 948 15
326 155 20 0.492 0.119 1.46 0.0215 1.70 2.71 14.724 1.000 0.018 0.008 818 125 584 15
327 156 20 0.492 0.118 2.91 0.0215 1.70 6.14 23.300 1.000 0.020 0.008 1165 125 1164 14
328 157 20 0.472 0.058 1.02 0.0215 1.70 1.55 11.820 1.000 0.010 0.004 1182 250 408 21
329 158 20 0.472 0.062 1.49 0.0215 1.70 2.75 14.800 1.000 0.010 0.004 1480 250 596 21
330 159 20 0.472 0.080 1.16 0.0215 1.70 1.92 12.732 1.000 0.012 0.005 1061 200 464 19
331 160 20 0.472 0.085 2.07 0.0215 1.70 4.12 18.240 1.002 0.015 0.006 1216 167 828 16
332 161 20 0.472 0.102 1.33 0.0215 1.70 2.35 13.815 1.001 0.015 0.007 921 143 532 16
333 162 20 0.472 0.105 2.37 0.0215 1.70 4.81 19.958 1.001 0.017 0.007 1174 143 948 15
334 163 20 0.472 0.124 1.46 0.0215 1.70 2.68 14.620 1.000 0.017 0.008 860 125 584 15
335 164 20 0.472 0.123 2.91 0.0215 1.70 6.03 23.000 1.000 0.020 0.008 1150 125 1164 14
336 165 20 0.452 0.058 1.02 0.0215 1.70 1.54 11.790 1.000 0.010 0.004 1179 250 408 21
337 166 20 0.452 0.058 1.49 0.0215 1.70 2.71 14.700 1.000 0.010 0.004 1470 250 596 21
338 167 20 0.452 0.079 1.16 0.0215 1.70 1.90 12.684 1.000 0.012 0.005 1057 200 464 19
339 168 20 0.452 0.077 2 0.0215 1.70 3.89 17.670 1.002 0.015 0.006 1178 167 800 16
340 169 20 0.452 0.098 1.33 0.0215 1.70 2.32 13.740 1.001 0.015 0.007 916 143 532 16
341 170 20 0.452 0.098 2.37 0.0215 1.70 4.72 19.737 1.001 0.017 0.007 1161 143 948 15
342 171 20 0.452 0.118 1.52 0.0215 1.70 2.78 14.886 1.000 0.018 0.008 827 125 608 15
343 172 20 0.452 0.116 2.91 0.0215 1.70 5.91 22.700 1.000 0.020 0.008 1135 125 1164 14
344 173 20 0.432 0.062 1.07 0.0215 1.70 1.66 12.080 1.000 0.010 0.004 1208 250 428 21
345 174 20 0.432 0.065 1.49 0.0215 1.70 2.67 14.604 1.000 0.012 0.005 1217 200 596 19
346 175 20 0.432 0.086 1.19 0.0215 1.70 1.95 12.818 1.002 0.013 0.006 986 167 476 18
347 176 20 0.432 0.086 2 0.0215 1.70 3.82 17.475 1.002 0.015 0.006 1165 167 800 16
348 177 20 0.432 0.106 1.33 0.0215 1.70 2.29 13.665 1.001 0.015 0.007 911 143 532 16
349 178 20 0.432 0.105 2.56 0.0215 1.70 5.04 20.536 1.001 0.017 0.007 1208 143 1024 15
350 179 20 0.432 0.126 1.73 0.0215 1.70 3.22 15.980 1.000 0.020 0.008 799 125 692 14
351 180 20 0.432 0.127 2.91 0.0215 1.70 5.79 22.400 1.000 0.020 0.008 1120 125 1164 14
352 181 20 0.612 0.059 1.16 0.0268 1.75 2.01 12.960 1.000 0.010 0.004 1296 250 464 21
353 182 20 0.612 0.083 1.33 0.0268 1.75 2.51 14.220 1.002 0.015 0.006 948 167 532 16
354 183 20 0.612 0.107 1.49 0.0268 1.75 2.98 15.385 1.001 0.017 0.007 905 143 596 15
355 184 20 0.612 0.122 1.64 0.0268 1.75 3.41 16.460 1.000 0.020 0.008 823 125 656 14
356 185 20 0.562 0.059 1.16 0.0268 1.75 1.99 12.900 1.000 0.010 0.004 1290 250 464 21
357 186 20 0.562 0.078 1.33 0.0268 1.75 2.46 14.100 1.000 0.012 0.005 1175 200 532 19
358 187 20 0.562 0.098 1.49 0.0268 1.75 2.91 15.198 1.001 0.017 0.007 894 143 596 15
359 188 20 0.562 0.120 1.73 0.0268 1.75 3.55 16.820 1.000 0.020 0.008 841 125 692 14
360 189 20 0.512 0.058 1.16 0.0268 1.75 1.95 12.810 1.000 0.010 0.004 1281 250 464 21
361 190 20 0.512 0.076 1.26 0.0268 1.75 2.22 13.488 1.000 0.012 0.005 1124 200 504 19
362 191 20 0.512 0.095 1.46 0.0268 1.75 2.75 14.805 1.002 0.015 0.006 987 167 584 16
363 192 20 0.512 0.114 1.73 0.0268 1.75 3.43 16.520 1.000 0.020 0.008 826 125 692 14
364 193 20 0.492 0.058 1.02 0.0268 1.75 1.56 11.840 1.000 0.010 0.004 1184 250 408 21
365 194 20 0.492 0.060 1.49 0.0268 1.75 2.79 14.900 1.000 0.010 0.004 1490 250 596 21
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Table E.9: Eb09 configuration (continued)

Sim.
ID

Eb09-
ID

tan−1

α f or e

ℎ0 Hs Tp Dn50 tt L0p L f ℎ f ∆x ∆y nx ny tend ng aug e s

[-] [m] [m] [s] [m] [m] [m] [m] [m] [m] [m] [-] [-] [s] [-]
366 195 20 0.492 0.078 1.16 0.0268 1.75 1.94 12.768 1.000 0.012 0.005 1064 200 464 19
367 196 20 0.492 0.080 2.07 0.0268 1.75 4.20 18.420 1.002 0.015 0.006 1228 167 828 16
368 197 20 0.492 0.099 1.28 0.0268 1.75 2.25 13.560 1.001 0.015 0.007 904 143 512 16
369 198 20 0.492 0.100 2.37 0.0268 1.75 4.90 20.196 1.001 0.017 0.007 1188 143 948 15
370 199 20 0.492 0.119 1.46 0.0268 1.75 2.71 14.724 1.000 0.018 0.008 818 125 584 15
371 200 20 0.492 0.118 2.91 0.0268 1.75 6.14 23.300 1.000 0.020 0.008 1165 125 1164 14
372 201 20 0.472 0.058 1.02 0.0268 1.75 1.55 11.820 1.000 0.010 0.004 1182 250 408 21
373 202 20 0.472 0.062 1.49 0.0268 1.75 2.75 14.800 1.000 0.010 0.004 1480 250 596 21
374 203 20 0.472 0.080 1.16 0.0268 1.75 1.92 12.732 1.000 0.012 0.005 1061 200 464 19
375 204 20 0.472 0.085 2.07 0.0268 1.75 4.12 18.240 1.002 0.015 0.006 1216 167 828 16
376 205 20 0.472 0.102 1.33 0.0268 1.75 2.35 13.815 1.001 0.015 0.007 921 143 532 16
377 206 20 0.472 0.105 2.37 0.0268 1.75 4.81 19.958 1.001 0.017 0.007 1174 143 948 15
378 207 20 0.472 0.124 1.46 0.0268 1.75 2.68 14.620 1.000 0.017 0.008 860 125 584 15
379 208 20 0.472 0.123 2.91 0.0268 1.75 6.03 23.000 1.000 0.020 0.008 1150 125 1164 14
380 209 20 0.452 0.058 1.02 0.0268 1.75 1.54 11.790 1.000 0.010 0.004 1179 250 408 21
381 210 20 0.452 0.058 1.49 0.0268 1.75 2.71 14.700 1.000 0.010 0.004 1470 250 596 21
382 211 20 0.452 0.079 1.16 0.0268 1.75 1.90 12.684 1.000 0.012 0.005 1057 200 464 19
383 212 20 0.452 0.077 2 0.0268 1.75 3.89 17.670 1.002 0.015 0.006 1178 167 800 16
384 213 20 0.452 0.098 1.33 0.0268 1.75 2.32 13.740 1.001 0.015 0.007 916 143 532 16
385 214 20 0.452 0.098 2.37 0.0268 1.75 4.72 19.737 1.001 0.017 0.007 1161 143 948 15
386 215 20 0.452 0.118 1.52 0.0268 1.75 2.78 14.886 1.000 0.018 0.008 827 125 608 15
387 216 20 0.452 0.116 2.91 0.0268 1.75 5.91 22.700 1.000 0.020 0.008 1135 125 1164 14
388 217 20 0.432 0.062 1.07 0.0268 1.75 1.66 12.080 1.000 0.010 0.004 1208 250 428 21
389 218 20 0.432 0.065 1.49 0.0268 1.75 2.67 14.604 1.000 0.012 0.005 1217 200 596 19
390 219 20 0.432 0.086 1.19 0.0268 1.75 1.95 12.818 1.002 0.013 0.006 986 167 476 18
391 220 20 0.432 0.086 2 0.0268 1.75 3.82 17.475 1.002 0.015 0.006 1165 167 800 16
392 221 20 0.432 0.106 1.33 0.0268 1.75 2.29 13.665 1.001 0.015 0.007 911 143 532 16
393 222 20 0.432 0.105 2.56 0.0268 1.75 5.04 20.536 1.001 0.017 0.007 1208 143 1024 15
394 223 20 0.432 0.126 1.73 0.0268 1.75 3.22 15.980 1.000 0.020 0.008 799 125 692 14
395 224 20 0.432 0.127 2.91 0.0268 1.75 5.79 22.400 1.000 0.020 0.008 1120 125 1164 14
396 225 10 0.607 0.061 1.14 0.0215 1.70 1.95 9.670 1.000 0.010 0.004 967 250 456 21
397 226 10 0.607 0.085 1.28 0.0215 1.70 2.36 10.710 1.002 0.015 0.006 714 167 512 16
398 227 10 0.607 0.110 1.46 0.0215 1.70 2.89 12.019 1.001 0.017 0.007 707 143 584 15
399 228 10 0.607 0.126 1.64 0.0215 1.70 3.40 13.280 1.000 0.020 0.008 664 125 656 14
400 229 10 0.557 0.060 1.14 0.0215 1.70 1.93 9.610 1.000 0.010 0.004 961 250 456 21
401 230 10 0.557 0.079 1.31 0.0215 1.70 2.40 10.800 1.000 0.012 0.005 900 200 524 19
402 231 10 0.557 0.099 1.46 0.0215 1.70 2.82 11.832 1.001 0.017 0.007 696 143 584 15
403 232 10 0.557 0.121 1.64 0.0215 1.70 3.30 13.040 1.000 0.020 0.008 652 125 656 14
404 233 10 0.507 0.058 1.14 0.0215 1.70 1.89 9.530 1.000 0.010 0.004 953 250 456 21
405 234 10 0.507 0.076 1.28 0.0215 1.70 2.27 10.464 1.000 0.012 0.005 872 200 512 19
406 235 10 0.507 0.095 1.49 0.0215 1.70 2.81 11.835 1.002 0.015 0.006 789 167 596 16
407 236 10 0.507 0.112 1.73 0.0215 1.70 3.42 13.345 1.001 0.017 0.007 785 143 692 15
408 237 10 0.487 0.059 0.98 0.0215 1.70 1.46 8.433 1.000 0.009 0.004 937 250 392 23
409 238 10 0.487 0.061 1.49 0.0215 1.70 2.78 11.740 1.000 0.010 0.004 1174 250 596 21
410 239 10 0.487 0.080 1.14 0.0215 1.70 1.88 9.492 1.000 0.012 0.005 791 200 456 19
411 240 10 0.487 0.081 2.07 0.0215 1.70 4.18 15.240 1.002 0.015 0.006 1016 167 828 16
412 241 10 0.487 0.099 1.28 0.0215 1.70 2.24 10.402 1.001 0.014 0.007 743 143 512 17
413 242 10 0.487 0.107 2.29 0.0215 1.70 4.69 16.524 1.001 0.017 0.007 972 143 916 15
414 243 10 0.467 0.059 0.98 0.0215 1.70 1.45 8.415 1.000 0.009 0.004 935 250 392 23
415 244 10 0.467 0.061 1.49 0.0215 1.70 2.74 11.640 1.000 0.010 0.004 1164 250 596 21
416 245 10 0.467 0.080 1.14 0.0215 1.70 1.86 9.456 1.000 0.012 0.005 788 200 456 19
417 246 10 0.467 0.085 2.07 0.0215 1.70 4.11 15.060 1.002 0.015 0.006 1004 167 828 16
418 247 10 0.467 0.101 1.28 0.0215 1.70 2.22 10.346 1.001 0.014 0.007 739 143 512 17
419 248 10 0.467 0.103 2.37 0.0215 1.70 4.79 16.779 1.001 0.017 0.007 987 143 948 15
420 249 10 0.447 0.058 0.98 0.0215 1.70 1.44 8.397 1.000 0.009 0.004 933 250 392 23
421 250 10 0.447 0.058 1.56 0.0215 1.70 2.86 11.950 1.000 0.010 0.004 1195 250 624 21
422 251 10 0.447 0.077 1.14 0.0215 1.70 1.85 9.408 1.000 0.012 0.005 784 200 456 19
423 252 10 0.447 0.077 2.07 0.0215 1.70 4.03 14.868 1.000 0.012 0.005 1239 200 828 19
424 253 10 0.447 0.096 1.28 0.0215 1.70 2.19 10.276 1.002 0.014 0.006 734 167 512 17
425 254 10 0.447 0.099 2.56 0.0215 1.70 5.12 17.578 1.001 0.017 0.007 1034 143 1024 15
426 255 10 0.427 0.062 0.98 0.0215 1.70 1.43 8.370 1.000 0.009 0.004 930 250 392 23
427 256 10 0.427 0.064 1.56 0.0215 1.70 2.82 11.830 1.000 0.010 0.004 1183 250 624 21
428 257 10 0.427 0.084 1.14 0.0215 1.70 1.83 9.360 1.002 0.012 0.006 780 167 456 19
429 258 10 0.427 0.085 2.07 0.0215 1.70 3.95 14.670 1.002 0.015 0.006 978 167 828 16
430 259 10 0.427 0.107 1.28 0.0215 1.70 2.16 10.206 1.001 0.014 0.007 729 143 512 17
431 260 10 0.427 0.107 2.37 0.0215 1.70 4.60 16.303 1.001 0.017 0.007 959 143 948 15
432 261 10 0.607 0.061 1.14 0.0268 1.75 1.95 9.670 1.000 0.010 0.004 967 250 456 21
433 262 10 0.607 0.085 1.28 0.0268 1.75 2.36 10.710 1.002 0.015 0.006 714 167 512 16
434 263 10 0.607 0.110 1.46 0.0268 1.75 2.89 12.019 1.001 0.017 0.007 707 143 584 15
435 264 10 0.607 0.126 1.64 0.0268 1.75 3.40 13.280 1.000 0.020 0.008 664 125 656 14
436 265 10 0.557 0.060 1.14 0.0268 1.75 1.93 9.610 1.000 0.010 0.004 961 250 456 21
437 266 10 0.557 0.079 1.31 0.0268 1.75 2.40 10.800 1.000 0.012 0.005 900 200 524 19
438 267 10 0.557 0.099 1.46 0.0268 1.75 2.82 11.832 1.001 0.017 0.007 696 143 584 15
439 268 10 0.557 0.121 1.64 0.0268 1.75 3.30 13.040 1.000 0.020 0.008 652 125 656 14
440 269 10 0.507 0.058 1.14 0.0268 1.75 1.89 9.530 1.000 0.010 0.004 953 250 456 21
441 270 10 0.507 0.076 1.28 0.0268 1.75 2.27 10.464 1.000 0.012 0.005 872 200 512 19
442 271 10 0.507 0.095 1.49 0.0268 1.75 2.81 11.835 1.002 0.015 0.006 789 167 596 16
443 272 10 0.507 0.112 1.73 0.0268 1.75 3.42 13.345 1.001 0.017 0.007 785 143 692 15
444 273 10 0.487 0.059 0.98 0.0268 1.75 1.46 8.433 1.000 0.009 0.004 937 250 392 23
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Table E.9: Eb09 configuration (continued)

