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Summary

Accurate quantification of in vivo knee kinematics is essential for understanding joint health and dis-
orders such as osteoarthritis. Optical motion capture (MoCap) is widely used in gait analysis, but
its accuracy is compromised by soft tissue artefacts, limiting bone-level precision. Fluoroscopy pro-
vides direct skeletal visualization, yet it faces several limitations, including the high sensitivity of 2D–3D
registration to initial pose estimation and the reliance on manual bone segmentation. Moreover, the
potential of combining MoCap with fluoroscopy, particularly the role of MoCap in initializing registration
for fluoroscopic knee tracking during walking—remains underexplored.

The aim of this study is to develop and evaluate a multimodal framework that integrates MoCap with
single-plane fluoroscopy to improve automatic 2D–3D bone registration during dynamic gait analysis.
Specifically, the framework addresses three challenges: (1) temporal synchronization and spatial cali-
bration of themultimodal system, (2) MoCap-based initial pose estimation, and (3) deep learning–based
automated femur segmentation.

A synchronized acquisition setup was implemented, simultaneously recording 100 Hz MoCap data and
15 Hz fluoroscopic images during treadmill walking. Sub-frame temporal alignment was verified through
a pendulum experiment. Spatial calibration was achieved using a rigid marker box and solved via the
Perspective-n-Point algorithm, while a dynamic correction procedure was introduced to update cam-
era pose across trials using rigid markers attached to the X-ray source. For initialization, anatomical
reference cubes were constructed from both MoCap markers and segmented MRI data, and rigid reg-
istration between these cubes enabled transformation into the fluoroscopy frame. The resulting initial
pose was refined using a two-stage optimization algorithm and evaluated against a reference initializa-
tion across four trials. MoCap-based initialization produced anatomically plausible in-plane alignment
(mean error < 8 mm, < 16°), but consistently showed a systematic depth offset of 30–40 mm.

To reduce reliance on manual annotation, a 2D nnU-Net segmentation model was trained on six manu-
ally annotated fluoroscopic images. Despite the limited dataset, the model demonstrated good anatom-
ical plausibility, confirming its potential for automated workflows.

In conclusion, this thesis establishes amultimodal framework that combinesMoCap-based initialization,
dynamic camera calibration, and deep learning–based segmentation. The evaluation demonstrates
both feasibility and limitations, providing a reproducible basis for quantitative analysis of dynamic knee
kinematics and opening new avenues for more automated and personalized assessment of joint disor-
ders.
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1
Introduction

1.1. Background and Motivation
Osteoarthritis (OA) is a common chronic degenerative joint disease, with the knee joint being the most
frequently affected site. It often leads to joint pain, restricted mobility, and a substantial reduction in
quality of life [1, 2]. Numerous studies have demonstrated that abnormal mechanical loading and joint
biomechanics play a critical role in both the onset and progression of OA. [3, 4] . Therefore, accurately
characterizing the three-dimensional (3D) kinematics of the knee under physiological conditions is es-
sential for understanding OA pathogenesis, evaluating treatment outcomes, and developing preventive
strategies.

Various techniques have been developed to analyze joint motion, each with its own strengths and
limitations. Conventional imagingmodalities such asmagnetic resonance imaging (MRI) and computed
tomography (CT) provide high-resolution anatomical details but are typically restricted to static postures
and are not suitable for dynamic activity analysis [5]. Even emerging dynamic CT imaging remains
limited by temporal resolution, radiation dose, and restricted field of view, making it applicable only to
small, controlled motions [6].

In parallel, non-invasive optical motion capture (MoCap) systems have become widely used in biome-
chanics research. MoCap offers high temporal resolution and the ability to capture large ranges of
motion, enabling the collection of whole-body kinematic data during activities such as walking, and
it remains a primary tool for gait experiments and movement analysis [7]. However, MoCap tracks
reflective markers attached to the skin surface rather than the bones themselves, and is therefore sus-
ceptible to soft tissue artifact (STA), the relative motion between skin or soft tissue and the underlying
skeleton. STA introduces systematic errors into kinematic measurements, with reported displacements
of 0.8–14.9 mm and rotational errors of 1.6°–22.4° [8]. Such errors are unacceptable when bone-level
accuracy is required [9]. Although various STA correction approaches have been proposed, such as
optimized marker placement strategies or the incorporation of kinematic constraints, STA remains a
major limitation in high-precision joint kinematic analysis [10, 11].

1.2. Fluoroscopy and Key Technical Limitations
Fluoroscopy is a medical imaging technique that continuously emits a low-dose X-ray beam through
the body and projects the transmitted radiation onto a detector. This process produces a real-time se-
quence of two-dimensional (2D) images that visualize internal structures. Unlike MoCap, fluoroscopy
can directly measure skeletal motion without being affected by STA [12]. However, fluoroscopic images
represent only 2D projections of the underlying bones, to extract the actual 3Dmotion, these 2D images
must be registered to subject-specific 3D bone models, a process known as 2D–3D registration. The
core principle involves projecting the 3D bone model, under a candidate pose, onto the fluoroscopic
image plane to generate a digitally reconstructed radiograph (DRR). A similarity metric is then used
to evaluate the correspondence between the DRR and the acquired fluoroscopic image [13]. Through
iterative optimization, the model parameters are adjusted to maximize similarity until convergence is
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1.2. Fluoroscopy and Key Technical Limitations 2

reached, at which point the estimated model pose is assumed to represent the in vivo position and
orientation of the bone. Combined with high-resolution subject-specific CT or MRI models, this regis-
tration framework has been widely adopted to reconstruct in vivo joint kinematics during dynamic tasks
[14].

Depending on the imaging configuration, fluoroscopy systems can be implemented as either single-
plane or biplane. Single-plane fluoroscopy is more common due to its simpler setup, lower cost, and
reduced radiation exposure. Nevertheless, the lack of depth information makes accurate 3D recon-
struction more challenging because under a single view, bone poses at different depths may produce
similar projection contours. Biplane fluoroscopy acquires images from two orientations and thereby
reduces, but does not fully resolve, depth-related ambiguities. It also introduces greater system com-
plexity, higher cost, and increased radiation dose [15]. Overall, 2D–3D registration provides a powerful
framework for reconstructing skeletal kinematics from fluoroscopy during dynamic tasks. Yet, several
well-recognized challenges remain unresolved. Two specific limitations most relevant to this study are
discussed below.

Sensitivity to Initial Pose Estimation

Despite significant progress in the field, initial pose estimation remains one of the central challenges in
2D–3D registration. Initial pose is a coarse approximation of the bone’s spatial position and orientation
before optimization begins. Since the registration process relies on a similarity-based objective function,
which is often highly nonlinear and prone to local minima, the optimization must be initialized close to
the true pose in order to increase the likelihood of converging to the correct solution [16].

In current clinical practice, it is common for operators to manually adjust the 3D bone model to achieve
a rough alignment with the X-ray images, thereby providing an initial pose. However, such manual
initialization increases both procedural complexity and time, and in intraoperative scenarios, it may
also disrupt the surgical workflow [17, 18]

To overcome these limitations, researchers have proposed various automatic initialization strategies.
One approach is to use external tracking devices, such as preoperative or intraoperative localizers,
to provide a reasonable initial alignment [19, 13]. Although effective in surgical navigation, such ap-
proaches have not been widely applied in dynamic joint kinematics studies. Another approach relies on
image information itself. For example, template-matching methods compare a set of pre-generated pro-
jection templates with the fluoroscopic image and select the most similar pose as the initialization [17,
20]. More recently, deep learning–based methods have emerged, in which neural networks are trained
to directly or indirectly predict pose parameters [21, 22]. While these learning-driven approaches show
great promise, they still suffer from high failure rates and limited generalizability in complex clinical en-
vironments. Moreover, most of these methods have been developed in intraoperative contexts for the
hip or spine, whereas initialization strategies for dynamic knee analysis remain scarce. Thus, achieving
robust and accurate automatic initialization remains an unsolved challenge.

