
Delft University of Technology
Master of Science Thesis in Electrical Engineering

Multi-domain network telemetry solution -
Proof of Concept implementation

Paweł Maćkowiak

Multi-domain network telemetry solution - Proof
of Concept implementation

Master of Science Thesis in Electrical Engineering

Networked Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Pawe l Maćkowiak

24 May 2024

mailto:p.mackowiak@student.tudelft.nl

Author
Pawe l Maćkowiak (p.mackowiak@student.tudelft.nl)
(paw.mackowiak@gmail.com)

Title
Multi-domain network telemetry solution - Proof of Concept implementation

Date
31 May 2024

Graduation Committee
Prof. dr. ir. Fernando A. Kuipers Delft University of Technology
Dr. Zekeriya Erkin Delft University of Technology
Dr. Piotr Zuraniewski TNO

The work presented in this thesis has lead to a paper which has been presen-
ted at the Workshop on Transparency, Accountability and User Control for a
Responsible Internet (TAURIN 2023), which was part of 28th European Sym-
posium on Research in Computer Security.

mailto:p.mackowiak@student.tudelft.nl
mailto:paw.mackowiak@gmail.com

Abstract

The inability to check how our Internet traffic is being handled and routed poses
all kinds of security and privacy risks. Yet, for the typical end-user, the Internet
indeed is such a black box. This thesis, adheres to the call for an Internet that
is more transparent, and as a step forward proposes a mechanism that care-
fully balances the desire to share transparency information with the necessity
to not expose all internal details of a network. The presented work realises this
by building on the framework of multi-party computation. The proposed ar-
chitecture and corresponding proof-of-concept is evaluated via experiments and
demonstrates the feasibility of the concept to improve Internet transparency.

iv

Preface

I would like to thank Prof. dr. ir. Fernando A. Kuipers who took the time to
steer this process in the right direction.

I would also like to thank my supervisor Dr. Piotr Żuraniewski for collabor-
ating with me on the work presented in this thesis.

I want to thank my parents for giving me the opportunity to pursue this goal
of completing a master’s degree at a university like TU Delft.

Finally, I am profoundly grateful to my wonderful wife, my family, the friends
I have met along the way, who have shown me support when I needed it most.

Pawe l Maćkowiak

Delft, The Netherlands
24th May 2024

v

vi

Contents

Preface v

1 Introduction 1
1.1 Problem description . 1
1.2 Motivation . 2

1.2.1 Limited Internet Transparency 2
1.2.2 Limited Control . 2
1.2.3 Examples . 3

1.3 Research Objective . 4
1.4 Contribution . 4
1.5 Thesis structure . 4

2 Design goals 7
2.1 Design goals . 7

2.1.1 Transparency . 7
2.1.2 Sensitivity of shared data 8
2.1.3 Usefulness and Usability 8

3 Network Observability System 11
3.1 Monitoring of networks and digital systems 11

3.1.1 Network Telemetry . 12
3.1.2 Operation, Administration and Maintenance 13
3.1.3 Software-defined networking 14
3.1.4 OpenFlow . 15
3.1.5 iOAM . 17

3.2 Distributed systems architectures 17
3.2.1 Client-Server model . 18
3.2.2 Microservices model . 18
3.2.3 Publish-Subscribe model 19
3.2.4 Peer-to-Peer model . 20
3.2.5 Flexible system design . 20

3.3 Data analysis with secrecy . 21
3.3.1 Functional Encryption . 21
3.3.2 Fully Homomorphic Encryption 21
3.3.3 Secure Multi-Party Computation 22
3.3.4 Secure Multi-Party Computation - data sharing, security

models and efficiency . 22
3.4 Related work . 26

vii

3.4.1 Network analysis based on different approaches. 26
3.4.2 Privacy-preserving protocols 26
3.4.3 SEPIA . 27
3.4.4 GAIA-X . 27
3.4.5 SCION . 28
3.4.6 Senate . 28
3.4.7 Cerebro . 28
3.4.8 Caring about Sharing . 28
3.4.9 Responsible Internet . 29

4 Design of a multi-domain network telemetry system 31
4.1 Design proposal . 31
4.2 Proof of Concept implementation details 35

4.2.1 Building blocks . 36

5 Performance Analysis 43
5.1 Testbed . 43
5.2 Test application . 43
5.3 Results . 44

5.3.1 Number of domains . 45
5.3.2 Network Latency . 46
5.3.3 Transmission rate . 46
5.3.4 Parallelization of the input data 47
5.3.5 Resource scalability . 48
5.3.6 Conclusion . 50

6 Conclusions and Future Work 53
6.1 Conclusion . 53
6.2 Future work . 54

A MPC details 61

B Measurement method 63

viii

Chapter 1

Introduction

1.1 Problem description

Nowadays, almost every aspect of modern life is connected with the Internet
and its operation. Remote access to blood test results or unlimited knowledge
resources that can be found on the web are just some of the possibilities that
have been opened up by the Internet. With its growing impact, the Internet
itself is also growing exponentially in terms of connected devices and users,
resulting in an increasing demand for network resources and services available
online.

The fundamental building blocks of the modern Internet, were designed over
45 years ago and therefore were not developed having in mind the demand that
is experienced today. Furthermore, the model of communication with all entities
participating in it is leading the network to be collection of complex and rigid
segments. While many segments rely on a single vendor’s equipment for better
support and interoperability, a side effect of such dependencies contributes to
creation of barriers and slowing down the process of implementing new and
potentially better technologies, architectures and network services which aim at
addressing existing deficiencies and problems.

Technologies like Virtual Reality (VR) or the Tactile Internet are extremely
resource-intensive and resource-sensitive [49], which means that poor Quality-of-
Service (QoS) directly affects the Quality-of-Experience (QoE). Therefore, one
challenge is to have an infrastructure that would allow to satisfy the require-
ments set by such an application, while the other is the ability to monitor the
resources assigned to this application. Current network monitoring is mainly
focused on overseeing the stability of the network as a whole. Once anomalies
have been identified, most cases require further investigation to determine the
root cause of the problem. Typically such diagnostics require network adminis-
trator intervention, which can be labour-intensive. Diagnostics of cloud-based
services often span multiple domains, making it even harder to find the root
cause, if possible at all. In some cases, this results in situations in which the
domains’ administrators claim other parties being responsible for the service
degradation, while the problem remains unresolved. In addition, the end-user
who entrusts the traffic generated by them has no information on how it is being
processed making them helpless in a situation where the internet-based service

1

does not operate in the expected way.

1.2 Motivation

The structure of the modern Internet means that the end user generates net-
work traffic and then hands over its processing to third parties. For this reason,
the Internet is treated as a black box, where users can only hope for the best
possible outcome. Moreover, this structure may be described by the following
characteristics of limited transparency, accountability and lack of at least par-
tial control over how user’s traffic is processed. In this context, a user can be
understood in one of several ways, firstly as an end-user in the form of a person
using a service on the internet or an entity that provides that service. Secondly,
it can be the operator of the critical infrastructure that uses the public Internet.
Lastly, it could be the Internet Service Providers (ISP). The attributes outlined
above will be discussed further in this section, followed by the example of po-
tential benefits, for the different user groups, resulting from the evolution of the
current state of the Internet.

1.2.1 Limited Internet Transparency

Transparency is a feature that allows the user to see how network traffic is
being processed. In the current state of affairs, the sender of data cannot obtain
knowledge of the path that the packet has followed through the network, nor can
obtain a guarantee that two packets with the same destination will travel along
the same path. This creates dependencies, both negative and positive. The first
negative one is that the sender does not know which way his network traffic
is being sent, i.e. what are the intermediate ’networks’ that process the traffic
and whether this is the most optimal path for that traffic. In the extreme case,
presented in Figure 1.1, this may mean that, as a result of the traffic hijacking
event, network traffic will be routed through half the world, which the end user
might only have the chance to notice by increased delay. The second negative
dependency is the lack of user awareness of the details of the infrastructure that
processes their traffic. This becomes a noticeable problem with the growing
centralisation of the largest Internet companies [5][6]. This concern is being
raised by both end users and policymakers the European Union[36][5].

1.2.2 Limited Control

Controllability describes the ability of users to determine how they want their
traffic to be processed by network operators. The ability to make such a decision
would result directly from the transparency described above. A few of the
problems resulting from the lack of controllability may be the following: lack
of route optimisation for both the sender and the receiver, poorer accessibility
resulting from the lack of ability to prevent outage when e.g. the resource usage
surges, which is relevant for end users, and limited load-balancing capability
which is relevant for ISPs.

2

Figure 1.1: Path alternation as a result of traffic hijacking event.

1.2.3 Examples

The end user is the party that stands to gain from an improvement in the condi-
tions related to the previously mentioned attributes. The first type of end-user
is a private individual using for example video conference applications (such as
Teams, Zoom), game streaming (discontinued Google Stadia) or virtual reality
(VR) applications that are hosted using cloud resources. For this user, the be-
nefit would stem from the ability to monitor network traffic and possibly detect
deteriorating QoS. This ability is also relevant as application performance be-
comes extremely important with very high requirement concepts such as tactile
internet [49] being developed.

The second type of end-users are companies whose functioning leverages the
Internet, for example, Critical Infrastructure operators. With a growing number
of devices that allow controlling their functions via the Internet, entities such as
providers of smart city systems gain the ability to supervise their dependencies
in the network, which is of great importance in the context of the security of
the infrastructure itself and, consequently, of users depending on that infrastruc-
ture [51]. The use of the Internet optimises operating expenditure as opposed to
maintaining and paying for private network connections used by infrastructure
operators.

Another type of entity that might benefit from the developments related to
the aforementioned characteristics are ISPs. The advantage can be highlighted
in a following scenario in which a group of network operators may benefit is an
attempt to jointly solve problems in the network whose origin is not easy to
determine. Such network problems may adversely affect the QoS or availability
of provided services and consequently lower QoE for users using them.

The described above presents a non-trivial challenge of utilising current tech-
nologies in the best possible way in order to provide end users and domain
administrators with more network related transparency, understood as the level
at which an entity is able to see how their network traffic is being processed.
The system should be designed in a way that would make each domain involved
capable of contributing the most to reach a common goal which in this case, is

3

to assist the domains administrators in their problem resolution task and give
end-users more knowledge about how their traffic is being processed.

1.3 Research Objective

The main research objective is to assess feasibility of realising a multi-domain
monitoring system, aimed at enhancing Internet transparency. This system us-
ing existing telemetry protocols and technologies should allow multiple domains
share their telemetry data and as a result aid to solve the challenge of locat-
ing an issue within a network, that may have occurred in one of the domains
through which the network traffic is being transported. From this objective the
following step-by-step process is derived:

• To identify the related work and research in the field of networking, which
is relating to the telemetry solutions and their implementations, as it
would give perspective for the input into the multi-domain monitoring
system.

• To identify the relevant, including the existing (traditional), network tech-
nologies, architectures, as well as ways of sharing data along with their
major benefits, issues, and concerns.

• To propose an architecture that realises research objective while address-
ing identified issues and concerns over the involved technologies in the
proposed multi-domain diagnostic system.

• To demonstrate a proof of concept (PoC) implementation of the proposed
multi-domain diagnostic system on a testbed.

• To conduct validation and performance evaluation of proposed architec-
ture.

1.4 Contribution

As far as this work’s contribution is concerned, the proposed architecture is
aimed at realising a system that enables the implementation of a multi-domain
diagnostic system. This work adheres to the call for an Internet that is more
transparent, and as a step forward proposes a mechanism that carefully balances
the desire to share transparency information with the necessity to not expose
all internal details of a network. As a result, this is a step towards improving
upon the problem of lack of control in the current structure of the Internet,
since knowledge of how the traffic is being processed is the starting point for
taking network related control decisions.

1.5 Thesis structure

The structure of the thesis is as follows. Chapter 2 discusses the design goals for
the proposed system. Chapter 3 introduces concepts and technologies needed
to obtain network data from multiple domains, this section also presents related
work. It is then followed by Chapter 4 that presents the proposal and PoC

4

implementation. In Chapter 5 performance evaluation of the proposed archi-
tecture is conducted. Finally in Chapter 6 conclusion and directions for future
work are presented.

5

6

Chapter 2

Design goals

As presented in Section 1.2 , the current structure of the Internet has limitations
due to the fact that its users treat the Internet like a black box. A system
that allows the user to ”peek” into the inside of the domains responsible for
processing their traffic would improve the present situation, would have the
potential to improve fault diagnosis of systems and could give users a perspective
into how their traffic is processed. In section 2.1 design goals for such system
are presented.

2.1 Design goals

The main design goal derives directly from the problems of the current Inter-
net structure, described in more detail in Section 1.2.1. This objective is to
provide users with greater transparency, i.e. to give them insight into how
the network traffic generated by these users is processed. In addition to the
main focus, the next goals are (1)to propose a solution that allows data sharing
between multiple-domain while not exposing sensitive details about them, and
(2)modularity - to create a solution which allows the use of variety of underlying
technologies and can be expanded with additional functionalities.