Sim.
ID

Eb09-
ID

tan−1

α f or e

ℎ0 Hs Tp Dn50 tt L0p L f ℎ f ∆x ∆y nx ny tend ng aug e s

[-] [m] [m] [s] [m] [m] [m] [m] [m] [m] [m] [-] [-] [s] [-]
445 274 10 0.487 0.061 1.49 0.0268 1.75 2.78 11.740 1.000 0.010 0.004 1174 250 596 21
446 275 10 0.487 0.080 1.14 0.0268 1.75 1.88 9.492 1.000 0.012 0.005 791 200 456 19
447 276 10 0.487 0.081 2.07 0.0268 1.75 4.18 15.240 1.002 0.015 0.006 1016 167 828 16
448 277 10 0.487 0.099 1.28 0.0268 1.75 2.24 10.402 1.001 0.014 0.007 743 143 512 17
449 278 10 0.487 0.107 2.29 0.0268 1.75 4.69 16.524 1.001 0.017 0.007 972 143 916 15
450 279 10 0.467 0.059 0.98 0.0268 1.75 1.45 8.415 1.000 0.009 0.004 935 250 392 23
451 280 10 0.467 0.061 1.49 0.0268 1.75 2.74 11.640 1.000 0.010 0.004 1164 250 596 21
452 281 10 0.467 0.080 1.14 0.0268 1.75 1.86 9.456 1.000 0.012 0.005 788 200 456 19
453 282 10 0.467 0.085 2.07 0.0268 1.75 4.11 15.060 1.002 0.015 0.006 1004 167 828 16
454 283 10 0.467 0.101 1.28 0.0268 1.75 2.22 10.346 1.001 0.014 0.007 739 143 512 17
455 284 10 0.467 0.103 2.37 0.0268 1.75 4.79 16.779 1.001 0.017 0.007 987 143 948 15
456 285 10 0.447 0.058 0.98 0.0268 1.75 1.44 8.397 1.000 0.009 0.004 933 250 392 23
457 286 10 0.447 0.058 1.56 0.0268 1.75 2.86 11.950 1.000 0.010 0.004 1195 250 624 21
458 287 10 0.447 0.077 1.14 0.0268 1.75 1.85 9.408 1.000 0.012 0.005 784 200 456 19
459 288 10 0.447 0.077 2.07 0.0268 1.75 4.03 14.868 1.000 0.012 0.005 1239 200 828 19
460 289 10 0.447 0.096 1.28 0.0268 1.75 2.19 10.276 1.002 0.014 0.006 734 167 512 17
461 290 10 0.447 0.099 2.56 0.0268 1.75 5.12 17.578 1.001 0.017 0.007 1034 143 1024 15
462 291 10 0.427 0.062 0.98 0.0268 1.75 1.43 8.370 1.000 0.009 0.004 930 250 392 23
463 292 10 0.427 0.064 1.56 0.0268 1.75 2.82 11.830 1.000 0.010 0.004 1183 250 624 21
464 293 10 0.427 0.084 1.14 0.0268 1.75 1.83 9.360 1.002 0.012 0.006 780 167 456 19
465 294 10 0.427 0.085 2.07 0.0268 1.75 3.95 14.670 1.002 0.015 0.006 978 167 828 16
466 295 10 0.427 0.107 1.28 0.0268 1.75 2.16 10.206 1.001 0.014 0.007 729 143 512 17
467 296 10 0.427 0.107 2.37 0.0268 1.75 4.60 16.303 1.001 0.017 0.007 959 143 948 15

296 cases in total

E.4. Simulation performance
The table below gives some useful information on the simulations run during research. Note that some simulations did not
succeed at first, after which they have been re-run. The final (best) result is then shown.

Some details on the column definitions:

– Steps: the number of calculation steps it took ih-2vof to get to the end. It depends on the numerical time step ∆t which is
updated every step.

– Field variables: the amount of exported field variables. A field variable is the output of a certain parameter over all cells. It
is known that this output is time consuming as writing to the hard disk is rather slow.

– Duration: the computation time it took ih-2vof to get to the end.
– Performance: a measure for the performance of the model. It is calculated as duration in milliseconds divided by the number

of cells and the requested endtime.
– Endtime: the model time tend reached.

Most of the computers used had a Windows 7 operating system and an Intel Core i5 (quad core) CPU.

Table E.10: Simulations

Case Finished Steps Field variables Duration Performance Endtime
[-] [s] [h]

[
ms

cell·time

]
[s] [%]

Convergence tests – flume length
convtest_length_L0-0.5 X 32701 1 4395 1.22 0.517
convtest_length_L0-1.0 X 32287 1 5113 1.42 0.522
convtest_length_L0-1.5 X 31601 1 5708 1.59 0.514
convtest_length_L0-2.0 X 31294 1 6715 1.87 0.542
convtest_length_L0-2.5 X 14575 1 3928 1.09 0.574
convtest_length_L0-3.0 X 30236 1 7776 2.16 0.519
convtest_length_L0-3.5 X 14103 1 5486 1.52 0.674
convtest_length_L0-4.0 X 14084 1 5741 1.59 0.653
Convergence tests – cell width
convtest_dx_50 X 10313 448 0.12 0.206
convtest_dx_100 X 11930 1830 0.51 0.411
convtest_dx_200 X 17917 8841 2.46 0.993
convtest_dx_250 X 21332 12300 3.42 1.105
Convergence tests – cell height
convtest_dy_5 X 10960 1300 0.36 0.38
convtest_dy_15 X 20965 12408 3.45 1.088
convtest_dy_20 X 24378 15103 4.2 1.103
Convergence tests – friction check
frictioncheck_L0-1.5 X 14479 2 1692 0.47 0.52
frictioncheck_L0-2.0 X 14155 2 2305 0.64 0.532
frictioncheck_L0-2.5 X 14339 2 2862 0.79 0.527
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Table E.10: Simulations (continued)

Case Finished Steps Field variables Duration Performance Endtime
[-] [s] [h]

[
ms

cell·time

]
[s] [%]

frictioncheck_L0-3.0 X 14170 2 3415 0.95 0.525
frictioncheck_L0-3.5 X 14207 2 4241 1.18 0.559
frictioncheck_L0-4.0 X 14196 2 4661 1.29 0.538
NK09 simulations with regular waves
NK09_688 X 18541 10087 2.8 0.737
NK09_689 X 19667 8417 2.34 0.813
NK09_690 X 14175 2756 0.77 0.474
NK09_691 X 13898 2026 0.56 0.392
NK09_692 X 16377 2701 0.75 0.492
NK09_693 X 90261 6611 1.84 1.723
NK09_694 X 14480 1805 0.5 0.471
NK09_695 X 82174 30624 8.51 2.334
NK09_696 X 19739 8032 2.23 0.739
NK09_697 X 14116 2064 0.57 0.374
NK09_698 X 30639 3294 0.91 0.667
NK09_699 X 16007 2478 0.69 0.443
NK09_700 X 22155 6508 1.81 0.523
NK09_701 X 21475 10374 2.88 0.914
NK09_702 X 18535 2452 0.68 0.473
NK09_711 X 17994 21259 5.91 1.553
NK09_712 X 19031 5803 1.61 0.56
NK09_713 X 14140 2974 0.83 0.512
NK09_714 X 14009 3118 0.87 0.603
NK09_715 X 15874 3491 0.97 0.637
NK09_716 X 89483 2 1775 0.49 0.463
NK09_717 X 14501 1776 0.49 0.464
NK09_718 X 64862 25041 6.96 1.908
NK09_719 X 19493 8089 2.25 0.744
NK09_720 X 14164 1943 0.54 0.352
NK09_721 X 30319 3186 0.89 0.645
NK09_722 X 16152 2427 0.67 0.434
NK09_728 X 19462 21964 6.1 1.604
NK09_729 X 19601 3280 0.91 0.317
NK09_730 X 14176 3281 0.91 0.565
NK09_731 X 13950 2031 0.56 0.393
NK09_732 X 16429 2686 0.75 0.49
NK09_733 X 80171 5905 1.64 1.539
NK09_734 X 14538 1784 0.5 0.466
NK09_735 X 85315 30305 8.42 2.309
NK09_736 X 19760 12214 3.39 1.124
NK09_737 X 14124 2101 0.58 0.38
NK09_738 X 30707 3412 0.95 0.69
NK09_739 X 15986 2574 0.72 0.461
NK09_740 X 22201 8783 2.44 0.706
NK09_741 X 21492 2 9660 2.68 0.851
NK09_742 X 18533 2455 0.68 0.474
NK09_751 X 17917 9633 2.68 0.704
NK09_752 X 19157 7732 2.15 0.747
NK09_753 X 14188 2767 0.77 0.476
NK09_754 X 14008 2028 0.56 0.392
NK09_755 X 16008 2648 0.74 0.483
NK09_756 X 80946 5953 1.65 1.552
NK09_757 X 14533 1761 0.49 0.46
NK09_758 X 31365 14466 0 0
NK09_759 X 19419 13416 3.73 1.234
NK09_760 X 14121 2069 0.57 0.374
NK09_761 X 30333 3430 0.95 0.694
NK09_762 X 16076 2685 0.75 0.48
NK09 simulations with irregular waves
NK09ir_703 X 143068 59618 16.56 0.547
NK09ir_704 X 107097 37060 10.29 0.637
NK09ir_705 X 128981 33728 9.37 0.595
NK09ir_706 X 102913 22537 6.26 0.597
NK09ir_707 X 87013 45088 12.52 0.569
NK09ir_708 69214 31710 8.81 0.519
NK09ir_709 X 133923 22419 6.23 0.416
NK09ir_710 X 109640 21449 5.96 0.557
NK09ir_723 X 140823 62238 17.29 0.571
NK09ir_724 X 106852 33320 9.26 0.572
NK09ir_725 X 129247 24703 6.86 0.436
NK09ir_726 X 103753 21980 6.11 0.582
NK09ir_727 X 118766 28525 7.92 0.36
NK09ir_743 40322 32344 8.98 0.297
NK09ir_744 55224 32314 8.98 0.555
NK09ir_745 X 131326 15853 4.4 0.279
NK09ir_746 X 104319 22176 6.16 0.587
NK09ir_747 X 118990 29239 8.12 0.369
NK09ir_748 X 110508 33800 9.39 0.553
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Table E.10: Simulations (continued)

Case Finished Steps Field variables Duration Performance Endtime
[-] [s] [h]

[
ms

cell·time

]
[s] [%]