Challenges in Bone Segmentation

Another critical factor affecting the accuracy of 2D–3D registration is the quality of bone contour ex-
traction from fluoroscopic images. Many registration algorithms assume that the target bone contours
can be reliably segmented from the X-ray image. However, fluoroscopic knee images often suffer from
low contrast, overlapping anatomical structures, and image noise, which can blur bone boundaries and
cause confusion with surrounding tissues [23]. These limitations make direct and accurate segmenta-
tion difficult.

In recent years, deep learning has emerged as the predominant approach for medical image segmen-
tation, with convolutional neural networks (CNNs) consistently achieving state-of-the-art performance
across diverse imaging modalities [24, 25]. Notably, the U-Net architecture introduced by Ronneberger
et al. (2015) and the self-adapting nnU-Net framework developed by Isensee et al. (2021) [26] have
established new benchmarks for segmentation accuracy in a wide range of medical imaging tasks.
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1.3. Laboratory Setup and Research Questions
A multimodal measurement system has been established in our laboratory, integrating a single plane
fluoroscopy system, a MoCap System, and a treadmill to enable synchronized acquisition of dynamic
knee motion. This setup allows simultaneous recording of high-precision skeletal images and whole-
body kinematics during activities such as walking and running, providing a robust foundation for the
study of joint biomechanics. Previous studies have shown that combining optical tracking with biplane
fluoroscopy enables direct quantification of tibiofemoral kinematics during dynamic daily activities [12].
Nevertheless, the practical implementation of such multimodal integration, particularly in the context
of single-plane fluoroscopy, remains largely unexplored. MoCap offers the advantage of capturing
whole-body motion patterns, while fluoroscopy provides bone-level imaging accuracy; together, they
hold great potential to advance 2D–3D registration of dynamic knee motion.

Despite these capabilities, the current 2D–3D registration pipeline in our laboratory still faces the two
challenges: the algorithm requires manual initialization of the knee pose, and bone segmentation in
fluoroscopic images relies on manual annotation. These steps are time-consuming and limit both effi-
ciency and scalability.

To address these limitations, the present study aims to enhance the automation of the registration
workflow through two strategies. First, MoCap data are integrated into the pipeline by synchronizing
the two systems, thereby providing an initial estimated pose for registration. The second strategy
is to employ deep learning models for automatic bone segmentation in fluoroscopic images, thereby
reducing reliance on manual annotation and improving efficiency.

Although recent studies have attempted to improve nnU-Net by incorporating attention mechanisms,
additional loss functions, or hybrid architectures [27, 28, 29], the original framework has consistently
demonstrated remarkable robustness. Therefore, this study deliberately adopts the unmodified 2D
nnU-Net as a baseline, emphasizing practicality over architectural innovation. The focus is to evaluate
whether a fully automated nnU-Net pipeline can provide reliable femur segmentation in fluoroscopic im-
ages with minimal user intervention. Given the limited size of the training dataset and the high anatomi-
cal consistency of the femur [30], we further hypothesize that nnU-Net’s built-in data augmentation and
adaptive configuration will be sufficient, making segmentation performance primarily dependent on the
quality and representativeness of the training images rather than on model complexity.

Accordingly, the scope of this study focuses on the following three aspects:

1.System Synchronization and Calibration: What level of temporal and spatial synchronization ac-
curacy can be achieved with this multimodal setup?

2.Initial Pose Estimation: How accurately can synchronized MoCap data provide initial pose esti-
mates for each fluoroscopic frame during dynamic tasks?

3.Bone Segmentation: What is the feasibility of training a deep learning model to automatically seg-
ment bones in low-contrast fluoroscopic images using only a small set of manually annotated data?

1.4. Thesis Outline
The remainder of the thesis is organized as follows:

Chapter 2: Description of the experimental setup, data synchronization and calibration, initial pose
estimation pipeline, and segmentation model training process.

Chapter 3: Presentation and analysis of experimental results, including calibration accuracy, registra-
tion performance, and segmentation outcomes.

Chapter 4: Discussion of the findings, limitations of the current approach, and possible directions for
future improvement.

Chapter 5: Conclusions.



2
Methods

2.1. System Synchronization and Calibration
To ensure that MoCap data can be meaningfully integrated with fluoroscopic imaging, it is essential to
establish both temporal and spatial synchronization between the two systems. This section outlines the
multimodal acquisition setup, the strategies used for synchronization, and the calibration procedures
for recovering camera geometry. Together, these steps provide the necessary foundation for reliable
MoCap-based initial pose estimation in 2D–3D registration.

2.1.1. Experimental Setup and Temporal Synchronization
Kinematic data were recorded at 100Hz using a ten-camera optical motion capture system (Vicon,
Oxford, UK). Participants walked on a 1× 2m dual-belt instrumented treadmill (M-Gait, Motek, Nether-
lands) during data acquisition. Fluoroscopic images were acquired at 15Hz using a single-plane fluo-
roscopy system (Adora DRFi, Canon Medical Systems Europe, Netherlands).

To synchronize fluoroscopy with MoCap, an electrical pulse was sent from the X-ray tube to the MoCap
system at each exposure, allowing the exact MoCap frame corresponding to every fluoroscopic image
to be identified. The accuracy of this synchronization approach, however, remains to be validated.

2.1.2. Assessment of Temporal Synchronization
To assess the temporal synchronization, a pendulum experiment was conducted. A reflective MoCap
marker was suspended from a fixed point and allowed to oscillate freely within the field of view of the
fluoroscopic system. The motion of the marker was simultaneously captured by both the fluoroscopy
and the MoCap systems.

In the fluoroscopy image sequence, the marker appeared as a circular object in each frame. Its vertical
position was automatically extracted by applying the Hough Circle Transform (cv2.HoughCircles in
Python OpenCV) to detect the circular contour and then computing the centroid. This centroid height
was interpreted as the 2D vertical coordinate of the marker within that frame. An example frame is
shown in Figure 2.1.

On the MoCap side, the 3D position of the same marker was recorded continuously at 100Hz. The
full trajectory was retained, and the vertical component (Z-axis) was extracted. In addition, the time
points of the synchronization pulses received by the MoCap system were recorded and marked along
this trajectory.

The vertical trajectories retrieved from bothmodalities were processed for comparison. The fluoroscopy
trajectory was interpolated to match the MoCap sampling rate using cubic splines. Both were nor-
malized to the range [0, 1] to eliminate amplitude differences. Two complementary analyses were
performed. First, after setting the first pulses as time zero, the relative temporal differences between
fluoroscopy frame timestamps and the corresponding MoCap pulse timestamps were calculated. The
mean, standard deviation, andmaximum error were reported. Second, a cross-correlation analysis was
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2.1. System Synchronization and Calibration 5

Figure 2.1: Example fluoroscopy frame showing the circular marker detection used for 2D vertical position extraction. The
centroid of the detected region (red dot) was computed and used as the marker’s vertical position.

conducted between the interpolated fluoroscopy trajectory and the MoCap trajectory. Prior to analysis,
both signals were mean-centered. Correlation coefficients were computed as a function of temporal
lag within ±50 ms, corresponding to ±5 samples at 100 Hz.

2.1.3. Spatial Synchronization: Intrinsic and Extrinsic Camera Calibration
The projection of 3D world coordinates onto a 2D fluoroscopic image is governed by the camera’s
intrinsic and extrinsic parameters. The intrinsic parameters define the internal geometry of the imaging
system, including focal length and principal point. The extrinsic parameters represent the position and
orientation of the x-ray camera with respect to the MoCap coordinate system.

Intrinsic Parameters. The intrinsic matrix K was computed based on recorded imaging geometry.
Assuming square pixels and a centered principal point, the focal length in pixel units was calculated as

fx = fy =
SID

pixel spacing
.

Let (cx, cy) denote the image center. The intrinsic matrix was defined as:

K =

fx 0 cx
0 fy cy
0 0 1

 .

The source-to-image distance (SID) was recorded individually for each trial, and the intrinsic matrix was
updated accordingly.

Extrinsic Parameters The extrinsic parameters (R, t) define the rigid transformation from world co-
ordinates (MoCap system) to camera coordinates:

Pcamera = R ·Pworld + t

These were estimated through a calibration experiment using a rigid box equipped with reflective mark-
ers. The 3D positions of the markers were tracked in the MoCap system, while their corresponding 2D
projections were annotated in fluoroscopy images (Figure 2.2).