2.1.1 Transparency

Transparency describes solutions’ ability to provide information about the infra-
structure and means used to transfer the data with regards to involved network
operators, their properties and relations between them. A network operator is
understood as an administrative entity that operates any network involved in
transfer of the data, including access and transit networks, datacenter networks
or content delivery networks (CDN). Transparency is understood in two ways.
First, data plane transparency allows to gain insight into which network operat-
ors are involved in transporting data, how those data flows are being processed
and with what result. For it to be possible a network operator needs to keep
track of where a flow enters the network, how it is then being processed (for
example how it is routed, whether it is processed by deep packet inspection sys-
tems), how long it takes to process flow in question, whether the processing is
interrupted, for example by packet drops or congestion, and finally where does

7

the data leave the network. Well-executed transparency would allow users to
determine how their traffic reaches the services they are connecting to. Second,
control plane transparency describes infrastructure (e.g. sharing, without expos-
ing, the manufacturer of the equipment, software and its versions, all to ensure
that the infrastructure is free from security vulnerabilities, the same respect-
ively for open source tools) and relations between network domains (structure
of corporate capital, geolocation, jurisdiction). This type of transparency al-
lows end users to verify if service providers involved in transporting their data
meet their expectations and policies. For a user of a video conferencing applica-
tion, this might mean that their data is being processed in a datacenter located
within European Union (which means that the law specified for the particular
jurisdiction applies). In comparison critical infrastructure operators might be
inclined to verify if their network traffic is being handled by the most up-to-date
infrastructure, resulting in lower risk of security incident.

2.1.2 Sensitivity of shared data

In creating a system which aims to provide third parties with access to network
characteristics, the question arises of how to balance the amount of information
provided against the security of the infrastructure they describe. The competit-
ive nature of operating a digital enterprise (ISP, cloud provider, CDN provider,
company offering a digital product) complicates the process of formulating a set
of requirements and constraints that would convince involved parties to share
their monitoring data or data describing their operation. The type of inform-
ation shared or how it is analysed would have to ensure that in the process
of sharing the data, the operator who chooses to do so does not take the risk
of affecting its competitive edge or exposing its business model. The setting
problematizes itself with more parties getting involved as the probability that
an additional entity is to introduce new unmet requirements to the table rises.
This makes one of the design goals the secrecy of the information shared by
the entities, and the degree to which it will be realised can directly affect the
value derived from the adoption of such system. For example, to increase the
probability of wide adoption, the proposed solution could assume that involved
parties are reluctant to share their data, as a consequence of distrust towards
each other and the end user.

2.1.3 Usefulness and Usability

The usefulness of a system could be described as an ability to realise other
design goals in a manner that allows for the system to be widely adopted by a
broad range of users. It can come from an understanding of the technology and
trust resulting from it, as described by “Attitude” in the technology acceptance
model(TAM). It has been presented that compatibility, relative advantage, and
complexity have the most significant relationships with adoption across a broad
range of innovation types [29]. Furthermore, the production of tangible res-
ults will directly influence the system’s usefulness [24]. Therefore transparency
should be improved, when the system performs analysis, the results of which
are easily interpretable or will allow an informed decision to be taken. The ease
of adaptation of the solution has a direct impact on the desire to use it. If the
provision of a better level of transparency required from operators and users to

8

use a particular type of equipment, the pace of adaptation of such a solution
may not be sufficient to create an impact. An appropriate level of modularity
would enable the collection of data from various types of devices, which would
allow more users to benefit from such a solution. This means that it is necessary
to design a solution that allows the collection of measurements from devices sup-
porting different standards, so that collected data describing the same metric
can contribute to a joint analysis.

9

10

Chapter 3

Network Observability
System

3.1 Monitoring of networks and digital systems

Transparency as described in the earlier section is presented twofold, one of
which is a control plane transparency. This type of transparency requires the
operator to compose a description of its operations (mechanisms used to process
traffic, tools and relationships with other operators). This information could be
also gathered by an independent observer collecting data about the operator.
Notion of information included in such a description is presented in the Re-
sponsible Internet [18]. This process insofar as it requires the composition of all
the information that is necessary for a specific analysis may be performed once
until it is required to update this description. Meaning that users wishing to
obtain information derived from this description may do so without need of it
being regenerated. Part of such description should also include a list of avail-
able measurements performed by the operator. The measurements themselves
with resulting data are part of data plane telemetry. Depending on the scope of
the system under observation and the type of operator who supplies it, meas-
urements may concern one or more aspects of it (servers, network equipment).
This means that for a flow that originates from the end user, travels towards the
system handling the request and then returns to the source of the request, there
are many intermediate steps in which observations can be made. For an example
network application, the points of observation are the local machine that hosts
the application, then the network that is used for transport and finally the sys-
tem that executes the queries sent by the local machine. This general picture for
each of the points indicated could be further specified, depending on the desired
accuracy of the observation made. The accuracy of the measurements should
be motivated by obtaining sufficient information to understand the behaviour
of the application under observation, or by locating a point in the system that
prevents failureless operation of that application. Given the networking nature
of this work, the following section will look more closely at the network tele-
metry aspect of gathering measurements to monitor the system/application and
to diagnose potential problems.

11

Figure 3.1: An example of calculating Round Trip Time using active
measurement.

3.1.1 Network Telemetry

Telemetry is the process of measuring the performance and monitoring the state
of a network by taking measurements at multiple points in the network. It is
conducted through collecting performance metrics from points in the network
called observation or measurement points, depending on the method used. Sub-
sequently, data obtained as a result of telemetry is then collected in a central
collector, where it can be further processed. The performance metric is a quant-
itative value that has been obtained as part of the assessment of network per-
formance and/or reliability. This metric is defined in a precise way to ensure the
unambiguous meaning of the measured value [35][20]. As mentioned, telemetry
data is collected from various points in a computer network that allow packets
to be observed for measurements [47]. An example of an observation point can
be any medium used in a network to which a probe can be attached, such as
a single interface or a set of network interfaces (both physical and logical) in a
router, switch or network card.

There are two main approaches to network measurements which are active
and passive methods [35].

To perform an active network measurement, synthetic packet streams are gen-
erated. Streams of packets resemble measured network traffic or have a unique
structure (special probe packets) to distinguish a measurement packet from
regular network traffic. An example of active measurement is presented in Fig-
ure 3.1, where special messages are sent between the switches. The timestamps
that can be embedded in the message body are then used to calculate round
trip time between the switches.

Passive methods, on the other hand, depend on the existence of data streams
in the network traffic (traversing through single or multiple observation points)
which can be used as input data for the measurement. Passive methods work by
collecting information on streams of interest from observation points, analyse
the collected data in order to assess the metrics of network efficiency. Worth
noting is that the transfer of data to the collector may have an adverse effect
on the measured metrics.

Derived from the two main types of measurements there are also hybrid meth-
ods. A measurement is considered to be using a hybrid method when it uses

12

Method Description
Active Generating a data stream for measurement

Hybrid Type I (Type II)

Modification or augmentation of a single
data stream (two or more data streams),
or action to change the handling of
the data stream(s).

Passive
Observation of existing data stream
for measurement

Table 3.1: Summary of measurements methods.

both elements known from passive and active methods [31]. A comparison of
the general description of the methods is given in Table 3.1.

3.1.2 Operation, Administration and Maintenance

As described in section 3.1.1, active measurements use special packets, which
are part of the standards and tools labelled by the term Operations, Adminis-
tration and Maintenance (OAM). OAM is used for fault detection and isolation,
performance measurements, network discovery and planning in computer net-
works [35][31]. The OAM protocols are defined at different layers of the OSI-
model. Ethernet, IP, MPLS and many other network protocols use OAM for the
above-mentioned purposes. The standardization bodies for the tools and stand-
ards included in the OAM are three entities: Internet Engineering Task Force
(IETF), International Telecommunication Union Telecommunication Standard-
ization Sector (ITU-T), and Institute of Electrical and Electronics Engineers
(IEEE). The majority of the tools within OAM could be used as an input to
a telemetry system, therefore an overview of some of them is provided in Fig-
ure 3.2. In the remainder of this section the more often used protocols from the
OAM toolset will be described as to report developments in that domain, and
point out the possible source of telemetry data.

Internet Control Message Protocol (ICMP) is defined as a supporting protocol
for Internet Protocol (IP) as defined in standardisation [39]. As the IP protocol
was not designed to provide complete reliability, the ICMP protocol provides
a means by which feedback about faults in the network can be reported. For
example, a network device, when communicating with another IP address, is
notified if said address is unreachable. ICMP messages are used as a means to
diagnose networks or can be generated as a result of an error [14]. If an error
occurs the message is being directed to the original source of the packet that
caused it. An example of such a situation is reaching value 0 in the time-to-live
(TTL) field in the IP header. Worth noting is that a tool called traceroute
[2][50] uses this mechanism to its advantage as it successively sends out packets
while incrementing the value of TTL field by 1, in order to estimate the path
the packet takes to its destination address.

Simple Network Management Protocol (SNMP) is a part of the Internet Pro-
tocol Suite and was defined by IETF [26]. The purpose of SNMP is to collect
and organize data related to network devices on the IP network. Additionally,
SNMP can be used to modify data in the device in order to change its behaviour.

NETFLOW is a vendor specific solution developed by Cisco that allows to

13

Figure 3.2: An overview of OAM standards.

monitor traffic traversing specific network devices [19]. Devices supporting this
protocol collect statistics about IP traffic on NETFLOW enabled interfaces.
Gathered data include identification of ingress interface, 5-tuple, and IP type of
service. Version 9 of the NETFLOW protocol formed the foundation for Internet
Protocol Flow Information Export (IPFIX) which is an IETF standard [47].

sFlow similar to NETFLOW, in a sense that it allows to export data about
packets traversing network together with interface counters. The letter ’s’ in the
name stands for sampled, since sampling is used by sFlow to achieve scalability.
Depending on the sampling rate, one in n packets is sampled and exported in
truncated form. While sampling does not give 100% accurate results it can
provide quantifiable accuracy [37].

3.1.3 Software-defined networking

Next to traditional network management, where network devices such as switches
and routers are configured individually, and network policies are enforced through
device-specific configurations, there is the software-defined networking (SDN)
principle that centralizes network management thus enabling new ways of con-
ducting network measurements. This section will describe the concept of SDN
and network measurements in such networks as alternative sources of telemetry
data. Since SDN will be used as a building block for this work’s proof-of-concept
it will be described in greater detail.

Software-defined networking is an approach to network management that lo-
gically centralises the network layer responsible for traffic management (routing)
in the network by separating it from the underlying data plane layer responsible
for the transmission of network traffic. The main purpose of the SDN approach
is to centralise network intelligence and state (global network view) while ab-
stracting the network resources underneath. The main benefit of using SDN for
telemetry is stemming from processing traffic on a per-flow basis, which allows
monitoring of the network in a more granular way. Furthermore, logically pla-

14

Figure 3.3: Representation of Open Flow Switch.

cing the software-based SDN controllers in a centralised position, gives a global
view of the network. As a result, applications and policy engines communicat-
ing with the controller can use centrally located knowledge to make decisions,
which the controller then redistributes to data/forwarding plane using the SDN
Southbound Interface (e.g. OpenFlow).

3.1.4 OpenFlow

The OpenFlow protocol must be implemented on both sides of the interface
between the controller and the network infrastructure. In OpenFlow, network
traffic is referred to as flow, which is defined by rules, both static and dynamic,
that are programmed by the SDN controller. These rules are reflected in one of
three types of tables, according to the architecture of the OpenFlow switch [4].
As presented in Figure 3.3, the OpenFlow switch consists of one or more Flow
Tables, Group Tables and Meter Tables. The rules in the corresponding tables
determine how the network traffic is processed and forwarded. Communication
between controller and switch consists of instructions to add, remove or update a
rule. Such communication can occur reactively (upon packet/flow initial arrival
when the forwarding device doesn’t know how to forward traffic) and proactively
(for provisioning purposes).

When a packet enters an OpenFlow switch it is processed according to the
pipeline derived from the specification. Usually the processing pipeline consists

15

of several flow tables, which each may consist of multiple flow entries. The flow
entry is described in the OpenFlow Switch specification [4], and its consists of
6 main components:

1. Match fields - contain the ingress port, packet headers, and metadata
specified by the previous table.

2. Priority - defining matching precedence of the flow entry. When being
matched with the flow table, only the highest priority flow entry that
matches the packet is selected from all available.

3. Counter - keeps track of number of packets that matched certain flow
entries.

4. Instructions - used to modify the action set or pipeline processing matched
packets. Various instruction types are described in specification such as
apply-, clear-, write-actions.

5. Timeouts - describes the maximum time before a flow entry is removed
when it has matched no packets or the absolute time after which the rule
is being removed.