NK09ir_749 X 133352 31439 8.73 0.583
NK09ir_750 X 109462 12922 3.59 0.336
NK09ir_763 X 134882 56523 15.7 0.519
NK09ir_764 X 106970 47490 13.19 0.816
NK09ir_765 X 126775 26329 7.31 0.464
NK09ir_766 X 104323 16079 4.47 0.426
NK09ir_767 X 117296 29964 8.32 0.378
Turbulence verification runs
NK09ke_716 X 89483 4 13500 3.75 3.519
NK09ke_741 X 21640 4 15583 4.33 1.372
NK09ke_741-ticf1 X 21500 4 9037 2.51 0.796
NK09ke_741-edd100 X 21503 4 15654 4.35 1.379
Eb09 simulations
Eb09_172 X 95948 271228 75.34 1.211 464 100
Eb09_173 X 96091 100310 27.86 0.891 524 100
Eb09_174 X 101425 55382 15.38 0.736 624 100
Eb09_175 X 119884 62317 17.31 0.747 692 100
Eb09_176 X 97148 261332 72.59 1.167 464 100
Eb09_177 31372 37214 10.34 0.33 173 33
Eb09_178 19832 14742 4.1 0.145 120 19
Eb09_179 X 117531 37000 10.28 0.544 692 100
Eb09_180 24245 82633 22.95 0.369 114 25
Eb09_181 41979 82820 23.01 0.484 205 39
Eb09_182 74888 82602 22.95 0.616 383 61
Eb09_183 X 142890 63509 17.64 0.761 692 100
Eb09_184 93048 207654 57.68 1.006 401 94
Eb09_185 X 113451 162253 45.07 0.808 624 100
Eb09_186 4449 8499 2.36 0.055 25 5
Eb09_187
Eb09_188
Eb09_189
Eb09_190 X 173390 58549 16.26 0.701 692 100
Eb09_191 X 356828 98682 27.41 0.671 1220 100
Eb09_192 27158 83094 23.08 0.402 120 28
Eb09_193 59619 169789 47.16 0.59 235 39
Eb09_194 98760 170185 47.27 1.093 406 84
Eb09_195 X 197302 148806 41.34 0.836 828 100
Eb09_196 27050 26773 7.44 0.229 119 22
Eb09_197 40172 26891 7.47 0.162 146 14
Eb09_198 X 165277 68658 19.07 0.823 692 100
Eb09_199 X 337722 119263 33.13 0.81 1220 100
Eb09_200 107341 207384 57.61 1.004 425 99
Eb09_201 36053 57723 16.03 0.259 155 22
Eb09_202 47805 57722 16.03 0.481 215 44
Eb09_203 65675 57980 16.11 0.326 260 31
Eb09_204 17160 12716 3.53 0.127 75 14
Eb09_205 24485 14602 4.06 0.088 90 9
Eb09_206 X 198392 79686 22.14 0.878 752 100
Eb09_207 36931 14639 4.07 0.099 140 12
Eb09_208 2515 7014 1.95 0.034 15 3
Eb09_209 2630 7040 1.96 0.021 20 3
Eb09_210 X 143047 185981 51.66 1.147 504 100
Eb09_211 X 266308 174706 48.53 0.887 916 100
Eb09_212 70314 44294 12.3 0.467 310 53
Eb09_213 X 301264 125095 34.75 0.752 1024 100
Eb09_214 X 166723 58182 16.16 0.697 692 100
Eb09_215 X 344495 103353 28.71 0.702 1220 100
Eb09_216 X 95569 250667 69.63 1.12 464 100
Eb09_217 20660 25455 7.07 0.226 115 22
Eb09_218 45899 25432 7.06 0.338 277 44
Eb09_219 28058 15904 4.42 0.191 165 24
Eb09_220 4532 15961 4.43 0.071 26 6
Eb09_221 13663 15960 4.43 0.142 83 16
Eb09_222 7703 5622 1.56 0.055 52 8
Eb09_223 X 116221 40477 11.24 0.595 692 100
Eb09_224 X 101360 222415 61.78 0.993 464 100
Eb09_225 X 116973 167310 46.48 0.977 532 100
Eb09_226 X 124439 108699 30.19 0.81 624 100
Eb09_227 X 143315 63910 17.75 0.766 692 100
Eb09_228 X 98672 204362 56.77 0.99 428 100
Eb09_229 12548 23732 6.59 0.118 74 12
Eb09_230 12104 23738 6.59 0.152 61 13
Eb09_231 22957 23358 6.49 0.128 106 12
Eb09_232 X 126632 71527 19.87 0.754 584 100
Eb09_233 X 297156 128439 35.68 0.772 1024 100
Eb09_234 X 174063 66030 18.34 0.791 692 100
Eb09_235 X 354845 149301 41.47 1.015 1220 100
Eb09_236 79337 207529 57.65 1.005 331 77
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Table E.10: Simulations (continued)

Case Finished Steps Field variables Duration Performance Endtime
[-] [s] [h]

[
ms

cell·time

]
[s] [%]

Eb09_237 20239 53682 14.91 0.187 85 14
Eb09_238 X 121361 151401 42.06 0.972 484 100
Eb09_239 X 199331 140057 38.9 0.787 828 100
Eb09_240 19078 19318 5.37 0.165 83 15
Eb09_241 X 282183 124165 34.49 0.746 1024 100
Eb09_242 X 169166 60850 16.9 0.729 692 100
Eb09_243 X 344590 106677 29.63 0.725 1220 100
Eb09_244 16118 43012 11.95 0.208 66 15
Eb09_245 149363 207580 57.66 0.932 622 90
Eb09_246 X 116766 124035 34.45 1.033 484 100
Eb09_247 X 217961 152532 42.37 0.857 828 100
Eb09_248 10234 8145 2.26 0.081 50 9
Eb09_249 13133 8209 2.28 0.049 48 5
Eb09_250 X 195662 69390 19.28 0.765 752 100
Eb09_251 X 364262 113500 31.53 0.771 1220 100
Eb09_252 X 113951 193127 53.65 0.935 428 100
Eb09_253 3155 8194 2.28 0.025 24 3
Eb09_254 3536 5695 1.58 0.035 21 4
Eb09_255 6659 5704 1.58 0.029 34 4
Eb09_256 X 137094 65214 18.12 0.687 584 100
Eb09_257 X 298646 111633 31.01 0.671 1024 100
Eb09_258 X 163803 54334 15.09 0.651 692 100
Eb09_259 14112 5674 1.58 0.039 56 5
Eb09_260
Eb09_261 X 117027 282379 78.44 1.118 624 100
Eb09_262 X 103775 163087 45.3 1.504 484 100
Eb09_263 X 130307 167022 46.4 0.906 828 100
Eb09_264 X 87271 72762 20.21 1.136 512 100
Eb09_265 X 135073 60223 16.73 0.459 948 100
Eb09_266 X 97634 37805 10.5 0.639 584 100
Eb09_267
Eb09_268 X 92794 186712 51.86 1.476 392 100
Eb09_269 X 117618 195580 54.33 0.8 624 100
Eb09_270 X 99916 157129 43.65 1.621 456 100
Eb09_271 X 122761 112673 31.3 0.643 828 100
Eb09_272 X 92605 55767 15.49 0.853 524 100
Eb09_273 X 185036 124456 34.57 0.7 984 100
Eb09_274 X 107031 38550 10.71 0.63 624 100
Eb09_275 X 180288 69000 19.17 0.48 1164 100
Eb09_276 X 92506 199543 55.43 1.581 392 100
Eb09_277 X 117955 236525 65.7 1.095 584 100
Eb09_278 X 102166 133140 36.98 1.381 456 100
Eb09_279 X 158915 147321 40.92 0.859 828 100
Eb09_280 X 96776 57057 15.85 0.858 512 100
Eb09_281 X 202111 106078 29.47 0.652 948 100
Eb09_282 X 123280 43839 12.18 0.728 624 100
Eb09_283 X 262349 102101 28.36 0.595 1164 100
Eb09_284 X 90443 229523 63.76 1.807 392 100
Eb09_285 X 115964 290678 80.74 1.151 624 100
Eb09_286 X 101489 150521 41.81 1.388 484 100
Eb09_287 X 131744 157564 43.77 0.855 828 100
Eb09_288 X 89281 69588 19.33 1.086 512 100
Eb09_289 18346 12530 3.48 0.096 132 14
Eb09_290 24640 12568 3.49 0.212 150 26
Eb09_291 20075 12531 3.48 0.082 147 13
Eb09_292
Eb09_293
Eb09_294
Eb09_295 6965 7923 2.2 0.045 59 7
Eb09_296 X 92603 48042 13.34 0.735 524 100
Eb09_297 X 186663 103685 28.8 0.583 984 100
Eb09_298 56072 23705 6.58 0.388 331 53
Eb09_299 48420 24004 6.67 0.167 339 29
Eb09_300 10041 23978 6.66 0.19 47 12
Eb09_301 4304 12008 3.34 0.056 27 5
Eb09_302 8465 12141 3.37 0.126 39 8
Eb09_303 10608 12107 3.36 0.071 74 9
Eb09_304 X 97797 61386 17.05 0.923 512 100
Eb09_305 X 206015 125144 34.76 0.769 948 100
Eb09_306 X 126284 42649 11.85 0.708 624 100
Eb09_307 X 268449 124431 34.56 0.725 1164 100
Eb09_308 X 98415 185891 51.64 1.237 464 100
Eb09_309 X 89093 86790 24.11 1.03 532 100
Eb09_310 X 109943 79257 22.02 1.028 596 100
Eb09_311
Eb09_312
Eb09_313 15243 22564 6.27 0.18 73 14
Eb09_314 X 105761 53991 15 0.709 596 100
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Table E.10: Simulations (continued)

Case Finished Steps Field variables Duration Performance Endtime
[-] [s] [h]

[
ms

cell·time

]
[s] [%]

Eb09_315 51784 22784 6.33 0.313 301 43
Eb09_316 X 102943 175486 48.75 1.181 464 100
Eb09_317 X 108663 131471 36.52 1.16 504 100
Eb09_318 73001 131471 36.52 1.366 347 59
Eb09_319 31350 13802 3.83 0.193 177 26
Eb09_320 X 95060 141667 39.35 1.173 408 100
Eb09_321 5273 13784 3.83 0.062 28 5
Eb09_322 X 105235 108450 30.13 1.098 464 100
Eb09_323 12498 12464 3.46 0.073 60 7
Eb09_324 20031 12463 3.46 0.188 98 19
Eb09_325 X 217892 124929 34.7 0.776 948 100
Eb09_326 X 140950 53289 14.8 0.892 584 100
Eb09_327 X 291043 128370 35.66 0.757 1164 100
Eb09_328 X 95643 177779 49.38 1.475 408 100
Eb09_329 104679 207452 57.63 0.941 450 76
Eb09_330 X 113888 138380 38.44 1.405 464 100
Eb09_331 X 232696 178183 49.5 1.06 828 100
Eb09_332 X 115637 72587 20.16 1.036 532 100
Eb09_333 X 280292 167595 46.55 1.053 948 100
Eb09_334 X 145567 60402 16.78 0.962 584 100
Eb09_335 X 297128 131782 36.61 0.788 1164 100
Eb09_336 X 103135 141181 39.22 1.174 408 100
Eb09_337 X 181715 316570 87.94 1.445 596 100
Eb09_338 X 121462 136471 37.91 1.391 464 100
Eb09_339 X 207028 192216 53.39 1.221 800 100
Eb09_340 X 132784 60621 16.84 0.87 532 100
Eb09_341 X 251549 108893 30.25 0.692 948 100
Eb09_342 X 144075 47971 13.33 0.763 608 100
Eb09_343 X 372728 197550 54.88 1.196 1164 100
Eb09_344 83915 138607 38.5 1.072 309 72
Eb09_345 122632 138643 38.51 0.956 463 78
Eb09_346 9849 7155 1.99 0.091 45 9
Eb09_347 9055 7183 2 0.046 43 5
Eb09_348 14152 7183 2 0.104 67 13
Eb09_349 12336 8151 2.26 0.046 56 5
Eb09_350 25013 8147 2.26 0.118 101 15
Eb09_351 16650 8187 2.27 0.05 74 6
Eb09_352 X 99778 189190 52.55 1.258 464 100
Eb09_353 X 89169 87209 24.22 1.035 532 100
Eb09_354 X 105871 78512 21.81 1.018 596 100
Eb09_355 X 106725 53970 14.99 0.8 656 100
Eb09_356 X 101202 204395 56.78 1.366 464 100
Eb09_357 X 113036 159925 44.42 1.279 532 100
Eb09_358 33940 19186 5.33 0.252 199 33
Eb09_359 47319 19243 5.35 0.265 277 40
Eb09_360 9535 19247 5.35 0.13 49 11
Eb09_361 X 110205 108906 30.25 0.961 504 100
Eb09_362 X 127325 86179 23.94 0.895 584 100
Eb09_363 X 124157 48215 13.39 0.675 692 100
Eb09_364
Eb09_365
Eb09_366
Eb09_367
Eb09_368
Eb09_369
Eb09_370 X 139627 51794 14.39 0.867 584 100
Eb09_371 X 303161 131110 36.42 0.773 1164 100
Eb09_372 X 97720 136078 37.8 1.129 408 100
Eb09_373 24189 59011 16.39 0.268 111 19
Eb09_374 73681 92984 25.83 0.944 305 66
Eb09_375 94526 92928 25.81 0.553 351 42
Eb09_376 X 115399 59389 16.5 0.848 532 100
Eb09_377 X 288714 129729 36.04 0.815 948 100
Eb09_378 X 140365 54571 15.16 0.869 584 100
Eb09_379 X 291300 157249 43.68 0.94 1164 100
Eb09_380 X 106396 180701 50.19 1.503 408 100
Eb09_381 111767 207511 57.64 0.947 428 72
Eb09_382
Eb09_383
Eb09_384
Eb09_385 X 246624 125975 34.99 0.8 948 100
Eb09_386 X 144462 50149 13.93 0.798 608 100
Eb09_387 X 369816 140689 39.08 0.852 1164 100
Eb09_388 X 160786 207539 57.65 1.606 428 100
Eb09_389 X 155509 163010 45.28 1.124 596 100
Eb09_390 X 127142 96859 26.91 1.236 476 100
Eb09_391 X 256807 158787 44.11 1.02 800 100
Eb09_392 X 144769 67069 18.63 0.968 532 100
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Table E.10: Simulations (continued)

Case Finished Steps Field variables Duration Performance Endtime
[-] [s] [h]

[
ms

cell·time

]
[s] [%]