Using these correspondences, the camera pose was estimated via the Perspective-n-Point (PnP) al-
gorithm. The PnP problem refers to the task of recovering the position and orientation of a calibrated
camera from n known 3D points in world coordinates and their corresponding 2D projections on the
image plane. Mathematically, the problem is to find the rotation matrix R and translation vector t that
minimize the reprojection error between the observed 2D points pi and the projected points:

pi ∼ K · (R ·Pi + t)
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wherePi are the known 3D points in world coordinates,K is the intrinsic matrix, and∼ denotes equality
up to a scale factor in homogeneous coordinates.

In this work, OpenCV’s solvePnP function was employed with the iterative Levenberg–Marquardt opti-
mization method. Zero lens distortion was assumed, which is justified by the use of a flat detector panel
instead of an image intensifier, minimizing geometric distortion. This yielded the extrinsic parameters
describing the transformation from MoCap to camera coordinates.

Figure 2.2: Box calibration experiment for estimating extrinsic parameters. 3D marker positions were recorded by the MoCap
system, while corresponding 2D projections were identified in the fluoroscopy image.

2.1.4. Adjusting for Camera Movement
During experimental sessions, the physical configuration of the fluoroscopy system was not fixed: the
X-ray source and image intensifier were frequently repositioned between trials to accommodate varying
imaging angles or subject positioning. These changes led to variations in the extrinsic parameters of
the imaging system, and occasionally in the intrinsic parameters when the SID was altered. Without a
correction mechanism, such changes would necessitate performing a full camera calibration for each
trial, which would substantially increase the experimental workload.

To address this limitation, a correction procedure was implemented that allowed the camera parameters
to be updated based on the motion of a rigid marker cluster attached to the X-ray source and detector
of the fluoroscopy system, thereby eliminating the need for repeated full calibration. This approach
enabled flexible and efficient projection without sacrificing accuracy.

Rigid Transformation from Tube Markers
A cluster of reflective markers was rigidly affixed to the X-ray tube housing. These markers maintained
a fixed spatial relationship with the imaging system and were tracked by the MoCap system during the
initial calibration and throughout all subsequent trials.

Since the X-ray tube was repositioned as a rigid body between trials, the motion of the attached marker
cluster reflected the spatial transformation of the imaging system. By comparing the marker positions
recorded during each trial with those from the calibration session, the rigid-body transformation was
computed. This transformation, denoted Tcc, captured both translational and rotational changes in the
camera pose in the MoCap coordinate system.

Updating the Camera Pose
The original extrinsic transformation Tmc, mapping from the MoCap coordinate system to the camera
coordinate system, was obtained during the initial calibration. To apply the correction, this transforma-
tion must first be inverted to express the camera pose relative to the MoCap frame:

Tcm = T−1mc

For each trial, the camera pose is then updated using the rigid transformation Tcc computed from the
tube marker cluster:

Tnew
cm = Tcc ·Tcm
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The updated MoCap-to-camera transformation is obtained by inverting the result:

Tnew
mc = (Tnew

cm )
−1

From Tnew
mc , the updated extrinsic parameters R and t are extracted.

Intrinsic Matrix Update
In cases where the SID was adjusted, the focal length in pixel units was recalculated to reflect the new
imaging geometry. The optical center (cx, cy) was assumed to remain constant, based on the fixed
detector resolution and orientation.

Figure 2.3: Schematic overview of the camera adjustment process. The original transformation Tmc is inverted to obtain Tcm,
which is updated using the rigid-body transformation Tcc estimated from the tube markers. The updated transformation is then

inverted again to obtain Tnew
mc .

Verification of the Correction Approach
A schematic representation of the transformation and correction pipeline is shown in Figure 2.3.

To verify the accuracy of the correction procedure, the pendulum experiment conducted for tempo-
ral synchronization was used as a reference. The 3D marker positions recorded by the MoCap sys-
tem were projected onto the fluoroscopic images using the updated intrinsic and extrinsic parameters.
These projected positions were then compared with the corresponding 2D marker locations visible in
the fluoroscopy frames. The mean and variance of the projection errors were calculated to evaluate
the correction accuracy.

2.2. Initial Pose Estimation Using MoCap Data
2.2.1. Pose Representation and Coordinate Systems Definitions
The 6-DoF pose of the fluoroscopy camera relative to the 3D bone model is defined using a rigid-body
transformation. This transformation is represented by a rotation matrix R and a translation vector t,
forming a homogeneous transformation matrix:

Tbone←cam =

[
R Rt
0⊤ 1

]
.

This convention follows the definition used in the diffdrr framework [31], where the transformation
maps a point in the camera coordinate system to the bone coordinate system. The translation com-
ponent R · t represents the position of the X-ray source (i.e., camera center) in the bone coordinate
system.

By inverting the transformation, the bone coordinate system can be expressed in the camera frame:

Tcam←bone = T−1bone←cam =

[
R⊤ −t
0⊤ 1

]
.

In this representation, −t corresponds to the position of the bone origin in the camera coordinate
system, which is the translation input required for DRR rendering in diffdrr.
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Bone Coordinate System. The bone coordinate system corresponds to the coordinate system of
the 3D bone model, typically derived from CT or MRI imaging. This coordinate system is aligned to the
RAS (Right–Anterior–Superior) orientation: the x-axis points to the right side of the patient, the y-axis
points anteriorly, and the z-axis points superiorly. The origin is located at the geometric center of the
volume.

In the diffdrr framework, this coordinate system is referred to as the world coordinate system. How-
ever, since it is defined by the input bone model and used throughout the pipeline to describe bone-
related transformations, it is referred to here and in subsequent sections as the bone coordinate system.

Camera Coordinate System. The camera coordinate system follows the fluoroscopic imaging geom-
etry. Its x-axis points in the horizontal direction within the image (in-plane horizontal), the z-axis points
in the vertical direction within the image (in-plane vertical), and the y-axis is aligned with the X-ray beam
direction from source to image receiver (out-of-plane), forming a right-handed coordinate system. The
spatial relationship between the camera and bone coordinate systems is illustrated in Figure 2.4.

Figure 2.4: Relationship between the camera coordinate system and the bone coordinate system.

Interpretation of 6-DoF Parameters. The final 6-DoF pose of the bone relative to the camera is ex-
pressed using three Euler angles derived from R and a translation vector derived from t. The Euler
angles represent the camera orientation with respect to the bone coordinate system, while the trans-
lation vector corresponds to the position of the bone origin in the camera frame. These values are
passed to diffdrr to render synthetic DRRs matching the observed fluoroscopy image.

2.2.2. Estimation Strategy Overview
The goal of the initial pose estimation is to determine the 6-DoF transformation from the camera coordi-
nate system to the bone coordinate system, as required by the diffdrr framework for DRR rendering.
This estimation is performed using synchronized MoCap data, without requiring additional manual align-
ment or 2D–3D optimization.

The estimation relies on establishing a geometric relationship between the MoCap system and the bone
coordinate system. The marker configuration captured by the MoCap system represents the femur’s
pose at a given time, which enables the derivation of a rigid-body transformation from the MoCap
coordinate system to the bone coordinate system, denoted as Tbone

MC .

At the same time, the camera pose in the MoCap coordinate systemTcam
MC is known from the calibration

step and updated using marker tracking if needed. By combining the two transformations, the pose of
the bone in the camera frame can be computed as:

Tbone
cam = (Tcam

MC )
−1 ·Tbone

MC .
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This composite transformation Tbone
cam is expressed in the format required by the diffdrr framework,

where the bone model is positioned relative to the camera coordinate system for DRR rendering.

2.2.3. Pose Estimation Pipeline
The goal is to compute the camera pose T bone

cam , i.e. the homogeneous transformation representing the
camera’s position and orientation in the bone coordinate system. The pipeline consists of the following
steps:

1. Construct a bone-aligned cube in ΣMC: Identify MoCap markers placed near key anatomical
landmarks (the medial epicondyle, the lateral epicondyle, and several along the thigh). Using the
epicondylar axis (the vector between the epicondyle markers) and the thigh’s longitudinal direction
(derived from the shaft markers), construct a cube aligned with the femur. The pose of this cube
represents the femur’s orientation and position in the MoCap coordinate system.