6. Cookie - flow entry identifier assigned by controller.

It might happen that an incoming packet has no matching flow entry in that
particular flow table. In such case, the action applied is described by a wildcard
flow entry with priority equal to 0 and is called the table-miss flow entry.

One of the available methods of processing a packet in a flow table is to
redirect it to a group table in order to perform an additional action available
within this table (e.g. flooding, multipath, and link aggregation).

Ultimately, the OpenFlow pipeline also offers the use of meter tables. Pro-
cessing performed within the meter table is done by redirection of traffic through
flow entries and concerns various performance-related actions (QoS), such as
rate-limiting actions on incoming traffic.

The processing pipeline in an OpenFlow Switch is presented in Figure 3.4.
The SDN architecture described above and the resulting packet processing

allow for a number of new measurement methods in the network that were pre-
viously not possible due to existing constraints. The principle of processing
traffic on a per-flow basis allows monitoring of the network in a more granu-
lar way. In SDN networks, the most basic measurement method is requesting
per-flow counters, which are one of the fields available under flow entry. New
possibilities have also resulted in new tools for measuring traffic. OpenTM [46]
allows to monitor the network by creating a Traffic Matrix which is a result of
querying switches on regular intervals. Another solution is called, OpenSAFE
[10]. OpenSAFE uses the fact that every new flow request in an SDN network
has to pass through the SDN controller. The controller has the ability to forward
the creation of new flows to multiple traffic monitoring systems which record
the traffic and analyse it with an IDS. A solution called OpenNetMon [48] is
a software implementation capable of monitoring per-flow metrics, especially
throughput, delay and packet loss, in OpenFlow networks. OpenNetMon uses
statistics collected in switches per flow and uses active measurement techniques
to determine values such as path delay.

16

Figure 3.4: Representation of processing pipeline in OpenFlow switch
in the form of flowchart

3.1.5 iOAM

In-Situ OAM (iOAM) is a standard developed by IETF [15], that at the time of
writing has reached a RFC maturity level. iOAM describes how operational and
telemetry data can be recorded in a packet as it traverses network devices. The
goal of developing this standard is to complement active OAM based on ICMP
probes or other types of probe packets. iOAM aims to define a common way of
embedding telemetry and operational data in packets. Moreover, the iOAM also
defines a domain within which it can be used. The description specifies that the
standard is a domain-oriented feature of a network domain, which is defined as a
set of devices administered by a single entity. Examples of such domains are the
campus network or overlay network with virtual connections. As a consequence,
domains defined within the iOAM must have a clearly defined perimeter and
the domain manager must ensure that the measurement data contained in the
packets do not leak outside the domain. In addition, the standard points out
that the administrator should take into account the use of the iOAM in terms
of its impact on load-balancing, path MTU (that all links in the network can
handle packets with increased size caused by the iOAM headers), and ICMP
message processing.

3.2 Distributed systems architectures

The standards and network monitoring tools described, depending on the tech-
nology stack of a domain, can be used to observe network stability and per-
formance. They allow the domain administrators to collect data and carry out
analysis based on it. However, the structure of the Internet, as described in the
previous Chapter, makes it impossible for a user of an application to leverage
insight generated by these tools, since their network traffic is handed to and

17

forwarded by a group of third parties. Hence, the traditional approach of mon-
itoring individual network domains separately is no longer adequate in complex
distributed systems, where information flows between different domains. Cre-
ation of multi-domain network telemetry systems may provide a more compre-
hensive view of the network used as a distributed system, making it easier to
detect and troubleshoot possible issues.

This section will present architectural models that could be used to realise
a multi-domain system for the collection and analysis of network telemetry, as
well as methods to perform analysis with protection of data in mind.

3.2.1 Client-Server model

The client-server is an architectural model for a distributed application based
on division between service or resource providers-servers, and clients distributed
across a network that request access to said services/resource [25]. The server
in a client-server model can be designed to perform a variety of functions, such
as data storage, processing, and analysis. Communication is typically request-
response based. In this model vertical scalability is possible by adding resources
to servers, while horizontal scalability is limited due to the centralisation of
services. In Client-server model single points of failure can impact the entire
system fault tolerance relies on redundancy or failover mechanisms. Compared
to other models it is simpler to design and manage but can become complex
with increased functionality (especially in case of monolithic application). Data
consistency is easier to maintain as there’s a central authority for data man-
agement. In the context of network-telemetry two kinds of clients could be
distinguished. The first type would be a client who is a data source, sharing
measurement data collected in its domain. While the other type would be a cli-
ent that can submit requests to the server to retrieve data or perform analysis
on the data stored on the server.

As described above client-server model offers several advantages for distrib-
uted systems, such as scalability, and ease of maintenance. The centralised
server allows for efficient data management and processing, and clients can be
added or removed from the system as needed. On the other hand, the central-
ised server can be a single point of failure, making the entire system vulnerable
to attacks or breaches. If a malicious actor were to gain access to the server,
they could potentially access all the data collected. Encryption and access con-
trols can be implemented to mitigate these risks. It’s also important to ensure
that the data transmitted between clients and the server is secure to provide
confidentiality and integrity. Moreover, the central entity in this model (the
server) would have to be managed by an entity to whom all customers have a
relationship of trust. This criterion could prove unfeasible to implement due to
customer focus on defending their own interests.

3.2.2 Microservices model

In the microservices model, data is collected and processed by independent,
loosely coupled, and fine-grained services that are responsible for specific func-
tions [25]. Each service is responsible for a single task, such as data collection,
data storage, or data analytics. Services communication often involves light-
weight protocols, such as HTTP/REST or message queues. Services communic-

18

ate to accomplish certain tasks. In this model horizontal scalability is possible
by independently scaling services, each service can scale individually. Isolation
between services can limit the impact of failures, however this model requires
proper error handling and recovery strategies. Compared to other models mi-
croservices are more complex due to the distributed nature and since implement-
ation requires additional tools for monitoring, deployment, and coordination. In
the context of network-telemetry a client interested in gaining insight from a do-
main, would query a data analytics service which then depending on performed
analysis will further request appropriate data from data storage services.

The advantage of this architecture is that it allows for easy scaling, as indi-
vidual services can be scaled independently. Furthermore, the distributed nature
of the microservices architecture can make it more difficult for attackers to com-
promise the system. However, if one or more microservices are compromised, it
can lead to data leakage and integrity issues. Thorough access controls should
be implemented to secure the communication between microservices. Addition-
ally, each microservice should be properly authenticated to prevent unauthorised
access.

Compared to the client-server model described earlier, components such as
the data storage and data collector could reside within the domain of which they
are part. This would reduce the need to share more data with a central entity,
but does not eliminate the need to share the data necessary for analysis. The
risk is that over time the data shared could reveal sensitive information about
the domain, again raising issues of trust.

3.2.3 Publish-Subscribe model

The publish-subscribe [25] architecture is a model focusing mainly on the way
messages are distributed in the system. The sender of messages, called publisher,
does not send messages directly to the specific receivers-subscribers. Instead,
it groups messages into classes, with no direct aim of sending them to specific
subscribers. In a similar way, message recipients express their desire to receive
messages of a specific class without specifying their origin. When publishers
generate events or messages, they send them to the message broker along with
an associated topic or category. The topic serves as a label or identifier for
the type of event being published. The broker is responsible for determining
which subscribers are interested in that event based on their subscriptions. The
message broker then routes the event to all relevant subscribers. Consequently,
subscribers receive the events that match their subscriptions. They can then
process or react to these events as needed. In this model scalability depends on
the scalability of the messaging infrastructure. As for fault tolerance of publish-
subscribe can be resilient to failures as components can continue functioning
even if one or more subscribers or publishers fail.

In the context of a multi-domain network telemetry system, this model might
be unfeasible to realise the exchange of information between domains. One
problem in using such a model could be the non-scalability in the way the
classes of published messages are defined. Additionally, the responsibility for
processing messages would be shifted to the subscriber, who may not have the
necessary means to process complex measurement data. Furthermore, direct
sharing of measurement data would infringe the interests of the domains from
which the data originates. This model, on the other hand, can be used to

19

propagate measurement data within the domain, which would allow several
points of presence to be created for further data analysis with other domains.

3.2.4 Peer-to-Peer model

In the peer-to-peer (P2P) architectural model [25], communication and exchange
relations are established between peers that are part of the system. Peers them-
selves in a P2P model can be equally privileged, in other words, can be equal
participants in a formed network (depending on application and type of P2P
network don’t have to). The data is collected and processed by distributed
nodes, with each node sharing data with its peers. A different approach would
be for each node to perform analysis on the data it collects, and the results
can be shared with other nodes. While P2P networks increase robustness by
eliminating a single point of failure, which is inevitable in a client-server model,
the scalability of the system may be more difficult to achieve depending on the
performed function of the network. For example, in the case of data sharing, a
P2P network requires that at least one node participating in the network has
the data that is being requested. This highlights that the success of a system
based on a P2P network relies on the cooperation of involved nodes/parties.
Moreover, similar to the models outlined above, the relationship of trust to the
members who are part of the network remains a contentious issue.

3.2.5 Flexible system design

Each of the models outlined above carries both advantages and disadvantages.
The structure of each has the potential to optimise interactions between parties
involved, provided usage patterns of realised services leverage the advantages of
a particular model. For example, the realisation of the control plane transpar-
ency described earlier in section 3.1, containing the description of the operator/-
domain, requires an interaction in which a user queries the system for informa-
tion about a domain’s specific properties. Depending on whether the source to
be queried was the operator itself or a repository describing a greater number
of operators (e.g. to search for an operator meeting certain requirements), the
user would send a query to a specific endpoint and receive a response from it
(provided that access control allows them to do so). The description of the oper-
ator itself is a high-level overview, so the data provided is not as sensitive as the
data that is published by data plane transparency. Therefore, the establishment
of a trust relation and its subsequent implementation through access controls,
provides greater freedom in the choice of architectural model. Consequently for
this pattern, the client-server model might be the most appropriate. As already
mentioned, data shared to achieve data plane transparency is more sensitive.
This is due to the fact that it might reflect the state of the network devices
involved in the transfer of certain flows. Such data aggregated over a lengthy
period of time could pose a security risk to the domain from which it originates,
e.g. due to the discovered network topology. For this reason, the very means of
processing such data must be based on the protection of the data itself.

20

3.3 Data analysis with secrecy

As described in Section 3.2, there is a range of architectural models that can
be used to create a multi-domain network telemetry system. Each model, with
its advantages and disadvantages, can be used to implement specific system
functions. However, in the case of an analysis aimed at achieving data plane
transparency, the nature of the data to be shared makes it necessary to use
data processing methods that have data protection at their core. This section
will describe such methods, detailing how the data is processed, the resulting
advantages and disadvantages as well as the suitability of such a method for
implementing a multi-domain system with multiple stakeholders.

3.3.1 Functional Encryption

Functional Encryption is a cryptographic scheme that allows for fine-grained
access control over encrypted data [22]. Using public key construction it enables
different parties to compute specific functions (usually public) on encrypted
data while preserving its privacy. Meaning that the input of the function is
encrypted while the output is presented in clear text to the party performing the
function. As a result, an entity that performs functional decryption learns only
the result of the function performed on specific data, however nothing about
the data itself. In the context of a multi-domain network telemetry system,
functional encryption can be used to selectively grant access allowing different
parties to perform specific computations without revealing the entire dataset.
However, implementing and managing a functional encryption system can be
complex, requiring careful design and secure key management. Furthermore,
depending on the specific functional encryption scheme, there may be limitations
on the types of computations that can be performed on the encrypted data
allowing only to evaluate linear and quadratic functions. Moreover, the pattern
of interaction in a system based on Functional Encryption makes it impossible
to perform analysis on data from several domains without prior aggregation
(which creates a trusted third-party dependency).

3.3.2 Fully Homomorphic Encryption

Fully Homomorphic Encryption [9] is a cryptographic technique that allows
computations to be performed directly on encrypted data, without the need
for its decryption. Different types of Homomorphic Encryption can be dis-
tinguished: additive, partial, leveled, somewhat (SHE) and fully (FHE). FHE
is the type of homomorphic encryption in which potentially any function can
be performed while in other cases limitations are present. The most practical
application of this processing model is to outsource the computation. This is
made possible because both the input and output of the calculation are en-
crypted using the client’s key, while the server only operates on the encrypted
data. The calculations do not require additional communication between entit-
ies, but FHE is computationally intensive, requiring significant resources and
time compared to traditional computations. While progress has been made in
optimising FHE schemes, they are still relatively inefficient effectively limiting
their practicality in resource-constrained environments. FHE enables secure
computation on encrypted data, making it suitable for secure data processing

21

in multi-domain telemetry systems. However, as with functional encryption, the
interaction model does not correspond to a system that might aim to achieve
data plane transparency, meaning that result of computation would need to be
shared with interested party. This cryptographic technique is more appropriate
for the owner of certain data, but not for an individual who wants to obtain
information from data that is sensitive.