Eb09_393 X 311002 152192 42.28 0.86 1024 100
Eb09_394 X 194177 61176 16.99 0.885 692 100
Eb09_395 X 304156 124808 34.67 0.766 1164 100
Eb09_396 X 97107 137093 38.08 1.244 456 100
Eb09_397 X 94588 49199 13.67 0.806 512 100
Eb09_398 X 106603 43284 12.02 0.733 584 100
Eb09_399 X 120022 37065 10.3 0.681 656 100
Eb09_400 X 98461 128327 35.65 1.171 456 100
Eb09_401 X 111423 103585 28.77 1.098 524 100
Eb09_402 X 111382 49625 13.78 0.854 584 100
Eb09_403 X 115835 33657 9.35 0.63 656 100
Eb09_404 X 104459 113530 31.54 1.045 456 100
Eb09_405 X 127482 92823 25.78 1.04 512 100
Eb09_406 X 136544 73143 20.32 0.931 596 100
Eb09_407 X 151296 64861 18.02 0.835 692 100
Eb09_408 X 97872 109873 30.52 1.197 392 100
Eb09_409 X 146478 183510 50.98 1.049 596 100
Eb09_410 X 120435 93488 25.97 1.296 456 100
Eb09_411 X 162237 112714 31.31 0.802 828 100
Eb09_412 X 126420 57980 16.11 1.066 512 100
Eb09_413 X 226235 108989 30.27 0.856 916 100
Eb09_414 X 105849 122937 34.15 1.342 392 100
Eb09_415 X 166710 207539 57.65 1.197 596 100
Eb09_416 X 133506 105238 29.23 1.464 456 100
Eb09_417 X 201540 134155 37.27 0.966 828 100
Eb09_418 X 135823 59019 16.39 1.091 512 100
Eb09_419 X 209447 101962 28.32 0.762 948 100
Eb09_420
Eb09_421 143108 209770 58.27 1.125 462 74
Eb09_422 X 155316 123146 34.21 1.722 456 100
Eb09_423 198086 210365 58.43 1.025 498 60
Eb09_424 X 104369 84205 23.39 1.342 512 100
Eb09_425 X 254871 141292 39.25 0.933 1024 100
Eb09_426 X 119628 154763 42.99 1.698 392 100
Eb09_427 183297 209854 58.29 1.137 576 92
Eb09_428 X 115587 71223 19.78 1.199 456 100
Eb09_429 X 227903 131861 36.63 0.975 828 100
Eb09_430 36143 15479 4.3 0.29 132 26
Eb09_431 31758 15517 4.31 0.119 121 13
Eb09_432 9002 15532 4.31 0.141 46 10
Eb09_433 X 95105 47806 13.28 0.783 512 100
Eb09_434 X 109939 43139 11.98 0.731 584 100
Eb09_435 X 115764 35510 9.86 0.652 656 100
Eb09_436 X 99189 129638 36.01 1.183 456 100
Eb09_437 X 111880 105631 29.34 1.12 524 100
Eb09_438 X 106731 47551 13.21 0.818 584 100
Eb09_439 X 116046 33759 9.38 0.631 656 100
Eb09_440 X 104325 112774 31.33 1.038 456 100
Eb09_441 X 126728 93355 25.93 1.045 512 100
Eb09_442 X 134852 79083 21.97 1.007 596 100
Eb09_443 X 155307 71820 19.95 0.925 692 100
Eb09_444 X 99972 119253 33.13 1.299 392 100
Eb09_445 12755 23419 6.51 0.134 62 10
Eb09_446 28297 23505 6.53 0.326 108 24
Eb09_447 30280 23485 6.52 0.167 171 21
Eb09_448 X 116512 54577 15.16 1.003 512 100
Eb09_449 X 216881 102675 28.52 0.806 916 100
Eb09_450 X 107411 121276 33.69 1.324 392 100
Eb09_451 X 164547 206957 57.49 1.193 596 100
Eb09_452 X 130369 106547 29.6 1.483 456 100
Eb09_453 X 202868 137202 38.11 0.988 828 100
Eb09_454 65634 29074 8.08 0.537 252 49
Eb09_455 X 209948 102544 28.48 0.766 948 100
Eb09_456 X 116315 130091 36.14 1.423 392 100
Eb09_457 146726 207228 57.56 1.112 469 75
Eb09_458 X 149339 115463 32.07 1.615 456 100
Eb09_459 203615 207607 57.67 1.012 522 63
Eb09_460 145750 74121 20.59 1.181 0 0
Eb09_461 X 258223 122185 33.94 0.807 1024 100
Eb09_462 X 119227 130795 36.33 1.435 392 100
Eb09_463
Eb09_464
Eb09_465
Eb09_466 X 151876 46958 13.04 0.88 512 100
Eb09_467 X 268886 87588 24.33 0.674 948 100

401 cases in total



F
Converted formulae

Stability methods (appendix B) and motion formulae (section 2.2.4) are converted into a form by which mo-
tion can be determined. The reasoning behind conversion can be found in section 5.3. The formulae hereafter
can easily be implemented in computer code, which returns a true/false value for motion by evaluating the
final inequality. Inequalities are written so that motion occurs when the inequality holds. Figure F.1 shows
definitions of certain toe dimensions and measurement levels.

SWL
H, L, T, ...

hm

ht

tan-1αarm

tan-1αfore

1

1

Dn50, n, ...

Bt

tt

tan-1αtoe

1

(a)

SWL

h0 hm hg

ht

η

ygyl

yt

(b)

Figure F.1: Toe dimensions and measurement levels
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F.1. Stability methods
F.1.1. Van der Meer (1991)

1 >
∆ · Dn50

Hs
· 8.7

(
ℎt

ℎm

)1.4

(VdM91)

F.1.2. Gerding (1993), Van der Meer et al. (1995)

1 >
∆ · Dn50

Hs

(
0.24

ℎt

Dn50
+ 1.6

)
N 0.15

od,c (Ger93a)

F.1.3. Burcharth and Liu (1995)

1 >
∆ · Dn50

Hs

*.
,

1.6

N −0.15
od,c − 0.4 ℎt

Hs

+/
-

(Bur95)

F.1.4. Van der Meer (1998)

1 >
∆ · Dn50

Hs
*
,
6.2

(
ℎt

ℎm

)2.7

+ 2+
-

N 0.15
od,c (VdM98)

F.1.5. Sayao (2007)
Initial calculations:

ρs = ρw (∆ + 1)

M50 = ρs · D3
n50

m = tan α f or e

ξ0p =
tan αar m√

Hs/L0p

Stability check:

1 >
M50 · ∆3

ρs · H 3
s
· 4.5m−2/3 · e5.67ℎt /ℎm−0.63ξ0p (Say07)

F.1.6. Baart (2008)
Phase difference toe–armour:

LT A =
Bt

2
+

ℎt

tan αar m

ϕT A =
2π

Lm−1,0
LT A

Velocity amplitude of the incoming wave:

ω =
2π

Tm−1,0

k =
2π

Lm−1,0

ûbi = ω
Hs

2
cosh

(
k

(
ℎm − ℎt

))
sinh

(
kℎm

)
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Wave run-up according to the Rock Manual (CIRIA et al., 2007, §5.1.1.2), with rough slope:

Lm =
gT 2

m
2π

ξm = max
{

tan αar m√
Hs/Lm

; 1.5
}

Ru = Ru10% = Hs ·max
*..
,
1.45;




0.77 · ξm ξm 6 1.5

0.94 · ξ0.42
m ξm > 1.5

+//
-

Wave run-down according to the Rock Manual (CIRIA et al., 2007, box 5.1, p. 499), with porous rubble slopes
and P = 0.4 (armour layer, filter layer, core):

P = 0.4

s0m =
Hs

L0m

Rd = Rd2% = Hs ·
(
2.1
√

tan αar m − 1.2P 0.15 + 1.5e−60·s0m
)

Velocity amplitude of the down rush:

γdr = 0.45 (from §F.2 in Baart (2008))

ûbdr = γdr

√
2g

(
Ru

3
+

Rd
2

)
Combined velocity amplitude from ûbi and ûbdr :

γ f or e =

( tan α f or e

0.05

)0.5

(from Baart et al. (2010))

ûb =

√(
ûbi · sin ϕT A

)2
+

(
ûbi · cos ϕT A + ûbdr

)2 · γ f or e

Critical velocity amplitude based on Rance and Warren (1968) adapted for porous flow:

T = Tp (from §A.1 in Baart (2008))
CP F = 0.4

i =
Hs/2 + Ru

LT A + Ru/ tan αar m

ûbc =
(
0.46
√

T
(
(∆ −CP F i) g

)1.5 · Dn50
)2.5−1

Fit coefficient: Γ = 1.05. Safety coefficient for sensitivity analysis: FS ∈ [0.91, 0.95]. Stability check:

1 >
Fs

Γ

ûbc
ûb

(Baa08)

F.1.7. Ebbens (2009)
Initial calculations:

L0p =
2π
gT 2

0p
(this was the relation used by Ebbens)

ξ0p =
tan α f or e√

Hs/L0p

Stability check:

1 >
∆ · Dn50

Hs
· 3.0

N 1/3
%,c√
ξ0p

(Ebb09)
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F.1.8. Muttray (2013)
Conversion of damage number using a bedding layer of 20 mm:

Nod,c =
N%,c (tt − 20 mm) Bt (1 − n)

D2
n50

Stability check:

1 >
∆ · Dn50

Hs
·

2.4N 1/3
od,c

1.4 − 0.4 ℎt
Hs

(Mut13)

F.1.9. Van Gent and Van der Werf (2014)
Initial calculations:

fB =

(
Bt

3Dn50

)0.5

k =
4π2

gT 2
m−1,0

ûδ =
πHs

Tm−1,0

1
sinh kℎt

Stability check:

1 >
Nod,c · fB

0.032

(
Hs

tt

) (
Hs

Bt

)0.3 (
∆ · Dn50

Hs

)3
*
,

√
gHs

ûδ
+
-

(VGe14)

F.1.10. Muttray (2014)
Initial calculations:

nt = tan−1 αtoe

m = tan−1 α f or e

Parameter limits:

Nod,c = max
{

Nod,c ; 0.25
}

ℎt = max
{
ℎt ; 0

}
m = min {m; 50}

Stability check:

1 >
∆ · Dn50

Hs

(
(4nt )1/3 +

ℎt

Lp
m

)
N 1/3

od,c (Mut14)

F.2. Motion formulae
Most motion formulae are applied per toe gauge (denoted with x ) and per time step (denoted with t ).

F.2.1. Izbash (1930)
Velocity is measured at ℎg = 1.0Dn50.

1 >
1.2

√
2∆gDn50

u (x, t )
(Izb30)

F.2.2. Rance and Warren (1968)
Velocity is measured at ℎg (x, t ) = (ℎt + η (x, t ))/2. This formula is applied per wave. For information on how
this is done and for a definition of ûb and T , see 5.3.

1 >
1

ûb

(
2.15−1

√
T

(
∆g

)1.5 Dn50
)1/2.5

(Ran68a)
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F.2.3. Dessens (2004)
Velocity and acceleration are measured per toe gauge couple at a level of ℎg (x, t ) = (ℎt + η (x, t ))/2. See 5.3
for more information.
Initial calculations:

CB = 0.10
CM = 3.92

Stability check:
������

1
2CB ū2(x, t ) +CM Dn50 ā(x, t )

∆gDn50

������
> ΨM S,c (Des04)

F.2.4. Steenstra (2014)
Initial calculations and definitions:

κ = 0.41

Lm = κyl

√
1 − yl/ℎt

K (β) = 1

Velocity and turbulence intensity are measured per gauge couple using a moving average over height Lm .
Acceleration is measured per toe gauge couple at a level of ℎg (x, t ) = (ℎt +η (x, t ))/2. See section 5.3 for more
information.
Stability check:

������������

*
,
max

[〈
ū + α

√
k̄
〉

Lm

Lm
yl

]2
+
-
+Cm:b

(
ū ∂u
∂x

)
ℎg

Dn50

K (β) · ∆gDn50

������������

> ΨRS,c (Ste14)

Herein are u, α, k, Lm , Cm:b and ∂u/∂x functions of (x, t ).

The following calculation procedure is used:
1. Initial calculations: κ, K (β), ...
2. Per gauge couple ( x ):

2.1. Per time step ( t ):
2.1.1. Determine ℎg
2.1.2. Find α and Cm:b based on ℎg (x, t )
2.1.3. Per yl -level in

[
0, ℎt

]
:

2.1.3.1. Determine Lm
2.1.3.2. Go over yl ∈

[
yl − Lm

2 , yl +
Lm
2

]

2.1.3.3. Take the average of u + αk
2.1.3.4. Multiply with Lm/yl

2.1.4. Take the maximum over these levels and square it
2.1.5. Determine u and ∂u/∂x at yg
2.1.6. Complete the formula

2.2. Check for motion for all t
3. Check for motion for all x
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F.2.5. Peters (2014)
Initial calculations and definitions:

CD = 0.23

A f = 0.5D2
n50

owl ≈ 0.5Dn50

od ≈ 0.75Dn50

Velocity is measured at 0.05 m above the toe. For the drag force it is reduced with a factor 0.9 according to
Peters (2014b, §4.2). Absolute (squared) values of velocities are used. See section 5.3 for more information.
The forces then become:

FL =
1
2
ρu2(x, t )D2

n50

FD =
1
2

CD ρw A f (0.9u (x, t ))2

FW = (ρs − ρw )D3
n50 · g

Stability check:
FL · owl + FD · od − FW · owl > 0



G
Motion tables

The next two tables are the motion tables belonging to chapter 5. They show motion prediction per case. The
first table takes validity ranges defined for the stability methods into account; the second ignores them. The
following marks are used:

X Motion is predicted

x Immobility is predicted

– The method or formula is not valid for this case

139
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G.1. Motion table with validity ranges respected
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1 172 x x X x x – – – – x x x x x x 46.32 0 0 35.35 0 67 10
2 173 x x x x x – – x – x x x x X x 47.03 0 0.03 43.65 0.01 73 9
3 174 x X X X x x – X – x x x x X X 53.03 0.64 1.31 48.01 0.86 80 42
4 175 x X X X x x – X – X x X x X X 54.33 1.21 2.31 49.02 1.78 80 58
5 176 x x x x x – – x – x x x x X x 46.27 0 0.01 65.74 0 73 9
6 179 X X X X x x x X – X X x x X X 59.34 0.76 5.13 40.75 3.33 87 62
7 183 – X X X x x x X – X X X X x X 65.42 2.65 13.22 35.69 2.4 80 67
8 185 – – X – x x – X – x X x X X x 56.69 0 8.51 40.6 0.38 60 56
9 190 – – X – x x x X – X X X X x X 67.9 1.62 15.87 32.42 3 67 60
10 191 – – X – X x x X – X X X X x X 74.14 3.95 9.22 26.1 3.56 67 70
11 195 – – X – X x x X – X x X X x – 47.24 1.13 13.77 28.68 – 67 60
12 198 – – X – x x x X – X X X X x – 67.76 1.34 16.43 26.35 – 67 60
13 199 – – X – X x x X – X X X X x – 69.87 2.29 11.29 22.28 – 67 70
14 206 – – X – X x x X – X – x X x – – 0.54 10.66 9.52 – 60 56
15 210 – – X – X – x X – X – – X – – – – 9.43 – – 40 83
16 211 – – X – X – x X – X – – x – – – – 7.58 – – 40 67
17 213 – – X – X – x X – X – – x – – – – 6.73 – – 40 67
18 214 – – X – X – x X – X – – x – – – – 4.65 – – 40 67
19 215 – – X – X – x X – X – – x – – – – 4.47 – – 40 67
20 216 x x X x x – – – – x x x x x x 46.39 0 0 27.83 0 67 10
21 223 x X X X x x x X – X X x x X X 56.22 0.39 4.2 40.29 1.86 87 54
22 224 – x x x x x – x – x x x x X x 46.93 0 0.8 43.56 0 73 9
23 225 – x x x x x – x – x x x x X x 52.1 0 6.24 43.4 0.19 73 9
24 226 – X X x x x x X – x X x x X X 55.54 0.8 6.93 40.49 0.88 80 42
25 227 – X X X x x x X – X X X X x X 63.48 1.46 13.57 34.74 1.65 80 67
26 228 – – X – X X – X – X x x x X x 51.04 0 3.12 46.41 0 60 67
27 232 – – X – x x x X – x X X X x X 57.46 1.66 12.3 36.52 1.14 67 50
28 233 – – X – x x x X – X X X X x X 60.34 4.1 9.41 28.79 3.16 67 60
29 234 – – X – x x x X – X X X X x X 64.19 1.72 15.08 32.83 2.13 67 60
30 235 – – X – x x x X – X X X X x X 68.18 2.33 9.2 26.28 2.91 67 60
31 238 – – X – x x x X – x x x X X – 50.12 0.5 14.68 37.79 – 67 40
32 239 – – X – x x x X – X x x X x – 47.06 0.93 13.92 28.73 – 67 40
33 241 – – X – x x x X – X x X X x – 40.01 3.05 11.99 24.91 – 67 50
34 242 – – X – x x x X – X x X X x – 53.25 1.13 16.07 26.79 – 67 50
35 243 – – X – X x x X – X x X X x – 49.52 1.99 11.27 22.09 – 67 60
36 246 – – X – X X X X – X – x X x – – 0.09 12.46 23.88 – 60 78
37 247 – – X – X x x X – x – x X x – – 0.72 13.91 19.7 – 60 44
38 250 – – X – X x x X – X – x X x – – 0.39 10.29 9.02 – 60 56
39 251 – – X – X x x X – X – x X x – – 0.52 8.79 9.97 – 60 56
40 252 – – X – X – x X – X – – X – – – – 9.89 – – 40 83
41 256 – – X – X – x x – x – – x – – – – 6.87 – – 40 33
42 257 – – X – X – x x – x – – x – – – – 6.62 – – 40 33
43 258 – – X – X – x x – X – – x – – – – 5 – – 40 50
44 261 x x X x x – – – – x x x x X x 47.44 0 0 75.68 0 67 20
45 262 X X X X X X – X – x x x x X x 45.96 0 0 66.93 0 80 67
46 263 x x x x x – – x X X x x x X x 48.69 0 0.06 89.69 0.03 80 25
47 264 x x X x x – – x x x x x x X x 48.12 0 0 81.11 0 80 17
48 265 x X X X x X – X X X x x x X x 51.04 0 0.13 94.8 0.54 87 62
49 266 x x x x x – – x x X x x x X x 47.88 0 0.01 88.65 0 80 17
50 268 x x x x x – – x – x x x x X x 44.81 0 0 49.24 0 73 9
51 269 x x x x x X – x – x x x x X x 47.78 0 0.01 76.32 0 80 17
52 270 x x x x x x – x – x x x x X x 45.95 0 0.04 73.77 0 80 8
53 271 x X X X x X – X – X x x x X X 51.74 0.67 1.23 85.84 0.98 80 58
54 272 x X X x x X – X – X x x x X x 47.75 0 0.35 83.88 0.18 80 50
55 273 X X X X X X x X – X X x x X X 57.92 0.5 2.59 90.08 2.91 87 77
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56 274 X X X X x X x X – X x X x X X 51.55 3.5 2.5 89.27 2.17 87 69
57 275 X X X X X X x X – X X X x X X 65.4 2.9 4.78 91.35 4.58 87 85
58 276 – x x x x – – x – x x x x X x 45.74 0 0.03 54.54 0 67 10
59 277 – x x x x X – x – x x x x X x 48.01 0.1 0.71 75.23 0.19 73 18
60 278 – X X x x X x X – x x x x X x 46.26 0.12 1 73.88 0.15 80 42
61 279 – X X X X X x X – X X X x X X 58.59 1.95 5.43 83.71 2.89 80 83
62 280 – X X X x X x X – x x x x X X 49.62 0.31 3.59 75.66 0.76 80 50
63 281 – X X X X X x X – X X X x X X 67.02 5.35 7.35 83.35 4.29 80 83
64 282 – X X X X X x X – X X X X X X 56.19 1.82 9.29 82.5 3.45 80 92
65 283 – X X X X X x X – X X X X X X 70.1 4.97 8.29 81.16 4.96 80 92
66 284 x x X x x – – – – x x x x x x 43.49 0 0 22.99 0 67 10
67 285 x x X x x – – – – x x x x X x 47.39 0 0 68.46 0 67 20
68 286 X X X X X X – X – x x x x X x 46.26 0 0 60.91 0 80 67
69 287 x x x x x – – x x X x x x X x 48.96 0 0.06 88.49 0 80 17
70 288 x x x x x – – x x x x x x X x 46.83 0 0 73.97 0 80 8
71 296 x x x x x X – X – x x x x X x 46.55 0.16 0.44 79.33 0.19 80 25
72 297 x X X X x X x X – X X x x X X 56.84 0.32 2.56 89.18 2.52 87 62
73 304 – X X X x X x X – x x x x X x 48.73 0.05 3.03 76.02 0.35 80 50
74 305 – X X X X X x X – X X X x X X 63 2.45 6.43 81.73 3.25 80 83
75 306 – X X X x X x X – X X x X X X 56.61 0.48 8.77 82.62 2.4 80 75
76 307 – X X X X X x X – X X X X X X 71.25 5.49 8.72 81.09 4.53 80 92
77 308 x x X x x – – – – x x x x X x 46.62 0 0 53.1 0 67 20
78 309 x x x x x – – x – x x x x X x 46.26 0 0 73.01 0 73 9
79 310 x X X x x X – X – X x x x X x 48.5 0.54 0.46 88 0.28 80 50
80 314 x X X x x X – X – X x x x X x 47.6 0 0.94 80.04 0.53 80 50
81 316 – x x x x x – x – x x x x X x 46.22 0 0.12 63.88 0 73 9
82 317 – X X x x X – X – x x x x X x 47.45 0 2.05 76.86 0.27 73 45
83 320 – – x – x x – x – x x x x X x 47.11 0 0.18 57.93 0 60 11
84 322 – – X – x X x x – x x x x X x 49.52 0 3.61 71.31 0.09 67 30
85 325 – – X – X X x X – X X X X X X 64.96 1.5 9.05 75.2 3.4 67 90
86 326 – – X – x X x X – X X x X X X 58.19 1 13.92 78.22 2.04 67 70
87 327 – – X – X X x X – X X X X X X 71.33 6.47 11.53 71.92 4.54 67 90
88 328 – – x – x X x x – x x x x X x 47.66 0 2.04 51.3 0 67 20
89 330 – – X – x X x X – x x x X X x 52.94 0 8.57 54.57 0.27 67 50
90 331 – – X – X X x X – X X x X X X 62.81 0.58 15.09 61.88 2.82 67 80
91 332 – – X – x X x X – X X x X X X 57.52 0.03 11.17 50.74 0.88 67 70
92 333 – – X – X X x X – X X X X X X 61.44 2.11 13.26 52.92 4.35 67 90
93 334 – – X – X X x X – X X x X X X 61.73 0.14 16.02 38.35 2.03 67 80
94 335 – – X – X X x X – X X X X X X 69.82 3.03 14.24 47.65 5.34 67 90
95 336 – – X – x X x X – x X x x x – 57.5 0 5.28 16.69 – 67 40
96 337 – – X – X X x X – X x x X x – 54.7 0.03 12.2 16.14 – 67 60
97 338 – – X – X X x X – X X x X x – 57.98 0 14.55 5.62 – 67 70
98 339 – – X – X X x X – X x x X x – 53.06 0.41 15.28 8.22 – 67 60
99 340 – – X – X X x X – X X x X x – 55.87 0.02 17.66 6.32 – 67 70
100 341 – – X – X X x X – X x X X x – 49.64 1.17 14.4 9.47 – 67 70
101 342 – – X – X X x X – X X x X x – 64.66 0.1 19.62 2.64 – 67 70
102 343 – – X – X X x X – X X X X x – 59.59 1.58 19.01 5 – 67 80
103 352 x x X x x – – – – x x x x x x 46.64 0 0 32.51 0 67 10
104 353 x x x x x – – x – x x x x X x 46.35 0 0.01 58.19 0 73 9
105 354 x x x x x X – X – x x x x X x 47.72 0 0.38 80.92 0.07 80 25
106 355 x X X x x X – X – X x x x X x 47.01 0.16 0.68 85.55 0.32 80 50
107 356 x x x x x – – x – x x x x X x 46.06 0 0.03 45.87 0 73 9
108 357 x x x x x x – x – x x x x X x 47.29 0 0.13 70.06 0.01 80 8
109 361 – – x – x X – X – x x x x X x 48.29 0.12 2.24 76.21 0.16 60 33
110 362 – – X – x X x X – X x x x X X 52.26 0 6.81 82.94 0.61 67 50
111 363 – – X – x X x X – X x x x X X 54.82 0.74 7.17 80.2 1.2 67 50
112 370 – – X – x X x X – X X x X X X 56.76 0.5 13.11 77.54 0.85 67 70
113 371 – – X – X X x X – X X X X X X 62.35 4.9 11.62 71.99 3.52 67 90
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114 372 – – x – x x x x – x x x x X x 53.64 0 2.28 52.92 0 67 10
115 376 – – X – x X x X – X X x X X x 57.94 0.03 11.55 52.83 0.49 67 70
116 377 – – X – X X x X – X X X X X X 61.54 1.53 12.81 52.66 3.27 67 90
117 378 – – X – x X x X – X X x X X X 58.15 0.11 15.93 37.79 0.95 67 70
118 379 – – X – X X x X – X X X X X X 55.47 1.75 13.58 47.66 3.84 67 90
119 380 – – x – x X x x – x X x x x – 56.53 0 5.29 16.88 – 67 20
120 385 – – X – X X x X – X x x X x – 49.94 0.36 13.2 9.22 – 67 60
121 386 – – X – X X x X – X x x X x – 45.99 0.05 18.67 2.57 – 67 60
122 387 – – X – X X x X – X x x X x – 41.2 0.98 18.2 4.63 – 67 60
123 388 – – X – X – x X – X – x X X – – 0 13.77 41.99 – 53 75
124 389 – – X – X – x X – x – x X x – – 0.05 19.49 32.06 – 53 50
125 390 – – X – X – X X – X – x X x – – 0 14.34 35.41 – 53 75
126 391 – – X – X – x X – X – x X x – – 0 17.66 27.37 – 53 63
127 392 – – X – X – x X – X – x X x – – 0 14.94 27.49 – 53 63
128 393 – – X – X – x X – X – x X x – – 0.02 16.65 20.67 – 53 63
129 394 – – X – X – x X – X – x X x – – 0.03 16.26 24.7 – 53 63
130 395 – – X – X – x X – X – x X x – – 0.1 14.82 19.58 – 53 63
131 396 x x X x x – – x – x x x x x x 45.95 0 0 30.37 0 73 9
132 397 x x x x x X – x – X x x x X x 46.89 0 0.18 41.67 0 80 25
133 398 x X X x x X – X – X x x x X x 47.43 0.33 0.72 45.8 0.46 80 50
134 399 x X X X x X – X – X x X x X X 51.03 3.49 3.32 46.13 1.9 80 67
135 400 x x x x x – – x – x x x x x x 46.01 0 0.01 33.99 0 73 0
136 401 x x x x x X – x – X x x x X x 47.06 0 0.6 41.1 0.16 80 25
137 402 x X X x x X – X – X x X x X X 48.22 1.21 2.66 43.26 1.06 80 58
138 403 x X X X x X X X – X x X x X X 54.35 3.01 5.25 43.15 2.78 87 69
139 404 – x x x x X – x – x x x x X x 48 0 1.22 45.99 0.01 73 18
140 405 – X X X x X – X – x x x x X x 51.33 0.5 7.58 44.53 0.41 73 55
141 406 – X X X x X x X – X X X X X X 57.99 2.2 13.14 40.55 1.59 80 83
142 407 – X X X X X X X – X X X X X X 61.01 5.13 19.17 37.16 3.07 80 100
143 408 – – x – x X – x – x x x x X x 50.66 0.06 2.01 49.52 0.07 60 22
144 409 – – X – x X – x – X X x X X x 55 0.44 9.61 44.25 0.33 60 67
145 410 – – X – x X x X – x x x X X x 54.91 0.26 10.23 44.68 0.31 67 50
146 411 – – X – X X x X – X X X X x X 62.13 1.13 14.83 34.65 2.16 67 80
147 412 – – X – X X X X – X X x X X X 58.98 0.5 15.92 39.07 1.19 67 90
148 413 – – X – X X x X – X X X X x X 57.48 5.14 18.45 29.83 4.94 67 80
149 414 – – x – x X x x – x X x x X – 61.44 0.08 7.54 46.15 – 67 30
150 415 – – X – X X x X – X x x X X – 46.73 0.27 17.54 39.05 – 67 70
151 416 – – X – X X X X – X X x X X – 55.11 0.23 18.12 40.48 – 67 90
152 417 – – X – X X x X – X x X X x – 51.02 5.59 18.55 28.86 – 67 70
153 418 – – X – X X X X – X x x X x – 51.56 0.63 21.61 33.5 – 67 70
154 419 – – X – X X x X – X x X X x – 43.97 5.87 20.71 25.07 – 67 70
155 422 – – X – X X x X – X – x X x – – 0.5 18.88 24.64 – 60 67
156 424 – – X – X X X X – X – x X x – – 0.95 22.88 23.2 – 60 78
157 425 – – X – X X x X – X – X X x – – 1.12 18.73 8.59 – 60 78
158 426 – – X – X – x X – X – – X – – – – 13.66 – – 40 83
159 428 – – X – X – X X – X – – X – – – – 12.01 – – 40 100
160 429 – – X – X – x X – X – – X – – – – 18.53 – – 40 83
161 433 x x x x x X – x – x x x x x x 45.91 0 0.19 34.99 0 80 8
162 434 x x x x x X – X – X x x x X x 47.03 0 0.74 41.98 0.23 80 33
163 435 x X X x x X – X – X x x x X X 49.56 0.06 2.45 43.19 0.84 80 50
164 436 x x x x x – – x – x x x x x x 46.91 0 0.02 33.09 0 73 0
165 437 x x x x x X – x – x x x x X x 46.78 0 0.46 40.54 0.06 80 17
166 438 x x X x x X – X – X x x x X x 47.84 0 2.47 42.75 0.47 80 42
167 439 x X X x x X x X – X x X x X X 52.07 1.68 5.21 41.6 1.66 87 54
168 440 – – x – x X – x – x x x x X x 49.9 0 1.06 45.98 0 60 22
169 441 – – X – x X – X – x x x x X x 53.43 0.02 7.27 44.87 0.07 60 44
170 442 – – X – x X x X – X X X X X X 57.17 1.2 11.81 40.62 0.79 67 80
171 443 – – X – x X x X – X X X X X X 60.3 3.01 18.41 37.34 1.9 67 80
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172 444 – – x – x X – x – x X x x X x 58.61 0 2.34 49.64 0.04 60 33
173 448 – – X – X X X X – x X x X X X 59.27 0.64 15.33 39.29 0.69 67 80
174 449 – – X – X X x X – X X X X x X 57.57 3.7 17.96 29.81 3.95 67 80
175 450 – – x – x X x x – x x x x X – 39.36 0 7.98 44.46 – 67 20
176 451 – – x – x X x x – x x x X X – 32.85 0.59 16.8 37.91 – 67 30
177 452 – – X – x X x X – x x x X X – 41.45 0.18 18.3 39.42 – 67 50
178 453 – – X – X X x X – X x X X x – 38.6 2.58 18.55 28.11 – 67 70
179 455 – – X – X X x X – X x X X x – 43.77 2.93 19.96 24.19 – 67 70
180 456 – – X – x X x X – x – x X x – – 0.03 13.38 34.09 – 60 44
181 458 – – X – X X x X – x – x X x – – 0.1 18.2 23.4 – 60 56
182 460 – – X – X X X X – X – x X x – – 0.45 22.28 23.04 – 60 78
183 461 – – X – X X x X – X – x X x – – 0.42 17.93 7.93 – 60 67
184 462 – – X – X – x X – x – – X – – – – 13.3 – – 40 67
185 466 – – X – X – X X – X – – X – – – – 13.76 – – 40 100
186 467 – – X – X – x X – X – – X – – – – 16.66 – – 40 83