2. Construct a corresponding cube in Σbone: Extract the corresponding medial and lateral epi-
condyle points on the segmented MRI bone model. Use the anatomical superior direction (assum-
ing a standard RAS orientation) to approximate the femur’s long axis, and construct a cube using
the same logic as in the MoCap frame. The detailed procedure for constructing this cube will be
described in the following section. This cube represents the pose of the same femur in the bone’s
coordinate system (derived from the MRI/CT volume).

3. Compute the rigid bone transformation T bone
MC : Perform a rigid registration between the MoCap-

defined cube and the Bone model-defined cube.
4. ApplyMoCap–camera calibration: Utilize the pre-calibrated transformation TMC

cam, which describes
the camera’s pose in the MoCap coordinate system.

5. Compute the camera pose in the bone frame: Transform the camera’s pose into the bone
coordinate system by chaining the above transformations. This gives the camera’s position and
orientation expressed in the bone coordinate system.

6. Extract 6-DoF pose parameters: Convert the resulting transformation T bone
cam into the six degrees-

of-freedom parameters required by the 2D–3D rendering system (three orientation angles and
three translation components, see details below).

Figure 2.5 gives an overview of the workflow of the proposed 2D–3D registration framework integrating
MoCap and fluoroscopic imaging.

The following sections describe the implementation of each stage in the pipeline. The construction of
the bone-aligned reference cubes in both the MoCap and bone coordinate systems is first introduced,
followed by the estimation of the rigid transformation between them. This is then combined withMoCap–
camera calibration to obtain the final camera pose in the bone coordinate system, from which the 6-DoF
parameters are extracted.

2.2.4. Reference Cube Construction and Rigid Alignment
Bone Model-Based Reference Cube
To define the femur pose in the bone coordinate system, a reference cube is constructed based on
the segmented MRI volume. The volume is preprocessed using diffdrr to follow the RAS (Right–
Anterior–Superior) orientation, where the x-axis points rightward, the y-axis anteriorly, and the z-axis
superiorly. The volume origin is placed at the geometric center.

As illustrated in Figure 2.6, medial and lateral epicondylar landmarks are identified within a narrow y-
range (y ∈ [−10, 10] mm) around the central sagittal plane of the distal femur, to confine the selection
to the condylar region and avoid points located too far anteriorly or posteriorly. Within this band, the top
1% of points with the smallest and largest x-coordinates are averaged to obtain medial (p1) and lateral
(p2) epicondyle points, respectively. The ±10 mm range is an empirical choice but proved effective in
focusing on the condylar area.

The primary axis of the reference cube is defined as:

u =
p2 − p1

∥p2 − p1∥
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Figure 2.5: Workflow of the proposed registration framework combining motion capture and fluoroscopy. Color coding
highlights different modules: green for inputs, red for calibration transformations, blue for pose estimation steps, and black for

the final automatic registration.
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To define an orthogonal frame, the superior anatomical axis h = [0, 0, 1]⊤ is projected orthogonally to
u to obtain:

v =
h− (h⊤u)u

∥h− (h⊤u)u∥
, w = −u× v

Let L = ∥p2 − p1∥. The scaled axes are defined as:

U = L · u, V = L · v, W = L ·w

The eight vertices of the cube are generated by linear combinations of these vectors originating from
p1. This cube represents the femur’s orientation and position in the bone coordinate system.

Figure 2.6: Reference cube constructed in the bone coordinate system using epicondylar landmarks.

MoCap-Based Reference Cube
The MoCap reference cube is constructed using five optical markers placed on the thigh: two near the
knee joint (LKNM and LKNE for the medial and lateral epicondyles of the left leg) and three distributed
along the femoral shaft (LTHI, LTHAD, and LTHAP). These markers are placed following the CGM2.5
protocol, as illustrated in Figure 2.7 [32].

The medial (q1) and lateral (q2) epicondyle markers define the primary axis of the cube. The femoral
longitudinal direction was estimated using two alternative strategies: (1) the vector connecting LTHAD
and LTHAP, and (2) a line perpendicular to the epicondylar axis passing through the lateral thigh marker
(LTHI). Both definitions are theoretically valid for approximating the femoral long axis, but rely on dif-
ferent marker sets. Since it is not evident a priori which definition provides a more reliable alignment,
both approaches were tested and compared.

Using these two axes, an orthogonal frame is constructed following the same procedure as described
for the bone-based reference cube (i.e., orthogonal projection and cross product). However, unlike the
anatomical landmarks extracted from the CT/MRI volume, MoCap markers are mounted on the skin
surface. As a result, the distance ∥q2 − q1∥ between epicondyle markers on the skin is systematically
larger than the corresponding inter-epicondylar distance in the bone coordinate system.

To ensure consistency during rigid registration and avoid scale mismatches, the MoCap reference cube
is rescaled: its origin is set at the midpoint between q1 and q2, and its axis length is adjusted to match
the primary axis length of the MRI-derived bone cube (L = ∥p2 − p1∥). The resulting cube preserves
the orientation structure of the MoCap definition but is normalized to the same scale as the bone cube.

Rigid Alignment and Pose Transfer
After both cubes are constructed, a rigid-body transformation T bone

MC is estimated via point-based regis-
tration. This transformation aligns the MoCap-based cube to the cube in the bone coordinate system
and encodes the femur’s pose observed in MoCap, expressed in the bone frame.
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Figure 2.7: MoCap marker setup used to construct the reference cube.

Given the MoCap–camera calibration TMC
cam, the camera pose in the bone coordinate system is obtained

by chaining:
T bone
cam = T bone

MC · TMC
cam

Extraction of 6-DoF Parameters
The transformation T bone

camera is expressed as:

T bone
camera =

[
R t
0⊤ 1

]
The rotation matrixR is converted into three Euler angles (α, β, γ), using the z–y–x order, representing
the camera’s orientation.

Since the rendering system requires the position of the bone origin in the camera coordinate system,
the translation is re-expressed as:

tused = −R⊤ · t

The final 6-DoF pose consists of the rotation angles (α, β, γ) and the translation vector tused, ready for
input to the diffdrr rendering engine.

2.2.5. Initialization Strategy and Parameter Settings for Registration
To align the segmented 3D bone model with the fluoroscopic image, an automatic 2D–3D registration
algorithm developed in the same research group was employed. This algorithm consists of a two-stage
optimization pipeline that refines the initial pose by maximizing a similarity measure between the fluo-
roscopic image and a DRR. The optimization was performed using Powell’s method, a derivative-free
algorithm suitable for low-dimensional nonlinear optimization. The final pose estimate was obtained by
first optimizing translations only, followed by full 6-DoF optimization.

The automatic registration builds upon previous work in the group, in which initial poses were gener-
ated by adding small perturbations to manually registered ground truth poses. These perturbed poses
were then used as the input for automatic optimization, and the results were evaluated by comparing
the output with the original manual registration. This approach provided a controlled framework for
assessing how well the algorithm could recover accurate poses from known initial deviations.

The manual registrations were performed using an interactive alignment tool in a custom 3D viewer
(Figure 2.8). In this procedure, the segmented 3D bone model was overlaid on the fluoroscopic image
via DRRs, and the user adjusted all six pose parameters (three translations, three rotations) until the
DRR visually matched the anatomical structures. The coordinate system and pose conventions fol-
lowed the diffdrr engine. The final transformation was then saved as the ground truth for evaluating
automatic registration accuracy.
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Figure 2.8: Screenshot of the manual registration interface used to generate ground truth poses. The 3D bone model is
adjusted in 6-DOF until its DRR matches the fluoroscopy image.

In this study, the registration algorithm was applied to four fluoroscopic trials (Walk01–Walk04) acquired
from a single male subject (ID: MOBI003, age: 28). One fluoroscopic framewas selected from each trial
based on image clarity, ensuring that the distal femur was clearly visible, with minimal motion blur and
no overlap with the contralateral leg. Walk01 to Walk03 correspond to lateral views, while Walk04 was
acquired in anterior–posterior (AP) configuration. The source-to-image distance (SID) varied across
trials and is summarized in Table 2.1.