3.3.3 Secure Multi-Party Computation

Secure Multi-Party Computation (MPC) is a subfield of cryptography work-
ing on protocols that enables multiple parties to jointly compute a function
on their private inputs without revealing those inputs to each other [40]. In
MPC, function inputs are masked or shared as secretes between parties, while
the final result of the computation is revealed to a subset of them. The MPC
has the advantage of being less resource-intensive, but performing the calcula-
tions successfully requires the involved entities to participate in several rounds
of communication/interactions. In the context of multi-domain network tele-
metry systems, MPC can facilitate the collaborative processing of data while
maintaining secrecy of it. In other words, it enables multiple domains to work
together and leverage their data collectively, even when they cannot directly ac-
cess each other’s data. However, as mentioned earlier, depending on the function
being evaluated MPC may require extensive communication and coordination
among the participating parties, which can introduce latency and increase com-
putational complexity. Furthermore, as the number of parties involved in the
computation increases, MPC can become more challenging to implement and
scale effectively.

Each of the three cryptographic techniques, similar to architectural models,
has advantages and disadvantages. Functional Encryption offers fine-grained ac-
cess control and privacy preservation but can be computationally intensive and
lacks full data manipulation capabilities. Full Homomorphic Encryption allows
for performing arbitrary computations on encrypted data but suffers from high
computational overhead and may not be suitable for all applications. Secure
Multi-Party Computation enables multiple parties to jointly compute a func-
tion while keeping their inputs private, offering a balance between privacy and
efficiency. In the context of a multi-domain telemetry system where data collab-
oration across domains is essential, MPC emerges as the most suitable choice
due to its ability to provide secure computation while minimizing computational
costs and accommodating the diverse data sources and parties involved. In the
following section, more details about data sharing, the security and efficiency of
MPC are presented.

3.3.4 Secure Multi-Party Computation - data sharing, se-
curity models and efficiency

Multi Party Computation is based upon several primitives, some of which are
shared between all protocols while others are only used in specific cases. This
subsection describes the basic primitives to give better understanding of MPC.

22

Figure 3.5: A Boolean circuit evaluating ((a ∧ b) ∨ c) ∧ d.

MPC functions

Although any computable function can be evaluated using multi-party com-
putation, the function’s ’complexity’ has a significant impact on the evaluation
time. MPC protocols typically employ a single computational model that defines
both the operations and data formats that the protocol may work with. For
instance, the Boolean circuit is a popular computational model. Data is repres-
ented as bits (0 or 1), and the operations that can be performed are OR-gates
(outputs a 1 if at least one input bit is 1) and AND-gates (outputs a 1 if all
input bits are 1). In essence any computable function can be represented as
such a Boolean circuit. The complexity of a function is often described in terms
of the size (gate count) of the corresponding circuit, together with its depth.
The depth is the largest number of gates appearing sequentially in the circuit.
For example, the circuit in Figure 3.5 has depth of 3, because the input for the
right AND-gate depends on the output of the OR-gate, and the input of the
OR-gate depends on the output of the left AND-gate. In most MPC proto-
cols, linear gates (OR-gates) can be computed locally, whereas non-linear gates
(AND-gates) require communication between the parties. For that reason, func-
tion’s complexity can be evaluated by looking at the depth and the number of
multiplication gates in the circuit.

Garbled circuits

Garbled circuits are a cryptographic technique used in MPC to securely evalu-
ate a function over private inputs without revealing them to any party involved.
In this method, the function to be evaluated is represented as a Boolean circuit,
and each gate in the circuit is ”garbled” or encrypted by the party creating the
circuit. The inputs to the circuit are also encrypted, such that only the correct
combinations of input values will successfully decrypt and propagate through
the circuit, leading to the final output. The other party or parties involved in
the computation can evaluate the garbled circuit using their encrypted inputs,
ensuring that they learn nothing about the inputs or intermediate values other
than the final result.

23

Figure 3.6: Interaction scheme in oblivious transfer.

Secret Sharing

Cryptographic Secret sharing [42][12] is an essential primitive which is the
basis of the protocols in the MPC. The goal of secret sharing is to divide a secret
value in a number of shares (n) with a threshold (t) in such a way that any subset
of those shares consisting of less than t shares can not be used to reconstruct
the secret, while any t shares is sufficient for the secret reconstruction. The
survey about secret sharing protocols was conducted by Beimel [11].

Oblivious transfer

Oblivious transfer (OT) is a cryptographic protocol that lets two parties con-
duct an exchange in such a way that receiver chooses k of n secrets from party
holding those secrets, without revealing which secrets were picked.

The interaction in OT is presented in Figure 3.6. As presented in Figure 3.6
a sender holds two secrets x0 and x1, while receiver is holding a bit allowing to
choose one of the secrets b ∈ 0, 1, receiver can obtain xb learning nothing about
the other secret, while sender learns nothing at all. J.Kilian showed [27] that
oblivious transfer is a building block for MPC protocols that are efficient (in
a random OT, only three bits of communication are requited to compute the
function).

Security of Multi Party Computation

Different MPC solutions are characterised by different threat models. In this
section the differences between the models will be described, which have an
impact on the decision to use the framework in the section 4.2.1.

The threat models in Multi Party Computation are based on assumption that
subset of parties involved in the protocol are controlled by an adversary, while
other remain honest. In general the protocol, for each party involved, specifies a
function that takes set of variables, such as security parameter, party’s private
input, random tape (set of uniformly random bits used during execution) and
list of messages a party recived so far. From all components parties produces
next message together with the addressee or terminates the protocol with spe-
cific output. An adversary can corrupt one or more of the parties in which case,
said parties, are considered as being an adversary. Depending on adversary be-

24

haviour, that is whether the adversary follows the protocol or not, two threat
models may be determined: semi-honest and malicious.

The semi-honest adversary is represented by corrupted party in the protocol
that follows it, however while doing so it tries to gain additional knowledge
from all the messages received during protocols execution. Since semi-honest
adversary does not take any additional actions other than learning from pro-
tocol execution it is also considered to be passive.

The malicious adversary, on the other hand, is represented by corrupted party
that may follow the protocol, but can also deviate in an arbitrary way from it in
order to attempt violating security of executed function. Therefore, malicious
adversary has all the capabilities of analysing the execution that semi-honest
one has, but can also take additional actions. An arbitrary way of trying to
violate the security may include controlling, manipulating and injecting any
message on communication network. Since, malicious adversary may take addi-
tional actions in order to breach the security of the protocol it is considered to
be an active adversary.

Having described the threat models, the MPC protocol is considered to be
secure if during its execution privacy and correctness are being achieved. The
privacy is preserved if adversary learns nothing about the inputs of honest
parties (other than what can be deduced from the computed output). The
correctness is achieved when honest parties obtain the correct output of the
function that is executed. Protocols that allow for the semi-honest adversary
to be present while preserving said privacy and correctness are considered to
have passive security, while those which allow for malicious are said to have
active security. While supporting passive security might seem intuitive, worth
noting is that the security against a malicious adversary is often implemented
with what is known as “malicious-with-abort” scheme. Where the said scheme
is in place, upon detection of malicious activity, the protocol is aborted, that is
the adversary cannot cause an incorrect output, rather no output at all could
be experienced.

Efficiency of Multi Party Computation

Evaluating functions securely through MPC involves additional costs compared
to performing the same evaluation on a trusted machine. Implementing MPC
protocols demands more resources, with some protocols causing significant com-
putational costs and others necessitating extensive communication between parties.
The communication costs can be broken down into the amount of information
(e.g. bits) exchanged and the number of communication rounds required. Dif-
ferent scenarios have varied efficiency requirements: in high latency networks,
minimizing communication rounds is crucial, while in low bandwidth networks,
the volume of information exchanged can become a bottleneck. The following
efficiency aspects are considered:

• Computation - which specifies the number of operations (additions and
multiplications) that are performed by all the parties

25

• Communication - the number of bits that are communicated between the
parties

• Number of rounds - how many communication rounds protocol requires

The asymptotic complexities of these three aspects can provide an initial in-
dication of the protocol costs, showing how the computational overhead scales
with factors such as the number of parties or the number of arithmetic opera-
tions required to compute a function. However, asymptotic complexity analysis
omits constant factors(independent of those previously mentioned), which are
manifested in a functioning implementation of the protocol.

Additionally, some MPC protocols allow a substantial portion of computa-
tions to be performed in an off-line or preprocessing phase before the private
inputs are known. These schemes typically feature a highly efficient on-line
phase, enabling rapid secure function evaluation once private inputs are avail-
able. Protocols using this approach are said to follow the preprocessing model
of computation.

3.4 Related work

Taking into account the examples presented in Section 1.2.3, it can be seen that
the creation of a system that would change the current level of transparency in
the Internet would have a positive impact on its users. Improved transparency
could help build trust between users and service providers, could help users to
understand how their traffic is being processed and eventually empower users to
take control of their data and online experiences. As described in Chapter 3.2,
improving transparency should be the result of the efforts of many network
domains due to the complex nature of the digital systems used on a daily basis.
The remainder of this chapter presents related work on network monitoring in
setting with multiple networks and on ways of sharing data between several
entities.

3.4.1 Network analysis based on different approaches.

A set of papers present applications, such as alert correlation for IDS [52], a
signature distraction from network traffic [34], anomaly detection [41] or collec-
tion of performance statistic, in case of NETI@home [43], that are based upon
sharing private data. All of the mentioned applications use either peer-to-peer
approach or trusted-third party, as a result introducing a trade-off between pri-
vacy and utility of the solution. The work presented in this report tries to use an
approach that limits the trade-off, moreover, the starting point is more general
and end-user oriented.

3.4.2 Privacy-preserving protocols

In [23] authors evaluate methods and products to achieve privacy-preserving
protocols that are relevant when outsourcing data storage and processing of
sensitive data to the public cloud. The fundamental building block presented
in this work is the use of a trusted proxy, placed between the user and the
public cloud, which employs methods such as anonymization, data splitting

26

and cryptographic techniques to preserve privacy. Workflow involving proxy
is similar to the analysis node presented in section 4.1, however many of the
presented methods are not applicable in the case of work presented in this
report due to the nature of the analysis.

In [33] authors introduce Secure and Privacy Preserving Intrusion Detection
and Prevention for UAVS (SP-IoUAV) model, dedicated to the Internet of UAVs
ecosystems. In their work authors identify the sensitive nature of the data com-
ing from drones used for surveillance and monitoring capabilities. Therefore,
the goal of the model is to present privacy-preserving mechanisms of data pro-
cessing between drones in smart-cities environments, as well as, to propose an
intrusion detection engine that would secure UAV networks. To achieve the
goal the mechanism combines federated learning, differential privacy and secure
multi-party computation. The work presented in this report is similar, as it uses
MPC to process sensitive data between domains.

In CRISP [17] authors present a solution for privacy and integrity preserving
computations that could be applicable in use-cases such as smart metering. In
their work service providers can verify the authenticity of data that has been
encrypted for offloading it to them, they can provide that service while gaining
useful knowledge for their business. The presented solution uses homomorphic
encryption primitives for computation and MPC-in-the-head paradigm to en-
sure the correctness and authenticity of the data originating from the user.
The work in this report, uses MPC for data processing, however, in its system
model several entities provide the data for computation as well as want to gain
knowledge from the result.

3.4.3 SEPIA

SEPIA [16] is a solution based on secure multiparty computation to enable cor-
relation and aggregation of network events such as rule triggering in Intrusion
Detection System. In order to create their solution, the authors propose their
own protocol within which they develop a set of basic operations. The differ-
ence between SEPIA and the presented solution is that SEPIA discusses how
to use its protocol in specific scenarios, such as correlation of events, but does
not address the issue of increasing transparency from the end user perspect-
ive. Furthermore, presented work additionally raises the issue of the origin of
information from various sources in the network.

3.4.4 GAIA-X

The goal of GAIA-X [6] is to support the development aimed at achieving trust-
worthiness and sovereignty of digital infrastructure in Europe. This work also
emphasises on the importance of transparency as the principle. Moreover, the
GAIA-X requirements underline the need for a decentralized system capable
of secure data exchange, in form of protecting both the data, as well as, ser-
vices. While GAIA-X creates a conceptual framework focused mainly on cloud
solutions, the presented work aims to propose a modular solution for sharing
descriptions and measurements originating from infrastructure processing the
traffic, to users using it.

27

3.4.5 SCION

The purpose of SCION [7] is to allow the user to control the route that is
selected by their traffic. This is achieved by introducing the Isolation Domain
Concept, which is a logical presentation of a group of autonomous systems.
The user, in the SCION architecture, is informed about possible paths, which
allows him to choose one that he considers appropriate. As in SCION, this work
aims to improve the lack of transparency in the current Internet structure. The
difference is that it additionally allows the use of general descriptions not related
to traffic processing, but resulting from the infrastructure used. Additionally,
the implementation of the architecture presented in SCION requires agreements
between the ISP in case of creating Isolation Domain in order to determine the
trust root, the adaptation of the solution can be done by independent entities.