% valid 29 41 100 41 100 76 66 96 3 100 81 92 100 92 65
% motion if valid 11 51 79 36 44 77 10 77 33 63 38 28 51 64 46

G.2. Motion table with ignored validity ranges
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1 172 x x X x x x x x x x x x x x 0 46.32 0 0 35.35 0 93 7
2 173 x x x x x x x x x x x x x X 0 47.03 0 0.03 43.65 0.01 93 7
3 174 x X X X x x x X X x x x x X 1 53.03 0.64 1.31 48.01 0.86 93 43
4 175 x X X X x x x X X X x X x X 1 54.33 1.21 2.31 49.02 1.78 93 57
5 176 x x x x x x x x x x x x x X 0 46.27 0 0.01 65.74 0 93 7
6 179 X X X X x x x X X X X x x X 1 59.34 0.76 5.13 40.75 3.33 93 64
7 183 X X X X x x x X X X X X X x 1 65.42 2.65 13.22 35.69 2.4 93 71
8 185 x X X x x x x X X x X x X X 0 56.69 0 8.51 40.6 0.38 93 50
9 190 X X X X x x x X X X X X X x 1 67.9 1.62 15.87 32.42 3 93 71
10 191 X X X X X x x X X X X X X x 1 74.14 3.95 9.22 26.1 3.56 93 79
11 195 X X X X X x x X X X x X X x – 47.24 1.13 13.77 28.68 – 93 71
12 198 X X X X x x x X X X X X X x – 67.76 1.34 16.43 26.35 – 93 71
13 199 X X X X X x x X X X X X X x – 69.87 2.29 11.29 22.28 – 93 79
14 206 X X X X X x x X X X – x X x – – 0.54 10.66 9.52 – 87 69
15 210 X X X X X X x X X X – – X – – – – 9.43 – – 73 91
16 211 X X X x X x x X X X – – x – – – – 7.58 – – 73 64
17 213 X X X x X x x X X X – – x – – – – 6.73 – – 73 64
18 214 X X X x X x x X X X – – x – – – – 4.65 – – 73 64
19 215 X X X x X x x X X X – – x – – – – 4.47 – – 73 64
20 216 x x X x x x x x x x x x x x 0 46.39 0 0 27.83 0 93 7
21 223 x X X X x x x X X X X x x X 1 56.22 0.39 4.2 40.29 1.86 93 57
22 224 x x x x x x x x x x x x x X 0 46.93 0 0.8 43.56 0 93 7
23 225 x x x x x x x x x x x x x X 0 52.1 0 6.24 43.4 0.19 93 7
24 226 x X X x x x x X X x X x x X 1 55.54 0.8 6.93 40.49 0.88 93 43
25 227 x X X X x x x X X X X X X x 1 63.48 1.46 13.57 34.74 1.65 93 64
26 228 X X X X X X X X X X x x x X 0 51.04 0 3.12 46.41 0 93 79
27 232 X X X X x x x X X x X X X x 1 57.46 1.66 12.3 36.52 1.14 93 64
28 233 X X X X x x x X X X X X X x 1 60.34 4.1 9.41 28.79 3.16 93 71
29 234 X X X X x x x X X X X X X x 1 64.19 1.72 15.08 32.83 2.13 93 71
30 235 X X X X x x x X X X X X X x 1 68.18 2.33 9.2 26.28 2.91 93 71
31 238 X X X x x x x X X x x x X X – 50.12 0.5 14.68 37.79 – 93 50
32 239 X X X X x x x X X X x x X x – 47.06 0.93 13.92 28.73 – 93 57
33 241 X X X X x x x X X X x X X x – 40.01 3.05 11.99 24.91 – 93 64
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34 242 X X X X x x x X X X x X X x – 53.25 1.13 16.07 26.79 – 93 64
35 243 X X X X X x x X X X x X X x – 49.52 1.99 11.27 22.09 – 93 71
36 246 X X X X X X X X X X – x X x – – 0.09 12.46 23.88 – 87 85
37 247 X X X x X x x X X x – x X x – – 0.72 13.91 19.7 – 87 54
38 250 X X X X X x x X X X – x X x – – 0.39 10.29 9.02 – 87 69
39 251 X X X x X x x X X X – x X x – – 0.52 8.79 9.97 – 87 62
40 252 X X X X X X x X X X – – X – – – – 9.89 – – 73 91
41 256 X X X x X x x x X x – – x – – – – 6.87 – – 73 45
42 257 X X X x X x x x X x – – x – – – – 6.62 – – 73 45
43 258 X X X x X x x x X X – – x – – – – 5 – – 73 55
44 261 x x X x x x x X x x x x x X 0 47.44 0 0 75.68 0 93 21
45 262 X X X X X X X X x x x x x X 0 45.96 0 0 66.93 0 93 64
46 263 x x x x x X x x X X x x x X 0 48.69 0 0.06 89.69 0.03 93 29
47 264 x x X x x x x x x x x x x X 0 48.12 0 0 81.11 0 93 14
48 265 x X X X x X x X X X x x x X 0 51.04 0 0.13 94.8 0.54 93 57
49 266 x x x x x X x x x X x x x X 0 47.88 0 0.01 88.65 0 93 21
50 268 x x x x x x x x x x x x x X 0 44.81 0 0 49.24 0 93 7
51 269 x x x x x X x x x x x x x X 0 47.78 0 0.01 76.32 0 93 14
52 270 x x x x x x x x x x x x x X 0 45.95 0 0.04 73.77 0 93 7
53 271 x X X X x X x X X X x x x X 1 51.74 0.67 1.23 85.84 0.98 93 57
54 272 x X X x x X x X X X x x x X 0 47.75 0 0.35 83.88 0.18 93 50
55 273 X X X X X X x X X X X x x X 1 57.92 0.5 2.59 90.08 2.91 93 79
56 274 X X X X x X x X X X x X x X 1 51.55 3.5 2.5 89.27 2.17 93 71
57 275 X X X X X X x X X X X X x X 1 65.4 2.9 4.78 91.35 4.58 93 86
58 276 x x x x x x x x x x x x x X 0 45.74 0 0.03 54.54 0 93 7
59 277 x x x x x X x x x x x x x X 0 48.01 0.1 0.71 75.23 0.19 93 14
60 278 x X X x x X x X x x x x x X 0 46.26 0.12 1 73.88 0.15 93 36
61 279 X X X X X X x X X X X X x X 1 58.59 1.95 5.43 83.71 2.89 93 86
62 280 X X X X x X x X X x x x x X 1 49.62 0.31 3.59 75.66 0.76 93 57
63 281 X X X X X X x X X X X X x X 1 67.02 5.35 7.35 83.35 4.29 93 86
64 282 X X X X X X x X X X X X X X 1 56.19 1.82 9.29 82.5 3.45 93 93
65 283 X X X X X X x X X X X X X X 1 70.1 4.97 8.29 81.16 4.96 93 93
66 284 x x X x x X x X x x x x x x 0 43.49 0 0 22.99 0 93 21
67 285 x x X x x x x X x x x x x X 0 47.39 0 0 68.46 0 93 21
68 286 X X X X X X X X x x x x x X 0 46.26 0 0 60.91 0 93 64
69 287 x x x x x X x x x X x x x X 0 48.96 0 0.06 88.49 0 93 21
70 288 x x x x x x x x x x x x x X 0 46.83 0 0 73.97 0 93 7
71 296 x x x x x X x X x x x x x X 0 46.55 0.16 0.44 79.33 0.19 93 21
72 297 x X X X x X x X X X X x x X 1 56.84 0.32 2.56 89.18 2.52 93 64
73 304 x X X X x X x X X x x x x X 0 48.73 0.05 3.03 76.02 0.35 93 50
74 305 X X X X X X x X X X X X x X 1 63 2.45 6.43 81.73 3.25 93 86
75 306 X X X X x X x X X X X x X X 1 56.61 0.48 8.77 82.62 2.4 93 79
76 307 X X X X X X x X X X X X X X 1 71.25 5.49 8.72 81.09 4.53 93 93
77 308 x x X x x x x x x x x x x X 0 46.62 0 0 53.1 0 93 14
78 309 x x x x x x x x x x x x x X 0 46.26 0 0 73.01 0 93 7
79 310 x X X x x X x X x X x x x X 0 48.5 0.54 0.46 88 0.28 93 43
80 314 x X X x x X x X X X x x x X 0 47.6 0 0.94 80.04 0.53 93 50
81 316 x x x x x x x x x x x x x X 0 46.22 0 0.12 63.88 0 93 7
82 317 x X X x x X x X x x x x x X 0 47.45 0 2.05 76.86 0.27 93 36
83 320 x x x x x x x x x x x x x X 0 47.11 0 0.18 57.93 0 93 7
84 322 x x X x x X x x x x x x x X 0 49.52 0 3.61 71.31 0.09 93 21
85 325 X X X X X X x X X X X X X X 1 64.96 1.5 9.05 75.2 3.4 93 93
86 326 X X X X x X x X X X X x X X 1 58.19 1 13.92 78.22 2.04 93 79
87 327 X X X X X X x X X X X X X X 1 71.33 6.47 11.53 71.92 4.54 93 93
88 328 x x x x x X x x x x x x x X 0 47.66 0 2.04 51.3 0 93 14
89 330 X X X X x X x X X x x x X X 0 52.94 0 8.57 54.57 0.27 93 64
90 331 X X X X X X x X X X X x X X 1 62.81 0.58 15.09 61.88 2.82 93 86
91 332 X X X X x X x X X X X x X X 1 57.52 0.03 11.17 50.74 0.88 93 79
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92 333 X X X X X X x X X X X X X X 1 61.44 2.11 13.26 52.92 4.35 93 93
93 334 X X X X X X x X X X X x X X 1 61.73 0.14 16.02 38.35 2.03 93 86
94 335 X X X X X X x X X X X X X X 1 69.82 3.03 14.24 47.65 5.34 93 93
95 336 X X X X x X x X X x X x x x – 57.5 0 5.28 16.69 – 93 57
96 337 X X X x X X x X X X x x X x – 54.7 0.03 12.2 16.14 – 93 64
97 338 X X X X X X x X X X X x X x – 57.98 0 14.55 5.62 – 93 79
98 339 X X X X X X x X X X x x X x – 53.06 0.41 15.28 8.22 – 93 71
99 340 X X X X X X x X X X X x X x – 55.87 0.02 17.66 6.32 – 93 79
100 341 X X X X X X x X X X x X X x – 49.64 1.17 14.4 9.47 – 93 79
101 342 X X X X X X x X X X X x X x – 64.66 0.1 19.62 2.64 – 93 79
102 343 X X X X X X x X X X X X X x – 59.59 1.58 19.01 5 – 93 86
103 352 x x X x x x x x x x x x x x 0 46.64 0 0 32.51 0 93 7
104 353 x x x x x x x x x x x x x X 0 46.35 0 0.01 58.19 0 93 7
105 354 x x x x x X x X x x x x x X 0 47.72 0 0.38 80.92 0.07 93 21
106 355 x X X x x X x X x X x x x X 0 47.01 0.16 0.68 85.55 0.32 93 43
107 356 x x x x x x x x x x x x x X 0 46.06 0 0.03 45.87 0 93 7
108 357 x x x x x x x x x x x x x X 0 47.29 0 0.13 70.06 0.01 93 7
109 361 x x x x x X x X x x x x x X 0 48.29 0.12 2.24 76.21 0.16 93 21
110 362 x X X x x X x X x X x x x X 1 52.26 0 6.81 82.94 0.61 93 43
111 363 x X X x x X x X X X x x x X 1 54.82 0.74 7.17 80.2 1.2 93 50
112 370 X X X X x X x X X X X x X X 1 56.76 0.5 13.11 77.54 0.85 93 79
113 371 X X X X X X x X X X X X X X 1 62.35 4.9 11.62 71.99 3.52 93 93
114 372 x x x x x x x x x x x x x X 0 53.64 0 2.28 52.92 0 93 7
115 376 X X X x x X x X X X X x X X 0 57.94 0.03 11.55 52.83 0.49 93 71
116 377 X X X X X X x X X X X X X X 1 61.54 1.53 12.81 52.66 3.27 93 93
117 378 X X X X x X x X X X X x X X 1 58.15 0.11 15.93 37.79 0.95 93 79
118 379 X X X X X X x X X X X X X X 1 55.47 1.75 13.58 47.66 3.84 93 93
119 380 X x x x x X x x x x X x x x – 56.53 0 5.29 16.88 – 93 21
120 385 X X X X X X x X X X x x X x – 49.94 0.36 13.2 9.22 – 93 71
121 386 X X X X X X x X X X x x X x – 45.99 0.05 18.67 2.57 – 93 71
122 387 X X X X X X x X X X x x X x – 41.2 0.98 18.2 4.63 – 93 71
123 388 X X X x X X x X X X – x X X – – 0 13.77 41.99 – 87 77
124 389 X X X x X X x X X x – x X x – – 0.05 19.49 32.06 – 87 62
125 390 X X X X X X X X X X – x X x – – 0 14.34 35.41 – 87 85
126 391 X X X x X X x X X X – x X x – – 0 17.66 27.37 – 87 69
127 392 X X X x X X x X X X – x X x – – 0 14.94 27.49 – 87 69
128 393 X X X X X X x X X X – x X x – – 0.02 16.65 20.67 – 87 77
129 394 X X X X X X x X X X – x X x – – 0.03 16.26 24.7 – 87 77
130 395 X X X X X X x X X X – x X x – – 0.1 14.82 19.58 – 87 77
131 396 x x X x x x x x x x x x x x 0 45.95 0 0 30.37 0 93 7
132 397 x x x x x X x x x X x x x X 0 46.89 0 0.18 41.67 0 93 21
133 398 x X X x x X x X x X x x x X 0 47.43 0.33 0.72 45.8 0.46 93 43
134 399 x X X X x X X X X X x X x X 1 51.03 3.49 3.32 46.13 1.9 93 71
135 400 x x x x x X x x x x x x x x 0 46.01 0 0.01 33.99 0 93 7
136 401 x x x x x X x x x X x x x X 0 47.06 0 0.6 41.1 0.16 93 21
137 402 x X X x x X x X X X x X x X 1 48.22 1.21 2.66 43.26 1.06 93 57
138 403 x X X X x X X X X X x X x X 1 54.35 3.01 5.25 43.15 2.78 93 71
139 404 x x x x x X x x x x x x x X 0 48 0 1.22 45.99 0.01 93 14
140 405 x X X X x X x X X x x x x X 0 51.33 0.5 7.58 44.53 0.41 93 50
141 406 X X X X x X x X X X X X X X 1 57.99 2.2 13.14 40.55 1.59 93 86
142 407 X X X X X X X X X X X X X X 1 61.01 5.13 19.17 37.16 3.07 93 100
143 408 x x x x x X X x x x x x x X 0 50.66 0.06 2.01 49.52 0.07 93 21
144 409 x x X x x X x x x X X x X X 0 55 0.44 9.61 44.25 0.33 93 43
145 410 x X X X x X x X x x x x X X 0 54.91 0.26 10.23 44.68 0.31 93 50
146 411 X X X X X X x X X X X X X x 1 62.13 1.13 14.83 34.65 2.16 93 86
147 412 X X X X X X X X X X X x X X 1 58.98 0.5 15.92 39.07 1.19 93 93
148 413 X X X X X X x X X X X X X x 1 57.48 5.14 18.45 29.83 4.94 93 86
149 414 X x x x x X x x x x X x x X – 61.44 0.08 7.54 46.15 – 93 29
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150 415 X X X X X X x X X X x x X X – 46.73 0.27 17.54 39.05 – 93 79
151 416 X X X X X X X X X X X x X X – 55.11 0.23 18.12 40.48 – 93 93
152 417 X X X X X X x X X X x X X x – 51.02 5.59 18.55 28.86 – 93 79
153 418 X X X X X X X X X X x x X x – 51.56 0.63 21.61 33.5 – 93 79
154 419 X X X X X X x X X X x X X x – 43.97 5.87 20.71 25.07 – 93 79
155 422 X X X X X X x X X X – x X x – – 0.5 18.88 24.64 – 87 77
156 424 X X X X X X X X X X – x X x – – 0.95 22.88 23.2 – 87 85
157 425 X X X X X X x X X X – X X x – – 1.12 18.73 8.59 – 87 85
158 426 X X X x X X x X X X – – X – – – – 13.66 – – 73 82
159 428 X X X X X X X X X X – – X – – – – 12.01 – – 73 100
160 429 X X X X X X x X X X – – X – – – – 18.53 – – 73 91
161 433 x x x x x X x x x x x x x x 0 45.91 0 0.19 34.99 0 93 7
162 434 x x x x x X x X x X x x x X 0 47.03 0 0.74 41.98 0.23 93 29
163 435 x X X x x X x X X X x x x X 1 49.56 0.06 2.45 43.19 0.84 93 50
164 436 x x x x x x x x x x x x x x 0 46.91 0 0.02 33.09 0 93 0
165 437 x x x x x X x x x x x x x X 0 46.78 0 0.46 40.54 0.06 93 14
166 438 x x X x x X x X x X x x x X 0 47.84 0 2.47 42.75 0.47 93 36
167 439 x X X x x X x X X X x X x X 1 52.07 1.68 5.21 41.6 1.66 93 57
168 440 x x x x x X x x x x x x x X 0 49.9 0 1.06 45.98 0 93 14
169 441 x X X X x X x X x x x x x X 0 53.43 0.02 7.27 44.87 0.07 93 43
170 442 x X X x x X x X X X X X X X 1 57.17 1.2 11.81 40.62 0.79 93 71
171 443 X X X X x X x X X X X X X X 1 60.3 3.01 18.41 37.34 1.9 93 86
172 444 x x x x x X X x x x X x x X 0 58.61 0 2.34 49.64 0.04 93 29
173 448 X X X X X X X X X x X x X X 1 59.27 0.64 15.33 39.29 0.69 93 86
174 449 X X X X X X x X X X X X X x 1 57.57 3.7 17.96 29.81 3.95 93 86
175 450 x x x x x X x x x x x x x X – 39.36 0 7.98 44.46 – 93 14
176 451 X x x x x X x x x x x x X X – 32.85 0.59 16.8 37.91 – 93 29
177 452 X X X X x X x X x x x x X X – 41.45 0.18 18.3 39.42 – 93 57
178 453 X X X X X X x X X X x X X x – 38.6 2.58 18.55 28.11 – 93 79
179 455 X X X X X X x X X X x X X x – 43.77 2.93 19.96 24.19 – 93 79
180 456 X X X X x X x X X x – x X x – – 0.03 13.38 34.09 – 87 62
181 458 X X X X X X x X X x – x X x – – 0.1 18.2 23.4 – 87 69
182 460 X X X X X X X X X X – x X x – – 0.45 22.28 23.04 – 87 85
183 461 X X X X X X x X X X – x X x – – 0.42 17.93 7.93 – 87 77
184 462 X X X x X X x X X x – – X – – – – 13.3 – – 73 73
185 466 X X X X X X X X X X – – X – – – – 13.76 – – 73 100
186 467 X X X X X X x X X X – – X – – – – 16.66 – – 73 91