Table 2.1: Overview of the four evaluated fluoroscopy trials.

Trial Subject ID SID (mm) Viewpoint Selected Frame
Walk01 MOBI003 1400 Lateral 12
Walk02 MOBI003 1400 Lateral 49
Walk03 MOBI003 1400 Lateral 29
Walk04 MOBI003 2000 Anterior–Posterior (AP) 39

In this registration framework, the max_error parameter defines the optimizer’s allowed search range
along each degree of freedom relative to the initial pose. In previous studies, max_error was tuned
based on small synthetic perturbations around the ground truth. However, since MoCap-derived poses
exhibit larger discrepancies, those original bounds were no longer sufficient to guarantee successful
convergence.

For each selected frame, the automatic registration was evaluated using three different initialization
strategies.

In the first and second strategy, the initial pose was generated using motion capture data. This MoCap-
derived pose was directly used as input to the automated registration algorithm.

To ensure the optimizer remained effective under these more challenging conditions, two max_error
configurations were introduced to constrain the search range:

• Normal: reflects typical pose discrepancies encountered in MoCap-derived estimates;
• Large: accommodates more severe initial misalignments.
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Each configuration defines bounds on the allowable deviation from the initial pose across all six degrees
of freedom (three translations in mm and three rotations in degrees), as detailed in Table 2.2.

Table 2.2: Bounds defined by the max_error parameter. Translations are given along the camera axes in mm: in-plane
horizontal (xtr), out-of-plane (ytr), and in-plane vertical (ztr). Rotations are Euler angles about the bone axes in degrees: xrt,

yrt, and zrt.

Setting xtr ytr ztr xrt yrt zrt

Normal 10 40 10 20 10 10
Large 15 50 15 30 15 15

As a reference condition, a third initialization strategy referred to as Reference was included. This
strategy replicates the evaluation protocol used in previous studies within the group, where the perfor-
mance of the automatic registration algorithm was assessed using initial poses generated by adding
small random perturbations to manually registered ground truth poses. For each trial, 10 such poses
were created by uniformly sampling each degree of freedom within ±6.2mm for translations and ±4.2◦

for rotations. This configuration reflects the standard approach previously used to validate the algo-
rithm’s accuracy under near-ideal initialization, and serves as a benchmark for comparison with the
more challenging MoCap-based initialization introduced in this study.

Three similarity metrics were integrated into the registration framework, following the laboratory’s pre-
vious work on MRI-to-fluoroscopy registration. The selected measures capture complementary image
features and have been successfully applied in earlier studies [33, 34], and were also explored in pre-
vious work conducted within our laboratory.

• WEMS (Weighted Edge Matching Score): assigns higher weights to strong edges in the DRR
and compares them to edges in the fluoroscopy [34];

• NED (Normalized EdgeDistance): computes the average distance between detected edges in the
DRR and those in the fluoroscopy, previously introduced for fluoroscopy-based registration [33];

• SM (Shape Matching): quantifies the contour overlap between the fluoroscopy segmentation
mask and the DRR-rendered bone silhouette.

Each metric captures distinct features of image similarity and was used independently to guide the
optimization process.

The final manually adjusted poses served as the ground truth for evaluating automatic registration
accuracy. The overlay of the DRR outline and the corresponding fluoroscopy frame is visualized in
Figure 2.9.

Together, these three initialization strategies, namelyMoCap-based poses evaluated under both Normal
and Large max_error settings, and perturbed ground truth poses (Reference), offer complementary per-
spectives on registration robustness. The MoCap-based initialization reflects realistic input conditions
with potentially large deviations. The Reference initialization represents near-ideal starting points that
were previously used to validate the algorithm. The variation in max_error bounds allows for explo-
ration of the optimizer’s sensitivity to initialization error.

2.3. Bone Segmentation in Fluoroscopy Images
2.3.1. Training Data
The dataset consisted of six 2D single-plane fluoroscopic images of the right leg acquired from three
healthy subjects, each in two distinct walking poses. To avoid occlusion and ensure clear visibility of the
femur, only frames where the right leg was clearly visible without overlap from the contralateral leg were
selected through visual inspection. The images were originally stored in DICOM format and converted
to NIfTI using SimpleITK, an open-source library for medical image analysis, to match the nnU-Net
pipeline requirements. Each fluoroscopic image had a native resolution of 1296 × 1328 pixels and
was retained without downsampling or cropping to preserve anatomical detail. Figure 2.10 provides an
overview of the six training images.
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Figure 2.9: Overlay of DRR outline (depicted as the white contour) and fluoroscopic images for all four manually registered
trials (Walk01–Walk04), demonstrating alignment accuracy.

Manual segmentation of the femur was performed in 3D Slicer. All masks were initially annotated by
a single rater and subsequently reviewed by a second rater with domain expertise to ensure anatom-
ical accuracy. No intensity normalization, cropping, or contrast enhancement was applied; all images
preserved their original appearance to assess model generalization under realistic imaging conditions.

2.3.2. Model Training and Inference
The nnU-Net v2 framework was used to train a 2D segmentation model. A five-fold cross-validation
strategy was employed, where each fold used five images for training and one for validation. Given
the small dataset size, cross-validation was performed at the image level rather than the subject level.
The fold assignments were automatically generated and stored in the file splits_final.json, which
was loaded during training.

All jobs were executed on the DelftBlue high-performance computing cluster managed by TU Delft.
Each training job was allocated 16 CPU cores, 64GB of RAM, and a single NVIDIA Tesla V100S GPU
with 32GB of memory. The software environment was configured with CUDA version 12.8 and driver
version 570.124.06. Each fold took approximately 9.5 hours to complete. For a full training script, see
Appendix A.

The nnU-Net training was performed using default settings. No manual post-processing or model en-
sembling was applied during or after training.

To evaluate model generalization to unseen subjects, six fluoroscopic images from a fourth individual
were used for inference. These test images were not included in any training or validation folds. Notably,
the test subject was female, while the training subjects consisted of thee males and one female. Similar
to the training images, the test images were converted to NIfTI format and left unprocessed. Visual
inspection was used to assess anatomical plausibility of the predicted masks.
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Figure 2.10: Overview of training images used in this study. Each image corresponds to a different leg posture with the femur
clearly visible



3
Results

3.1. System Synchronization and Calibration
3.1.1. Assessment of Temporal Synchronization

Figure 3.1: Normalized vertical position time series from MoCap (solid green) and fluoroscopy (dashed blue). Fluoroscopy
frames are shown as blue dots, and a spline interpolation through these points is shown as the dashed curve. MoCap pulse

timestamps are shown as green dots.

Electronic pulses registered in the motion-capture (MoCap) system showed a one-to-one correspon-
dence with fluoroscopic frames. No missing or duplicated pulses were observed across the analyzed
sequences, indicating a stable hardware link between the X-ray tube and the MoCap input.

After spline interpolation of the fluoroscopy time series to the MoCap timeline and normalization of
both signals to [0, 1], the vertical position curves closely overlapped over multiple oscillation cycles
(Figure 3.1). Pulse time stamps aligned with the expected fluoroscopy frame times along the MoCap
curve, further supporting correct frame matching. The mean temporal difference between fluoroscopy
frame timestamps and the corresponding MoCap pulse timestamps was 2.2 ms (SD 1.6 ms), with a
maximum difference of 3.3 ms. Cross-correlation between the two normalized time series exhibited a
clear maximum at zero temporal lag with a peak correlation of approximately r ≈ 0.93 (Figure 3.2). The
correlation decreased for positive and negative delays within the tested ±50ms window.

17
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Figure 3.2: Cross-correlation coefficient as a function of temporal lag (ms) between the normalized MoCap and fluoroscopy
time series. The maximum occurs at zero lag (vertical dashed line).

Figure 3.3: Comparison between projected (red) and detected (blue) marker trajectories. Green lines indicate 2D projection
error at each time point.
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Figure 3.4: Walking trial example: projected 3D MoCap marker positions (red dots) overlaid on a fluoroscopic frame. The
detected marker centers are shown as green circles. Blue lines connect each red dot to the corresponding marker center,

representing the projection error.