3.4.6 Senate

Authors of Sentate [38] propose system designed to facilitate collaborative exe-
cution of analytical SQL queries among multiple parties while keeping their data
private. Proposed solution is based on novel MPC decomposition protocol, that
breaks cryptographic MPC computation into smaller units, allowing subsets
of parties to execute certain portions of the computation in parallel. Senate’s
workflow is divided into three stages, Agreement, Compilation and planning, the
two promising to produce a more efficient Execution stage. The Senate seeks
to optimise the overall execution of the analysis by decomposing the MPC into
verifiable calculations that can be performed locally. The proposed solution is
applicable to the execution of analysis on databases containing data accumu-
lated over time. The Senate differs in this respect from the work presented in
this report as this work explores the use of MPC for data analysis during data
collection/monitoring, to achieve Internet transparency.

3.4.7 Cerebro

Cerebro [53] is a solution that leverages multi-party computation to address the
demand for large amounts of data to perform machine learning, while meeting
policy regulations and not affecting business competition. Authors of Cerebro
present end-to-end approach to the system design, to allow parties with complex
relationship to perform computation while allowing to achieve good performance
of the overall execution. Similarly to the work presented in the report Cerebro
uses multi-party computation to achieve its objectives, however it differs in
application use-case and characteristics resulting from it.

3.4.8 Caring about Sharing

In paper titled Caring about Sharing [28] authors investigate users perception on
data sharing, by clearly presenting users with details on how, with whom, and
why their data is shared. Paper shows variety in users preferences resulting from
the characteristics of the data sharing between parties involved. This work is
relevant as it sheds light on user preferences and acceptability, which depend on
the explicitness of the relationship resulting from data sharing. Furthermore the
conclusion that users caring about sharing necessitates more transparent sharing
practices aligns with the overarching goal of improving Internet transparency.

28

3.4.9 Responsible Internet

The Responsible Internet [18] is a proposal for sovereignty and transparency in
the digital world. The authors postulate the need to increase the transparency
of the Internet and, in order to achieve this, they create an outline architecture
consisting of two distributed systems, Network Inspection Plane and Network
Control Plane. The paper presents a high-level overview of these systems, dis-
cusses the dilemmas accompanying the creation of such a system and potential
directions of development. Responsible Internet is the closest to the presented
work, because the proposal presented in following chapters fits into the general
structure defined by Network Inspection Plane.

29

30

Chapter 4

Design of a multi-domain
network telemetry system

As mentioned in the previous part of the thesis, the goal is to propose a system
that would make the Internet more transparent, in other words, to propose an
architecture that will enable users to gain more insight into how their network
traffic is being processed. Section 4.1 of this chapter will present the proposed
design for such a system. It will then be followed by the description of the PoC
development process.

4.1 Design proposal

This section will describe the system design process and the accompanying de-
cisions resulting from the goals described in the Section 2. The process will be
described from top to bottom, i.e. first the part of the proposal responsible for
analysing and processing data between domains will be described and then the
elements responsible for providing data will be discussed.

In Figure 4.1 a high-level overview of the system is presented. As shown in
Figure 4.1 the initiator of the data sharing process is the end user, who can ask
a domain for two types of descriptions. The first one is a general description
summarising how network traffic is processed by the domain, similar to security
audits conducted in the cloud context with the Cloud Security Alliance STAR
framework [21]. It may include information such as a description of services
that process the traffic (DPI, Encryption, DNS), a description of infrastruc-
ture processing the traffic at the data plane and control plane level (software,
hardware), the ability to perform measurements on this traffic (data plane tele-
metry), support for additional security functions (DNSSec,DoH), peering re-
lations that are directly related to the path of traffic, or finally, under which
jurisdiction the domain operates. Such description allows the user to verify that
the service provided by the domain meets their requirements/norms/standards.
The second type of description is results of measurements that the domain has
the ability to conduct in relation to the flow generated by the user. As a res-
ult of this description, the user can see values such as the processing time of
their traffic at different levels of granularity (from a single device to a domain
summary) or, for example, the use of resources.

31

Figure 4.1: High-level overview of the proposal with two types of
description.

As can be seen, from the two descriptions presented above, the user using
such a system, would have access to a great deal of information about the
functioning of the domain about which it is making the enquiry. Subsequently
this may lead to negative consequences such as potential cyber attacks resulting
from that knowledge. Therefore, the way in which this information is provided
has an impact on the usability of the proposed system. Moreover, the user may
wish to combine the data obtained by the second description in order to analyse
the processing of his traffic.

In the context of providing descriptions to the user, it is necessary to define
the scope of the domain from which descriptive and measurement data origin-
ate. From the point of view of the user using the system, it is important to limit
the complexity of the system by minimising communication patterns (limiting
number of involved parties). For example, if the end user would like to obtain
a description of functioning from an operator who outsources part of his oper-
ations, it would be the operator’s responsibility to obtain potential data from
the entity from which he outsources operations in order to eliminate the need
for the end user to make additional contact with such an entity. Therefore, it
is proposed, to define domains based on the Maintenance Domain hierarchy set
out in Protocol 802.1ag (Section 3.1.2). The user using the system would only
communicate with a domain one degree lower in the hierarchy. Furthermore,
the maximum number of entities that could participate in data exchange un-
der the protocol would be determined by the number of domains of lower level
contained within the customer level.

As for granularity of the data originating from domains, depending on the
description provided, it can be different and should meet users expectations.
The level of granularity could range from summaries over a whole domain or
per device information. In case of some descriptors it is impossible to change
the granularity of the reporting. An example is the use of device resources,
which, for example, averaged over many devices in a domain, would not give
any insight into the current network situation. However, the granularity could
be changed for parameters such as transit delay.

32

Figure 4.2: Communication flow between user and domains aimed at
performing analysis.

Given the nature of shared data, one approach could be to design the system
using a client-server architecture model, in which the user, if necessary, would
obtain encrypted data directly from the server, assuming that he has appropriate
permissions. This type of approach would require the establishment of trust
relationship between the user and the domain. Unfortunately, in many cases,
the domain providing the data cannot be sure of the user’s intentions, which
may make trust between them impossible to establish. Given that the trust is
established there is still a risk that a malicious actor could impersonate an entity
with the privileges to obtain data, consequently, accessing shared information.
The challenge of trust establishment is also present when the user wants to
analyse data from several domains. Then the domains not only have to trust
the user, but also each other. This situation could be addressed by setting up
a single entity that is trusted by the domains(trusted third party) and that
performs the analysis for the user. In such case there is a risk that a said party
could be compromised, as a result leaking the data.

33

Considering the risks and challenges described above ,it is proposed that the
solution performs data sharing and analysis based on secure multi-party com-
putation. As described in Section 3.3.3 MPC allows to carry out computation
without the input data being shared with the entities participating in the ana-
lysis. As a result, entities involved in the exchange will only receive the result
without the possibility of gaining access to sensitive information which could
jeopardise the security of many (assuming proper design of the calculation, the
result of which also does not reveal sensitive data).

Having described the types of descriptions that the user can obtain from the
domains and having pre-selected the means of analysis, I would like to propose
a flow of messages between the domains. In Figure 4.2 an example message flow
can be seen, with following messages(M()):

1. The user sends a message to Domain1 (e.g. his Internet provider) con-
taining information about the network flow he wants to monitor.
M(Flow description)

2. Domain 1 responds to the user by specifying what kind of measurement
it can perform on the flow, with what accuracy, and to which domain the
network flow is forwarded.
M(Measurement type,Accuracy,Next domain)

3. The user, after obtaining information on the next domain, makes a query
corresponding to message 1.

4. Domain 2 responds with the type of measurements it is capable of and
indicates the next domain to which the network flow goes.

5. The user queries Domain 3, indicating which network flows he wants to
monitor.

6. Domain 3 responds by describing its capabilities and informing the user
that it is the last domain processing the network flow.

7. Being informed of all domains involved in the processing of the flow, the
user wants to carry out a specific analysis on his network flow, informing
the individual domains of the other entities involved in the analysis.
M(Flow description,Measurement type,Accuracy,Domain list)

8. Each domain confirms to the user that a measurement can be performed,
and provides the data necessary to initiate the relevant analysis, i.e. how
the user can contact the analysis node and sends its certificate.
M(Acknowledgement,Node address, Cert)

9. In the event that the domain delegates a part of the operation to a third
party, it sends a request for the measurement of a specific flow to that
third party, with the details about the flow resulting from message 7.

10. Thirds party confirms that it performs measurement and gathers telemetry
data.

11. Having obtained all the details, the user provides the analysis configur-
ation (containing a description of the monitored flow, type of analysis,

34

number of domains, addresses of their nodes and certificates), thereby ini-
tiating it.
M(AnalysisConfiguration)

12. Once the analysis has been performed for a certain period of time, the
user terminates it.

As it was mentioned in the earlier part of this section, to perform successful
analysis using multi-party computation, it is necessary to design the calculated
functions in such a way that the result of these calculations does not include
information on the system from which the data originated. In this proposal two
types of functions corresponding to two types of description are described.

The first type of function is the ability to check the requirements of the user
against the domain. The input data for such a function would be a list of
requirements that the user has and the first of two descriptions mentioned in
second paragraph. The result of such a function can help determine whether
the requirements are or will not be met, which may allow the user to make a
decision to change the domain being used to transfer his traffic or renegotiate
the way it is processed.

The second function is to provide information on the use of the infrastructure,
and also to examine measurement data that will allow to achieve the effect of
end to end measurements without violating the iOAM standard (Section 3.1.5).
The input data for such a function would be the measurement data and the
example of result is the sum of all the delays or the argmax function, which
may allow to determine the bottleneck.

The next matter is how to provide data to perform Multi Domain Analysis.
The node performing the analysis could be responsible for independently query-
ing the devices involved in the transmission of the network flow. However, such
an approach would require adapting the node to ”understand” variety of avail-
able measurement technologies and for it to support obtaining data from those
devices. Moreover, with a large number of devices, scaling such a approach may
prove problematic. I propose the introduction of an intermediate layer, which
would be responsible for transmitting the request for respective data and their
acquisition. Such a intermediate layer may be realised by a message broker (fol-
lowing model described in section 3.2.3), as it mediates communication among
applications, minimising the mutual awareness which is necessary to exchange
messages successfully. Message broker is used bi-directionally. Firstly, when
the user expresses a desire to perform an analysis (flow 7 in Figure 4.2), the
analysis node publishes in the domain information on which flow is to be mon-
itored. Then, depending on how the network in the domain is managed, this
information reaches the network devices that start the measurement. When the
telemetry data is obtained, it is being published, and can be retrieved by the
analysis node that subscribes to it.

4.2 Proof of Concept implementation details

The previous section aimed to bring closer the architecture that enables analysis
of network measurement data in a multi domain fashion. This chapter will
present details related to the implementation of the Proof of Concept and the
decisions concerning the blocks on which it was based.

35

Supported
threat model

Supported
data types

General support
Last

major update

Frigate[13] N/A
Fix and Arbitrary integer,

Array

Documentation,
Example code,
Open source

8/2020

CBMC-GC[32] N/A
Fixed integer, Float,

Boolean, Array

Partial documentation,
Example code,
Open source

10/2018

SCALE-MAMBA[44]
Semi-honest,
Malicious

Fixed/Arbitrary integer,
Float, Array, Struct

Documentation,
Online Support,
Example code,
Open source

03/2022

Wysteria[8] Semi-honest
Fixed integer, Boolean,

Struct

Partial documentation,
Example code,
Open source

10/2014

Table 4.1: Comparison of the frameworks supporting two or more
parties.

4.2.1 Building blocks

Within the framework of the proposal described in the previous section, three
main elements can be distinguished, which make up its proper functioning.
These are the telemetry enabled networking device that is extended with the
functionality to report that data to a message broker, the message broker itself,
and a analysis node responsible for executing a specific function using MPC and
obtaining data from the message broker.

The most important of these elements is the MPC framework which is the
core of the whole solution. Due to the developmental character of this field
and recent interest in it, many frameworks have been presented. Available
frameworks can be divided into two main groups: specialised frameworks and
general-purpose frameworks. The main distinguishing features of these groups
are the functions offered and their performance. In the case of the former,
the developers focus on the realisation of a specific function and thus try to
optimise the performance of their solution due to the offered functionality [16].
The latter group aims at providing a framework that allows for any computation
that can be realised within the offered features. A quality of general-purpose
frameworks is more regular maintenance, which in the long run allows improving
the performance of the solution based on such a framework and the protocols
responsible for its operation. In addition, the protocols performed by the latter
are described using high level languages. This is an important characteristic
in terms of understanding the functions performed, by the involved parties, as
described in section 3.3.3.

In consideration of the above, the general-purpose framework was chosen for
the implementation. Among the available general-purpose frameworks, many
differ in terms of the number of supported parties, the security model and the
general expressibility of the high-level language that is used in the framework.
As far as the number of supported parties is concerned, the description of the
functions in Section 4.1 shows that the number of parties involved in the execu-
tion of these functions is greater or equal to two. In the Table 4.1 a comparison
of the frameworks supporting this number of parties is presented.