% valid 100 100 100 100 100 100 100 100 100 100 81 92 100 92 65
% motion if valid 59 73 79 55 44 69 10 75 67 63 38 28 51 64 46



H
Outline Matlab-routines

For clarification on the methodology followed or for further research it might be of use to know how post-
processing was performed. Matlab was used for this purpose. This appendix contains the outline of the most
important routines.

H.1. Convergence tests
The convergence tests are described in section 3.3 and appendix D. Similar approaches were used for the three
types, i.e. convergence test on flume length, cell width and cell height.

Settings and initialization
For each case:

For each common gauge:
Read and parse the velocity data
Resample data on time steps of the longest flume length
Time shift so that all records start at the 5th peak

For each case except reference:
For each common gauge:

Per y-level:
Calculate maximal peak difference compared with the base case
Determine relative error

Plot maximal differences over a flume (profiles)
Plot relative error per gauge-case-couple over a flume
Plot mean relative error per case against convergence parameter

H.2. NK09 tests
The NK09 tests are used for the evaluation of ih-2vof, see chapter 4. Target is to compare numerical data
(via ih-2vof), physical data (from the Nammuni-Krohn (2009) dataset) and analytical solutions (according to
linear wave theory and shoaling, and according to Van Gent and Van der Werf (2014)). The scripts for regular
and irregular wave tests are almost identical, though for the latter the 2% value of the peaks is used rather than
the average.

Settings and initialization
Load case properties
For each calculated case:

Initialize output storage
Load gauge data (u, η , x and y ) either by parsing the ih-2vof output files or by loading previously parsed data
Couple numerical and physical gauge positions
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Determine mean peak velocities at each gauge:
Split the records at their downcrossings using wafo
Find minima and maxima of each single wave
Get mean and standard deviation

Determine spectral properties, reflection and the VG14-velocity:
Obtain the offshore η records and normalize them in time
Decompose them by Zelt and Skjelbreia (1992)
Calculate spectrum of incoming, reflected and total η using wafo
Get wave properties using wafo
Find the reflection coefficient from the spectra
Calculate the reflection coefficient by Zanuttigh and Van der Meer (2007)
Obtain the orbital flow velocity according to Van Gent and Van der Werf (2014)

(Irregular:) Draw the wave spectrum at certain gauges
Obtain the orbital flow velocity with linear wave theory and shoaling using H /2
Estimate the error range of u using ar
Obtain and plot the velocity envelope profiles

Plot certain wave records
Draw production plots ( H , T , ...)
Draw comparison plots ( Kr , H , ...)
Draw bulk peak velocity plots

H.3. Eb09 tests
In the Eb09 tests all stability methods and motion formulae are applied on the numerical data produced by
ih-2vof. Considerable effort is made to reduce computation time by optimizing loops, using matrix evaluations
and by using temporary storage of data. Each case is analysed multiple times for the sensitivity analysis.

Settings and initialization
Define situations
Load case properties
For each calculated case:

Load gauge data (u, η , k, x and y ) either by parsing the ih-2vof output files or by loading previously parsed data
If not stored previously (otherwise loaded):

Determine additional case properties (yt , n, ...)
Derive wave properties:

Obtain offshore η records and normalize them in time
Decompose them by Zelt and Skjelbreia (1992)
Calculate spectrum of incoming η using wafo
Get necessary wave properties using wafo and the dispersion relation
Do the above once again for the onshore η records

Store case- and wave properties
For each situation:

For each stability method and motion formula:
Check whether the situation has been calculated previously. If so, copy the result to this situation
and continue with the next method/formula
Find stability according to the method/formula
For motion formulae: also obtain the motion percentage
For motion formulae: use temporary storage files with values for Ψ, to be used in other situations

Compose the motion table
Compose the prediction table
Compose the sensitivity table



I
IH-2VOF logbook

This appendix contains a brief logbook of the work with model ih-2vof. During the Master’s thesis project
some problems and drawbacks were encountered, which are described here. The source code of the model has
been adapted to fulfil the project needs.

I.1. Investigating parallel computing possibilities
The latest version of ih-2vof was downloaded (distributed on July 28th 2014). It contained the Matlab-GUI
and the compiled IH_2VOF.exe with original source code. The IH_2VOF.exe-calculation program is written
in Fortran 90 and C++.

From some test runs and by observing the code it appeared that the software is not designed to work on
parallel computing systems: a simple test case was up to 30% slower on an Intel Core i5 processor with all
four cores enabled, than when the program was run on a single core. Running the program on a single core
on a Windows 7 computer is achieved by changing the processor affinity for the IH_2VOF.exe-process in the
Windows Task Manager. This observation was also confirmed by running three simulations simultaneously:
letting them run together on four cores did not increase total processor power used compared by letting them
run on a single core each. It is quite logical that the program does not lend itself to parallel computing, since
every new time or iteration step is dependent on the previous.

Setting priority for this process to ‘high’ (also in the Windows Task Manager) improved calculation power
as well. Running four separate instances on four dedicated cores simultaneously would likely be most efficient,
though this was not the case. Windows needs some CPU power for maintaining its basic functionality.

I.2. Compiling source code
Since the source code was also distributed, it was possible to make adaptations to the program. For this an
appropriate compiler was needed. According to the makefile the free GNU Fortran compiler (gfortran1 ) can
be used. The compiler was obtained via the TDM-GCC-C64 compiler suite2 for 64-bit Windows. The suite
also contains the required C++ compiler.

The makefile was changed slightly by adapting Linux bash commands to Windows batch commands. The
compiler is typically called as follows:

– mingw32-make clean (deletes all compiled files for a fresh compilation)
– mingw32-make mode=opt compiler=gfortran IH2VOF (normal compilation)

In makedirectory.cpp the following adaptation was required:

if (!(*status = mkdir(path, S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH)))

return;

becomes
1https://gcc.gnu.org/wiki/GFortran
2http://tdm-gcc.tdragon.net/, uses MinGW
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//if (!(*status = mkdir(path, S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH)))

return;

if (!(*status = mkdir(path))) return;

Unfortunately the gfortran compiler produces a slower program than the original program distributed by IH
Cantabria. The latter was probably compiled with the commercial Intel Fortran compiler, which logically
produces faster code for Intel processors1. It was tried to add additional compiler options, though this did not
make a large improvement. The final set of options is the following: -O3 -fno-range-check -ffast-math

-flto -funroll-loops.
It appeared that the compiler makes use of some external shared libraries (libgcc_s_seh64-1.dll, libgfortran_

64-3.dll, libquadmath_64-0.dll and libstdc++_64-6.dll) which should be added to the Windows\System32
folder to let IH_2VOF.exe run properly. This can be overcome by compiling the IH_2VOF.exe file with the
-static option. A single, transferable file is then obtained.