3.1.2. Assessment of Camera Pose Adjustment
Using the updated intrinsic and extrinsic parameters, the 3D positions of the pendulummarker captured
by the MoCap system were projected onto the fluoroscopic image plane. These projected trajectories
were compared against the marker centers detected directly from the fluoroscopic frames.

Figure 3.3 shows the comparison over 64 consecutive frames, where the projected (red) and detected
(blue) marker trajectories are overlaid. The green lines indicate the 2D projection error at each time
point. The mean projection error was 16.48 px (≈ 5.3mm), with a minimum of 11.10 px (≈ 3.6mm)
and a maximum of 26.20 px (≈ 8.4mm). Errors were smaller near the swing endpoints, where marker
velocity was minimal, and larger near the oscillation midpoint, where velocity peaked.

Projection accuracy was also illustrated on real walking trials. For a representative fluoroscopic frame
containing visible markers, the corresponding 3D MoCap positions were projected using trial-specific
camera parameters. As shown in Figure 3.4, the projection error was approximately 20 px (≈ 6mm) in
the image plane, given the pixel spacing of 0.32mm.

3.2. Initial Pose Estimation Using MoCap Data
3.2.1. Comparison Between Two Femoral Shaft Definition Methods
To examine the differences between the two MoCap-based femoral shaft definition methods, AD_AP
and THI, the resulting 6-DoF poses at the selected frame were compared across four walking trials.
The translation and rotation values obtained from each method are summarized in Table 3.1.

Table 3.1: Initial pose translation (mm) and rotation (°) values for each walking trial. Translations are given along the camera
axes in mm: in-plane horizontal (x), out-of-plane (y), and in-plane vertical (z). Rotations are Euler angles about the bone axes

(RAS) in degrees: xR (right), yA (anterior), and zS (superior).

Trial Translation (mm) Rotation (°)

In-plane x Out-of-plane y In-plane z Rot. around x (bone) Rot. around y(bone) Rot. around z(bone)
AD_AP THI AD_AP THI AD_AP THI AD_AP THI AD_AP THI AD_AP THI

Walk01 -33.28 -33.57 1109.45 1109.45 -2.70 -2.41 96.29 96.01 -1.07 -1.51 14.73 12.18
Walk02 -59.33 -59.39 1121.88 1121.85 -1.89 -1.43 93.03 92.61 -3.32 -3.66 -22.96 -25.92
Walk03 3.82 3.73 1142.46 1142.43 -6.92 -6.48 91.30 90.89 -3.19 -3.44 -18.18 -21.09
Walk04 79.40 79.40 1748.52 1748.67 -19.92 -19.76 -174.77 -174.93 13.24 11.83 1.52 1.75

For each trial of this subject, the Euclidean distance between the translation vectors obtained from
AD_AP and THI was calculated. The average translation difference across the four trials was 0.39 ±
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0.10mm. Rotational discrepancies, expressed as absolute differences in Euler angles, were similarly
small (0.32◦ ± 0.11◦ around x, 0.61◦ ± 0.46◦ around y, and 2.16◦ ± 1.13◦ around z). These results
indicate that, for this subject, the two femoral shaft definition methods yielded highly consistent 6-DoF
initial poses. Since the choice between them makes little practical difference, the AD_AP method was
selected for subsequent experiments.

3.2.2. Comparison Between MoCap-Based and Manually Annotated Initial Poses
To evaluate the accuracy of the initial pose estimation derived from MoCap data, the 6-DoF parameters
obtained using the AD_AP cube construction method were directly compared against manually anno-
tated ground truth poses for each trial. Signed translation and rotation errors are reported in Table 3.2.

Table 3.2: 6-DoF errors of the initial pose estimate (AD_AP) compared to manual registration. Translations are given along the
camera axes in mm: in-plane horizontal (xtr), out-of-plane (ytr), and in-plane vertical (ztr). Rotations are Euler angles about

the bone axes (RAS) in degrees: xrt, yrt, and zrt.

Trial xtr ytr ztr xrt yrt zrt

Walk01 -8.28 -40.55 7.30 6.28 2.94 -8.27
Walk02 0.31 -38.84 7.05 14.91 -3.79 -8.36
Walk03 0.86 -41.86 8.58 15.96 -2.86 -9.87
Walk04 -0.60 -24.48 7.08 11.23 -11.36 3.02

Across all four trials, the mean translation error was approximately −1.93mm (in-plane horizontal),
−36.4mm (out-of-plane), and 7.5mm (in-plane vertical), with corresponding rotational errors of 12.1◦,
−3.8◦, and −5.9◦ around the x-, y-, and z-axes respectively.

To illustrate this level of error, Figure 3.5 shows the estimated initial pose from Walk03 within the man-
ual registration interface. As seen in the central panel, the femur obtained from the MoCap-based
initial pose largely overlaps with the fluoroscopic bone in terms of overall position, and the general ori-
entation (e.g., anterior tilt) is consistent. Nevertheless, the model does not perfectly coincide with the
fluoroscopic bone image.

Figure 3.5: Example of MoCap-based initial pose (Walk03) visualized in the manual registration interface. The pose roughly
captures the correct bone position and orientation.

The maximum absolute translation error observed was approximately 41.9mm, and the maximum ro-
tation error reached 15.96◦. These empirical values were used to define the max_error bounds in the
subsequent registration experiments described in the Method section.

3.2.3. Registration Performance under Different Error Boundaries
Figure 3.6 displays the registration errors across four trials for each degree of freedom under different
initialization strategies and similarity metrics. The results show large variations across trials, particularly
for the MoCap-based initializations (Normal and Large). Except for in-plane translations, the remaining
four degrees of freedom, including out-of-plane translation and the three rotational directions, exhibited
trial-specific variations. For the same similarity metric, degree of freedom, initialization range, and
trial, the resulting error patterns were not consistent, indicating limited generalizability of registration
performance across different trials.
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Figure 3.6: Registration errors across four trials for each of the six degrees of freedom. Each subplot shows the effect of three
initialization strategies (Reference, MoCap-Normal, MoCap-Large) under three similarity measures (NED, SM, WEMS).
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Figure 3.7 provides a summary of these results by aggregating data across all trials. For in-plane
translations along the x and z axes, both MoCap-Normal and Reference strategies produced similar
mean errors and standard deviations. In contrast, the out-of-plane translation along the y axis and the
three rotational directions resulted in higher errors and larger variability for the MoCap-based conditions.
The Reference strategy maintained relatively low standard deviations across all degrees of freedom.

Figure 3.7: Summary of registration errors across all trials, grouped by degree of freedom. Bars represent the mean and
standard deviation of the errors for each condition.

3.3. Bone Segmentation in Fluoroscopy Images
The trained nnU-Net model was evaluated on six fluoroscopic images from an independent subject.
Figure 3.8 shows the predicted femur masks overlaid on the corresponding images.

Quantitatively, the cross-validation on the training dataset yielded a mean Dice coefficient of 0.988,
and the Dice scores for the six images were all above 0.98. For the independent test subject, only
qualitative evaluation was performed. Visual inspection confirmed that the predicted contours closely
followed the outlines of the femoral shaft and condyles. Segmentation accuracy appeared stable under
different pose conditions, and no systematic differences were observed between gait phases.

Minor inaccuracies were identified in several frames. In some cases, projected markers located near
the distal femoral condyles were partly included in the predicted masks, despite being outside the true
bone boundaries (see lower right image in Figure 3.8). Small deviations of the contours were also
noted at the distal edges of the femur (upper right image in Figure 3.8).

In addition, when applied to continuous fluoroscopic sequences where both legs were sometimes simul-
taneously visible, the model failed to consistently restrict the segmentation to the target femur, resulting
in outputs that were often inconsistent and lacked a representative pattern.
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Figure 3.8: Predicted femur masks (green) overlaid on six test fluoroscopic images from an unseen subject.