As it is shown in the Table, of the available frameworks only SCALE-MAMBA
supports the malicious threat model, making it the most secure framework.
According to the documentation provided by the authors, this solution has no
support for logical operations (resulting from lack of Boolean variables), which
should eliminate it in the context of the first of the two functions described in
Section 4.1. However, during the evaluation phase of that framework, it has

36

been found that the appropriate use of bitwise operation allows overcoming the
lack of these functionalities. This meant that the function flow, which could be
controlled using a Boolean variable, had to be described using operations on the
basis of the supported data types and the logic operated based on the casting
of the result. For example maximum value is calculated using the following
expression x− ((x− y)&− (x < y)), instead of returning value based on logical
result of comparison. Furthermore, in case of calculating Argmax expression
((f(x1) < f(x2))&x2)∥((f(x1) > f(x2))&x1)) is evaluated.

The next building block is the appropriate message broker. There are many
open source solutions available, which differ in characteristics. Important fea-
tures that should be taken into account when choosing the right solution are high
availability, guaranteed delivery and delivery acknowledgement, finally how de-
veloper friendly a solution is. Among the solutions that meet these requirements,
the following can be found: Apache Kafka [45], RabbitMQ [1] or ZeroMQ [3].
While these are not the only solutions that meet the requirements, they are
undoubtedly the most popular (based on number of google searches for those
terms), making them the most user-friendly and, consequently, lowering the ad-
aptation threshold of the described solution. However, out of the listed, Apache
Kafka differs in one feature that stands out. Namely, it has the ability to re-
produce messages again. In case of many message brokers, once a message is
consumed it cannot be repeated. This is an important feature for the validation
of authenticity of the data presented for the computation. This characteristic
allows establishing the chain events leading to a possible incident. Moreover,
Kafka uses a Pull-based approach. This allows for on-demand data analysis,
which increases the flexibility of the proposal. Finally, many programming
languages have dedicated modules to communicate with Kafka broker, which
significantly lowers the adaptation.

Final building block is telemetry enabled networking device. As described
in Section 4.1, the user can request on-demand monitoring of his network flow.
Technology allowing for such monitoring is SDN (Section 3.1.3), and the net-
work in the PoC leverages that characteristic. The PoC implements a SDN
controller with logic for routing traffic appropriately. In addition, the controller
has been extended with a module responsible for receiving monitoring requests
from message broker, translating them into OpenFlow rules, and instructing
the switches to monitor the specified flows. Since network controller is also re-
sponsible for gathering the telemetry data, module’s functionality is extended
by another function, which sends the measurement results to the broker. An
overview of a domain that has all building block is presented in Figure 4.3. At
the top is Analysis Node that triggers monitoring and performs execution of
MPC based multi domain calculation. Below it, is intermediate layer in the
form of Apache Kafka broker. Finally at the bottom of the Figure is SDN with
its controller and additional modules.

The PoC development process was carried out in the TNO Research Cloud
which is based on the OpenStack platform. As can be seen in Figure 4.4, the
PoC consists of three independent domains and a separate network used for
the MPC communication (which is not a compulsory but was done to achieve
separation). Each domain includes several telemetry enabled network devices,
a message broker and analysis node that initiates on demand measurement, re-
trieves measurement results and is supervising MPC protocol execution. In each
of the domains during its operation, when requested, the delay between switches

37

Figure 4.3: Detailed view of domain.

is monitored (the delay value includes the delay caused by port queuing, packet
processing and link delay). This delay is then reported and made available for
the multi-domain analysis. In the PoC three types of analysis were conducted
on the gathered data. These types are further discussed in next section. In
the PoC the two edge domains (i.e. 1 and 3) are the same in sense of used
telemetry technology, while middle domain differs from them. This design step
was taken to show that domains using different networking technologies can
perform analysis together, highlighting modularity. Edge domains consist of
Mininet network with two switches and two hosts, where switches in the net-
work are OpenFlow-enabled Open vSwitch. The RYU SDN controller manages
the network. At the beginning of the network functioning, a flow traversing
through the switches is initialised, which then triggers monitoring of the link
between them. The latency of the link between the switches is varying and
ranges from 15 to 50 ms, as can be seen in the later analysis. Details about the
delay measurement method are available in appendix B.

The middle domain is based on the FD.io VPP telemetry solution, that was
developed by Mauricio Solis as a part of his graduation project [30]. In this
domain the telemetry data is aggregated to the packet using an iOAM hop-by-
hop header extension as it enters network namespace. This action is executed
by the iOAM encapsulation node. As the packet traverses the network the
iOAM transit nodes add additional telemetry information. The telemetry data
is removed as it is leaving namespace with iOAM decapsulation node. The data
is then polled by the telemetry collector allocated in the network and reported

38

Figure 4.4: Overview of the PoC implementation.

to the broker. The delay is being deducted from Timestamp Trace type, which
is a 32-bit value that represents timestamp in ms accuracy. The use of one
of the functions described in the next section made it possible to perform a
collective analysis of the data obtained from the network. What is more, the
implementation allowed to place the modules responsible for sending messages
with measurements in the right observation points, which allows to carry out the
analysis of the system functioning in an end to end fashion, which goes beyond
the data collected in the network. This means that if the MPC function provides
for such an analysis, it is possible not only to monitor network conditions but
also to monitor the use of resources utilised to generate network traffic (e.g. VR
application).

Figure 4.5 presents the initialisation of domain1. In Figure 4.6 a console view
of the MPC execution is presented. The red boxes highlight, the first iteration
of the multi domain analysis. It can be also seen in the Figure that only one
of the three domain participating in the calculations gets the results of it. It is
intended behaviour described in the code of the protocol execution available in
appendix A.

39

F
ig

u
re

4
.5

:
C
o
n
so

le
v
ie
w

o
f
D
o
m
a
in

1
in
itia

lisa
tio

n
.
T
h
e
v
ie
w

in
c
lu
d
e
s
th

re
e
w
in
d
o
w
s.

T
o
p
-le

ft
re

p
re

se
n
ts

o
u
tp

u
t
o
f
th

e
m
in
in
e
t,

to
p
-rig

h
t
th

e
p
in
g
in
itia

lise
d
b
y
e
n
d
-u

se
r
w
h
ile

th
e
b
o
tto

m
v
ie
w

p
re

se
n
ts

th
e
re

su
lts

o
f
th

e
n
e
tw

o
rk

te
le
m
e
try

.

40

F
ig

u
re

4.
6:

C
o
n
so

le
v
ie
w

o
f
th

e
d
a
ta

a
n
a
ly
si
s
e
x
e
c
u
ti
o
n
.

T
h
e

v
ie
w

in
c
lu
d
e
s
th

re
e

w
in
d
o
w
s
th

a
t
c
o
rr
e
sp

o
n
d

to
to

th
e

d
o
m
a
in
s.

In
th

e
re

d
b
o
x
th

e
fi
rs
t
it
e
ra

ti
o
n

o
f
a
n
a
ly
si
s
is

m
a
rk

e
d
.

41

42

Chapter 5

Performance Analysis

5.1 Testbed

While the original PoC was developed using Docker containers, the performance
analysis was conducted with Virtual Machines that provide better resource sep-
aration. This decision was made on account of the fact that SCALE MAMBA
is a framework with a high demand for resources [44]. In order to check the
scalability of the architecture, a reliable resource allocation solution is required.
For the test, a set in a range of three to eight virtual machines were used. The
hardware resources allocated for each of the virtual machines were equal: four
virtual cores E5-2683 of Intel Xeon CPU running at 2.1 GHz with 16384 KB
cache and 8 GB of RAM. The network is organised in a star topology: the
Virtual Machines are all connected to an instance of OvS that operates on the
hypervisor. All hosts were connected to each other with a 15Gbit emulated
networking interface (the bandwidth of the link was measured using iperf), and
the default link latency is around 0.461 ms with a standard deviation of 0.081
ms (link latency was measured using ping). The operating system of choice on
each machine was Ubuntu 18.04.4 LTS with a 4.15 Linux Kernel. Additionally,
all nodes were connected to Network Time Protocol (NTP) Server - Stratum-1
resulting in a time synchronisation between the host ranging from -0.042 us to
0.142 us in relation to NTP server.

5.2 Test application

In order to conduct performance analysis, three types of data analysis, were pro-
posed to present possible scenarios for the analysis of network data. These three
types directly corresponds to the types of descriptions presented in Section 4.1.
These functions are:

• Calculation of the aggregated sum of delays measured in each domain. It
corresponds to the second type of description mentioned.

• Comparison of data against predetermined values. It corresponds to the
first type of description, where the requirements are checked against provided
data. It also represent the scenario where the measured data is checked
against system-level agreement (SLA).

43

• Defining which of the domains participating in the protocol gives a max-
imum value of the targeted function (argmax).

An important element of the analysis is to determine the scalability of the
proposed solution. The test applications available within SCALE-MAMBA as-
sume that while the protocol can be executed between multiple parties, only one
of them is responsible for the introduction of input data. To make the functions
more realistic and correspond to the situation of analysing network telemetry
data, each of the domains involved in the execution of the protocol input own
data during its execution. This means that one iteration of the function first
takes data from each of the parties and then conducts a calculation defined
within it. Sample code of the third function is included in listing A-2.

In the analysis, the influence of the following parameters on the execution of
the protocol was checked:

• Number of peers

• Network latency

• Transmission rate

• Parallelization of the input data

Their impact was determined using the following performance indicators:

• Time to execute one protocol iteration

• Use of CPU resources

• Use of RAM

The purpose of the analysis is to determine the performance and scalability of
the part of the architecture responsible for performing computation on the data,
but not the part responsible for the network measurements. For this reason, in
order to determine the upper boundary of the performance, each of the control
nodes responsible for initialising the function and providing data to the MPC
protocol will produce a synthetic data point each time the protocol asks for the
next value to the function. This achieves the necessary separation between the
performance of the multi domain network analysis and the performance of the
underlying telemetry technology.

5.3 Results

This section will present the results of performance measurements. To the
best of the author’s knowledge, at the time of writing this thesis, the results
of a similar nature allowing for comparison of the results obtained were not
published. The results that are published, concerning the performance of the
MPC frameworks, refer to a different nature of calculations, for example the
multiplication of matrices, which makes direct comparison impossible.

Presented results are divided as follows. First, the execution times of each of
the three functions are shown, depending on the number of domains involved
in the computation. Then one of the functions shows the impact of network
delay, transmission rate and parallelization of the input data. The final part of
this section will present the online phase of the protocol data generated by the
compiler and the analysis of resource usage.

44

(a) (b)

(c)

Figure 5.1: The execution time in milliseconds in relation to the num-
ber of domains in case of three functions. The vertical bar represents
the standard deviation.

5.3.1 Number of domains

For the test a range of 3 to 8 domains were used in order to check change in
execution time. The data presented on the figures were obtained as a result of
10000 consecutive iterations of the function. The results were then averaged.

The effect of the increasing number of domains on the execution time of three
functions is presented in Figure 5.1. On each of the plots, the x-axis shows
the number of domains, while the y-axis corresponds to the execution time in
seconds. In case of all three functions, a higher number of domains results in a
greater number of inputs and as a result, increase in number of communication
rounds between the domains. The influence of these factors is accountable for
increasing the execution time of a single function iteration. In case of first two
functions ((a) and (b)), the relation between the number of domains and exe-
cution time is linear(in case of (a) R2 = 0.995, and in case of (b) R2 = 0.994 ,
which is a positive behaviour in terms of scalability). Moreover, execution time
also presents the potential for real-time analysis of the data. For the first two
functions, the execution time of a single iteration is between 2 and 10 ms. This
time shows that for less complex functions, MPC allows making fast calcula-
tions. On the other hand, in case of more complex functions such as argmax(c)
calculation, execution time of single iteration ranges from around 250ms to

45

1800ms, depending on the number of domains involved. Significant increase in
execution time is caused by the amount of intermediate operations performed to
calculate this function. This comes as a consequence of the lack of support for
boolean variables as described in section 4.2.1. As a consequence, one iteration
requires a single comparison to determine the maximum value (which is then
stored for the next iteration), and two comparisons and three bitwise operations
to determine the argument for which the value is greater. This highlights that
certain tasks can be performed using suboptimal implementation. Finally, such
result shows that in case of a real system for telemetry data analysis, very com-
plex functions can be used for the quasi-real time analysis of events for certain
applications, e.g. media playback.