I.3. Improving model performance
Some small changes to the ih-2vof calculation program were made to make it more efficient for this research.
First of all an estimation of remaining computation time was implemented. For this CPU (real) time and
model time are stored over the last 200 calculation steps. Remaining CPU time is then estimated by mul-
tiplying remaining model time with the ratio of averaged CPU and model time passed over the last 200 steps.
Since ∆t of each step changes during simulation, this may be a rude approximation. Some tests show however
that the approximation seems to be working quite fine, as it is a linearly declining function of the simulation
step, see figure I.1. For irregular waves more variation is present, but a trend line can be obtained by using
simple linear regression. From figure I.1 it can be observed that time estimation raises in the beginning of the
simulation. This coincides with the time required for the first wave to travel through the full numerical flume.
Afterwards fluctuations of the estimation around the linear mean are visible, which is indeed result of changes
in ∆t .

Step
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Irregular waves

Figure I.1: Estimation of the simulation durations in two cases (scaled)

The next change was to let the executable accept command line arguments. This is not of use when only
the GUI is used for running simulations, but it is a very practical tool when running simulations from the
command line. The syntax on a Windows computer is as follows:

IH_2VOF.exe help

IH_2VOF.exe inputfile [option1] [option2] [...]

1http://www.polyhedron.com/fortran-compiler-comparisons

http://www.polyhedron.com/fortran-compiler-comparisons


I. IH-2VOF logbook 151

With the help argument a list with possible options is displayed. The order is not important, except for the
position of inputfile.

A trial to reduce computation time was to hide screen output after each calculation step, which requires
some CPU power. With the reduceOutput option output is show nonly every 100 steps. It appeared that
computation time in a benchmark was reduced with less than 5%, so it is no major improvement, though it
improves readability.

It was observed that every 0.1 s of simulation time the calculation halted for a short period. This coincides
with the setting that VOF, u, v and p data over the whole domain should be written at 10 Hz. Writing such
large matrices to a hard drive requires a lot of time and should be avoided if they are not of interest. Using
a solid state disk seems to be no major improvement. By code analysis it was found that nearly all output
files were opened, written to and closed every calculation step. The gfortran compiler uses a small write
buffer (which should reduce the number of times data are written to the hard disk), but this buffer is flushed
every time a file is closed. A major improvement was thus to take the open and close commands for output
files out of the calculation loop, to the front (readinput.f90) and back (IH_2VOF.f90) of it. This improved
computation time with nearly 50% in a benchmark.

In light of previous observations option noEnvelope was added, which inhibits writing out these data. This
can eventually also be achieved by adjusting the input file.

When (broken) turbulence calculation was switched on, the program would write out two sets of k
matrices. In Turbulence/info_k.out the k-matrix is written at each time step. When also write_k = true

the same matrix is written to filesK/k#.txt at 10 Hz. The first was considered to be of no use and was pro-
grammatically inhibited.

Ruben Peters was interested in the pressure data at certain locations. This was only possible by writing
out p matrices of the whole domain and by applying post-processing. As described above this lowers cal-
culation efficiency. With option sensorPressure pressure data at wave gauges are also stored, in a similar
fashion as velocities at these gauges. This option requires that one or more gauges are installed and that velo-
cities are calculated at these gauges, which is standard with the GUI. The same effect is obtained by adding
sensor_pressureON = .true. in the input file, after sensor_velocityON = .true.

Exactly the same output was also made available for the turbulence intensity k. The option sensorK and
input configuration sensor_kON = .true. were made available.

I.4. Turbulence issues
During research it was discovered that turbulence calculation in ih-2vof did not work properly. See §3.5 in
this report for a detailed explanation. The essential defects are the following:

– In IHC_2VOF.F90 the flags representing the turbulence models are set before the input file is read
– In IHC_2VOF.F90 the call to CSTRESS() is passed argument KEModel instead of kemodelAux
– The GUI configures the (isotropic) k-ε model, but this is not supported by CStress.cpp

When turbulence is switched ‘on’ one obtains instantaneous production of turbulence based on the ‘seed’
described in IH Cantabria (2012). Also note that output in the filesK-folder is not value k, but value

√
2k.

I.5. Additional adaptations and observations
During model runs, some observations and adaptations were made, which could be interesting for model use
in subsequent research. They will be shortly discussed here.

Time estimation storage Program option saveEstimation was created, which stores estimations per time
step shown in file timeEst.out. One can read this file with e.g. Excel to perform linear regression while the
model is running.

Option ‘endtime’ Since it can happen that a simulation takes too much time, a special option endtime was
added to the ih-2vof command options. When system time reaches the time specified with this option, the
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model will stop its calculations as if model end time is reached. This is useful when running the model in
batch mode on computers which should be available again at a certain time.

Lock file When the model starts, it will create a lock file called lock.lock. The file contains the start time
of the model and it will be deleted automatically when the model exists normally. It can be used as an indicator
of whether the model is still running. Note that the file is not deleted when the program crashes.

Sensor positions in the input file By accident it was discovered that sensor x -positions in the input file
should be in ascending order. If not, the parameter will be zero over all time steps. x -positions are defined at
the xout_fs and xout_v definitions. Additionally it was discovered that the minimal sensor distance should
be larger than the local ∆x . If not, also zero-values were stored. All NK09-simulations had to be redone due
to these unreported issues.

It was decided to rewrite this part of the code. Now for each gauge position the nearest cell border is taken.
No ascending order is required anymore.

Calculation speed With the optimized model performance as described above, an average of 0.5 – 1.0 milli-
seconds per grid cell and per model second are required for computation, if the domain is filled with water
for about 50%. So if a run with 50 000 cells should simulate 90 seconds, it requires about 2250 – 4500 seconds
of computation time. The graph in figure I.2 shows this value for 166 runs. The high peaks are result of
non-converging runs or occupied computers. Of course this speed is highly dependent on the CPU. Most of
the simulations were done with quad-core Intel Core i5 processors. The speed is also depending strongly on
how much water is present in the domain: water-filled cells require more calculations than air-filled cells and
porous cells more than air-filled.
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Figure I.2: Typical simulation speeds with both regular and irregular waves. About 50% of the domain filled with water.

Non-converging simulations Some simulations did not run properly. A first problem was a non-converging
iteration. This is observed very quickly, as in the first steps dt diminished until it reached its minimum value.
An error message is shown and calculation stops. The error occurred when the right boundary was put
directly at the end of the breakwater, i.e. there was no gap with water behind the breakwater. By adding some
space (a couple of centimetres) behind the breakwater, the problem was solved. Probably the model is not
capable of having a porous boundary at flume edges, since solid boundaries gave no problem.

A second problem arose with the model runs NK09ir_707, 727, 747 and 767. They all had the same grid
configuration and wave parameters. For an unknown reason the took a very long time and did not seem to
get solved properly. In figure I.3 the time estimations can be seen. There appear to be phases in which the
calculation returns in some kind of a loop, seen at flat regions. The large number of cells was not a problem,
since runs with even more grid cells did finish normally. By adapting cell configuration (i.e. L/∆x and H /∆y
values) cases could run properly.

Additional turbulence parameters With option addTurbOutput matrix values for ε and νt are also written
to the filesK-folder. They can be used for additional post-processing.
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Figure I.3: Estimation of simulation durations with non-converging cases

Paddle definition Similar problems as with the turbulence calculation are present for the paddle defini-
tion. Flag ncenterAux is defined by paddle type, but the flag is also set before the input file is read. Also a
typographic error is present, by which the flag for a static paddle will never be set.



J
Short manual for batch runs

For this research a lot of simulations had to be made. Computational performance of ih-2vof is best when it
runs on a single computer. With Windows batch files one can easily set up a lot of simulations on multiple
computers. This appendix gives a short guide to running the simulations in batches. Extensive information
on batch files can be found on http://ss64.com/nt/ and http://en.wikibooks.org/wiki/Windows_

Batch_Scripting.

J.1. Overview
With help from Kevin Geboers, IT manager at the faculty of Civil Engineering, a batch run system was set up.
All case input files were stored on a server in folders, together with a launch script. A single batch script was
then started on all computers in a computer room, at a defined date and time, by means of a client management
system. The script is run from an administrator account. The computer has a certain name (hostname) which
is read by the batch script. It chooses a set of cases assigned to that very computer via a large selection tree.
For each case in this set the launch script is run. This script copies all necessary files from the server to a local
work folder and starts the ih-2vof model. During model calculations the time estimation file timeEst.out is
copied to the server every 10 seconds for monitoring purposes. When the model finishes, all necessary files are
compressed and copied back to the server. The local work folder is deleted and the originating batch script is
informed that the case has finished. When all cases on that particular computer have finished, the batch scripts
finalizes. Figure J.1 gives an overview of the configuration.

In the code hereafter some comments are given. They start with :: and are coloured in purple. Where
the line continues, a → mark is placed. When testing scripts it can be useful to disable the line echo off.
Directories should be chosen according to the system used. Compression is done using the command line
version of program 7-Zip1, called 7za.exe. Logging by ih-2vof to the command window is captured and
stored in log.txt with the utility Wintee2, called wtee.exe.

J.2. Batch script
echo off

set workfolder=C:\work\folder

set serverfolder=\\server.nl\path\to\folder\with\cases

:: Go to the work folder

echo Creating work folder...

if exist %workfolder% rmdir /Q /S %workfolder%

mkdir %workfolder%

cd /D %workfolder%

1http://www.7-zip.org/
2https://code.google.com/p/wintee/
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Figure J.1: Batch run configuration

:: Read the computer's hostname

echo Reading hostname...

hostname > hostname.txt

set /p hostname=< hostname.txt

echo Hostname of this computer: %hostname%

:: Filter out the correct cases for this computer

if /I "%hostname%" == "HOST001" (

set _case1=Eb09_172

set _case2=Eb09_173

set _case3=Eb09_174

goto runit )

if /I "%hostname%" == "HOST002" (

set _case1=Eb09_175

set _case2=Eb09_176

set _case3=Eb09_177

goto runit )

:: Additional cases can be set up by adding blocks similar to these above

:: When no case is assigned to this computer: end the script

goto stop

:runit

:: Transfer the launch script, wtee.exe and 7za.exe to the work folder

echo Initialize work folder...

copy %serverfolder%\launchscript.bat %workfolder%

copy %serverfolder%\wtee.exe %workfolder%

copy %serverfolder%\7za.exe %workfolder%

:: Create monitoring folder

if not exist "%serverfolder%\TimeEstimation" mkdir "%serverfolder%\TimeEstimation"

:: Start the launch scripts for each case
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:: For debugging: replace /C by /K

:: The 4 arguments are passed to the launch script (see its description)

echo Start cases...

start "%_case1%" cmd /C launchscript "%_case1%" "%serverfolder%" "%workfolder%" 1

if defined _case2 start "%_case2%" cmd /C launchscript "%_case2%" "%serverfolder%" →
"%workfolder%" 2

if defined _case3 start "%_case3%" cmd /C launchscript "%_case3%" "%serverfolder%" →
"%workfolder%" 4

:: Wait until all cases are finished (all case folders deleted)

:: Transfer the timeEst.out file every 10 seconds

:wait

set stillrunning=0

timeout 10

if exist "%workfolder%\%_case1%" (

copy "%workfolder%\%_case1%\timeEst.out" "%serverfolder%\TimeEstimation →
\%_case1%_timeEst.out"

set stillrunning=1

) else (

del "%serverfolder%\TimeEstimation\%_case1%_timeEst.out"

)

if defined _case2 (

if exist "%workfolder%\%_case2%" (

copy "%workfolder%\%_case2%\timeEst.out" "%serverfolder%\TimeEstimation →
\%_case2%_timeEst.out"

set stillrunning=1

) else (

del "%serverfolder%\TimeEstimation\%_case2%_timeEst.out"

)

)

if defined _case3 (

if exist "%workfolder%\%_case3%" (

copy "%workfolder%\%_case3%\timeEst.out" "%serverfolder%\TimeEstimation →
\%_case3%_timeEst.out"

set stillrunning=1

) else (

del "%serverfolder%\TimeEstimation\%_case3%_timeEst.out"

)

)

if "%stillrunning%" == "1" goto wait

:: All cases are finished and output is transferred

:stop

echo Remove work folder...

cd..

rmdir /Q /S %workfolder%

echo Done!

exit

J.3. Launch script
:: %1 is the case name (and folder)

:: %2 is the server folder (source)

:: %3 is the work folder (target)

:: %4 is the CPU affinity

echo off
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set casename=%1

set workfolder=%3

set casefolder="%~3\%~1"

set serverfolder="%~2\%~1"

set aff=%4

:: Create case folder within work folder

mkdir %casefolder%

cd /D %casefolder%

:: Transfer input files from server to case folder

echo Copying files to case folder...

copy %serverfolder%\*.in %casefolder%

copy %serverfolder%\IH_2VOF.exe %casefolder%

copy %serverfolder%\input %casefolder%

copy %serverfolder%\Mesh.mes %casefolder%

del /Q lock.lock

:: Start IH-2VOF with high priority

echo Starting IH_2VOF...

start /b /high /affinity %aff% IH_2VOF.exe input endtime 2014-10-25-12:15:00 reduceOutput →
noEnvelope saveEstimation sensorK | "%~3\wtee.exe" log.txt

:: IH-2VOF finished. Compress required output with 7-Zip (7za.exe) to a .zip file

%workfolder%\7za.exe a %casename%.zip -tzip timeEst.out log.txt xc_info.out yc_info.out →
Sensor_freeSurface Sensor_uHorizontal Sensor_K

:: Copy the required output files back to the server

copy %casefolder%\%casename%.zip %serverfolder%

copy %casefolder%\log.txt %serverfolder%

:: Delete case folder

cd..

rmdir /Q /S %casefolder%

echo Done!

:: This file is exited automatically
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