4
Discussion

4.1. System Synchronization and Calibration
The pendulum experiment confirmed that the MoCap and fluoroscopy systems were temporally aligned
at the frame level. Residual offsets were within a few milliseconds, and the cross-correlation analysis
showed maximum agreement at zero lag. These results suggest that the two data streams can be
treated as effectively synchronous.

In the pendulum experiment, projection errors betweenMoCap-derived 3Dmarker positions and fluoroscopy-
detected marker centers were in the millimeter range (approximately 3–8mm). Projection errors tended
to increase with marker velocity, with larger deviations observed at higher speeds. This pattern can be
explained by motion blur during X-ray exposure, which affects centroid localization when the marker tra-
verses multiple pixels within a single frame. However, even when the marker reached the turning points
of the swing, where its velocity was minimal, , errors still exceeded 5mm in some frames. This indicates
that residual inaccuracies in the intrinsic and extrinsic calibration, as well as in the tube-marker-based
pose adjustment, are the dominant contributors.

When extended to anatomical data, such discrepancies become more critical. Although a few millime-
ters represent only a small fraction of the detector field, they are not negligible relative to the projected
dimensions of a single bone, where millimeter-level precision is required for reliable initialization.

4.2. Initial Pose Estimation Using Mocap data
Visual inspection of the MoCap-derived initial poses revealed that the projected anatomy and DRR
contours were largely consistent in overall position and orientation (Figure 3.5), yet noticeable dis-
crepancies remained across all six degrees of freedom. The discrepancies are likely to arise from a
combination of several factors, which can be grouped into four categories:

First, soft tissue artifact. Because themarkers were attached to the skin, their positions were affected by
relativemotion between the skin and the underlying bone. Given the placement of the five markers used
in this study, soft tissue motion would theoretically manifest predominantly in the in-plane directions
for the lateral view, whereas for the AP view it would be expected to affect the out-of-plane direction.
However, the results did not show smaller in-plane errors for the AP view compared to the lateral view,
suggesting that soft tissue artifact was not the primary contributor to the observed discrepancies.

Second, approximations in constructing the cube within the bone coordinate system. In the bonemodel,
the femoral shaft axis was approximated by the superior direction of the RAS coordinate system. Al-
though this approach is convenient, it may not accurately reflect the true anatomical axis. Because the
extracted femur was relatively short, methods such as principal component analysis or shape-based
alignment could not be applied, as they typically require a longer bone segment to robustly define
the major axis. A potential improvement would be to register the segmented femur to a standardized
full-length femur model and transfer the anatomical axis of the reference model to the partial bone.

24
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This strategy could provide a more consistent and anatomically meaningful shaft orientation, thereby
reducing angular errors in the initial pose and improving the robustness of orientation estimation.

Third, errors from constructing the cube usingmarkers in theMoCap coordinate system. For the subject
in this study, the AD_AP and THI configurations produced comparable results. The AD_AP setup, with
markers placed on the anterior thigh, can provide reliable performance in individuals with moderate
body size. However, in larger subjects, anterior–posterior markers may be more strongly affected
by soft tissue motion, and therefore less representative of the femoral shaft axis. In contrast, the
THI configuration places markers along the lateral thigh, closer to the femoral axis, which in theory
provides a more direct and anatomically consistent estimate of shaft orientation. At the same time,
this approach is more dependent on operator placement and more prone to soft tissue artifact, since
lateral skin surfaces tend to move more during gait. Future work should evaluate both configurations
in a larger cohort with diverse body types. Such data are needed to determine the relative robustness
of the two setups.

Fourth, inaccuracies in constructing the transformation between fluoroscopy and MoCap. As reported
in the previous section, the projection error reached the millimeter scale, indicating that inaccuracies in
calibration may also contribute to errors in the initial pose estimation. In this study, camera parameters
were derived from a single calibration trial using a rigid box with reflective markers. However, the spa-
tial layout of the markers provided only limited depth variation (about 5 cm), which may have reduced
the amount of depth information available for extrinsic parameter estimation and limited its robustness.
In addition, intrinsic parameters were computed from theoretical geometry, based on nominal source-
to-image distance and pixel spacing. Real-world deviations from the nominal geometric values could
therefore contribute to projection errors. Future improvements could involve designing calibration phan-
toms with greater depth extent to provide richer spatial constraints for extrinsic parameter estimation.
Furthermore, adopting multi-view calibration procedures or improved calibration objects could help re-
cover the true imaging geometry more robustly and reduce projection errors in dynamic trials.

4.3. Registration Performance
The automatic registration algorithm was effective when initialized close to the ground truth, as seen
with the Reference strategy. In contrast, MoCap-based initializations exhibited substantial deviations
under both the MoCap-Normal and MoCap-Large conditions. Although in-plane errors were often cor-
rected successfully, out-of-plane translation and rotational components remained difficult to recover
(Figures 3.7).This highlights the sensitivity of the optimization framework to the quality of the initial
pose. Large initial misalignments, particularly in depth or rotation, can result in convergence to local
minima. Furthermore, good registration performance in in-plane directions does not necessarily indi-
cate optimizer robustness. Rather, based on the results, a plausible explanation is that the initial errors
in the in-plane directions were already smaller than those in the out-of-plane and rotational components.
Therefore, interpretation of registration outcomes must account for the distribution and magnitude of
initial pose errors across all degrees of freedom.

It should be noted that the ground truth used for evaluation was based on manual registration. Be-
cause manual alignment relies on 2D overlay, its accuracy in the out-of-plane direction is inherently
limited. Therefore, the comparison between MoCap-based and manual initialization does not neces-
sarily indicate which method is more anatomically accurate, but rather highlights the limitations of both
approaches. In this context, MoCap-derived poses may still hold potential advantages for out-of-plane
initialization, even though such benefits were not clearly demonstrated in our results. Building on this
rationale, a hybrid initialization strategy could be considered in future work: MoCap could provide con-
straints for the out-of-plane components, while in-plane directions are refined via image-based cues or
manual adjustment. Such a strategy would, however, depend on improving the accuracy of MoCap-
derived estimates through refinements such as better bone axis definitions, shape-aware reference
cube registration, or subject-specific femoral morphology.

4.4. Bone Segmentation in Fluoroscopy Images
The 2D nnU-Net model trained on only six fluoroscopic images demonstrated promising generalization
to unseen test data. Predicted femur masks generally aligned well with anatomical boundaries, despite
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variations in pose and subject anatomy (Figure 3.8). This suggests potential for use in fully automated
workflows.

Nonetheless, some limitations were observed. In several images, projected skin markers near the dis-
tal condyles were mistakenly included in the predicted bone mask. These artifacts likely resulted from
the absence of such structures in the training data. Additionally, minor errors tended to occur near
bone edges, particularly close to the image boundaries where intensity gradients are weaker and con-
textual information is limited. These findings highlight the need for a more diverse and comprehensive
training set that includes examples with markers and bones extending to the image edges. Future im-
provements to the segmentation model could include incorporating images with markers and training
on larger datasets. These steps may help improve robustness under varying conditions.

It is also important to note that the current segmentation model was trained and evaluated exclusively
on images where only the target leg was visible. However, additional scenarios may arise in practice.
For example, some fluoroscopic images may contain both legs within the field of view, while only the
target leg is relevant for registration and analysis. In other cases, the two legs may overlap, resulting
in partial occlusion of the target anatomy. These more complex conditions were not addressed in the
present model and may require specialized handling. To address this, a preliminary strategy was tested
in which the non-target leg was manually masked prior to segmentation, allowing the model to correctly
extract the femur of interest. While effective, this approach still requires substantial manual effort and
does not scale to fully automated workflows. Future work could therefore explore dedicated strategies
for such cases, for example by adopting multi-label approaches to distinguish between left and right
limbs, or by developing models specifically trained to identify and isolate the target leg under conditions
of overlap or occlusion.