5.3.2 Network Latency

Next parameter, as described in section 5.2 is network latency. The test aims
to present the effect network latency has on the execution time of the single
iteration of the function calculating the aggregated delay. As in the previous
test, the test results were obtained by repeating 10000 iterations of data analysis
for the number of domains from 3 to 8, and then averaged. In order to obtain
predictable values of the delay Linux tool tc was used. The latency in the test
ranges from 0, which represents the initial latency on the testbed to 50 ms.
The value of the latency corresponds to the round trip network delay between
the domains. In Figure 5.2, the effect on the execution time in relation to
network latency is presented. As presented in the figure, the execution time
grows significantly with the increasing network latency. The execution time
with an additional latency of 10 ms ranges from 16 ms to 48 ms, while a latency
of 50 ms results in execution time from 77 ms to 210ms. Increase in network
latency of factor five results in an execution time increase around factor four and
a half. An important conclusion is that the network latency plays a key factor
role in a successful deployment of MPC based solution. With the increasing
latency, the ability to perform the near-real-time analysis is becoming less and
less possible. For functions with much greater complexity, this effect can be
even more visible.

5.3.3 Transmission rate

The transmission rate is the next parameter whose influence was tested during
the analysis. As in the case of network latency, the tc program was used to limit
the transmission rate. The transmission rate was then verified using the iperf
tool. The impact of the transmission rate limitation is presented in Figure 5.3
(as the standard deviation of the values presented ranges from approximately
1 ms to 4 ms, a decision was made not to include them in the Figure as to
not decrease its readability). As can be seen in the graph for all the number
of domains involved, the execution time of a single iteration was measured for
the transmission rate at 100 Mbit/s, 1 Gbit/s and 10 Gbit/s. 5.3 illustrates
that there is no significant difference in the execution time of the single function
iteration depending on the transmission rate.

46

Figure 5.2: The execution time of single iteration of function in relation
to the number of domains and network latency.

5.3.4 Parallelization of the input data

The final parameter, whose impact on the execution time of the function is
examined is data parallelization. For this test, the function aggregating the
delay over domains was modified in such a way that during single function
iteration instead of conducting calculations on one data point it is executed on
five and ten data points. The test results were obtained by repeating 10000
iterations of data analysis for the number of domains from 3 to 8, and then
averaged. The effect of data parallelization in relation to function execution
is presented in Figure 5.5 and Figure 5.4. As seen on the figures while the
parallelization of the input data increases the execution time of a single iteration,
it results in more data points being analysed during that time. For example,
when compering no parallelization with the case of inputting 10 data points at
the same time it can be seen that for the no parallelization case it would take
on average twice as much time to perform computation on 10 data points than
in the latter case. However, in cases of very time-sensitive cases, this trade-off
may not be possible. However, as can be seen from the graphs, this is one form
of optimisation of function execution that can be considered for environments
with a negative impact on function execution time, as described in the previous
sections.

47

Figure 5.3: The execution time of a single iteration of function in re-
lation to the number of domains and transmission rate.

5.3.5 Resource scalability

The last element examined in the analysis is the scalability in terms of resources,
that is RAM and CPU usage. In case of the former, the amount of used memory
is strictly defined by the compiler at the function compilation stage. For all
previously performed tests, for each function the compiler returned information
that the maximum amount of memory used during calculation is 8192 MB. As
for CPU (4 virtual cores used), for this purpose, during the test described in
section 5.2 additionally measured value was the processor usage. The results of
the measurement are presented in Figure 5.6 (the large error bars presented in
the Figure comes from the fact that presented value is an averaged utilisation of
4 used cores. For some operations performed during function execution only one
core can be used, while other stay at 0% utilisation. This causes the standard
deviation to get larger).

As shown in the figures for the first two functions, as the number of domains
increases, processor usage increases with it. This is due to more communication
between the domains, which takes place during function execution. For the
third function, as the number of domains increases, CPU usage decreases. In
order to understand this dependence, one should refer back to Figure 5.1. In the
case of the argmax function, a large number of domains significantly affects the
execution time of a single iteration, which also affects the amount of time when
one of the domains is waiting for the others. As a result, the processor spends

48

(a) (b)

(c)

Figure 5.4: The execution time in milliseconds of a single function it-
eration in relation to the number of domains in case of three types
of data parallelization. The vertical bar represents the standard de-
viation.

49

Figure 5.5: The execution time of a single function iteration in relation
to the number of domains in case of three types of data parallelization
presented on a single plot.

more time in idle lowering overall usage number. When analysing these graphs,
it should be remembered that the presented values concern the execution of a
function which analyses a single data stream involving certain domains. Analysis
of many data streams simultaneously (assuming for each a dedicated function is
used) would require significantly more resources. This is due to the fact that, for
each function, the involved domains must go through a protocol initialisation
step and maintain in memory the necessary data during its execution. Such
dependence shows that the presented solution comes at the price of limited
scalability. As a result, there is a risk that this solution will only be viable for
those for whom obtaining the knowledge resulting from the analysis is justifiable
in relation to the potentially high costs incurred by the high use of the resources.

5.3.6 Conclusion

As shown in the previous sections, the performance of an MPC-based solution
varies depending on the prevailing network conditions and the complexity of the
analysed functions. For less complex functions it is possible to use them in real
systems, assuming that network conditions do not have too negative impact on
performance (significant delays). As a consequence, at the time of writing this
thesis, the presented solution could be utilised by entities for which the trade-off
between the use of resources and, consequently, the costs incurred, is justified

50

Figure 5.6: The CPU usage, averaged over time of execution, in rela-
tion to the number of domains in case of three functions: (a) aggreg-
ated delay, (b) comparison of the value, (c) argmax of domains.

by the insight gained from the analysis. However, for scenarios with a different
threat model, it could be possible to propose a different, more resource scalable
approach.

51

52

Chapter 6

Conclusions and Future
Work

With the growing demand for fast deployable, customizable and quickly adapt-
able services, it is becoming necessary to supervise them and the resources as-
sociated with them. The presented proposal realizes a multi-domain diagnostic
system, and the conclusions of this project, as well as, future work are presented
in this section.

6.1 Conclusion

In order to draw conclusion the step-by-step process derived from research ob-
jective presented in introduction is going to be revisited.

• As presented in section 3.4 there are many solutions showing the benefits of
joint analysis of network data. Some of them use TTP or P2P approach.
However, a multi-domain diagnostic system based on these approaches
introduces tradeoffs in terms of usability vs security/privacy. SEPIA [16]
is an MPC based solution. The solution presented by the authors uses a
custom-made framework sewn to specific needs, which significantly limits
the possibility of extending this solution with additional functionality.

• The issues presented in the paper are researched by the public. GAIA-
X [6], Responsible Internet [18] sketch the need to improve transparency on
the Internet in the context of trustworthiness and sovereignty. Presented
work is complementary in view of the efforts made to improve transparency
in the Internet while maintaining privacy and competitive balance.

• The presented solutions put emphasis on maintaining competitiveness,
which allows to convince potential users to adopt it. In this work, an
important role is played by the flexibility of the solution, which allows
the acquisition of measurement data from multiple observation points,
allowing to achieve the effect of end to end monitoring and allowing to
customize the solution according to the needs.

53

• In order to present a working prototype, the containerization available in
Linux using Docker was used. This prototype was later expanded by cre-
ating independent domains within the Research Cloud provided by TNOs.
The multi-domain nature of the solution was presented by creating inde-
pendent networks in which different technologies were used for the purpose
of network telemetry that were then used as input data for analysis.

• In order to analyze the upper performance limit of the solution, tests were
performed which checked the time of one iteration of data analysis with
variable factors such as: variable number of domains, various functions
analyzing data and variable network parameters used for communication
between the domains. The performance analysis showed that the proposed
solution comes at the price of high resource utilization.

In conclusion, the presented work shows the possibility of implementing a
multi-domain diagnostic system, whose main objective is to maintain the pri-
vacy of the involved systems and of analyzed data. The efficiency of this solution
is limited depending on the function used to analyze data and the prevailing con-
ditions in the network used for communication between domains. The presented
work shows one of the possible approaches to the implementation of a multi-
domain system and related aspects.

6.2 Future work

On the outcome and the course of the work carried out, the following activities
were identified as part of future work.

• The performance analysis of the presented PoC was used to determine the
upper performance boundry. In order to analyse the performance in real
life system it would be necessary to conduct tests based on real telemetry
solutions.

• As with the previous point, tests involving different physical networks
(representing different domains), where the network conditions would not
be static, would have to be carried out in order to check the actual per-
formance of the solution.

• As presented in the results, the resource-intensive nature of the proposed
solution means that increasing the number of domains in the system can
be a costly. Hence, ways to improve the scalability of the system to apply
it to complex analyses would need to be explored.

• The presented work indicates specific ways of processing data in order to
analyse information from multiple domains. The type of data analysed
is different from typical MPC based solutions. In view of the above, a
potential direction could be to further examine the optimisation of the
data analysed in the context of reducing resource use.

Furthermore current efforts of the academic community in the MPC field
are partly focused on addressing the shortest path problem on a graph whose
representation is private according to the concepts available in the MPC. The

54

solution presented is a step that will enable future contributions to the protocols
for solving this problem. As a consequence, one of the possible future directions
is to extend the functionality with new analysis function, which will be based
on future protocols.

55

56

Bibliography

[1] Rabbitmq. https://www.rabbitmq.com/. Last accessed: Apr. 15, 2020.

[2] traceroute(8) - linux manual page. https://man7.org/linux/man-pages/
man8/traceroute.8.html. Last accessed: Aug. 18, 2020.

[3] Zeromq. http://zeromq.org/. Last accessed: Apr. 17, 2020.

[4] OpenFlow switch Specification. https://www.opennetworking.org/

wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf, 2015.
Last accessed: Aug. 10, 2020.

[5] Eu ict industrial policy: Breaking the cycle
of failure. https://www.enisaeuropa.eu/

publications/enisa-position-papers-and-opinions/

eu-ict-industry-consultation-paper, 2019.

[6] Gaia-x. https://www.data-infrastructure.eu/GAIAX/Redaktion/EN/

Publications/gaia-x-the-european-project-kicks-of-the-next-phase.

pdf, 2020.

[7] R.Reischuk-L.Chuat A.Perrig, P.Szalachowski. SCION: a secure Internet
architecture. Springer, 2017.

[8] A.Rastogi. Wysteria: A programming language for generic, mixed-mode
multiparty computation. https://bitbucket.org/aseemr/wysteria/

wiki/Home, 2014. Last accessed: Mar. 26, 2020.

[9] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen, An-
gela Jäschke, Christian A. Reuter, and Martin Strand. A guide to fully
homomorphic encryption. Cryptology ePrint Archive, Paper 2015/1192,
2015. https://eprint.iacr.org/2015/1192.

[10] Jeffrey R Ballard, Ian Rae, and Aditya Akella. Extensible and scalable
network monitoring using opensafe. Inm/wren, 10, 2010.

[11] Amos Beimel. Secret-sharing schemes: a survey. In International Confer-
ence on Coding and Cryptology, pages 11–46. Springer, 2011.

[12] George Robert Blakley. Safeguarding cryptographic keys. In 1979 Inter-
national Workshop on Managing Requirements Knowledge (MARK), pages
313–318. IEEE, 1979.

57

https://www.rabbitmq.com/
https://man7.org/linux/man-pages/man8/traceroute.8.html
https://man7.org/linux/man-pages/man8/traceroute.8.html
http://zeromq.org/
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.enisaeuropa.eu/publications/enisa-position-papers-and-opinions/eu-ict-industry-consultation-paper
https://www.enisaeuropa.eu/publications/enisa-position-papers-and-opinions/eu-ict-industry-consultation-paper
https://www.enisaeuropa.eu/publications/enisa-position-papers-and-opinions/eu-ict-industry-consultation-paper
https://www.data-infrastructure.eu/GAIAX/Redaktion/EN/Publications/gaia-x-the-european-project-kicks-of-the-next-phase.pdf
https://www.data-infrastructure.eu/GAIAX/Redaktion/EN/Publications/gaia-x-the-european-project-kicks-of-the-next-phase.pdf
https://www.data-infrastructure.eu/GAIAX/Redaktion/EN/Publications/gaia-x-the-european-project-kicks-of-the-next-phase.pdf
https://bitbucket.org/aseemr/wysteria/wiki/Home
https://bitbucket.org/aseemr/wysteria/wiki/Home
https://eprint.iacr.org/2015/1192

[13] B.Mood. Frigaterelease. http://www.powercastco.com, 2020. Last ac-
cessed: Sept. 30, 2020.

[14] R. Braden. Requirements for internet hosts - communication layers, 10
1989.

[15] Frank Brockners, Tal Mizrahi, and Shwetha Bhandari. Data fields for in-
situ oam, 07. Last accessed: Aug. 13, 2020.

[16] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitro-
poulos. Sepia: Privacy-preserving aggregation of multi-domain network
events and statistics. Network, 1(101101), 2010.

[17] Sylvain Chatel, Apostolos Pyrgelis, Juan Ramón Troncoso-Pastoriza, and
Jean-Pierre Hubaux. Privacy and integrity preserving computations with
CRISP. In 30th USENIX Security Symposium (USENIX Security 21),
pages 2111–2128. USENIX Association, August 2021.