5
Conclusion

This thesis presented a multimodal framework that integrates motion capture with single-plane fluo-
roscopy to enable dynamic 2D–3D bone registration during gait. The system addressed three chal-
lenges: temporal and spatial synchronization, MoCap-based initial pose estimation, and automated
femur segmentation. Experiments demonstrated sub-frame temporal alignment and millimeter-level
projection accuracy after dynamic camera calibration. MoCap-derived initialization provided anatomi-
cally plausible in-plane alignment but showed a systematic depth offset of 30–40 mm, highlighting the
sensitivity of registration to starting pose. A two-stage optimization algorithm refined most in-plane er-
rors, though large depth deviations remained difficult to correct. For bone segmentation, a 2D nnU-Net
trained on six annotated images reached a mean Dice of 0.988 in cross-validation, while qualitative
evaluation on an independent subject showed anatomically plausible contours.

Overall, the framework demonstrates the feasibility of integrating MoCap and fluoroscopy for quantita-
tive knee kinematic analysis, while also highlighting limitations in depth accuracy and the robustness
of initialization that point toward future improvements.s
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A
Slurm Example

1 #!/bin/bash
2 #SBATCH --job-name=nnunet_527_fold_1
3 #SBATCH --time=12:00:00
4 #SBATCH --ntasks=1
5 #SBATCH --cpus-per-task=16
6 #SBATCH --mem-per-cpu=4GB
7 #SBATCH --partition=gpu
8 #SBATCH --gpus-per-task=1
9 #SBATCH --account=Research -ME-BME

10 #SBATCH --output=nnunet_train_%j.log
11 #SBATCH --error=nnunet_train_%j.err
12

13

14 previous=$(/usr/bin/nvidia-smi --query-accounted -apps='gpu_utilization ,mem_utilization ,
max_memory_usage ,time' --format='csv' | /usr/bin/tail -n '+2')

15

16 export PYTHONUNBUFFERED=1
17

18 # Activate environment
19 echo "Activating␣nnU-Net␣environment..."
20 source ~/nn_Unet_env/bin/activate
21

22 # Set nnU-Net paths
23 export nnUNet_raw=/scratch/ywu19/nnUNet/nnUNet_raw
24 export nnUNet_preprocessed=/scratch/ywu19/nnUNet/nnUNet_preprocessed
25 export nnUNet_results=/scratch/ywu19/nnUNet/nnUNet_results
26

27 echo "===␣Initial␣GPU␣Status␣==="
28 nvidia-smi --query-gpu=name,memory.used,memory.total --format=csv
29

30 echo "===␣Start␣training␣$(date)␣==="
31 nnUNetv2_train 527 2d 1 --npz
32

33

34 /usr/bin/nvidia-smi --query-accounted -apps='gpu_utilization ,mem_utilization ,max_memory_usage ,
time' --format='csv' | /usr/bin/grep -v -F "$previous"

35

36 echo "===␣Done␣training␣$(date)␣==="
37 nvidia-smi

30



B
Cross-validation output

The full nnU-Net summary output for cross-validation is provided below:

1 {
2 "foreground_mean": {
3 "Dice": 0.9878267058524681,
4 "FN": 1538.5,
5 "FP": 1650.6666666666667,
6 "IoU": 0.9759679676684043,
7 "TN": 1587384.6666666667,
8 "TP": 130514.16666666667,
9 "n_pred": 132164.83333333334,

10 "n_ref": 132052.66666666666
11 },
12 "mean": {
13 "1": {
14 "Dice": 0.9878267058524681,
15 "FN": 1538.5,
16 "FP": 1650.6666666666667,
17 "IoU": 0.9759679676684043,
18 "TN": 1587384.6666666667,
19 "TP": 130514.16666666667,
20 "n_pred": 132164.83333333334,
21 "n_ref": 132052.66666666666
22 }
23 },
24 "metric_per_case": [
25 {
26 "metrics": {
27 "1": {
28 "Dice": 0.9866119071193833,
29 "FN": 1190,
30 "FP": 2285,
31 "IoU": 0.9735775603153964,
32 "TN": 1589571,
33 "TP": 128042,
34 "n_pred": 130327,
35 "n_ref": 129232
36 }
37 },
38 "prediction_file": "/scratch/ywu19/nnUNet/
39 nnUNet_results/Dataset527_Femur/

nnUNetTrainer__nnUNetPlans__2d/
crossval_results_folds_0_1_2_3_4/bone_001.nii.gz",

40 "reference_file": "/scratch/ywu19/nnUNet/
nnUNet_raw/Dataset527_Femur/labelsTr/
bone_001.nii.gz"

41 },
42 {
43 "metrics": {
44 "1": {
45 "Dice": 0.9904493862143129,
46 "FN": 2136,
47 "FP": 857,
48 "IoU": 0.9810794750549978,
49 "TN": 1562900,
50 "TP": 155195,
51 "n_pred": 156052,

52 "n_ref": 157331
53 }
54 },
55 "prediction_file": "/scratch/ywu19/nnUNet/

nnUNet_results/Dataset527_Femur/
nnUNetTrainer__nnUNetPlans__2d/
crossval_results_folds_0_1_2_3_4/bone_002.
nii.gz",

56 "reference_file": "/scratch/ywu19/nnUNet/
nnUNet_raw/Dataset527_Femur/labelsTr/
bone_002.nii.gz"

57 },
58 {
59 "metrics": {
60 "1": {
61 "Dice": 0.9878749473400997,
62 "FN": 1370,
63 "FP": 2055,
64 "IoU": 0.9760404060189298,
65 "TN": 1578139,
66 "TP": 139524,
67 "n_pred": 141579,
68 "n_ref": 140894
69 }
70 },
71 "prediction_file": "/scratch/ywu19/nnUNet/

nnUNet_results/Dataset527_Femur/
nnUNetTrainer__nnUNetPlans__2d/
crossval_results_folds_0_1_2_3_4/bone_003.
nii.gz",

72 "reference_file": "/scratch/ywu19/nnUNet/
nnUNet_raw/Dataset527_Femur/labelsTr/
bone_003.nii.gz"

73 },
74 {
75 "metrics": {
76 "1": {
77 "Dice": 0.9815149911165274,
78 "FN": 615,
79 "FP": 3890,
80 "IoU": 0.9637009701227963,
81 "TN": 1596980,
82 "TP": 119603,
83 "n_pred": 123493,
84 "n_ref": 120218
85 }
86 },
87 "prediction_file": "/scratch/ywu19/nnUNet/

nnUNet_results/Dataset527_Femur/
nnUNetTrainer__nnUNetPlans__2d/
crossval_results_folds_0_1_2_3_4/bone_004.
nii.gz",

88 "reference_file": "/scratch/ywu19/nnUNet/
nnUNet_raw/Dataset527_Femur/labelsTr/
bone_004.nii.gz"

31



32

89 },
90 {
91 "metrics": {
92 "1": {
93 "Dice": 0.988279480442464,
94 "FN": 2632,
95 "FP": 214,
96 "IoU": 0.9768305192373448,
97 "TN": 1598254,
98 "TP": 119988,
99 "n_pred": 120202,

100 "n_ref": 122620
101 }
102 },
103 "prediction_file": "/scratch/ywu19/nnUNet/

nnUNet_results/Dataset527_Femur/
nnUNetTrainer__nnUNetPlans__2d/
crossval_results_folds_0_1_2_3_4/bone_005.
nii.gz",

104 "reference_file": "/scratch/ywu19/nnUNet/
nnUNet_raw/Dataset527_Femur/labelsTr/
bone_005.nii.gz"

105 },
106 {
107 "metrics": {
108 "1": {
109 "Dice": 0.992229522882021,
110 "FN": 1288,
111 "FP": 603,

112 "IoU": 0.9845788752609603,
113 "TN": 1598464,
114 "TP": 120733,
115 "n_pred": 121336,
116 "n_ref": 122021
117 }
118 },
119 "prediction_file": "/scratch/ywu19/nnUNet/

nnUNet_results/Dataset527_Femur/
nnUNetTrainer__nnUNetPlans__2d/
crossval_results_folds_0_1_2_3_4/bone_006.
nii.gz",

120 "reference_file": "/scratch/ywu19/nnUNet/
nnUNet_raw/Dataset527_Femur/labelsTr/
bone_006.nii.gz"

121 }
122 ]
123 }
124 ...
125 }
126 },
127 "prediction_file": ".../bone_001.nii.gz",
128 "reference_file": ".../bone_001.nii.gz"
129 },
130 ...
131 ]
132 }
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