[18] R.Holz-F.Kuipers Fernando J.Xue M.Jonker J.de Ruiter A.Sperotto
R.Rijswijk-Deij G.Moura others C.Hesselman, P.Grosso. A responsible
internet to increase trust in the digital world. Journal of Network and
Systems Management, 28(4):882–922, 2020.

[19] B. Claise. Cisco systems netflow services export version 9, 10. Last accessed:
Aug. 15, 2020.

[20] Alan Clark. Guidelines for considering new performance metric develop-
ment, 10 2011. Last accessed: Aug. 15, 2020.

[21] Cloud Security Alliance. Csa star framework. https://

cloudsecurityalliance.org/star/levels/. Last accessed: Dec.
17, 2020.

[22] B. Waters D. Boneh, A. Sahai. Functional encryption: Definitions and
challenges. TOC/CIS groups, LCS, MIT, 1996.

[23] Josep Domingo-Ferrer, Oriol Farràs, Jordi Ribes-González, and David
Sánchez. Privacy-preserving cloud computing on sensitive data: A sur-
vey of methods, products and challenges. Computer Communications, 140-
141:38–60, 2019.

[24] I. Benbasat G.C Moore. Development of an instrument to measure the
perceptions of adopting an information technology innovation. Information
Systems Research, 2(3):192–222, 1991.

[25] Tim Kindberg George Coulouris, Jean Dollimore. Distributed systems: con-
cepts and design. Pearson Education, 2013.

[26] W. Hardaker. Transport layer security (tls) transport model for the simple
network management protocol (snmp), 07. Last accessed: Aug. 17, 2020.

[27] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography
on oblivious transfer–efficiently. In Annual international cryptology confer-
ence, pages 572–591. Springer, 2008.

58

http://www.powercastco.com
https://cloudsecurityalliance.org/star/levels/
https://cloudsecurityalliance.org/star/levels/

[28] Bailey Kacsmar, Kyle Tilbury, Miti Mazmudar, and Florian Kerschbaum.
Caring about sharing: User perceptions of multiparty data sharing. In
31st USENIX Security Symposium (USENIX Security 22), pages 899–916,
Boston, MA, August 2022. USENIX Association.

[29] R. J. Klein L. G. Tornatzky. Innovation characteristics and innovation
adoption-implementation: A meta-analysis of findings. IEEE Transactions
on Engineering Management, EM(29):28–45, 1982.

[30] Solis Jr Mauricio. Further implementation of ioam using ipv6 in fd.io vector
packet processor. Master’s thesis, Department of Electrical and Computer
Engineering, Technische Universität Kaiserslautern, 2020.

[31] Al Morton. Active and passive metrics and methods (with hybrid types
in-between), 05 2016. Last accessed: Aug. 22, 2020.

[32] N.Buescher. Powercast hardware. http://www.powercastco.com, 2018.
Last accessed: Mar. 24, 2020.

[33] Ernest Ntizikira, Wang Lei, Fahad Alblehai, Kiran Saleem, and
Muhammad Ali Lodhi. Secure and privacy-preserving intrusion detection
and prevention in the internet of unmanned aerial vehicles. Sensors, 23(19),
2023.

[34] Janak J Parekh, Ke Wang, and Salvatore J Stolfo. Privacy-preserving
payload-based correlation for accurate malicious traffic detection. In Pro-
ceedings of the 2006 SIGCOMM workshop on Large-scale attack defense,
pages 99–106, 2006.

[35] V. Paxson, J. Mahdavi, M. Mathis, and G. Almes. Framework for ip per-
formance metrics, 05 1998. Last accessed: Aug. 16, 2020.

[36] Peter Strempel. New report on european digital infrastructure and data
sovereignty. https://www.eitdigital.eu/newsroom/news/article/

new-report-on-european-digital-infrastructure-and-data-sovereignty/,
2020.

[37] Peter Phaal and Sonia Panchen. sflow - packet sampling basics.

[38] Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan Deng, Raluca Ada
Popa, and Joseph M. Hellerstein. Senate: A Maliciously-Secure MPC plat-
form for collaborative analytics. In 30th USENIX Security Symposium
(USENIX Security 21), pages 2129–2146. USENIX Association, August
2021.

[39] J Postel. Internet control message protocol, 09 1981.

[40] O. Goldreich M.Naor R. Canetti, U. Feige. Adaptively secure multi-party.
Proceedings of Theory of Cryptography Conference, TCC, 2011.

[41] Haakon Andreas Ringberg and Jennifer Rexford. Privacy-preserving col-
laborative anomaly detection. Citeseer, 2009.

[42] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

59

http://www.powercastco.com
https://www.eitdigital.eu/newsroom/news/article/new-report-on-european-digital-infrastructure-and-data-sovereignty/
https://www.eitdigital.eu/newsroom/news/article/new-report-on-european-digital-infrastructure-and-data-sovereignty/

[43] Charles Robert Simpson and George F Riley. Neti@ home: A distrib-
uted approach to collecting end-to-end network performance measurements.
In International Workshop on Passive and Active Network Measurement,
pages 168–174. Springer, 2004.

[44] Smart, N. Scale-mamba software. https://homes.esat.kuleuven.be/

~nsmart/SCALE/. Last accessed: Aug. 15, 2020.

[45] The P4 Language Consortium. Apache kafka documentation. https://

kafka.apache.org/documentation/. Last accessed: Aug. 13, 2020.

[46] Amin Tootoonchian, Monia Ghobadi, and Yashar Ganjali. Opentm: traffic
matrix estimator for openflow networks. In International Conference on
Passive and Active Network Measurement, pages 201–210. Springer, 2010.

[47] Brian Trammell and Benoit Claise. Specification of the ip flow information
export (ipfix) protocol for the exchange of flow information, 09 2013. Last
accessed: Aug. 12, 2020.

[48] Niels LM Van Adrichem, Christian Doerr, and Fernando A Kuipers. Open-
netmon: Network monitoring in openflow software-defined networks. In
2014 IEEE Network Operations and Management Symposium (NOMS),
pages 1–8. IEEE, 2014.

[49] Daniël Van Den Berg, Rebecca Glans, Dorian De Koning, Fernando A
Kuipers, Jochem Lugtenburg, Kurian Polachan, Prabhakar T Venkata,
Chandramani Singh, Belma Turkovic, and Bryan Van Wijk. Challenges
in haptic communications over the tactile internet. IEEE Access, 5:23502–
23518, 2017.

[50] Yaacov Weingarten, Nurit Sprecher, Elisa Bellagamba, and Tal Mizrahi.
An overview of operations, administration, and maintenance (oam) tools,
06 2014. Last accessed: Aug. 20, 2020.

[51] W.Neelen, R.van Duijn. Hacking traffic lights defcon 2020.
https://media.defcon.org/DEF%20CON%2028/DEF%20CON%20Safe%

20Mode%20presentations/DEF%20CON%20Safe%20Mode%20-%20Wesley%

20Neelen%20%26%20Rik%20van%20Duijn%20-%20Hacking%20Traffic%

20Lights.pdf, 2020. Last accessed: Sep. 28, 2020.

[52] Vinod Yegneswaran, Paul Barford, and Somesh Jha. Global intrusion
detection in the domino overlay system. Technical report, University of
Wisconsin-Madison Department of Computer Sciences, 2003.

[53] Wenting Zheng, Ryan Deng, Weikeng Chen, Raluca Ada Popa, Aurojit
Panda, and Ion Stoica. Cerebro: A platform for Multi-Party cryptographic
collaborative learning. In 30th USENIX Security Symposium (USENIX
Security 21), pages 2723–2740. USENIX Association, August 2021.

60

https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://media.defcon.org/DEF%20CON%2028/DEF%20CON%20Safe%20Mode%20presentations/DEF%20CON%20Safe%20Mode%20-%20Wesley%20Neelen%20%26%20Rik%20van%20Duijn%20-%20Hacking%20Traffic%20Lights.pdf
https://media.defcon.org/DEF%20CON%2028/DEF%20CON%20Safe%20Mode%20presentations/DEF%20CON%20Safe%20Mode%20-%20Wesley%20Neelen%20%26%20Rik%20van%20Duijn%20-%20Hacking%20Traffic%20Lights.pdf
https://media.defcon.org/DEF%20CON%2028/DEF%20CON%20Safe%20Mode%20presentations/DEF%20CON%20Safe%20Mode%20-%20Wesley%20Neelen%20%26%20Rik%20van%20Duijn%20-%20Hacking%20Traffic%20Lights.pdf
https://media.defcon.org/DEF%20CON%2028/DEF%20CON%20Safe%20Mode%20presentations/DEF%20CON%20Safe%20Mode%20-%20Wesley%20Neelen%20%26%20Rik%20van%20Duijn%20-%20Hacking%20Traffic%20Lights.pdf

Appendix A

MPC details

This appendix contains the code which is part of the proof of concept imple-
mentation.

4
RootCA
7
1 0 . 0 . 1 . 1 9 2
Player0 . c r t
1 0 . 0 . 1 . 1 4 1
Player1 . c r t
1 0 . 0 . 1 . 1 0 5
Player2 . c r t
1 0 . 0 . 1 . 1 7 5
Player3 . c r t
1 0 . 0 . 1 . 1 9 6
Player4 . c r t
1 0 . 0 . 1 . 2 9
Player5 . c r t
1 0 . 0 . 1 . 2 0 1
Player6 . c r t
2
9223372036855103489
1

Listing A.1: A sample setup file used to configure the SCALE-MAMBA
framework

p r i n t l n (’ ∗∗∗∗ START MPC ∗∗∗∗ ’)
p r i n t l n (’ ∗∗∗∗ Max de lay ∗∗∗∗ ’)

def maximum(a , b) :
return a − ((a − b) & (a < b))

def argmax (a , b) :
return (a [0] − ((a [0] − b [0]) & (a [0] < b [0])) ,

((a [0] < b [0]) & b [1]) | ((a [0] > b [0]) & a [1]))

61

@while do (lambda x : x < 1 , 0)
def ca l max de lay (i) :

a = (s r e g i n t (s i n t . g e t p r i v a t e i n p u t f r o m (0)) , s r e g i n t (0))
b = (s r e g i n t (s i n t . g e t p r i v a t e i n p u t f r o m (1)) , s r e g i n t (1))
c = (s r e g i n t (s i n t . g e t p r i v a t e i n p u t f r o m (2)) , s r e g i n t (2))

max = maximum(a [0] , b [0])
max = maximum(max , c [0])

max = argmax (a , b)
max = argmax (max, c)

p r i n t l n (’ Output : va lue o f max de lay i s caused
 by Player %s ’ , max [1] . r e v e a l ())

return i + 1

i f name == ’ ma in ’ :
ca l max de lay (0)

Listing A.2: A code of a MPC function calculating argmax of presented
values. This function is writen for three domain environment

62

Appendix B

Measurement method

This appendix describes the active measurement method used to acquire data
in domains 1 and 3 of PoC, that served as an input to the MPC protocol.

As seen in Figure B.1, making a single measurement requires three activities.
First, the controller measures the time between sending a packet and receiving a
return message when requesting statistics from switches that are the beginning
and the end of a measured link. This measurement allows to estimate the delay
between the controller and each of the switches. Then a special measurement
packet is sent to the network, which differs by a specific value in the header. This
packet goes from the controller to the first switch, then to the second through
the measured link, finally reaching the controller after being redirecting by the
second switch. The time measured between sending the packet and receiving it
again, after subtracting the previously mentioned delays to the switches, allows
to

63

Figure B.1: Active measurement method using probe packet in SDN
based network.

64

	Preface
	Introduction
	Problem description
	Motivation
	Limited Internet Transparency
	Limited Control
	Examples

	Research Objective
	Contribution
	Thesis structure

	Design goals
	Design goals
	Transparency
	Sensitivity of shared data
	Usefulness and Usability

	Network Observability System
	Monitoring of networks and digital systems
	Network Telemetry
	Operation, Administration and Maintenance
	Software-defined networking
	OpenFlow
	iOAM

	Distributed systems architectures
	Client-Server model
	Microservices model
	Publish-Subscribe model
	Peer-to-Peer model
	Flexible system design

	Data analysis with secrecy
	Functional Encryption
	Fully Homomorphic Encryption
	Secure Multi-Party Computation
	Secure Multi-Party Computation - data sharing, security models and efficiency

	Related work
	Network analysis based on different approaches.
	Privacy-preserving protocols
	SEPIA
	GAIA-X
	SCION
	Senate
	Cerebro
	Caring about Sharing
	Responsible Internet

	Design of a multi-domain network telemetry system
	Design proposal
	Proof of Concept implementation details
	Building blocks

	Performance Analysis
	Testbed
	Test application
	Results
	Number of domains
	Network Latency
	Transmission rate
	Parallelization of the input data
	Resource scalability
	Conclusion

	Conclusions and Future Work
	Conclusion
	Future work

	MPC details
	Measurement method

